Résumé
We extend nonparametric regression smoothing splines to a context where there is endogeneity and instrumental variables are available. Unlike popular existing es-timators, the resulting estimator is one-step and relies on a unique regularization parameter. We derive uniform rates of the convergence for the estimator and its first derivative. We also address the issue of imposing monotonicity in estimation. Sim-ulations confirm the good performances of our estimator compared to some popular two-step procedures. Our method yields economically sensible results when used to estimate Engel curves.
Mots-clés
Instrumental variables; Nonparametric regression; Smoothing splines;
Référence
Jad Beyhum, Elia Lapenta et Pascal Lavergne, « One-step nonparametric instrumental regression using smoothing splines », TSE Working Paper, n° 23-1467, août 2023.
Voir aussi
Publié dans
TSE Working Paper, n° 23-1467, août 2023