Résumé
In statistics, samples are drawn from a population in a data-generating process (DGP). Standard errors measure the uncertainty in estimates of population parameters. In science, evidence is generated to test hypotheses in an evidence-generating process (EGP). We claim that EGP variation across researchers adds uncertainty—nonstandard errors (NSEs). We study NSEs by letting 164 teams test the same hypotheses on the same data. NSEs turn out to be sizable, but smaller for more reproducible or higher rated research. Adding peer-review stages reduces NSEs. We further find that this type of uncertainty is underestimated by participants.
Remplace
Albert J. Menkveld, Anna Dreber, Fany Declerck et Sophie Moinas, « Non-Standard Errors », TSE Working Paper, n° 23-1451, juin 2023.
Référence
Albert J. Menkveld, Anna Dreber, Felix Holzmeister, Juergen Huber, Magnus Johannesson, Michael Kirchler, Michael Razen, Utz Weitzel, Fany Declerck et Sophie Moinas, « Nonstandard Errors », The Journal of Finance, vol. 79, n° 3, juin 2024, p. 2339–2390.
Publié dans
The Journal of Finance, vol. 79, n° 3, juin 2024, p. 2339–2390