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Abstract

Empirical researchers routinely rely on finite-difference approximations to evaluate derivatives

of estimated functions. For instance, commonly used optimization routines implicitly use finite-

difference formulas for gradient calculations. This paper investigates the statistical properties of

numerically evaluated gradients and of extremum estimators computed using numerical gradi-

ents. We find that first, one needs to adjust the step size or the tolerance parameter as a function

of the sample size. Second, higher-order finite difference formulas reduce the asymptotic bias

analogous to higher order kernels. Third, we provide weak sufficient conditions for uniform con-

sistency of the finite-difference approximations for gradients and directional derivatives. Fourth,

we analyze numerical gradient-based extremum estimators and find that the asymptotic distri-

bution of the resulting estimators may depend on the sequence of step sizes. Fifth, we state

conditions under which the numerical derivative estimator is consistent and asymptotically nor-

mal. Sixth, we generalize our results to semiparametric estimation problems. Finally, we show

that the theory is also useful in a range of nonstandard estimation procedures.

JEL Classification: C14; C52

Keywords: Numerical derivative, entropy condition, stochastic equicontinuity

1 Introduction

Computing extremum estimators typically involves the use of maximization routines. When the

anaytical gradient of the objective function is not available, these routines use finite-difference ap-

proximations to the gradient and this involves the choice of a step size parameter. The statistical

noise in this approximation algorithm of the optimization routine is typically ignored in empirical

work. In this paper, we provide weak conditions for the consistency of numerical derivative estimates

and demonstrate that the use of finite approximation can affect both the rate of convergence and

the asymptotic distribution of the resulting estimator. This result has important implications for
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the practical use of numerical optimization routines. In particular, the choice of numerical toler-

ance and the step size should depend on the sample size. Further, the asymptotic distribution and,

consequently, the shape of the confidence region depends on the particular sequence of step sizes.

We focus on numerical gradient-based optimization routines that use finite-difference formulas to

approximate the gradient of a general objective function that can depend on finite or infinite dimen-

sional unknown parameters. Aspects of this problem have received some previous attention in the

literature. Pakes and Pollard (1989), Newey and McFadden (1994) and Murphy and Van der Vaart

(2000) provided sufficient conditions for using numerical derivatives to consistently estimate the

asymptotic variance in a parametric model. The properties of numerical derivatives have, however,

predominantly been investigated only for very smooth models. For instance, Anderssen and Bloom-

field (1974) analyzed derivative computations for functions that are approximated using polynomial

interpolation. L’Ecuyer and Perron (1994) considered asymptotic properties of numerical deriva-

tives for the class of general smooth regression models. Andrews (1997) considered the relationship

between numerical tolerance for the computation of GMM-type objective functions and their sample

variance. However, to the best of our knowledge there have been no studies of the impact of the

numerical optimization on the statistical properties of general extremum estimators.

Our results include fairly weak sufficient conditions for consistency, rates of convergence and the

asymptotic distribution for several classes of numerically computed extremum estimators. Our

analysis applies to M-estimators, generalized method of moment (GMM) estimators, and estimators

that maximize a function involving second-order U-statistics. Numerical M-estimation is considered

both for finite-dimensional and infinite-dimensional unknown parameters. We find that the choice

of the step size for consistency and convergence to the asymptotic distribution depends on the

interplay between the smoothness of the population objective function, the order of the chosen

approximation, and on the properties of the sample objective function. Specifically, we find that if

the sample objective function is very smooth, then the step size for numerical differentiation can be

chosen to approach zero at an arbitrarily fast rate. For a discontinuous objective function, the step

size should not converge to zero too rapidly as the sample increases.

We illustrate our findings with several empirical examples. In one example, we apply numerical

gradient-based optimization to the maximum score (Manski, 1975), and find that for an appropriate

step size sequence, the behavior of the resulting estimator is similar to the smoothed maximum score

estimator of Horowitz (1992).

The paper is organized as follows. Section 2 analyzes uniformly consistent estimation of numerical

derivatives for both parametric and semiparametric models. Section 3 and 4 study the impact

of numerical derivative based optimization method on the asymptotic properties of the resulting

extremum estimators. Section 5 extends these results to U-statistics based objective functions, and

section 6 considers applications. Section 7 addresses the practical question of step size choice for a

given sample and Section 8 presents Monte Carlo simulation evidence. Finally section 9 concludes.
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2 Estimation of derivatives from non-smooth sample functions

2.1 Derivatives of semiparametric moment functions

In this section we consider a general conditional moment model of the form of

m (z, θ, η (·)) = E [ρ (Y, θ, η (·)) |Z = z] = 0, if and only if (θ, η (·)) = (θ0, η0 (·)) .

Subsequent sections deal with extreme estimators instead. The parameters above include the finite

dimensional θ ∈ Θ ⊂ Rd and the infinite dimensional η (·) ∈ H parameters. This setup includes

the unconditional moment as a special case when z is a constant. Because the moment condition

m (·) can be multi-dimensional, this setup also includes two step and multi-step step estimators,

when some of the moment conditions corresponding to initial stage estimators only depend on the

infinite dimensional functions η (·). Semiparametric estimators for this general model and their

asymptotic distributions are studied extensively in the literature. In some models, the moment

conditions ρ (y, θ, η (·)) depend only on the value of the function η (·) evaluated at the argument y.

In some other models, such as in dynamic discrete choice models and dynamic games, ρ (y, θ, η (·))
may depend on the entire function of η (·) in complex ways.

The sieve approach, studied in a sequence of papers by Newey and Powell (2003), Chen and Shen

(1998), Ai and Chen (2003) and Chen and Pouzo (2009), approximates the class of infinite dimen-

sional functions H using a parametric family of function Hn whose dimension increases to infinity

as the sample size n increases.

For any w ∈ H and α = (θ, η), denote by ∂m(Z,α)
∂η [w] = dm(Z,θ,η+τw)

dτ

∣∣∣∣
τ=0

the directional derivative of

m (Z,α) with respect to the η component in the w direction. It is known that θ̂ can be
√
n consistent

and asymptotically normal while η̂ can obtain the optimal nonparametric convergence rate for η.

In addition, consistent inference for θ depends on the ability to estimate the finite dimensional and

infinite dimensional directional derivatives Dwj (z) ≡ ∂m(Z,α)
∂θj

− ∂m(Z,α)
∂η [wj ] uniformly consistently

in various directions wj , where α = (θ, η). Ackerberg, Chen, and Hahn (2009) further shows that

treating the entire estimation procedure for α as parametric and reading off the variance of θ̂ from

the upper-left block of an estimate of the asymptotic variance-covariance matrix of α̂ =
(
θ̂, η̂
)

will give consistent estimates of the asymptotic variance of the parametric component. However, in

many practical estimation problems, the derivatives of ∂m̂(Z,α̂)
∂θj

and ∂m̂(Z,α̂)
∂η [wj ] do not have analytic

solutions and have to be evaluated numerically. This might be the case even if ρ (·) appears to be

linear. For example in dynamic models typically ρ (x; θ0, η0(·)) = η0(z)− αη0(x)− f (x, z; θ) for a

known parametric function f (x, z; θ). The goal of this section is to analyze the impact of numerical

approximation on statistical properties of the estimator for Dw (z) and the parameter of interest.

Other sections consider M-estimators.
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2.2 Numerical differentiation using finite differences

Finite difference methods (e.g. Judd (1998)) are often used for the numerical approximation of

derivatives. To illustrate, for a univariate function g (x), we can use a step size ε to construct

a one-sided derivative estimate ĝ′ (x) = g(x+ε)−g(x)
ε , or a two-sided derivative estimate ĝ′ (x) =

g(x+ε)−g(x−ε)
2ε . More generally, the kth derivative of g (x) can be estimated by a linear operator,

denoted by Lεk,pg (θ), that makes use of a pth order two-sided formula:

Lεk,pg (x) =
1

εj

p∑
l=−p

clg (x+ lε) .

In multivariate functions, g (x+ ε) means the vector of [g(x+ εek)] , k = 1, . . . , d, where ek is the

vector with 1 in the kth position and 0 elsewhere, and d is the dimension of x. The usual two sided

derivative refers to the case when p = 1. When p ≥ 1, these are called higher order finite differences.

For a given p, when the weights cl, l = 1, . . . , p are chosen appropriately, the error in approximating

g(k)(x) with Lεj,pg (x) will be small:

Lεk,pg (x)− g(k)(x) = O(ε2p+1−k).

For r = 2p+ 1, consider the following Taylor expansion:

Lεk,pg (x) =
1

εk

p∑
l=−p

cl

[
r∑
i=0

g(i)(x)

i!
(lε)

i
+O

(
εr+1

)]
=

r∑
i=0

g(i)(x)
εi

εj

p∑
l=−p

cll
i

i!
+O

(
εr+1−k) .

The coefficients cl are therefore determined by a system of equations where δi,k is the Kronecker

symbol that equals 1 if and only if i = k and equals zero otherwise:

p∑
l=−p

cll
i = i!δi,k, for i = 0, . . . , r.

We are mostly concerned with first derivatives where k = 1. In multivariate functions, the notation

of pth order central derivatives can also be extended straightforwardly to partial derivatives. Since

we are only concerned with k = 1, we only need to use L
ε,xj
1,p to highlight the element of x for which

the linear operator applies to.

The usual two sided formula corresponds to p = 1, c−1 = −1/2, c0 = 0 and c1 = 1/2. For

second order first derivatives where p = 2 and k = 1, c1 = 1/12, c−1 = −1/12, c2 = −2/3,

c−2 = +2/3, c0 = 0. In addition to central numerical derivative, left and right numerical derivatives

can also be defined analogously. Since they generally have larger approximation errors than central

numerical derivatives, we will restrict most attention to central derivatives.

Each jth component of Dw (z)
′

in the asymptotic variance formula can then be estimated by

D̃j
ŵ(z) = L

εn,θj
1,p m̂

(
z; θ̂, η̂(·)

)
− Lτn,wj1,p m̂

(
z; θ̂, η̂(·)

)
,
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where εn and τn are the relevant step sizes for the numerical derivatives with respect to the finite and

infinite-dimensional parameters. In general the step sizes εn and τn can be chosen differently for dif-

ferent elements of the parametric and nonparametric components. It might also be possible to adapt

the equal distance grid to a variable distance grid of the form Lεk,pg (x) = 1
εj

∑p
l=−p clg (x+ tlε),

where tl can be different from 1. In addition both the step size and the grid distance can also be

made to be dependent on the observations. These possibilities are left for future research.

For most of the statistical analysis in the rest of the paper we assume away machine imprecision.

Machine precisions also impose a lower bound on the step size in conjunction with the statistical lower

bound (see, e.g. Press, Teukolsky, Vettering, and Flannery (1992)). This and related implementation

issues are discussed in section 7.

2.3 Sufficient conditions for consistency of finite-difference derivatives

Before we strive to obtain the weakest possible sufficient condition for consistency in next section, we

first show that the existing sufficient conditions in the literature (e.g. Newey and McFadden (1994)

and Powell (1984)) for parametric models can be straightforwardly generalized to semiparametric

models.

ASSUMPTION 1. For a linear operator ∆p,θp1 ,δp2 [δ]p1 that is p1th linear in θ, that has a finite

second moment and that is linear in each argument, e.g., ∆2,θ,η[t δ] (θ − θ0) = t∆2,θ,η[δ] (θ − θ0),

the following approximation holds at (θ0, η0):

E

[∥∥∥∥m (z; θ, η(·))−∆1θ (θ − θ0)−∆1η[δ]− . . .−
∑

p1+p2=p

∆p,θp1 ,hp2 [δ]p1 (θ − θ0)
p2

∥∥∥∥2]

= o
(
‖δ‖2pL2 + ‖θ − θ0‖2p

)
.

Assumption 1 requires that the conditional moment m (z; θ, η(·)) is mean square differentiable in L2

norm with respect to the distribution of z. The next assumption relates to the rate of convergence of

the nonparametric conditional moment estimate. Define Uγ as a neighborhood of θ0, η0 with radius

γ: Uγ = {θ, η (·) : ||θ − θ0|| < γ, |η (·)− η0 (·) | < γ}.

ASSUMPTION 2. For some k ∈ N, k ≤ 2, uniformly in z ∈ Z, as γ → 0,

sup
(θ, η(·))∈Uγ

n1/k ‖m̂ (z; θ, η(·))−m (z; θ, η(·))− m̂ (z; θ0, η0(·))‖
1 + n1/k‖m̂ (z; θ, η(·)) ‖+ n1/k‖m (z; θ, η(·)) ‖

= op(1).

For unconditional moment models, typically k = 2. For conditional moment models, k ≥ 2. The

particular rate will depend on the method and the choice of the tuning parameters used in the

estimation procedure.

In addition, the parametric component of the model is assumed to converge at the usual
√
n rate,

while the functional component is assumed to converge at a slower nonparametric rate.
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ASSUMPTION 3. For k1 ≥ 2, n1/k1 ‖η̂(·)− η0(·)‖ = Op(1), and n1/2
∥∥∥θ̂ − θ0

∥∥∥ = Op(1).

THEOREM 1. Under assumptions 1, 2 and 3, if εn n
1/max{k, k1} →∞, εn → 0, τn n

1/max{k, k1} →
∞, τn → 0, then supz∈Z |D̃w (z)−Dw (z) | p−→ 0.

The proof of the consistency theorem follows closely the arguments in the literature. The basic idea

in the consistency argument is that while the step size should converge to zero to eliminate the bias,

it should converge slowly so that the noise in the parameter estimation and in estimating the moment

condition should not dominate the step size. In a parametric model, both the noise in the parameter

estimation and in estimating the moment condition is of the order of 1/
√
n. Therefore as shown in

Newey and McFadden (1994) and Powell (1984), sufficiency will hold if 1/
√
n� εn. The extension

of this argument to the semiparametric case is straightforward. The difference is that now the

converge rates for both the (infinite-dimensional) parameters and the conditional moment equation

are slower than 1/
√
n and therefore imposes a more stringent requirement on rate at which εn is

allowed to converge to zero. However, as we will see in the next section, these sufficient conditions

can be substantially weakened because of a local uniformity feature of the variance of the numerical

derivatives.

2.4 Weak sufficient conditions for consistency for parametric models

In this section we provide weak conditions on the step size for consistent derivative estimation that

are much weaker than previously established in the literature. In particular, as long as a local

uniformity condition holds, there is no interaction between the step size choice and the statistical

uncertainty in parameter estimation. We consider the unconditional parametric and conditional

semiparametric cases separately to best convey intuitions.

Consider a parametric unconditional moment model defined by the sample and population moment

conditions: ĝ(θ) = 1
n

∑n
i=1 g(Zi, θ) and g(θ) = Eg(Zi, θ) where g(θ) = 0 if and only if θ = θ0,

where lies in the interior of the parameter space Θ. The goal is to estimate G(θ0) = ∂g(θ0)
∂θ using

Lεn1,pĝ(θ̂) =
(
L
εn,θ̂j
1,p ĝ(θ̂), j = 1, . . . , d

)
, where θ̂ is typically a

√
n consistent estimator of θ0.

In the following, we decompose the error of approximating G(θ0) with Lεn1,pĝ
(
θ̂
)

into three compo-

nents: Lεn1,pĝ(θ̂)−G(θ0) = Ĝ1(θ̂) +G2(θ̂) +G3(θ̂), where

Ĝ1(θ̂) = Lεn1,pĝ
(
θ̂
)
− Lεn1,pg

(
θ̂
)
, (2.1)

and

G2

(
θ̂
)

= Lεn1,pg
(
θ̂
)
−G

(
θ̂
)
, G3

(
θ̂
)

= G
(
θ̂
)
−G (θ0) .

We discuss how to control each of these three terms in turn. Notice first that the step size εn does

not play a role in G3(θ̂). The bias term G2

(
θ̂
)

can be controlled if the bias reduction is uniformly

small in a neighborhood of θ0.
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Throughout the paper we maintain the following suitable measurability requirement, which we will

not refer to explicitly for the sake of brevity.

ASSUMPTION 4. The parameter space Θ has a compact cover. For each n, there exists a

countable subset Tn ⊂ Θ such that

P ∗
(

sup
θ∈Θ

inf
θ′∈Tn

‖g (Zi, θ)− g (Zi, θ
′) ‖2 > 0

)
= 0,

where P ∗ stands for the outer measure. In general, this condition states that the values of the

moment function on the parameter space Θ can be approximated arbitrarily well (with probability

one) by its values on a countable subset of Θ. If the moment function is continuous, it trivially

satisfies this condition, but it also allows us to consider the moments defined by discontinuous

functions. More precisely, Assumption 4 is a sufficient condition for the moment function to be

image admissible Suslin. As it is discussed in Dudley (1999) and Kosorok (2008) this property will

be required to establish the functional uniform law of large numbers needed for consistency.

The following assumption is a parametric version of Assumption 1.

ASSUMPTION 5. A 2p + 1th order mean value expansion applies to the limiting function g (θ)

uniformly in a neighborhood of θ0. For all sufficiently small |ε| and r = 2p+ 1,

sup
θ∈N (θ0)

∣∣∣∣g (θ + ε)−
r∑
l=0

εl

l!
g(l) (θ)

∣∣∣∣ = O
(
|ε|r+1

)
.

An immediate consequence of this assumption is that Ĝ2

(
θ̂
)

= O
(
ε2p
)
. We are left with Ĝ1

(
θ̂
)

.

The weakest possible condition to control Ĝ1

(
θ̂
)

that covers all the models that we are aware of

seems to come from a convergence rate result in Pollard (1984).

ASSUMPTION 6. Consider functions g(z, θ) contained in class F = {g(·, θ), θ ∈ Θ}. Then

(i) All g ∈ F are globally bounded such that ‖F‖ = sup
θ∈Θ
|g (Zi, θ) | < C �∞.

(ii) The sample moment function is Lipschitz-continuous in mean square in some neighborhood

of θ0. That is for sufficiently small ε > 0

sup
θ∈N(θ0)

E
[
(g (Zi, θ + ε)− g (Zi, θ − ε))2

]
= O (ε) .

(iii) The graphs of functions from F form a polynomial class of sets.

Most of the functions in econometric applications fall in this category. By Lemmas 25 and 36 of

Pollard (1984), Assumption 6 implies that there exist universal constants A > 0 and V > 0 such

that for any Fn ⊂ F with envelope function ‖Fn‖,

sup
Q

N1 (εQFn, Q,Fn) ≤ Aε−V , sup
Q

N2

(
ε
(
QF 2

n

)1/2
, Q,Fn

)
≤ Aε−V .
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LEMMA 1. Under assumption 6, if nεn/ log n→∞, then for δ small enough,

sup
d(θ,θ0)≤δ

‖Lεn1,pĝ (θ)− Lεn1,pg (θ) ‖ = op(1).

Consequently, Assumption 6 implies that Ĝ1

(
θ̂
)

= op (1) if d
(
θ̂, θ0

)
= op (1).

Proof: The argument follows directly from Theorem 2.37 in Pollard (1984) by verifying its conditions.

For each n and each εn, consider the class of functions Fn = {εnLεn1,pg (·, θ) , θ ∈ N (θ0), with envelope

function F , such that PF ≤ C. Then we can write

sup
d(θ,θ0)≤o(1)

εn‖Lεn1,pĝ (θ)− Lεn1,pg (θ) ‖ ≤ sup
f∈Fn

|Pnf − Pf |.

For each f ∈ Fn, note that Ef2 = E
(
εnL

εn
1,pg (·, θ)

)2
= O (εn) because of assumption 6.(ii). The

lemma then follows immediately by taking αn = 1 and δ2
n = εn in Theorem 2.37 of Pollard (1984).

THEOREM 2. Under Assumptions 5 and 6, Lεn1,pĝ
(
θ̂
)

p−→ G (θ0) if εn → 0 and nεn/ log n→∞,

and if d
(
θ̂, θ0

)
= op (1).

In most situations d
(
θ̂, θ0

)
= Op (n−η) for some η > 0. Typically η = 1/2. One might hope to

further weaken the requirement of the log n term when uniformity is only confined to a shrink-

ing neighborhood of size n−η. However, this is not possible unless the moment function satisfies

additional smoothness conditions.

The result of Theorem 2 can be improved if we are willing to impose the following stronger assump-

tion, which holds for smoother functions such as those that are Hölder-continuous.

ASSUMPTION 7. In addition to assumption 6, for all sufficiently small ε and all θ ∈ Θ, if we

define Gn (θ) = 1√
n

∑n
i=1 (g (Zi, θ)− g (θ)), then

E∗ sup
θ′,θ∈N(θ0)

|Gn (θ′)−Gn (θ) | . φn (δ) ,

for functions φn (·) such that δ 7→ φn (δ) /δγ is non-increasing for γ defined in part (i).

Assumption 7 is more stringent than Theorem 3.2.5 in Van der Vaart and Wellner (1996), and may

fail in cases where Theorem 3.2.5 holds, for example with indicator functions. Theorem 3.2.5 only

requires that E∗ supd(θ,θ0)<δ |G (θ) − G (θ0) | . φn (δ) . For i.i.d data, the tail bounds method used

in Van der Vaart and Wellner (1996) can be modified to obtain Assumption 7. In particular, define

a class of functions Mε
δ = {g (Zi, θ1) − g (Zi, θ2) , d (θ1, θ2) ≤ δ, d (θ1, θ0) < ε, d (θ2, θ0) < ε}. Then

assumption 7, which requires bounding E∗P ||Gn||Mε
δ
, can be obtained by invoking the maximum

inequalities in Theorems 2.14.1 and 2.14.2 in Van der Vaart and Wellner (1996). These inequalities



9

provide that for M ε
δ an envelope function of the class of functions Mε

δ,

E∗P ||Gn||Mε
δ
. J (1,Mε

δ)
(
P ∗ (M ε

δ )
2
)1/2

,

E∗P ||Gn||Mε
δ
. J[] (1,Mε

δ, L2 (P ))
(
P ∗ (M ε

δ )
2
)1/2

,

where J (1,Mε
δ) and J[] (1,Mε

δ, L2 (P )) are the uniform and bracketing entropy integrals defined

in section 2.14.1 of Van der Vaart and Wellner (1996), and are generically finite for parametric

functions. Therefore φn (δ) depends mostly on the variance of the envelope functions
(
P ∗ (M ε

δ )
2
)1/2

.

For reasonably smooth functions that are Hölder-continuous, M ε
δ depends only on δ as required by

assumption 7.

THEOREM 3. Under assumptions 5 and 7, Lεn1,pĝ
(
θ̂
)

p−→ G (θ0) if εn → 0 and nε2−2γ →∞, and

if d
(
θ̂, θ0

)
= op (1).

This result, which is an immediate consequence of Theorem 2.14.1 of Van der Vaart and Wellner

(1996) and therefore stated without proof, shows that for continuous functions g(Zi, θ) that are

Lipschitz in θ, the only condition needed for consistency is εn → 0. The result of Theorem 3

demonstrates that as long as the sample moment function does not have discontinuities, one can

pick the step size to decrease at the polynomial rate with the sample size. If the moment function is

discontinuous, Theorem 2 needs to be applied instead of Theorem 3, prescribing a slower logarithmic

rate of decrease in the step size.

Example Consider the simple quantile case where the moment condition is defined by g (zi; θ) =

1 (zi ≤ θ)− τ . In this case the numerical derivative estimate of the density of zi at θ is given by

Lεn1,2ĝ
(
θ̂
)

= 1
n

∑n
i=1

1(zi≤θ̂+ε)−1(zi≤θ̂−ε)
2ε .

This is basically the uniform kernel estimate of the density of zi at θ:

f̂
(
θ̂ − θ0

)
= 1

n

∑n
i=1

1
2ε1
(
|zi−θ̂|
ε ≤ 1

)
= 1

n

∑n
i=1

1
2ε1

(
|zi−θ0−(θ̂−θ0)|

ε ≤ 1

)
.

The consistency conditions given in Powell (1984) and Newey and McFadden (1994), both of which

require
√
nε → ∞, are too strong. The intuitive reason for this is because under this condition,

the second part of the estimation noise due to θ̂ − θ0, θ̂−θ0
ε , will vanish. However, for the purpose

of consistency this is not necessary. As long as f̂ (x) is uniformly consistent for f (x) for x in a

shrinking neighborhood of 0 of size n−η, it will follow that

f̂
(
θ̂ − θ0

)
p−→ f (0) = fz (θ0) .
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2.5 Optimal rates for derivative estimation

The optimal choice of the step size depends typically on the smoothness of the empirical process

indexed by γ and the smoothness of the population moment function indicated by the magnitude

of the “Taylor residual” p. For the choice of the optimal rate for the step size of numerical dif-

ferentiation, one can consider decomposition of the numerical derivatives into components Ĝ1, G2

and G3 corresponding to the variance, deterministic and stochastic bias components. The optimal

choice of the step size will provide the minimum mean-squared error for the estimated derivative

by balancing the bias and the variance. When the sample moment function is discontinuous, con-

ditions of Theorem 2 apply, delivering the logarithmic rate of decay for the variance component

Ĝ1

(
θ̂
)

= Op

(√
logn
nε

)
. On the other hand, application of Assumption 5 to the population moment

leads to Ĝ2

(
θ̂
)

= O
(
ε2p
)
. Under conditions of Theorem 3, the variance term has a polynomial

dependence on the step size with Ĝ1

(
θ̂
)

= Op

(
1√

nε1−γ

)
, while the bias term is still determined by

Assumption 5. We note that for Lipschitz-continuous or differentiable models, in which generally

γ = 1, there is no trade off between the variance and the bias, in which case the smaller the step size

ε, the smaller the bias term. However, in this case the order of the root mean square is bounded from

below by the variance term of O (1/
√
n) for sufficiently smaller εn. The next theorem formalizes this

discussion.

THEOREM 4. Under the conditions of Theorem 2, if θ̂ − θ0 = Op (1/
√
n), the optimal rate of ε

satisfies ε = O
(

(log n/n)
1

4p+1

)
, in which case the mean-squared error is Op

(
(log n/n)

4p
4p+1

)
. When

the conditions of theorem 3 hold instead, the optimal rate of ε is O
(
n−

1
2(1−γ+2p)

)
if γ < 1, and

ε� n−1/4p if γ = 1. In both cases the error is Op

(
n−

2p
2(1−γ+2p)

)
.

2.6 Uniform consistency of directional derivatives for semiparametric models

This subection extends the weak consistency condition to directional derivatives of semiparametric

conditional moment models. As in Section 2.1, semiparametric conditional moment models are

usually defined by conditional moment function m (θ, η; z) = E [ρ (Yi, θ, η) |Zi = z]. In this section

we focus on two special cases where the conditional moment function is estimated nonparametrically

using orthogonal series and when it is estimated using kernel smoothing. The infinite-dimensional

parameter η is assumed to be estimated using sieves. The series estimator used to recover the

conditional moment function is based on the vector of basis functions pN (z) = (p1N (z), . . . , pNN (z))
′
,

m̂ (θ, η, z) = pN ′(z)

(
1
n

n∑
i=1

pN (zi)p
N ′(zi)

)−1
1
n

n∑
i=1

pN (zi)ρ (θ, η; yi) . (2.2)

The kernel estimator is defined using a multi-dimensional kernel function K(·) and a bandwidth

sequence bn as

m̂ (θ, η, z) =

(
1

nbdzn

n∑
i=1

K
(
zi−z
bdzn

))−1
1

nbdzn

n∑
i=1

K
(
zi−z
bn

)
ρ (θ, η; yi) . (2.3)
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In either case, we will denote the resulting estimate by m̂ (θ, η̂; x). It turns out that the numerical

derivative consistency results for η apply without any modification to the parametric component θ.

Therefore with no loss of generality below we will focus on differentiating with respect to η.

The directional derivative ofm in the direction w ∈ H−η0 with respect to η, Gw = dm(θ0,η0+τw,z)
d τ

∣∣∣∣
τ=0

,

is estimated using Lεn,w1,p m̂
(
θ̂, η̂, z

)
, where an additional index is used to emphasize the direction for

which the derivative is taken,

Lεn,w1,p m̂
(
θ̂, η̂, z

)
=

1

εn

p∑
l=−p

clm̂
(
θ̂, η̂ + lw εn, z

)
.

Given that the direction w itself has to be estimated from the data as in section 2.1, we desire

consistency results that hold uniformly both around the true parameter value and the directions of

numerical differentiation. As in our analysis of parametric models, we focus on i.i.d data samples.

We also impose standard assumptions on the basis functions as in Newey (1997).

ASSUMPTION 8. For the basis functions pN (z) the following holds:

(i) The smallest eigenvalue of E
[
pN (Zi) p

N ′(Zi)
]

is bounded away from zero uniformly in N2

(ii) For some C > 0, sup
z∈Z
‖pN (z)‖ ≤ C <∞.

(iii) The population conditional moment belongs to the completion of the sieve space and

sup
(θ,η)∈Θ×H

sup
z∈Z

∥∥m (θ, η, z)− proj
(
m (θ, η, z) | pN (z)

)∥∥ = O
(
N−α

)
.

Assumption 8[ii] is convenient because ρ (·) is uniformly bounded. It can potentially be relaxed

to allow for a sequence of constants ζ0(N) with sup
z∈Z
‖pN (z)‖ ≤ ζ0 (N), where ζ0 (N) grows at

appropriate rates as in Newey (1997) such as ζ0(N)2N/n→ 0 as n→∞.

The following assumption on the moment function ρ(·) does not require smoothness or continuity

(see Shen and Wong, 1994; Zhang and Gijbels, 2003).

ASSUMPTION 9. (i) Uniformly bounded moment functions: sup
θ,η
‖ρ(θ, η, ·)‖ ≤ C. The density

of covariates Z is uniformly bounded away from zero on its support.

(ii) Suppose that 0 ∈ Hn and for εn → 0 and some C > 0,

sup

z∈Z,η,w∈Hn,|η|,|w|<C,

θ∈N (θ0)

Var (ρ (θ, η + εnw;Yi)− ρ (θ, η − εnw;Yi) | z) = O (εn) ,

2We note that the considered series basis may not be orthogonal with respect to the semi-metric defined by the

distribution of Zi.
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(iii) For each n, the class of functions Fn = {ρ (θ, η + εnw; ·)− ρ (θ, η − εnw; ·) , θ ∈ Θ, η, w ∈ Hn}
is Euclidean whose coefficients depend on the number of sieve terms. In other words, there

exist constants A, and 0+ ≤ r0 <
1
2 such that the covering number satisfies

log N (δ,Fn,L1) ≤ An2r0 log

(
1

δ

)
,

and r0 = 0+ corresponds to the case log n.

The hardest condition to verify is 9 (iii). This assumption imposes a joint restriction both on the

class of functions Hn containing sieve estimators for η and the class of conditional moment functions

parametrized both by θ and η. An example where this assumption holds is when ρ(·) is (weakly)

monotone in η for each θ and Hn is a orthogonal basis of dimensionality K(n). For example, ρ (·) can

be an indicator in nonparametric quantile regression. Lemma 5 in Shen and Wong (1994) suggests

that the L1-metric entropy of the class of sieve Fn has order K(n) log 1
ε ≤ K(n)ε−1 for sufficiently

small ε > 0 and ‖ηn−η0‖L1
< ε. Then by Lemma 2.6.18 in Van der Vaart and Wellner (1996), if the

function ρ(·) is monotone, its application to η (for fixed θ) does not increase the metric entropy. In

addition, the proof of Theorem 3 in Chen, Linton, and Van Keilegom (2003) shows that the metric

entropy for the entire class Fn is a sum of metric entropies that are obtained by fixing η and θ. The

choice K(n) ∼ n2r0 delivers condition 9 (iii).

Denote πnη = arg inf
η′∈Hn

‖η′ − η‖. And let d(·) be the metric generated by the L1 norm. The

following the result is formulated in the spirit of Theorem 37 of Pollard (1984) and it requires its

extension to the case of sieve estimators. A related idea for unconditional sieve estimation has been

used in Zhang and Gijbels (2003).

LEMMA 2. Suppose that ρ (πnη, η) = Op
(
n−φ

)
. Under assumptions 8 and 9

sup
d(θ,θ0)=o(1),d(η,η0)=o(1),η∈Hn

∣∣Lεn,w1,p m̂ (θ, η, z)− Lεn,w1,p m (θ, η, z)
∣∣ = op(1)

uniformly in z and w, provided that εn → 0 and min{Nα, nφ}εn →∞, and nεn
N2 n2r0 log n

→∞.

We note that the result is uniform in z. An interesting feature of the series estimator for m(·) is that

z is the argument of pN (·) only and its boundedness is sufficient for the uniform result in Lemma

2. In some cases weaker conditions may be possible provided this feature. We show one such case

in Section 4 for the density-weighted sieve minimum distance estimators. We can provide a similar

result for the case where the conditional moment function is estimated via a kernel estimator. We

begin with formulating the requirement on the kernel.

ASSUMPTION 10. K(·) is the q-th order kernel function which is an element of the class of

functions F defined by Assumption 6. It integrates to 1, it is bounded and its square has a finite

integral.
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We can then formulate the following lemma that replicates the result of Lemma 2 for the case of the

kernel estimator. We note that for uniformity we rely on Assumption 9(i) that requires the density

of covariates to be uniformly bounded from zero.

LEMMA 3. Under assumptions 9 and 10

sup
d(θ,θ0)=o(1),d(η,η0)=o(1),η∈Hn

∣∣Lεn,w1,p m̂ (θ, η, z)− Lεn,w1,p m (θ, η, z)
∣∣ = op(1)

uniformly in w and z where f (z) is strictly positive for the kernel estimator provided that εn → 0,

bn → 0, εn min{b−qn , nφ} → ∞ and
nεnb

dz
n

n2r0 log n
→∞.

Using Lemmas 2 and 3 we can formulate the consistency result for the directional derivative.

THEOREM 5. Under assumptions 5, 9, and either 8 or 10, Lεn,w1,p m̂
(
θ̂, η̂, z

)
p−→ ∂m(θ,η,z)

∂η [w],

uniformly in z and w, if N →∞, εn min{Nα, nφ} → ∞, and nεn
N2 n2r0 log n

→∞ for series estimator,

and bn → 0, εn min{b−qn , nφ} → ∞, and
nεnb

dz
n

n2r0 log n
→ ∞ for kernel-based estimator, provided that

d
(
θ̂, θ0

)
= op (1) and d (η̂, η0) = op (1).

This theorem allows us to use finite-difference formulas to evaluate directional derivatives. An

interesting feature of this result is that it only depends on the rate of convergence of the infinite-

dimensional parameter indirectly through Assumption 9[iii] which implicitly bounds the number of

sieve terms that one can use by n2r0 with r0 <
1
2 , i.e. it has to increase slower than the sample size.

Remark: Our results in this section apply to the case where one is interested in obtaining a finite-

difference based estimator for the directional derivative that is uniformly consistent over z. Such a

need may arise where the direction of differentiation is also estimated, an example of which is the

efficient sieve minimum distance estimator in Ai and Chen (2003). If one only needs to estimate the

numerical derivative pointwise the conditions on the choice of the step size can be weakened. Such

results may be relevant when one is interested in estimating the directional derivative at a point and

a given direction.

2.7 Analysis with Hölder-continuous moment functions

In this section we consider a special case where finite differences of the moment function have a

non-trivial envelope. Examples of such functions include Lipschitz and Hölder continuous functions.

We introduce the following modification to Assumption 9(i):

ASSUMPTION 9.

(i’) For any sufficiently small ε > 0

sup
(θ,η)∈Θ×H,w∈H,|w|<C

‖ρ (θ, η + wε, z)− ρ (θ, η + wε, z)‖ ≤ C(z)εγ ,

where 0 < γ ≤ 1 and E
[
C (Z)

2
]
<∞.
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This modification allows us to improve the rate results for the considered classes of functions. Specif-

ically, we can adapt the exponential tail bounds provided in Alexander (1984) to establish a stronger

result than the result that we had for discontinuous moment functions. This result is of particular

interest because it also implies the required properties of the numerical directional derivative in cases

where the moment function is at least Lipschitz continuous.

LEMMA 4. Suppose that ρ (πnη, η) = O
(
n−φ

)
. Under either pair of assumptions 8 and 9(i’),(ii),(iii),

(iv) or 10 and 9 (i’), (ii),(iii),(iv)

sup
d(θ̂,θ0)=op(1),d(η̂,η0)=op(1),η∈Hn

∣∣∣Lεn,w1,p m̂
(
θ̂, η̂, z

)
− Lεn,w1,p m (θ0, η0, z)

∣∣∣ = op(1)

uniformly in z and w, provided that εn → 0, εn min{Nα, nφ} → ∞ and
√
n ε1−γn

N nr0 → ∞ for series

estimator, and bn → 0, εn min{b−qn , nφ} → ∞,
n1−2r0 ε1−γn bdz/2

n

log n2r0−1 →∞ for kernel estimator.

The consistency of the numerical derivative is a direct consequence of this lemma. We note that

the conditions of Lemma 4 are weaker than the conditions for the functions with trivial (constant)

envelopes. Also note that for functions that are Lipschitz-continuous, γ = 1. This means that

Lemma 4 will only set the requirement for the estimator of the conditional moment, but not the

step size (except for the bias-correction term requiring that the bias from projection or kernel-

smoothing should decay faster than the step size for the numerical derivative). This means that the

use of the finite-difference formula will not affect the properties of the estimated conditional moment.

One interesting observation from this case is when the moment function becomes substantially non-

smooth (i.e. when γ is close to zero), the step size for numerical differentiation should be much larger

than the bandwidth if one uses a first-order kernel to compute the conditional moment function.

3 Numerical optimization of non-smooth sample functions

3.1 Parametric extremum estimation: definitions

In this section we study the properties of estimators based on numerically solving the first-order

conditions for likelihood-type objective functions. The original estimator of interest maximizes the

sample objective function. However, either by explicit researcher choice or by the implicit choice

of the maximization routine in the optimization software, the original problem is replaced by the

search for the zero of the numerically computed gradient. Consider the problem of estimating the

parameter θ0 in a metric space (Θ, d) with the metric d. The true parameter θ0 is assumed to

uniquely maximize the limiting objective function Q (θ) = Eg (Zi; θ). An M-estimator θ̂ of θ0 is

typically defined as

θ̂ = arg max
θ∈Θ

Q̂ (θ) , (3.4)

where Q̂ (θ) = 1
n

∑n
i=1 g (Zi; θ). However, in practice, most sample objective functions Q̂ (θ) of

interest cannot be optimized analytically and are optimized instead through numerical computation.
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The optimization routine often uses numerical derivatives either explicitly or implicitly. In this

section we show that numerical differentiation can sometimes lead to a model that is different from

the one usually studied under M-estimation . In particular, while numerical differentiation does

not affect the asymptotic distribution for smooth models (under suitable conditions on the step size

sequence), for nonsmooth models a numerical derivative based estimator can translate a nonstandard

parametric model into a nonparametric one.

We focus on the class of optimization procedures that are based on numerical gradients, that are eval-

uated using the finite-difference formulas which we described in Section 2.2. We start by presenting

a finite-difference numerical derivative version of the, M-estimator in (3.4). A numerical gradient-

based optimization routine effectively substitutes (3.4) by a solution to the non-linear equation

||Lεn1,pQ̂n
(
θ̂
)
|| = op

(
1√
n

)
, (3.5)

for some sequence of step sizes εn → 0 and Q̂n (θ) = 1
n

∑n
i=1 g (Zi, θ). In some cases discussed below

the convergence rate in 3.5 can be slower. We do not require the zeros of the first order condition

to be exact in order to accommodate nonsmooth models. Many popular optimization packages use

p = 1, corresponding to D̂ε
n

(
θ̂
)
≡ Lε1,1Qn

(
θ̂
)

= op

(
1√
n

)
. The cases with p ≥ 2 correspond to

a more general class of estimators that will have smaller asymptotic bias in nonsmooth models.

As we will argue, the estimators (3.4) and (3.5) can have the same properties for models with

continuous moment functions but for non-smooth models both their asymptotic distributions and

the convergence rates can be substantially different.

3.2 Consistency of extremum estimators for parametric models

Our first step is to provide consistency of θ̂. The consistency analysis is based on the premise that

the population problem has a unique maximum and the first-order condition has an isolated well-

defined root corresponding to the global maximum. Many commonly used models have multiple

local extrema, leading to multiple roots of the first-order condition. To facilitate our analysis we

assume that the researcher is able to isolate a subset of the parameter space that contains the global

maximum. For simplicity we will associate this subset with the entire parameter space Θ. The above

discussion is formalized in the following identification assumption.

ASSUMPTION 11. The map Θ 7→ Rk defined by D (θ) = ∂
∂θE [g (Zi, θ)] is identified at θ0 ∈ Θ.

In other words from lim
n→∞

‖D (θn) ‖ = 0 it follows that lim
n→∞

‖θn − θ0‖ = 0 for any sequence θn ∈ Θ.

Moreover, g(θ) = E [g (Zi, θ)] is locally quadratic at θ0 with g(θ)− g(θ0) . −d (θ, θ0)
2
.

For global consistency we require the population objective function to be sufficiently smooth not

only at the true parameter, but also uniformly in the entire parameter space Θ for which we can

rely on Assumption 5 that we previously used to establish uniform consistency for the estimate of

the derivative of the sample moment function.
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We will organize the discussion below by different classes of functions that can be used in practice.

We start with functions that have absolutely locally bounded finite differences. Indicator functions

and other functions with finite jumps fall into this category. Then we consider a class of functions that

have polynomial bounds on finite differences. This class includes Lipschitz and Hölder-continuous

functions which can have “mildly explosive” finite differences (those which have infinite jumps but

approach infinity slower than some power of the distance to the point of discontinuity).

3.2.1 Functions with absolutely bounded finite differences

For the proof of consistency of the exremum estimator we need to provide primitive conditions for

the uniform convergence in probability of the numerical derivative of the sample objective function to

the derivative of the population objective function. This proof usually invokes the use of maximum

inequalities that can bound the expectation of extreme deviations of the sample objective function

in small neighborhoods of the parameter space. It is hard to work with the maximum inequality

directly when the sample objective function experiences finite jumps: in this case small deviations of

the parameter may lead to finitely large changes in the objective function. However, establishing the

uniform convergence in probability still remains possible if we are willing to analyze more delicate

properties of the function class under consideration. In our analysis we focus on the class of functions

outlined by Assumption 6.

The following theorem establishes the consistency of numerical gradient-based extremum estimators

for the class of possibly discontinuous functions described by Assumption 6. It is a corollary of

Theorem 2 following directly from the uniform convergence in probability as in Amemiya (1985)

and, therefore, we omit the proof.

THEOREM 6. Under assumptions 11, 4, 5, and 6, as long as εn → 0 and nεn
logn →∞,

sup
θ∈Θ
||Lεn1,pQ̂ (θ)−G (θ) || = op (1) .

Consequently, θ̂
p−→ θ0 if ||Lεn1,pQ̂

(
θ̂
)
|| = op (1).

This Theorem suggests that even though the sample objective function can be discontinuous with

finite jumps, as long as it is Lipschitz-continuous in the mean square, one can use the numerical

gradient-based routine for its optimization as long as the step size decays logarithmically with the

sample size.

3.2.2 Functions with polynomial envelopes for finite differences

Our results in the previous subsection refer to the classes of objective functions for which the

changes in the values of the objective function may not be directly related to the magnitude of the

parameter changes. In this subsection we consider the case where such connection can be established.

Surprisingly, our results are also valid for the cases of substantially irregular behavior of the objective
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function when its first derivative approach infinity in the vicinity of the maximum or minimum. A

case in point is the objective function defined by g(Zi, θ) =
√
|Zi − θ| for which local changes in θ

around the origin lead to inversely proportional changes in the moment function. It turns out that

this explosive behavior can be compensated by an appropriate choice of the sequence of step sizes

for the numerical derivative. It turns out that the objective functions of this type belong to a class

of functions outlined in Assumption 7 which includes Hölder-continuous functions.

We note that Assumption 7 (i) restricts our analysis to the functions that have a polynomial envelope

on their finite differences. On the other hand, provided that γ can be very close to zero, it allows the

finite differences of functions to be locally “explosive”. For instance, if we consider finite differences of

the objective function g (Zi, θ) =
√
|Zi − θ| around the origin, we note that they will be proportional

to 1/
√
ε and will not shrink with the decrease in ε. It turns out that this still allows us to provide

consistency for the numerical gradient-based estimators.

The following theorem establishes consistency under a condition on the step size sequence that is a

function of the sample size and the modulus of continuity of the empirical process. It is essentially

a replica of theorem 3 and hence stated without proof.

THEOREM 7. Under Assumptions 5, 7, 11, and 4, as long as εn → 0 and nε2−2γ
n →∞,

sup
θ∈Θ
||Lεn1,pQ̂ (θ)−G (θ) || = op (1) .

Consequently, θ̂
p−→ θ0 if ||Lεn1,pQ̂

(
θ̂
)
|| = op (1).

For models that have Lipschitz-continuous sample objective functions (which include models with

smooth sample objective functions) γ = 1. In this case the restriction nε2−2γ
n → ∞ holds trivially.

This implies that for smooth models the sequence of step sizes can approach zero arbitrarily fast.3

3.3 Rate of convergence and asymptotic distribution in parametric case

3.3.1 Functions with absolutely bounded finite differences

In the previous section we provided sufficient conditions that determine consistency of the estimator

that equates the finite-difference approximation of the of gradient of objective function to zero. For

the classes where local parameter changes do not lead to proportional changes in the sample objective

function we restricted our attention to the functions with absolutely bounded finite differences

forming Euclidean classes. Our condition provided the result that the numerical derivative of the

sample objective function converges to the derivative of the population objective function uniformly

in probability. In addition, making use of the result of Lemma 1 we can establish the precise rate of

3In Section 7 we point at some problems that are associated with “too fast” convergence of the step size sequence

to zero. These problems, however, are not statistical and are connected with the machine computing precision.
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convergence for the objective function. For a given neighborhood N (θ0),

sup
θ∈N(θ0)

√
nεn

log n
||Lεn1,pQ̂ (θ)− Lεn1,pQ (θ) || = Op(1),

under Assumption 6 and nεn/ log n→∞.

Once we have “located” the parameter, we can investigate the behavior of the sample objective

function in shrinking neighborhoods of size
(

log n
nεn

)
. It turns out, that in such neighborhoods we can

improve the rate result by choosing the step size in accordance with the radius of the neighborhoods

containing the true parameter.

LEMMA 5. Suppose θ̂
p−→ θ0, Lε1,pQ̂

(
θ̂
)

= op

(
1√
nεn

)
, the Hessian matrix H (θ) of g (θ) is

continuous, nonsingular and finite at θ0, and the assumptions of Theorem 6 hold, then

(i) If nεn
logn →∞, and nε1+4p

logn = O (1), then
√

nεn
log nd

(
θ̂, θ0

)
= OP∗ (1).

(ii) If
nε3n
log n →∞ we have

sup
d(θ̂,θ0)=O

(√
log n
nεn

)
(
Lεn1,pQ̂

(
θ̂
)
− Lεn1,pQ̂ (θ0)− Lεn1,pQ

(
θ̂
)

+ Lεn1,pQ (θ0)
)

= op

(
1
√
nεn

)
.

We can use this result to establish the rate of convergence of the resulting estimator.

THEOREM 8. Under the assumptions of Lemma 5, if
nε3n
logn → ∞, and nε1+4p = O (1), then

√
nεnd

(
θ̂, θ0

)
= O∗P (1).

Asymptotic normality will also follow from a consequence of the stochastic equicontinuity result

of part (ii) of lemma 5 and a standard application of Linderberg condition whenever the limiting

variance is well defined.

THEOREM 9. Under the assumptions of theorem 8, but with nε1+4p
n = o (1). If in addition,

limε→0 εV ar
(
Lε1,pg (Zi, θ0)

)
= Ω, then

√
nεn

(
θ̂ − θ0

)
d−→ N

(
0, H (θ0)

−1
ΩH (θ0)

−1
)
.

3.3.2 Functions with polynomial envelopes for finite differences

In case where functions of interest permit power envelopes on the finite differences, we can establish

the rate of convergence and describe the asymptotic distribution of the resulting estimator. Next, we

establish the rate of convergence and the asymptotic distribution of the numerical derivative based

M-estimator for the functions that admits polynomial envelopes on finite differences. We provide

the following general result.
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THEOREM 10. Suppose θ̂
p−→ θ0 and Lε1,pQ̂

(
θ̂
)

= op

(
1√

nε1−γn

)
. Under Assumptions 7 and

4, if nε2−2γ
n → ∞ and

√
nε1−γ+2p

n = O (1), and suppose that the Hessian matrix H (θ) of g (θ) is

continuous, nonsingular and finite at θ0, then
√
nε1−γ

n d
(
θ̂, θ0

)
= O∗P (1).

This result is a Z-estimator version of Theorem 3.2.5 in Van der Vaart and Wellner (1996). Note

that given the consistency assumption, the conditions required for obtaining the rate of convergence

are weaker. For a typical two sided derivative p = 2. In this case, for a regular parametric model

where γ = 1, the condition
√
nε2 → 0 is needed to remove the asymptotic bias.

The following theorem, which combines a stochastic equicontinuity condition with standard verifica-

tion of the Linderberg condition, establishes the asymptotic normality of the numerical derivative-

based estimator with an additional assumption of the convergence of the variance.

THEOREM 11. Assume that the conditions of theorem 10 hold but with
√
nε1+2p−γ

n = o (1). If

limε→0 ε
2−2γV ar

(
Lε1,pg (Zi, θ0)

)
= Ω, and if,

√
nε2−γ

n →∞. Then

√
nε1−γ

n

(
θ̂ − θ0

)
d−→ N

(
0, H (θ0)

−1
ΩH (θ0)

−1
)
.

Section 3.4 establishes a more general form of the distribution of the estimator for the cases where

the step sizes approaches zero at different rates. Asymptotic normality turns out to be a special

case for the more general distribution.

The additional assumption
√
nε2−γ

n →∞, which essentially requires ε to be larger than the conver-

gence rate of 1√
nε1−γ

established in Theorem 10 in order to show stochastic equicontinuity, turns out

to be stronger for smooth models than for nonsmooth models. This is an artifact that we are relying

on Assumption 7 and the convergence rate result in theorem 10 to obtain stochastic equicontinuity.

When γ = 1, the conditions are consistent as long as p ≥ 1, or as long as a two sided central

derivative is used.

However, for smooth models when γ = 1, we might be willing to impose stronger assumptions on

the sample objective function (e.g. Lemma 3.2.19 in Van der Vaart and Wellner (1996)) to weaken

this requirement. The next theorem states such an alternative result.

Proposition 1. Suppose the conditions of theorem 11 hold except
√
nε2−γ

n → ∞. Suppose further

that g (zi, θ) is mean square differentiable in a neighborhood of θ0: for measurable functions D (·, ·) :

Z ×Θ→ Rp such that

E
[
g (Z, θ1)− g (Z, θ2)− (θ2 − θ1)

′
D(Z, θ1)

]2
= o

(
‖θ1 − θ2‖2

)
,

E‖D (Z, θ1) ‖2 <∞ for all θ1, and θ2 ∈ Nθ0 . Define qε (zi, θ) = Lε1,pg (zi; θ)−D (z, θ) , Assume that

sup
d(θ,θ0)=o(1),ε=o(1)

[Gqε (zi, θ1)−Gqε (zi, θ0)] = op (1) ,

and D (zi, θ) is Donsker in d (θ, θ0) ≤ δ, then the conclusion of theorem 11 holds.
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Note that we still require
√
nε2

n → 0 to remove the asymptotic bias, and nεn →∞, but we no longer

require
√
nε→∞. The conditions of this theorem are best understood in the context of a quantile

regression estimator. Consider g (zi, θ) = |zi − θ|, and p = 2, so that D (z, θ) = sgn (zi − θ) and

qε (zi, θ) =
(zi − θ)

ε
1 (|zi − θ| ≤ ε) .

Then we can bound qε (zi, θ1) − qε (zi, θ0) by, depending on which of d (θ, θ0) and ε is larger, the

product between 1
ε max (|zi − θ|, |zi − θ0|) and the maximum of 1 (|zi − θ|) ≤ ε + 1 (|zi − θ0| ≤ ε),

and [1 (θ − ε ≤ zi ≤ θ + ε0) + 1 (θ0 − ε ≤ zi ≤ θ0 + ε0)]. Since max (|zi − θ|, |zi − θ0|) ≤ ε when

qε (zi, θ)− qε (zi, θ0) is nonzero, the last condition in theorem 1 is clearly satisfied by the euclidean

property of the indicator functions. Alternatively, the qε (zi, θ) function in the last condition can

also be replaced directly by Lε1,pg (zi, θ).

3.4 General distribution results

The previous asymptotic normality result turns out to be an artifact of an excessively slow rate of

approach of the sequence of step sizes εn to zero. Our previous assumption required that
εγ−2
n√
n

=

o(1) for continuous case. This assumption can be relaxed, at a cost of making the asymptotic

distribution non-standard. However, this weakening also demonstrates that the numerical derivative-

based estimators for non-smooth sample objective functions have interesting parallels with the cube-

root asymptotics of Kim and Pollard (1990).

The following assumption has a simple implication for the covariance function of the sample objective

function. It requires that the pairwise products of the sample objective function computed at differ-

ent points in a vanishing neighborhood of the true parameter value have continuous expectations.

Moreover, the variance of the numerical derivative of the sample objective function is infinitesimal

at the points where pointwise derivative of the sample objective function may not exist.

ASSUMPTION 12. (i) θ0 is the interior point of Θ

(ii) The covariance function

H(s, t) = lim
α→∞

α2γE

[
g
(
X, θ0 +

s

α

)
g

(
X, θ0 +

t

α

)]
, (3.6)

exists for all s, t ∈ Rd

(iii) For each t and each δ > 0

lim
α→∞

E

[
α2γg

(
Zi, θ0 +

t

α

)2

1

{
‖g
(
Zi, θ0 +

t

α

)
‖ > αδ

}]
= 0. (3.7)

We combine Assumption 12 with Assumption 7 that restrict the attention to particular (large)

parametric classes of functions.
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THEOREM 12. Suppose that assumptions 5, 7 and 12 hold. The population objective has a finite

Hessian H(θ0) at θ0 and
√
nε2−γ

n ≥ c > 0. Then

ε1−γ
n√
n

n∑
i=1

Lεn1,pg

(
Zi, θ0 +

t

ε1−γ
n
√
n

)
 W (t)−H(θ0)t.

In these expressions W (t) is a mean-zero Gaussian process with covariance function HW (s, t) =∑p
l=−p

∑p
k=−p clckH(Cs + l, Ct + k) for some fixed C. Then

√
nε1−γ

n

(
θ̂ − θ0

)
 t̂, where t̂ is

the smallest solution of W (t̂) = H (θ0) t̂ outside zero. In one dimension, t̂ can be interpreted as a

boundary-crossing distribution.

In the special case where
√
nε2−γ

n → ∞, W (t) is a normal random variable with mean zero and

variance σ2
W =

∑p
l=−p

∑p
k=−p clckH(l, k).

Remark: Theorem 12 establishes that the lowest rate at which εn approaches zero is n−1/2(2−γ)

for the case of Hölder-continuous moment functions. A faster approach of the step size to zero leads

to a loss of stochastic equicontinuity. This condition also provides the slowest convergence rate for

the estimator of n1/(2(2−γ)).

Theorem 12 shows that depending on the step size sequence chosen, the asymptotic behavior of the

localized process of the numerical first order condition around the true parameter value is a “hybrid”

between the original nonsmooth estimator and the smoothed estimators. The asymptotic behavior

of the localized first order condition in case of the “under-smoothed” numerical derivative is non

standard and is driven by the boundary-crossing distribution of the limiting process (a discussion of

this distribution can be found, for instance in Durbin (1971, 1985)).

We note that while Theorem 12 provides an interesting characterization of the asymptotic behavior

of the localized first order conditions and a crucial input for analyzing the asymptotic distribution of

the resulting Z-estimators, the equation W (t) = H(θ0)t can have multiple roots. The z-estimators

can therefore be a set instead of a point estimate. We are confident that Theorem 12 can be

fruitfully utilized in combined with recent developments in the set estimation literature (see for

example Armstrong (2010) and Molchanov (2005) chapter 5) to characterize the convergence and

asymptotic distribution of the roots. We also think that The results in Theorem 12 can be extended

to the case where the considered sample functions are not continuous. But these topics are left for

future research.

4 Consistency of Semiparametric Extremum Estimators

Our approach of transforming the problem of extremum estimation to the problem of solving a nu-

merical first-order condition can be extended to the case where the parameter space is either entirely

infinite-dimensional or contains an infinite-dimensional component. We consider a metric product

space Θ × H where Θ is a compact subset of a Euclidean space Rp and H is a functional Banach
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space. Semiparametric extremum estimators typically arize from conditional moment equations. We

consider a population moment equation

m (η, θ, z) = E [ρ (θ, η, Yi) |Zi = z] = 0

with ρ : Θ×H×Y 7→M ⊂ Rk. The estimation problem is re-casted into an optimization problem

by defining the objective Q (θ, η) = E
[
m (θ, η, Zi)

′
W (Zi)m (θ, η, Zi)

]
using a k × k positive semi-

definite (almost everywhere in Z) weighting matrix W (·). The estimator minimizes the sample

objective function with the infinite-dimensional component η over sieve space Hn(
θ̂, η̂
)

= arg min
(θ,η)∈Θ×Hn

Q̂n (θ, η) =
1

n

n∑
i=1

m̂ (θ, η, zi)
′
Ŵ (zi) m̂ (θ, η, zi) .

A typical set of the necessary conditions for the optimum of Q (θ, η) can be found, for example, in

the general class of mathematical programming problems in Pshenichnyi (1971). Consider a cone

K in Θ × H. If (θ0, η0) ∈ Θ × H optimizes Q (θ, η), then there exists a number λ0 ≥ 0 such that

θ (λ) = θ0 +λ δ ∈ Θ and η (λ) = η0 +λw ∈ H for all (δ, w) ∈ K and λ ∈ R. Moreover, λ0 ζ (δ, w) = 0,

and

lim
λ→+0

Q (θ(λ), η(λ))−Q (θ0, η0)

λ
≤ ζ (δ, w) ,

where ζ (δ, w) is a functional which is convex with respect to (δ, w). If we assume that the objective

functional is strictly concave at (θ0, η0) then λ0 > 0. This transforms the necessary conditions to

lim
λ→+0

Q (θ0 + λ δ, η0 + λw)−Q (θ0, η0, x)

λ
= 0.

In particular, this directional derivative should be equal to zero for all directions within the cone

K. Specifically, if Θ×H is a linear space, then this should be valid for all directions in (Θ− θ0)×
(H− η0). If the functional is Frechèt differentiable in (θ, η), then the directional derivative exists in

all directions in K and we can write the necessary condition for the extremum in the simple form:

d

dτ
Q (θ0 + τ δ, η0 + τ w) |τ=0 = 0,

in all directions w ∈ H− η0. In particular if Θ is a finite-dimensional vector space and H is a finite-

dimensional functional space, then we can construct a system of first-order condition that exactly

identifies a parameter pair (θ, η) as

∂Q(θ,η)
∂θk

= 0, for k = 1, . . . , p,

∂Q(θ,η)
∂η [ψj ] = 0, for j = 1, . . . , G,

(4.8)

where ψj(·) is a system of distinct elements of H. In cases where the functional space H is infinite-

dimensional, then we define the population solution to the system of first-order condition as a limit

of sequence of solutions in the finite-dimensional sive spaces Hn such that Hn ⊆ Hn+1 ⊆ H for all

n.
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We consider the class of models where such substitution of maximization of the functional to finding a

solution to the system of functional equations is possible. We formalize this concept by the following

assumption.

ASSUMPTION 13. Suppose that (θ0, η0) is the maximizer of the functional Q(θ, η) and Hn is the

sieve space such that Hn ⊂ Hn+1 ⊂ H. The set H∞ is complete in H. The sets Hn share the same

basis {ψj}∞j=0 and 〈η0, ψj〉 → 0 as j →∞. We assume that the left-hand side of (4.8) is continuous

with respect to the strong product norm in Θ×H. Suppose that (θn, ηn) solves (4.8). Then for any

sequence of the sieve spaces Hn satisfying the above conditions the corresponding system of solutions

(θn, ηn) converges to (θ0, η0) in the strong norm.

This identification condition establishes the properties of the population objective function. We next

consider the properties of the sample objective function which can be expressed as

Q̂ (θ, η) =
1

n

n∑
i=1

m̂ (θ, η, zi)
′
Ŵ (zi) m̂ (θ, η, zi) .

Following our analysis in Section 2.6 where we focused on computing directional derivatives of

semiparametric models via finite-difference methods, we consider two cases where the estimator for

the conditional moment function is obtained via series approximation (2.2) or kernel smoothing

(2.3). The transformed system of equations that needs to be solved to obtain the estimator η̂ and θ̂

can be obtained by directly applying the directional derivative to the objective function. Without

loss of generality to simplify the algebra we focus on the case where the finite-dimensional parameter

θ is scalar, the conditional moment function is one-dimensional, and the weighting matrix is a non-

negative weighting function. We will use the notation for the step size εn for differentiation with

respect to the finite-dimensional parameter and the notation τn for the step size of differentiation

with respect to the infinite-dimensional parameter. This expression for the numerical first-order

condition is then

1

n

n∑
i=1

Lεn1,pm̂ (θ, η, zi)
′
Ŵ (zi) m̂ (θ, η, zi) = op(1),

1

n

n∑
i=1

L
τn,ψj
1,p m̂ (θ, η, zi)

′
Ŵ (zi) m̂ (θ, η, zi) = op(1),

(4.9)

for j = 1, . . . , Gn.

In the following theorem we prove a uniform convergence result. Note than under standard assump-

tions on the series expansion and the kernel estimator, there is an interplay between the step size

for numerical differentiation and the choice of the tuning parameter (the number of terms in the

expansion or the bandwidth respectively).

THEOREM 13. Suppose that matrix W (·) is a.s. positive-definite and Ŵ (·) = W (·) + op(1)

uniformly in z. In addition, ρ (πnη, η) = O
(
n−φ

)
.
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Under Assumption 8 and 9 for the series estimator, provided that εn → 0, min{Nα, nφ}min{εn, τn} →
∞, n1−2r0εn

N2 logn1−2r0
→ ∞, and n1−2r0τn

N2 logn1−2r0
→ ∞; under assumptions 9 and 10 for the kernel estima-

tor, provided that εn → 0, , min{b−Nn , nφ}min{εn, τn} → ∞ bn → 0,
n1−2r0εnb

dz
n

logn1−2r0
→ ∞, and

n1−2r0εnb
dz
n

logn1−2r0
→∞,

(
θ̂, η̂
)

p−→ (θ0, η0) provided that system (4.9) is satisfied.

The result of this theorem is based on the uniform consistency result for the directional derivatives in

Section 2.6. We note that those results provided consistency for the directional derivatives uniformly

in θ, η, w and z. However, uniformity in z seems excessive for the estimator delivered by (4.9)

provided that the estimator requires summation over the sample {zi}ni=1. It turns out that in some

special cases we can use this feature to improve the convergence result and deliver fast convergence

rate for the estimator of the finite-dimensional parameter. Our result will rely on the properties of

U-statistics covered in Section 5.

5 Numerical derivatives of U-statistics

5.1 Consistency of numerical derivatives

Numerical derivatives can also be used for objective functions that are based on U-statistics, an

example of which is the maximum rank correlation estimator of Sherman (1993). The model con-

sidered in this section is parametric. Second order U-statistics, which we focus on, are the most

commonly used in applications. A U-statistic objective function is defined from an i.i.d. sample

{Zi}ni=1 by a symmetric function g(Zi, Zj , θ) as as

ĝ(θ) =
1

n (n− 1)
Sn (f) where Sn (f) =

∑
i 6=j

f (Zi, Zj , θ) . (5.10)

We denote the expectation with respect to the independent product measure on Z ×Z by Ezz and

the expectation with respect to a single measure by Ez. The population value can then be written

as g(θ) = Ezzf (Zi, Zj , θ) . This population objective function satisfies Assumption 5.

Following Serfling (1980), the following decomposition of the objective function into an empirical

process and a degenerate U-process component can be used to establish the statistical properties of

approximating G (θ0) = ∂
∂θg (θ) by Lεn1,pĝ

(
θ̂
)

,

ĝ (θ) = g (θ) + µ̂n(θ) +
1

n (n− 1)
Sn (u) , (5.11)

where

µ̂n(θ) =
1

n

n∑
i=1

µ (Zi, θ) , µ (z, θ) = Ez f (Zi, z, θ) + Ez f (z, Zi, θ)− 2g (θ) ,

and

u (z, z′, θ) = f (z, z′, θ)− Ez f (Zi, z, θ)− Ez f (z′, Zi, θ) + g (θ) .
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The condition for controlling the degenerate U-process will be weaker than that needed for the

empirical process term because of its faster convergence rate. We maintain Assumption 6, with the

new interpretation of functions g (·, ·, θ). We also make the following additional assumptions.

ASSUMPTION 14. The projections µ (z, θ) are Lipschitz-continuous in θ uniformly over z.

This assumption depends on the distribution of Zi. For instance, when the kernel is defined by

indicator functions, the expectation will be continuous in the parameter for sufficiently smooth

distribution of Zi. It controls the impact of numerical differentiation on the projection term by the

maximum inequality for Lipschitz-continuous functions:

E∗ sup
d(θ,θ0)=o(1)

∣∣∣∣∣ 1√
n

n∑
i=1

(µ (Zi, θ + εn)− µ (Zi, θ − εn)− g(θ + εn) + g(θ − εn))

∣∣∣∣∣ ≤ Cεn,
for some C > 0.

ASSUMPTION 15. For a neighborhood N (θ0) around θ0,

sup
θ∈N(θ0),z∈Z

E |g(Zi, z, θ + ε)− g(Zi, z, θ − ε)|2 = O(ε).

This assumption allows us to establish an analog of Lemma 1 for the case of the U-processes, which

is presented below.

LEMMA 6. Suppose ‖F‖ = supθ∈N(θ0) |g (Zi, Zj , θ) | � C <∞. Under Assumptions 6 and 15, if

n2εn/ log2 n→∞,

sup
d(θ,θ0)=o(1)

‖Lεn1,pĝ (θ)− Lεn1,pg (θ) ‖ = op(1).

Consequently, assumption 5 implies that Ĝ1

(
θ̂
)

= op (1) if d
(
θ̂, θ0

)
= op (1), as defined in (2.1).

The consistency of the numerical derivatives of U-statistics follows directly from Lemma 6.

THEOREM 14. Under assumptions, 5, 6 and the conditions of lemma 6, Lεn1,pĝ
(
θ̂
)

p−→ G (θ0) if

εn → 0 and nε2n/ log2 n→∞, and if d
(
θ̂, θ0

)
= op (1).

As in the case of the empirical process, this theorem establishes the weakest possible condition on the

step size of numerical differentiation when the envelope function of the differenced moment function

does not necessarily decrease with the shrinking step size. We note that the resulting condition for

the step size is weaker in the case of the U-statistics versus the case of the empirical sums. This is

an artifact of the property that the projection of U-statistics tends to be smoother than the kernel

function itself leading to a smaller scale of the U-statistic.
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5.2 Numerical gradient-based estimation with U-statistics

We consider the solution of the empirical first-order condition θ̂ defined by ||Lεn1,pQ̂n
(
θ̂
)
|| = op

(
1√
n

)
.

In some cases when the objective function is not continuous, the value that sets the first-order

condition to zero might not exist, in which case we choose the point that will set the first-order

condition very close to zero. In this section we will only consider the distribution results regarding

the first numerical derivative.

The structure of the consistency argument for the U-statistic defined estimation problem is similar to

that for the standard sample means. In particular, when the kernel function is “sufficiently” smooth,

the behavior of the objective function will be dominated by the empirical process component. In

that case the analysis from our previous discussion will be valid for the objective function defined

by the sample mean of Ez f (z, Zi, θ). We maintain Assumption 11 applied to the map D (θ) =
∂
∂θEzz [f (Zi, Zj , θ)]. We also keep Assumption 4 following Arcones and Gine (1993) where the

authors state that this assumption, along with the finiteness of the absolute moment of the U-

statistic, constitute a sufficient measurability requirement. A deeper discussion of applicability of

these conditions can be found in Section 10 of Dudley (1999).

5.3 U-statistics with kernels with absolutely bounded finite differences

We maintain Assumption 6, 14 and 15 for the class of kernels of the U-statistic. Lemma 6 establishes

the consistency result for this objective function which implies that under n2εn/ log2 n→∞,

sup
d(θ,θ0)=o(1)

‖Lεn1,pĝ (θ)− Lεn1,pg (θ) ‖ = op(1).

Moreover, we can apply Lemma 10 in Nolan and Pollard (1987). This lemma states that for tn ≥
max{ε1/2n , log n

n } we have for some constant β > 0

P

(
sup
Fn
|Sn(f)| > β2n2t2n

)
≤ 2A exp (−ntn)

However, we note that provided that log n
√
εn/n → ∞, we can strengthen this result. In fact,

provided that for sufficiently large n tn =
√
εn, we note that we can prove

sup
d(θ,θ0)=o(1)

n2εn

log2 n
‖Lεn1,pĝ (θ)− Lεn1,pg (θ) ‖ = Op(1).

We next repeat the steps that we followed to determine the rate of convergence of the estimators

given by sample means.

LEMMA 7. Suppose θ̂
p−→ θ0 and Lε1,pQ̂

(
θ̂
)

= op

(
1√
nεn

)
. Suppose that Assumptions 6 (i) and

(ii), 14 and 15 hold

(i) If n
√
εn/ log n→∞, and

√
nε1+p = O (1), then n2εn

log2 n
d
(
θ̂, θ0

)
= oP∗ (1).
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(ii) If
√
nε1+p

n = o (1), and nεn
log n →∞ we have

sup
d(θ̂,θ0)=O

(
log2 n

n2εn

)
(
Lεn1,pQ̂

(
θ̂
)
− Lεn1,pQ̂ (θ0)− Lεn1,pQ

(
θ̂
)

+ Lεn1,pQ (θ0)
)

= op

(
1

n

)
.

In this lemma we, first established the “maximum” radius of the shrinking neighborhood containing

the parameter. In the next step we considered the behavior of the objective function in the small

neighborhood of order O
(

log2 n
n2εn

)
of the true parameter. As we show below, we can improve upon

the rate of the objective function using the envelope property.

We can use this result to establish the rate of convergence of the resulting estimator.

THEOREM 15. Suppose θ̂
p−→ θ0 and Lε1,pQ̂

(
θ̂
)

= op

(
1√
n

)
. Under Assumptions of Lemma 7,

if nεn/ log n→∞, and
√
nε1+p = O (1), then

√
nd
(
θ̂, θ0

)
= O∗P (1).

Proof. We note that by Lemma 7 in the small neighborhoods of the true parameter the U-statistic

part has a stochastic order op
(

1
n

)
. As a result, the sum will be dominated by the projection

term. Provided that the projection is Lipschitz-continuous, we can apply the standard rate result in

Newey and McFadden (1994) which gives the stochastic order for the first term Op

(
1√
n

)
and gives

the corresponding parametric convergence.

The last relevant result concerns the asymptotic distribution of the estimator obtained from the

maximization of the U-statistic.

ASSUMPTION 16. The empirical process corresponding to the projection of the U-statistic Gµ,n(θ) =
1√
n

∑n
i=1 µ(zi, θ) satisfies

Gµ,n(θ0 + εn)−Gµ,n(θ0 + εn)

εn

d−→ N (0, Ω) ,

as n→∞ and ε→ 0.

This assumption allows us to apply the result in Theorem 11 and obtain the following characterization

of the asymptotic distribution of the estimator corresponding to the zero of the numerical gradient

of the U-statistic.

THEOREM 16. Assume that the conditions of theorem 15 hold and
√
nε2p

n = o (1). In addi-

tion, suppose that the Hessian matrix H (θ) of g (θ) is continuous, nonsingular and finite at θ0 and

Assumption 16 holds. Then

√
n
(
θ̂ − θ0

)
d−→ N

(
0, H (θ0)

−1
ΩH (θ0)

−1
)
.
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6 Applications

6.1 Irregular models with continuous moment functions

Consider the problem of extremum estimation where the the sample objective function is continuous

and bounded on compact subsets of the parameter space, but its derivative does not exist at the

minimum. Suppose that a single regressor X has infinite support with the density symmetric about

zero, bounded at zero and Gaussian tails. The population objective function is by

g (θ) = E [|X − θ|α] ,

where α < 1. The sample objective function corresponding to g(·) is irregular if X is normally

distributed or has a density bounded away from 0 at θ, since then the random variable α|X − θ|α−1

does not have a finite variance if α ≤ 1
2 . The sample objective function takes the form

ĝ (θ) =
1

n

n∑
i=1

|xi − θ|α .

Consider a numerical first-order condition for the minimum of this function

Lεn1,pĝ (θ) =
1

n

n∑
i=1

Lεn1,p |xi − θ|
α
,

where for algebraic convenience, we focus on the numerical differentiation operator of order 2. Pro-

vided that the objective function is continuous, the solution exists and corresponds to

εnL
εn
1,2ĝ

(
θ̂
)
≡ 0.

Consider the mean-value expansion of the numerical first-order condition at θ̂ at θ0 = 0 writing it

as

2εnL
εn
1,pĝ (0)− Ĥ(θ̃, θ̂, εn)θ̂ + R̂

(
θ̂, θ̃, εn

)
= 0, (6.12)

where Ĥ(·) is the Hessian term and R(·) is the stochastic residual. The detailed derivations are

provided in Appendix A.14. The Hessian term Ĥ(θ̃, θ̂) = 1
n

∑n
i=1H(xi, θ̃, θ̂) with

H(x, θ̃, θ̂) = 2αεnL
εn
1,2|x− θ̃|α−11{|x− θ̂| > εn}sign(x− θ̂)

+ α
(
|x− θ̃ + εn|α−1 + |x− θ̃ − εn|α−1

)
1{|x− θ̂| < εn}

= H1(x, θ̃, θ̂) +H2(x, θ̃, θ̂).

(6.13)

and the residual term R̂(θ̃, θ̂) = 1
n

∑n
i=1R(xi, θ̃, θ̂) with

R(x, θ̃, θ̂) = −2α|x− θ̃ + εn|α−1(x+ εn)

(
1{x− θ̂ < −εn}1{x > −εn}

− 1{x− θ̂ > −εn}1{x < −εn}
)

− 2α|x− θ̃ − εn|α−1(x− εn)
(
1{x− θ̂ > εn}1{x < εn} − 1{x− θ̂ < εn}1{x > εn}

)
.

(6.14)
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Consider the residual (6.14) first. Take δn > 0 such that 0 < |θ̃| < |θ̂| < δn. Then we can see that

1{
(
x− θ̂ + εn

)
(x+ εn) < 0} < 1{|x+ εn| < δn}. Thus∣∣∣R(x, θ̃, θ̂)

∣∣∣ ≤ 2α|x+ εn|α1{|x+ εn| < δn}+ 2α|x− εn|α1{|x− εn| < δn}.

Due to this evaluation, we find that

Var
(
R(xi, θ̃, θ̂)

)
= E

[
R(xi, θ̃, θ̂)

2
]
− E

[
R(x, θ̃, θ̂)

]2
= Op

(
(εn + δn)2α+1

)
.

Considering the class of residual functions Fn = {R(·, εn), 0 < |θ̃| < |θ̂| < δn, εn → 0}, and using

the above evaluation, we can apply Theorem 37 in Pollard (1984) 4 which implies that

R̂
(
θ̂, θ̃, εn

)
= E

[
R(xi, θ̃, θ̂)

]
+ op

(
(εn + δn)2α+1

)
= Op

(
(εn + δn)α+1

)
.

Consider the Hessian term (6.13), whose second element can be evaluated similarly to the above via

the application of Theorem 37 in Pollard (1984). In fact, we note that

Var
(
H2

(
x, θ̃, θ̂

))
= O

(
(δn + εn)2α−1

)
,

and E
[
H2

(
x, θ̃, θ̂

)]
= O ((δn + εn)α). Therefore, we find that Ĥ2

(
θ̃, θ̂
)

= op
(
(δn + εn)2α−1

)
.

For the first term in (6.13) we can find that

Ĥ1

(
θ̃, θ̂
)

=
1

n

n∑
i=1

[
H1

(
xi, θ̃, θ̂

)
− E

[
H1

(
xi, θ̃, θ̂

)]]
+ E [H1 (xi, 0, 0)] +O (εnδn) ,

where the last term comes from the mean-value expansion of the expectation with respect to the

parameters. Provided that the density of X is bounded, the variance of the first term can be

evaluated as

Var
(
H2

(
x, θ̃, θ̂

))
≤ C

∫
|x−θ̂|>εn

|x− θ̂|2α−2 dx ≤ 2C (εn + δn)
2α−1

.

Then the stochastic order for the first term follows from Theorem 37 in Pollard (1984) similarly to

H2(·), while the term

1

εn
E [H1 (xi, 0, 0)] = E

[
1

2εn

(
|xi + εn|α−1 − |xi − εn|α−1

)
1{|x| > εn}sign(x)

]
→ − d

dt
E
[
|X + t|α−1sign(X)

]
.

Therefore, we can evaluate the entire Hessian term as

Ĥ
(
θ̃, θ̂
)

= −εn
d

dt
E
[
|X + t|α−1sign(X)

]
+ op

(
(δn + εn)2α−1

)
.

4In addition, we need to require that n(εn + δn)2α+1/ log n→ ∞.
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We finish the evaluations in (6.12) by considering the first term of the mean-value expansion above.

we can briefly express the numerical derivative of the objective function at 0 as

2εnL
εn
1,pĝ (0) =

1

n

n∑
i=1

(
α|xi + ε∗|α−1sign(xi)εn1 (|xi| > εn) + εαn

(∣∣∣∣1 +
xi
εn

∣∣∣∣α − ∣∣∣∣1− xi
εn

∣∣∣∣α)1(|xi| < εn)

)
.

We can compute the variance of an individual element of this sum considering the two components

separately. Assume that there exist c1, c2 > 0 such that the density of x is bounded c1 < f(x) < c2

in some neighborhood of x = 0. Then

Var

(
εαn

(∣∣∣∣1 +
xi
εn

∣∣∣∣α − ∣∣∣∣1− xi
εn

∣∣∣∣α)1(|xi| < εn)

)
=

1∫
−1

(|1 + u|α − |1− u|α)
2
f(uεn)ε2α+1

n du ≤ Cε2α+1
n .

Next, for α > 1
2 we use the pointwise validity of the local representation and by the dominated

convergence theorem we conclude that

Var
(
|xi + ε∗|α−1sign(xi)εn1 (|xi| > εn)

)
≤ ε2

nE
[
|xi + ε∗|2α−2

]
<∞.

In case where α < 1
2

Var
(
|xi + ε∗|α−1sign(xi)εn1 (|xi| > εn)

)
≤ ε2

n

∫ +∞

εn

u2α−2f(u) du ≤ c2
1− 2α

ε2α+1
n .

Thus, we conclude that for α > 1
2 , Var

(
Lεn1,pĝ (0)

)
= O(1) and for α < 1

2 , Var
(
Lεn1,pĝ (0)

)
= O(ε2α−1

n ).

As a result, we can apply the CLT using the Lindeberg condition to find that for α > 1
2

√
nLεn1,pĝ (0)

d−→ N(0,Ω)

and for α < 1
2

√
nε

1
2−αLεn1,pĝ (0)

d−→ N(0,Ω).

Substituting the obtained results into (6.12), recalling that d
(
θ̂, 0
)

= O(δn), we find that

δ−1
n θ̂ =

(
ε−1
n Ĥ(θ̃, θ̂, εn)

)−1

δ−1
n 2Lεn1,pĝ (0) +

(
Ĥ(θ̃, θ̂, εn)

)−1

δ−1
n R̂

(
θ̂, θ̃, εn

)
.

Our goal is to find a “balancing” sequence δn such that δ−1
n θ̂ = Op(1). In this expression ε−1

n Ĥ(θ̃, θ̂, εn) =

Op(1), and ε−1
n δ−1

n R̂
(
θ̂, θ̃, εn

)
= Op

(
ε−1
n δ−1

n (δn + εn)1+α
)
. Therefore, the residual term approaches

zero if δ−1
n εαn → 0 and ε−1

n δαn → 0. Thus

• for α > 1
2 d(θ̂, 0) = Op

(
1√
n

)
;

• for α < 1
2 d(θ̂, 0) = Op

(
1√

nε1−2α
n

)
.
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We note that the condition requiring the residual to converge to zero requires that n
1
2 +αεn →∞ if

α > 1
2 and n

1
2

+α

3
2
−2α2

εn →∞, and δnε
−α
n →∞.

As a result, we can provide the Hölder constant for our theorem γ = 1
2 + α if α < 1

2 and γ = 1 if

α > 1
2 .

To map the obtained result to our general theory, we find the envelope for the class of differences

|x − θ1|α − |x − θ2|α. To provide an envelope, we introduce x∗ = x − θ1+θ2
2 and η = θ2−θ1

2 with

|η| < δ. Then we can find that

||x− θ1|α − |x− θ2|α| = |η|α
∣∣∣∣|1 +

x∗

η
|α − |1− x∗

η
|α
∣∣∣∣ .

We make a convenient change of variable z = x∗/η. Then we can focus on the properties of the

function

ζ(z) = |1 + z|α − |1− z|α

When z < −1, this function is strictly decreasing in z with its derivative approaching infinity at

z = −1. It strictly increases on [−1, 1] and then decreases when z > 1. We construct an evelope

function as F (η) = min{ηαζ(x
∗

η ), |x|∗|η|}. We note that for α < 1
2 we can conclude that for the

density of x bounded away from zero and bounded from above at (θ1 + θ2)/2

(Var (F (η)))
1/2

=
(
C1|δ|2α+1 + C2|δ|2

)1/2
= O

(
|δ|α+1/2

)
.

This means that the mean squared error for the provided envelope is corresponding to the case of

the Hölder-continuous function with the degree of continuity γ = 1
2 + α.

6.2 Models with discontinuous moment functions

Our Theorem 7 is also valid in the settings where the sample moment function is not continuous. One

striking example of consistency of the estimator defined by the numerical derivative is its application

to the maximum score estimator of Manski (1975, 1985). This estimator was re-considered in

Horowitz (1992), where it was shown that replacing indicator functions by kernel smoothers led to

a faster converging estimator once bandwidth is chosen appropriately. Here we illustrate the use of

a numerical first-order condition for the original maximum score objective function and show that

for an appropriately chosen step size the resulting estimator will have properties similar to those in

Horowitz (1992).

Consider the population objective function of Manski’s maximum score estimator

Q (θ) = E

[(
y − 1

2

)
1 {x′θ > 0}

]
with the sample analog

Q̂n (θ) =
1

n

n∑
i=1

(
yi −

1

2

)
1 {x′iθ > 0} .
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The sample objective is non-smooth in θ which may complicate the search for the maximum of the

objective with respect to θ. We can apply the numerical gradient-based approach to construct a

more manageable estimation technique. We consider the situation where the moment function

g (y, x, θ) =

(
y − 1

2

)
1 {x′θ > 0}

has p continuous mean-square derivatives.

Horowitz (1992) imposes the normalization where the coefficient of the regressor that has a contin-

uous density is normalized to 1. In our case if there is only one regressor this implies x′θ = x + θ.

We consider the use of the first numerical derivative operator of order 2. Then from its linearity, it

follows that application of this operator leads to the system of the first-order conditions

Lεn1,2Q̂n (θ) =
1

n

n∑
i=1

(
yi −

1

2

)
1

εn
U

(
xi + θ

εn

)
= 0,

where U(·) is a uniform kernel. Consider the use of the smoothed maximum score procedure applied

in the same case. Then the indicator is substituted by the cumulative kernel. For instance, one can

use cumulative uniform kernel:

K(z) = 1{z ∈ [−1, 1]}z + 1{z > 1}.

For the bandwidth parameter hn we can write the objective function as

Q̂sn (θ) =
1

n

n∑
i=1

(
yi −

1

2

)
K

(
xi + θ

hn

)
.

The corresponding first-order condition for the uniform kernel is

∂

∂θ
Q̂sn (θ) =

1

n

n∑
i=1

(
yi −

1

2

)
1

hn
U

(
xi + θ

hn

)
= 0.

One can see that the equations corresponding to the numerical gradient and the smoothed maximum

score are identical if the step size for the numerical differentiation εn = hn. As a result, we can

extend the result of Horowitz (1992) to the case of the uniform kernels which implies that the

estimator θ̂ solving the first-order condition with the numerical gradient converges at the rate
√
εn n

to a normal distribution.

In a more general case, there is a vector of non-constant regressors
(
x1, x2

)
, where x1 is a scalar

regressor with continuous density, and the single index has the form x1 + θ1 + x2′θ2. Then, in

addition to the numerical derivative with respect to θ1 which will have the same form as before. The

derivative with respect to components of θ2 will lead to

Lεn,k1,2 Q̂n (θ) =
1

n

n∑
i=1

(
yi −

1

2

)
x2
ik

x2
ikεn

U

(
x1 + θ1 + x2′θ2

x2
ikεn

)
= 0,
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where x2
k is the k-th component of x2. Denote h2

ik = x2
ikεn. We can treat h2

k as stochastic bandwidth

sequence. Then

Lεn,k1,2 Q̂n (θ) =
1

n

n∑
i=1

(
yi −

1

2

)
x2
ik

h2
ik

U

(
x1 + θ1 + x2′θ2

h2
ik

)
= 0.

Given that εn → 0 at an appropriate rate, under our regularity conditions extending those in

Horowitz (1992) we can guarantee that h2
ik → 0 a.s. The condition above will be numerically equiv-

alent to the condition in Horowitz (1992) extended to the case of uniform kernels if one substitutes

the fixed bandwidth sequence by a stochastic sequence in our case. Let h2
k = E

[
h2
ik

]
. Noting that

1

n

n∑
i=1

(
yi −

1

2

)
x2
ik

h2
ik

U

(
x1 + θ1 + x2′θ2

h2
ik

)
=

1

n

n∑
i=1

(
yi −

1

2

)
x2
ik

h2
k

U

(
x1 + θ1 + x2′θ2

h2
k

)
+ ∆n,

where ∆n → 0 a.s., we obtain equivalence of the smoothed maximum score objective and the

numerical first-order condition.

7 Step Size Choice

Our asymptotic results deal with the optimal choice of the rate of the step size for numerical

differentiation. An important practical question is the choice of step size for a given sample. In

the non-parametric estimation literature there are approaches to the choice of the bandwidth for

kernel smoothing. Survey of work on the choice of bandwidth for density estimation can be found

in Jones, Marron, and Sheather (1996) with related results for non-parametric regression estimation

and estimation of average derivatives in Hardle and Marron (1985) and Hart, Marron, and Tsybakov

(1992) among others.

To a large extent, we can obtain the results for the optimal choice of constants in a simpler manner

than in the case of non-parametric estimation because we will not be interested in the “uniform”

step size. Previously we considered the decomposition: Lεn1,pĝ
(
θ̂
)
−G = Ĝ1 + Ĝ2 +G3 +G4, where

G1 =
[
Lεn1,pĝ

(
θ̂
)
− Lεn1,pg

(
θ̂
)]
−
[
Lεn1,pĝ (θ0)− Lεn1,pg (θ0)

]
and

G2 = Lεn1,pĝ (θ0)− Lεn1,pg (θ0)

and

G3 = Lεn1,pg
(
θ̂
)
− Lεn1,pg (θ0) , G4 = Lεn1,pg (θ0)−G.

We proved that Lεn1,pĝ
(
θ̂
)
−G = Op

(
Ĝ2 +G4

)
. We can now consider the problem of the optimal

constant choice. We consider the mean-squared error as the criterion for the choice of the step size,

i.e. the function of interest is

MSE (ε) = E‖Lεn1,pĝ
(
θ̂
)
−G‖2,
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which we approximate by the leading terms G2 and G4. We note that

Lεn1,pg(θ) =
1

ε

p∑
l=−p

clg (θ + lε) .

Assuming that function g(·) has at least p+ 1 derivatives, we can evaluate the result of application

of the numerical derivative as

Lεn1,pg(θ) = g′(θ) + εpng
(p+1) (θ)

p∑
l=−p

cl l
p

(p+ 1)!
+ o (εpn) .

Thus G4 = εpng
(p+1) (θ)

p∑
l=−p

cl l
p

(p+1)! + o (εpn). We can evaluate the variance of G2 as

Var (G2) = 1
nE

[
1
εn

p∑
l=−p

cl (g (θ + lεn, Zi)− g (θ + lεn))

]2

= ε
−(2−2γ)
n n−1

[
p∑

l=−p
c2lVar (ε−γn g (θ + lεn, Zi)) +

p∑
l,k=−p

clckCov (ε−γn g (θ + lεn, Zi) , ε
−γ
n g (θ + kεn, Zi))

]

= ε
−(2−2γ)
n n−1 Vg (εn) .

In case where γ = 1, the variance of G2 will not affect the estimation. However, there will still be

numerical error corresponding to the operating precision of the computer. This error is known and

fixed. We denote it [δ g]. Then the total error can be evaluate as

MSE1 (ε) ≈ ε2p
n

g(p+1) (θ)

p∑
l=−p

cl l
p

(p+ 1)!

2

+
[δ g]

εn

p∑
l=−p

cl.

In case where γ < 1 the numerical error will be exceeded by the sampling error. As a result, we can

compute

MSE<1 (ε) ≈ ε2p
n

g(p+1) (θ)

p∑
l=−p

cl l
p

(p+ 1)!

2

+ ε−(2−2γ)
n n−1 Vg (εn) .

Then we can choose εn = C
nr , where r is the optimal rate for εn if γ < 1 and r = 0 otherwise. The

problem is to choose C. In most applications, however, the derivative g(p+1) is unknown. One simple

way of choosing C is the analog of biased cross-validation. We can choose a simple first-order formula

for g(p+1) and pick a preliminary (over-smootheed) step size ε∗∗n = (p+1)Var(θ,Zi)
n1/2(p+1) then evaluate

ĝ(p+1) (θ) =
1

ε∗∗n

[p/2]∑
k=0

g
(
θ + (−1)

k
ε∗∗n

)
.
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Plugging this expression into the expression for the mean-squared error, we can obtain the optimal

step sizes. Then for γ = 1 we find that

C∗∗ =


p! (p+ 1)! [δ g]

p∑
l=−p

cl(
ĝ(p+1) (θ)

p∑
l=−p

cl lp

)2


1/(2p+1)

.

For γ < 1 we find

C∗∗ =


(2− 2γ)p! (p+ 1)!Vg (ε∗∗n )(

ĝ(p+1) (θ)
p∑

l=−p
cl lp

)2


1/(2p+2−2γ)

.

Note that if the function g(·) is intensive to compute, the choice of these constants allows one to

use a relatively small subsample to calibrate the step sizes. Then one can use these constants to

initialize the step sizes on a large scale using the entire sample.

In case where one can compute the function in a relatively straightforward way, calibration of

the constants of interest can be performed by minimizing the approximate expression for the mean-

squared error with respect to C, taking into account that the step size will enter both in the expression

for the derivative g(p+1) and Vg (εn). This approach is equivalent to the solve-the-equation plug-in

approach in the bandwidth selection literature.

8 Monte-carlo evidence

We analyze the properties of the rules for selection of the step sizes using the so-called Chernoff’s

example (see Van der Vaart and Wellner (1996)). The example is based on the population objective

function

Q (θ) = E [1 {x ∈ [θ − 1, θ + 1]}] ,

with a continuously distributed scalar regressor x. Note that if X has an unbounded support and a

continuous density fX(·) then the maximizer θ0 of the population objective satisfies the necessary

first-order condition

fX(θ0 + 1) = fX(θ0 − 1).

In particular, if the distribution of X is symmetric and unimodal, then the unique solution is θ0 = 0.

In our analysis we consider the case where X is standard normal, i.e. the population objective

function indeed has a unique maximizer. The simulated sample {Xi}ni=1 comes from a standard
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normal distribution and the sample objective is computed as

Qn (θ) =
1

n

n∑
i=1

1 {Xi ∈ [θ − 1, θ + 1]} =
1

n

n∑
i=1

U (Xi − θ) ,

where U(·) is a standard uniform kernel. We consider using numerical gradient to compute the

extremum for this objective function. To construct the numerical gradient, we use finite difference

formulas of different orders. We use the step of numerical differentiation εn which depends on the

sample size. In particular, the first-order right derivative formula is

D̂1

(
θ̂
)

= Lεn1,1 =
Q̂n

(
θ̂ + εn

)
− Q̂n

(
θ̂
)

εn
,

and the left derivative formula is

D̂1

(
θ̂
)

= Lεn1,1 =
Q̂n

(
θ̂
)
− Q̂n

(
θ̂ − εn

)
εn

.

The second-order formula is

D̂2

(
θ̂
)

= Lεn1,2 =
Q̂n

(
θ̂ + εn

)
− Q̂n

(
θ̂ − εn

)
2εn

,

and the third-order formula is

D̂3

(
θ̂
)

= Lεn1,3 =
−Q̂n

(
θ̂ − 2εn

)
+ 8Q̂n

(
θ̂ − εn

)
− 8Q̂n

(
θ̂ + εn

)
+ Q̂n

(
θ̂ + 2εn

)
12εn

.

The estimator is then re-defined as a solution to the numerical first-order condition

D̂k

(
θ̂
)

= op

(
1
√
nεn

)
, (8.15)

which is equivalent to the maximum of the empirical objective function that is achieved using a

numerical gradient-based maximization routine. We can anticipate the properties of the analyzed

estimator by analyzing its behavior analytically. For illustration we can use the numerical derivative

formula D̂2

(
θ̂
)

. Application of this formula to the sample objective function leads to the expression

D̂2

(
θ̂
)

=
1

nεn

n∑
i=1

U

(
Xi − θ − 1

εn

)
− 1

nεn

n∑
i=1

U

(
Xi − θ + 1

εn

)
.

Using the fact that under the regular distributions of X the uniform kernel will be mean-square

differentiable, we can use the following representation:

1
√
nεn

n∑
i=1

U

(
Xi − θ − 1

εn

)
=

1
√
nεn

n∑
i=1

U

(
Xi − θ0 − 1

εn

)
+ f ′X (θ0 + 1)

√
nεn (θ − θ0) + op (1) .
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Therefore, we can express the estimator, which solves (8.15) as

√
nεn

(
θ̂ − θ0

)
= (f ′X (θ0 + 1)− f ′X (θ0 − 1))

−1 1
√
nεn

n∑
i=1

[
U

(
Xi − θ0 − 1

εn

)
− U

(
Xi − θ0 + 1

εn

)]
+ op(1).

This demonstrates that in the case of a “relatively slow” approach of the step size to zero, the

properties of this estimator will be described by the case where 3
√
nεn → ∞ (γ = 1

2 ). Once these

conditions are satisfied, then we can use the Lindeberg-Levy CLT to establish that

1
√
nεn

n∑
i=1

[
U

(
Xi − θ0 − 1

εn

)
− U

(
Xi − θ0 + 1

εn

)]
d−→ N (0,Ω) .

We can also use our result regarding the consistency of this estimator. The variance of the estimator

can be evaluated similarly to the variance of kernel smoothers. In fact, we can evaluate

E

{(
1
√
εn

[
U

(
Xi − θ0 − 1

εn

)
− U

(
Xi − θ0 + 1

εn

)])2
}

=

∫
U (u) (fX (θ0 + 1 + u εn) + fX (θ0 − 1 + u εn)) du = fX (θ0 + 1) + fX (θ0 − 1) +O (εn) .

Then the expression for the variance can be written as

V = (f ′X (θ0 + 1)− f ′X (θ0 − 1))
−2

(fX (θ0 + 1) + fX (θ0 − 1))

If x ∼ N (0, 1) then V =
√

πe
2 . For a “fast” approach to zero, i.e. when ( 3

√
nεn)

−1
= O(1) we should

observe the non-standard “cube root” asymptotics.

It is clear that in relatively small samples when the step size of numerical differentiation is “small” the

sample first-order condition will have multiple roots. Given the structure of the objective functions

the roots will either be contained in the disjoint convex compact sets or will be singletons. To

facilitate root finding, we use a dense grid over the state space of the model. For the step size εn we

choose the size of the grid cell to be O (εn/ log n). This will ensure that the error (measured as the

Hausdorff distance between the true set of roots and the set of roots on the grid) will vanish at a faster

rate than the numerical error from approximating the gradient using a finite-difference formula. For

simplicity we use a uniform grid on [−1, 1] such that the cell size is ∆n = C εn
log n , the number of grid

points is N∆n
=
[

2 log n
C εn

]
+ 1 and the grid points can be obtained as θg = −1 + ∆ (g − 1) forming

the set G∆n
= {θg}

N∆n
g=1 . The grid search algorithm will identify the set of points

Zn =

{
θ ∈ G∆n :

∣∣∣D̂k (θ)
∣∣∣ ≤√ log n

εnn

}
.

We call this set the set of roots of the numerical first-order condition on a selected grid. Our Monte-

Carlo study will analyze the structure of the set of roots on the grid to evaluate the performance of

the numerical gradient-based estimator. The Monte-Carlo study proceeds in the following steps.
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1. We generate 1000 Monte-Carlo samples with the number of observations from 500 to 4000.

Each simulation sample is indexed by s and the sample size is denoted ns.

2. We choose sample-adaptive step of numerical differentiation as ε = C (ns)
q
. We choose C = 2

and q from 0.2 to 2.

3. Using this step size, we set up the function that we associate with the empirical first-order

condition with D̂k

(
θ̂s
)

for different orders of numerical derivatives.

4. Using the grid over the support [−1, 1] (which we described above) we find all solutions satis-

fying (8.15). This will form the set of roots on the grid Zns .

5. We store all roots on the grid and report the statistics averaged across the roots.

6. If #Zns is the number of roots found in simulation s, we evaluate the mean-squared errors of

estimation as:

MSE
(
θ̂
)

=

√√√√ 1

S

S∑
s=1

1

#Zns

#Zns∑
r=1

(
θ̂rs − θ0

)2

We illustrate our results with the set of graphs that show the dependence of the statistics for the

set of roots on the sample size.

We emphasize here that correctly characterizing the problem (especially in “under-smoothed” cases

where the step size approaches to zero too fast) requires a root-finding routine that can find the

entire set of roots. We argue that an appropriate grid-based procedure will be appropriate because

it provides a countable approximation to an uncountable set of roots. The profile of the first-order

condition for different orders of numerical derivative formulas are presented in Figures 1-3. The

panels from top to bottom show the numerical derivative evaluated on the grid with a decreasing

step size. The top panels show the smoothest case where the first-order condition has a pronounced

single solution. However, one can see that this solution is biased in all cases. The pictures at the

bottom show the profile of the numerical derivative where the step size is selected too small. One

can see that there are large regions where the numerical derivative is identically equal to zero. This

illustrates the bias-variance trade off in this model: once the step size for numerical differentiation

is chosen to be large, then the first-order condition will yield the solution with small variance but

potentially large bias. However, when the step size is small, then the solution will have a large

variance (over the set of potential roots) but possibly small bias.

We show this intuition formally by analyzing the bias and the variance of the estimates. Figure 4

shows the decay of the root-mean squared error with the sample size over different selection of the

sequence of step sizes. The blue line with the asterisk markers represents the over-smoothed case

with the slowest approach of the step size of numerical differentiation to zero. With the increase

of the rate of this approach, the mean-squared error decreases and reaches its optimum indicated

by the line marked with “+”. Then it drops and exhibits fluctuations indicating the case where
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the small step size leads to a large set of extraneous roots. Figure 5 shows the same dependence

for the bias. One can see that bias tends to decrease with the sample size. Interestingly, the step

size that corresponded to the optimal mean-squared error does not correspond to the minimal bias

in the estimation. Moreover, the magnitude of the bias is much smaller than the magnitude of the

mean-squared error. This implies that in all cases variance tends to dominate the bias in absolute

value. Overall, our results show that even in non-smooth models such as the one under consideration,

numerical gradient-based procedure can be used to search for the maximum provided the step size

is chosen correctly.

[Figure 1 about here.]

[Figure 2 about here.]

[Figure 3 about here.]

[Figure 4 about here.]

[Figure 5 about here.]

9 Conclusion

In this paper we study the impact of numerical finite-point approximations on the estimation of

function gradients focusing on the case where the function is computed from a cross-sectional data

sample. We provide weak sufficient conditions for uniformly consistent estimation of the gradients

and the directional derivatives of semiparametric moments. Such results can be used to compute

Hessians (in estimating asymptotic variances) or they can be used as inputs in efficient two-step

estimation procedures. We also investigate the role of finite-point approximation in computing

extremum estimators. Finite-point approximation formulae use tuning parameters such as the step

size and we find that the presence of such parameters may affect the statistical properties of the

original extremum estimator. We study extremum estimation for classical M-estimators, U-statistics,

and semiparametric generalized minimum distance estimators where the optimization routine uses a

finite-difference approximation to the gradient. We find that the properties of the estimator obtained

from the numerical optimization routine depend on the interaction between the smoothness of the

population objective function, the precision of approximation, and the smoothness of the sample

objective function. While in smooth models the choice of step size sequence may not affect the

properties of the estimator, in non-smooth models a numerical approximation routine can alter both

the rate of convergence of the estimator and its asymptotic distribution.
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A Appendix

A.1 Proof of Theorem 1

Proof. We need to verify that uniformly in z ∈ Z, (θ, η(·)) ∈ Θ×H and wj ∈ Hn the numerical derivative

will be converging to the population derivative at (θ0, η0(·)). We begin with noting that

m̂
(
z; θ̂ + ejεn, η̂(·)

)
= m̂

(
z; θ̂ + ejεn, η̂(·)

)
−m

(
z; θ̂ + ejεn, η̂(·)

)
−m̂ (z; θ0, η0(·)) + m̂ (z; θ0, η0(·))−m (z; θ0, η0(·))

+m
(
z; θ̂ + ejεn, η̂(·)

)
−m (z; θ0 + ejεn, η̂(·))

+m (z; θ0 + ejεn, η̂(·))−m (z; θ0 + ejεn, η0(·))

+m (z; θ0 + ejεn, η0(·))−m (z; θ0, η0(·))

Using the expansion representation above, we conclude that

m̂
(
z; θ̂ + ejεn, η̂(·)

)
L2

= Op
(
n−1/k

)
+ ∆1θ

(
θ̂ − θ0

)
+ ∆1η[η̂ − η0]

+
(
θ̂ − θ0

)′
∆2θ2

(
θ̂ − θ0

)
+ ∆2η2 [η̂ − η0]2 + ∆2θη[η̂ − η0]

(
θ̂ − θ0

)
+∆j

1θεn + ∆jj

2θ2
ε2
n + op

(
‖η̂ − η0‖2L2

)
+ op

(
‖θ̂ − θ0‖2

)
.

Using a similar technique we can represent

m̂
(
z; θ̂ − ejεn, η̂(·)

)
L2

= Op
(
n−1/k

)
+ ∆1θ

(
θ̂ − θ0

)
+ ∆1η[η̂ − η0]

+
(
θ̂ − θ0

)′
∆2θ2

(
θ̂ − θ0

)
+ ∆2η2 [η̂ − η0]2 + ∆2θη[η̂ − η0]

(
θ̂ − θ0

)
−∆j

1θεn + ∆jj

2θ2
ε2
n + op

(
ε2
n

)
.

As a result, we can evaluate

m̂
(
z; θ̂ + ejεn, η̂(·)

)
− m̂

(
z; θ̂ − ejεn, η̂(·)

)
2εn

L2

= ∆j
1θ +Op

(
ε−1
n

(
n−1/k + n−1/2 + n−1/k1

))
+op (εn) .

Note that εn n
1/max{k, k1} → ∞ and εn → 0 will assure uniform convergence of the moment function to

its derivative. Next, we provide the result for the uniform convergence of the directional derivative with

respect to the infinite-dimensional parameter. Consider a particular direction wj (which in practice will be
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an element of the sieve space containing the approximation η̂(·)), then:

m̂
(
z; θ̂, η̂(·) + τnwj(·)

)
= m̂

(
z; θ̂, η̂(·) + τnwj(·)

)
−m

(
z; θ̂, η̂(·) + τnwj(·)

)
−m̂ (z; θ0, η0(·)) + m̂ (z; θ0, h0(·))−m (z; θ0, η0(·))

+m
(
z; θ̂, η̂(·) + τnwj(·)

)
−m (z; θ0, η̂(·) + τnwj(·))

+m (z; θ0, η̂(·) + τnwj(·))−m (z; θ0, η0(·) + τnwj(·))

+m (z; θ0, η0(·) + τnwj(·))−m (z; θ0, η0(·)) .

Using the local L2-representation, we can approximate the expansion above as

m̂
(
z; θ̂, η̂(·) + τnwj(·)

)
L2

= Op
(
n−1/k

)
+ ∆1θ

(
θ̂ − θ0

)
+ ∆1η[η̂ − η0]

+
(
θ̂ − θ0

)′
∆2θ2

(
θ̂ − θ0

)
+ ∆2η2 [η̂ − η0]2 + τn∆2h2 [η̂ − η0, wj ]

+∆2θη[η̂ − η0]
(
θ̂ − θ0

)
+ τn∆2θη[wj ]

(
θ̂ − θ0

)
+τn∆1η[wj ] + τ2

n∆2η2 [wj ]
2 + op

(
‖η̂ − η0‖2L2

)
+ op

(
‖θ̂ − θ0‖2

)
.

We can write a similar expression for m̂
(
z; θ̂, η̂(·)− τnwj(·)

)
. As a result, the symmetrized numerical

directional derivative will be approximated locally by

m̂
(
z; θ̂, η̂(·) + τnwj(·)

)
− m̂

(
z; θ̂, η̂(·)− τnwj(·)

)
2τn

L2

= ∆1η[wj ] + ∆2η2 [η̂ − η0, wj ]

+∆2θη[wj ]
(
θ̂ − θ0

)
+Op

(
τ−1
n

(
n−1/k + n−1/2 + n−1/k1

))
+ op (τn) .

Note that
∥∥∆2η2 [η̂ − η0, wj ]

∥∥
L2 = Op

(
n−1/k1

)
. For k1 > 2 this term will dominate and determine the

lower bound on the sub-parametric convergence rate for the numerical derivative. The conditions for τn will

be similar to the conditions for εn, that is τn n
1/max{k, k1} →∞ and τn → 0. Moreover, it is clear that the

convergence rate for τn is slower than n−1/k1 . This result assures that for z ∈ Z, (θ, η(·)) ∈ Θ × H, and

wj ∈ W, D̃wj (z)
p−→ Dwj (z).

A.2 Proof of Lemma 2

It follows directly from Assumption 8.[iii] that for η ∈ Hn∣∣∣Lεn,w1,p m (θ, η, z)− proj
(
Lεn,w1,p m (θ, η, z) |pN (z)

)∣∣∣ = O

(
1

Nαεn
+

1

nφεn

)
,

that will converge to zero if minNα, nφεn →∞.

Therefore it suffices to prove Lemma 2 for

(∗) =
∣∣∣Lεn,w1,p m̂ (θ, η, z)− proj

(
Lεn,w1,p m (θ, η, z) |pN (z)

)∣∣∣ .
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As demonstrated in Newey (1997), for P =
(
pN (z1), . . . , pN (zn)

)′
and Q̂ = P ′P/n

‖Q̂−Q‖ = Op

(√
N

n

)
, where his ζ0 (N) = C,

and Q is non-singular by Assumption 8.[i] with the smallest eigenvalue bounded from below by some con-

stant λ > 0. Hence the smallest eigenvalue of Q̂ will converge to λ > 0. Following Newey (1997) we use

the indicator 1n to indicate the cases where the smallest eigenvalue of Q̂ is above 1
2

to avoid singularities.

Introduce the vector ∆(θ, η, w, Yi; εn) = (ρ (θ, η + εnw;Yi)− ρ (θ, η − εnw;Yi))
n
i=1. We consider conditional

expectation E [∆(θ, η, w, Yi; εn) |Zi = z] as a function of z (given θ, η, w,and εn). We can project this

function of z on N basis vectors of the sieve space. Let β be the vector of coefficients of this projec-

tion. Also define G(θ, η, w, εn) = (E [∆(θ, η, w, Yi; εn) |Zi])ni=1. Then (∗) equals to a linear combination of

1n|pN′(z)
(
β̂ − β

)
|/εn. Note that

pN′(z)
(
β̂ − β

)
= pN′(z)

(
Q̂−1 P ′ (∆−G) /n+ Q̂−1 P ′ (G− Pβ) /n

)
. (A.16)

For the first term in (A.16), we can use the result that smallest eigenvalue of Q̂ is converging to λ > 0. Then

application of the Cauchy-Schwartz inequality leads to∣∣∣∣pN′(z)Q̂−1P ′ (∆−G)

∣∣∣∣ ≤ ∥∥∥Q−1pN (z)
∥∥∥ ∥∥P ′ (∆−G)

∥∥ .
Then

∥∥∥Q̂−1pN (z)
∥∥∥ ≤ C

λ

√
N , and

∥∥P ′ (∆−G)
∥∥ =

√√√√ N∑
k=1

(
n∑
i=1

pNk(zi) (∆(θ, η, w, Yi; εn)−G(θ, η, w, Zi; εn))

)2

≤
√
N max

k

∣∣∣∣∣
n∑
i=1

pNk(zi) (∆(θ, η, w, Yi; εn)−G(θ, η, w, Zi; εn))

∣∣∣∣∣
Thus, ∣∣∣∣pN′(z)Q̂−1P ′ (∆−G)

∣∣∣∣ ≤ CN

λ
max
k

∣∣∣∣∣
n∑
i=1

pNk(zi) (∆(θ, η, w, Yi; εn)−G(θ, η, w, Zi; εn))

∣∣∣∣∣ .
Denote µn = µ εn

N
. Next we adapt the arguments for proving Theorem 37 in Pollard (1984) to provide the

bound for P

(
sup
Fn

1
n
‖pN′(z)Q̂−1P ′ (∆−G) ‖ > Nµn

)
. For N non-negative random variables Yi we note

that

P
(

max
i
Yi > c

)
≤

N∑
i=1

P (Yi > c) .

Using this observation, we can find that

P

(
sup
Fn

1

n
‖pN′(z)Q̂−1P ′ (∆−G) ‖ > Nµn

)
≤

N∑
k=1

P

(
sup
Fn

∥∥∥∥ 1

n

n∑
i=1

pNk(zi) (∆i −Gi)
∥∥∥∥ > µn

)
This inequality allows us to substitute the tail bound for the class of functions Lεn,w1,p m̂ (θ, η; z) that is indexed

by θ, η, w and z by a tail bound for a much simpler class

Pn = {pNk(·) (∆(θ, η, w, ·; εn)−G(θ, η, w; εn)) : θ ∈ N(θ0), η, w ∈ Hn}.
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We note that, according to Lemma 2.6.18 in Van der Vaart and Wellner (1996), provided that each pNk(·)
is a fixed function, the covering number for Pn has the same order as the covering number for Fn. Then we

pick A to be the largest constant for the covering numbers Akn
2r0 log

(
1
δ

)
over classes Pn. By Assumption

8.[i] and 9.[i] any f ∈ Pn is bounded |f | < C < ∞. Next we note that Var (f) = O(εn) for f ∈ Pn by

Assumption 9.[ii]. The symmetrization inequality (30) in Pollard (1984) holds if εn/
(
16nµ2

n

)
≤ 1

2
. This will

occur if nεn
N2 →∞. Provided that the symmetrization inequality holds, we can follow the steps of Theorem

37 in Pollard (1984) to establish the tail bound on the sample sum via a combination of the Hoeffding

inequality and the covering number for the class Pn. As a result, we obtain that

P

(
sup
Fn

1

n

∥∥∥∥ n∑
i=1

pNk(zi) (∆i −Gi)
∥∥∥∥ > 8µn

)

≤ 2 exp

(
An2r0 log

1

µn

)
exp

(
− 1

128

nµ2
n

εn

)
+ P

(
sup
Fn

1

n

∥∥∥∥ n∑
i=1

pNk(zi) (∆i −Gi)
∥∥∥∥2

> 64εn

)
.

The second term can be evaluated with the aid of Lemma 33 in Pollard (1984):

P

(
sup
Fn

1

n

∥∥∥∥ n∑
i=1

pNk(zi) (∆i −Gi)
∥∥∥∥2

> 64εn

)
≤ 4 exp

(
An2r0 log

1

εn

)
exp (−nεn) .

As a result, we find that

P

(
sup
Fn

1

n
‖pN′(z)Q̂−1P ′ (∆−G) ‖ > Nµn

)
≤ 2N exp

(
An2r0 log

1

µn
− 1

128

nµ2
n

εn

)
+ 4N exp

(
An2r0 log

1

εn
− nεn

)
We start the analysis with the first term. Consider the case with and r0 > 0. Then the log of the first term

takes the form

An2r0 log (N/ (µεn))− 1

128

n

N2
µ2εn + log N

= An2r0 log

(
N2n2r0

µnεn

)
− 1

128

µ2εnn

N2
−An2r0 log

Nn2r0

µn
+ log N.

If N log n/n→ 0, then one needs that nεn
N2 n2r0 log n

→∞ if r0 > 0 and nεn
N2 log2 n

→∞ if r0 = 0+. Hence the

first term is of o(1). Now consider the second term. The exponent can be represented as

−nεn + n2r0 log
1

εn
+ log N,

which is guaranteed to converge to −∞ if nεn
N2 n2r0 log n

→∞.

We notice that in this proof uniformity of the directional derivative of the conditional moment in z follows

directly from the boundedness of the sieve functions. This implies that in some cases this result can be

weakened.

A.3 Proof of Lemma 3

Recall the definition of the kernel estimator

m̂ (θ, η, z) =

(
1

nbdzn

n∑
i=1

K

(
z − zi
bn

))−1
1

nbdzn

n∑
i=1

ρ (θ, η, zi)K

(
z − zi
hn

)
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For the expression of interest, we can consider

m̂ (θ, η + εnw, z)− m̂ (θ, η − εnw, z)
εn

=

(
1

nbdzn

n∑
i=1

K

(
z − zi
bn

))−1

× 1

nbdzn εn

n∑
i=1

[ρ (θ, η + εnw, yi)− ρ (θ, η − εnw, yi)]K
(
z − zi
bn

)
.

Then we can consider a class of functions

Gn = {[ρ (θ, η + εnw, ·)− ρ (θ, η − εnw, ·)]K
(
z − ·
bn

)
, θ ∈ Θ, w, η ∈ Hn, z ∈ Z}.

Consider the classe Gn. We can represent it as

Gn = {g = fκ : f ∈ Fn, κ ∈ F} .

N1(·) and N2(·) correspond to the L1 and L2 covering numbers. Consider the covering numbers for classes

Fn and F . We select ε > 0, then there exist m1 < N1 (ε,Fn, L1(Q)) and m2 < N1 (ε,F , L1(Q)) and covers

{fj}m1
j=1 and {κi}m2

i=1 such that for f ∈ Fn and κ ∈ F minj Q|f − fj | < ε and miniQ|κ − κi| < ε. We note

that |f | ≤ C and |g| ≤ C. Consider the cover {fjκi}j=m1,i=m2
j,i=1 noting that fjκi − fκ = (fj − f) (κi − κ) +

f (κi − κ) + κ (fj − f). Then, in combination with Cauchy-Schwartz we have that

min
i,j

Q|κifj − κf | ≤ min
j

(
Q|fj − f |2

)1/2
min
i

(
Q|κi − κ|2

)1/2
+ C min

j
Q|fj − f |+ C min

i
Q|κi − κ|

Given the relationship between L1 and L2 covering numbers covers {fj}m1
j=1 and {κi}m2

i=1 are sufficient to

achive minj
(
Q|fj − f |2

)1/2
< ε and mini

(
Q|κi − κ|2

)1/2
< ε. This means that min

i,j
Q|κifj − κf | < 3Cε.

Thus, the L1 covering number for Gn is bounded by a product of L2 covering numbers for F and Fn (which

corresponds to the number of elements in the cover {fjκi}j=m1,i=m2
j,i=1 .

Provided that classes Fn and F satisfy Euclidean property, we can apply Lemma 2.6.20 from Van der Vaart

and Wellner (1996). This means that the class Gn is Euclidean with parameters depending on n. Provided

that Var (g) = O (εnbn) for g ∈ Gn, we can use a similar logic as in the proof of Theorem 37 in Pollard (1984)

with the results similar to those in the proof of Lemma 2. This leads to condition
nεnb

dz
n

n2r0 log n
→∞. We note

that the bias due to kernel smooting E [m̂ (θ, η, Zi) |Zi = z] = O (bmn ), where m is the order of the kernel,

and the bias due to the sieve approximation is n−φ. Then∥∥Lεn,w1,p E [m̂ (θ, η, Zi) |Zi = z]− Lεn,w1,p m (θ, η, z)
∥∥ = O

(
bmn ε

−1
n + nφε−1

n

)
,

which converges to zero if εnb
−m
n →∞ and εnn

φ →∞.

A.4 Proof of Lemma 4

As before, we use ∆ = (ρ (θ, η + εnh;Yi)− ρ (θ, η − εnh;Yi))
n
i=1 and G = (E [∆ |Zi])ni=1. Then we note that

‖pNk(Zi) (∆i −Gi) ‖ ≤ Cεγn due to Assumptions 8 and 9(i’). Consider the class of functions

Pn = {pNk(·) (∆ (θ, η, w, z, ·; εn)−G (θ, η, w, ·; εn)) , θ ∈ N(θ0), η, w ∈ Hn, z ∈ Z}.
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We note that for this class we can find an envelope proportional to εγn. Then for θn = ε−γn sup
f∈Pn

|Pnf2|1/2

we can use the tail bound in Alexander (1984) which is analogous to Theorem 2.14.1 in Van der Vaart and

Wellner (1996):

P sup
f∈Pn

|
√
n (Pnf − Pf) | ≤ CεγnP [J (θn, Pn)] ,

where J (θ, Pn) = sup
Q

∫ θ
0

(log N (δεγn,Pn, L1 (Q)))1/2 dδ. In our case J (θ, Pn) = O
(
nr0θ

√
log (1/θ)

)
. This

function achieves its maximum at θ = e−1/2. We can analyze the probability of large deviations for θn.

From Lemma 33 in Pollard (1984) combined with Lemma 10 in Nolan and Pollard (1987), it follows that

there exists β such that

P

(
ε−γn sup

f∈Pn
|Pnf2|1/2 > βt

)
≤ 4 exp

(
An2r0 log

(
1

t2

)
− nβ2t2

)
.

Consider the sequence tn = o(1) such that tn �
√

log n1−2r0

n1−2r0
. We note that for sufficiently large n βtnε

γ
n � 1

e
.

This means that

P [J (θn, Pn)] = P [J (θn, Pn)1 (θn > βtn) + J (θn, Pn)1 (θn ≤ βtn)]

= nr0
1√
2e
P

(
sup
f∈Pn

|Pnf2|1/2 > βtnε
γ
n

)
+ n2r0βtn

√
log

1

βtn
.

Thus, we have established that

P sup
f∈Pn

|
√
n (Pnf − Pf) | ≤ C1ε

γ
nn

r0 exp

(
An2r0 log

1

tn
− nβ2t2nε

2γ
n

)
+ C2ε

γ
nn

r0βtn

√
log

1

βtn

Then, returning to our previous argument, we recognize that

P
1

nεn
sup
Fn

∣∣∣∣ n∑
i=1

‖pNk(xi) (∆i −Gi) ‖
∣∣∣∣

= O

(
nr0−

1
2 εγ−1
n exp

(
An2r0 log

1

tnε
γ
n
− nβ2t2nε

2γ
n

)
+ nr0−

1
2 εγ−1
n βtn

√
log

1

βtn

)
.

As a result, we established that

P sup
Fn

1

nεn
‖pN′(z)Q̂−1P ′ (∆−G) ‖ = O

(
Nnr0−

1
2 εγ−1
n exp

(
An2r0 log

1

tnε
γ
n
− nβ2t2nε

2γ
n

)
+Nnr0−

1
2 εγ−1
n βtn

√
log

1

βtn

)
.

Next, we note that provided that
√
nε1−γn

Nn2r0
→∞, the expression on the right-hand side converges to zero. In

fact, the first term is exponential. The second term has a factor that can be transformed into
√

2

√
log 1

β2t2n
1

β2t2n

=

o(1), if tn = o(1).

Consider now similar conditions for kernel-based estimators. As before, we can represent the finite-diofference

formula for the directional derivative of interest as

m̂ (θ, η + εnw, z)− m̂ (θ, η − εnw, z) =

(
1

nbdzn

n∑
i=1

K

(
z − zi
bn

))−1

× 1

nbdzn

n∑
i=1

[ρ (θ, η + εnw, zi)− ρ (θ, η − εnh, zi)]K
(
x− xi
bn

)
.
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We consider the class

Gn = {[ρ (θ, η + εnw, ·)− ρ (θ, η − εnw, ·)]K
(
z − ·
bn

)
, θ ∈ Θ, w, η ∈ Hn, z ∈ Z}.

We noted before that the L1 covering number for this class can be constructed as a product of covering

numbers for the classes forming the product. Provided that due to Hölder-continuity there exists an envelope

εn for this class, we can represent

logN1 (ε‖F‖,Gn, L1) ≤ An2r0 log

(
1

ε

)
,

for sufficiently large A. This makes our entire previous discussion to be analogous to the kernel case. The

only difference arises in the exponential inequality. We notice that Var(f) = O
(
ε2γn b

dz
n

)
for f ∈ Gn. This

means that the exponential inequality can be re-written as

P

(
ε−γn sup

f∈Pn
|Pnf2|1/2 > βt

)
≤ C exp

(
An2r0 log

1

t
− nβ2t2

)
.

We choose the sequence tn = O
(
cnb

dz/2
n

)
for some arbitrary cn → 0, meaning that the decomposition into

“large” and “small” θn will rely on the threshold βcnb
dz/2
n as opposed to βtn. Thus

P [J (θn, Pn)] = P
[
J (θn, Pn)1

(
θn > βcnb

dz/2
n

)
+ J (θn, Pn)1

(
θn ≤ βcnbdz/2n

)]
= nr0

1√
2e
P

(
sup
f∈Pn

|Pnf2|1/2 > βcnb
dz/2
n εγn

)
+ nr0βcnb

dz/2
n

√
log

1

βcnb
dz/2
n

.

Then decomposing the tail bound as before, we obtain

P sup
Fn

∥∥∥∥∥ 1

nεnb
dz
n

n∑
i=1

[ρ (θ, η + εnh, zi)− ρ (θ, η − εnh, zi)]K
(
x− xi
bn

)∥∥∥∥∥
= O

(
nr0−

1
2 b−dzn εγ−1

n exp

(
An2r0 log

1

cnb
dz/2
n

− nβ2c2nb
dz
n ε

2γ
n

)
+ nr0−

1
2 εγ−1
n βcnb

−dz/2
n

√
log

1

βcnb
dz/2
n

)
.

We notice that cn = o(1) and n2r0−1ε1−γn b
dz/2
n / logn2r0−1 →∞ assures the convergence to zero.

A.5 Proof of Lemma 5

Proof. (i)

To find the convergence rate for the estimator θ̂ we need to find the “balancing” sequence ρn that assures

that ρnd
(
θ̂, θ0

)
= O∗P (1). Using the assumption of the compactness of the parameter space, we cover it

using a grid with cells Sj,n =
{
θ : 2j−1 < ρn d (θ, θ0) < 2j

}
. The idea of the proof is to show that for any

given κ > 0 we can find finite β such that the probability of event ρnd
(
θ̂, θ0

)
> β is below κ. Using a

partition of the parameter space, we can pick a finite integer M such that 2M < β. Then we evaluate the

probability of a large deviation ρnd
(
θ̂, θ0

)
> 2M . We know that the estimator solves

√
nεnL

εn
1,pQ̂

(
θ̂
)

= op (1) .
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If ρnd
(
θ̂, θ0

)
is larger than 2M for a given M , then over the θ in one of the cells Sj,n,

√
nεnL

εn
1,pQn (θ)

achieves a distance as close as desired to zero. Hence, for every δ > 0,

P
(
ρn d

(
θ̂, θ0

)
> 2M

)
≤

∑
j ≥M

2j < δρn

P

(
sup
θ∈Sj,n

(
−
∥∥∥Lεn1,pQ̂ (θ)

∥∥∥) ≥ −op( 1√
nεn

))
+ P

(
2 d
(
θ̂, θ0

)
≥ δ
)

Then we evaluate the population objective, using the fact that it has p mean-square derivatives with Taylor

residual of order ν: ∥∥Lεn1,pQ (θ)
∥∥ ≥ C d (θ, θ0) + C′εν−1

n ,

where θ0 is the zero of the population first-order condition and the approximated derivative has a known

order of approximation ‖Lεn1,pQ (θ0) ‖ = C′εν−1
n for some constant C′. Substitution of this expression into

the argument of interest leads to∥∥∥Lεn1,pQ (θ)− Lεn1,pQ̂ (θ)
∥∥∥ ≥ ∥∥Lεn1,pQ (θ)

∥∥− ∥∥∥Lεn1,pQ̂ (θ)
∥∥∥ .

Therefore

sup
θ∈Sj,n

(
−
∥∥∥Lεn1,pQ̂ (θ)

∥∥∥) ≥ sup
θ∈Sj,n

∥∥∥Lεn1,pQ (θ)− Lεn1,pQ̂ (θ)
∥∥∥− sup

θ∈Sj,n

∥∥Lεn1,pQ (θ)
∥∥

Then applying the Markov inequality to the re-centered process for θ ∈ Sj,n

P

(
sup
θ∈Sj,n

∥∥∥Lεn1,pQ (θ)− Lεn1,pQ̂ (θ)
∥∥∥ ≥ C d (θ, θ0) + C′εν−1

n + o

(
1√
nεn

))

≤
E∗

[
sup
θ∈Sj,n

∥∥∥Lεn1,pQ (θ)− Lεn1,pQ̂ (θ)
∥∥∥]

C d (θ, θ0) + C′εν−1
n + o

(
1√
nεn

) = O

(
ρn

√
log n

nεn

)
2−(j−1).

Thus if ρn = o
(√

nεn
log n

)
then the probability of interest is o(1).

(ii)

Consider a class of functions

Gn =

{
g (·, θn + εn)− g (·, θn − εn)− g (·, θ0 + εn) + g (·, θ0 − εn) , θn = θ0 + tn

√
log n

nεn

}
,

with εn → 0 and tn = O(1). We can evaluate the L2 norm of the functions from class Gn using Assumption

6 (ii). Note that

E
[
(g (Zi, θn + εn)− g (Zi, θn − εn))2] = O (εn) ,

with the same evaluation for the second term. On the other hand, we can change the notation to θ1n =

θ0 + εn + tn
2

√
log n
nεn

and θ1n = θ0 − εn + tn
2

√
log n
nεn

. The we can group the first term with the third and the

second one with the fourth. For the first group this leads to

E

[(
g

(
Zi, θ1n +

tn
2

√
log n

nεn

)
− g

(
Zi, θ1n −

tn
2

√
log n

nεn

))2]
= O

(√
log n

nεn

)
,
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and for the second group

E

[(
g

(
Zi, θ2n +

tn
2

√
log n

nεn

)
− g

(
Zi, θ2n −

tn
2

√
log n

nεn

))2]
= O

(√
log n

nεn

)
.

Thus, two different ways of grouping the terms allow us to obtain two possible bounds on the norm of the

entire term. As a result, we find that

P f2 = O

(
min

{
εn,

√
log n

nεn

})
, f ∈ Gn.

Next we denote δn = min
{
εn,

√
log n
nεn

}
. Invoking Lemma 33 in Pollard (1984) and using Assumption 6 (iii)

we obtain that

P

(
sup
Gn

Pnf
2 > 64δn

)
≤ 4A (δn)−V exp (−nδn) = 4A exp

(
−nδn + V log

(
1

δn

))
.

If nε3
n/ log n→∞, then this allows us to conclude that sup

Gn
Pnf

2 = op (δn). Next we can apply the maximum

inequality from Theorem 2.14.1 in Van der Vaart and Wellner (1996) which implies that for the functions

with constant envelopes √
n

εn
sup
Gn
|Pn f − P f | .

1√
εn
J

(
sup
Gn

Pnf
2, Gn

)
,

where J(·) is a covering integral:

J (δ,F) = sup
Q

δ∫
0

√
1 +N (ε,F ,L2(Q)) d ε.

For Euclidean class as in Assumption 6 (iii) we can evaluate J(δ,Gn) = O
(
δ
√

log
(

1
δ

))
. Using the expression

for sup
Gn

P f2, we can evaluate

√
n

εn
sup
Gn
|Pn f − P f | = op

(
δn√
εn

√
log

(
1

δn

))
.

Then, provided that
nε3n
log n

→∞, we see that δn =
√

log n/(n εn) and

√
n

εn
sup
Gn
|Pn f − P f | = op


√√√√ log

(
nεn
log n

)
n

log n

 = op(1).

The statement of the Lemma follows directly from this result.

A.6 Proof of theorem 8

Proof. This proof will replicate the steps of proof of Lemma 5. We perform the triangulation of the parameter

space according to the balancing rate ρn into segments Sj,n =
{
θ : 2j−1 < ρn d (θ, θ0) < 2j

}
. For every δ > 0,

P
(
ρn d

(
θ̂, θ0

)
> 2M

)
≤

∑
j ≥M

2j < δρn

P

(
sup
θ∈Sj,n

(
−
∥∥∥Lεn1,pQ̂ (θ)

∥∥∥) ≥ −op( 1√
nεn

))
+ P

(
2 d
(
θ̂, θ0

)
≥ δ
)
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We can then follow the steps of Lemma 5 to evaluate the upper bound for the elements in the sum on the

right-hand side as

P

(
sup
θ∈Sj,n

∥∥∥Lεn1,pQ (θ)− Lεn1,pQ̂ (θ)− Lεn1,pQ (θ0) + Lεn1,pQ̂ (θ0)
∥∥∥ ≥ O( 2j

ρn

))

≤
E∗

[
sup
θ∈Sj,n

∥∥∥Lεn1,pQ (θ)− Lεn1,pQ̂ (θ)− Lεn1,pQ (θ0) + Lεn1,pQ̂ (θ0)
∥∥∥]

2j

ρn

= O

(
ρn

1√
nεn

)
2−(j−1).

Thus if ρn = O (
√
nεn) then the probability of interest is O(1).

A.7 Proof of theorem 9

Proof. We can note that the scaled bias due to numerical approximation can be evaluated as

√
n εn

(
Lεn1,pQ (θ)−G (θ)

)
= Op

(√
nε

1+ν/2
n

)
= op (1) .

We know that the estimator solves

Lεn1,pQ̂
(
θ̂
)

= op

(
1√
nεn

)
.

Then

√
nεn

(
Lεn1,pQ̂

(
θ̂
)
− Lεn1,pQ(θ̂) +G

(
θ̂
)

+ Lεn1,pQ
(
θ̂
)
−G

(
θ̂
))

= op (1) .

This means that locally

√
nεn

(
Lεn1,pQ̂

(
θ̂
)
− Lεn1,pQ̂ (θ0)− Lεn1,pQ

(
θ̂
)
− Lεn1,pQ (θ0)

)
+
√
nεnL

εn
1,pQ̂ (θ0) +

√
nεnH(θ0)

(
θ̂ − θ0

)
= op (1) .

An immediate consequence of lemma 5 is that

√
nεn

(
Lεn1,pQ̂

(
θ̂
)
− Lεn1,pQ̂ (θ0)− Lεn1,pQ

(
θ̂
)
− Lεn1,pQ (θ0)

)
= op(1).

Then we can apply the CLT to obtain the desired result.

A.8 Proof of theorem 10

Proof. The rate of convergence adapts the proof of Theorem 3.2.5 of Van der Vaart and Wellner (1996) to

our case. Denote the rate of convergence for the estimator θ̂ by ρn. Then we can partition the parameters

space into sets Sj,n =
{
θ : 2j−1 < ρn d (θ, θ0) < 2j

}
. Then we evaluate the probability of a large deviation

ρnd
(
θ̂, θ0

)
> 2M for some integer M , where ρn =

√
nε1−γ

n . We know that the estimator solves

√
nrnL

εn
1,pQn

(
θ̂
)

= op (1) .



50

If ρnd
(
θ̂, θ0

)
is larger than 2M for a given M , then over the θ in one of the shells Sj,n,

√
nrnL

εn
1,pQn (θ)

achieves a distance as close as desired to zero. Hence, for every δ > 0,

P
(
ρn d

(
θ̂, θ0

)
> 2M

)
≤

∑
j ≥M

2j < δρn

P

(
sup
θ∈Sj,n

(
−
∥∥Lεn1,pQn (θ)

∥∥) ≥ −op( 1√
nrn

))
+ P

(
2 d
(
θ̂, θ0

)
≥ δ
)

Note that mean square differentiability implies that for every θ in a neighborhood of θ0, g (θ) − g (θ0) .

−d2 (θ, θ0). Then we evaluate the population objective, using the fact that it has p mean-square derivatives:∥∥Lεn1,pQ (θ)
∥∥ ≥ C d (θ, θ0) + C′εν−1

n ,

where θ0 is the zero of the population first-order condition and the approximated derivative has a known

order of approximation ‖Lεn1,pQ (θ0) ‖ = C′εν−1
n for some constant C′. Substitution of this expression into

the argument of interest leads to∥∥Lεn1,pQ (θ)− Lεn1,pQn (θ)
∥∥ ≥ ∥∥Lεn1,pQ (θ)

∥∥− ∥∥Lεn1,pQn (θ)
∥∥ ≥ C d (θ, θ0) + C′εν−1

n + op

(
1√
nrn

)
.

Then applying the Markov inequality to the re-centered process for θ ∈ Sj,n

P
(
rn
√
n
∥∥Lεn1,pQ (θ)− Lεn1,pQn (θ)

∥∥ ≥ C rn√nd (θ, θ0) + C′rn
√
nεν−1

n + o (1)
)
≤ C′r−1/2

n n−1/2

(
2j

ρn

)−1

.

Then ρn =
√
n in the regular case and ρn = rn

√
n in cases where γ 6= 1.

Finally also note that the evaluation for the expectation holds for θ = θ0± tkεn, as shown above. By Markov

inequality according to Theorem 2.5.2 from van der Vaart and Wellner (1998) it follows that the process

rn
√
nLεn1,pQn (θ0) indexed by εn is P-Donsker.

A.9 Proof of theorem 11

Proof. The result will follow if we can demonstrate that

√
nrn

(
Lε1,pĝ

(
θ̂
)
− Lε1,pĝ (θ0)−G

(
θ̂
)

+G (θ0)
)

= op (1) . (A.17)

Because of the assumption that
√
nεν−γ →∞, the bias is sufficiently small. Therefore this is equivalent to

showing that

√
nrn

(
Lε1,pĝ

(
θ̂
)
− Lε1,pĝ (θ0)− ELε1,pĝ

(
θ̂
)

+ ELε1,pĝ (θ0)
)

= op (1) .

Because of the convergence rate established in theorem 10, this will implied by, with rn = ε1−γ :

sup

d(θ,θ0).O
(

1√
nε1−γ

)√nrn (Lε1,pĝ (θ)− Lε1,pĝ (θ0)− ELε1,pĝ (θ) + ELε1,pĝ (θ0)
)

= op (1) .

The left hand side can be written as a linear combination of the empirical processes:

sup

d(θ,θ0).O
(

1√
nε1−γ

)√nrnε [G (θ + tε)−G (θ − tε)−G (θ0 + tε)−G (θ0 − tε)] .
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Because of assumption 7, it is bounded stochastically by

Op
(rn
ε

min (d (θ, θ0) , ε)γ
)
.

When
√
nε2−γ → ∞, d (θ, θ0) . O

(
1√

nε1−γ

)
= o (ε). Hence the above display is op (1). Therefore (A.17)

holds.

Recall that θ̂ is defined by
√
nrn(Lε1,pĝ

(
θ̂
)

= op (1). Then (A.17) implies that, using a first order taylor

expansion of G (θ):

√
nrn

(
Lε1,pĝ (θ0)− ELε1,pĝ (θ0)

)
+H (θ0)

√
nrn

(
θ̂ − θ0

)
= op (1) .

A.10 Proof of Theorem 12

Step 1. We can verify directly that the argument in Lemma 4.1 in Kim and Pollard (1990) applies. Theorem

10 states that the rate of convergence of the constructed Z-estimator is rn =
√
nε1−γ

n . Then we can partition

the parameters space into sets Sj,n =
{
θ : 2j−1 < rn d (θ, θ0) < 2j

}
. Then we evaluate the probability of a

large deviation rnd
(
θ̂, θ0

)
> 2M for some integer M . Provided that

rnL
εn
1,pĝ

(
θ̂
)

= op (1) .

For every δ > 0,

P
(
rn d

(
θ̂, θ0

)
> 2M

)
≤

∑
j ≥M

2j < δrn

P

(
sup
θ∈Sj,n

(
−
∥∥Lεn1,pĝ (θ)

∥∥) ≥ −op( 1

rn

))
+ P

(
2 d
(
θ̂, θ0

)
≥ δ
)

Note that differentiability of the objective function implies that ∂
∂θ
g (θ) = O (d(θ, θ0)). Using the property

of the numerical derivative operator, we establish that:∥∥Lεn1,pg (θ)
∥∥ ≥ C d (θ, θ0) + C′εpn,

Substitution of this expression into the argument of interest leads to∥∥Lεn1,pg (θ)− Lεn1,pĝ (θ)
∥∥ ≥ ∥∥Lεn1,pg (θ)

∥∥− ∥∥Lεn1,pĝ (θ)
∥∥ ≥ C d (θ, θ0) + C′εpn + op

(
1

rn

)
.

Then applying the Markov inequality to the re-centered process for θ ∈ Sj,n and using Assumption 7, we

find that

P

(
sup
θ∈Sj,n

rn
∥∥Lεn1,pg (θ)− Lεn1,pĝ (θ)

∥∥ ≥ C rn d (θ, θ0) + C′rnε
p
n + op (1)

)
≤ C′′2−j .

This means that θ̂ = θ0 +Op
(

1
rn

)
.

Step 2. Consider the process

Zn(t) =

{
rnL

εn
1,pĝ

(
θ0 + t

rn

)
, if θ0 + t

rn
∈ Θ,

0, otherwise.
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We also consider the centered process

Wn(t) =

{
Zn(t)− rnLεn1,pg

(
θ0 + t

rn

)
, if θ0 + t

rn
∈ Θ,

0, otherwise.

As θ0 is the interior point of Θ, for sufficiently large n, θ0 + tr−1
n ∈ Θ. Then we can represent

Wn(t) =

n∑
i=1

rn
n

[
Lεn1,pg

(
xi, θ0 +

t

rn

)
− Lεn1,pg

(
θ0 +

t

rn

)]
.

Due to the differentiability of g(·) provided that rnε
p
n = o(1)

rnL
εn
1,pg

(
θ0 +

t

rn

)
→ −H t, as n→∞,

where H is the Hessian of g(·) at θ0. Then we consider the covariance

cov (Wn(s), Wn(t)) = n
(rn
n

)2
(
E

[
Lεn1,pg

(
X, θ0 +

s

rn

)
Lεn1,pg

(
X, θ0 +

t

rn

)]
− E

[
Lεn1,pg

(
X, θ0 +

s

rn

)]
E

[
Lεn1,pg

(
X, θ0 +

t

rn

)])
We recall that Lεn1,pg(x, θ) = 1

εn

∑p
l=−p clg(x, θ + lεn). Thus, provided that rn =

√
nε1−γ

n , we can represent

the expression for the covariance as the sum

cov (Wn(s), Wn(t)) = ε−2γ
n

p∑
l=−p

p∑
k=−p

clck

(
E

[
g

(
X, θ0 +

s

rn
+ lεn

)
g

(
X, θ0 +

t

rn
+ kεn

)]

− E
[
g

(
X, θ0 +

s

rn
+ lεn

)]
E

[
g

(
X, θ0 +

t

rn
+ kεn

)])
= ε−2γ

n

p∑
l=−p

p∑
k=−p

µlk.

Next, recall that
√
nε2−γ

n = O(1) and r−1
n . Cεn. Therefore, we can write

ε−2γ
n µlk = ε−2γ

n

(
E [g (X, θ0 + (Cs+ l)εn) g (X, θ0 + (Ct+ k)εn)]

− E [g (X, θ0 + (Cs+ l)εn)]E [g (X, θ0 + (Ct+ k)εn)]

)
→ H(Cs+ l, Ct+ k),

as εn → 0. As a result

cov (Wn(s), Wn(t))→
p∑

l=−p

p∑
k=−p

clckH(Cs+ l, Ct+ k).

Finally, Assumption 12 (iii) ensures that the Lindeberg condition is satisfied.

Step 3. Define the class of functions Gn = {Lεn1,pg(·, θ0 + r−1
n t1)− Lεn1,pg(·, θ0 + r−1

n t2), |t1 − t2| < δn} with

δn → 0. We use Assumption 7 which suggests that

√
n sup
h∈Gn

|Pnh− E [h]| = Op

((
δn
rn

)γ
1

εn

)
,

and, therefore, we have

rn sup
h∈Gn

|Pnh− E [h]| = Op

(
ε

(1−γ)2

n δγn
nγ/2εn

)
= op(1),
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because by assumption 1√
nε2−γ is bounded from above and δn → 0. This means that process Wn(t) satisfies

the stochastic equicontinuity condition of Theorem 2.3 in Kim and Pollard (1990).

Step 4. Provided that the centered process Wn(t) is stochastically equicontinuous, then the process Zn(t) =

Wn(t) + rnL
εn
1,pg(θ0 + t

rn
) is also stochastically equicontinuous. As a result, we conclude that

Zn(t) W (t)−H(θ0)t,

where W (t) is the mean zero Gaussian process with the covariance function HW (s, t).

Step 5. In the case where
√
nε2−γ

n → ∞, r−1
n = o (εn). Consider the covariance function for the process

Wn(t):

ε−2γ
n µlk = ε−2γ

n

(
E [g (X, θ0 + lεn + o(sεn)) g (X, θ0 + kεn + o(tεn))]

− E [g (X, θ0 + lεn + o(sεn))]E [g (X, θ0 + kεn + o(tεn))]

)
→ H(l, k),

as εn → 0. As a result

cov (Wn(s), Wn(t))→
p∑

l=−p

p∑
k=−p

clckH(l, k),

which does not depend on t and s. Provided that the Lindeberg condition holds due to Assumption 12(iii),

application of the Lindeberg-Levy CLT leads to the conclusion regarding the normality of the limiting

distribution of Wn(t).

Q.E.D.

A.11 Proof of Theorem 13

Our proof will rely to a large extent to on the proof of Lemma 2. We first deliver the result regarding

the consistency of m̂(·). We consider the cases of the kernel and the sievfe estimator for m(·) separately.

Denote ∆(θ, η, yi) = (ρ (θ, η; yi)−m (θ, η; zi))
n
i=1 and G(θ, η) = (E [∆(θ, η, Yi) | zi])ni=1. We note that from

Assumption 9[iii] it follows that Var
(
ρ (θ, η; yi)−m (θ, η; zi)

∣∣ z) ≤ ν. Select δn → 0 such that δn �

N
√

logn1−2r0

n1−2r0
. Denoting µn = εδ2

n/N we find that Var (Pnρ (θ, η; yi)) /(4µn)2 � (logn)−1, which implies

that the symetrization inequality for empirical processes holds.

Utilizing the proof of Lemma 2 we can write that

‖m̂ (θ, η, z)−m (θ, η, z)‖ ≤ CN
λ

max
k=1,...,N

∥∥∥∥ n∑
i=1

pNk(zi) (∆(θ, η, yi)−G(θ, η, zi))

∥∥∥∥ .
We note that each element in the latter sum belongs to the class described by Assumption 9[iv]. Considering

the individual elements in the sum we can apply the simmetrization argument in Pollard (1984) and write

P

(
sup

(θ,η,z)∈Θ×Hn×Z

1

n

∥∥∥∥ n∑
i=1

pNk(zi) (∆−G)

∥∥∥∥ > 8µnN

)

≤ 2 exp

(
An2r0 log

1

µn

)
exp

(
− 1

128

nµ2
n

ν

)
+ P

(
sup

(θ,η,z)∈Θ×Hn×Z

1

n

∥∥∥∥ n∑
i=1

pNk(zi) (∆i −Gi)
∥∥∥∥2

> 64ν

)
.
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The second term can be evaluated with the aid of Lemma 33 in Pollard (1984):

P

(
sup

(θ,η,z)

1

n

∥∥∥∥ n∑
i=1

pNk(zi) (∆l −Gl)
∥∥∥∥2

> 64ν

)
≤ 4 exp

(
An2r0 log

1

ν

)
exp (−nν) .

As a result, we find that

P

(
sup

(θ,η,z)∈Θ×Hn×Z

1

n
‖pN′(z)Q̂−1P ′ (∆−G) ‖ > µn

)
≤ 2N exp

(
An2r0 log

N

εδn
− 1

128

nε2δ2
n

N2ν

)
+ 4N exp

(
An2r0 log

1

ν
− nν

)
.

A similar analysis can be conducted for the kernel-based estimator for the conditional moment function. We

note that

‖m̂ (θ, η, z)−m (θ, η, z)‖

=

(
1

nbdzn

n∑
i=1

K

(
z − zi
bn

))−1
1

nbdzn

n∑
i=1

K

(
z − zi
bn

)
[ρ (θ, η, yi)−m (θ, η, z)] .

We note that the variance of each term in the summation has order O
(
bdzn
)
. Using the proof of Lemma 3, we

find that the choice δn �
√

log n1−2r0

b
dz
n n1−2r0

guarantees that the stochastic order sup
(θ,η)∈Θ×Hn,z∈Z

‖m̂ (θ, η, z)−m (θ, η, z)‖ =

op (δn).

Denote Ĝ(θ, η, zi) = Lεn1,pm̂ (θ, η, zi), and Ĝj(θ, η, zi) = L
τn,ψj
1,p m̂ (θ, η, zi) and G(θ, η, zi) and Gj(θ, η, zi) their

population analogs. Then we can decompose

Ĝ(zi, θ, η)′Ŵ (zi)m̂ (θ, η, zi)−G(zi, θ, η)W (zi)m (θ, η, zi) =
(
Ĝ(zi, θ, η)Ŵ (zi)−G(zi, θ, η)W (zi)

)
m (θ, η, zi)

+G(zi, θ, η)′W (zi) (m̂ (θ, η, zi)−m (θ, η, zi)) +
(
Ĝ(zi, θ, η)Ŵ (zi)−G(zi, θ, η)′W (zi)

)
(m̂ (θ, η, zi)−m (θ, η, zi)) .

We can provide the same expansion for B̂(·).

Consider the difference Ĝ(zi, θ, η)Ŵ (zi) − G(zi, θ, η)W (zi). From the proof of Lemma 2 it follows that

sup
(θ,η)∈Θ×Hn,z∈Z

∥∥∥Ĝ(zi, θ, η)−G(zi, θ, η)
∥∥∥ = op(1). This means that

sup
(θ,η)∈Θ×Hn,z∈Z

∥∥∥Ĝ(zi, θ, η)Ŵ (zi)m̂(θ, η, zi)−G(zi, θ, η)W (zi)m (θ, η, zi)
∥∥∥ = op(1).

We have also provided the proof that sup
(θ,η)∈Θ×Hn,z∈Z

‖m̂ (θ, η, z)−m (θ, η, z)‖ = op (1). This would imply

that

sup
(θ,η)∈Θ×Hn,z∈Z

∥∥∥(Ĝ(zi, θ, η)Ŵ (zi)−G(zi, θ, η)′W (zi)
)

(m̂ (θ, η, zi)−m (θ, η, zi))
∥∥∥ = op(1).

Then this means that

1

n

n∑
i=1

(
Ĝ(zi, θ, η)′Ŵ (zi)m̂ (θ, η, zi)−G(zi, θ, η)W (zi)m (θ, η, zi)

)
= op(1),
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provided that for n non-negative functions sup
s∈S

∑n
i=1 f(s) ≤

∑n
i=1 sup

s∈S
f(s). This proves that

sup
(θ,η)∈Θ×Hn

∥∥∥∥Lτn,ψj1,p Q̂ (θ, η)− ∂Q (θ, η)

∂η
[ψj ]

∥∥∥∥ = op(1).

A.12 Proof of Lemma 6

The result of the theorem can be obtained by adapting the argument in Lemma 1 to the argument in the proof

of Theorem 9 of Nolan and Pollard (1987). We define the class of functions Fn = {εnLεn1,pg (·, ·, θ) , θ ∈ N (θ0),

with envelope function F , such that PF ≤ C. Then we can write

sup
d(θ,θ0)≤o(1)

εn‖Lεn1,pĝ (θ)− Lεn1,pg (θ) ‖ ≤ 1

n (n− 1)
sup
f∈Fn

|Sn(f)|.

Noting (5.11), lemma 1 can be shown separately for the µ̂n (θ) and Sn (u) /n(n − 1) components of the

decomposition. Because assumption 14 is a special case of assumption 7, Theorem 3 applies with γ = 1.

Therefore the result of lemma 6 holds for the µ̂n (·) component as long as εn. We will hence with no loss of

generality focus on Sn(u) and assume that g (·, ·, θ) is degenerate.

Due to Assumption 15, for each f ∈ Fn, E|f |2 = E
∣∣εnLεn1,pg (·, θ)

∣∣2 = O (εn). Define tn ≥ max{ε1/2n , log n
n
}

as in Lemma 10 of Nolan and Pollard (1987). Under the condition n
√
εn/ logn→∞ in lemma 6, for large

enough n, tn = εn. Denote δn = µ t2n n
2. By the Markov inequality,

P

(
sup
f∈Fn

|Sn(f)| > δn

)
≤ δ−1

n P sup
f∈Fn

|Sn(f)|.

By assumption 6, the covering integral of Fn is bounded by a constant multiple of H(s) = s [1 + log (1/s)].

the maximum inequality in Theorem 6 of Nolan and Pollard (1987) implies that

P sup
f∈Fn

|Sn(f)|/n ≤ C P H
[

sup
f∈Fn

|Tn f2|1/2/n
]
.

where Tn is the symmetrized measured defined in Nolan and Pollard (1987). The right-hand side can be

further bounded by Lemma 10 in Nolan and Pollard (1987). This lemma states that there exists a constant

β such that

P

(
sup
f∈Fn

|S2n (f) | > β2 4n2 t2n

)
≤ 2A exp (−2n tn) ,

where A is the Euclidean constant in assumption 6. Since f(·) is globally bounded, |f(·)|2 ≤ B|f(·)| for a

constant B. In addition, note that |S2n (f) | ≥ |Tnf |. Therefore, we find that |Tnf2| ≤ B|S2n (f) |, which

implies

P

(
sup
f∈Fn

|Tn f2| > 4β2

B
n2 t2n

)
≤ 2A exp (−2n tn) .
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Also note that H[·] achieves its maximum at 1 and is increasing for its argument less than 1. For sufficiently

large n the term 4β2

B
t2n � 1. Then

P H

[
sup
f∈Fn

|Tn f2|1/2/n
]

= P

(
H

[
1

n
sup
f∈Fn

|Tn f2|1/2
]
1

{
sup
f∈Fn

|Tn f2| > 4β2

B
n2 t2n

}
+H

[
1

n
sup
f∈Fn

|Tn f2|1/2
]
1

{
sup
f∈Fn

|Tn f2| < 4β2

B
n2 t2n

})
≤ 1 · P

(
sup
f∈Fn

|Tn f2| > 4β2

B
n2 t2n

)
+H

[
2β√
B
tn

]
· 1

≤ 2A exp (−2n tn) +H

(
2β√
B
tn

)
.

Substituting this result into the maximum inequality one can obtain

P

(
sup
f∈Fn

|Sn(f)| > δn

)
≤nδ−1

n

(
H

(
2β√
B
tn

)
+ 2A exp (−2n tn)

)
=(tn n)−1 + (ntn)−2 exp (−2n tn)− (tn n)−1 log tn.

By assumption tnn >> logn→∞, the first term vanishes. The second term also vanishes by showing that

n−1t−2
n exp (−2n tn)→ 0, because it is bounded by, for some Cn →∞, 1/

(
lognnCntn

)
. Finally, considering

the term t−1
n n−1 log tn, we note that it can be decomposed into t−1

n n−1 log (ntn)− t−1
n n−1 logn. Both terms

converge to zero because both tnn→∞ and tnn
log n

→∞. We have thus shown that for any µ > 0

P

(
sup
f∈Fn

| 1

n (n− 1)
Sn(f)| > µεn

)
= o(1).

This proves the statement of the theorem.

A.13 Proof of Lemma 7

Proof. (i)

We note that for the projection part

sup
d(θ,θ0)=o(1)

1√
n
‖Lεn1,pµ̂ (θ)− Lεn1,pµ (θ) ‖ = op(1).

As a result the U-process part will dominate and the convergence rate will be determined by its order log2 n
n2εn

.

The rest follows from the proof of Lemma 5.

(ii)

The proof of this lemma largely relies on the proof of Lemma 5 Consider a class of functions

Gn =

{
g (·, θn + εn)− g (·, θn − εn)− g (·, θ0 + εn) + g (·, θ0 − εn) , θn = θ0 + tn

log2 n

n2εn

}
,

with εn → 0 and tn = O(1). We can evaluate the L2 norm of the functions from class Gn using Assumption

6 (ii). Note that

E
[
(g (Zi, z, θn + εn)− g (Zi, z, θn − εn))2] = O (εn) ,
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with the same evaluation for the second term. On the other hand, we can change the notation to θ1n =

θ0 + εn + tn
2

log2 n
n2εn

and θ1n = θ0 + εn
2

+ tn
log2 n
n2εn

. The we can group the first term with the third and the

second one with the fourth. For the first group this leads to

E

[(
g

(
Zi, z, θ1n +

tn
2

log2 n

n2εn

)
− g

(
Zi, z, θ1n −

tn
2

log2 n

n2εn

))2
]

= O

(
log2 n

n2εn

)
,

and for the second group

E

[(
g
(
Zi, z, θ2n +

εn
2

)
− g

(
Zi, z, θ2n −

εn
2

))2
]

= O (εn) .

Thus, two different ways of grouping the terms allow us to obtain two possible bounds on the norm of the

entire term. As a result, we find that

P f2 = O

(
min

{
εn,

log2 n

n2εn

})
, f ∈ Gn.

Next we denote δn = min
{
εn,

log2 n
n2εn

}
.

Due to Assumption 15, for each f ∈ Fn, E|f |2 = E
∣∣εnLεn1,pg (·, θ)

∣∣2 = O (εn). Define tn ≥ max{δ1/2
n , log n

n
}

as in Lemma 10 of Nolan and Pollard (1987) then for n
√
δn/ logn→∞

sup
Fn
‖ 1

n(n− 1)
Tn(f2)‖ = op

(
δ2
n

)
,

where Tn is the symmetrized measured defined in Nolan and Pollard (1987). By Assumption 6 (iii), the

covering integral of Fn is bounded by a constant multiple of H(s) = s [1 + log (1/s)]. The maximum

inequality in Theorem 6 of Nolan and Pollard (1987) implies that

P sup
f∈Fn

|Sn(f)|/n ≤ C P H
[

sup
f∈Fn

|Tn f2|1/2/n
]
.

Then the stochastic order of 1
nεn

supf∈Fn |Sn(f)| can be evaluated as

√
n

εn

1

nεn
sup
f∈Fn

|Sn(f)| = Op

(
δn
εn

log δn

)
= Op

 log
(
n2εn
log n

)
n2ε2n
log n

 = op(1).

This delivers the result in the Lemma.

A.14 Derivation of the mean-value expansion (6.12)

Consider the mean-value expansion for an individual element εnL
εn
1,2g

(
x, θ̂
)

at point θ0 = 0. We split the

arguments into two components for the element |x− θ̂+ εn|α and |x− θ̂− εn|α. We will use the mean-value

expansion to represent the value of the objective function at θ̂ using the value at 0. Consider the following

cases for |x− θ̂ + εn|α.

1. If x > −εn and x− θ̂ > −εn then for θ̃ ∈ [0, θ̂] |x− θ̂ + εn|α = |x+ εn|α − α|x− θ̃ + εn|α−1θ̂.
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2. If x < −εn and x− θ̂ < −εn then for θ̃ ∈ [0, θ̂] |x− θ̂+ εn|α = |x+ εn|α +α|x− θ̃+ εn|α−1θ̂. We note

that the latter mean-value expansion is valid with sign +. In fact, if θ̂ > 0 in the considered case,

then |x− θ̂+ εn| > |x+ εn| and if θ̂ < 0 then |x− θ̂+ εn| < |x+ εn|, making the mean-value expansion

valid.

3. If x > −εn and x − θ̂ < −εn, then these points lie in different “branches” of function |x|α. We use

the symmetry of this function about zero to represent the function using the expansion at the point

−x − εn < 0 such that both points are on the same “branch”. Then for θ̃ ∈ [2(x + εn), θ̂] we have

|x− θ̂ + εn|α = |x+ εn|α + α|x− θ̃ + εn|α−1
(
θ̂ − 2(x+ εn)

)
.

4. If x < −εn and x − θ̂ > −εn, then these points lie in different “branches” of function |x|α. Then for

θ̃ ∈ [2(x+ εn), θ̂] we have |x− θ̂ + εn|α = |x+ εn|α − α|x− θ̃ + εn|α−1
(
θ̂ − 2(x+ εn)

)
.

We can also count the same cases for |x− θ̂ − εn|α.

1. If x > εn and x− θ̂ > εn then for θ̃ ∈ [0, θ̂] |x− θ̂ − εn|α = |x− εn|α − α|x− θ̃ − εn|α−1θ̂.

2. If x < εn and x− θ̂ < εn then for θ̃ ∈ [0, θ̂] |x− θ̂ − εn|α = |x− εn|α + α|x− θ̃ − εn|α−1θ̂.

3. If x > εn and x − θ̂ < εn, then these points lie in different “branches” of function |x|α. Then for

θ̃ ∈ [2(x− εn), θ̂] we have |x− θ̂ − εn|α = |x− εn|α + α|x− θ̃ − εn|α−1
(
θ̂ − 2(x− εn)

)
.

4. If x < εn and x − θ̂ > εn, then for θ̃ ∈ [2(x − εn), θ̂] we have |x − θ̂ − εn|α = |x − εn|α − α|x − θ̃ −
εn|α−1

(
θ̂ − 2(x− εn)

)
.

Combine those cases to include the first and the second ones indexed as in the lists above:

1.1 Leads to x > εn, x− θ̂ > ε: 2εnL
εn
1,2g

(
x, θ̂
)

= 2εnL
εn
1,2g (x, 0)− αεnLεn1,2|x− θ̃|α−1θ̂.

1.2 Leads to |x| < εn, |x−θ̂| < ε: 2εnL
εn
1,2g

(
x, θ̂
)

= 2εnL
εn
1,2g (x, 0)−α

(
|x− θ̃ + εn|α−1 + |x− θ̃ − εn|α−1

)
θ̂.

1.3 Leads to x > εn, |x−θ̂| < ε: 2εnL
εn
1,2g

(
x, θ̂
)

= 2εnL
εn
1,2g (x, 0)−α

(
|x− θ̃ + εn|α−1 + |x− θ̃ − εn|α−1

)
θ̂+

2α|x− θ̃ − εn|α−1(x− εn).

1.4 Leads to |x| < εn, x − θ̂ > ε: 2εnL
εn
1,2g

(
x, θ̂
)

= 2εnL
εn
1,2g (x, 0) − αεnLεn1,2|x − θ̃|α−1θ̂ − 2α|x − θ̃ −

εn|α−1(x− εn)

2.1 Not compatible

2.2 Leads to x < −εn, x− θ̂ < −ε: 2εnL
εn
1,2g

(
x, θ̂
)

= 2εnL
εn
1,2g (x, 0) + αεnL

εn
1,2|x− θ̃|α−1θ̂.

2.3 Not compatible

2.4 Not compatible

3.1 Not compatible

3.2 Leads to |x| < εn, x − θ̂ < −ε: 2εnL
εn
1,2g

(
x, θ̂
)

= 2εnL
εn
1,2g (x, 0) + αεnL

εn
1,2|x − θ̃|α−1θ̂ − 2α|x − θ̃ +

εn|α−1(x+ εn)

3.3 Leads to x > εn, x−θ̂ < −ε: 2εnL
εn
1,2g

(
x, θ̂
)

= 2εnL
εn
1,2g (x, 0)+αεnL

εn
1,2|x−θ̃|α−1θ̂−2α

(
|x− θ̃ + εn|α−1(x+ εn)− |x− θ̃ − εn|α−1(x− εn)

)
3.4 Not compatible

4.1 Not compatible
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4.2 Leads to x < −εn, |x−θ̂| < ε: 2εnL
εn
1,2g

(
x, θ̂
)

= 2εnL
εn
1,2g (x, 0)−α

(
|x− θ̃ + εn|α−1 + |x− θ̃ − εn|α−1

)
θ̂+

2α|x− θ̃ + εn|α−1(x+ εn).

4.3 Not compatible

4.4 Leads to x < −εn, x−θ̂ > ε: 2εnL
εn
1,2g

(
x, θ̂
)

= 2εnL
εn
1,2g (x, 0)−αεnLεn1,2|x−θ̃|α−1θ̂+2α

(
|x− θ̃ + εn|α−1(x+ εn)− |x− θ̃ − εn|α−1(x− εn)

)
We unify the cases in a parsimonious way. First, we note that we can collect 1.1, 1.4, 2.2, 3.2, 3.3 and 4.4

where |x− θ̂| > εn, thus for these cases (taking into account that |x− θ̂| > εn) we can write:

2εnL
εn
1,2g

(
x, θ̂
)

= 2εnL
εn
1,2g (x, 0)− αεnLεn1,2|x− θ̃|

α−1sign(x− θ̂)θ̂

− 2α|x− θ̃ + εn|α−1(x+ εn)
(
1{x− θ̂ < −εn}1{x > −εn} − 1{x− θ̂ > εn}1{x < −εn}

)
− 2α|x− θ̃ − εn|α−1(x− εn)

(
1{x− θ̂ > εn}1{x < εn} − 1{x− θ̂ < −εn}1{x > εn}

)
,

where we used the fact that 1{|x| ≤ εn} + 1{x > εn} = 1{x > −εn}. Second, we collect 1.2, 1.3, and 4.2

for the case where |x− θ̂| < εn:

2εnL
εn
1,2g

(
x, θ̂
)

= 2εnL
εn
1,2g (x, 0)− α

(
|x− θ̃ + εn|α−1 + |x− θ̃ − εn|α−1

)
θ̂

+ 2α1{x > εn}|x− θ̃ − εn|α−1 (x− εn) + 2α1{x < −εn}|x− θ̃ + εn|α−1(x+ εn).

We note that in all of these expressions we can represent the mean-value expansion as

2εnL
εn
1,2g

(
x, θ̂
)

= 2εnL
εn
1,2g (x, 0)− αεnLεn1,2|x− θ̃|

α−11{|x− θ̂| > εn}sign(x− θ̂)θ̂

− α
(
|x− θ̃ + εn|α−1 + |x− θ̃ − εn|α−1

)
1{|x− θ̂| < εn}θ̂ +R(x, εn).

We can write the residual term combining the above expressions for the derivatives. The final expression for

the numerical derivative is

2εnL
εn
1,2g

(
x, θ̂
)

= 2εnL
εn
1,2g (x, 0) +H

(
x, θ̃
)
θ̂ +R(x, εn).

The Hessian term takes the form

H
(
x, θ̃
)

= αεnL
εn
1,2|x− θ̃|

α−11{|x− θ̂| > εn}sign(x− θ̂)

− α
(
|x− θ̃ + εn|α−1 + |x− θ̃ − εn|α−1

)
1{|x− θ̂| < εn},

and the residual term

R(x, εn) = −2α|x− θ̃ + εn|α−1(x+ εn)
(
1{x− θ̂ < −εn}1{x > −εn} − 1{x− θ̂ > −εn}1{x < −εn}

)
− 2α|x− θ̃ − εn|α−1(x− εn)

(
1{x− θ̂ > εn}1{x < εn} − 1{x− θ̂ < εn}1{x > εn}

)
.

Consider the term 2εnL
εn
1,pĝ (0). Noting that

2εnL
εn
1,2g (x, 0) = |x+ εn|α − |x− εn|α ,

we can locally represent this element as:

1. If x > εn: εnL
εn
1,2g (x, 0) = α(x+ ε∗)α−1εn, where ε∗ ∈ (−εn, εn).
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2. If x < −εn: εnLεn1,2g (x, 0) = −α(−x+ ε∗)α−1εn, where ε∗ ∈ (−εn, εn).

3. If x ∈ (−εn, εn): εnL
εn
1,2g (x, 0) = εαn (|1 + z|α − |1− z|α), where z = x/εn.

Thus, we can briefly express the numerical derivative of the objective function at 0 as

2εnL
εn
1,pĝ (0) =

1

n

n∑
i=1

(
α|xi + ε∗|α−1sign(xi)εn1 (|xi| > εn) + εαn

(∣∣∣∣1 +
xi
εn

∣∣∣∣α − ∣∣∣∣1− xi
εn

∣∣∣∣α)1(|xi| < εn)

)
.
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Figure 1: Sample numerical first derivative (1st-order) for decreasing step sizes (from top to bottom)
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Figure 2: Sample numerical first derivative (2nd-order) for decreasing step sizes (from top to bottom)
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Figure 3: Sample numerical first derivative (3rd-order) for decreasing step sizes (from top to bottom)
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Figure 4: Mean-squared error of the estimated parameter
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Figure 5: Bias of the estimated parameter
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