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Abstract

We study optimal nonlinear taxation of single and married households. Taxes on couples
depend on the earnings of both spouses and are an example of multi-dimensional tax schedules.
We develop novel analytical techniques to study properties of such taxes. We show that the
optimal marginal taxes for married individuals are generally lower than for single individuals
because resource-sharing within couples provides socially valuable redistribution. Under real-
istic assumptions, the optimal tax rates for married individuals increase with the correlation
of spousal earnings, the marginal tax rates for one spouse increase (decrease) in the earnings
of the other if both spouses have low (high) earnings, and the primary earner faces lower
marginal taxes than the secondary earner. We extend our approach to consider normative tax
implications of within-family public goods, home production, extensive margin in labor supply,
selection into marriage, bargaining over marital surplus, and gender differences.
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1 Introduction

In developed countries, a significant portion of income taxes is paid by households comprising

two adult members. For example, married couples in the U.S. contribute to over 70 percent

of federal income taxes. Despite this, the theory of optimal taxation of family income remains

poorly understood. What economic factors determine the shape and magnitude of the optimal

tax schedule for two-earner households? How should the taxes of one member be influenced

by the earnings of the other? Is it ever beneficial to tax each individual in a couple separately,

or should total family income be used as the sole basis for taxation? How should taxes on

married households compare to those on single individuals?

In this paper, we take a step towards answering these questions. We study optimal taxa-

tion in a simple model of couple formation. In our model, all individuals are identical ex-ante,

share the same preferences (which, for tractability, we assume to be quasi-linear with a con-

stant elasticity of labor supply), and draw productivities from the same distribution. Each

individual decides whether to stay single or to get married based on both the pecuniary util-

ity of consumption and leisure and non-pecuniary preference shocks associated with marriage.

Within marriage, spouses divide their marital surplus equally. Our model is flexible in that

it can accommodate any level of assortativity in the marriage market, allowing for any joint

distribution of spouses’ productivities.

We study optimal taxation of single and married households in this economy. In line with

a longstanding tradition in public finance, we posit that the social planner sets taxes with

the aim of redistributing wealth from more productive to less productive individuals. This

objective is encapsulated by Pareto weights, which decrease as an individual’s productivity

increases. The social planner chooses tax functions T s(y) for single households with earnings

y and Tm(y1, y2) for married spouses who have earnings y1 and y2. Beyond the requirement

of budget feasibility, we do not impose any additional constraints on these functions.

The optimal tax problem can be formulated as a problem of a fictitious mechanism de-

signer who chooses allocations based on individuals’ reports about their productivities subject

to incentive compatibility and feasibility constraints. Assuming that only local incentive con-

straints bind at the optimum – known as the first-order approach (FOA) – we demonstrate

that the optimal tax distortions1 of single individuals are characterized by a linear ordinary

differential equation. This equation is straightforward to solve analytically, and it has been

1By “distortion” we mean the monotone transformation of the tax rate,
∂
∂y

Ts

1− ∂
∂y

Ts for a single household, and

∂
∂yi

Tm

1− ∂
∂yi

Tm for each spouse i in a married household.
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extensively studied in the literature since the seminal work of Mirrlees (1971). In contrast, the

optimal tax distortions for married individuals are described by a system of nonlinear partial

differential equations. These equations are significantly more challenging, and no general ana-

lytical techniques exist to solve them. We show that this challenge can be partially addressed

by employing two mathematical results from multivariate calculus: the divergence theorem

and the coarea formula. By combining these results, we can analytically characterize a large

family of conditional averages that the optimal distortions for married individuals must satisfy.

The optimal distortions for single individuals are described by the classical “ABC” for-

mula developed by Diamond (1998). This formula indicates that the optimal distortion for a

single individual with a given productivity level is determined by the ratio of benefits from

redistribution — capturing welfare gains from transferring resources from singles with higher

productivity levels to an average single individual — to the costs of tax distortions, which

depend on the elasticity of labor supply and the elasticity of the productivity distribution

with respect to the productivity level. The optimal distortions for married individuals follow a

broadly similar form, but benefits and costs of taxation are balanced across all possible slices

of the two-dimensional productivity distribution of couples. Each slice provides insights into

a certain conditional moment of marginal tax rates for married spouses, and we use different

moments to study various properties of the optimal tax schedule.

Using our formulas, we obtain three sets of economic insights about the shape and the

magnitude of optimal tax schedule. First, we establish that the optimal distortions for married

individuals are, on average, less than those for single individuals with equivalent productivity.

This is due to the intra-family redistribution that occurs through resource sharing within

couples, a mechanism valued by the social planner. Replacing this intra-family redistribution

with redistribution through the tax system is costly, leading the planner to choose lower tax

rates for couples. One implication of this finding is that the social planner subsidizes marriages,

resulting in a higher marriage rate in the optimum compared to the laissez-faire economy.

We also show that the distortions for married individuals increase with the degree of as-

sortativity in marriages and coincide with the distortions for single individuals under perfect

assortative matching. Additionally, we exhibit a natural order for ranking the redistribu-

tiveness of the social objective function, and demonstrate that Pareto weights that are more

redistributive in this order lead to higher distortions for both single and married households.

Second, we study how the optimal marginal tax rates on one spouse depend on the earnings

of their partner, which is a crucial aspect of multi-dimensional taxes. Positive jointness – where

the marginal taxes of one spouse increase with the earnings of the other – allows the planner to
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better target taxes toward the richest couples. Negative jointness, on the other hand, enables

the planner to better direct transfers to the poorest couples. Both forms of targeting are

socially valuable, and optimal jointness depends on their relative costs and benefits. Under

random matching, these effects cancel each other out, resulting in the optimal taxes on married

spouses that are additively separable in their earnings. We show that, under realistic models

of positive assortative matching, optimal jointness is negative for high-earning couples and

positive for low-earning ones.

Third, we examine how distortions faced by two spouses in the same couple compare to

each other. We demonstrate that, under mild restrictions on social weights, spouses who

earn a significantly smaller fraction of family income face, on average, higher distortions than

their partners. This allows the planner to efficiently target transfers to the poorest married

individuals.

We also use our formulas to analytically investigate the conditions under which the first-

order approach (FOA) is valid for both single and married households. When matching is

random, it is possible to derive necessary and sufficient conditions under which the FOA holds

for each type of household. It turns out that the conditions for the validity of the FOA for

married households are strictly less stringent than those for single households. This stands

in marked contrast to the results in the industrial organization literature, which concludes

that the FOA generally fails in multi-dimensional monopolist pricing models (e.g., Rochet and

Chone (1998)).

Our approach to characterizing optimal joint taxation can be easily adapted to richer

environments. In this paper, we consider several extensions that incorporate various economic

mechanisms emphasized by the family economics literature.

First, we show that within-marriage public goods and consumption economies of scale

make marriages more economically efficient but also amplify consumption inequality among

married individuals. As a result, the optimal distortions increase for married individuals

and decrease for single individuals compared to the economy without those features. We

also incorporate home production and intra-household division of labor and describe how the

optimal tax formulas account for the fact that that the market labor supply of a married person

is affected, via intra-family specialization, by the marginal tax rates of their partner.

Second, we investigate how optimal taxation is affected when spouses bargain over marital

surplus rather than share it equally. Under classical Nash bargaining, where spouses use

their outside options of singledom to determine the split of their marital surplus, the optimal

taxes for married individuals remain the same as under equal consumption sharing, but the
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optimal taxes for single individuals are higher. The higher optimal taxes for single individuals

arise because, by reducing inequality among them, the planner facilitates a more equitable

division of surplus within marriages. The optimal marginal taxes for married individuals

remain unaffected because, under classical Nash bargaining, each marginal dollar of family

surplus is equally divided between spouses, even though the overall division of surplus is

unequal. The optimal tax rates are determined by how couples share the marginal dollar of

after-tax joint income, which aligns with the distribution under equal consumption sharing.

Additionally, we show that generalized bargaining, wherein more productive spouses possess

both greater bargaining power and superior outside options, has an ambiguous effect on the

magnitude of optimal distortions for married individuals. This ambiguity arises from the

conflict in the planner’s incentives to redistribute within couples versus between married and

single households.

Third, we extend the model by allowing individuals to adjust their labor supply along both

the intensive and extensive margins. The analysis of optimal taxation of couples becomes

considerably more complicated. If matching is random, the formulas that describe optimal

distortions of single and married individuals are similar to our baseline case but include an

additional cost of distortion due to the extensive margin adjustment. Under certain conditions,

we can compare them and show that married individuals still face lower distortions than singles,

but the optimal marriage rate, and hence the total marriage tax subsidy, decreases with the

strength of the extensive margin response.

Forth, we extend our approach to economies with observable heterogeneity, such as gender

differences. We characterize both gender-specific and gender-neutral optimal taxes and demon-

strate a very close relationship between the two. The optimal distortions under gender-neutral

taxation are equal to the weighted average of the optimal distortions under gender-specific tax-

ation, with weights determined by relative fractions of people of each gender at any given level

of productivity. This same insight holds more broadly. We derive expressions for the optimal

taxes on married individuals that are restricted to be disjointed, and that are restricted to

depend only on their total family earnings. In both cases, the optimal distortions under such

restricted tax systems are equal to appropriate weighted averages of the optimal distortions

under the unrestricted tax system.

In the final theoretical section of the paper, we investigate conditions on primitives under

which the optimal taxes on married individuals are based solely on their total family earnings.

We demonstrate that family-earnings based taxation is optimal if the planner uses Pareto

weights that explicitly favor such taxation (capturing the idea of the “horizontal equity” con-
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cern) and, in addition, a certain average of productivities of the two spouses is independent

of their relative productivities. We also characterize how departing from pure family-earnings

based taxation improves welfare of such planner when this condition is not satisfied.

Finally, we we quantitatively investigate optimal taxation within the baseline model. We

use data on the earnings of married households and the U.S. tax schedule to obtain the joint dis-

tribution of productivities. We show that the Gaussian copula with Pareto-lognormal marginal

distributions can well approximate this distribution. We find that our analytical formulas pro-

vide excellent guidance to numerical properties of the optimal tax schedule. In the U.S. data,

spousal productivities are positively but not perfectly correlated, so the optimal taxes on mar-

ried individuals are higher than in the economy with random matching but lower than in

the uni-dimensional models such as Diamond (1998). Consistent with our theoretical results,

we find that optimal jointness is positive at the bottom and negative at the top, and that

secondary earners face higher marginal tax rates. Quantitatively, optimal jointness is small

and the optimal taxes for couples are well approximated by a disjointed tax schedule. In con-

trast, taxation based only on total family earnings is generally quite far from the unrestricted

optimum.

Our paper is related to several strands of literature. Mirrlees (1976, 1986) derived optimal-

ity conditions for multi-dimensional tax problems under the FOA and pointed out that they

are much more challenging than their uni-dimensional analogs. Subsequent literature typi-

cally imposed additional simplifying assumptions to avoid confronting these partial differential

equations. For example, Kleven et al. (2009) studied taxation of couples but restricted one

spouse to make only binary labor supply choices. Frankel (2014) considered the case in which

a binary distribution describes spouses’ productivities. Ales and Sleet (2022) studied couples

taxation in a discrete choice environment. Moser and de Souza e Silva (2019) analyzed pater-

nalistic savings policies in a model with two-dimensional discrete heterogeneity. Alves et al.

(2021) considered the optimal tax problem of couples but imposed enough structure to collapse

it into a uni-dimensional problem. Golosov et al. (2013) and Lockwood and Weinzierl (2015)

pursued a similar approach in labor and commodity taxation with preference heterogeneity.

Hellwig and Werquin (2022) discussed a generalization of their ideas of redistributional arbi-

trage to multi-dimensional type spaces. In a series of papers, Rothschild and Scheuer (2013;

2014; 2016) developed a mechanism design approach to study optimal taxation in models with

multi-dimensional private information but with uni-dimensional tax instruments. In contrast

to these papers, we develop an approach that allows us to analytically characterize optimal

taxation in a fairly unrestricted multi-dimensional environment and shed light on economic
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forces that are hard to see in more specialized settings.2

The closest work related to our study is the unpublished Section 3 of the working paper

by Kleven et al. (2007). Those authors derived the expression for optimal average distortions

of a married individual, and characterized the sign of optimal jointness under the assumption

of random matching into couples. The family of moments that our approach allows us to

characterize is significantly richer. Our techniques to study jointness under assortative match-

ings are new and they offer a broader perspective on the trade-offs that determine optimal

jointness. The comparison of conditions for validity of the FOA in uni- and bi-dimensional

settings, comparative statics results, and the numerous extensions we consider are all novel to

our work.

Several authors, such as Golosov et al. (2014), Spiritus et al. (2022), Ferey et al. (2022) study

optimal multidimensional taxation using an alternative, variational approach. They consider

perturbations of tax schedules and derive expressions for optimal rates in terms of sufficient

statistics. While their approach has many appealing features, its key limitation is that the

optimal tax rates are expressed in terms of endogenous objects that are themselves functions

of the optimal tax schedule. This makes it difficult to use those expressions to understand how

the model structural parameters affect optimal taxes. In contrast, our formulas are derived in

terms of the exogenous primitives, which allows us to prove sharp theoretical results.

Gayle and Shephard (2019) and Spiritus et al. (2022) use numerical methods to study the

optimal joint taxation of couples. Boerma et al. (2022) developed techniques to tackle multi-

dimensional mechanism design problems when the FOA fails. Our work is complementary to

theirs. Our analytical results provide insights about the forces determining the optimal taxes

that are often hard to see with numerical approaches.

The rest of the paper is organized as follows. In Section 2, we present our benchmark

economy. In Section 3, we describe the mechanism design approach and characterize optimal

taxes in that benchmark economy. Section 5 considers various extensions. Section 6 provides

calibration and quantitative analysis. Section 7 concludes.

2In addition to these papers, our work is also related to the New Dynamic Public Finance literature (see, e.g.,
Golosov et al. (2003), Albanesi and Sleet (2006), Farhi and Werning (2013), Golosov et al. (2016), Stantcheva
(2017), Ndiaye (2018)) that studies optimal nonlinear taxes in dynamic environments in which information is
revealed over time. In those models, optimal taxes in a given period are a nonlinear function of earnings in
previous periods, but the dynamic nature of information revelation allows collapsing the mechanism design
problem to a sequence of problems with uni-dimensional incentive constraints. Also related is the recent work
by Kushnir and Shourideh (2022) who explore alternative ways to relax multidimensional mechanism design
problems.
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2 The environment

Consider an economy comprised of a unit measure of ex-ante identical individuals, each with a

utility function given by c− γl1/γ, where c and l denote consumption and labor, and γ ∈ (0, 1)

is the parameter capturing the elasticity of labor supply.3 Each person decides whether to stay

single or get married, and how much to work and consume. These decisions occur in three

stages.

Stage 1. Each person draws a shock ε that captures idiosyncratic, non-pecuniary benefits

of singlehood and decides whether to go to the marriage market. Let EU s and EUm be the

expected pecuniary benefits of singlehood and marriage, respectively, which we will define

formally in Stage 3. A person with a shock ε goes to the marriage market if EUm > EU s + ε

and remains single if EUm ≤ EU s + ε.

Stage 2. Each person on the marriage market draws a publicly observable signal q, which

is potentially correlated with their productivity that will realize in Stage 3, and marry another

person with the same value of the signal. Two married spouses agree to share their marital

surplus equally.

Stage 3. Each person draws a productivity w from a cumulative probability distribution

G and decides how much to work and consume. A person with productivity w who supplies l

units of labor earns pre-tax income y = wl. Let T s (y) and Tm (y1, y2) be the taxes on single

and married households, respectively. The decision problem of a single household is

vs (w) := max
c,y

c− γ
( y
w

)1/γ
s.t. c ≤ y − T s (y) and y ≥ 0,

which pins down utility from singlehood to be U s = vs. Married spouses act collectively and

solve

vm (w1, w2) := max
c,{yi}2i=1

c−
2∑

i=1

γ

(
yi
wi

)1/γ

s.t. c ≤
2∑

i=1

yi − Tm (y1, y2) and y1, y2 ≥ 0.

The decision problem of married spouses pins down their joint consumption c that is allocated

so that each spouse receives equal utility from marriage, Um = 1
2v

m.4 Given these definitions,

expected pecuniary utilities in Stage 1 are EUm = 1
2Ev

m and EU s = Evs, respectively.
Our economy provides a simple way to model many realistic features of marriage, labor

supply and resource allocations. Shocks ε capture the innate personal inclination for marriage

or singlehood. These shocks also imply that marriage decisions are not influenced elusively

3The relationship between γ and the elasticity of labor supply e is 1/γ = 1 + 1/e.
4Individual consumptions of two spouses (c1, c2) splits their joint consumption c = c1+c2 so that each spouse

obtains the same utility from marriage that equals to the half of their marital surplus.
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by pecuniary benefits and keep the elasticity of marriage rates to a marriage tax penalty or

bonus finite. Shocks q capture the fact that married individuals often share similar socio-

economic characteristics that are predictive of their future earnings. For our approach, we can

be agnostic about how assortative the marriage market is. Our model is flexible in that it allows

for random matching on productivities (if q is independent of w), positive assortative matching

(if q is positively correlated with w) and even negative assortative matching (if q is negatively

correlated with w). Until Section 5.6, we do not need to model explicitly the relationship

between q and w and simply use F to denote the joint distribution of productivities of married

persons that emerges as the outcome of the matching process in Stage 2.

Our model isolates some key economic mechanisms that shape optimal taxation of single

and married households without introducing additional complexities. Since all individuals are

ex-ante identical and select into marriage before any information about their future produc-

tivity is revealed, married individuals are statistically identical to single individuals as they

all draw their productivities from the same distribution and have the same elasticity of labor

supply. We abstract for now from home production, extensive margin responses in labor sup-

plies, more sophisticated intra-household bargaining. We discuss implications of these features

in Section 5.

We impose mild regularity conditions to simplify exposition. It is without loss of generality

to take F to be symmetric, with both marginals equal to G; furthermore, we assume that F

admits a continuously differentiable density f that is strictly positive on R2
+ and denote the

density of G by g. To streamline our exposition, we assume that the distribution of produc-

tivities F satisfies
∫
max
i=1,2

w
1/1−γ

i dF < ∞. Shocks ε are drawn from an absolutely continuous

probability distribution supported on R; we use Φ to denote the inverse of this probability

distribution. We use µ to denote the marriage rate.

It is useful to first describe the equilibrium in the absence of taxes. In the laissez-faire econ-

omy, the expected amount of resources available to each person is independent of that person’s

marital status. Randomness in productivity realizations and the matching process introduce

uncertainty about ex-post resource allocations, but this uncertainty does not affect individuals’

ex-ante utilities since they are risk-neutral. This implies that the pecuniary benefits of mar-

riage and singlehood are the same in the absence of taxation. We record this observation in

the lemma that follows, where we use superscripts “LF” to denote the laissez-faire allocations.

Lemma 1. In the laissez-faire economy, EUm,LF = EU s,LF.

We now turn to the problem of optimal taxation. Following a long tradition in public

finance going back to the work of Mirrlees (1971), we assume that the social planner chooses
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taxes to redistribute resources from more productive to less productive individuals. Let E [U |w]
be the expected utility of a person with productivity w. This utility can be written as

E [U |w] = µE [Um|w] + (1− µ)E [U s|w] +
∫ 1

µ
Φ (ε) dε, (1)

where the first two terms capture their pecuniary utilities from marriage and singlehood,

respectively, and the last term corresponds to the non-pecuniary benefit of singlehood. We

take social welfare to be given by the Pareto-weighted sum of these utilities, that is W :=∫
α(w)E [U |w] dG, where α is a non-negative, strictly decreasing, bounded, continuous function

normalized so that
∫
αdG = 1. This definition of Pareto weights is the natural benchmark.

Under these weights, the social planner values an extra dollar of consumption of a person

with productivity w with the same weight α(w) irrespective of whether the person is single or

married, which implies that the planner has no inherent preference for or against marriage.

The social planner chooses T s and Tm to maximize social welfare. For now, we impose no

restrictions on the form of these tax functions other than that total tax revenues in equilibrium

must be non-negative. In Section 5.9, we consider the problem of a planner who faces additional

ad-hoc restrictions on the form of taxes that she can use and show that there is a close

relationship between the optimal taxes with and without ad-hoc restrictions.

3 Optimal taxation as a mechanism design problem

We use the mechanism design approach to study optimal taxation. Since this approach is well

known, we present it heuristically, leaving technical details for the appendix.

Let w = (w1, w2) be a pair of productivities of a given couple. Using the taxation principle

(see, e.g., Hammond (1979)), one can show that T s, Tm are budget feasible if and only if there

exists a µ ∈ [0, 1] and tuples (vs, cs, ys) and (vm, cm, ym1 , y
m
2 ) that satisfy

vs (w) = cs (w)− γ

(
ys (w)

w

)1/γ

∀w, vm (w) = cm (w)−
2∑

i=1

γ

(
ymi (w)

wi

)1/γ

∀w, (2)

vs (w) ≥ cs (ŵ)− γ

(
ys (ŵ)

w

)1/γ

∀w, ŵ, vm (w) ≥ cm (ŵ)−
2∑

i=1

γ

(
ymi (ŵ)

wi

)1/γ

∀w, ŵ, (3)

µ

2

∫ ( 2∑
i=1

ymi − cm

)
dF + (1− µ)

∫
(ys − cs) dG ≥ 0, (4)

Φ(µ) =
1

2

∫
vmdF −

∫
vsdG. (5)
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Equations (2) define utilities of single and married households and (3) are their incentive

constraints. Equation (4) is the resource constraint that ensures that total tax revenues are

non-negative. Equation (5) determines the cut-off of the preference shock ε at which a person

is indifferent between getting married and remaining single. This indifference cut-off is given

by ε = 1
2Ev

m − Evs, which is the same equation as (5) because the marriage rate µ satisfies

Φ(µ) = ε. The planner’s objective function W can be written in terms of vm and vs as

W =
µ

2

∫
αmvmdF + (1− µ)

∫
αvsdG+

∫ 1

µ
Φdε, (6)

where

αm(w1, w2) :=
1

2
α(w1) +

1

2
α(w2). (7)

Thus, the mechanism design problem can be stated as finding µ, (vs, cs, ys), (vm, cm, ym1 , y
m
2 )

that maximize (6) subject to (2) – (5).

It will be convenient to simplify this maximization problem by getting rid of redundant

variables. Due to the envelope theorem, Equation (3) implies

∂vs

∂w
=

(ys)
1/γ

w1+1/γ
,

∂vm

∂wi
=

(ymi )
1/γ

w
1+1/γ
i

. (8)

These equations can be thought of as local incentive constraints, as they ensure that no person

can gain from small misreporting of their type.

One challenge of studying mechanism design problems is the very large number of incentive

constraints (3). The standard approach to overcome this problem, known as the first-order

approach (FOA), is to consider a relaxed problem in which the global incentive constraints (3)

are replaced by the local constraints, (8). This approach is known to hold in many realistic

uni-dimensional tax models. For now, we follow it and characterize the optimal tax schedule

under the assumption that the FOA is valid. In Section 4 we theoretically examine conditions

for the validity of the FOA and show that the FOA is more likely to hold for multi-dimensional

tax problem of couples in an important special case of our environment. In Section 6 we verify

numerically that the FOA is valid in the calibrated economy.

Using Equations (2) and (8), we can substitute out for consumption and labor earnings.

The relaxed problem is to choose vs, vm and µ to maximize welfare (6) subject to the marriage

indifference condition (5) and the feasibility constraint,

µ

2

∫ 2∑
i=1

(
w1+γ
i

(
∂vm

∂wi

)γ

− γwi
∂vm

∂wi

)
dF + (1− µ)

∫ (
w1+γ

(
∂vs

∂w

)γ

− γw
∂vs

∂w

)
dG ≥

≥ µ

2

∫
vmdF + (1− µ)

∫
vsdG. (9)
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3.1 Optimality conditions to the relaxed problem

Let vs,∗, vm,∗, and µ∗ denote the solution to the relaxed mechanism design problem. This

solution determines the optimal earnings ys,∗, ym,∗ via (8) and the optimal marginal tax rates.

It will be convenient to work with monotone transformations of the optimal marginal tax rates.

We define these transformations as

λs,∗(w) :=

∂
∂yT

s,∗ (ys,∗(w))

1− ∂
∂yT

s,∗ (ys,∗(w))
, λm,∗

i (w) :=

∂
∂yi
Tm,∗ (ym,∗(w))

1− ∂
∂yi
Tm,∗ (ym,∗(w))

. (10)

and refer to them as optimal distortions.

We now derive the set of optimality conditions for the relaxed mechanism design problem.

Using
∫
αdG = 1, it is easy to show that the Lagrange multipliers on (5) and (9) must be zero

and one, respectively. These results have simple economic interpretations. Since the planner

is inherently indifferent about each person’s marriage status, the constraint that determines

which agents select into marriage, Equation (5), is slack. The Lagrange multiplier on (9)

captures how much the social planner values an extra unit of consumption in the hands of an

average person in the economy, which is equal to the average value of Pareto weights that we

normalized to one.

Using our observation about the values of Lagrange multipliers, the optimality conditions

for vs,∗ can be written as

∂

∂w

(
λs,∗γwg

)
= (α− 1) g, lim

w→0,∞
λs,∗ (w)wg (w) = 0. (11)

This is a linear ODE that is easy to solve. Integrate it from t to ∞ and use the boundary

condition to obtain λs,∗ (t) =
∫∞
t (1−α)dG

γtg(t) . It will be slightly more convenient to normalize both

the numerator and the denominator by 1−G(t) so that we can interpret integrals as conditional

expectations. Using this normalization, the optimal distortions for single individuals can be

written as

λs,∗ (t) =
1− E [α|w ≥ t]

γθ (t)
, (12)

where θ(t) is the tail statistics of distribution G defined by

θ (t) :=
tg (t)

1−G (t)
=

−d ln Pr (w ≥ t)

d ln t
. (13)

Equation (12) expresses λs,∗ for each productivity level t in terms of the primitives of our

environment and thus fully characterizes optimal marginal taxes. The optimal marginal taxes

for single households are independent of the marriage rate and coincide with the optimal taxes
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in a version of our model with only single households. Equation (12) is a version of famous

Diamond’s “ABC formula” generalized to our economy in which single and married households

co-exist.5

It is useful to highlight the intuition behind Equation (12). Consider a thought experiment

of increasing the marginal tax rate on single persons with productivity w = t. This increases the

level of taxes for all single households whose productivities w > t. To balance the government

budget, we adjust the intercepts of tax functions, T s,∗(0) and Tm,∗(0, 0), so that the marriage

rate µ∗ is unaffected. One can think of the welfare effect of this perturbation by separately

considering the mechanical effect, which occurs if agents do not change their behavior, and

the behavioral effect, which captures how government tax revenues are effected by agents

re-optimazing their choices in response to this tax change.

Let start with the mechanical effect. This tax perturbation takes an extra dollar from each

single household with w > t and gives it to “average” single and married persons. The social

value of a dollar in the hands of a person with productivity w is α (w), while the social value of

a dollar in the hands of an average person, single or married, is one. There are (1−µ∗)(1−G(t))
single households with productivities w > t, so that the total change of social welfare due to

the mechanical effect is (1 − µ∗)(1 − G(t)) × (1 − E [α|w ≥ t]). Since our perturbation does

not affect the marriage rate, the behavioral effect arises only because single individuals with

productivity t reduce their labor supply. The reduction of tax revenues is a product of the tax

distortion for single λs,∗(t), the elasticity parameter of labor supply γ, their productivity t, and

the mass of single households affected by this perturbation, (1− µ∗)g(t). In the optimum, the

sum of the mechanical and behavioral effects must be zero, which gives Equation (12). This

thought experiment shows that the optimal distortions are given by the ratio of the benefits

of redistribution (the numerator on the right hand side of (12)) to the costs of tax distortions

(the denominator on the right hand side of (12)).

We now turn to describing distortions for married households. The same variational tech-

niques show that λm,∗ satisfies the following system of equations:

2∑
i=1

∂

∂wi

(
λm,∗
i γwif

)
= (αm − 1) f, lim

wi→0,∞
λm,∗
i (w)wif (w) = 0 for all w−i (14)

and
∂

∂ lnw2

(
w1

1 + λm,∗
1

)1/(1−γ)

=
∂

∂ lnw1

(
w2

1 + λm,∗
2

)1/(1−γ)

. (15)

Equation (14) is very similar to (11) except now it has a sum over spouse-specific distortions.

Unlike the uni-dimensional case, Equation (14) is not sufficient for optimality: there are many

5In Diamond’s ABC terminology, 1
γ
is “term A”, 1

θ(t)
is “term B”, and 1− E [α|w ≥ t] is “term C”.
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functions {λm,∗
i }2i=1 that satisfy this equation but these functions cannot be chosen in isolation

from each other as they are transformations of derivatives of the same tax function Tm,∗.

The cross-partial derivatives of Tm,∗ must agree, ∂
∂y2

∂
∂y1

Tm,∗ = ∂
∂y1

∂
∂y2

Tm,∗, which imposes

an additional restriction on admissible {λm,∗
i }2i=1 that is given by Equation (15). Under mild

regularity conditions, Equations (14) and (15) are not only necessary but also sufficient for the

optimum.

In contrast to (11), it is very hard to use (14) and (15) to find λm,∗ explicitly. These

equations form a system of non-linear PDEs, and there are no readily available techniques to

solve them analytically.6 Our approach is to sidestep the difficult task of characterizing λm,∗

analytically at every point w. Instead, we exploit the fact that Equation (14) is a relatively

tractable linear differential equation in λm,∗ and use it to derive a rich family of conditional

averages that the optimal distortions satisfy.

Consider any continuous function Q : R2
++ → R++. For any t > 0, the set of couples w

for whom Q(w) = t, or {Q = t} for brevity, divides the space of all couples into two regions:

couples for whom Q > t and couples for whom Q < t (see Figure 1 for an illustration). Our

key result of this section is that the optimality condition (14) can be integrated over regions

{Q > t} or {Q < t} and, by using two mathematical results from multi-variable calculus – the

divergence theorem and the coarea formula – these integrals can be expressed as a conditional

average of optimal distortions along the boundary {Q = t}.

xxxxxxx{Q > t}

{Q < t}{Q < t}

w1

w2

{Q
=
t}

Figure 1: Using a function Q to define areas in the type space. The thick line is the set {Q = t}, the hashed
area is the set {Q > t}, and white region is the set {Q < t}.

Theorem 1. Let Q : R2
++ → R+ be an onto locally Lipshitz function that satisfies mild

6Renes and Zoutman (2017) describe how (their equivalent of our) Equation (14) can be exploited to find
λm,∗ using so-called Green functions if one assumes that λm,∗ is a conservative vector field, i.e., it satisfies
∂

∂w2
λm,∗
1 = ∂

∂w1
λm,∗
2 . Unfortunately, λm,∗ does not need to form a conservative vector field but instead has to

satisfy Equation (15). This condition is non-linear, which makes analysis much more difficult.
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regularity conditions (Q1)-(Q4) stated in the appendix. Then, the optimal distortions satisfy

E

[
2∑

i=1

λm,∗
i

∂ lnQ

∂ lnwi

∣∣∣Q = t

]
=

1− E [αm|Q ≥ t]

γ−d ln Pr(Q≥t)
d ln t

. (16)

Equation (16) shares a lot of similarities with (12). The numerator on the right-hand side

of (16) captures the average Pareto weight of persons in the {Q > t} region. The denominator

is a product of the elasticity parameter γ and the density of households on the boundary of

{Q = t} relative to the mass of {Q > t}. This ratio generalizes the tail statistics θ(t) that

appeared in Equation (12). Since such a function Q and its value t are arbitrary, Theorem 1

allows us to characterize a large set of moments that the optimal distortions of married persons

must satisfy. We unpack some of the implications of these moments in the next section.

Similarly to Equation (12), the right-hand side of (16) is a ratio of the benefits of redis-

tribution from couples in {Q > t} relative to the costs of distortion that this redistribution

entails. This equation can be derived heuristically similarly to (12) by considering a tax per-

turbation that increases the level of taxes of all {Q > t} by the same infinitesimal amount,

with the intercepts, T s,∗(0) and Tm,∗(0, 0), being adjusted in a way that keeps the marriage

rate constant. The numerator on the right-hand side of (16) captures the mechanical effect of

this perturbation and its redistributive gains. The denominator on the right-hand side of (16)

corresponds to the number of agents affected by this perturbation, adjusted by their productiv-

ities and labor supply elasticities. The gradient { ∂ lnQ
∂ lnwi

}2i=1 that appears on the left hand side

of (16) reflects how much marginal tax rates on each spouse need to be adjusted to engineer a

uniform increase in tax levels for all {Q > t}.
A remarkable feature of Equations (12) and (16) is that the optimal marginal tax rates

for both single and married households are independent of the marriage rate or the elasticity

of the marriage rate to taxes. The optimal marriage rate µ∗ is determined by the following

first-order condition:

1− γ

2

∫ 2∑
i=1

wi

(
wi

1 + λm,∗
i

)γ/(1−γ)

dF − (1− γ)

∫
w

(
w

1 + λs,∗

)γ/(1−γ)

dG = Φ(µ∗). (17)

The optimal marriage rate depends not only on the optimal distortions but also on the elasticity

of the marriage rates to taxes, captured by the distribution Φ of non-pecuniary “love” shocks ε.

As we demonstrate in the subsequent section, this equation yields sharp qualitative predictions

about the optimal marriage rate µ∗.

The discussion above describes the procedure to characterize the optimal marginal tax rates,

∂
∂yT

s,∗ and { ∂
∂yi
Tm,∗}2i=1, and the optimal marriage rate µ∗. The only remaining moments of
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the optimal tax system are the intercepts, T s,∗(0) and Tm,∗(0, 0). These intercepts are pinned

by the marriage indifference condition (5) and by the feasibility condition (4) holding with

equality.

3.2 Properties of the optimal joint taxes

In this section, we use Theorem 1 to shed light on four specific moments of the optimal

distortions for couples:

E
[
λm,∗
i |wi = t

]
,E
[
λm,∗
i |wi = t, w−i ≥ t

]
,E
[
λm,∗
i |wi = t, w−i ≤ t

]
, E
[
λm,∗
i − λm,∗

−i |wi = ιw−i

]
.

These four moments highlights different aspects of the optimal tax function Tm,∗. The first

moment encapsulates the mean value of the optimal distortion for a married person with

productivity t. This moment is the most direct counterpart of λs,∗(t) for a single person. The

second and third moments quantify how the optimal distortion of a married person depends

on their spouse’s productivity capturing the mean value of optimal distortion given that the

spouse is more and less productive, respectively. We refer to the ratio of these two moments as

jointness. The forth moment compares the optimal distortions of two spouses within the same

couple when one of the spouses is ι times more productive than the other. These last moment

can be obtained from Theorem 1 by considering Q functions of the form Q = wi, Q = minw,

Q = maxw, and Q = minw
maxw , see Figure 2 for an illustration.

w2

w1

(a) w1 > t.

w2

w1

(b) minw > t.

w2

w1

(c) maxw > t.

w2

w1

(d) minw
maxw

> ι.

Figure 2: Q functions that are used to study various properties of the optimal tax schedule. The thick line is
the set {Q = t}, the hashed area is the set {Q > t}, and white region is the set {Q < t}.

3.2.1 Average optimal distortions

By setting Q = wi in Formula (16), we obtain

E
[
λm,∗
i |wi = t

]
=

1− E [αm|wi ≥ t]

γθ(t)
. (18)

It is instructive to compare this equation to its analogue for a single person, Equation (12).

Both formulas have the same denominator, γθ(t), but different numerators. The optimal

distortion of a single person depends on E [α|wi ≥ t], which is the average Pareto weight of a
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person who has productivity higher than t. In contrast, the average optimal distortion of a

married person depends on E [αm|wi ≥ t], which is the average Pareto weight of all people in

couples in which one of the spouses has productivity higher than t. The difference in these

formulas arises because an increase in the marginal taxes on a married person with productivity

wi = t raises average taxes for all couples with a wi > t earner, but the burden of these higher

taxes are shared by both spouses in those couples.

An important implication of Equation (18) is that the degree to which people marry part-

ners with similar productivities plays a crucial role in optimal taxation. To build the in-

tuition for a general result, we first consider two special cases. If the marriage market is

perfectly assortative, so that individuals always marry spouses with the same productivity,

then E [αm|wi ≥ t] = E [α|wi ≥ t] for all t and the optimal distortions for single and married

persons coincide. In contrast, if the marriage market is random, so that productivities of

spouses are statistically independent from each other, then E [αm|wi ≥ t] = 1
2 + 1

2E [α|wi ≥ t]

and Equation (18) implies that the labor distortion of a married person is on average one half

of the distortion of a single person with the same productivity. Random matching cuts the

redistributory benefits of taxation in half since a person with any productivity t shares, in

expectation, half of their tax burden with a spouse of average productivity.

This discussion suggests that married individuals should face lower distortions than single

individuals and that the magnitude of this “marriage subsidy” should depend on the assor-

tativity of marriages. To show that this is indeed the case, we need to introduce a notion of

assortativity that can be applied to general, non-parametric settings. Consider two joint sym-

metric distributions F a and F b with the same marginals G. We say that F b is independent if

F b(w1, w2) = G(w1)G(w2) for all w1, w2, or F
b = G2 for short, positively dependent if F b ≥ G2,

and more dependent than F a if F b ≥ F a. We denote this latter relationship by F b ≥PQD F a.

Any F satisfies bounds F ≥PQD F ≥PQD F , where F and F are distributions under perfect

positive and negative assortative matchings, respectively. A reader familiar with literature on

multi-variate stochastic orders will recognize this notion as the positive quadrant dependence

partial order (e.g., see Shaked and Shanthikumar (2007) or Nelsen (2006)). It is widely used

in statistical literature and is equivalent to the condition that Cov (ϕ1 (w1) , ϕ2 (w2)) ≥ 0 for

any two increasing functions ϕ1 and ϕ2. To see an illustration of this definition, consider two

families of joint distributions, given by the Gaussian and FGM copulas with some correlation

parameter ρ.7 For both copulas, independence and positive dependence of F b is equivalent to

7Copulas provide a convenient with to construct joint distributions using arbitrary marginal distribu-
tions. In our setting, a copula C is a mapping C : [0, 1]2 → [0, 1], where C (u1, u2) is the joint proba-
bility that the productivity of spouse 1 is in the uth

1 quantile of their marginal distribution and the pro-
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ρ = 0 and ρ ≥ 0, respectively, and F b ≥PQD F a is equivalent to ρb ≥ ρa.

Using our notion of dependence, we can derive a sharp comparative statics characterization

of the average value of optimal distortions for married individuals.

Lemma 2. Consider two economies, a and b, that are identical in all respects except the joint

distribution of productivities, and assume that F a ≤PQD F b. The relationship between optimal

distortions in the two economies is

Ea
[
λm,a,∗
i |wi = t

]
≤ Eb

[
λm,b,∗
i |wi = t

]
< λs,b,∗ (t) = λs,a,∗ (t) for all t.

The second inequality would be equality if we relax our assumption on F to include distributions

without densities and set F b = F .

Furthermore, Ea
[
λm,a,∗
i |wi = t

]
> 0 for all t if F a is positively dependent.

To understand the intuition for this result, recall that the social planner uses distortionary

taxes to provide redistribution among individuals. When two individuals form a couple, they

pool their resources together, providing an alternative, intra-family, channel of redistribution.

This intra-family redistribution is valued by the planner. Consequently, the planner responds

by setting lower distortions for married individuals than for singles. The more mixing of

productivities there is in the marriage market, the more redistribution families provide, and

the higher the optimal marriage tax bonus.

A direct implication of Lemma 2 is that it is optimal to subsidize marriage.

Corollary 1. The pecuniary gains from marriage and the marriage rate are higher in the

optimum than in the laissez-faire: EUm,∗ − EU s,∗ > EUm,LF − EU s,LF and µ∗ > µLF.

Proof. Recall from Lemma 1 that in the absence of taxes 1
2Ev

m,LF − Evs,LF = EUm,LF −
EU s,LF = 0 and, therefore, the laissez-faire marriage rate satisfies Φ(µLF) = 0. The optimal

marriage rate µ∗ is pinned down by Equation (17). Since x 7→ (1 + x)γ/(γ−1) is decreasing and

convex, we have

E
[(
1 + λm,∗

i

)γ/(γ−1) |wi = t
]
≥
(
1 + E

[
λm,∗
i |wi = t

])γ/(γ−1)
> (1 + λs,∗(t))

γ/(γ−1) ,

where the last inequality follows from Lemma 2. Substitute this into Equation (17) to show that

Φ(µ∗) > 0 and, therefore, µ∗ > µLF. Equation (5) then implies that EUm,∗ − EU s,∗ > 0.

ductivity of spouse 2 is in the uth
2 quantile. Copulas allow one to isolate dependence properties of F

from properties of its marginal distributions G1, G2 in general settings. The Gaussian copula is defined as

C (u1, u2) ∝
∫ Φ−1(u1)

−∞

∫ Φ−1(u2)

−∞ exp

[
− (s21−2ρs1s2+s22)

2(1−ρ2)

]
ds1ds2, where Φ is the distribution of a standard nor-

mal random variable, and it generalizes dependence properties of the bi-variate normal to arbitrary marginals,
e.g., a joint log-normal distribution is characterized by the Gaussian copula. The FGM copula is defined by
C (u1, u2) = u1u2 [1 + ρ (1− u1) (1− u2)]. In both cases, the parameter ρ ∈ (−1, 1) captures the degree of
dependence. See Nelsen (2006) for an introduction to copulas.
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Our discussion suggests that a more “redistributive” social planner should set higher

marginal taxes. A natural way to compare the redistributiveness of two Pareto weights, αa

and αb, is to consider their likelihood ratio αb/αa. If this ratio is decreasing in w, then the

planner places a uniformly higher value on less productive individuals under αb than under αa.

Lemma 3. Consider two economies, a and b, that are identical in all respects except the

Pareto weights, and assume that αb/αa is decreasing in w. Then, λs,a,∗(t) ≤ λs,b,∗(t) for all t.

In addition, if f is log-supermodular, then E
[
λm,a,∗
i |wi = t

]
≤ E

[
λm,b,∗
i |wi = t

]
for all t.

Consistent with intuition, a more redistributive social planner uses higher labor distortions

for single households. The same result extends to married households provided that f is log-

supermodular. Log-supermodularity captures a form of positive dependence among variables

and is satisfied by many commonly used joint distributions, such as those constructed by the

Gaussian and FGM copulas with ρ ≥ 0.

3.2.2 Optimal average jointness

We now turn to the discussion of how distortions of a married person depend on productivity

of their spouse.8 We consider the following measure of jointness:

J (t) =
E
[
λm,∗
i |wi = t ≤ w−i

]
E
[
λm,∗
i |wi = t ≥ w−i

] − 1. (19)

This term is positive (negative) if a person’s distortion is higher (lower), on average, if they

marry a more productive spouse than themselves. By setting Q = minw in Formula (16) and

using symmetry of F , we obtain

E
[
λm,∗
i |wi = t ≤ w−i

]
=

1− E [αm|minw ≥ t]

γ−d ln Pr(minw≥t)
d ln t

=
1

γ−d ln Pr(wi≥t)
d ln t

1− E [αm|minw ≥ t]
d ln Pr(minw≥t)
d ln Pr(wi≥t)

. (20)

The other moment, E
[
λm,∗
i |wi = t ≤ w−i

]
, can be unpacked analogously by setting Q = maxw

in Formula (16):

E
[
λm,∗
i |wi = t ≥ w−i

]
=

1− E [αm|maxw ≥ t]

γ−d ln Pr(maxw≥t)
d ln t

=
1

γ−d ln Pr(wi≥t)
d ln t

1− E [αm|maxw ≥ t]
d ln Pr(maxw≥t)
d ln Pr(wi≥t)

. (21)

As a result, we can write J as

J (t) =
1− E [αm|minw ≥ t]

d ln Pr(minw≥t)
d ln Pr(wi≥t)

÷ 1− E [αm|maxw ≥ t]
d ln Pr(maxw≥t)
d ln Pr(wi≥t)

− 1. (22)

8Kleven et al. (2007) discuss jointness in their model of couples taxation. Jointness in their setup is driven
by a different mechanism from the one studied in this section. We discuss the connection with their results in
Section 5.1.

18



Before discussing implications of this equation, it will be insightful to consider the economics

of tax jointness.

Suppose we start with a separable tax schedule Tm(y1, y2) = T̃m(y1) + T̃m(y2). Pick some

level of productivity t and consider two different reforms of this tax schedule, which we call

Reform I and Reform II. Under Reform I, the planner increases average taxes by the same

infinitesimal amount for all couples in which both spouses are more productive than t. The set

of those couples is {minw > t}. Under Reform II the planner increases average taxes for all

couples in which at least one spouse is more productive than t, with the set of those couples

is {maxw > t}. In both cases, the marginal taxes are increased on the boundaries of these

sets, {minw = t} and {maxw = t}, to attain this increase in average taxes. Tax revenues are

redistributed uniformly to all households in a way that keeps the marriage rate unchanged.

See Figure 3 for a graphical description of Reforms I and II.

(t, t)

∆Tm

w1

w2

(a) Reform I

(t, t)

∆Tm

w1

w2

(b) Reform II

Figure 3: The change of the tax schedule on married ∆Tm due to Reforms I and II.

It is easy to pick visually that redistributory gains of these reforms are 1−E [αm|minw ≥ t]

and 1−E [αm|maxw ≥ t], and the densities of agents who face higher distortions are −d ln Pr(minw≥t)
dt

and −d ln Pr(maxw≥t)
dt , respectively. Thus, J is equal to the ratio of redistributory benefits of the

two reforms normalized by the number of distorted individuals.

There are several insightful observations about these reforms that illuminate the economics

behind optimal joint taxation. Reform I increases taxes on the richest couples, {minw > t},
that are then redistributed by increasing transfers to {minw < t}. Reform II increases

transfers to the poorest couples, {maxw < t} by raising taxes on {maxw > t}. Both reforms

enhance the planner’s ability to target the tax and transfer system more effectively. Reform I

improves the targeting of taxes on the richest couples, while Reform II better targets transfers

to the poorest couples. Despite these improvements in targeting, the reforms have opposite

implications for jointness: Reform I introduces positive jointness into the tax schedule, whereas

Reform II introduces negative jointness. This creates a trade-off for the planner. Positive

jointness allows for better targeting of taxes but results in less effective transfer targeting,

and vice versa. The optimal degree of jointness is determined by weighing the cost-adjusted
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benefits of the two reforms.

The benefits of transfer targeting can be made more salient in the formula for optimal

jointness. Since Pareto weights αm and probabilities w integrate to one, we can re-write

Equation (22) as

J (t) =
E [αm|minw ≤ t]− 1

d ln Pr(minw≤t)
d ln Pr(wi≤t)

÷ E [αm|maxw ≤ t]− 1
d ln Pr(maxw≤t)
d ln Pr(wi≤t)

− 1. (23)

Mathematically, this equation is identical to (22), but it is written in a way that emphasizes

redistributory benefits of cost-adjusted transfers.

An examination of the cost adjustments that appear in Equations (22) and (23) reveals that

they are determined by assortativity in matching. Thus, one should expect the correlation of

spousal productivities to play a significant role in determining the optimal degree of jointness.

First, consider two special cases of assortativity: perfectly assortative matching and random

matching. Under perfectly assortative matching, both E [αm|minw ≥ t] and E [αm|maxw ≥ t]

are equal to E [α|w ≥ t], and d ln Pr(minw≥t)
d ln Pr(wi≥t) and d ln Pr(minw≥t)

d ln Pr(wi≥t) are equal to one. Therefore,

Equation (22) implies that J(t) = 0 for all t. Under random matching, both E [αm|minw ≥ t]

and E [αm|maxw ≥ t] are equal to 1
2 +

1
2E [α|w ≥ t], and d ln Pr(minw≥t)

d ln Pr(wi≥t) and d ln Pr(minw≥t)
d ln Pr(wi≥t) are

equal to two. This implies that under random matching J(t) = 0 for all t, but for a different

reason from perfectly assortative matching. In the case of perfectly assortative matching,

jointness gives no additional benefits of tax and transfer targeting but it also has no additional

costs. In contrast, under random matching, both tax and transfer targeting improves welfare,

but their relative costs exactly offset each other. In both cases, a separable tax system can

implement the optimal allocations. We summarize this discussion in the following lemma.

Lemma 4. If matching is either random or perfectly assortative, then the optimal taxes Tm,∗

are separable and the optimal distortions λm,∗
i are independent of w−i. These distortions satisfy,

respectively, λm,∗
i (t, w−i) =

1
2λ

s,∗(t) and λm,∗
i (t, w−i) = λs,∗(t) for all t, w−i.

To gain insights into the empirically relevant case of positive but not perfectly assortative

matching, suppose that F is given by the Gaussian copula with the correlation parameter

ρ > 0. We first consider properties of J for high and low values of t. Let α (∞) = limt→∞ α(t)

be the asymptotic weight on the richest individual.

Since productivities are positively correlated, under the Gaussian copula, we have

lim
t→∞

E [αm|minw ≥ t] = lim
t→∞

E [αm|maxw ≥ t] = α (∞) , (24)
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which shows that the redistributory benefits of tax and transfer targeting coincide for the

richest couples. At the same time, one can show that

lim
t→∞

d ln Pr (minw ≥ t)

d ln Pr (wi ≥ t)
=

2

1 + ρ
, lim

t→∞

d ln Pr (maxw ≥ t)

d ln Pr (wi ≥ t)
= 1, (25)

so that the costs of the two targeting schemes differ. Since ρ < 1, the cost of tax targeting is

higher than the cost of transfer targeting for high earners. Therefore, Equation (22) implies

that J(t) < 0 for all sufficiently large t, indicating that optimal jointness for high earners is

negative.

The analysis of optimal jointness in the left tail is similar, but the results are easier to

see using Equation (23). According to this equation, as t → 0, the redistributory benefits of

tax and transfer targeting converge to α(0), but their costs d ln Pr(minw≤t)
d ln Pr(wi≤t) and d ln Pr(maxw≤t)

d ln Pr(wi≤t)

converge to 1 and 2
1+ρ respectively. This implies that J(t) > 0 for all sufficiently small t,

indicating that optimal jointnessss for low earners is positive.

It is hard to analyze analytically the sign of optimal jointness for intermediate values of t

in our general, non-parametric settings. If we simplify the structure of the joint distribution of

productivities by assuming that it is given by the analytically tractable FGM copula, we can

extend our conclusions to all t. We summarize our discussion in the following lemma.

Lemma 5. Suppose that F is given either by the Gaussian or the FGM copula with ρ > 0.

In both cases, J(t) < 0 for all t sufficiently large, and J(t) > 0 for all t sufficiently small.

Moreover, in the case of the FGM copula, there exists a threshold t > 0 such that J(t) > 0 for

all t < t and J(t) < 0 for all t > t.

3.2.3 Distortions for primary and secondary earners

We now turn to comparison of the optimal distortions within family. We refer to a spouse with

higher productivity as the primary earner and to the other spouse as the secondary earner,

and we shall use λm,∗
pr (w) and λm,∗

sec (w) to denote their optimal distortions, respectively.9 Let

I (w) = minw
maxw be the productivity of the secondary earner relative to that of the primary

earner. By setting Q = I in Formula (16), we obtain

E
[
λm,∗
sec − λm,∗

pr |I = ι
]
=

1− E [αm|I ≥ ι]

γθι(ι)
, (26)

where θι (ι) =
−d ln Pr(I≥ι)

d ln ι is the tail statistics of the distribution of relative productivities of

two spouses. In this formula, E
[
λm,∗
sec −λm,∗

pr |I = ι
]
is the average difference in labor distortions

9By definition, these optimal distortion are given by λm,∗
pr (w) = λm,∗

i and λm,∗
sec = λm,∗

−i when wi ≥ w−i.
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between the secondary and primary earners in couples in which the primary earner is 1/ι times

more productive. When spousal productivities are equal, ι = 1, their optimal distortions are

the same, λm,∗
sec (w,w) = λm,∗

pr (w,w) for all w. On the other hand, if spousal productivities are

very unequal, then the optimal distortions for the secondary earner are on average higher than

for the primary earner.

Lemma 6. Suppose that α(0) > 2 and limι→0 E [wi|w−i ≤ ιwi] <∞. Then,

E
[
λm,∗
sec − λm,∗

pr

∣∣I = ι
]
> 0

for all sufficiently small ι.

To understand the sufficient condition α(0) > 2 and the intuition behind the result, first

recall that the weights α are monotonically decreasing and integrate to one. Therefore, this

condition means that the social planner values a dollar in the hands of the least productive

person at least twice as much as in the hands of an average person in the economy. Under this

condition, the planner values redistribution to an unproductive married spouse i irrespective

of whom that person is matched to, i.e., αm(w) = α(wi)
2 + α(w−i)

2 ≥ 1 for all w−i when wi

is sufficiently small. As a result, the planner wants to transfer some resources to all couples

with unproductive secondary earners. Such transfers are phased out as the earnings of the

secondary earner grow, leading to high implicit marginal taxes on the secondary earner.

4 On the validity of the first order approach

In our characterization of optimal taxes, we followed the common approach of simplifying

the mechanism design problem by replacing the global incentives constraints, Equations (3),

with their local analogs, Equations (8). While this method is widely used for uni-dimensional

problems, there is a common perception in the literature that it may fail in multi-dimensional

settings. For example, in their classic study of the optimal taxation of couples, Kleven et al.

(2009) note (p. 538), “very few studies in the optimal tax literature have attempted to deal

with multidimensional screening problems. The nonlinear pricing literature in industrial orga-

nization has analyzed such problems extensively. A central complication of multidimensional

screening problems is that first order conditions are often not sufficient to characterize the

optimal solution. The reason is that solutions usually display “bunching” at the bottom (Arm-

strong (1996), Rochet and Chone (1998)), whereby agents with different types are making the

same choices.” To sidestep this perceived difficulty, Kleven et al. (2009) further restrict agents’

choices by allowing one of the spouses to make only binary labor supply decisions. They ex-

plain (p. 538), “Our framework with a binary labor supply outcome for the secondary earner
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along with continuous earnings for the primary earner avoids the bunching complexities and

offers a simple understanding of the shape of optimal taxes based on graphical exposition.”

In this section, we theoretically examine the validity of the FOA. We focus on the case

of random matching, where we can fully describe conditions under which the FOA is valid

for characterizing optimal taxes for single and for characterizing optimal taxes for married

households, and compare these conditions.

Recall that the relaxed problem is to choose vs, vm and µ to maximize welfare (6) subject

to (5) and (9). We can write the omitted global constraints in terms of vs and vm as follows:

vs (w) ⩾ vs (ŵ) + γŵ
∂vs (ŵ)

∂w

((
ŵ

w

)1/γ

− 1

)
∀w, ŵ, (27)

vm (w) ⩾ vm (ŵ) +
2∑

i=1

γŵi
∂vm (ŵ)

∂wi

((
ŵi

wi

)1/γ

− 1

)
∀w, ŵ. (28)

The FOA is valid for single households if vs,∗ satisfies (27) and valid for married households if

vm,∗ satisfies (28).

Equations (27) and (28) are complicated, and using them directly to verify the validity of the

FOA is difficult. The analysis becomes significantly easier once we observe that these equations

can be simplified if we use the transformation x ↔ w−1/γ . Let vm,x and vs,x be utilities

of married and single households in the transformed type variables, that is vm,x (x1, x2) =

vm
(
w−γ
1 , w−γ

2

)
and vs,x(x) = vs (w−γ) .When written in the x-space, Equations (27) and (28)

become

vs,x (x) ⩾ vs,x (x̂) +
∂vs,x (x̂)

∂x
(x− x̂) ∀x, x̂,

vm,x (x) ⩾ vm,x (x̂) +

2∑
i=1

∂vm,x (x̂)

∂xi
(xi − x̂i) ∀x, x̂.

These equations are equivalent to the requirement that vs and vm are convex in the x-space,

i.e., vs,x and vm,x are both convex functions. Thus, the FOA is valid if the solution to the

relaxed problem is convex in the x-space.

We characterized vs,∗ and vm,∗ in the case of random matching in the w-space explicitly in

Section 3. By transforming those solutions into the x-space and using routine algebra, we can

establish the following result.

Proposition 1. Suppose that the matching is random and g, α are such that λs,∗ defined in

Equation (12) is bounded, continuously differentiable, and has bounded derivatives.

The FOA for single households is valid if and only if

x ·
(
1 + λs,∗

(
x−γ

))
is increasing in x. (29)
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The FOA for married households is valid if and only if

x ·
(
1 +

1

2
λs,∗

(
x−γ

))
is increasing in x. (30)

In particular, (30) holds whenever (29) holds.

The remarkable conclusion of this proposition is that the FOA ismore likely to hold to study

the optimal taxation of married than of single households in this economy. To understand the

intuition behind this result, it is insightful to consider the economic interpretation of Equations

(29) and (30).

Equation (29), which characterizes conditions for validity of the FOA for single households,

can equivalently be written as[
1 +

(
1 + γ

∂ ln (wg)

∂ lnw

)
λs,∗

]
+ [1− α] ≥ 0 for all w. (31)

The term in the first square bracket is typically positive, whereas the term in the second square

bracket is negative for low w and positive for high w. Thus, (31) is violated if the second term

is sufficiently negative relative to the first, which occurs if the planner puts sufficiently high

Pareto weights on some low types. In other words, the FOA holds for single households if the

planner is not “too redistributive” in the precise sense given by Equation (31). If the planner

becomes “too redistributive” for some w, she would want to increase redistribution around

those types. The relaxed problem would call for a sharply increasing marginal taxes for those

households, which would make their implied after-tax budget constraint highly non-convex.

Equation (30), which characterizes conditions for validity of the FOA for married house-

holds, is very similar to (31) since it captures the same economic mechanism. However, the set

of primitives under which (30) holds is strictly larger. As we showed in Section 3.2, the social

planner endogenously chooses to redistribute less among married than among single because

of the intra-family redistribution within couples. This implies that there are fewer cases in

which the relaxed problem would choose highly non-convex tax functions.

The conclusion of Proposition 1 is a special case of a more general insight that multi-

dimensional mechanism design problems in public finance are fundamentally different from

multi-dimensional pricing problems studied by Armstrong (1996) and Rochet and Chone

(1998). The mechanism designer in pricing problems aims to extract maximum surplus from

agents. In contrast, the mechanism designer in public finance settings aims to redistribute

resources and the FOA holds for a wide class of Pareto weights.
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5 Extensions

In this section, we consider several extensions of our economy. We discuss the implications

of different welfare criteria, intra-household public goods, labor specialization, bargaining, the

extensive margin in labor supply decisions, selection into marriage, and gender differences

for optimal taxation. Additionally, we explain how to apply our techniques to analyze the

optimal taxes that are constrained to certain forms, such as being separable. Finally, we

establish a close connection between the optimal unrestricted taxes, which are the main focus

of our analysis, and the optimal taxes with exogenous restrictions. Each of these extensions is

discussed in a separate subsection. To maintain a clear and concise presentation, we focus on

highlighting a few key takeaways and relegate all the proofs to the appendix.

5.1 The role of Pareto weights

In previous sections, we assumed that the social planner uses the same weight α(w) for any

person with productivity w irrespective of their marital status or the productivity of their

spouse. We now discuss implications of alternative assumptions about Pareto weights that the

social planner could use to evaluate welfare. Suppose that a person with productivity w is

valued by the planner with weight αs(w) if single and with weight β(w|w−i) if married to a

spouse with productivity w−i. Let α
m(w) := 1

2β(wi|w−i) +
1
2β(w−i|wi) be the average Pareto

weight within a couple. We allow Eαs =
∫
αsdG and Eαm =

∫
βdF to be arbitrary positive

numbers.

Following the same steps as in Section 3, one can show that the optimal distortions for

single and married persons satisfy

λs,∗(t) =
1− E[ αs

Eαs |w ≥ t]

γθ(t)
× Eαs

(1− µ∗)Eαs + µ∗Eαm
, (32)

E

[
2∑

i=1

λm,∗
i

∂ lnQ

∂ lnwi

∣∣∣Q = t

]
=

1− E
[

αm

Eαm |Q ≥ t
]

γ−d ln Pr(Q≥t)
d ln t

× Eαm

(1− µ∗)Eαs + µ∗Eαm
. (33)

The first terms on the right-hand side of these equations capture the benefits of redistribution

within single and within married households, respectively. These terms have the same inter-

pretations as terms that appear in Equations (12) and (16). For example, αs(w)
Eαs is the social

value of a dollar in the hands of a single person with productivity w relative to that of an

average single person, and αm(w)
Eαm is the couple’s analogue of that ratio. The second terms are

new. To see their implications, first suppose that the planner is indifferent about a person’s

marital status, in the sense that Eαs = Eαm. In this case, they are both equal to one and the
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optimal tax formulas collapse to Equations (12) and (16) except that αm is now the average

of β rather than α (recall that in Equations (12) and (16) we normalized Eα to one). The

economic trade-offs are exactly the same as in Section 3. If the planner values married people

more highly, Eαm > Eαs, then there is a new force that calls for higher distortions for married

and lower distortions for single. The results are the opposite when Eαm < Eαs.

Why does a preference for marriage incentivize the planner to increase distortions for mar-

ried persons? This happens because the planner cares more about both the level of their

expected utility and the inequality among them. Thus, the planner finds it optimal to in-

crease redistribution among married households financed by using lower distortions for single

households.

We now look at the implications of the dependence of each spouse i’s social weight on their

parner’s productivity w−i for the optimal taxes on married. If β(wi|w−i) is independent of

w−i, so that the planner values a dollar in the hands of a married person in the same way

irrespective of whom they marry, then most of the results in Section 3.2 are unchanged. In

particular, Lemmas 3, 4, 5, and 6 still hold except α is replaced by β in the statements of these

results. Similarly, the comparative statics in Lemma 2 also holds provided that Eαs = Eαm.

w̆

w̆

w1

w2
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1/21

1

(a)
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(b)

w̆
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w2
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3/43/4
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Figure 4: Illustrating Pareto weights αm that are (a) separable, (b) submodular (b), and (c) supermodular.

If β (wi|w−i) is a non-trivial function of w−i, then the planner’s valuation of a dollar in the

hands of a married person depends on a productivity of that person’s spouse. In particular,

if β is submodular, then the planner has a higher value for that dollar when it comes from a

spouse who is different in terms of their productivity; if β is supermodular the planner has a

lower value for it. Sub- and super-modular weights capture planner’s preference for hetero-

and homophily, respectively. If β is submodular or supermodular, so is αm.

It would be helpful to visualize the implications of such weights using a simple example.

Consider an economy with random matching and suppose first that β(wi|w−i) is independent

of w−i and takes the form β (wi) =
3
2 if wi is below the median of G denoted by w̆, β (wi) =

1
2

if wi is above w̆. The implied weights αm are shown in Panel (a) of Figure 4. Panel (b) and
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(c) construct sub- and super-modular weights from this β that preserve the property that the

expected weight of a married person with any productivity w is the same as in Panel (a). It is

easy to see visually that supermodularity “moves” Pareto weights closer to the 45 degree line,

whereas submodularity moves them away from that line. Comparing this figure to Figure 3,

which describes the economics of tax jointness, it is easy to see that submodularity amplifies

benefits of targeting taxes to the richest couples (Reform I in Figure 3) while supermodularity

amplifies benefits of targeting transfers to the poorest couples (Reform II in Figure 3).

Recall that in the random matching economy with separable weights the costs and benefits

of the two reforms exactly cancel out, resulting in the disjointed optimal taxes (Lemma 4).

Submodularity tilts the balance in favor of Reform I, while supermodularity tilts the balance

in favor of Reform II. Thus, under random matching, optimal jointness is positive (negative)

if αm is supermodular (submodular). Even a small amount of correlation can break this result.

In particular, observe that our discussion in Section 3.2.2 of optimal jointness under a Gaussian

copula remains virtually unchanged, except α(∞) is replaced by β(∞|∞) in Equation (24). As

the result, optimal jointess is still negative at the top and positive at the bottom for all ρ > 0.

We summarize this result in the following corollary.

Corollary 2. Suppose that αm : R2
+ → R+ is symmetric and strictly decreasing in each

argument.

(a) Under random matching, J(t) ≤ 0 for all t when αm is supermodular, and J(t) ≥ 0 for

all t when αm is submodular;

(b) If F is given by the Gaussian copula with ρ > 0, then J(t) < 0 for all t sufficiently

large, and J(t) > 0 for all t sufficiently small.

Part (a) of this corollary is closely related to the findings in the working paper by Kleven

et al. (2007). Those authors study jointness in the economy in which all households are married,

their productivities are independent (i.e., people are matched randomly) and social welfare is

given by
∫
W (vm) dF , where W is a strictly concave social welfare function. They show that

optimal jointess is negative (positive) when W ′′′ is strictly positive (negative). One can show

that there is one-to-one relationship between the sign ofW ′′′ and the modularity of the implied

weights, and so part (a) of Corollary 2 is a version of their result. We provide details in the

appendix.

5.2 Public goods and economies of scale

Our benchmark economy presents a somewhat idealized view of marriage. The decision to

form couples in the absence of taxation is driven purely by a non-pecuniary shock ε, aka
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“falling in love”, and married individuals commit to share their resources equally, “in sickness

and in health”, irrespective of their subsequent productivities and earnings. A sizable part

of the family economics literature argues that this view of marriages is oversimplified. There

are many economic incentives to form couples. For example, married individuals can attain

economies of scale in consumption and allocate their labor supplies more efficiently between

home and market activities. A division of their marital surplus can also be affected by various

economic forces. Spouses with better outside-of-marriage economic prospects often attain a

more favorable division of resources.

In the next several sections, we explore the implications of these mechanisms for optimal

taxation. We start with one of the most obvious economic rationales for forming couples.

Many goods and services consumed by households, from housing to child-rearing to Netflix

subscriptions, have a public goods aspect as they provide non-rival benefits to both spouses

in the household. This feature has long been recognized by the empirical labor literature from

an early work by Lazear and Michael (1980) to the modern state-of-the-art estimations by

Browning et al. (2013). In this section, we incorporate public goods into our model along

the lines of Chapter 2.1 in Browning et al. (2014). We assume that each person’s utility is

ϕ(cpr, cpub)− 1
γ l

γ , where ϕ is a strictly increasing function with constant returns to scale, and

cpr and cpub are consumption levels of private and within-household public goods, respectively.

Without loss of generality, we set the prices of both goods to be equal to one. Single and

married households solve

max
cpr,cpub,y

ϕ
(
cpr, cpub

)
− 1

γ

( y
w

)γ
s.t. cpr + cpub ≤ y − T s (y) and y ≥ 0,

and

max
cpub,{cpri ,yi}2i=1

2∑
i=1

(
ϕ
(
cpri , c

pub
)
− 1

γ

(
yi
wi

)γ)
s.t.

2∑
i

cpri +cpub ≤
2∑

i=1

yi−Tm (y1, y2) and y1, y2 ≥ 0,

respectively. The rest of the model is as in Section 2.

Consumption expenditures can be conveniently aggregated. These maximization problems

can be written as

max
c,y

ksc− 1

γ

( y
w

)γ
s.t. c ≤ y − T s (y) and y ≥ 0;

max
c,{yi}2i=1

kmc− 1

γ

2∑
i=1

(
yi
wi

)γ

s.t. c ≤
2∑

i=1

yi − Tm (y1, y2) and y1, y2 ≥ 0,

where

ks := max
cpr+cpub=1

ϕ(cpr, cpub), km := max
cpr+cpub=1

ϕ(cpr, 2cpub).

28



It is easy to see that km > ks, which captures the efficiency gains in consumption that marriage

offers.

The key observation from these equations is that this model is isomorphic to a model in

which an individual with a productivity w has a Pareto weight ksα (w) if single and kmα (w)

if married. Thus, the insights of Section 5.1 apply directly. The optimal distortions satisfy

λs,∗(t) =
1− E [α|w ≥ t]

γθ (t)

(
1− µ∗ + µ∗

ks

km

)
, (34)

E
[
λm,∗
i

∣∣∣wi = t
]

=
1− E [αm|wi ≥ t]

γθ (t)

(
(1− µ∗)

km

ks
+ µ∗

)
. (35)

Public goods make married households more economically efficient but, as consumption of

public goods scales with income, also increase inequality. As a result, the social planner, while

being inherently indifferent about a person’s marriage status, acts as if she assigns a higher

weight to married households in the social objective.

5.3 Home production and division of labor within families

Household consumption includes not only goods and services purchased in the marketplace

but also those produced at home. Economists, since the early work of Reid (1934) and the

influential contributions of Becker (1973, 1981), have argued that home production and labor

specialization provide important economic rationales for forming couples. In this section, we

incorporate these mechanisms into our model.

Let d be consumption of the home good and x be the effort required to produce it. We

assume that preferences of each individual are given by c+ 1
1−σd

1−σ−γ (lp + xp)
1/(γp). For single

households, the production technology for the home good is Ds(x) = x, and their maximization

problem is

max
c,y,x

x1−σ

1− σ
+ c− γ

(( y
w

)p
+ xp

)1/(γp)
s.t. c ≤ y − T s (y) and y, x ≥ 0.

For married households, the home production technology is Dm(x) =
(
x

1/q
1 + x

1/q
2

)q
, and their

maximization problem is

max
c,{yi,xi}2i=1

2

(
x

1/q
1 + x

1/q
2

)q(1−σ)

1− σ
+ c−

2∑
i=1

γ

((
yi
wi

)p

+ xpi

)1/(γp)

s.t. c ≤
2∑

i=1

yi − Tm (y)

and y1, x1, y2, x2 ≥ 0. The parameter γ captures the elasticity of total (i.e., at home and at the

market) labor supply, while the parameter p ∈ (1, 1/γ) captures the elasticity of substitution

between hours at home and at work. The parameter σ ∈ [0, 1) captures the degree of returns
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in utility obtained from consumption of the home produced good. Finally, the parameter q ∈
[1, 1/(1−σ)] allows home produced goods by the two married spouses to be imperfect substitutes.

Our restrictions on these parameters ensure that all choices are interior, and hence we can

abstract from corner solutions.

We analyze this problem in two steps. First, we fix market labor supply of single and mar-

ried households, and characterize their optimal production and consumption of home goods.

The optimal allocation of resources for home goods by single and married households, for any

given levels of market labor supplies l and (l1, l2), solve the following two problems:

N s(l) := min
x

− x1−σ

1− σ
+ γ (lp + xp)

1/(γp) s.t. x ≥ 0,

Nm(l1, l2) := min
{xi}2i=1

−2

(∑2
i=1 x

1/q
i

)q(1−σ)

1− σ
+ γ

2∑
i=1

(lpi + xpi )
1/(γp)

s.t. x1, x2 ≥ 0.

Second, we use N s and Nm to characterize the optimal market labor supply:

max
c,y

c−N s
( y
w

)
s.t. c ≤ y − T s (y) and y ≥ 0,

max
c,{yi}2i=1

2∑
i=1

ci −Nm

(
y1
w1
,
y2
w2

)
s.t.

2∑
i=1

ci ≤
2∑

i=1

yi − Tm (y1, y2) and y1, y2 ≥ 0.

Note that this problem is isomorphic to the problem without home production but in which the

disutility of market labor supply for single and married is given by the reduced-form functions

N s and Nm, respectively. These reduced-form functions introduce two changes relative to our

benchmark specification: the elasticity of labor supply is no longer constant, and it depends

both on a person’s labor supply and, in the case of married individuals, on the labor supply

of their spouse.

Despite these difference, the analysis of this economy is very similar to Section 3. Before

stating the formulas for the optimal distortions that arise in this economy, it would be useful

to define several economically meaningful objects. Let ẽs be the elasticity of the market labor

supply of a single individual, and ẽm be the 2×2 cross-elasticity matrix of market labor supplies

of married individuals.10 Let γ̃s and γ̃m be their transformations defined as

γ̃s :=
(
1 + (ẽs)−1

)−1
, γ̃m :=

(
1 + (ẽm)−1

)−1
.

Functions γ̃s and γ̃m, just like elasticities ẽs and ẽm, may in general depend on market labor

supplies. In the benchmark economy, they were constant and given by γ̃s = γ and γ̃m = γI,

10The elasticity ẽs can be written as ẽs := ∂ ln l
∂ ln(∂Ns/∂l)

. The matrix ẽm is defined analogously, see the appendix
for details.
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where I is the 2×2 identity matrix. We use the notation γ̃s,∗ (w) and γ̃m,∗ (w) to denote values

of these elasticity measures at the optimum, for individuals and couples with productivities w

and w, respectively. Let γ̃m,∗
i,j denote the ijth-element of the matrix γ̃m,∗.

With this notation in place, it is easy to derive the optimality conditions. In particular, we

have

γ̃s,∗(t)λs,∗(t) =
1− E [α|w ≥ t]

θ (t)
, (36)

E
[
γ̃m,∗
i,i λm,∗

i + γ̃m,∗
i,−iλ

m,∗
−i |wi = t

]
=

1− E [αm|wi ≥ t]

θ (t)
. (37)

Equation (36) shows that the optimal tax for a single individual is still given by Diamond’s

ABC formula. Equation (37) reveals that the optimal tax formula for married households now

captures a weighted sum of distortions of two spouses. The redistributive benefits of marginal

taxes on married individuals are the same as in the benchmark economy, but the marginal tax

on spouse i also affects the labor supply of their spouse. These labor supply responses are

captured by γ̃m,∗
i,i and γ̃m,∗

i,−i, respectively.

5.4 Bargaining and the allocation of resources within couples

In Section 2, we assumed that spouses share their marital surplus equally. A substantial

empirical literature (see, e.g., Voena (2015) or the handbook chapter by Almas et al. (2023))

has documented that relative economic opportunities of spouses and their post-divorce outside

options affect how resources are allocated within families. In this section, we study normative

tax implications of these mechanisms.

We use Nash bargaining to model the allocation of resources within couples. We modify

descriptions of Stages 2 and 3 of our model and assume that spouses bargain over surplus

division after their productivities w are realized but before they supply labor to the market.

When bargaining, each spouse uses the threat of divorce at a personal cost ϱ > 0. If divorce

occurs, both spouses become single and do not remarry. Thus, the outside option of spouse i

is vs(wi)− ϱ. The cost parameter ϱ is assumed to be sufficiently high so that it is not socially

efficient for couples to get divorced. The couples’ joint surplus vm is given as in Section 2, and

its allocation between spouses is obtained by solving

max
Um
1 ,Um

2

[Um
1 − (vs(w1)− ϱ)]

1/2 [Um
2 − (vs(w2)− ϱ)]

1/2 s.t. Um
1 + Um

2 = vm, (38)

which pins down the pecuniary utility of spouse i to be

Um(wi|w−i) =
1

2
vm(w) +

vs(wi)− vs(w−i)

2
. (39)
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As can been from this equation, the primary earner obtains a larger share of the marital surplus

because of a better outside option.

Proceeding as in Section 3, we can show that the optimal distortions for a single person

are given by

λs,∗(t) =
1− E [α|w ≥ t]

γθ (t)
+

µ∗

1− µ∗
E [ξ|w ≥ t]

γθ (t)
, (40)

where the function ξ is defined by ξ (w) := 1
2E [α(w−i)− α(wi)|wi = w]. Under positive as-

sortative matching, we have E [ξ|w ≥ t] > 0; thus, Equation (40) implies that the optimal

marginal taxes on singles are higher under bargaining than under equal consumption sharing.

The intuition for this result is as follows. Spouses use the threat of becoming single to secure

their share of marital surplus. By making single households more equal via distortionary tax-

ation, the planner compresses outside options of married spouses and endogenously facilitates

consumption sharing within couples.

The optimal distortions for married persons λm,∗ are the same as in Section 3 and are

characterized by Equation (16). This may appear surprising. After all, the optimal taxes for

married individuals are lower than for single individuals if surplus is shared equally by spouses.

Bargaining leads to unequal surplus division, so why is it that the optimal taxes are the same

in these two cases? To answer this question, observe that according to Equation (39), while

a more productive spouse receives a bigger share of marital surplus, they split any marginal

change in vm equally with their partner. The optimal labor distortions are pinned down by

how couples share a marginal dollar, which is the same under equal consumption sharing and

under Nash bargaining.

One might conjecture that if a more productive spouse has higher bargaining power, so that

they obtain a larger fraction of the marginal dollar, then the optimal distortions for married

individuals would be higher than under equal consumption sharing. This conjecture turns out

to be false and the tax implications of such bargaining are more nuanced. To be concrete,

consider the generalized bargaining solution in which the marital surplus is shared according

to

max
Um
1 ,Um

2

[Um
1 − (vs(w1)− ϱ)]η(w1|w2) [Um

2 − (vs(w2)− ϱ)]η(w2|w1) s.t. Um
1 + Um

2 = vm.

Here, η captures the relative bargaining powers of spouses. We assume that η(wi|w−i) ≥ 0,

η(w1|w2)+ η(w2|w1) = 1, and that η(·|w−i) is increasing. This implies that a more productive

partner has larger bargaining power since η(wi|w−i) ≥ 1/2 when wi ≥ w−i. It is easy to see

that, under generalized bargaining, the pecuniary utility of spouse i is

Um(wi|w−i) = η(wi|w−i)v
m(w) + [η(w−i|wi) (v

s(wi)− ϱ)− η(wi|w−i) (v
s(w−i)− ϱ)] , (41)
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so that a more productive spouse receives a higher share of both the total family surplus and

of each marginal dollar.

Using (41) and the same arguments as in Section 3, we can show that the optimal distortion

for single persons λs,∗ takes a form similar to (40). In contrast, the average optimal distortion

for married persons satisfies

E
[
λm,∗
i |wi = t

]
=

1− E
[

αm

Eαm |w ≥ t
]

γθ (t)
× Eαm, (42)

where αm(w) := η (w1|w2)α (w1) + η (w2|w1)α (w2). There is a close parallel between this

equation and our discussion of optimal distortions under arbitrary Pareto weights in Section

5.1. As in that section, the average optimal distortion is a product of two terms. The first

term captures the planner’s preference for redistribution within married households. This

preference is captured by the quasi-weight αm that takes into account how marginal dollars

are allocated by spouses through bargaining. This term generally calls for higher optimal

distortions than under equal consumption sharing. The second term in Equation (42), Eαm,

captures how generalized bargaining affects the planner’s attitude towards marriage. Under

positive assortative matching, this term is less than one so the planner endogenously cares less

about married households. As we discussed in Section 5.1, this effect calls for lower marginal

taxes on married households. Thus, the net impact of generalized bargaining on optimal

distortions for married households is ambiguous.

To understand the intuition for why marriage is less desirable under generalized bargaining,

consider a thought experiment of giving an additional $2 to all couples. Under both equal

consumption sharing and classical Nash bargaining, spouses share this transfer equally so

that consumption of every married individual increases by $1. In contrast, under generalized

bargaining a more productive spouse gets a larger fraction of this transfer and so the uniform

$2 transfer to married couples gets endogenously allocated to more productive persons, who

have a lower weight in the planner’s objective. This makes the planner want to shift resources

from married to single households.

To see concrete implications of (42), suppose that E [η(wi|w−i)|wi = t] → 1 as t → ∞,

which means that very productive primary earners grab the whole marginal dollar. Taking the

limit of (42) as t→ ∞, we obtain

lim
t→∞

E
[
λm,∗
i |wi = t

]
=

1

γ limt→∞ θ (t)
× (Eαm − α(∞)) .

As shown in the previous section, under equal consumption sharing, the optimal average tax
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rate satisfies

lim
t→∞

E
[
λm,∗
i |wi = t

]
=

1

γ limt→∞ θ (t)
×
(
1− 1

2
α(∞)− lim

t→∞

1

2
E[α(w−i)|wi = t]

)
.

In general, there is no clear ranking of these limiting distortions. For example, if the joint

distribution is given by the Gaussian copula with ρ > 0, then limt→∞
1
2E[α(w−i)|wi = t] =

α(∞), and the optimal distortions are smaller under generalized bargaining due to Eαm < 1.

The opposite may be true for some Pareto weights under alternative assumptions about the

distribution of types.

Finally, it is worthwhile to remark that generalized bargaining often endogenously imposes

supermodularity on the planner’s objective function. For example, if primary earners always

receive the whole marginal dollar, then αm(w) = min {α(w1), α(w2)} , which is a supermodular

function. So, the insights of Corollary 2 apply directly to optimal taxation with differential

bargaining powers.

5.5 Extensive margin of labor supply

In our benchmark economy, all labor supply adjustments are done along the intensive margin.

We now discuss the implications of adding the extensive margin.

We model the extensive margin along the lines of Jacquet et al. (2013). Each individual

has an idiosyncratic fixed disutility cost κ to participate in the labor market, so that the utility

of each person is given by c − γl1/γ − eκ, where e ∈ {0, 1} is the labor market participation

decision. We assume that κ is distributed independently from other variables according to

some distribution H supported on [κ, κ], where 0 ≤ κ ≤ κ < ∞, that admits a continuously

differentiable density h if κ < κ. Following Jacquet et al. (2013), we assume that e is observable

and taxes may directly depend on it. Each person learns their realization of shock κ in Stage

3 before deciding on their labor supply. The rest of the assumptions are as in Section 2.

The analysis of the model with the extensive margin requires several adjustments. We first

describe them for single individuals. Our tax system consists of a uniform lump-sum transfer

bs to all single persons, and a tax schedule T s(y) for working singles, i.e., those with e = 1.

Let vs be the utility of a single working person defined analogously to the definition of vs in

Section 2. The local incentive constraints, that capture the intensive margin labor response,

are given by the same envelope condition (8). Taking into account the decision whether to

participate in the labor market, the pecuniary utility of a single person can be written as

max{vs(w)− κ, 0}+ bs.
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Clearly, a single person with productivity w participates in the labor market if κ is below the

threshold value of vs(w) that happens with probability H(vs(w)). The necessary conditions

for optimality in our model with extensive margin can be written as

∂

∂w
(λs,∗γwH(vs,∗)g) = (α− 1)H(vs,∗)g + T s,∗h(vs,∗)g, (43)

where T s,∗ are the taxes paid by a working single person. These taxes are determined by vs,∗

via T s,∗(ys,∗(w)) = w1+γ
(
∂vs,∗(w)

∂w

)γ
− γw ∂vs,∗(w)

∂w − vs,∗(w).

Comparing this equation with (11), we see that the extensive margin introduces two changes

to the optimality condition. First, the density of types g(w) is multiplied by Hs(w) :=

H(vs,∗(w)), which is the density of individuals who participate in the labor market. Second,

there is an additional term, T s,∗hsg, that captures the extensive margin response.

To state the expression for the optimal distortions, let gs := Hsg be the density of pro-

ductivities of single agents who participate in the labor market, Es be the expectation with

respect to this distribution, θs be its tail statistics defined analogously to (13). Integrating

(43) we obtain11

λs,∗ (t) =
1− Es [α|w ≥ t]

γθs (t)
−

Es
[
T s,∗ hs

Hs |w ≥ t
]

γθs (t)
. (44)

This equation is a version of optimal tax formulas derived by Jacquet et al. (2013), who

studied optimal uni-dimensional taxation in models with both intensive and extensive mar-

gins. The first term on the right-hand side of (44) has the same interpretation as Equation

(12). The second term on the right-hand side of (44) captures the behavioral costs of labor

force participation decision. To understand the intuition for this term, observe that higher

marginal taxes on single persons with productivity w = t increase average taxes for individ-

uals with productivity w > t. They respond along the extensive margin, and their extensive

margin elasticity is captured by hs

Hs . Thus, Es
[
T s,∗ hs

Hs |w ≥ t
]
measures tax revenues lost by

the government due to this behavioral response.

The problem of married households is more difficult. Each couple has four labor market

participation choices: (i) both spouses work, (ii) and (iii) only one of the spouses works, and

(iv) both exit the labor force. Let vm(w) be the marital surplus of couples with productivities

w when both spouses work and ṽm(wi) be their surplus when only spouse i works. The labor

force participation decision of a couple with productivities (w1, w2) and participation costs

11In writing this equation, we implicitly assumed that κ = 0 so that there are persons of all productivities who
participate in the labor market. When κ > 0, there is a productivity cut-off so that persons with productivity
below that cut-off do not participate in the market. Equation (44) applies to all productivities above that
cut-off. The same is true for (45).
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(κ1, κ2) can be written as

max{vm(w1, w2)− κ1 − κ2, ṽ
m(w1)− κ1, ṽ

m(w2)− κ2, 0}+ bs.

Thus, the optimal tax problem involves choosing two functions for couples, vm,∗ and ṽm,∗,

corresponding to cases when both spouses work and only one spouse works. The optimality

conditions for those functions, which we state in the appendix, are inter-related, as, for example,

a perturbation of ṽm affects participation decisions of both one- and two-earner couples.

To streamline our exposition, we focus on the random matching economy. In this economy,

one can guess that the relationship between vm,∗ and ṽm,∗ is given by vm,∗(w1, w2) = ṽm,∗(w1)+

ṽm,∗(w2), solve explicitly for ṽm,∗, and verify that this function is consistent with the remaining

optimality conditions. This approach implies that the tax schedule on married household is

separable, Tm,∗(y1, y2) = T̃m,∗(y1) + T̃m,∗(y2), and the optimal distortions satisfy

λm,∗ (t) =
1

2

1− Em [α|w ≥ t]

γθm (t)
−

Em
[
T̃m,∗ hm

Hm |w ≥ t
]

γθm (t)
, (45)

where θm, Em, Hm are defined analogously to θs, Es, Hs for single agents (see the appendix

for the details).

Equation (45) combines the economic mechanisms that we discussed in Section 3 and in

Equation (44). Consumption sharing implies that the redistributory benefits of taxation are

cut in half for married persons, which is the reason for why 1
2 appears in the front of the first

term on the right hand side of (44). At the same time, an increase in average taxes on persons

with productivity w > t triggers their extensive margin response, which is captured by the

second term in Equation (44).

While Equations (44) and (45) provide a lot of insights about optimal taxation of single and

married individuals, they have two limitations. First, both distributions, Hs and Hm, and tax

functions, T s,∗ and T̃m,∗, that appear on their right-hand sides are endogenous objects. This

makes it difficult to use these equations to derive sharp comparisons of taxes for single and mar-

ried or to conduct comparative statics analysis. Second, the mechanism design problem with

the extensive margin is no longer convex. While the guess and verify technique ensures that

solution (44) satisfies the necessary conditions for optimality, it cannot rule out a possibility

that there is another, more complicated solution that satisfies the same optimality conditions

and yields higher welfare. We address both of these limitations by considering the special case

of our economy in which all persons have the same cost of labor market participation.

Lemma 7. Consider the model with random matching and κ = κ > 0.
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(a) The optimal tax for married couples is separable, and marginal taxes for single and

married individuals coincide with those derived in Section 4.

(b). There are productivity cut-offs ws, wm for single and married, with ws > wm, so that

single and married individuals participate in the labor market if and only if their productivity

is above those respective cut-offs.

(c). The optimal marriage rate µ∗ and the marriage subsidy EUm,∗ −EU s,∗ are decreasing

in κ and converge to µLF and 0, respectively, as κ→ ∞.

The hardest part of proving this lemma lies in verifying that our candidate solution vm,∗

is globally optimal. In order to do it, we consider an extended mechanism design problem,

in which persons choose probabilities of labor force participation and the mechanism designer

can choose allocations that depend on those probabilities. That extended mechanism design

problem is convex and, using the guess and verify technique, we can characterize its solution

explicitly. We then verify that this solution also satisfies the optimality conditions of the

more restrictive original mechanism design problem, which ensures that we found the global

optimum.

The economy described in Lemma 7 has a simple yet very insightful structure. If labor

market participation costs are the same for all individuals, then they participate in the labor

market if and only if their productivity is above certain cut-offs. The individuals who are ex-

actly at their cut-offs respond to tax changes along the extensive margin, the individuals above

those cut-offs respond along the intensive margin. Lemma 7 gives several additional insights

about optimal taxation of single and married individuals with extensive margin responses.

Part (b) shows that the productivity cut-off in the optimum is higher for single persons so

that they are less likely to participate in the labor market than married. The intuition for this

result is that single individuals face higher optimal taxes, which increases their incentives to

drop out of the labor force. Part (c) shows that the marriage rate and the marriage subsidy

decrease in the participation costs. Larger participation costs mean that fewer married indi-

viduals work, resulting in less surplus-sharing within couples. This decreases redistributory

benefits of marriage and reduces the size of the optimal marriage subsidy.

5.6 Selection into marriage

In our economy described in Section 2, the probability of getting married was the same for

all persons. However, in the data, marriage rates are correlated with various indicators of a

person’s socio-economic status and their earnings. In this section, we extend our model to

incorporate such heterogeneous selection into marriage.
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The simplest way to introduce the correlation of marriage rates and productivities is to

switch the order of Stages 1 and 2, i.e., to assume that individuals first observe signals q about

their individual productivities and then decide whether to enter the marriage market. The rest

of the setup is as in Section 2. To highlight the key differences that this setup introduces, we

assume that there are two possible signals, q = h and q = l, that occur with equal probabilities.

Let Hq be the distribution of productivities of individuals who receive a signal q, and µq be

their marriage rate. The average marriage rate µ in the economy is given by µ = 1
2 (µh + µl).

There are several parallels with our discussion in the previous section. First of all, taxes

affect skill composition of single and married persons. Let Gs and Fm denote the skill distri-

butions of single and married persons in the optimum. Let Es and Em be expectations under

these distributions, and θs and θm be their tail statistics. Setting up the mechanism design

problem, one can show that the optimal distortions satisfy

λs,∗(t) =
1− Es [α|w ≥ t]

γθs (t)
+

1

1− µ∗
δh(1−Hh(t)) + δl(1−Hl(t))

γθs (t)
,

E[λm,∗
i |wi = t] =

1− Em [αm|wi ≥ t]

γθm (t)
− 1

µ∗
δh(1−Hh(t)) + δl(1−Hl(t))

γθm (t)
,

where δh and δl are the Lagrange multipliers on the two analogs of Equation (5), for qh

and ql, respectively. Furthemore, it can be shown that these multipliers must satisfy µ∗δh +

(1− µ∗) δl = 0.

Examination of these equations reveals that both optimal tax formulas consist of two

terms. The first terms on the right-hand sides are the same as in Equations (12) and (18),

except now they take into account that the tail statistics θs and θm summarizing the marginal

distributions of productivities may differ across single and married individuals. The second

terms on the right-hand side of these equations capture the additional effect from behavioral

responses to changes in pecuniary benefits from singlehood and marriage on sorting. The

planner recognizes that taxes affect sorting into marriage, influencing the distributions of

productivities among single and married individuals, and takes these behavioral responses

into account when choosing tax rates. These terms take opposite signs for single and married

persons, and their economic implications are similar to those of exogenously different Pareto

weights in Section 5.1.

5.7 Optimality of taxation of family earnings

Several countries, e.g., the U.S., tax married couples based on their total earnings. Un-

der such family-earnings-based taxation, a tax function Tm can be written as Tm (y1, y2) =

T̃ fam (y1 + y2). In this section, we explore conditions under which such taxation is optimal.
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Let Y = y1+y2. Under family-earning-based taxation, both spouses face identical marginal

tax rates, and their labor optimality conditions are

yi = w
1/(1−γ)

i

(
1− ∂

∂Y
T̃ fam(Y )

)γ/(1−γ)

for i = 1, 2.

This equation shows that total earnings of a couple w under such tax system are proportional

to w
1/(1−γ)
1 + w

1/(1−γ)
2 . Therefore, finding conditions for optimality of family-earnings based

taxation is equivalent to characterizing conditions under which the optimal allocations for each

couple depend only on a uni-dimensional summary statistics given by

R (w) :=
(
w

1/(1−γ)

1 + w
1/(1−γ)

2

)1−γ
,

which can be interpreted as the measure of the average family productivity. Recall the function

I (w) = minw
maxw that we defined in Section 3.2. Taken together, R and I conveniently redefine

the coordinate system w ↔ (r, ι), where r = R (w) is the average family productivity and

ι = I (w) is the relative spousal productivity. Family-earnings-based taxation is optimal if the

optimal distortions depend only on r and not on ι.

Set Q = R in Theorem 1 to obtain that the optimal distortions satisfy

E

[
2∑

i=1

w
1/(1−γ)

i

w
1/(1−γ)

1 + w
1/(1−γ)

2

λm,∗
i

∣∣∣∣∣R = r

]
=

1− E
[
αm|R ≥ r

]
γθr (r)

, (46)

where θr (r) := −d ln Pr(R≥r)
d ln r . If family-earnings-based taxation is optimal, then λm,∗

1 = λm,∗
2

and this equation simplifies to

λm,∗
1 (w) = λm,∗

2 (w) =
1− E[αm|R ≥ r]

γθr (r)
for all w s.t. R (w) = r.

Conversely, family-earnings-based taxation is optimal if these (λm,∗
1 , λm,∗

2 ) satisfy (14) and

(15). The cross-partial condition (15) is satisfied automatically since both spouses face the

same marginal tax rates. The next lemma describe conditions under which (14) holds for some

symmetric αm with Eαm = 1 and the distribution of (r, ι) as primitives of the model.

Lemma 8. The optimal tax for couples is family-earnings-based if and only if

1− E
[
αm|R ≥ r, I = ι

]
−d ln Pr(R≥r|I=ι)

d ln r

is independent of ι for all r. In particular, if Pareto weights for couples αm take the form

αm (w) = α̃m (R (w)), then such taxation is optimal if and only if the distribution F is such

that r and ι are independent.
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The idea that families with the same total income should be treated and valued identically

by the planner is known as “horizontal equity”.12 One interpretation of horizontal equity

in our context is that taxes are family-earnings-based and for each level of total earnings

Y , the planner assigns the same implicit Pareto weight to all couples w with that level of

total earnings, i.e., ym1 (w) + ym2 (w) = Y . Under family-earnings-based taxation, the latter

property is captured by Pareto weights αm that treat identically all couples with the same

average productivity. According to Lemma 8, when the planner has an inherent preference for

horizontal equity, the necessary and sufficient condition for the optimality of family-earnings-

based taxation is independence of the average family productivity r from the relative spousal

productivity ι. When r and ι are independent, there is no trade-off between pursuing horizontal

equity and redistribution between rich and poor couples, which is also known in the literature

as “vertical equity”. However, if ι contains some information about r, it may be optimal to

sacrifice some of horizontal equity in favor of more efficient redistribution.13

One can analyze implications of correlation between r and ι along the lines of our analysis

in Section 3.2. For example, one can show that higher dependence of r and ι in the PQD sense

implies that the secondary earner should, on average, face higher distortions.

5.8 Gender differences

The family economics literature has documented systematic differences in earnings between

males and females. In this section, we incorporate this heterogeneity in our model. We assume

that there are two fixed genders, o = 1 and o = 2, each of equal measure, and that married

couples consist of one spouse of each gender. Persons 1 and 2 draw their productivities from

distributions Ĝ1 and Ĝ2 with densities ĝ1 and ĝ2. The description of the matching process is as

in Section 2 with one modification. Since individuals of two genders are ex-ante different, there

is no reason to expect that the same number of males and females will arrive on the marriage

market. To clear this market, we introduce rationing and return individuals of the “surplus”

gender with highest values of ε back to the singlehood. We assume that social welfare is given

by

W :=
1

2

∫
α̂1(w1)E [U1|w1] dĜ1 +

1

2

∫
α̂2(w2)E [U2|w2] dĜ2,

where weights α̂1 and α̂2 are not necessarily the same, and set
∫
α̂odĜo = 1 for o = 1, 2.

Let F̂ be the joint distribution of productivites of married couples, where its two coordinates

12See, e.g., Liebman and Ramsey (2019).
13Other authors have criticized the U.S. family-earnings-based tax policy as well. For example, Borella et al.

(2023) estimate a dynamic life-cycle model of labor supply and argue that the U.S. tax system is suboptimal
because it discourages secondary earners (often women) from working.
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correspond to productivities of persons of genders 1 and 2. F̂ does not need to be symmetric,

let Ĝ1 and Ĝ2 be its marginals with corresponding tail statistics θ̂1 and θ̂2. Let α̂
m be defined

by α̂m(w1, w2) :=
1
2 α̂1(w1) +

1
2 α̂2(w2).

If gender is observable, the planner can, in principle, use taxes that depend both on the

marital status and gender. We consider both gender-specific taxes, in which the planner uses

gender information, and gender-neutral taxes, in which the planner cannot use this information.

It turns out that there is a close connection between optimality conditions for these two tax

systems.

We start by considering gender-specific taxation. Such taxes can be studied using es-

sentially the same mechanism design problem as described in Section 3, except that now

there are two asymmetric groups of agents, a and b. The optimal gender-specific distortions,

{λ̂s,∗o , λ̂m,∗
o }o∈{1,2}, satisfy

λ̂s,∗o (t) =
1− Êo[α̂o|wo ≥ t]

γθ̂o(t)
, Ê[λ̂m,∗

o |wo = t] =
1− Ê [α̂m|wo ≥ t]

γθ̂o(t)
for o = 1, 2, (47)

where Êo and Ê denote expectations with respect to the probability distributions Ĝo and F̂ ,

respectively. These equations are analogs of (12) and (18) in the benchmark economy.

The characterization of optimal gender-neutral taxes is even simpler as it reduces to a

special case of the mechanism design problem that we considered in Section 5.1. Under gender-

neutral taxes, any person with productivity w must receive the same utility irrespective of their

gender. Consequently, to set taxes for single individuals, the planner can use information only

about their unconditional (i.e., not gender-specific) distribution of productivities, G = 1
2(Ĝ1+

Ĝ2). Similarly, taxes for married individuals cannot be based on gender-specific information

about the joint distribution of productivities. The joint distribution with “scrambled” gender

information is F (w) = 1
2(F̂ (w1, w2) + F̂ (w2, w1)). Finally, since neither vs nor vm contain

gender information, the Pareto weights that appear in the planner’s objective function can be

written as α = 1
2g (α̂1ĝ1+ α̂2ĝ2) and α

m(w) = 1
2f (α̂

m(w1, w2)f̂(w1, w2)+ α̂
m(w2, w1)f̂(w2, w1)),

where g and f are densities of G and F . Taking all pieces together, we can show that the

optimal distortions under gender-neutral taxation are given by

λs,∗(t) =
1− E[α|wi ≥ t]

γθ(t)
, E[λm,∗

i |wi = t] =
1− E [αm|wi ≥ t]

γθ(t)
. (48)

There is a close relationship between the optimal distortions under gender-specific and

gender-neutral taxation. In particular, it is easy to verify that these optimal distortions de-

scribed in (47) and (48) satisfy

λs,∗(t) =
∑
o=1,2

ωo(t)λ̂
s,∗
o (t), E[λm,∗

i |wi = t] =
∑
o=1,2

ωo(t)Ê[λ̂m,∗
o |wo = t], (49)
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where ωo(t) := go(t)
g1(t)+g2(t)

. Thus, the optimal distortions under gender-neutral taxation are

equal to the weighted average of the optimal distortions under gender-specific taxation. The

total “amount” of distortions is the same under both tax systems but gender-specific taxation

allows the planner to improve welfare by allocating them more efficiently between genders.

5.9 Optimal restricted taxation

The close relationship between optimal unrestricted and restricted taxation uncovered by Equa-

tion (49) holds in other contexts as well. For example, suppose we exogenously restrict taxes

for married households to take the form Tm (y1, y2) = T̃m (y1) + T̃m (y2). It is easy to verify

that under such taxes, the marital surplus vm must be additively separable in w1 and w2, i.e.,

vm (w1, w2) = ṽm (w1) + ṽm (w2). Thus, studying separable taxation is equivalent to imposing

an additional restriction on the mechanism design problem that vm belongs to the class of

additively separable functions. Since ṽm is a uni-dimensional function, it is easy to analyze us-

ing standard uni-dimensional techniques. In particular, one can derive the optimal distortions

from the optimal separable taxes, λ̃m,∗, and show that they are equal to the average optimal

distortions in the unrestricted tax system:

λ̃m,∗(t) = E[λm,∗
i |wi = t].

Similarly, suppose that we require taxes for married households to be family-earnings-

based, Tm (y1, y2) = T̃ fam (y1 + y2). Under such system, utility of married couples must take

the form vm(w) = ṽm(R(w)), i.e., it depends only on the total family productivity. Since such

ṽm is uni-dimensional, it is also easy to characterize and derive the optimal distortions λm,fam,∗

implied by this restricted tax system. Once again, these distortions are just the average of

distortions under the unrestricted tax system, where averages are now taking across all couples

w with a given total productivity r:

λm,fam,∗(r) = E

[
2∑

i=1

w
1/(1−γ)

i

w
1/(1−γ)

1 + w
1/(1−γ)

2

λm,∗
i

∣∣∣∣∣R = r

]
.

Observations in this and in the previous section show a remarkable close connection between

optimal restricted and unrestricted taxation. In all three cases, the optimal distortions under

restricted taxes are equal, on average, to the optimal distortions under the unrestricted tax

system. Unrestricted and restricted optimal taxes are chosen to balance-off exactly the same

redistributory benefits and distortionary costs. The unrestricted tax system allows the planner

to allocate those benefits and costs more efficiently among different households.14

14See also Golosov et al. (2014) who make a similar observation in a different context.
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6 Quantitative analysis

In this section, we illustrate the theoretical implications of our analysis using a quantitative

model. We focus on our baseline model, which we view as a natural benchmark. We calibrate

this model, compute the optimal taxes, and compare the properties of these taxes to the

theoretical predictions derived using our analytical techniques. Additionally, we numerically

check the validity of the FOA that was implicitly invoked in those derivations. Due to space

constraints, we defer the comprehensive quantitative analysis of various extensions that we

considered in Section 5 to future work.

Our baseline model has three types of primitives: the elasticity parameter γ, the distribu-

tion of productivities G and the joint distribution F , and the set of Pareto weights α. We set

the elasticity parameter γ to 1/4, so that the implied labor supply elasticity γ
1−γ is equal to

1/3, which is the mid-range of values considered by Diamond (1998).

We use observed taxes and the distribution of earnings to invert it to obtain the distributions

G and F . Following Guner et al. (2014) and Heathcote et al. (2017), who argued that the U.S.

tax schedule is such that family post-tax earnings are approximately a log-linear function

of family pre-tax earnings, we assume that households in the data face taxes of the form

T (y1, y2) = (y1 + y2)−ν (y1 + y2)
1−τ , where τ and ν are parameters. We refer to this functional

form as the HSV tax schedule. Under this tax system, the relationship between an observed

vector of earnings y and an unobserved vector of productivities w is given by

w
1/γ
i =

1

(1− τ) ν
y
1/γ−1
i (y1 + y2)

τ . (50)

To invert this mapping, we use the parameter values of (τ, ν) that Guner et al. (2014) esti-

mated for U.S. married couples. To obtain the joint distribution of earnings we construct the

dataset from the 2020 CPS survey, restricting attention to couples in which both individuals

are between 25 and 65 years old and worked at least 20 weeks in 2019. To ensure that two mar-

ried spouses are statistically identical, we create a copy of each couple with permuted spousal

earnings. This provides us with the empirical joint distribution of spousal earnings, which we

then invert to obtain the empirical joint distribution of productivities. To isolate dependence

properties from properties of its marginals, we decompose this empirical joint distribution into

its empirical marginal Ge and copula Ce.15 We calibrate these components separately.

We choose a parsimonious representation of the marginal distribution of w. Consistent

with earlier literature (e.g., Badel et al. (2020) or Golosov et al. (2016)), we find that the

15Ge(w) corresponds to the sample fraction of individuals with a productivity less or equal to w and Ce(u1, u2)
is the sample fraction of couples in which a pair of spousal empirical percentiles are less or equal to (u1, u2).
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empirical marginal distribution can be well approximated by G that belongs to the parametric

family of Pareto lognormal (PLN) distributions.16 We choose the three parameters (η, σ, a) of

the PLN distribution to match the mean level of productivity, the Gini coefficient, and the tail

parameter. These three moments can be expressed analytically in terms of (η, σ, a), allowing

us to obtain these parameters by a simple inversion of the respective moment conditions (see

appendix for the details). Panel (a) of Figure 5 shows the empirical and calibrated marginal

distributions of productivities.

(a) (b)

(c) (d)

Figure 5: Empirical (dashed red lines) and calibrated (solid blue lines) distributions of productivities. Panel
(a) plots their marginals; Panel (b) visualizes the isoquants of their copulas; and Panels (c) and (d) show the

left-tail and right-tail statistics defined by lnu
lnC(u,u)

and ln(1−u)
ln(1+C(u,u)−2u)

, respectively.

Recall that F can be uniquely identified with the bi-dimensional distribution C with uni-

form marginals called copula via F (w1, w2) = C(G(w1), G(w2)), e.g., see Nelsen (2006). We

use this representation and calibrate the copula of F to the empirical copula Ce. We find

that the Gaussian copula fits the data very well. It has only one parameter, ρ, that we set

16The PLN family was introduced in Colombi (1990) as a model of the income distribution, and
since then, it has been used extensively in various studies. It is defined as G(t) = Φ

(
ln t−η

σ

)
−

t−a exp
(
aη + a2σ2/2

)
Φ
(

ln t−η−aσ2

σ

)
, where Φ is the standard normal distribution.
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Parameter Value Definition Target

γ 0.25
Measure of the labor supply

elasticity
Elasticity of labor supply, 0.33

a 2.95
Pareto tail of the PLN

distribution

Sample Pareto statistics at 99% of individual

productivities, 2.95

η -0.71
Location parameter of the PLN

distribution
Sample mean individual productivity, 0.81

σ 0.40
Shape parameter of the PLN

distribution
Sample Gini of individual productivities, 0.31

ρ 0.33
Correlation parameter of the

Gaussian copula
Sample Kendell’s tau of spousal productivities, 0.21

Table 1: Calibrated parameters

to match the Kendell’s tau dependence coefficient17 of the productivity distribution. This

parsimonious specification matches well a number of other moments of as well. For example,

in Panel (b) of Figure 5, we plot the isoquants of both the empirical copula and the calibrated

Gaussian copula, showing a very close fit. The Gaussian copula also has a property that

limu→0
lnu

lnC(u,u) = limu→1
ln(1−u)

ln(1+C(u,u)−2u) = 1+ρ
2 , the fact that we used in proving Lemma 5.

This is consistent with the properties of the empirical copula as shown in Panels (c) and (d)

of Figure 5. Table 1 summarizes all our parameters and their empirical counterparts.

We use the Pareto weights α that are given by α (w) = const × e−mw1/(1−γ)
, where const

is chosen so that they integrate to one. We set the parameter m to 0.35 to match the average

marginal tax rates of married persons in the data and in the optimum. This way, the total

amount of redistribution is similar in our model and the data. To compute the optimal taxes,

we first solve the relaxed problem and then verify that the solution satisfies global incentive

constraints. In all cases that we considered we found that the FOA was valid.

Figure 6 visualizes the optimal marginal taxes on single and married households and com-

pares these schedules to the U.S. tax rates that implied by the estimated HSV function, which

is reported in Guner et al. (2014).18 We report ∂
∂yi
Tm,∗ (yi, y−i) and their empirical analog,

∂
∂yi
TUS (yi, y−i), in two ways: when earnings y−i are fixed at different percentiles of earnings

distribution, and when earnings y−i are fixed multiples of yi. The former way is more informa-

17The Kendell’s tau is a measure of rank correlation of the joint distribution, thus it is independent of
its marginals. The relationship between Kendell’s tau and parameter ρ of the Gaussian copula is given by
Kendell’s tau = 2 arcsin ρ

π
.

18We use the second column of Table 10 for married and the first column of Table 11 for single. These authors
record earnings in multipliers of 53K, whereas we use multipliers of $100K. To ensure that total tax liabilities
are identical in dollars terms, we re-normalize their estimates of ν by

(
53
100

)τ
.
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(a) Optimum (b) Optimum

(c) U.S. (d) U.S.

Figure 6: Optimal taxes (Panels (a) and (b)) and the U.S. taxes implied by the estimated HSV schedule
(Panels (c) and (d)).

tive about jointness, the latter about the comparison of marginal taxes between the primary

and the secondary earners. As a reference, we also report the optimal marginal taxes in the

economy with random matching (in which case ∂
∂yi
Tm,∗ (yi, y−i) is independent of y−i as we

showed in Lemma 4).

The optimal tax schedules share properties implied by our analytical formulas, both qual-

itatively and quantitatively. First of all, the optimal tax rates on married individuals under

calibrated assortativity lie between the optimal tax rates on singles and the optimal tax rates

on married individuals under random matching, consistent with our Lemma 2. One can also

see from Panel (a) of Figure 6 that the optimal marginal taxes are positively jointed for low

earners since the marginal tax ∂
∂yi
Tm,∗ (yi, y−i) is increasing in y−i for low values of yi. This

result is consistent with Lemma 5, which established optimality of positive jointness in the left

tail. The same lemma also established that the optimal taxes must be negatively-jointed for

high-earners.19 This occurs at much higher earnings levels (>$8.5 mln) than the scale of the

19Spiritus et al. (2022) solved numerically a related optimal joint taxation problem and also found that optimal
jointness is positive at the top and negative at the bottom.
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x-axis we use. That being said, optimal jointness is very modest for all earnings levels, with

marginal taxes for one spouse changing by, at most, several percentage points as a function

earnings of the other spouse. Finally, Panel (b) of Figure 6 shows that the optimal marginal

taxes on earnings yi are decreasing in the value of the ratio yi/y−i. This is consistent with

Lemma 6 in which we showed that secondary earners should face higher distortions if their

productivity relative to that of primary earners is sufficiently low. Quantiatively, the same

conclusion appears to hold more generally.

Comparison of the optimal and U.S. taxes reported in 6 reveals two striking differences

between them. As can be seen from Panels (c) and (d), the U.S. tax schedule exhibits a

substantial marriage penalty as the tax U.S. rates on singles are generally lower than those

rates on married individuals with the same level of earnings. In contrast, our quantitative

analysis suggests the planner should provide a marriage bonus setting lower tax rates on

married persons.20 Furthermore, this is consistent with our theoretical analysis in Section 3.2.1,

which establishes that the optimality of lower taxes on married in a general non-parametric

setting. Figure 6 also reveals that the optimal marginal taxes are steeper than the ones in

the data. Qualitatively, this pattern is driven by two features of our calibration: the PLN

marginal distribution of productivities, and the assumption that the Pareto weight of the

richest individuals goes to zero. The PLN distribution has a thin left tail, limt→0 θ (t) = ∞,

which implies from (12) and (18) that optimal taxes should go to zero for the low earners. In

contrast, the marginal taxes implied by the estimated HSV tax functions are positive for the

low earners. The right tail of the PLN distribution is thick, with limt→∞ θ (t) = a < ∞. This

implies that the limiting average distortions in our calibrated economy, using formula (18), are

lim
t→∞

E
[
λ∗i

∣∣∣wi = t
]
=

1

γa
≈ 1.35,

corresponding to the average tax rate on high-earner to be around 0.55. However, this limit is

reached very slowly as the convergence rate of E [α(w−i)|wi ≥ 0] to 0 is low. The slow speed

of convergence explains why the optimal marginal tax rates in Figure 6 are substantially lower

than this limit, even for individuals with earnings of $300K.

An alternative way to represent the optimal tax schedule for married individuals is by

the functional form Tm,∗(y) = T fam,∗ (Y (y) , ι (y)), where Y (y) = y1 + y2 are the total

family earnings and ι (y) = miny
Y (y) is the share of the secondary earner. Family-earnings-

based taxes are optimal if T fam,∗ does not depend on the second argument. In Figure 7, we

plot ∂
∂Y T

fam,∗ (·, ι) for different values of ι. The purple dotted line shows the U.S. tax code

20This is aligned with the recent empirical findings in the family economics literature, e.g., Borella et al.
(2023) argued that the U.S. may be suboptimal due to a positive marriage tax.
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Figure 7: Marginal taxes on family earnings.

implied by the estimated HSV function. Since the U.S. tax schedule is family-earnings-based,

∂
∂Y T

fam,US (·, ι) is the same for all ι. Three other lines plot the optimal tax on family earnings

for the same specifications that we used in Figures 6. The marginal tax rates vary substantially

with the share of earnings of the secondary earner, with a higher share corresponding to a lower

marginal family tax. In all cases, pure family earnings-based taxation is a poor approximation

of the optimal tax code.

7 Conclusion

Multidimensional screening problems are ubiquitous in public finance applications. In this

paper, we consider one of the simplest versions of such problems - optimal taxation of joint

earnings of couples. We show that despite superficial similarity to multidimensional screening

problems in industrial organization, our problem is much easier to analyze and can often be

studied using the first-order approach.

We characterize the optimal taxes in these settings. Such taxes are a solution to a second-

order partial differential equation, which is very complex and does not generally have an ana-

lytical solution. We show that this problem can be overcome by focusing on various conditional

average moments of the optimal tax rates. These conditional moments provide significant in-

sights into the economic mechanisms that drive the shape of the optimal tax schedule, both

qualitatively and quantitatively.

In the calibrated economy, we find that the optimal taxes are negatively jointed at the

bottom and positively at the top. However, this jointness is small, and the optimal taxes can

be well approximated by separable, individual earnings-based taxation. In contrast, family

earnings-based taxes provide a poor approximation to the optimal tax code, even when the
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planner’s Pareto weights explicitly favor this type of taxation.

In the quantitative section, we only took first steps to connect our theoretical analysis with

policy questions that arise in regards to taxation of families. We abstracted from many aspects

of couple formation, labor supply decisions, and surplus division that we discussed in Section

5. Taxation of couples also has important implications for career choices of spouses and gender

equality, fertility choices and child-rearing. It is impossible to do justice to these major issues

within confines of one paper, and we leave a comprehensive quantitative investigation of these

questions for future work.
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Appendix

8 Mathematical preliminaries

This section lists some basic mathematical concepts necessary to characterize a solution to

the mechanism design problem. We refer the reader to Evans (2010) and Rindler (2018) for

additional background reading.

Consider a measurable function φ : R2
++ → R. It is said to be (i) compactly supported if

ϕ|D = 0 for some compact DR2
++, (ii) locally integrable if

∫
D |φ| dw < ∞ for every compact

D ⊂ R2
++ and integrable if

∫
|φ| dw <∞, (iii) essentially bounded if there exists a constant m

such that |φ (w)| ≤ m a.e.. We will write L 1 and L ∞ for the spaces of such functions that

are integrable and essentially bounded, respectively.

A locally integrable function φ is weakly differentiable on U if there exists a locally integrable

vector field ∇φ :=
(

∂φ
∂w1

, ∂φ
∂w2

)
: R2

++ → R2 such that for all infinitely differentiable ϕ with a

compact support, we have ∫
∂ϕ

∂wi
φdw = −

∫
ϕ
∂φ

∂wi
dw.

The vector field of partial derivatives of φ is called a weak gradient. It is unique up to a set of

zero measure. If v is differentiable, it is weakly differentiable, and its weak gradient coincides

with the classical one. It is well known that for a weakly differentiable ϕ ∈ L ∞ with ∇ϕ ∈ L ∞

and a weakly differentiable φ ∈ L 1 with ∇φ ∈ L 1, their product, ϕφ, is integrable, weakly

differentiable with ∇(ϕφ) ∈ L 1 and satisfies ∇(ϕφ) = φ∇ϕ+ ϕ∇φ.
The divergence theorem is Theorem 1.5.3.1 in Grisvard (2011). Take a vector field Λ =

(Λ1,Λ2) : R2
++ → R2 of integrable, weakly differentiable functions with each ∇Λi ∈ L 1. In

short, this theorem represents the integral of its divergence defined by ∇ ·Λ :=
∑n

i=1
∂Λi
∂wi

over

some set U ⊂ R2
+ as a certain integral of Λ along the boundary of U . An open, connected

set U is said to have a Lipshitz boundary if it can be locally represented as a boundary of an

epigraph of some Lipshitz continuous function after a rotation of coordinates, see Definition

1.2.1.1 in Grisvard (2011) and the figure below for an illustration.

Then, the divergence theorem asserts that for every bounded set U with a Lipshitz bound-

ary, the following identity holds: ∫
U
∇ ·Λdw =

∫
∂U

Λ · ndσ,
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Figure 8: The solid red line is the level set {Q = t}, the hashed area is the superlevel set {Q > t}, and white
region is the sublevel set {Q < t}. Two rectangles illustrate a rotation that can be used to represent a portion
of the boundary as an epigraph of a Lipshitz continuous function.

where ni (w) is the i-th component of the outward unit vector to ∂U atw and σ is the Lebesgue

measure on ∂U . The divergence theorem is a multi-dimensional generalization of the second

fundamental theorem of calculus,

∫ b

a
Λ′ (w) dw = Λ(b)− Λ (a) .

The coarea formula is Theorem 3.11 in Evans and Garzepy (2018). Take a measurable

function φ : R2
++ → R and let Q : Rn

++ → R+ be a locally Lipshitz onto function that satisfies

(ii)-(iv) in Theorem 1 and such that φ∥∇Q∥ integrable. Then, the coarea formula asserts∫
{Q>t}

φ∥∇Q∥dw =

∫ ∞

t

(∫
{Q=s}

ϕdσ

)
ds,

where σ is the Lebesgue measure on ∂Dt. Hence, for a.e. t,

d

dt

∫
{Q>t}

φ∥∇Q∥dw = −
∫
{Q=t}

ϕdσ.

The coarea formula generalizes the first fundamental theorem of calculus for strictly increasing

Q,

d

dt

∫ Q−1(t)

0
φ (w)Q′(w)dw = φ

(
Q−1(t)

)
.

It is worthwhile to remark that Theorem 3.11 in Evans (2010) doesn’t requires (ii)-(iv) but

makes a somewhat weaker statement. It is easy to see that their statement coincides with ours

under the additional structure on Q that we impose here.

9 Optimal taxation as a mechanism design problem

We start with an auxiliary lemma that establishes properties of µ and tuples (vs, cs, ys),

(vm, cm, ym1 , y
m
2 ) that satisfy the constraints of the mechanism design problem.
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Lemma 9. Consider µ and (vs, cs, ys), (vm, cm, ym1 , y
m
2 ) such that (2), (3), (4) and (5) hold.

Then, both vs and vm are nondecreasing, bounded from below, locally Lipshitz, a.e. and weakly

differentiable with weak derivatives given by (8). Moreover, µ ∈ (0, 1), and

(a) vsg, vmf ∈ L 1,

(b) w ∂vs

∂w g, w1
∂vm

∂w1
f, w2

∂vm

∂w2
f ∈ L 1.

Proof. Use (2) to substitute for cs in (3) to obtain

vs (w) ⩾ vs (ŵ) + γ

(
ys (ŵ)

ŵ

)1/γ
((

ŵ

w

)1/γ

− 1

)
. (51)

Monotonicity of vs follows directly from (51) and nonnegativity of earnings. As a result, vs is

bounded from below by vs(0).

A further examination of (51) reveals that vs is defined as a maximum of functions that

are affine in w−1/γ, thus vs must be a convex function of w−1/γ. Since the transformation

w 7→ w−1/γ is continuously differentiable on R++, Theorem 10.4 in Rockafellar (2015) implies

that vs is locally Lipshitz. By Theorem 6 on p. 296 (Rademacher Theorem) in Evans (2010), vs

is differentiable a.e. due to local Lipshitz continuity. Then, Theorem 5 and Remark on p. 295

in Evans (2010) imply that vs is weakly differentiable. Finally, since vs is differentiable a.e., the

standard envelope argument applied to (51) together with the fact that the maximum on the

right-hand side is attained at ŵ = w establishes that (8) holds at every point of differentiability.

Remark that the exactly same argument applies to vm, hence it is also nondecreasing,

bounded from below, locally Lipshitz, a.e. and weakly differentiable with weak derivatives

given by (8).

We now show that µ ∈ (0, 1) and two properties, (a) and (b). To begin, use (2) to rewrite

(4) in terms of vs and vm as follows:

µ

2

∫ ( 2∑
i=1

(
ymi − γ

(
ymi
wi

)1/γ
)

− vm

)
dF + (1− µ)

∫ (
ys − γ

(
ys

w

)1/γ

− vs

)
dG ≥ 0. (52)

Note that the value of maxy≥0

(
y − γ

( y
w

)1/γ)
is proportional to w1/(1−γ). Since vs, vm are

bounded from below and
∫
w1/(1−γ)dG <∞, the left-hand side of (52) is finite.

It is immediate that, if µ ∈ (0, 1), then Property (a) holds. If µ = 0, then, since Φ(µ) = −∞
and

∫
vmdF ≥ vm(0), we must have

∫
vsdG = ∞ due to (5). This contradicts (52). The similar

argument rules out µ = 1, and hence Property (a) is established.

We now show that Property (b) holds. Consider the following auxiliary problem parame-

terized by k ≥ 0:

max
y(·)≥0

∫
ydG− k s.t.

∫ ( y
w

)1/γ
dG = k.
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It is easy to see that the value of this problem diverges to −∞ as k → ∞. Substitute ∂vs

∂w for

ys using (8) to obtain that
∫
w ∂vs

∂w dG must be finite. The same argument applies to vm, thus∫
wi

∂vmi
∂wi

dF <∞ for each coordinate i.

9.1 Relaxed problem

We now formally define and further simplify the relaxed problem introduced in the main text.

Let V s and V m be the spaces of functions vs and vm satisfying the conditions listed in Lemma

9. Then, the relaxed problem is to select µ ∈ [0, 1] and (vs, vm) ∈ V s × V m to maximize W
defined in (6) subject to (5) and (9).

To make our analysis applicable to study extensions, we consider the setting developed

in Section 5.1 in which the planner assigns social weights αs(w) and β(wi|w−i) to single

and married persons. This generalizes the benchmark economy by allowing
∫
αsdG ̸= 1 and

αm(w1, w2) := β(w1|w2)+β(w2|w1)
2 ̸= αs(w1)+αs(w2)

2 but still requires couple’s weights αm to be

symmetric. The asymmetric case relevant for Sections 5.8 and 5.9 will be discussed separately.

Set η := (µEαm + (1− µ)Eαs)−1. Remark that W can be rewritten as follows:

W =
µ

2

∫
(αm − Eαm) vmdF + (1− µ)

∫
(αs − Eαs) vsdG+

∫ 1

µ
Φ(ε)dε+

+
1

η

[
µ

2

∫
vmdF + (1− µ)

∫
vsdG

]
+ (Eαm − Eαs)µ(1− µ)

[
1

2

∫
vmdF −

∫
vsdG

]
. (53)

Two terms in square brackets can be solved for from (5) and (9). It is immediate that the

budget constraints must bind, thus the fomer term in the second line equals to S, which is

given by

µ

2

∫ 2∑
i=1

(
w1+γ
i

(
∂vm

∂wi

)γ

− γwi
∂vm

∂wi

)
dF + (1− µ)

∫ (
w1+γ

(
∂vs

∂w

)γ

− γw
∂vs

∂w

)
dG. (54)

The latter term equals to Φ(µ) due to (5).

Putting all pieces together, the relaxed problem is

max
µ∈[0,1]

(vs,vm)∈V s×V m

µ

2

∫
(αm − Eαm) vmdF + (1− µ)

∫
(αs − Eαs) vsdG+

∫ 1

µ
Φ(ε)dε+

1

η
S+

+ (Eαm − Eαs)µ(1− µ)Φ(µ). (55)

It is worth to mention that the solution to (55) is defined up to two constants, vs(0) and vm(0).

These constants are pinned by two binding constraints, (5), (9), so that
∫
vs,∗dG = S∗−µ∗Φ(µ∗)

and 1
2

∫
vm,∗dF = S∗ + (1− µ∗)Φ(µ∗). Here, S∗ is (54) evaluated at the optimum.
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9.2 Optimality conditions

In this section, we formally derive conditions that are necessary and sufficient for optimality

in the relaxed problem (55). Recall that θ is the tail statistics of G defined by θ(t) = tg(t)
1−G(t) .

In the proposition below, we use the shorthand notation θi to denote this statistics evaluated

at t = wi.

Proposition 2. Consider µ ∈ (0, 1) and (vs, vm) that satisfy (A1) λs, λm1 , λ
m
2 are continuous,

(A2) λ ≤ λs, λm1 , λ
m
2 ≤ λ for some −1 < λ ≤ λ <∞, (A3) λs, λm1 , λ

m
2 are weakly differentiable,

(A4) ∂(wλsg)/∂w
g ,

∑2
i=1 ∂(wiλ

m
i f)/∂wi

f ∈ L ∞ and (A5) λsθ, λm1 θ1, λ
m
2 θ2 ∈ L ∞.

Set η := (µEαm + (1− µ)Eαs)−1. Then, (vs, vm) is in V s × V m and maximizes the objec-

tive in (55) for fixed µ if and only if

∂ (γwλsg)

∂w
= η (αs − Eαs) g, (56)

2∑
i=1

∂ (γwiλ
m
i f)

∂wi
= η (αm − Eαm) f. (57)

If (vs,∗, vm,∗) verifies (A1)-(A5), then (56), (57) hold and the following first-order condition

w.r.t. µ is satisfied:

1− γ

2

∫ 2∑
i=1

wi

(
wi

1 + λm,∗
i

)γ/(1−γ)

dF − (1− γ)

∫
w

(
w

1 + λs,∗

)γ/(1−γ)

dG =

= η∗Φ(µ∗) + η∗ (Eαs − Eαm)

(
S∗ +

∂ [µ∗(1− µ∗)Φ(µ∗)]

∂µ

)
. (58)

Proposition 2 contains two parts. The first parts looks at the optimal choice of functions

(vs, vm) in the relaxed problem with a fixed value of µ. This a concave problem; as a result,

the differential equations in (56), (57) are necessary and sufficient for optimality of (vs, vm)

satisfying the set of regularity conditions (A1)-(A5).

Recall that distortions are defined by (10). Condition (A2) means that marginal taxes

are uniformly bounded with the upper bound strictly less than 1, and (A1) means that vs,

vm are continuously differentiable. By (8), this is equivalent to the fact that earnings change

continuously ruling out kinks in taxes. Condition (A3) ensures that (weak) derivatives in (56),

(57) are well-defined. Then, (A4) and (A5) require that distortions and their derivatives are

well-behaved on the boundary and at “infinity”. In particular, (A5) means that λs (w)wg (w)

converges to 0 fast enough so that limw→∞ λs (w)wg (w) v̂s(w) = 0 for all v̂s ∈ V s. Finally,

condition (A4) means that the sum of ∂(wg)/∂w
g λs(w) and w ∂λs(w)

∂w is bounded. Since ∂(wg)/∂w
g ∼

−θ(w) as w → ∞, boundedness of the first-term is implied by (A2) and (A4). Hence, condition
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(A4) reduces to the requirement that the derivative of λs doesn’t explode as w → 0 and

converges to 0 fast enough as w → ∞, which holds when this derivative is bounded and λs

converges as w → ∞. The interpretation of these condition for vm is identical.

The second part of Proposition 2 gives the first-order necessary condition for µ∗. In general,

there may be multiple solutions to (58) when Eαm ̸= Eαs, because the relaxed problem is not

jointly concave in µ and (vs, vm). However, in the benchmark economy or more generally when

Eαm = Eαs, (58) pins down a unique value of µ∗, because (56), (57) do not depend on µ due

to η = 1 for all µ.

Proof. We first show that (vs, vm) is in V s × V m provided that (A2) holds. Indeed, by the

definition of λs in (10), w ∂vs

∂w ≤
(

w
1+λ

)1/(1−γ)

, which gives

vs(w)− vs(0) =

∫ 1

0
w
∂vs(wt)

∂w
dt ≤ (1− γ)

(
w

1 + λ

)1/(1−γ)

.

Since the value of
∫
w1/(1−γ)dG is finite, both vsg and w ∂vs

∂w g are integrable, thus vs ∈ V s. The

argument for vm is identical as wi
∂vmi
∂wi

≤
(

wi
1+λ

)1/(1−γ)

for i = 1, 2 implies

vm(w)− vm(0) =

∫ 1

0

2∑
i=1

wi
∂vm(wt)

∂wi
dt ≤ (1− γ)

2∑
i=1

(
wi

1 + λ

)1/(1−γ)

,

and the result follows.

We now study optimality of (vs, vm) for fixed µ ∈ (0, 1). Remark that vs enters social

welfare W only through the functional Υs defined by

Υs(vs) :=

∫ (
η (αs − Eαs) vs + w1+γ

(
∂vs

∂w

)γ

− γw
∂vs

∂w

)
dG.

Since Υs is concave, vs ∈ V s satisfies Υs(vs) ≥ Υs(v̂s) for all functions v̂s in V s if and only if

the following “first-order condition” holds:

lim
t→0

Υs((1− t)vs + tv̂s)−Υs(v̂s)

t
≤ 0 ∀v̂s ∈ V s. (59)

It is routine to verify using the monotone convergence theorem that the limit in (59) can be

taken under the integral sign and that this condition is equivalent to∫ (
η (αs − Eαs) (v̂s − vs) + γwλs

(
∂v̂s

∂w
− ∂vs

∂w

))
dG ≤ 0 ∀v̂s ∈ V s. (60)

Remark that V s is a cone, thus kvs ∈ V s for every k > 0. It follows that∫ (
η (αs − Eαs) vs + γwλs

∂vs

∂w

)
dG = 0, (61)
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which allows to eliminate vs from (60).

Let v̂s be a function in V s. Apply the divergence theorem (integration by parts) to obtain∫ t

t
γwλs

∂v̂s

∂w
dG = −

∫ t

t

∂ (γwλsg) /∂w

g
v̂sdG+ γλs(t)θ(t)(1−G(t))v̂s(t)− γλs(t)tg(t)v̂s(t).

(A2) ensures that the third term becomes 0 as t→ 0. Since the expected value of v̂s is finite,

(1−G(t))v̂s(t) converges to 0 as t → ∞. It follows that the second term goes to 0 as t → ∞
due to (A5). By (A2) and (A4), the dominated convergence theorem implies that (60) when

combined with (62) can be rewritten as∫ [
η (αs − Eαs)− ∂ (γwλsg) /∂w

g

]
v̂sdG ≤ 0. (62)

By (A2) and the definition of λs in (10), w ∂vs

∂w ≥
(

w
1+λ

)1/(1−γ)

. Hence, the nonnegativity

constraint on earnings is slack, i.e., in a neighborhood of every w ∈ R++, (62) can be freely

varied by setting v̂s = vs±ϕ for some smooth function ϕ that vanish outside this neighborhood.

As a result, by the fundamental lemma of calculus of variations, (62) holds if and only if the

integrand in the square brackets equals 0 for a.e. w.

The argument for married individuals is similar, and we will sketch it skipping intermediate

steps. Recollect that vm enters the relaxed problem only through the functional Υm defined

by

Υm(vm) :=

∫ (
η (αm − Eαm) vm +

2∑
i=1

(
w1+γ
i

(
∂vm

∂wi

)γ

− γwi
∂vm

∂wi

))
dF.

Then, vm solves the relaxed problem with fixed µ ∈ (0, 1) if and only if∫ (
η (αm − Eαm) v̂m +

2∑
i=1

γwiλ
m
i

∂v̂m

∂wi

)
dF ≤ 0 ∀v̂m ∈ V m, (63)

∫ (
η (αm − Eαm) vm +

2∑
i=1

γwiλ
m
i

∂vm

∂wi

)
dF = 0. (64)

Let v̂m be a function in V m. By the divergence theorem,

∫
[t,t]2

2∑
i=1

γwiλ
m
i

∂v̂m

∂wi
dF = −

∫
[t,t]2

∑
∂ (γwiλ

m
i f) /∂wi

f
v̂mdF+

+
2∑

i=1

∫ t

t
γtλmi (t, w−i)v̂

m(t, w−i)f(t, w−i)dw−i−
2∑

i=1

∫ t

t
γtλmi (t, w−i)v̂

m(t, w−i)f(t, w−i)dw−i.
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Clearly, the second term in the second line converges to 0 as t → 0. We claim that the first

term in the second line converges to 0 as t→ ∞. Indeed, by Hölder’s inequality,

2∑
i=1

∫ t

0
γt |λmi (t, w−i)| |v̂m(t, w−i)| f(t, w−i)dw−i ≤ γθ(t)max

i=1,2
max
w−i≤t

|λmi (t, w−i)| ×

× (1−G(t))

2∑
i=1

∫ t

0
|v̂m(t, w−i)| f(w−i|t)dw−i.

The first term on the right-hand side is bounded due to (A5), the second one goes to 0 as

t→ ∞. To see it, note that 1−G(t) ≤ Pr (maxw ≥ t) and

Pr (maxw ≥ t)E [v̂m|maxw = t] → 0 as t→ ∞

due to integrability of v̂mf . The rest of the argument is exactly the same as for singles. To sum

up, two differential equations, (56) and (57), are necessary and sufficient optimality conditions

for fixed µ ∈ (0, 1).

It remains to show the necessary first-order condition for µ∗. Equation (58) directly follows

from differentiating W w.r.t. µ and noting that

Υs(vs,∗) = (1− γ)

∫
w

(
w

1 + λs,∗

)γ/(1−γ)

dG, (65)

Υm(vm,∗) =
1− γ

2

∫ 2∑
i=1

wi

(
wi

1 + λm,∗
i

)γ/(1−γ)

dF. (66)

We end this section by pointing out a certain well-known equivalence between vm,∗ and

λm,∗. One can think equivalently of equations (57) and (15) either as a second-order partial

differential equation describing the solution to the relaxed problem vm,∗, or as a system of

joint first-order partial differential equations describing the optimal λm,∗ implied by that vm,∗.

Formally: if
(
(1 + λmi ) 1/(γ−1)w

γ/(1−γ)

i

)
i=1,2

is continuously differentiable with derivatives that

are uniformly continuous on bounded subsets and (15) holds, then there exists a unique (up

to a constant) function vm such that Equation (10) holds for these vm and λm.

9.3 Proof of Theorem 1

We assume here and throughout the rest of the paper that the first-order approach is valid,

λs,∗ and λm,∗ satisfy conditions (A1)-(A5) of Proposition 2.
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Before proving the theorem, it is worthwhile to discuss the conditions that we impose

on Q. First of all, the requirement that Q is onto ensures that every super- sublevel set is

nonempty. It is made purely for simplicity of exposition. Recall that Q is locally Lipshitz

if it is Lipshitz in a neighborhood of each point. It is well known that such functions are

differentiable almost everywhere, e.g., see Evans (2010), hence ∂ lnQ
∂ lnwi

that appears in Equation

(16) is well-defined. In addition, we require the following set of regularity conditions on Q:

(Q1) E
[∑2

i=1wi |∂Q/∂wi|
]
is finite, (Q2) {Q > t}, {Q < t} are connected, (Q3) ∂ {Q > t},

∂ {Q < t} are Lipshitz, and (Q4) {Q = t} = ∂ {Q > t} ∩ ∂ {Q < t} ∩ R2
++. Condition (Q1)

is needed to apply the divergence theorem to potentially unbounded super- and sublevel sets

of Q. Conditions (Q2), (Q4) rule out situations in which a level set is “thick” or contains

several connected components. Condition (Q3) means that closures of {Q > t}, {Q < t} can

be locally thought of as epigraphs of Lipshitz functions. These conditions are needed to apply

the divergence theorem and the coarea formula as stated in the mathematical appendix. In

principle, (Q2) can be dropped by applying the divergence to each of the connected components

separately.

Condition (Q4) is satisfied automatically if Q is continuously differentiable and has no

critical points, i.e., its derivatives don’t vanish at the same time. Then, (Q3) is satisfied when

{Q = t} approach the boundary of R2
++ with no “casps”. Finally, (Q2) holds if Q is either

quasiconvex or quasiconcave.

Proof. Let’s write (14) succinctly as −∇ · (Λf) = φf , where φ := 1− αm is a scalar field and

Λ :=
(
λm,∗
1 γw1, λ

m,∗
2 γw2

)
is a vector field. First, define Dt := {Q > t} for every t > 0. The

properties of Q ensure that the boundary of Dt is the union of {Q = t} and the portion of

axes given by Dt ∩ ∂R2
++, which is illustrated with dots in Figure 1. Clearly, ∂Dt is a null set,

hence
∫
{Q≥t} φfdw =

∫
Dt
φfdw and Pr (Q ≥ t) = Pr (Dt).

Let Br be an open ball of radius r > 0 centered at the origin such that Dt∩Br ̸= ∅. Clearly,
such an r exists because Q is continuous and onto. By the divergence theorem, Equation (14)

can be transformed as∫
Dt∩Br

φfdw = −
∫
Dt∩∂Br

Λf · ndσ −
∫
∂Dt∩Br

Λf · ndσ. (67)

Note the term on the left-hand side of (67) goes to
∫
Dt
φfdw as r → ∞ due to the dominated

convergence theorem.

We now study two terms on the right-hand side of (67) as r → ∞. On the boundary of

Br, the unit normal vector is given by n = w
∥w∥ , hence

∫
∂Br

|Λf · n| dw ≤ λr
∫
∂Br

fdσ due to
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(A2). We claim that the upper bound goes to 0. Indeed, using the coarea formula, we obtain

d

dr

∫
Br

∥w∥fdw = r

∫
∂Br

fdσ. (68)

Since ∥w∥ ≤ maxw and the latter has a finite expected value, the limit of
∫
Br

∥w∥fdw is

finite. As a result, the left-hand of (68) goes to 0 as claimed.

Recollect that the boundary of Dt can be partitioned into the union of {Q = t} and

Dt ∩ ∂R2
++. On the latter subset, ni = −1 and n−i = 0 when wi = 0 and w−i > 0, thus

Λf ·n = 0 due to (A2). On the former subset, the unit normal vector is given by n = − ∇Q
∥∇Q∥ ,

hence |Λf · n| ∥∇Q∥ ≤ λ
∑2

i=1wi
∂Q
∂wi

. By assumption, the upper bound is integrable, thus

Λf ·n∥∇Q∥ is integrable as well. Using the coarea formula and passing r to ∞, which is valid

due to the dominated convergence theorem, we obtain∫ ∞

t

(∫
{Q=s}

Λf · ∇Q
∥∇Q∥

dσ

)
ds =

∫
Dt

Λf · ∇Qdw.

Differentiate this expression and combine it with (67) evaluated at r → ∞ to get∫
Dt

φfdw =

∫
{Q=t}

Λf · ∇Q
∥∇Q∥

dσ = − d

dt

∫
Dt

Λf · ∇Qdw. (69)

Finally, using the definition of conditional expectation, observe that the last term is simply

− d

dt

∫
Dt

Λf · ∇Qdw = E [Λ · ∇Q|Q = t]× −∂ Pr (Q ≥ t)

∂t
.

Combine these formulas and divide both sides by Pr (Q ≥ t) to obtain (16).

We end the proof by pointing an equivalent approach to establishing Theorem 1 that

doesn’t invoke the coarea formula. Instead of integrating (57) using the coarea formula, one

may obtain the same conclusion directly from the variational optimality conditions (63), (64)

by considering v̂ of the form v̂(w) = v(w) + ψ(Q(w)) for some uni-dimensional function ψ.

Under (Q1)-(Q4), we can combine these optimality conditions to obtain∫ (
(1− E [αm|Q = t])ψ(t) + E

[
2∑

i=1

tγλmi
∂ lnQ

∂ lnwi
|Q = t

]
ψ′(t)

)
dPr(Q ≤ t) = 0. (70)

The regularity conditions on Q ensure that all variations ψ are feasible and that dPr(Q≤t)
dt is

well-defined and strictly positive. Integrating by parts (70), one can derive the formula in

Theorem 1.
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9.4 Properties of the optimal joint taxes

9.4.1 Proof of Lemma 2

Proof. By F a ≤PQD F b ≤PQD F , the following first-order stochastic dominance relations hold:

Pra (w−i ≥ t−i|wi ≥ ti) ≤ Prb (w−i ≥ t−i|wi ≥ ti) ≤ Pr (w−i ≥ t−i|w−i ≥ ti) ∀t. (71)

Remark that the second inequality in (71) holds on a set of positive measure because F b is

absolutely continuous and supported on R2
+. Since α is strictly decreasing, we have

Ea [αm|wi ≥ t] =
1

2
E [α(wi)|wi ≥ t] +

1

2
Ea [α(w−i)|wi ≥ t]

≤ 1

2
E [α(wi)|wi ≥ t] +

1

2
Eb [α(w−i)|wi ≥ t] = Eb [αm|wi ≥ t]

<
1

2
E [α(wi)|wi ≥ t] +

1

2
E [α(wi)|wi ≥ t] = E [α|w ≥ t] ∀t

due to (71). Conclude that Ea
[
λm,a,∗
i |wi = t

]
≤ Eb

[
λm,b,∗
i |wi = t

]
and Eb

[
λm,b,∗
i |wi = t

]
<

λs,b,∗ = λs,a,∗.

If F b is perfectly assortative, then Eb [αm|wi ≥ t] coincides with E [α|w ≥ t]. As a result,

we have Eb
[
λm,b,∗
i |wi = t

]
= λs,b,∗ = λs,a,∗.

If F a is independent with marginals G, then Ea [αm|wi ≥ t] = 1
2E [α|w ≥ t] + 1

2 . By mono-

tonicity of α, the value of E [α|w ≥ t] is strictly less than than Eα = 1 for all t > 0. It follows

that Ea
[
λm,a,∗
i |wi = t

]
≥ 1

2
1−E[α|w≥t]

γθ(t) > 0 whenever F a is positively dependent.

9.4.2 Proof of Lemma 3

Proof. Recollect that the distribution with density αag first-order stochastically dominates

the distribution with density αbg. It follows that E
[
αa|w ≥ t

]
≥ E

[
αb|w ≥ t

]
for all t, hence

λs,a,∗ ≤ λs,b,∗

As discussed in Chapter 6.E of Shaked and Shanthikumar (2007), under log-supermodularity

of f , the distribution with density αa(wj)f first-order stochastically dominates the distribu-

tion with density αb(wj)f for j = 1, 2. As a result, E
[
αa(wj)|wi ≥ t

]
≥ E

[
αb(wj)|wi ≥ t

]
for

j = 1, 2 and for all t, thus E
[
λa,∗i |wi = t

]
≤ E

[
λb,∗i |wi = t

]
.

9.4.3 Proof of Lemma 4

Proof. The case of random matching is discussed in the proof of Proposition 1 below, and so,

here, we focus on the case of perfect assortative matching. Since the perfectly assortative dis-

tribution, i.e., F (w) = min {G(w1), G(w2)}, does not admit a density function, the regularity

conditions of Proposition 14 are violated. To make progress, remark welfare W in (53) and
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surplus S in (54) depend on v, ∂v
∂wi

only through their values along the diagonal w1 = w2 = w.

Letting ṽm(w) := 1
2v

m(w,w), we may rewrite these objects as

W =
µ

2

∫
(1− α) ṽmdG+ (1− µ)

∫
(1− α) vsdG+

∫ 1

µ
Φ(ε)dε+ S,

where

S = µ

∫ 2∑
i=1

(
w1+γ

(
∂ṽm

∂w

)γ

− γw
∂ṽm

∂w

)
dF + (1− µ)

∫ (
w1+γ

(
∂vs

∂w

)γ

− γw
∂vs

∂w

)
dG.

Consider a further relaxation of the problem in which we directly select functions ṽm, vs

and a number µ to maximize W. Repeating the argument that is used to establish Proposition

14, we obtain that the following optimal distortions:

λ̃m,∗(t) = λs,∗(t) =
1− E[α|w ≥ t]

γθ(t)
.

By construction, vm(w1, w2) = ṽm,∗(w1) + ṽm,∗(w2) solves the planner’s original relaxed prob-

lem. As a result, the optimal allocations with distortions λm,∗
i (w) = λ̃m,∗(wi) can be imple-

mented using separable taxation.

9.4.4 Proof of Lemma 5

Proof. We start with a preliminary observation that will be useful to sign optimal jointnessss

at the extremes. Set F (w|t) := Pr (w−i ≤ w|wi = t) and unpack E
[
λm,∗
i |wi = t

]
conditioning

on spouse −i being more and less productive than spouse i to get

1 =
E
[
λm,∗
i |wi = t ≤ w−i

]
E
[
λm,∗
i |wi = t

] (1− F (t|t)) +
E
[
λm,∗
i |wi = t ≤ w−i

]
E
[
λm,∗
i |wi = t

] F (t|t). (72)

Observe that F (t|t) = 1
2
d(1−Pr(maxw≤t))
d(1−Pr(wi≤t)) . By L’Hôpital’s rule and symmetry,

lim
t→∞

F (t|t) = lim
t→∞

1

2

1− Pr (maxw ≤ t)

1− Pr (wi ≤ t)
= 1− 1

2
lim
t→∞

Pr (w−i ≥ t|wi ≥ t) .

For the Gaussian and FGM copulas, limt→∞ Pr (w−i ≥ t|wi ≥ t) = 0, hence, by (72),

lim
t→∞

E
[
λm,∗
i |wi = t ≤ w−i

]
E
[
λm,∗
i |wi = t

] = 1.

As a result, Equation (20) implies

lim
t→∞

J(t) = lim
t→∞

E
[
λm,∗
i |wi = t ≤ w−i

]
E
[
λm,∗
i |wi = t

] − 1 =
limt→∞A(t)

limt→∞B(t)
− 1,
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where A(t) := 1−E[αm|minw≥t]
1−E[αm|wi≥t] and B(t) := 2Pr(w−i≥t|wi=t)

Pr(w−i≥t|wi≥t) .

For both copulas, the limit of E[αm|w ≥ (t, t)] equals to α(∞) := limt→∞ α(t). In the

case of the Gaussian copula, the limit of E[αm|wi ≥ t] also equals to α(∞) because α is

continuous, bounded and F (w|t) converges to the distribution that is degenerate at w = ∞,

i.e., limt→∞ F (w|t) = 0 for all w. As a result, Term A converges to 1. It is well-known that the

limit of Term B equals to 2
1+ρ , see, e.g., Hua and Joe (2014). Since limt→∞ J(t) < 0, optimal

jointness is negative for all sufficiently large values of t.

As for the FGM copula, since F (w1, w2) = G(w1)G(w2)[1+ρ(1−G(w1))(1−G(w2))], direct

computations give

E[αm|wi ≥ t] =
1

2
E [α|w ≥ t] +

1

2
− ρ

2
G(t)

∫
αd[G(1−G)]. (73)

Since α is strictly decreasing, we have∫
αd[G(1−G)] = −

∫
G(1−G)dα > 0.

It follows from (73) that the limit of E[αm|wi ≥ t] is strictly smaller than 1
2α(∞)+ 1

2 , thus the

limit of Term A is strictly less than 2. On the other hand, the reader can verify that Term B

converges 2. We again obtain that limt→∞ J(t) < 0, and hence optimal jointness is negative

for all sufficiently large values of t.

The case of the bottom left corner is similar to the previous one. First of all, remark that

Eα = 1, thus (18) can be equivalently expressed as

E
[
λm,∗
i |wi = t

]
=

E[α|w ≤ t]− 1

γθ(t)
,

where θ(t) := ∂G(t)/∂ ln t
G(t) . Using the same argument as for the top corner, it can be shown that

lim
t→0

J(t) = lim
t→0

E
[
λm,∗
i |wi = t

]
E
[
λm,∗
i |wi = t ≥ w−i

] − 1 =
limt→0B(t)

limt→0A(t)
− 1,

where A(t) = E[αm|maxw≤t]−1
E[αm|wi≤t]−1 and B(t) = 2Pr(w−i≤t|wi=t)

Pr(w−i≤t|wi≤t) .

As before, these terms satisfy A(t) → 1 and B(t) → 2
1+ρ as t→ 0 for the Gaussian copula.

In the case of the FGM copula, the limit of Term A is strictly less than 2, whereas Term B

converges to 2. So, for both copulas, limt→∞ J(t) > 0, hence optimal jointness is positive for

all sufficiently small values of t.

We now show the second part of the claim. Since f is symmetric and αm(w1, w2) =

1
2α(w1)+

1
2α(w2), the equations characterizing E

[
λm,∗
i |wi = t ≤ w−i

]
and E

[
λm,∗
i |wi = t ≥ w−i

]
,
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(20) and (21), can be rewritten as

2γtg (t)E
[
λm,∗
i |wi = t ≤ w−i

]
=

∫∞
t (1− α(w))(1− F (t|w))dG(w)

1− F (t|t)
, (74)

2γtg (t)E
[
λm,∗
i |wi = t ≥ w−i

]
=

∫ t
0 (α(w)− 1)F (t|w)dG(w)

F (t|t)
. (75)

Set ξ(t) =
∫ t
0 (α(w) − 1)dG. Since α is strictly decreasing and integrates to one, we have

ξ(t) > 0 for all t > 0, ξ(0) = limt→∞ ξ(t) = 0, and ξ(t) =
∫∞
t (1 − α)dG. Integrate by parts

(74), (75) and use the properties of β to obtain

2γtg (t)E
[
λm,∗
i |wi = t ≤ w−i

]
= ξ(t) +

∫∞
t ξ(w)[−F2(t|w)]dw

1− F (t|t)
, (76)

2γtg (t)E
[
λm,∗
i |wi = t ≥ w−i

]
= ξ(t) +

∫ t
0 ξ(w)[−F2(t|w)]dw

F (t|t)
, (77)

where F2 stays for the partial derivative of the conditional cdf with respect to its second

argument, i.e., F2(t|w) = ∂
∂wPr (w−i ≤ t|wi = w).

For the FGM copula with ρ > 0, we have

F (t|w) = G(t)[1 + ρ(1−G(t))(1− 2G(w))],

−F2(t|w) = 2ρG(t)(1−G(t))g(w).

It follows from (76), (77) that the sign of J(t) coincides with the sign of

1 + ρ(1−G(t))(1− 2G(t))−
∫ t
0 ξdG /G(t)∫∞

0 ξdG
. (78)

Clearly, the first term in (78) equals to 1 + ρ > 1 at t = 0 and converges to 1 as t→ ∞. Note

that
∂

∂t
[(1−G(t))(1− 2G(t))] = ρ (4G (t)− 3) g (t) ⩾ 0 ⇐⇒ G (t) ⩾ 3

4 .

Since (1−G(t))(1−2G(t)) ≷ 0 if and only if G(t) ≶ 1
2 , the first term in (78) first monotonically

decreases to some number below 1 and then monotonically increases to 1.

We now look at the second term in (78). It equals to ξ(0) = 0 at t = 0 and converges to 1

as t→ ∞. Using the definition of ξ, we can show

∫ t
0 ξdG

G(t)
=

∫ t

0

(
1− G(w)

G(t)

)
(α(w)− 1)dG(w).

Since α is strictly decreases and integrates to one, the second term in (78) first increases to

some number above 1 and then monotonically decreases to 1. Taking both pieces together, we
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conclude that there is a unique threshold t̂ such that

J(t) ≷ 0 ⇐⇒ 1 + ρ(1−G(t))(1− 2G(t))−
∫ t
0 ξdG /G(t)∫∞

0 ξdG
≷ 0 ⇐⇒ t ≶ t̂,

which concludes the proof.

9.4.5 Proof of Lemma 6

Proof. Since Eαm = 1, Equation (26) can be rewritten using Bayes’ rule as

E
[
λm,∗
sec − λm,∗

pr |I = ι
]
=

E [αm|I ≤ ι]− 1

γ ∂Pr(I≤ι)/∂ ln ι
Pr(I≤ι)

. (79)

For every value of ι, the weights αm satisfy

E [αm|I ≤ ι] =
1

2
E [α (maxw) |I ≤ ι] +

1

2
E [α (maxw · I) |I ≤ ι]

≥ 1

2
E [α (maxw · I) |I ≤ ι] =

1

2
E [α (w−i) |w−i ≤ ιwi] ,

where the last equality is due to symmetry of F . The assumption ensures that w−i conditional

on w−i ≤ ιwi converges almost surely to 0 as ι → 0. To see it note that E [w−i|w−i ≤ ιwi] ≤
ιE [wi|w−i ≤ ιwi] →ι→∞ 0. Since α(0) > 2, E [αm|I ≤ ι] > 1 for all small values of ι, thus

E
[
λm,∗
sec − λm,∗

pr |I = ι
]
> 0 for all sufficiently small ι due to (79).

9.5 Optimal taxation with random matching and the validity of the FOA

9.5.1 Proof of Proposition 1

Proof. The reader can verify that that
(
1
2λ

s,∗(w1),
1
2λ

s,∗(w2)
)
, where λs,∗ is given by Equation

(12), satisfies conditions (A1)-(A5) of Proposition 2 provided that 1−G
tg and G

tg converge to finite

limits as t→ ∞ and t→ 0, respectively, and both are implied by finitness of limt→0,∞ λs,∗(t).

Moreover, these distortions also verify the necessary and sufficient optimality conditions listed

in this proposition, i.e., (56) and (57). It follows that they characterize the solution to the

relaxed problem.

By Proposition 2 in Rochet (1987), the first-order approach is valid if and only if vs,∗ and

vm,∗ are convex functions of x = w−1/γ. It is easy to see that ∂vs,∗(x−γ)
∂x and

∂vm,∗(x−γ
1 ,x−γ

2 )
∂xi

are

monotone transformations of x · (1 + λs,∗ (x−γ)) and xi ·
(
1 + 1

2λ
s,∗
(
x−γ
i

))
, respectively. The

fact that the first-order approach is more likely to hold in the bi-dimensional model than in

the uni-dimensional setting can be seen from

x·
(
1 +

1

2
λs,∗

(
x−γ

))
−x̂·

(
1 +

1

2
λs,∗

(
x̂−γ

))
≥ x

2
·
(
1 + λs,∗

(
x−γ

))
− x̂
2
·
(
1 + λs,∗

(
x̂−γ

))
∀x ≥ x̂.
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10 Proofs for Section 5

Throughout this section, it is assumed that the first-order approach is valid. To streamline

exposition, we also assume that the optimal distortions, λs,∗ and λm,∗, are well-behaved in the

sense the sense that satisfy analogs of (A1)-(A5) listed in Proposition 2.

10.1 The role of Pareto weights

Remark that (32) and (33) in the main text follow from the optimality conditions in 2. To

obtain the former equation integrate (56) from w = t to ∞; and, to obtain the latter one,

apply the coarea formula with some Q to (57).

10.1.1 Proof of Corollary 2.

Setting Q = minw and Q = maxw in (33), we obtain the following generalizations of (20)

and (21):

E
[
λm,∗
i |wi = t ≥ w−i

]
=

Pr (w−i ≥ t|wi ≥ t)

2Pr (w−i ≥ t|wi = t)

E
[

αm

Eαm |maxw ≤ t
]
− 1

γθ(t)

Eαm

(1− µ∗)Eαs + µ∗Eαm

(80)

and

E
[
λm,∗
i |wi = t ≤ w−i

]
=

Pr (w−i ≤ t|wi ≤ t)

2Pr (w−i ≤ t|wi = t)

1− E
[

αm

Eαm |minw ≥ t
]

γθ(t)

Eαm

(1− µ∗)Eαs + µ∗Eαm

(81)

These equations are similar to the benchmark but allow for general Pareto weights.

Suppose first that the matching is random, i.e., F = G2. Then, the ratios of probabilities

in (80), (81) equal to 1
2 , hence

J(t) =
Eαm − E[αm|minw ≥ t]

E[αm|maxw ≤ t]− Eαm

1−G(t)

G(t)
− 1.

Using Bayes’ rule, it is easy to see that this measure of jointness satisfies

J(t) ≥ 0 ⇐⇒ 2 (E[αm|wi ≤ t]− Eαm)

E[αm|maxw ≤ t]− Eαm
≥ 1.

The reader can verify that supermodularity of αm is preserved in the sense that E[αm|w ≤ t]

is supermodular in t when αm is supermodular. As a result, if αm is supermodular, then

E[αm|maxw ≤ t]− Eαm ≥ 2 (E[αm|wi ≤ t]− Eαm) .

Since E[αm|wi = t] is strictly decreasing, E[αm|wi ≤ t] − Eαm > 0. Combining all pieces

together, we conclude that optimal jointness is negative for supermodular weights. The same

argument can be used to establish that optimal jointnessss is positive for submodular weigths.
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Suppose now F is characterized by the Gaussian copula with the correlation parameter

ρ > 0. Recollect that the optimal distortions satisfy (80), (81). Following the same steps as in

the proof of Lemma 5, we obtain limt→∞ J(t) = 1+ρ
2 − 1 < 0 and limt→0 J(t) =

2
1+ρ − 1 > 0.

10.1.2 Relationship to Kleven et al. (2007)

In the working version of their paper, Kleven et al. (2007) (KKS for short) outlined how

jointness can be signed at each productivity vector when all households are married, their

productivities are independent and the social welfare criterion is given by
∫
W (vm)dF , whereW

is a strictly increasing and strictly concave function. KKS used a stronger pointwise notion of

jointness: a tax function Tm is positively jointed at y if ∂2

∂y1∂y2
Tm(y) ≥ 0 and negatively jointed

at y if ∂2

∂y1∂y2
Tm(y) ≤ 0. This notion of jointness is closely related to the sign of cross-partials of

spousal distortions. In particular, using the envelope condition and the definition of distortions

(Equation (10)), one can show that, for each couple w ∈ R2
++, taxes T

m are positively (or

negatively) jointed at y = ym,∗(w) when ∂
∂w−i

λm,∗
i (w) ≥ 0 (or ∂

∂w−i
λm,∗
i (w) ≤ 0). Here, since

the signs ∂
∂w2

λm,∗
1 (w) and ∂

∂w1
λm,∗
2 (w) necessarily agree, we may take any spouse i’s distortion.

KKS argued that jointness in this pointwise sense is connected to the third derivative of the

welfare function. Assuming that the optimal allocations are sufficiently smooth and regular,

KKS showed that ∂
∂w−i

λm,∗
i (w) ≥ 0 (or ∂

∂w−i
λm,∗
i (w) ≤ 0) for all w ∈ R2

++ when the third

derivative of W is strictly positive (or negative).

Building on the argument of KKS, we can strengthen Part (a) of Corollary 2 to the point-

wise notion of jointness, separately for each type w. In order to state the result formally, we

require that g, αm are twice continuously differentiable. We also assume that vm,∗ is three

time continuously differentiable, the corresponding distortions are twice continuously differen-

tiable with third derivatives that exist at least in the weak sense, and
∥∥∥∇ ∂2vm,∗

∂w1∂w2

∥∥∥ ̸= 0 when

∂
∂w−i

λm,∗
i ̸= 0. Finally, we assume that the integral

∫
U ∇ · Λdw, where Λ = (Λ1,Λ2) is de-

fined by Λi =
∂2(λm,∗

i γwig(wi))/∂w1∂w2

g(wi)
, can be transformed using the divergence theorem for

any potentially unbounded open set U that has a Lipshitz boundary. The last assumption is

satisfied when the optimal distortions are smooth, their third derivatives don’t explode when

productivities go to 0 and vanish sufficiently fast when productivities go to ∞.

Proposition 3. Consider a general economy as described in Section 5.1 in which matching is

random. For each w ∈ R2
++, the optimal distortions for married satisfy

∂

∂w−i
λm,∗
i (w)

∂2

∂w1∂w2
αm(w) ≤ 0.
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Therefore, the optimal tax schedule on married Tm,∗ is positively (negatively) jointed at every

y when the social weights on couples are strictly submodular (supermodular).

Proof. As explained in Proposition 2, under random matching, the optimal marginal taxes

satisfy
2∑

i=1

∂
(
λm,∗
i γwig (wi)

)
/∂wi

g (wi)
= η (αm − Eαm) ,

where η = (µEαm + (1− µ)Eαs)−1. Differentiate this expression twice to obtain

2∑
i=1

∇ ·Λ = η
∂2αm

∂w1∂w2
. (82)

Recollect that the optimal distortions are related to the marital surplus via (10) that gives the

following relationship between the cross partial of vm,∗ and
∂λm,∗

1
∂w2

,
∂λm,∗

2
∂w1

:

∂2vm,∗

∂w1∂w2
= − 1

1− γ

w
γ

1−γ

1

(1 + λm,∗
1 )

2−γ
1−γ

∂λm,∗
1

∂w2
= − 1

1− γ

w
γ

1−γ

2

(1 + λm,∗
2 )

2−γ
1−γ

∂λm,∗
2

∂w1
(83)

As shown by (83), the sign of ∂2vm,∗

∂w1∂w2
is opposite to the sign of jointness when w1, w2 > 0.

Furthermore, if w−i = 0 < wi, then this equation implies ∂2vm,∗

∂w1∂w2
=

∂λm,∗
i

∂w−i
= 0; however,

∂λm,∗
i

∂w−i

may be nonzero on {wi = 0} .
Let U− =

{
∂λm,∗

1
∂w2

and
∂λm,∗

2
∂w1

< 0
}
and U+ =

{
∂λm,∗

1
∂w2

and
∂λm,∗

2
∂w1

> 0
}
be productivities w ∈

R2
++ at which both spouses’ taxes are strictly negatively and positively jointed, respectively.

Since
∥∥∥∇ ∂2vm,∗

∂w1∂w2

∥∥∥ ̸= 0 at each w ∈ R2
++ in ∂U− ∪ ∂U+, using (83), the reader can verify

that under this assumption, ∂U− and ∂U+ are Lipshitz with n proportional to ∇ ∂2vm,∗

∂w1∂w2
and

−∇ ∂2vm,∗

∂w1∂w2
, respectively.

Consider first the set U−. It may have several connected components, so let U to be one

of them. Using the definition of Λi, we can be unpack it as

Λi =
∂2
(
λm,∗
i γwig (wi)

)
/∂w1∂w2

g (wi)
= γwi

∂2λm,∗
i

∂w1∂w2
+ γ

∂(g(wi)wi)/∂wi

g(wi)

∂λm,∗
i

∂w−i
. (84)

Due to our assumption on Λ, Equation (82) can be transformed using the divergence theorem,

which gives

η

∫
U

∂2αm

∂w1∂w2
dw =

∫
U∩∂R2

++

Λ · ndσ +

∫
∂U∩R2

++

Λ · ndσ, (85)

where, as usual, n stays for the outward unit normal vector.
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Let w ∈ U ∩ ∂R2
++ be such that wi = 0 < w−i. Then, ni(w) = 0 and n−i(w) = −1, hence

(84) gives

Λ · n = −Λi = −γ
(

lim
wi→0

∂(g(wi)wi)/∂wi

g(wi)

)
∂λm,∗

i

∂w−i
(86)

By L’Hopital’s rule, limw→0
g(w)w
G(w) = limw→0

∂(g(w)w)/∂w
g(w) ≥ 0, and, by definition of U , we have

∂λm,∗
i

∂w−i
< 0. It follows that the right-hand side in (86) is nonnegative, and so is

∫
U∩∂R2

++
Λ ·ndσ

in (85).

Now, let w ∈ ∂U ∩ R2
++. Remark that we necessarily have ∂2vm,∗

∂w1∂w2
=

∂λm,∗
1

∂w2
=

∂λm,∗
2

∂w1
= 0;

furthermore, by (83), the i-th component of the outward unit normal is proportional to

− ∂

∂wi

∂2vm,∗

∂w1∂w2
=

1

1− γ

w
γ

1−γ

i

(1 + λm,∗
i )

2−γ
1−γ

∂λm,∗
i

∂w1∂w2
.

Hence,
∫
∂U∩R2

++
Λ · ndσ ≥ 0 in (85) due to (84).

Taking both cases together, we conclude that the left-hand side in (86) is nonnegative for

every connected component U of U−. The same argument can be used to establish that the

left-hand side in (86) is nonpositive for every connected component U of U+. These two facts

and (83) imply
∂2

∂w1∂w2
vm,∗(w)

∂2

∂w1∂w2
αm(w) ≥ 0 ∀w. (87)

To sum up, Equations (87), (83) show that the sign of jointness is completely pinned down

by modularity of αm for couples with w1, w2 > 0. In particular, if ∂2αm

∂w1∂w2
> 0 ( ∂2αm

∂w1∂w2
< 0),

then the optimal taxes are negatively (positively) pointwise jointed at every y = ym,∗(w) with

w ∈ R2
++. And, this conclusion extends to all w ∈ R2

+ provided that ∂
∂y1∂y2

Tm,∗ and ym,∗ are

continuous.

This proposition establishes the tight pointwise relationship between jointness of the op-

timal taxes on married and the modularity of couples’ Pareto weights αm in our framework

in which αm is exogenously specified. It turns out that the same point can be made in the

setting of KKS because the third derivative of the social welfare function W is closely related

to the modularity of implied weights. In particular, set αm := W ′(vm,∗), where vm,∗ is the

optimum when social welfare is given by
∫
W (vm)dF . This function αm should be though of

as Pareto weights that the planner assigns to utilities of various couples; and, it is easy to see

that, vm,∗ is also optimal when social welfare is given by
∫
αmvmdF . Differentiating twice, we

can rewrite (87) for these specific weights αm =W ′(vm,∗) as

∂2vm,∗

∂w1∂w2

∂2αm

∂w1∂w2
=
∂vm,∗

∂w1

∂vm,∗

∂w2

∂2vm,∗

∂w1∂w2
W

′′′
(vm,∗) +

(
∂2vm,∗

∂w1∂w2

)2

W
′′
(vm,∗).
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Due to concavity of W , the second term is nonpositive, and we arrive at

∂2

∂w1∂w2
vm,∗(w)W

′′′
(vm,∗(w)) ≥ 0 ∀w. (88)

Equations (87) and (88) show the one-to-one relationship between the sign of W
′′′

and the

modularity of the implied weights.

10.2 Public goods and economies of scale

This model is different from the benchmark in two ways. First, the relationship between the

optimal distortions, which are still defined in Equation (10), and derivatives of vs,∗, vm,∗ now

becomes

λs,∗ (w) := ks
(
∂vs,∗ (w)

∂w

)γ−1

wγ − 1, λm,∗
i (w) := km

(
∂vm,∗ (w)

∂wi

)γ−1

wγ
i − 1.

Second, the resource constraint (9) now reads as

S ≥ µ

2

∫
vm

km
dF + (1− µ)

∫
vs

ks
dG,

where S is our shorthand notation for the total economic output, that is now given by

µ

2

∫ 2∑
i=1

(
w1+γ
i

(
∂vm

∂wi

)γ

− γwi
∂vm/∂wi

km

)
dF +(1− µ)

∫ (
w1+γ

(
∂vs

∂w

)γ

− γw
∂vs/∂w

ks

)
dG.

Then, (5) and the modified resource constraint give∫
vsdG =

S − µΦ(µ)/km

µ/km + (1− µ)/ks
,

1

2

∫
vmdF =

S + (1− µ)Φ(µ)/ks

µ/km + (1− µ)/ks
.

Following the same steps as in Section 9.1, welfare with additively separable weights, i.e.,

αm(w1, w2) =
α(w1)+α(w2)

2 , can be expressed as

W =
µ

2

∫
(αm − 1) vmdF + (1− µ)

∫
(α− 1) vsdG+

∫ 1

µ
Φ(ε)dε+

1

η
S,

where η = µ/km + (1− µ)/ks.

The argument in the proof of Proposition 2 gives that the following modified differential

equations hold at the optimum:

∂ (γwλs,∗g)

∂w
=

µ∗/km + (1− µ∗)/ks

1/ks
(α− 1) g,

2∑
i=1

∂
(
γwiλ

m,∗
i f

)
∂wi

=
µ∗/km + (1− µ∗)/ks

1/km
(αm − 1) f.

Two expressions (34), (35) follow from integrating the first equation and applying the coarea

formula with Q = wi to the second equation.
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10.3 Home production and division of labor within families

We first list several useful properties of functions N s and Nm. These properties will be used

later on to show that the mechanism design problem is well-behaved and its optimal distortions

satisfy (36) and (37). Recollect that the elasticity of labor supply for single households ẽs and

its transformation γ̃s satisfy

γ̃s =

(
1 +

∂ ln (∂N s/∂l)

∂ ln l

)−1

=
(
1 + (ẽs)−1

)−1
. (89)

Similarly, the 2× 2 elasticity matrix of labor supplies for married households and its transfor-

mation γ̃m satisfy

γ̃m =

 1 +
∂ln(∂Nm

1 /∂l1)
∂l1

∂ln(∂Nm
1 /∂l1)

∂l2
∂ln(∂Nm

2 /∂l1)
∂l1

1 +
∂ln(∂Nm

2 /∂l2)
∂l2

−1

=
(
I + (ẽm)−1

)−1
. (90)

Lemma 10. (a) N s and Nm are increasing and convex, (b) there exists some x > 0 such that
∂Ns(l)

∂l , ∂N
m(l)
∂li

∣∣∣
li=l

≤ lp−1 (lp + x)
(1−pγ)/pγ for all l, (c) l ∂N

s

∂l and
(
l1

∂Nm

∂l1
, l2

∂Nm

∂l2

)
are one-to-

one on R++ and R2
++, (d) γ̃

s, γ̃m are uniformly bounded, (e) liml→∞ γ̃s(l), γ̃mi,i(l)
∣∣∣
li=l

= γ and

liml→∞ γ̃mi,−i(l)
∣∣∣
li=l

= 0, where convergence is uniform in l−i.

Proof. Recollect that N s is defined as a minimum of a function that is jointly convex in (l, x),

thus N s is convex as well. The first order condition w.r.t. x can be expressed as

x
σ+(1−γ)/γ = (1−m)

(1−pγ)/pγ, (91)

where m := lp

xp+lp . This condition is also sufficient due to convexity. By the envelope Theorem,

the derivative of N s is given by

∂N s(l)

∂l
= lp−1 (xp + lp)

(1−pγ)/pγ

. (92)

It is immediate from (92) that N s is strictly increasing which proves (a). (91) implies that

x ≤ 1 which proves (b). Part (c) follows from the previous observation and (92).

Totally differentiate (91) to obtain[
1− γ

γ
− 1− pγ

γ
m+ σ

]
d lnx = −1− pγ

γ
md ln l. (93)

The term in the square brackets in (93) is bounded from below by p − 1 + σ > 0, thus the

derivative of x is uniformly bounded. Then, totally differentiate (92) to obtain

d ln

(
∂N s(l)

∂l

)
=

(
p− 1 +

1− pγ

γ
m

)
d ln l +

1− pγ

γ
(1−m)d lnx.
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By convexity and monotonicity of N s, ∂ln(∂Ns(l)/∂l)
∂l is nonnegative. It follows that γ̃s defined

in (89) is uniformly bounded which proves (d). Finally, since the derivative of x is uniformly

bounded and m goes to 1 as l → ∞, γ̃s converges to γ as l → ∞.

Most of the arguments for married are analogous, i.e., Nm is convex due to joint convexity

in (l,x). The first order condition w.r.t. xi can be expressed as

x
σ+(1−γ)/γ
i = 2(1− ri)

1−q(1−σ)(1−mi)
(1−pγ)/pγ, (94)

where mi :=
lpi

xp
i+lpi

and ri :=
x
1/q
−i

x
1/q
1 +x

1/q
2

for i = 1, 2. Again, (94) is sufficient due to convexity.

By the envelope theorem, the derivative of Nm w.r.t. li is given by

∂Nm(l)

∂li
= lp−1

i (xpi + lpi )
(1−pγ)/pγ

, (95)

which proves (a). Equation (91) implies that x ≤ 2−σ−(1−γ)/γ which proves (b). Part (c) follows

from the previous observation and (96).

Totally differentiate (94) to obtain[
1− γ

γ
− 1− pγ

γ
mi −

1− q(1− σ)

q
ri + σ

]
d lnxi = −1− q(1− σ)

q
rid lnxj −

1− pγ

γ
mid ln li.

(96)

The term in the square brackets in (96) is bounded from below by p − 1 + 1−q
q > 0, thus the

derivative of x is uniformly bounded. Then, totally differentiate (95) to obtain

d ln

(
∂Nm(l)

∂li

)
=

(
p− 1 +

1− pγ

γ
mi

)
d ln li +

1− pγ

γ
(1−mi)d lnxi.

By monotonicity and convexity of Nm, the determinant of the matrix in the square brackets in

(90) is at least 1. Then, uniform boundedness of derivatives of x implies that γ̃m is uniformly

bounded as well which proves (d). Finally, observe that, by (94), mi goes to 1 as li → ∞
uniformly in lj , which implies that γ̃mi,i(l) converges to γ and γ̃mi,i(l) converges to 0 as li → ∞,

where convergence is uniform in the other spouse labor supply. This shows (e) and concludes

proof.

Equipped with Lemma 10, we can formally establish the results in Section 5.3. Here,

the notion of welfare is exactly the same as in the benchmark. To simplify exposition, it is

convenient to define two auxiliary functions ψs(l) := ∂Ns

∂ ln l and ψ
m
i := ∂Nm

∂ ln li
. Then, the fist part

of Lemma 9 extends, and the local incentive constraints can be succinctly expressed as

w
∂vs

∂w
= ψs

(
ys

w

)
, wi

∂vm

∂wi
= ψm

i

(
ym1
w1

,
ym2
w2

)
, (97)
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which is the exact analog of (8). To ensure properties (a), (b) of this lemma, we need to make

certain assumptions. First, the expected first-best economic surplus from singles is finite, i.e.,∫
max
y≥0

(
y −N s

( y
w

))
dG <∞;

second, the maximal expected economic surplus from singles diverges to −∞ when the expected

value of
∫
ψs
(
ys(w)
w

)
dG goes to +∞.We impose the same assumptions on married with w1, w2

replaced by the maximum of spousal productivities. As a result, (a), (b) of Lemma 10 are

implied by incentive compatibility, therefore we can formulate our relaxed problem in the

same functional spaces, V s and V m.

Finally, by Lemma 10, the local incentive constraints (97) can be inverted to solve for

earnings as a function of derivatives vs and vm. Let ϕs := (ψs)−1 and ϕm := (ψm)−1 . The

relaxed problem is the same as in Section 9.1 but S is given by

µ

2

∫ ( 2∑
i=1

wiϕ
m
i

(
w1
∂vm

∂w1
, w2

∂vm

∂w2

)
−Nm

[
ϕm

(
w1
∂vm

∂w1
, w2

∂vm

∂w2

)])
dF+

+ (1− µ)

∫ (
wϕs

(
w
∂vs

∂w

)
−N s

[
ϕs
(
w
∂vs

∂w

)])
dG. (98)

We now study the relaxed problem along the lines of the proof of Proposition 2. First of

all, let λs and λm be defined as a function of marginal taxes, (10). It is straightforward to

show that they are related to derivatives vs and vm by

λs =
ϕs (w∂vs/∂w)

∂vs/∂w
− 1, λmi =

ϕmi (w1∂v
m/∂w1, w2∂v

m/∂w2)

wi∂vm/∂wi
− 1.

As before, we shall assume that the optimal distortions, λs,∗ and λm,∗, satisfy conditions (A1)-

(A5) of Proposition 2. One important implication of (A2) is that labor supply is strictly

positive and goes to ∞ as productivity goes to ∞. Indeed, since λs,∗ ≤ λ, by Lemma 10, we

have
w

1 + λ
≤ ψs

(
ys,∗(w)

w

)
≤
(
ys,∗(w)

w

)p−1((ys,∗(w)
w

)p

+ x

)(1−pγ)/pγ

,

which shows that ys,∗(w) is bounded away from zero on every compact subset of R++ and that
ys,∗(w)

w → ∞ as w → ∞.

Clearly, singles and married individuals can be studied separately. We start with singles.

To apply the variational argument from the proof of Proposition 2, we first need to inves-

tigate derivatives of ϕs. Consider the equation l = ϕs(x), where x = wu, that defines l as

77



a function of u for fixed w. By definition, l ∂N
s(l)
∂l = wu, thus (γ̃s(l))−1 d ln l = d lnu and

d ln l = wu
l

∂ϕs(wu)
∂x d lnu, which gives

∂ (wϕs (wu)−N s [ϕs (wu)])

∂u
= wγ̃s(l)

(
l

u
− 1

)
.

Observe that the term in the brackets is exactly λs,∗(w) when evaluated at u = ∂vs,∗(w)
∂w .

Since Γs is uniformly bounded, (A1)-(A5) hold and nonnegativity of earnigns is slack, the

argument in the proof of Proposition 2 is applicable. Specifically, the following differential

equation is necessary for optimality:

∂ (γ̃s,∗wλs,∗g)

∂w
= (α− 1)g, (99)

where γ̃s,∗(w) is the value of γ̃s(l) evaluated at l = ys,∗(w)
w . This equation is analogous to (56),

and the only difference is that here γ̃s,∗ is non-constant. Integrating this equation, we obtain

the Diamond’s ABC formula from Section 5.3, that is,

γ̃s,∗(t)λs,∗(t) =
1− E [α|wi ≥ t]

θ(t)
.

Since γ̃s(l) → γ as l → ∞ and ys,∗(w)
w → ∞ as w → ∞, we get

lim
t→∞

λs,∗(t) = lim
t→∞

1− E[α|w ≥ t]

γθ(t)
.

We now look at married individuals. Again, the first step is to determine derivatives of

ϕm. Consider the equation l = ϕm(x), where x = (w1u1, w2u2), that defines l as a function of

u for fixed w. By definition, li
∂Nm(l)

∂li
= wiui for i = 1, 2, which gives (γ̃m(l))−1 d ln l = d lnu

and

d ln li =
wiui
li

∂ϕm(w1u1, w2u2)

∂xi
d lnui +

w−iu−i

li

∂ϕm(w1u1, w2u2)

∂x−i
d lnu−i.

Combining these expressions, we obtain

∂ (w1ϕ
m
1 (w1u1, w2u2) + w2ϕ

m
2 (w1u1, w2u2)−Nm [ϕm (w1u1, w2u2)])

∂ui
=

= wiγ̃
m
i,i(l)

(
li
ui

− 1

)
+ w−i

u−i

ui
γ̃m−i,i(l)

(
li
u−i

− 1

)
= w−i

u−i

ui
γ̃mi,−i(l) = wiγ̃

m
i,−i(l), (100)

where the second equality is due to the definition of γ̃m and l−i∂N
m(l)/∂l−i

li∂Nm(l)/∂li
= u−iw−i

uiwi
.

Conditions (A1)-(A5) of Proposition 2, uniform boundedness of Γm and the fact that earn-

ings are strictly positive, permits us to apply the same argument as in the proof of Proposition 2.
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Observe that
(

l1
u1

− 1, l2
u2

− 1
)
equals to λm,∗(w) when evaluated at w =

(
∂vm,∗(w)

∂w1
, ∂v

m,∗(w)
∂w2

)
,

thus, by (100), the following differential equation is necessary for optimality:

2∑
i=1

∂
(
γ̃m,∗
i,i wiλ

m,∗
i f + γ̃m,∗

i,−iwiλ
m,∗
−i f

)
∂wi

= (αm − 1)f, (101)

where γ̃m,∗(w) stays for γ̃m(l) evaluated at l =
(
ym,∗
1 (w)
w1

,
ym,∗
2 (w)
w2

)
. Integrate (101) using the

coarea formula with Q = wi and Q = minw to obtain the following conditional moments of

optimal distortions:

E
[
γ̃m,∗
i,i λm,∗

i + γ̃m,∗
i,−iλ

m,∗
−i |wi = t

]
=

1− E [αm|wi ≥ t]

θ(t)
,

E
[
γ̃m,∗
i,i λm,∗

i + γ̃m,∗
i,−iλ

m,∗
−i |wi = t

]
=

Pr(wj ≥ t|wi ≥ t)

2Pr (wj ≥ t|wi = t)

1− E [αm|w ≥ (t, t)]

θ(t)
.

By (A2), the optimal distortions are uniformly bounded. Since γ̃mi,i(l) → γ and γ̃mi,−i(l) → 0 as

li → ∞ uniformly in l−i and
ym,∗
i (w)
wi

→ ∞ as wi → ∞, we conclude that

lim
t→∞

E
[
λm,∗
i |wi = t

]
= lim

t→∞

1− E [αm|wi ≥ t]

γθ(t)
.

10.4 Bargaining and the allocation of resources within couples

We shall first study optimal taxation with generalized Nash bargaining as defined in the main

text and then look at the special case of equal bargaining powers. Recollect than each spouse

i’s utility in a couple with productivities w is given by

Um(wi|w−i) = η(wi|w−i)v
m(w) + [η(w−i|wi) (v

s(wi)− ϱ)− η(wi|w−i) (v
s(w−i)− ϱ)] .

In this expression, η(wi|w−i) is a number in [0, 1] and Eη = 1
2 . Using symmetry of vm and f , it

is easy to see that EUm = 1
2Ev

m. So, the resource constraint and the participation constraint,

Equation (5), are exactly the same as in Section 9.1, and only the welfare criterion, W, is a

bit more complex. Using symmetry and Um defined above, we can express W as

W = (1− µ)E [αvs] +
µ

2
E [α(w1)U

m(w1|w2) + α(w2)U
m(w2|w1)] +

∫ 1

µ
Φ(ε)dε+ const

= (1− µ)E
[(
α− µ

1− µ
ξ

)
vs
]
+
µ

2
E [αmvm] +

∫ 1

µ
Φ(ε)dε+ const, (102)

where

αm(w1, w2) = η(w1|w2)α(w1) + η(w2|w1)α(w2),

ξ(w) = E [(α(w−i)− α(wi)) η(w−i|wi)|wi = w], and const is the term that only depends on ϱ.
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Following the argument used in Section 9.1, we can solve for the pair of expected pecuniary

utilities, 1
2Ev

m = S + (1 − µ)Φ(µ) and Evs = S − µΦ(µ), where S is given by (54), and

substitute them into W. The reader can verify that (1−µ)Eα−µEξ+ µ
2Eα

m = 1, hence (102)

can be simplified as

W = (1− µ)E
[(
α− 1 +

µ

1− µ
(Eξ − ξ)

)
vs
]
+
µ

2
E [(αm − Eαm) vm] +

∫ 1

µ
Φ(ε)dε+ S+

+

∫ 1

µ
Φ(ε)dε+

(
Eαm + 1− µ

1− µ
Eξ
)
µ(1− µ)Φ(µ) + const. (103)

So, the relaxed problem is to maximize the objective in (103).

Using the same variational argument as was invoked in the context of the benchmark model,

see Proposition 2, we obtain

∂ (γwλs,∗g)

∂w
= α− 1 +

µ∗

1− µ∗
(Eξ − ξ) g,

2∑
i=1

∂
(
γwiλ

m,∗
i f

)
∂wi

= (αm − Eαm) f.

The optimal taxes on married stated in the main text follows from the coarea formula with

Q = wi applied to the second differential equation. As for single person households, remark

that the first differential equation implies

λs,∗(t) =
1− E[α|w ≥ t]

γθ(t)
+

µ∗

1− µ∗
E[ξ|w ≥ t]− Eξ

γθ(t)
.

In the case of equal bargaining powers, i.e., η = 1
2 , the expected value of ξ equals to 0, and

we recover Equation (40). Since α is decreasing and F ≤PQD F , we have

E[α(w−i)|wi ≥ t] ≥ E[α(wi)|wi ≥ t],

which shows that E[ξ|w ≥ t] > 0 for all t > 0. Conclude that the second term in (40) is positive

as claimed in the main text.

10.5 Extensive margin of labor supply

The model with extensive margin is quite complex, and we shall only outline key steps of

how it can be addressed skipping some technical details. First of all, we need to introduce

some auxiliary notations. Consider a single person who can obtain vs by participating in the

labor force. Let πs(vs) and Ls(vs) be their expected optimal pecuniary utility net lump-sum
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payments and probability of working, that is

πs(vs) := Emax {vs − κ, 0} =

∫ vs

0
(vs − κ)dH, (104)

Ls(vs) := Pr(vs − κ ≥ 0) = H(vs). (105)

Similarly, consider a married couple who can obtain vm when both spouses participates in

the labor force and ṽmi when only spouse i works. Denote their expected optimal marital sur-

plus net lump-sum payments and choice probabilities by πm (vm, ṽm1 , ṽ
m
2 ) and Lm (vm, ṽm1 , ṽ

m
2 ),

L̃m
1 (vm, ṽm1 , ṽ

m
2 ), L̃m

2 (vm, ṽm1 , ṽ
m
2 ) . Formally, these objects are given by

πm (vm, ṽm1 , ṽ
m
2 ) := Emax {vm − κ1 − κ2, ṽ

m
1 − κ1, ṽ

m
1 − κ2, 0} , (106)

Lm (vm, ṽm1 , ṽ
m
2 ) := Pr (vm − κ1 − κ2 ≥ max {ṽm1 − κ1, ṽ

m
2 − κ2, 0}) , (107)

L̃m
i (vm, ṽm1 , ṽ

m
2 ) := Pr

(
ṽmi − κi ≥ max

{
vm − κ1 − κ2, ṽ

m
−i − κ−i, 0

})
. (108)

In general, couples’ choice probabilities are rather complex. However, if vm = ṽm1 + ṽm2 , then

spouse i’s participation decision is independent of κ−i, and we obtain Lm = H(ṽm1 )H(ṽm2 ),

L̃m
i = H(ṽmi )

(
1−H(ṽm−i)

)
.

Given these definitions, we now in position to define the relaxed problem that we use to

study optimal taxation with extensive margin responses. Recollect that a single person with a

productivity w obtains the expected pecuniary benefit of U s(w) = πs(vs(w))+bs. The planner

collects Rs :=
∫
T s(ys)Ls(vs)dG− bs from single persons in expectations. As explained in the

main text, their taxes are related to vs via the envelope and first-order conditions,

T s(ys(w)) = w1+γ

(
∂vs(w)

∂w

)γ

− γw
∂vs(w)

∂w
− vs(w), (109)

∂
∂yT

s(ys(w))

1− ∂
∂yT

s(ys(w))
=

(
∂vs(w)

∂w

)γ−1

wγ − 1. (110)

Since married couples share their marital surplus equally, a married person in a couple with

productivities w receives Um(wi|w−i) = 1
2π

m (vm(w), ṽm(w1), ṽ
m(w2)) +

1
2b

m. The planner

collects

Rm :=

∫ [
Tm (ym)Lm (vm, ṽm1 , ṽ

m
2 ) +

2∑
i=1

Tm (ỹmi ) L̃m
i (vm, ṽm1 , ṽ

m
2 )

]
dF − bm,

from married couples in expectations, where we used shorthand notations ṽi = ṽm(wi) and

ỹmi = ỹm(wi). The relations between taxes Tm on married and their pecuniary benefits from
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working implied by the envelope theorem and first-order conditions are

Tm (ym(w)) =
2∑

i=1

(
w1+γ
i

(
∂vm(w)

∂wi

)γ

− γwi
∂vm(w)

∂wi

)
− vm(w), (111)

∂
∂yi
Tm (ym(w))

1− ∂
∂yi
Tm (ym(w))

=

(
∂vm(w)

∂wi

)γ−1

wγ
i − 1. (112)

Furthermore, T̃m and ṽm satisfy analogs of (109) and (110).

We use the same notion of social welfare as in the benchmark, that is

W = µE [αmUm] + (1− µ)E [αU s] +

∫ 1

µ
Φ(ε)dε. (113)

So, the relaxed problem of the planner is to maximize social welfare W subject to the resource

constraint, µ
2R

m+(1−µ)Rs ≥ 0, and to the marriage market participation constraint, Φ(µ) =

EUm − EU s. It turns out that the latter constraint is always slack in this economy due to

Eα = Eαm. The planner can use lump-sum payments bm, bs to simultaneously balance the

budget and implement any desired marriage rate µ without burning social surplus. Clearly,

the resource constraint must hold as an equality at the optimum. Putting all pieces together,

the relaxed program can be rewritten as the unconstrained maximization problem with the

following objective:

µ

2

∫ [
αmπm (vm, ṽm1 , ṽ

m
2 ) + Tm (ym)Lm (vm, ṽm1 , ṽ

m
2 ) +

2∑
i=1

Tm (ỹmi ) L̃m
i (vm, ṽm1 , ṽ

m
2 )

]
dF+

+(1− µ)

∫
[απs(vs) + T s(ys)Ls(vs)] dG+

∫ 1

µ
Φ(ε)dε. (114)

We now derive the set of optimality conditions for the relaxed problem. Recollect that

(114) depends on vs only through the expression in the second line. The necessary condition

for optimality can be found using usual the same variational technique as in the benchmark

economy, though this condition may be insufficient due to lack of concavity. Be definition of πs

in (104), we have ∂πs(vs)
∂vs = H(vs) = Ls(vs). Then, under conditions analogous to (A1)-(A5),

we can repeat the argument used in the proof of Proposition 2 to obtain

∂ (γwλs,∗Ls(vs,∗)g)

∂w
= (α− 1)Ls(vs,∗)g + T s,∗(ys,∗)

∂Ls(vs,∗)

∂vs
g. (115)

where all objects are evaluated at the productivity w. It is worthwhile to mention that this

condition completely determines vs,∗. First, remark that (A2) is equivalent to uniform bound-

edness of λs,∗ =
∂
∂y

T s,∗(ys,∗)

1− ∂
∂y

T s,∗(ys,∗)
, hence the term in the brackets on the left-hand of (115) goes to
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0 as w → 0,∞. As a result, the value of vs,∗(0) is pinned down by equating the integral of the

right-hand side to 0, that is∫ (
(α− 1)Ls(vs,∗) + T s,∗(ys,∗)

∂Ls(vs,∗)

∂vs

)
dG = 0.

Second, remark that Ls(vs,∗) = H(vs,∗) and ∂Ls(vs,∗)
∂vs = h(vs,∗). Therefore, setting Hs(w) :=

H(vs,∗) and gs(w) := Hs(w)g(w)∫
HsdG

, we can integrate (115) from w = t to w = ∞ to obtain (44),

which pins down ∂vs,∗

∂w and the corresponding marginal tax rates.

Optimal taxation of married persons has many features in common with the problem of

single households but it is considerably more involved. To begin, note that the objective in

(114) depends on vm, ṽm only through the expression in the first line. By definition of πm in

(106), we have

∂πm(vm, ṽm1 , ṽ
m
2 )

∂vm
= Lm(vm, ṽm1 , ṽ

m
2 ),

∂πm(vm, ṽm1 , ṽ
m
2 )

∂ṽmi
= L̃m

i (vm, ṽm1 , ṽ
m
2 ).

Again, under appropriate versions of (A1)-(A5), we can apply the argument used in the proof

of Proposition 2 separately to vm and ṽm and obtain

2∑
i=1

∂
(
γwiλ

m,∗
i Lm(vm,∗, ṽm,∗

1 , ṽm,∗
2 )f

)
∂wi

= (αm − 1)Lm(vm,∗, ṽm,∗
1 , ṽm,∗

2 )f+

+ Tm,∗(ym,∗)
∂Lm(vm,∗, ṽm,∗

1 , ṽm,∗
2 )

∂vm
f +

2∑
i=1

T̃m(ỹm,∗
i )

∂L̃m
i (vm,∗, ṽm,∗

1 , ṽm,∗
2 )

∂vm
f (116)

and

2∑
i=1

∂
(
γwiλ̃

m,∗
i

∫
L̃m
i (vm,∗, ṽm,∗

1 , ṽm,∗
2 )fdw−i

)
∂wi

=

∫ [
(αm − 1) L̃m

i (vm,∗, ṽm,∗
1 , ṽm,∗

2 )f+

+ Tm,∗(ym,∗)
∂Lm(vm,∗, ṽm,∗

1 , ṽm,∗
2 )

∂ṽm,∗
i

f +

2∑
j=1

T̃m(ỹm,∗
j )

∂L̃m
j (vm,∗, ṽm,∗

j , ṽm,∗
j )

∂ṽm,∗
i

f

]
dw−i. (117)

In Equations (116), (117) all objects are evaluated at w and wi, respectively. As can been

seen from these equations, extensive responses for married couples are much more complex. In

particular, we need to take into an account changes in all participation probabilities as revealed

by the second lines in (116), (117). These equations jointly determine derivatives of vm,∗, ṽm,∗

and their intercepts.

We now study the case of random matching, i.e., F = G2. We shall show that the op-

timality conditions for married hold for separable taxes that takes the form Tm(y1, y2) =
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T̃m(y1) + T̃m(y2). For such taxation, we have vm(w1, w2) = ṽm(w1) + ṽm(w2) for all spousal

productivities, and hence their participation decisions are independent from each other. In

order to verify that separable taxation satisfies (116) and (117), we first need to compute

derivatives of their choice probabilities. To this end, let vm, ṽm1 , ṽm2 be a tuple of numbers

such that vm = ṽm1 + ṽm2 . By (107) and (108), we have

Lm(vm, ṽm1 , ṽ
m
2 ) = H(ṽm1 )H(ṽm2 ), L̃m

i (vm, ṽm1 , ṽ
m
2 ) = H(ṽmi )

(
1−H(ṽm−i)

)
(118)

and

∂Lm(vm, ṽm1 , ṽ
m
2 )

∂vm
= H(ṽm1 )h(ṽm2 ) + h(ṽm1 )H(ṽm2 ), (119)

∂Lm(vm, ṽm1 , ṽ
m
2 )

∂ṽmi
= −H(ṽmi )h(ṽm−i), (120)

∂L̃m
i (vm, ṽm1 , ṽ

m
2 )

∂vm
= −H(ṽmi )h(ṽm−i), (121)

∂L̃m
i (vm, ṽm1 , ṽ

m
2 )

∂ṽmi
= H(ṽmi )h(ṽm−i) + (1−H(ṽm−i))h(ṽ

m
i ), (122)

∂L̃m
−i(v

m, ṽm1 , ṽ
m
2 )

∂ṽmi
= 0. (123)

As explained above, under separable taxation the choice probabilities that appear in (116),

(117) satisfy (118) and (119)-(123) for every productivity vector.

Consider the tax function Tm,∗(y1, y2) = T̃m,∗(y1) + T̃m,∗(y2) described in the main text

and characterized by (45). If λ̃m,∗
i =

∂
∂y

T̃m(ỹm,∗
i )

1− ∂
∂y

T̃m(ỹm,∗
i )

is bounded, then, since
∫
αdG = 1, Equation

(44) implies ∫ [(
α− 1

2

)
(1−H(ṽm,∗))− T̃m(ỹm,∗)h(ṽm,∗)

]
dG = 0. (124)

Using α(w1, w2) = 1
2α(w1) +

1
2α(w2) and f(w1, w2) = g(w1)g(w2), Equations (118), (119)-

(123), and the boundary condition (124), it is routine to verify that both (116), (117) are

satisfied for such taxes.

10.6 Proof of Lemma 7

The optimality conditions that we devised in the previous section are only necessary because

the relaxed problem defined in (114) is not concave in vs, vm, ṽm. So, even though (44) and

(45) verify these optimality conditions, there can be other tax schedules that do better. In

addition, since the optimal taxes appear on both sides of (115) and (116) when persons can

respond at the extensive margin, it is difficult to compare the marginal tax rates on single and

married. In this section, we fill these gaps in the special case of our setting with i.i.d. types

and non-random κ = κ = κ.
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Proof. To overcome the challenge of lack of concavity, we consider an extended problem in

which the planner can observe labor force participation probabilities and can condition taxes

on them. Now, the planner selects tax schedules T s(y|e) and Tm(y|e) for single and married

households, where e ∈ [0, 1] and e = (e1, e2) ∈ [0, 1]2. The interpretation is straightforward,

e.g., if a single person joins the labor force with probability e and supplies y units of labor, then

that person pays T (y|e) dollars to the planner. The original model is subsumed by imposing

additional restrictions on taxes: T s(y|e) = T s(y)e+ bs and

Tm(y|e) = Tm(y)e1e2 + T̃m(y1)e1(1− e2) + T̃m(y2)e2(1− e1) + bm. (125)

As we shall show, the extended taxation problem is concave and it admits a solution that

satisfies these constraints.

Let vs, vm be the solution to the optimization problems of single and married households

when faced with such generalized taxes, that is

vs(w) := max
e,y

T s(y|e)−
(
γ
( y
w

)1/γ
+ κ

)
e s.t. e ∈ [0, 1], y ≥ 0,

vm(w) := max
{ei,yi}2i=1

Tm(y|e)−
2∑

i=1

(
γ

(
yi
wi

)1/γ

+ κ

)
ei s.t. e1, e2 ∈ [0, 1], y1, y2 ≥ 0.

The notion of welfare and the marriage market participation constraints are identical to the

benchmark. Then, the characterization of incentive constraints is similar to the benchmark,

e.g., the envelope theorem applied to vs yields w ∂vs

∂w =
(
ys

w

)1/γ
es. Hence, the planner can

collect

Rs =

∫ [
w1+γ

(
∂vs

∂w

)γ

(es)1−γ − κes − γw
∂vs

∂w

]
dG (126)

from singles in expectations. Clearly, for fixed vs, it is optimal to select es that pointwise

maximizes (126) as it improves total revenues available for redistribution. The reader can

verify that

ψ

[
w1+γ

(
∂vs

∂w

)γ]
:= max

es∈[0,1]
w1+γ

(
∂vs

∂w

)γ

(es)1−γ − κes =

=

γ
(
1−γ
ϱ

)(1−γ)/γ
w(1+γ)/γ ∂vs

∂w , w1+γ
(
∂vs

∂w

)γ ≤ κ
1−γ ,

w1+γ
(
∂vs

∂w

)γ − κ, w1+γ
(
∂vs

∂w

)γ ≥ κ
1−γ .

(127)

The exactly same construction applies to married, thus the economic output S (Equation (54)

in the benchmark) can be succinctly expressed as

µ

2

∫ 2∑
i=1

(
ψ

[
w1+γ
i

(
∂vm

∂wi

)γ]
− γwi

∂vm

∂wi

)
dF+(1− µ)

∫ (
ψ

[
w1+γ

(
∂vs

∂w

)γ]
− γw

∂vs

∂w

)
dG.

(128)
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Following Section 9.1, the relaxed problem is exactly as that section but now S is given by

(128). The advantage of pre-solving for es and em is that the relaxed problem becomes a

concave program in vs , vm and can be studied along the lines of the proof of Proposition 2.

We now derive and further analyze the set of necessary and sufficient conditions for opti-

mality. As in the proof of Proposition 2, marginal taxes and distortions of singles and married

can be studied in isolation. Observe that ψ is continuously differentiable. Set λs to be

λs :=


(
1−γ
κ

)(1−γ)/γ
w1/γ − 1, w1+γ

(
∂vs

∂w

)γ ≤ κ
1−γ ,

wγ
(
∂vs

∂w

)γ−1 − κ, w1+γ
(
∂vs

∂w

)γ ≥ κ
1−γ ,

and define λm analogously as a function of vm. With these notations, the variational conditions

listed in the proof of Proposition 2, that is (60), (63), (60), (64), are necessary and sufficient

provided that conditions (A1)-(A5) hold.

We claim that the optimum coincides with the benchmark solution above certain thresholds.

Specifically, there are numbers ws for singles and wm for married so that a single (married)

person works if and only if wi ≥ ws (wi ≥ wm, resp.); moreover, above these cut-offs distortions

are exactly as in the benchmark. Recollect that, by Proposition 4, the optimal benchmark

distortions are λs,∗(w) and
(
1
2λ

s,∗(w1),
1
2λ

s,∗(w2)
)
, where λs,∗ is defined in (12). Since the

first-order approach is valid, that is both conditions of Proposition 1 hold, there are unique

thresholds such that welfare gains in (65), (66) at the margin are exactly κ, i.e.,

κ = (1− γ)ws

(
ws

1 + λs,∗(ws)

)γ/(1−γ)

, κ = (1− γ)wm

(
wm

1 + 1
2λ

s,∗(wm)

)γ/(1−γ)

. (129)

Consider vs so that ∂vs

∂w (w) = 0 for w < ws, which gives λs(w) =
(
1−γ
κ

)(1−γ)/γ
w1/γ − 1, and

λs(w) = λs,∗(w) otherwise. Then, λs constructed in this way satisfies (A1)-(A5); moreover,

since λs(w) ≤ λs,∗(w) for all w, (60) and (61) hold. Indeed, for any alternative function

v̂s ∈ V s, ∫
γwλs

∂v̂s

∂w
dG+

∫
(α− 1)v̂sdG =

∫
γw

λs − λs,∗︸ ︷︷ ︸
≤0

 ∂v̂s

∂w︸︷︷︸ d
≥0

G ≤ 0,

which shows (61). By construction, (λs(w)− λs,∗(w)) ∂vs(w)
∂w = 0 for all w, thus (60) is satisfied

as well.

The argument for married individuals is identical. Consider vm(w) = ṽm(w1)+ ṽ
m(w2) for

ṽm that satisfies ∂ṽm(wi)
∂wi

= 0 for wi < wm, which gives λmi (w) =
(
1−γ
κ

)(1−γ)/γ
w

1/γ
i − 1, and

λmi (w) = 1
2λ

s,∗(wi) otherwise. These distortions satisfy (A1)-(A5). Furthermore, the condition
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for validity of the first-order approach in Proposition 1 implies that λmi (wi) ≤ 1
2λ

s,∗(wi) for all

wi. As a result, for any function v̂m ∈ V m, potentially non-separable,

∫ 2∑
i=1

γwiλ
m
i

∂v̂mi
∂wi

dF +

∫
(αm − 1)v̂mdF =

∫ 2∑
i=1

γwi

λmi − 1

2
λs,∗︸ ︷︷ ︸

≤0

 ∂v̂m

∂wi︸︷︷︸
≥0

dF ≤ 0,

which shows (64). By construction,
(
λmi (w)− 1

2λ
s,∗(wi)

) ∂vm(w)
∂wi

= 0 for all w, thus (63) is

satisfied as well.

To sum up, we identified the solution to the extended problem in which the planner can

condition taxes on labor force participation probabilities. In this problem, there are two

thresholds, ws and wm, such that a person works if and only if his/her productivity is above

that person’s threshold. Furthermore, since λs,∗ is nonnegative due to monotonicity of α,

examination of (129) makes it clear that the threshold for married is lower than one for singles

due to lower distortions. The optimal marginal taxes on those who work are exactly as in the

benchmark with random matching.

Since the optimal labor participation decisions are integral and a person who doesn’t par-

ticipate in the labor force selects zero earnings, the mechanism identified above also solves

the original model with extensive margin, i.e., (125) holds. To see it more formally, let

T s,∗(y) and Tm,∗(y1, y2) = T̃m,∗(y1) + T̃m,∗(y2) be taxes that solve the benchmark problem

in Lemma 4. Under such taxation, the marital surplus of couples is also separable , i.e.,

vm,∗(w1, w2) = ṽm,∗(w1) + ṽm,∗(w2). Denote the earnings obtained from vs,∗, ṽm,∗ via the

envelope condition by ys,∗, ỹm,∗ and set ∆s := vs,∗(ws) − κ, ∆m := vm,∗(wm) − κ. Consider

T s(y|e) = (T s,∗(y)+∆s)e+bs and Tm(y|e) = (T̃m,∗(y1)+∆m)e1+(T̃m,∗(y1)+∆m)e2+b
m. By

construction, each single (married) persons works if and only if wi ≥ ws (wi ≥ wm, resp.) in

which case that persons chooses earnings ys,∗ (ỹm,∗, resp.). We can choose lump-sum payments

bs, bm to balance the budget and ensure that the desired fraction of individuals gets married

by solving

µ∗
∫ ∞

wm

(T̃m,∗(y) + ∆m)dG+ (1− µ∗)

∫ ∞

ws

(T s,∗(y) + ∆s)dG = µ∗bm + (1− µ∗)bs,∫ ∞

wm

(ṽm,∗ − κ−∆m) dG−
∫ ∞

ws

(vs,∗ − κ−∆s) dG = bm − bs,

which are exactly the resource and marriage market participation constraints in the original

model of the previous section. This concludes Parts (a) and (b) of the lemma.
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We now show Part (c). The reader can verify that the optimal marriage rate µ∗ is pinned

down by the following analog of Equation (17):

∫
max

w
(

w

1 + 1
2λ

s,∗

)γ/(1−γ)

− κ, 0

 dG−
∫

max

{
w

(
w

1 + λs,∗

)γ/(1−γ)

− κ, 0

}
dG =

Φ(µ∗)

1− γ
.

Since λs,∗(w) > 1
2λ

s,∗(w) > 0 for all t > 0 due to strict monotonicity of α, the left-hand side

of this expression is decreasing in κ. At κ = 0, the marriage rate is the same as in the bencmark

model. As κ → ∞, the left-hand side goes to 0, and hence the marriage rate monotonically

decreases to µLF that solves Φ(µLF) = 0. Recollect that the marriage market participation

constraint requires reads as Φ(µ∗) = EUm,∗ −EU s,∗, thus EUm,∗ −EU s,∗ is strictly decreasing

in κ as well, and goes to 0 as κ→ ∞.

10.7 Selection into marriage

The main conceptual difference here is that there are two marriage cutoffs, µl and µh. Equation

(5) has to hold for each cutoff individually, that is

Φ(µq) =
1

2

∫ ∫
vm(w)dHq(w1)dHq(w2)−

∫
vs(w)dHq for q = l, h. (130)

One important implication of differential cutoffs is that the distributions of productivities, Gs

and F , are endogenous. According to Bayes’ rule, they satisfy

(1− µ)Gs(w) =
1− µl

2
Hl(w) +

1− µh
2

Hh(w),

(1− µ)F (w) =
µ

2
Hl(w1)Hl(w2) +

µh
2
Hh(w1)Hh(w2),

where µ = µl+µh
2 is the economy-wide marriage rate. To ensure that the relaxed problem is

well-defined, we require∫ ∫
max

{
w

1/(1−γ)
1 , w

1/(1−γ)
2

}
dHq(w1)dHq(w2) <∞

for every signal q. Then, it is easy to see that, each marriage rate must be interior and

conditions (a), (b) of Lemma 9 hold for each q = l, h.

We now study the relaxed problem for fixed µl, µh ∈ (0, 1). In contrast to Section 9.1,

the resource constraint and (5) cannot be eliminated, we therefore use the Lagrange multiplier

approach. For fixed µl, µh ∈ (0, 1), the problem is concave. So, let δl, δh be Lagrange multipliers

on (5) and η be a multiplier on (52). Existence of δl, δh and η is standard, e.g., see Chapter
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8 in Luenberger (1997); moreover, it is immediate that η = 1. To sum up, ignoring the terms

that don’t depend on vs, vm, the Lagrangian can be written as follows:

µ

2

∫
(αm(w)− 1)vm(w)dF + (1− µ)

∫
(α(w)− 1)vs(w)dGs + S+

+
∑
q=l,h

δq

(∫
vs(w)dHq −

1

2

∫ ∫
vm(w)dHq(w1)dHq(w2)

)
,

where S is defined in (54).

Our analysis of the necessary conditions for vs, vm in the proof of Proposition 2 goes

without changes, and it gives the following analogs of (56), (57):

∂ (γwλs(w)gs(w))

∂w
= (α(w)− 1) gs(w) +

∑
q=l,h δqhq(w)

1− µ∗
, (131)

2∑
i=1

∂ (γwiλ
m
i (w)f(w))

∂wi
= (αm(w)− 1) f(w)−

∑
q=l,h δqhq(w1)hq(w2)

µ∗
. (132)

Equations (131), (132), which are necessary for optimality for fixed marriage rates, and the

coarea formula for Q = wi imply that the optimal distortions satisfy two equations in the text.

10.8 Optimality of taxation of family earnings

10.8.1 Proof of Lemma 8

Proof. By Proposition (2), the optimal tax is family-earnings-based if and only if λ̃(r) :=

1−E
[
αm|R≥r

]
γθr(r)

verifies (57). Solve for (w1, w2) as a function of (r, ι) to obtain

maxw =
r(

1 + ι1/(1−γ)
)(1−γ)

, minw =
r(

1 + ι1/(γ−1)
)(1−γ)

.

It is routine to verify that dw = w1w2
rι drdι. Thus, f and f̃ , which is the density of (r, ι), are

related by f = 1
2

rι
w1w2

f̃ . Since R(tw) = tR(w) and I(tw) = I(w) for all t > 0, we have

2∑
i=1

∂
(
wiλ̃(R(w))f(w)

)
∂wi

=
∂
(
t2λ̃(R(tw))f(tw)

)
∂t

∣∣∣∣
t=1

=
1

2

R(w)I(w)

w1w2

∂
(
rλ̃(r)f̃(r, ι)

)
∂r

∣∣∣∣
r=R(w)

.

(133)

It follows from (133) that λ̃ satisfies (57) if and only if

∂
(
γrλ̃f̃

)
∂r

= (α− 1) f̃ . (134)

Divide this equation by the marginal density of ι and integrate to see the claim in the first

part of the lemma.

89



We now show the second part of the lemma. Here, we assume that α is measurable only

w.r.t. R, that is αm(w) = α̃(R(w)) for some function α̃. In this case, Condition (134), which

is necessary and sufficient, can be unpacked as follows:

∂ ln f̃(r, ι)

∂r
= α̃(r)− 1− ∂(γrλ̃(r))

∂r
=
∂ ln gr(r)

∂r
, (135)

where gr is the density of r = R(w). The last equality is due to the definition of λ̃. Clearly, f̃/gr

must be independent of r for (135) to hold, which is equivalent to independence of (r, ι).

We end this section with an example of comparative statics that can be performed using

the methodology that we developed in the main text. As shown in Section 3.2, the optimal

distortions satisfy

E
[
λm,∗
sec − λm,∗

pr |I = ι
]
=

1− E[αm|I ≥ ι]

γθι(ι)
.

Suppose that αm(w) = α̃(R(w)) for some decreasing function α̃. Let F̃ a, F̃ b be two distribu-

tions of transformed variables (r, ι). If F̃ a ≤PQD F̃ b, then we have

Pra (R ≥ r|I ≥ ι) ≤ Prb (R ≥ r|I ≥ ι) ∀ (r, ι) . (136)

Since αm is measurable only with respect to r and decreasing in this variable, the first-

order stochastic dominance relationship in (136) gives Ea [αm|I ≥ ι] ≥ Eb [αm|I ≥ ι]. Thus,

Ea
[
λm,a,∗
sec − λm,a,∗

pr |I = ι
]
≤ Eb

[
λm,b,∗
sec − λm,b,∗

pr |I = ι
]
.

10.9 Gender differences

Since there may be different numbers of males and females on the marriage market, we allow

for rationing to clear it. Specifically, we return agents with the highest values of preference

shocks of the “surplus” gender back to the singlehood. As before, let µ be the marriage

rate and suppose that o∗ is the “deficit” gender, which simply means that ∆ :=
∫
vso∗dĜo∗ −∫

vs−o∗dĜ−o∗ ≥ 0. Then, the marriage rate is given by

Φ(µ) =
1

2

∫
vmdF̂ −

∫
vso∗dĜo∗ . (137)

The resource constraints reads as

S ≥ µ

2

∫
vmdF̂ + (1− µ)

∫
vso∗dĜo∗ − (1− µ)

∆

2
,

and S is defined as in the benchmark (Equation (54)) but allowing for differential treatment

of single households from different genders.
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It is easy to see that the modified resource constraint must bind, thus when combined with

(137), it can be solved uniquely for expected utilities of married and singles o as a function of

Φ(µ), S and ∆. Substituting these expected utilities into the welfare criterion, we obtain

W =
µ

2

∫
(α̂m − 1) v̂mdF̂ +

1− µ

2

∑
o=1,2

∫
(α̂o − 1) vsodGo + S +

∫ 1

µ
Φ(ε)dε, (138)

which is independent of ∆. We conclude that it is immaterial which gender is in “deficit”,

and there is always a solution in which the market clears exactly, i.e., ∆ = 0, when taxes are

allowed to be gender-specific.

The rest of the argument is exactly the same as in the proof of Proposition 2, and it

immediately implies that that the optimal gender-specific distortions {λ̂s,∗o , λ̂m,∗
o }o∈{1,2} satisfy

(47).

We now look at the case of gender-neutral taxation, i.e., vso = vs for both genders o = 1, 2

and vm is symmetric. In contrast to gender-specific taxation discussed above, rationing will

play a role to clear the marriage market, i.e., it is not longer the case that there are multiple

values of ∆ that are consistent with the optimum.

In order to derive the optimal taxes, we first “symmetrize” the economy as discussed in

the main text. It is routine to verify that if vm is a symmetric function and vso = vs for both

o = 1, 2, then W defined in (138) can be expressed as

µ

2

∫
(αm − 1) vmdF + (1− µ)

∫
(α− 1) vsdG+

∫ 1

µ
Φ(ε)dε+ S.

Recollect that under gender-neutrality, we are effectively back to the symmetric setting of

Section 9.1. So, Proposition 2 can be directly applied, and it gives that the optimal gender-

neutral distortions {λs,∗, λm,∗
o }o∈{1,2} (48). Equation (49) follows from direct calculations using

(47) and (48), e.g.,

∑
o=1,2

λ̂o
s,∗

(t)tγωo(t) =
∑
o=1,2

∫∞
t (1− α̂o(w))go(w)dw

go(t)

1

2

go(t)

g(t)
= λ̂o

s,∗
(t)tγ.

Calculations for married are identical.

10.10 Optimal restricted taxation

In this section, we explore optimal taxation under additional restrictions. First, we study the

case of separable gender-neutral taxation, i.e., Tm(w1, w2) = T̃m(y1) + T̃m(y2) for some tax

function T̃ . Under such taxation, spouse i’s labor supply decision is necessarily independent of
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w−i. Hence, the marital surplus takes the form vm(w) = ṽm(w1) + ṽm(w2) for some function

ṽm. The reader can verify that for such additively separable and symmetric vm, we have∫
(αm − 1) vmdF = 2

∫
(E [αm|wi = w]− 1) ṽmdG.

Clearly, vm enters the total economic output S only through ṽm as ∂vm(w1,w2)
∂wi

= ∂ṽm(wi)
∂wi

. So,

we reduced the analysis of individual earnings-based taxation of married individuals to the

analysis of singles. Following the argument in Proposition 2, we obtain

λ̃m,∗(t) =
1− E [αm|wi ≥ t]

γθ(t)
,

which equals to the the optimal unrestricted distortions E
[
λm,∗
i |wi = t

]
as shown in (18).

Suppose that taxes are family-earnings-based. As explained in Section 5.7, under such

taxation, vm is measurable only w.r.t. to r, i.e., vm(w) = ṽm(R(w)) for some ṽm, hence∫
(αm − 1) vmdF =

∫
(E [αm|R = r]− 1) ṽmdGr,

where ṽ is the distribution of r = R(w). In order to make our previous argument applicable,

we need to show that vm enters the total economic output S only through ṽm. Indeed, since

w1
∂R
∂w1

+ w2
∂R
∂w2

= r,

2∑
i=1

(
w1+γ
i

(
∂vm

∂wi

)γ

− γwi
∂vm

∂wi

)
= r1+γ

(
∂ṽm(r)

∂r

)γ

− γr
∂ṽm(r)

∂r
.

Similarly to the previous part, we reduced the analysis of family-earnings-based taxation of

married individuals to the analysis of singles. Following the argument what was used to prove

Proposition 2, we obtain

λm,fam,∗(r) =
1− E [αm|R ≥ r]

γθr(r)
,

which is exactly the expression in (46).

11 Quantitative analysis

11.1 Calibration

We use data from the 2020 CPS survey. In our dataset, we have pre-tax earnings of 11087

couples, each consisting of two individuals who (a) have a spouse in the same household, (b)

worked for at least 20 weeks in 2020, (c) are 25-65 years old. Our measure of earnings includes

only wage earnings. The sample is representative of approximately 42 million people.
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We suppose that the data comes from a symmetric environment with γ = 1/4; thus, we

symmetrize the dataset by creating one more copy of every household in which the identities

of two spouses are interchanged. This gives us 2×11087 couples with identical distributions of

earnings for each spouse and the same dependence patterns as before. We normalize earnings

by 100 thousand so that the average value of individual earnings in the dataset equals 0.75.

Following Guner et al. (2014) and Heathcote et al. (2017) we assume that the data is

generated with the following tax function: T (y1, y2) = (y1 + y2)− ν(y1 + y2)
1−τ . Guner et al.

(2014) estimated (τ, ν) for married couples using the IRS data in which earnings are normalized

by 53 thousand. Since we normalize earnings by 100 thousand, we adjust their estimate, which

is τ = 0.06 and ν = 0.91, so that total tax bills in dollar terms are identical. The parameter τ

doesn’t need any adjustment but ν = 0.91× ( 53
100)

τ .

Given the assumed log-linear tax schedule, each couple solves

max
(y1,y2)≥0

ν (y1 + y2)
1−τ −

2∑
i=1

γ

(
yi
wi

)1/γ

,

which allows us to express unobserved productivites as a function of observed earnings (Equa-

tion (50)) and construct their empirical distribution.

We calibrate the marginal distribution of productivities and their copula separately. Recall

that the marginal G is assumed to follow a PLN distribution with parameters (a, η, σ) ∈
R++ × R× R++, that is

G(t) = Φ

(
ln t− η

σ

)
− t−a exp

(
aη + a2σ2/2

)
Φ

(
ln t− η − aσ2

σ

)
.

Our first target moment is the Pareto statistic (computed with 183 observations at t that

corresponds to 99% percentile of the empirical cdf). In our sample this moment equals to 2.95,

and since

lim
t→∞

E [wi|wi ≥ t]

E [wi|wi ≥ t]− t
= a,

we set a to 2.95. The second target moment is the Gini coefficient. It equals to 0.31 in the

dataset. It can be shown that (e.g., see Colombi (1990)) for a PLN distribution, it is given by

2Φ

(
σ√
2

)
− 1 + 2

ea(a−1)σ2

2a− 1
Φ

(
(1− 2a)σ√

2

)
,

where Φ is the standard normal distribution. This gives us σ = 0.4. Our final target moment

is the mean value of individual productivities that equals 0.81 in the sample. Using the closed

form expression

Ewi =
a

a− 1
eµ+σ2/2,
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we get µ = −0.71.

As for the copula of (w1, w2), we calibrate it using the Kendell’s tau dependence coefficient

(see Chapter 5 in Nelsen (2006)), which is a rank measure of concordance, theoretically:

Pr ((w1 − w̃1) (w2 − w̃2) > 0)− Pr ((w1 − w̃1) (w2 − w̃2) < 0) ,

where (w1, w2) and (w̃1, w̃2) are independent copies of productivities. Clearly, this statistic

only depends on the underlying copula, not on G, and closed form expressions are available

for many copulas. In our dataset, it equals to 0.21. We tried several copulas and found that

the Gaussian one fits the data very well. For the Gaussian copula, Kendell’s tau is given by
2 arcsin ρ

π , where ρ is its correlation parameter. This gives us ρ = 0.33.

11.2 Numerical approach

In this section, we overview the numerical approach that we used to find the optimal taxes. We

first discretize the problem using a finite logarithmic grid of 399 equally spaced productivities.

The grid is logarithmic in the sense that a ratio of two consecutive points is constant. This

allows to improve accuracy at the left tail and capture the thick right tail. Let
{
w1, . . . , w400

}
,

where w1 = 0.12 and w400 = 10, be this grid. The 400th point is added to ensure that our

discretized relaxed problem can approximate the original relaxed problem in which the domain

is unbounded. It will be convenient to also define w0 := 0.

We numerically solve a relaxed problem that only contains downward incentive constraints,

one for each spouse, that is

max
v,y1,y2≥0

400∑
n1,n2=1

v (wn1 , wn2) (αm (wn1 , wn2)− 1) f (wn1 , wn2)+

+
2∑

i=1

400∑
n1,n2=1

(
yi (w

n1 , wn2)− γ

(
yi (w

n1 , wn2)

wni

)1/γ
)
f (wn1 , wn2)

subject to the following set of incentive constraints: for all ni = 2, . . . , 400, n−i = 1, . . . , 400

and i = 1, 2,

v (wni , wn−i) ≥ v (wni−1 , wn−i) + γy
1/γ
i

(
wni−1, wn−i

) ((
wni−1

)−1/γ − (wni)−
1/γ
)
.

In this problem, f is set to be

f (wn1 , wn2) =


Pr
(
wni−1 < wi ≤ wni ∀i

)
, ni, n−i < 400;

Pr
(
wni−1 < wi, w

n−i−1 < w−i ≤ wn−i
)
, ni = 400 > n−i;

Pr
(
wni−1 < wi ∀i

)
, ni = n−i = 400.
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And, αm is normalized so that
∑400

n1,n2=1 α
m (wn1 , wn2) f (wn1 , wn2) = 1.

The solution to the relaxed problem is easy to find, and it is always the case that all

incentive constraints are binding. Given this solution, we then numerically verify all remaining

(global) incentive constraints. In all cases, we found that the first-order approach holds.
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