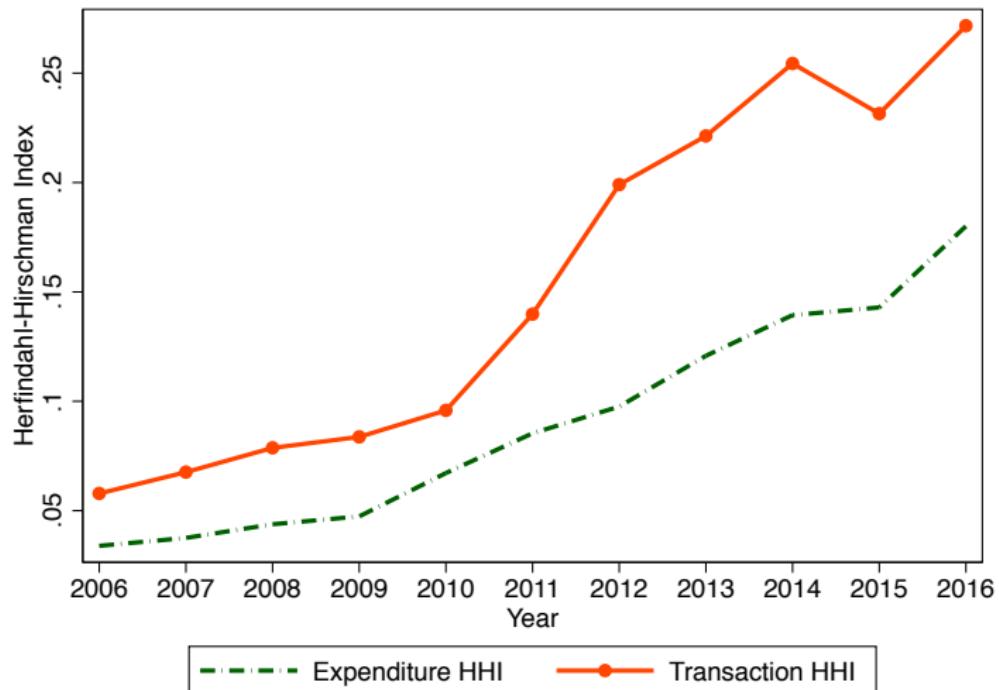


Economies of Density in E-Commerce: A Study of Amazon's Fulfillment Center Network

Jean-François Houde¹ Peter Newberry² Katja Seim³


¹Department of Economics
Cornell University & NBER

²Department of Economics
Pennsylvania State University

³The Wharton School
University of Pennsylvania & NBER

Postal Economics Conference March 29, 2018

Concentration in Online Retail

Source: ComScore Web Behavior Database.

Research Question

- Expenditure concentration: HHI of 300 to 1,300.
 - ▶ Amazon's sales growth: US revenue of \$5bn to \$80bn.
 - ▶ Growth and decentralization in Amazon's distribution network: 8 fulfillment centers (FCs) in 6 states to over 100 FCs in 28 states.

Research Question

- Expenditure concentration: HHI of 300 to 1,300.
 - ▶ Amazon's sales growth: US revenue of \$5bn to \$80bn.
 - ▶ Growth and decentralization in Amazon's distribution network: 8 fulfillment centers (FCs) in 6 states to over 100 FCs in 28 states.
- What is the source of Amazon's scale advantage?
 - ▶ Platform effects: product variety + reputation + one-stop shopping.
 - ▶ Economies of density in distribution:
 - ★ Shipping times: willingness-to-pay for convenience.
 - ★ Shipping costs: declining distribution costs.

Cost/Benefit of a Dense Network

- Benefits of a centralized network:
 - ▶ Low fixed-costs + Return to scale + Save on sales taxes

Cost/Benefit of a Dense Network

- Benefits of a centralized network:
 - ▶ Low fixed-costs + Return to scale + Save on sales taxes
- Cost of a centralized network:
 - ▶ Heavy reliance on third-party suppliers: Transportation and sorting
 - ▶ **Shared asset:** Steep premium/delays during congested periods

Cost/Benefit of a Dense Network

- Benefits of a centralized network:
 - ▶ Low fixed-costs + Return to scale + Save on sales taxes
- Cost of a centralized network:
 - ▶ Heavy reliance on third-party suppliers: Transportation and sorting
 - ▶ **Shared asset:** Steep premium/delays during congested periods

Cost/Benefit of a Dense Network

- Benefits of a centralized network:
 - ▶ Low fixed-costs + Return to scale + Save on sales taxes
- Cost of a centralized network:
 - ▶ Heavy reliance on third-party suppliers: Transportation and sorting
 - ▶ **Shared asset:** Steep premium/delays during congested periods
- **Bottom line:** Building a dense network reduces reliance on suppliers for the first leg (especially planes, less competitive) + permits (partial) vertical integration into sortation segment
 - ▶ Reduce risk of delays and lower shipping cost

This Paper

- **Objective:** Quantify the demand (convenience) and cost (shipping) effects of network expansion

This Paper

- **Objective:** Quantify the demand (convenience) and cost (shipping) effects of network expansion
- **Step 1:** Estimate demand for Amazon
 - ▶ Price/tax elasticity: entry into new state causes loss in revenue due to new sales tax liability for in-state customers.
 - ▶ Convenience elasticity: marginal disutility of shipping speed (proxied by distance and other measures).
 - ▶ Controls: value of online channel, platform “quality”, relative prices of different channels, offline competition.

This Paper

- **Objective:** Quantify the demand (convenience) and cost (shipping) effects of network expansion
- **Step 1:** Estimate demand for Amazon
 - ▶ Price/tax elasticity: entry into new state causes loss in revenue due to new sales tax liability for in-state customers.
 - ▶ Convenience elasticity: marginal disutility of shipping speed (proxied by distance and other measures).
 - ▶ Controls: value of online channel, platform “quality”, relative prices of different channels, offline competition.
- **Step 2:** Estimate cost saving from decentralized network
 - ▶ Revealed preference approach
 - ▶ Specify profit as a function of variable shipping and local fixed costs
 - ▶ Quantify cost savings that rationalize observed FC network without explicitly solving optimal roll-out problem (à la Holmes 2011).

Data: FC Network, Distances and Controls

- Fulfillment center information from MWPVL, International:
 - ▶ Observed and planned FCs between 2002 to 2018
 - ▶ Information: location, opening date, type, size, and employees
- Shipping distances and delivery time:
 - ▶ *Shipping distance*: Straight-line distance from county centroid to closest FC location
 - ★ **Assumption:** Shipments come from *nearest* FC (relaxed somewhat in robustness specs.)
 - ★ Also proxies for delivery time.
 - ▶ *Expected delivery time*: Shortest delivery time between county centroid to FC location for USPS 4 mail classes (# days)
 - ★ **Assumption:** Shipments come from FC with shortest time.
 - ▶ (*NEW*) *Prime Same/Next day*: Indicator variable for availability.
- Other controls:
 - ▶ County-level demographics, offline competition, and wages [Census]; warehouse rental rate [SNL, Inc].

Sales Taxes and Online Spending

Sales tax:

- Source: County/year average taxes from TDS
- Date of change in Amazon's tax status for each state.
 - ▶ Tax Nexus:
 - ★ *Legal definition:* Retailers with “sufficient physical presence” in a state must collect and pay tax on sales in that state
 - ★ **Implication:** Give competitive advantage to online retailers

Household Expenditures:

- *ComScore Web Behavior Database:* online purchasing behavior for 50-100k households each year from 2006-2013 (NEW: 2014-2016).
- *Forrester Technographics Survey:* Conditional probability of buying online from 2006-2013 (except 2008-2009, NEW: 2014-2016)).
- *CEX:* Average retail spending (offline)

Demand Model

- Estimate CES demand model across 4 shopping modes: offline, Amazon, taxed online retailer, and non-taxed online retailer.

Demand Model

- Estimate CES demand model across 4 shopping modes: offline, Amazon, taxed online retailer, and non-taxed online retailer.
- Key Parameters: price (tax) elasticity and convenience effect.

Demand Model

- Estimate CES demand model across 4 shopping modes: offline, Amazon, taxed online retailer, and non-taxed online retailer.
- Key Parameters: price (tax) elasticity and convenience effect.
- Control for mode-year effects (prices, national changes in convenience, variety, etc.)

Demand Model

- Estimate CES demand model across 4 shopping modes: offline, Amazon, taxed online retailer, and non-taxed online retailer.
- Key Parameters: price (tax) elasticity and convenience effect.
- Control for mode-year effects (prices, national changes in convenience, variety, etc.)
- Tax elasticity around -1.4 :
 - ▶ Compared to Einav et al (2014) $[-1.7]$, and Baugh et al (2015) $[-1.2, -1.4]$.
 - ▶ Going from 0% to 6.5% tax rate \rightarrow reduction in demand by 9.1% .
 - ▶ Robust to allowing Amazon's elasticity to differ from other modes; alternative ways of constructing representative consumer's spending measure; county-year fixed effects; time-varying tax effects.

▶ Robustness.

Demand Model

- Estimate CES demand model across 4 shopping modes: offline, Amazon, taxed online retailer, and non-taxed online retailer.
- Key Parameters: price (tax) elasticity and convenience effect.
- Control for mode-year effects (prices, national changes in convenience, variety, etc.)
- Tax elasticity around -1.4 :
 - ▶ Compared to Einav et al (2014) $[-1.7]$, and Baugh et al (2015) $[-1.2, -1.4]$.
 - ▶ Going from 0% to 6.5% tax rate \rightarrow reduction in demand by 9.1% .
 - ▶ Robust to allowing Amazon's elasticity to differ from other modes; alternative ways of constructing representative consumer's spending measure; county-year fixed effects; time-varying tax effects. ▶ Robustness.
- Convenience effect:
 - ▶ Distance to FC does not impact demand.
 - ▶ Not a good measure of shipping times?
 - ▶ Sameday/nextday dummy variables not significant.
 - ▶ **Takeaway:** Expansion of FCs increased convenience at a national level.

Quantifying Cost Savings

- **Goal:** Use estimated demand and observed distribution network over time to infer cost savings realized from densification of FC network

Quantifying Cost Savings

- **Goal:** Use estimated demand and observed distribution network over time to infer cost savings realized from densification of FC network
- **Challenge:** Solving fully specified, dynamic model of network roll-out computationally challenging **and** requires knowing the *end game* (still playing..)

Quantifying Cost Savings

- **Goal:** Use estimated demand and observed distribution network over time to infer cost savings realized from densification of FC network
- **Challenge:** Solving fully specified, dynamic model of network roll-out computationally challenging **and** requires knowing the *end game* (still playing..)
- **Approach:** Revealed-Preference (Holmes, 2011)
 - ▶ Compare discounted profit stream under observed and alternative roll-outs

Quantifying Cost Savings

- **Goal:** Use estimated demand and observed distribution network over time to infer cost savings realized from densification of FC network
- **Challenge:** Solving fully specified, dynamic model of network roll-out computationally challenging **and** requires knowing the *end game* (still playing..)
- **Approach:** Revealed-Preference (Holmes, 2011)
 - ▶ Compare discounted profit stream under observed and alternative roll-outs
 - ▶ Perturbed roll-out = Swap opening dates of two FCs.
 - ▶ **Advantage:** Profit comparison does not rely on post-sample continuation values

Revealed Preference Tradeoff

- Expanding FC network:
 - ▶ Revenue change: Taxes
 - ▶ Cost change: Fixed operating cost and shipping cost

Revealed Preference Tradeoff

- Expanding FC network:
 - ▶ Revenue change: Taxes
 - ▶ Cost change: Fixed operating cost and shipping cost
- **Scenario 1:** Build in low-tax/low-pop county; rel. to high density
 - ▶ Net gain in revenue, wages and rents ($R^* - R > 0$)
 - ▶ Shipping distance increase ($D^* - D' > 0$)
 - ⇒ Upper bound on $\$x$ incurred per unit of distance

$$R^* - \theta D^* > R' - \theta D' \Rightarrow \theta \leq (R^* - R')/(D^* - D')$$

Revealed Preference Tradeoff

- Expanding FC network:
 - ▶ Revenue change: Taxes
 - ▶ Cost change: Fixed operating cost and shipping cost
- **Scenario 1:** Build in low-tax/low-pop county; rel. to high density
 - ▶ Net gain in revenue, wages and rents ($R^* - R > 0$)
 - ▶ Shipping distance increase ($D^* - D' > 0$)
 - ⇒ Upper bound on \$x incurred per unit of distance

$$R^* - \theta D^* > R' - \theta D' \Rightarrow \theta \leq (R^* - R')/(D^* - D')$$

- **Scenario 2:** Build in high-tax/high-pop county; rel. to low density
 - ▶ Net losses in revenue, wages and rents ($R^* - R' < 0$)
 - ▶ Shipping distance reduction ($D^* - D' < 0$)
 - ⇒ Lower bound on \$x saved per unit of distance

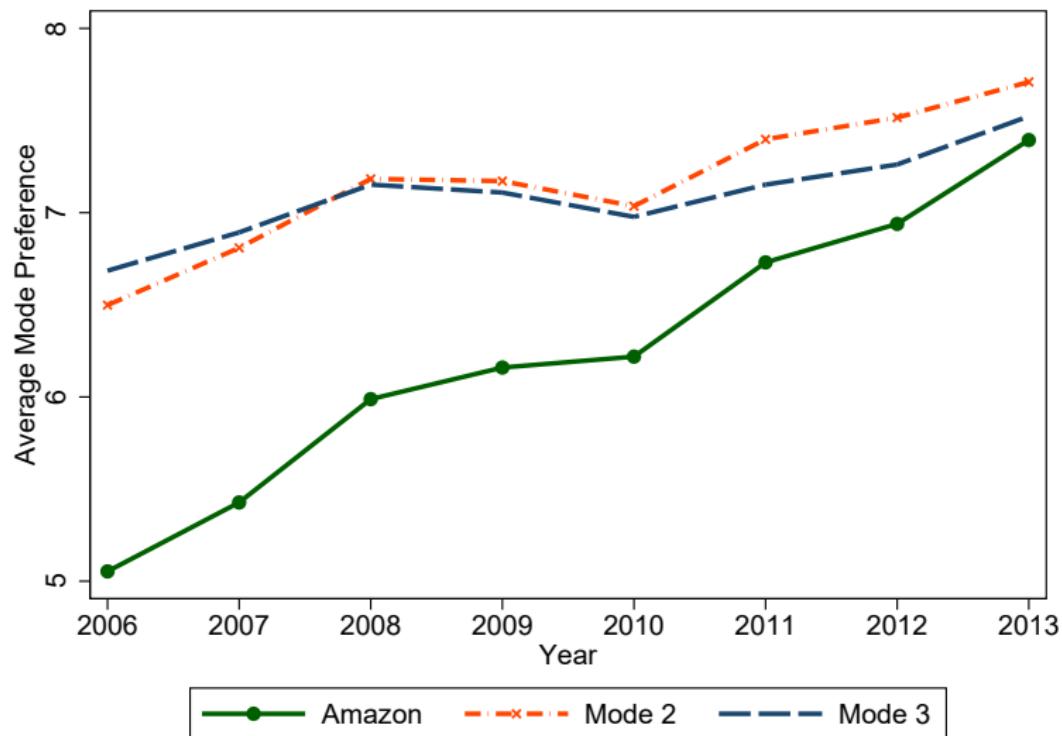
$$R^* - \theta D^* > R' - \theta D' \Rightarrow \theta \geq (R' - R^*)/(D' - D^*)$$

Revealed Preference Tradeoff

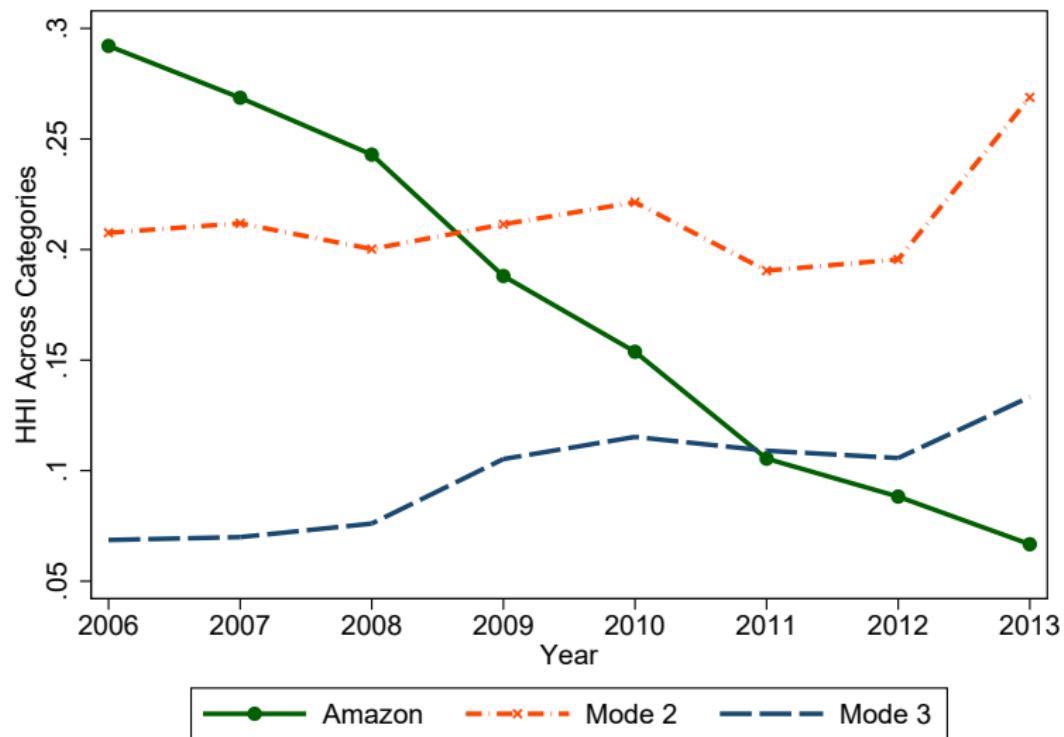
- Expanding FC network:
 - ▶ Revenue change: Taxes
 - ▶ Cost change: Fixed operating cost and shipping cost
- **Scenario 1:** Build in low-tax/low-pop county; rel. to high density
 - ▶ Net gain in revenue, wages and rents ($R^* - R > 0$)
 - ▶ Shipping distance increase ($D^* - D' > 0$)
 - ⇒ Upper bound on \$x incurred per unit of distance

$$R^* - \theta D^* > R' - \theta D' \Rightarrow \theta \leq (R^* - R')/(D^* - D')$$

- **Scenario 2:** Build in high-tax/high-pop county; rel. to low density
 - ▶ Net losses in revenue, wages and rents ($R^* - R' < 0$)
 - ▶ Shipping distance reduction ($D^* - D' < 0$)
 - ⇒ Lower bound on \$x saved per unit of distance


$$R^* - \theta D^* > R' - \theta D' \Rightarrow \theta \geq (R' - R^*)/(D' - D^*)$$

- **Takeaway:** Tax elasticity identifies implicit economies of density.


Shipping Cost Estimates: Results

- Net shipping cost for \$30 of goods from \$0.17 to \$0.47 per 100 miles.
- Similar estimates:
 - ▶ Assuming shipments come from the lowest cost FC (determined using data from Commodity Flow Survey).
 - ▶ Different assumptions about when tax rules are implemented.

Amazon's "quality" growth is fueled by a combination of lower prices, faster delivery, and enhanced variety

Platform Quality and Variety: HHI Across Product Categories

Decomposition: Density *versus* Variety

- We cannot directly infer cost passthrough from prices because of the increased in variety
- Similarly, we can only measure the net effect of cost passthrough and shipping-time reduction on Amazon quality

Decomposition: Density *versus* Variety

- We cannot directly infer cost passthrough from prices because of the increased in variety
- Similarly, we can only measure the net effect of cost passthrough and shipping-time reduction on Amazon quality
- Back of the envelope decomposition from 8 observations...

$$\text{Amazon FE}_t = 7.16^* - 1.02^* \times \log \text{Avg. shipping cost}_t - 6.64^* \cdot HHI_t$$

- Growth in Amazon platform WTP 2006-2013
 - ▶ *Dense network*: 46%
 - ▶ *Centralized network*: 29%

Decomposition: Density *versus* Variety

- We cannot directly infer cost passthrough from prices because of the increased in variety
- Similarly, we can only measure the net effect of cost passthrough and shipping-time reduction on Amazon quality
- Back of the envelope decomposition from 8 observations...

$$\text{Amazon FE}_t = 7.16^* - 1.02^* \times \log \text{Avg. shipping cost}_t - 6.64^* \cdot HHI_t$$

- Growth in Amazon platform WTP 2006-2013
 - ▶ *Dense network*: 46%
 - ▶ *Centralized network*: 29%
- **Bottom line:** Roughly 35% of Amazon's growth in average WTP is associated with denser network (pass-through + shipping time)

Conclusion

- Quantified the trade-off associated with the expansion of FC network:
 - ▶ Consumers sensitive to sales tax.
 - ▶ No demand side benefit to expansion.
 - ▶ Cost saving significant.
 - Suggestive evidence that (as in brick-and-mortar retail) economies of density significant drivers of concentration and market position.
- Extensions:
 - ▶ Distortions from taxes: Would cost savings have been more important if *tax nexus* didn't exist?
 - ▶ Convenience effect of same-day shipping likely more pronounced, but still concentrated in urban areas, post-sample.
 - ▶ Missing piece: Sortation facility network (since 2014)

Initial Evidence: Transaction-Level Regression Model

Estimate the following linear probability model of Amazon purchase:

$$Pr(A_{ohijt} = 1) = \beta_0 + \alpha \ln(1 + \tau_{it} \mathbf{1}_{it}^{taxable}) + \gamma d_{it} + \beta_1 C_h + \beta_2 Z_{it} + \lambda_{ijt} + \epsilon_{ohijt}$$

- A_{ohijt} : indicator of Amazon transaction on purchase occasion o from household h in county i in year t .
- τ_{it} : sales tax rate in county i and year t .
- $\mathbf{1}_{it}^{taxable}$: tax status for Amazon purchases for county i and year t .
- d_{it} : measure of shipping speed from Amazon (distance or shipping time from FC to county centroid).
- Controls: Z_{it} , local competition, C_h , household demographics and county, product category j , and year FEs in λ_{ijt} .

Initial Evidence: Propensity of Buying from Amazon

Variable name	(1)	(2)	(3)	(4)
Tax Elasticity	-0.156** (0.074)	-0.142* (0.074)	-0.158** (0.075)	-0.152** (0.074)
Local Express Delivery		-0.019* (0.010)		
Log Distance			0.001 (0.002)	
1 or 2 Day Priority				0.019* (0.011)
Obs	2,291,291	2,291,291	2,291,291	2,291,291
R-Sq	0.355	0.355	0.355	0.355

*** 1% ** 5% * 10%.

Initial Evidence: County-Level Expenditure Model

Diff-in-diff model of effect of “Amazon Tax”:

$$ExpAm_{it} = \beta_0 + \sigma \mathbf{1}_{it}^{taxable} + \gamma d_{it} + \beta_1 C_{it} + \beta_2 Z_{it} + \lambda_{it} + \epsilon_{it}$$

- $ExpAm_{it}$: log of average household expenditures on Amazon from county i in year t .
- $\mathbf{1}_{it}^{taxable}$: sales tax status.
- d_{it} : measure of shipping speed.
- Controls: Z_{it} , local competition, C_{it} , consumer demographics, and county and year FEs in λ_{it}

DiD: Effect of taxes on Amazon Expenditures

Variable name	(1)	(2)	(3)	(4)
Amazon Purchase Taxed	-0.105* (0.060)	-0.105* (0.060)	-0.104* (0.061)	-0.108* (0.061)
Local Express Delivery		0.147 (0.185)		
Log Distance			-0.002 (0.035)	
1 or 2 Day Priority				-0.057 (0.107)
Obs	12,486	12,486	12,486	12,486
R-Sq	0.448	0.448	0.448	0.448

*** 1% ** 5% * 10%.

- Avg tax rate of 6.5% → 1pp increase in tax reduces spending by 1.6%.

► Return

Household Purchasing: comScore vs Forrester

Year	Online Expenditure	Online Transactions	% Zero Expenditure	Adjusted Expenditure	Adjusted Transactions	% Offline Shoppers Only
2006	\$239	2.4	51.8%	\$318	3.1	55.5%
2007	\$254	2.5	52.0%	\$318	2.9	60.8%
2008	\$196	2.0	60.0%	\$333	3.2	-
2009	\$141	1.4	67.9%	\$355	3.4	-
2010	\$125	1.4	68.6%	\$369	3.5	32.1%
2011	\$131	1.4	69.7%	\$424	4.2	23.0%
2012	\$152	1.8	64.0%	\$434	4.6	23.9%
2013	\$120	1.7	65.3%	\$377	4.7	15.5%

▶ Return

Modes

Sales Rank	Taxed	Non-Taxed
1	walmart.com	dell.com
2	jcpenney.com	qvc.com
3	staples.com	yahoo.net
4	victoriassecret.com	hsn.com
5	officedepot.com	yahoo.com
6	bestbuy.com	quillcorp.com
7	apple.com	overstock.com
8	target.com	ebay.com
9	sears.com	orientaltrading.com
10	costco.com	zappos.com
Total (%)	192 (34)	375 (66)

► Return

Robustness (1)

	(1)	(2)	(3)	(4)	(5)	(6)
Tax Elasticity	-1.307*** (0.286)	-1.687*** (0.585)	-1.867*** (0.575)		-1.203* (0.625)	-1.199*** (0.401)
Tax Elasticity (Amazon)				-1.166** (0.515)		
Tax Elasticity (Mode 3)				-2.900*** (0.847)		
Obs	42,399	52,617	29,053	42,399	43,811	42,400
R-Sq	0.315	0.162	0.135	0.185	0.137	0.199
Regression	A-Weights	Zeros	2008-2013	Individual Tax Effect	No Forrester Adjustment	No Population Weights

Robustness (2)

► Return.

Variable name	(1)	(2)	(3)	(4)
Tax Elasticity	-1.325*** (0.498)	-1.215*** (0.443)	-1.401*** (0.481)	-1.644*** (0.525)
Entry Year 0			-0.034 (0.050)	
Entry Year -1			-0.015 (0.061)	
Entry Year -2			0.093 (0.072)	
Entry Year -3			0.046 (0.073)	
Entry Year \$j\$ -3			-0.078 (0.058)	
Tax*(Entry Year 0)				-0.620 (0.759)
Tax*(Entry Year -1)				-0.045 (0.845)
Tax*(Entry Year -2)				-0.719 (1.061)
Tax*(Entry Year -3)				-1.104 (1.082)
Tax*(Entry Year \$j\$ -3)				0.551 (0.406)
Obs	42,399	42,399	42,399	42,399
R-Sq	0.195	0.240	0.186	0.186
Fixed Effects	Year-State, County	Year-County	County	County

Fulfillment Center Roll-out and Amazon's Wholesale Cost

- **Assumption:** Only distribution, but not wholesale, cost affected by FC network

▶ Return

Fulfillment Center Roll-out and Amazon's Wholesale Cost

- **Assumption:** Only distribution, but not wholesale, cost affected by FC network
 - ⇒ Pre-shipping mark-up remains constant, regardless of FC layout.

▶ Return

Fulfillment Center Roll-out and Amazon's Wholesale Cost

- **Assumption:** Only distribution, but not wholesale, cost affected by FC network
 - ⇒ Pre-shipping mark-up remains constant, regardless of FC layout.
- **Motivation:** Suppliers distribute products to wide range of retailers, not just Amazon.
 - ▶ Economies of scale in distribution → combine shipments to different retailers when possible.
 - ★ Books: Barnes & Noble requires publishers to ship direct to store.
 - ★ Other products: Walmart requires shipment to distribution centers. Avg distance from Amazon FC to closest Walmart FC falls from 92.2m (2006) to 65.4m (2013).

▶ Return

Fulfillment Center Roll-out and Amazon's Wholesale Cost

- **Assumption:** Only distribution, but not wholesale, cost affected by FC network
 - ⇒ Pre-shipping mark-up remains constant, regardless of FC layout.
- **Motivation:** Suppliers distribute products to wide range of retailers, not just Amazon.
 - ▶ Economies of scale in distribution → combine shipments to different retailers when possible.
 - ★ Books: Barnes & Noble requires publishers to ship direct to store.
 - ★ Other products: Walmart requires shipment to distribution centers.
Avg distance from Amazon FC to closest Walmart FC falls from 92.2m (2006) to 65.4m (2013).
 - ⇒ When delivering to host of retailers, suppliers unlikely to incur higher cost from expansion of FC network.

▶ Return