
Play to Win: 
Competition 
in Last-Mile 
Parcel Delivery

RARC Report
Report Number  
RARC-WP-17-009

June 5, 2017

Cover



Executive 
Summary

Highlights
The parcel market has evolved rapidly over  
time, significantly altering the relationship  
among the players.

The parcel market used to be a zero-sum 
game where growth in parcel delivery by one 
entity meant a reduction in parcel delivery by 
competing firms.

In his theoretical model, Professor Panzar  
shows that large parcel delivery companies  
are threatened by more than competition 
amongst each other — their real battle is over 
package volumes under the threat of self-delivery 
by large retailers.
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The parcel market has undergone great change over the last 
decade. It was once a relatively simple market with three key 
players — the Postal Service, FedEx, and UPS — competing 
over a predictable and manageable level of parcel volume with 
few concerns about capacity. While the three competed fiercely 
for business-to-business parcel volume, FedEx and UPS were 
generally less interested in residential delivery.

It is now a more complicated market. The rise of ecommerce led 
to a tremendous growth in parcel volume delivered to residential 
homes. This rapid growth in online shopping made residential 
delivery more attractive to UPS and FedEx, and therefore 
increased competition between the big three. In addition, the 
rise in online orders heightened customer expectations in terms 
of price, place, and time of delivery, which at times tested the 
flexibility and capacity constraints of the big three. Over time 
new, smaller, flexible, and technologically-advanced parcel 
delivery firms began to enter the market to take advantage 
of the new growth. Eventually, a few large retailers came to 
dominate the online shopping market, and they used their 
purchasing power to keep delivery prices low. Recently, despite 
low delivery prices, these large retailers have begun to venture 
into self-delivery. 

These changes, especially the threat of last-mile delivery by 
retailers, have not only increased the competition in the parcel 
market, but have also changed the dynamics within the market 
— so much so that the relationship between the players has 
been turned on its head. Not only does the Postal Service often 

provide last-mile delivery for FedEx and UPS, but now they 
are all in competition together against the large retailers move 
into self-delivery. Previously, the Postal Service, FedEx, and 
UPS played a kind of zero-sum game in which an increase 
in Postal Service delivery volumes implied a reduction in 
packages delivered by FedEx and UPS. In the current parcel 
market, there are circumstances where an increased postal 
presence can actually increase the volume of packages 
delivered by FedEx and UPS. With increased competition, 
and the associated drop in price, the large retailer may have 
no economic incentive to enter the self-delivery business.



With these thoughts in mind, the U.S. Postal Service Office 
of Inspector General (OIG) asked Professor John Panzar, 
an expert in postal economics from Northwestern University 
and the University of Auckland, to provide a theoretical model 
on the modern parcel market. While abstract models such 
as this one are not prescriptive, they can guide the strategic 
thinking of decision makers in several ways. The model can 
help to organize efficiently all the assumptions about these 
relationships in a consistent framework, a framework that can 
be adjusted with shifts in business realities. Theoretical models 
provide a low-cost way of looking at various what-if scenarios 
and can help decision makers make better, more timely, 
practical decisions and design workable strategies. Waiting to 
observe actual experience to make strategic decisions would be 
too costly — both in terms of time and opportunities lost. 

Professor Panzar models the parcel market, assuming four 
main players: a postal provider (the post), two parcel delivery 
services that enjoy a duopoly (referred to as FPS and UX), 
and a large retailer with purchasing power that is capable of 
self-delivery (dubbed Congo). As with all theoretical models, 
the starting assumptions are critical to the end results. A 
critical assumption in this model is that the majority of the 
Postal Service’s parcels are delivered once a day, along with 
letters and flats. For purposes of simplification, this is stated 
in the model as the Postal Service only accepting parcels for 
delivery in the morning. 

In his model, Dr. Panzar assumes that each day Congo has 
parcels arriving in the morning for delivery as well as parcels 
arriving in the afternoon and that it makes separate delivery 
decisions for each. For the morning parcels, Congo makes a 
decision between (1) delivery by the post, (2) delivery by the 
FPS/UX, or (3) self-delivery. With regard to afternoon parcels, 
Congo only has two choices — delivery by FPS/UX and self-
delivery. Congo’s problem is to choose whether to buy (or lease) 
vans before it knows the fraction of daily volumes arriving in 
each time period.

The model assumes that Congo makes these decisions using 
basic economic criteria, that is, it chooses the option that costs 

less money overall. In reality, a retailer such as Congo may 
make these decisions based on other criteria, such as ensuring 
appropriate capacity to ensure service. However, eventually 
they would need to consider costs. Therefore, under certain 
price configurations, Congo will choose to deliver its own 
parcels. If Congo does not expect to arrange for the delivery 
of morning parcels at a low postal rate, they will purchase 
vans, and these vans would then be available for the delivery 
of afternoon parcels as well, thereby cutting into the volumes 
delivered by FPS/UX. Professor Panzar applies game theory 
to describe the likely pricing strategies employed in this market 
and the end results — who delivers the parcels and at what 
relative prices — using several scenarios that vary assumptions 
about costs.

Highlights 
Though his work is theoretical, its findings have important 
strategic implications for the Postal Service. In the past, 
economic theory would have said that a simple strategy of 
setting postal price just slightly below its competitors' prices 
would work best. However, in this more evolved parcel market, 
the post needs to seek out a price that (in all cases) exceeds 
unit cost and is not only lower than the competitors’ prices but 
also low enough to discourage Congo from self-delivery. The 
postal price should be set no lower than this, as any price below 
this point would just result in revenue leakage.

Interestingly, this pricing behavior by the post also benefits the 
duopoly because if the price is low enough to keep Congo from 
buying vans, the duopoly maintains delivery of the afternoon 
parcels. This insight reinforces the concept that all the parcel 
delivery companies, previously competing exclusively with each 
other, are now locked in competitive struggle with retailers’ self-
delivery option.

This theoretical work is not meant to provide the Postal Service 
with a specific pricing proposal. As with any theoretical model, 
it provides an abstract simplification of reality. However, it helps 
one to consider the implications of how players interact in an 
ever-changing parcel market. 
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Observations

“Last Mile” Parcel Competition with Real 
Time Routing by Shippers

John C. Panzar
Professor of Economics
University of Auckland

and
Louis W. Menk Professor, Emeritus

Northwestern University

1. Introduction and Summary

The growth in the volume of parcel delivery caused by the development of eCommerce 

has generated a great deal of recent discussion.1 Substantial changes in market structure have 

accompanied this growth in parcel volume. These changes were made possible by the Postal 

Service’s “unbundling” of its “last mile” delivery service. This enabled large mailers to obtain 

favorable rates by shipping their parcels directly to a Postal Service local delivery office. In 

addition, this last mile unbundling has led to increased “co-opetition” between the Postal 

Service and its end to end (E2E) competitors.2 That is, rival parcel carriers increasingly use the 

Postal Service for the last mile delivery of parcel volumes that originated in their own upstream 

networks.3 A more recent change in the parcel delivery market is for large online retailers to 

extend their distribution networks so that they are able to deliver their parcels directly to their 

1	 See, for example, various studies by the United States Postal Service, Office of the Inspector General: OIG (2011), OIG 
(2014), OIG (2016b) and OIG (2016c). 

2	 The term, “co-opetition,” was popularized by Brandenburger and Nalebuff (1996).
3	 I analysed a model of this type of co-opetition in OIG (2016a).
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customers, thereby bypassing not only traditional E2E parcel carriers, but also the last mile 

delivery operation of the Postal Service. 

Thus, this paper analyzes the situation facing a large parcel mailer (“Congo”) that 

engages in flexible, “real time” routing strategies in order to deal with uncertainty in the daily 

arrival profile of their parcels. Congo interacts with two (or more) traditional E2E parcel delivery 

providers and an integrated postal operator, “the Post.” For concreteness, I will refer to two such 

rivals as the “Federal Parcel Service” (“FPS”) and “United Express” (“UX”). In addition to routing 

parcels via FPS, UX and the Post, Congo may engage in the “self-provision” of needed last mile 

delivery services using its own equipment and labor.4 

The basic framework of the analysis is as follows. The volume of parcels received by 

Congo varies over the daily cycle, giving rise to a “peak load” problem. For simplicity, I model 

this peak load situation by dividing the “day” into two distinct sub periods: “morning” and 

“afternoon.” As a “base load” option, Congo purchases (or rents) its own fleet of vans and 

uses them to deliver its parcels during both sub periods. It is natural to think of this base load 

technology as a network of delivery van routes following fixed schedules. Once hired, the capital 

components of this technology (i.e., the vans) are available for deliveries throughout the day. 

The associated variable costs (e.g., labor and fuel) depend on the actual number of parcels 

delivered. Cleary this method of parcel delivery is most efficient when dealing with balanced 

loads, e.g., equal volumes spread over the day. To continue the peak load analogy, Congo also 

has available a “peaking option” that involves contracting with the Post or its rivals to provide 

last mile delivery of some or all of its morning and/or afternoon parcels on a per piece basis.

By focusing on Congo’s last mile shipping alternatives, I am implicitly assuming that 

Congo operates a large national network of warehouses and sorting centers that optimally 

4	 One application of the analysis deals with the situation in which the parcel delivery entities are end-to-end (E2E) common 
carrier rivals of the Post. In this case, a co-opetition relationship results if the Post sells “last mile” delivery access services to 
FPS and UX.
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distribute its merchandise from its suppliers to locations near its customers. It is at that point 

that Congo makes its choice between self-provision and patronizing the Post and/or its rivals.

The remainder of the paper is organized as follows. Section 2 develops the formal model 

of Congo’s optimal dispatch problem. The analysis characterizes Congo’s decisions regarding the 

number of delivery vans it purchases and the intensity with which it operates them as a function 

of the rates charged by the Post, FPS and UX. As importantly, the analysis reveals conditions 

under which the rates offered by the Post and its rivals are low enough to deter Congo from 

operating its own delivery vans. Three situations are analyzed. In the Base Case, the Post does 

not offer a competitive unbundled last mile service and Congo’s choices are determined by 

the rates offered by FPS and UX. In Case 1, the Post charges a morning unbundled delivery rate 

between the FPS/UX rate and Congo’s unit variable cost. The result is that the Post captures 

Congo’s morning volumes that are not self-delivered, with excess afternoon volumes delivered 

by FPS and UX. In Case 2, the Post charges a rate that is (very, very) slightly below Congo’s unit 

variable cost. This causes Congo to discontinue morning self-delivery.

Section 3 provides a graphical presentation of the theoretical results derived in Section 2. 

The discussion makes clear that, from Congo’s point of view, the last mile delivery services of the 

Post and its rivals are complements for one another rather than substitutes. Decreasing the price 

of one service increases the demand for the other by inducing Congo to reduce the number of 

vans it operates.

Recognition of this fundamental complementary relationship between the Post and 

its rivals provides the background for understanding their competitive interactions. Section 

4 provides a general discussion of the nature of the competition for Congo’s last mile parcel 

volumes. In order to derive analytical solutions, Section 5 specifies a uniform distribution for 

parcel arrival times. This allows me to determine a subgame perfect Nash equilibrium outcome 

for the competition between the Post and its rivals. The results are summarized as follows:
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(i)	 If competitive behavior by FPS and UX deters Congo from operating vans, the effect 

of entry by the Post is to efficiently capture morning parcel volumes. The rates paid by 

Congo remain unchanged and the Post gains profits.

(ii)	 If Congo finds it profitable to operate vans in spite of competitive behavior by FPS 

and UX, entry by the Post results in a win – win outcome. Morning parcels are efficiently 

shifted to the Post, Congo’s delivery costs go down, and the Post gains profits. 

(iii)	 If, initially, Congo chooses to operate its own vans when FPS and UX coordinate 

on the monopoly price, Post unbundled entry results in a win – win – win outcome.5 

Congo’s costs go down while the profits of the parcel carriers and the Post go up because 

competition reduces the number of vans Congo chooses to operate.

(iv)	 If vans are so expensive that Congo does not operate any vans at the initial 

coordinated price, Post entry will be profitable and will reduce the profits of the parcel 

carriers, but it will not change the equilibrium rates paid by Congo. 

2. Analysis of the Shipper’s Real Time Dispatch Problem.

Congo receives a volume of parcels, Q, for last mile delivery in a particular local area 

on any given day. For simplicity, I assume that this volume is known with certainty before any 

routing decisions are made.6 However, Congo does not know whether its local facility will 

receive the parcels during the morning or the afternoon. That is, the proportion, t∈[0,1], of 

parcels available for morning delivery is a random variable, with probability density function f(t) 

and cumulative distribution function F(t). Thus, for each realization of t, the volume of parcels 

requiring morning delivery is given by Qam = tQ and the volume of parcels requiring afternoon 

5	 Although there is temptation to collude, this is not to suggest that FPS and UX are explicitly colluding or in violation of antitrust 
statutes. Firms may be able to coordinate prices via legal means, via so called tacit collusion. Carlton and Perloff define (p. 
785) this as “the coordinated actions of firms in an oligopoly despite the lack of an explicit [illegal] cartel agreement.”

6	 The key assumption is that Congo is able to forecast the total daily volume of parcels more precisely than the distribution of 
the parcels’ arrival over the course of the day. 
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delivery is given by Qpm = (1 – t)Q.

Congo is assumed to have three options to use in order to meet its parcel delivery 

obligations: 

(1)	 Congo can rent or purchase K units of van capacity for the entire day at a capital 

cost of B per unit of parcel delivery capacity. Once rented, the vans are available to make 

deliveries on scheduled routes in both the morning and afternoon. Van operation during 

either period incurs a variable (i.e., labor and/or fuel) cost of b per parcel.

(2)	 Congo can arrange for its parcels to be delivered on a per piece basis by FPS or UX at 

a rate of m for each parcel delivered. This option is available for parcels arriving in either 

the morning or the afternoon. 7

(3)	 Parcels arriving for morning delivery can be transferred to the Post for final delivery 

by paying a price of a per unit. The Post cannot process Congo’s parcels in time to meet 

the service standards for parcels arriving in the afternoon.

Congo can allocate the number of parcels handed off to FPS, UX, and the Post and the number 

it delivers using its own vans after it knows the intraday distribution of volume; i.e., after it 

observes the realization of the random variable t. However, it must decide on the number of 

vans to buy or rent before the day begins, when t remains unknown.

The analysis that follows deals with Congo’s optimization problem in a single market: 

i.e., for particular values of b and B. Given the rates charged by the Post and its rivals, these 

cost parameters determine the extent to which Congo chooses to operate its vans for last mile 

delivery. In reality, however, it is likely that there is significant market – to – market variation in 

these costs. For example, since the costs are measured on a per parcel basis, it seems likely that 

per unit van costs, B, are much greater in low density rural areas than they are in urban areas. 

7	 This simple model assumes that, for Congo’s purposes, the last mile services of FPS and UX are equally satisfactory: i.e., they 
are perfect substitutes. Therefore, the “law of one price” applies and both firms charge the same last mile delivery price, m.
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While density effects are likely less important in determining fuel and labor per parcel costs, 

there might be substantial variation in b as well. In turn, this market – to – market variation of 

the cost parameters means that Congo van coverage may vary substantially across markets. 

2.1 Base Case: The Post Is Not Competitive; i.e., a > m.

I begin with the analysis of the situation in which Congo cannot obtain unbundled last 

mile morning delivery services from the Post. Or, equivalently, the price, a, offered by the Post 

is greater than the per piece rate, m, available from FPS and UX. Begin by assuming that Congo 

has available a van capacity of K for use in both the morning and afternoon. Then, assuming that 

the variable cost of delivery using its own van is less than the price paid to FPS or UX, i.e., b < m, 

it is optimal for Congo to “fill up” its vans during each period before purchasing delivery services 

from FPS. Therefore, its (optimized) morning variable costs, Vam(t,Q,K), for delivering Qam = tQ 

parcels in the morning are given by:

(1)
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variation of the cost parameters means that Congo van coverage may vary substantially across 

markets.     

2.1 Base Case: the Post is not competitive; i.e., a > m. 

I begin with the analysis of the situation in which Congo cannot obtain unbundled last 

mile morning delivery services from the Post.  Or, equivalently, the price, a, offered by the Post 

is greater than the per piece rate, m, available from FPS and UX.  Begin by assuming that Congo 

has available a van capacity of K for use in both the morning and afternoon.  Then, assuming 

that the variable cost of delivery using its own van is less than the price paid to FPS or UX, i.e., b 

< m, it is optimal for Congo to “fill up” its vans during each period before purchasing delivery 

services from FPS.  Therefore, its (optimized) morning variable costs, Vam(t,Q,K), for delivering 

Qam = tQ parcels in the morning are given by: 

(1)   𝑉𝑉𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡𝑡𝑡, 𝑄𝑄𝑄𝑄, 𝐾𝐾𝐾𝐾) = �
𝑏𝑏𝑏𝑏𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡:                                𝑡𝑡𝑡𝑡 ≤ 𝐾𝐾𝐾𝐾

𝑄𝑄𝑄𝑄
≡ 𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝑏𝑏𝑏𝑏𝐾𝐾𝐾𝐾 + 𝑚𝑚𝑚𝑚(𝑡𝑡𝑡𝑡𝑄𝑄𝑄𝑄 − 𝐾𝐾𝐾𝐾):         𝑡𝑡𝑡𝑡 ≥ 𝐾𝐾𝐾𝐾
𝑄𝑄𝑄𝑄
≡ 𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

   

Equation (1) reveals that Congo’s variable cost function is divided into two regions depending 

upon whether the realized proportion of morning arriving parcels, t, is less than or greater than 

the ratio of van capacity to total output, K/Q ≡ tam.  That is, when the number of morning 

parcels (tQ) is less than the amount of purchased van capacity (i.e., tQ < K, or t < tam), Congo’s 

variable costs are just equal to the per unit variable cost of van operation times the number of 

parcels.  When the proportion of morning parcels exceeds the ratio of van capacity to total 

output (i.e., t > tam), Congo fully utilizes its K units of available van capacity, incurring variable 

costs of bK.  It then resorts to the per piece option for the remaining tQ – K morning parcels, 

incurring the additional morning variable costs of m(tQ – K). 

Equation (1) reveals that Congo’s variable cost function is divided into two regions depending 

upon whether the realized proportion of morning arriving parcels, t, is less than or greater than 

the ratio of van capacity to total output, K/Q ≡ tam. That is, when the number of morning parcels 

(tQ) is less than the amount of purchased van capacity (i.e., tQ < K, or t < tam), Congo’s variable 

costs are just equal to the per unit variable cost of van operation times the number of parcels. 

When the proportion of morning parcels exceeds the ratio of van capacity to total output (i.e., 

t > tam), Congo fully utilizes its K units of available van capacity, incurring variable costs of bK. 

It then resorts to the per piece option for the remaining tQ – K morning parcels, incurring the 

additional morning variable costs of m(tQ – K).
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Similarly, Congo’s afternoon variable costs, Vpm(t,Q,K), for delivering Qpm = (1 – t)Q parcels 

during the afternoon are given by:

(2)	
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Similarly, Congo’s afternoon variable costs, Vpm(t,Q,K), for delivering Qpm = (1 – t)Q 

parcels during the afternoon are given by: 

(2)  𝑉𝑉𝑉𝑉𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎(𝑡𝑡𝑡𝑡, 𝑄𝑄𝑄𝑄, 𝐾𝐾𝐾𝐾) = �
𝑏𝑏𝑏𝑏(1 − 𝑡𝑡𝑡𝑡)𝑄𝑄𝑄𝑄:                                   1 − 𝑡𝑡𝑡𝑡 ≤ 𝐾𝐾𝐾𝐾

𝑄𝑄𝑄𝑄
⟹ 𝑡𝑡𝑡𝑡 ≥ 1 − 𝐾𝐾𝐾𝐾

𝑄𝑄𝑄𝑄
= 𝑄𝑄𝑄𝑄−𝐾𝐾𝐾𝐾

𝑄𝑄𝑄𝑄
≡ 𝑡𝑡𝑡𝑡𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎

𝑏𝑏𝑏𝑏𝐾𝐾𝐾𝐾 + 𝑚𝑚𝑚𝑚[(1 − 𝑡𝑡𝑡𝑡)𝑄𝑄𝑄𝑄 − 𝐾𝐾𝐾𝐾]:            1 − 𝑡𝑡𝑡𝑡 ≥ 𝐾𝐾𝐾𝐾
𝑄𝑄𝑄𝑄
⟹ 𝑡𝑡𝑡𝑡 ≤ 1 − 𝐾𝐾𝐾𝐾

𝑄𝑄𝑄𝑄
= 𝑄𝑄𝑄𝑄−𝐾𝐾𝐾𝐾

𝑄𝑄𝑄𝑄
≡ 𝑡𝑡𝑡𝑡𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎

 

Here, the critical proportion at which the branches of the (optimized) afternoon variable cost 

curve diverge is given by tpm = 1 – tam = (Q – K)/Q.  That is, when the proportion of afternoon 

arriving parcels, (1 – t), is less than the ratio of van capacity to total volume, i.e., t > tpm, Congo’s 

afternoon variable costs are just equal to the per unit variable cost of van operation times the 

number of parcels.  On the other hand, when the proportion of afternoon arriving parcels 

exceeds the ratio of van capacity to total output (i.e., t < tpm), Congo fully utilizes its K units of 

available van capacity, incurring variable costs of bK.  It is then forced to utilize the per piece 

option for the remaining (1 – t)Q – K afternoon parcels, thereby incurring additional afternoon 

variable costs of m[(1 – t)Q – K]. 

It will prove convenient to carry out the subsequent analysis in terms of z ≡ K/Q, 

Congo’s van capacity coverage ratio.  This measures the proportion of the day’s total parcel 

volume that could, if necessary, be delivered by the available van capacity during either the 

morning or afternoon sub periods.  The above expressions can then be rewritten somewhat 

more concisely as: 

(3)  𝑉𝑉𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡𝑡𝑡, 𝑄𝑄𝑄𝑄, 𝑧𝑧𝑧𝑧) = �𝑏𝑏𝑏𝑏𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡:                                  𝑡𝑡𝑡𝑡 ≤ 𝑧𝑧𝑧𝑧
𝑏𝑏𝑏𝑏𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧 + 𝑚𝑚𝑚𝑚𝑄𝑄𝑄𝑄(𝑡𝑡𝑡𝑡 − 𝑧𝑧𝑧𝑧):         𝑡𝑡𝑡𝑡 ≥ 𝑧𝑧𝑧𝑧   

 (4)   𝑉𝑉𝑉𝑉𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎(𝑡𝑡𝑡𝑡, 𝑄𝑄𝑄𝑄, 𝑧𝑧𝑧𝑧) = �𝑏𝑏𝑏𝑏
(1 − 𝑡𝑡𝑡𝑡)𝑄𝑄𝑄𝑄:                                                 1 − 𝑡𝑡𝑡𝑡 ≤ 𝑧𝑧𝑧𝑧 ⟹ 𝑡𝑡𝑡𝑡 ≥ 1 − 𝑧𝑧𝑧𝑧

𝑏𝑏𝑏𝑏𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧 + 𝑚𝑚𝑚𝑚𝑄𝑄𝑄𝑄[(1 − 𝑡𝑡𝑡𝑡) − 𝑧𝑧𝑧𝑧]:                         1 − 𝑡𝑡𝑡𝑡 ≥ 𝑧𝑧𝑧𝑧 ⟹ 𝑡𝑡𝑡𝑡 ≤ 1 − 𝑧𝑧𝑧𝑧 

Here, the critical proportion at which the branches of the (optimized) afternoon variable cost 

curve diverge is given by tpm = 1 – tam = (Q – K)/Q. That is, when the proportion of afternoon 

arriving parcels, (1 – t), is less than the ratio of van capacity to total volume, i.e., t > tpm, Congo’s 

afternoon variable costs are just equal to the per unit variable cost of van operation times 

the number of parcels. On the other hand, when the proportion of afternoon arriving parcels 

exceeds the ratio of van capacity to total output (i.e., t < tpm), Congo fully utilizes its K units of 

available van capacity, incurring variable costs of bK. It is then forced to utilize the per piece 

option for the remaining (1 – t)Q – K afternoon parcels, thereby incurring additional afternoon 

variable costs of m[(1 – t)Q – K].

It will prove convenient to carry out the subsequent analysis in terms of z ≡ K/Q,  

Congo’s van capacity coverage ratio. This measures the proportion of the day’s total parcel 

volume that could, if necessary, be delivered by the available van capacity during either the 

morning or afternoon sub periods. The above expressions can then be rewritten somewhat 

more concisely as:

(3)

(4)
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𝑄𝑄𝑄𝑄
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≡ 𝑡𝑡𝑡𝑡𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎
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⟹ 𝑡𝑡𝑡𝑡 ≤ 1 − 𝐾𝐾𝐾𝐾

𝑄𝑄𝑄𝑄
= 𝑄𝑄𝑄𝑄−𝐾𝐾𝐾𝐾

𝑄𝑄𝑄𝑄
≡ 𝑡𝑡𝑡𝑡𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎
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number of parcels.  On the other hand, when the proportion of afternoon arriving parcels 

exceeds the ratio of van capacity to total output (i.e., t < tpm), Congo fully utilizes its K units of 

available van capacity, incurring variable costs of bK.  It is then forced to utilize the per piece 

option for the remaining (1 – t)Q – K afternoon parcels, thereby incurring additional afternoon 

variable costs of m[(1 – t)Q – K]. 

It will prove convenient to carry out the subsequent analysis in terms of z ≡ K/Q, 

Congo’s van capacity coverage ratio.  This measures the proportion of the day’s total parcel 

volume that could, if necessary, be delivered by the available van capacity during either the 

morning or afternoon sub periods.  The above expressions can then be rewritten somewhat 

more concisely as: 

(3)  𝑉𝑉𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡𝑡𝑡, 𝑄𝑄𝑄𝑄, 𝑧𝑧𝑧𝑧) = �𝑏𝑏𝑏𝑏𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡:                                  𝑡𝑡𝑡𝑡 ≤ 𝑧𝑧𝑧𝑧
𝑏𝑏𝑏𝑏𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧 + 𝑚𝑚𝑚𝑚𝑄𝑄𝑄𝑄(𝑡𝑡𝑡𝑡 − 𝑧𝑧𝑧𝑧):         𝑡𝑡𝑡𝑡 ≥ 𝑧𝑧𝑧𝑧   

 (4)   𝑉𝑉𝑉𝑉𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎(𝑡𝑡𝑡𝑡, 𝑄𝑄𝑄𝑄, 𝑧𝑧𝑧𝑧) = �𝑏𝑏𝑏𝑏
(1 − 𝑡𝑡𝑡𝑡)𝑄𝑄𝑄𝑄:                                                 1 − 𝑡𝑡𝑡𝑡 ≤ 𝑧𝑧𝑧𝑧 ⟹ 𝑡𝑡𝑡𝑡 ≥ 1 − 𝑧𝑧𝑧𝑧

𝑏𝑏𝑏𝑏𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧 + 𝑚𝑚𝑚𝑚𝑄𝑄𝑄𝑄[(1 − 𝑡𝑡𝑡𝑡) − 𝑧𝑧𝑧𝑧]:                         1 − 𝑡𝑡𝑡𝑡 ≥ 𝑧𝑧𝑧𝑧 ⟹ 𝑡𝑡𝑡𝑡 ≤ 1 − 𝑧𝑧𝑧𝑧 
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The decision facing Congo is to choose its van capacity K. For given Q, this is equivalent 

to choosing its van capacity coverage ratio z. Because this decision must be made before the 

timing of the day’s parcel arrivals is known, it is natural to assume that Congo seeks to minimize 

the expected costs of its operations. Its expected costs have three components. The first, which 

is known with certainty, is the amount spent on van capacity BK = BzQ. The other components 

are the expected morning and afternoon variable costs. Equations (3) and (4) express these 

variable costs as a function of any particular realization t of the intra day distribution of parcels. 

To complete the characterization of Congo’s choice of van capacity, it is necessary to derive 

formulae for the expected values of Congo’s morning and afternoon variable costs. This is done 

by integrating equations (3) and (4) using the probability density function f(t). 

Congo’s expected variable costs during the morning sub period, EVam(Q,z), are given by:

(5)
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𝑧𝑧𝑧𝑧  

The bifurcated nature of Vam reflected in equation (3) is easily dealt with through integration.  

The first term on the right hand side of equation (5) measures the expected morning variable 

costs for all of those realizations of t such that total morning volume is less than or equal to 

available van capacity (i.e., t < z).  The second term measures the expected morning variable 

costs for all of those realizations of t which require the use of the per piece option. 

Similarly, Congo’s expected variable costs during the afternoon sub period, EVpm(Q,z), 

are given by:  
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0  

The bifurcated nature of Vam reflected in equation (3) is easily dealt with through 

integration. The first term on the right hand side of equation (5) measures the expected morning 

variable costs for all of those realizations of t such that total morning volume is less than or 

equal to available van capacity (i.e., t < z). The second term measures the expected morning 

variable costs for all of those realizations of t which require the use of the per piece option.

Similarly, Congo’s expected variable costs during the afternoon sub period, EVpm(Q,z), are 

given by: 

(6)
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           = 𝑄𝑄𝑄𝑄� �𝑏𝑏𝑏𝑏𝑧𝑧𝑧𝑧 + 𝑚𝑚𝑚𝑚[(1 − 𝑡𝑡𝑡𝑡) − 𝑧𝑧𝑧𝑧]�𝑓𝑓𝑓𝑓(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡
1−𝑧𝑧𝑧𝑧

0
+ 𝑏𝑏𝑏𝑏𝑄𝑄𝑄𝑄 �(1 − 𝑡𝑡𝑡𝑡)𝑓𝑓𝑓𝑓(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡

1

1−𝑧𝑧𝑧𝑧

 

In this case, available van capacity will be adequate for large realizations of t: i.e., for small 

afternoon parcel volumes.  That is, for all values of t > tpm.  The expected variable costs for 

those cases are measured by the second integral in equation (6).  For large realized afternoon 

parcel volumes (i.e., t < tpm), the first integral in equation (6) measures the expected afternoon 

variable costs when the per piece option must also be employed.   

As we shall see, it is important to determine how these variable costs are affected by a 

change in Congo’s van coverage ratio, z.  Differentiating equation (5) with respect to z yields: 

(7)     𝜕𝜕𝜕𝜕𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑄𝑄𝑄𝑄,𝑧𝑧𝑧𝑧)
𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧

= 𝑄𝑄𝑄𝑄 �𝑓𝑓𝑓𝑓(𝑧𝑧𝑧𝑧)�𝑏𝑏𝑏𝑏𝑧𝑧𝑧𝑧 − �𝑏𝑏𝑏𝑏𝑧𝑧𝑧𝑧 + 𝑚𝑚𝑚𝑚(𝑧𝑧𝑧𝑧 − 𝑧𝑧𝑧𝑧)�� − (𝑚𝑚𝑚𝑚 − 𝑏𝑏𝑏𝑏)∫ 𝑓𝑓𝑓𝑓(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡1
𝑧𝑧𝑧𝑧 � 

                    = −𝑄𝑄𝑄𝑄(𝑚𝑚𝑚𝑚 − 𝑏𝑏𝑏𝑏)�𝑓𝑓𝑓𝑓(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡
1

𝑧𝑧𝑧𝑧

= −𝑄𝑄𝑄𝑄(𝑚𝑚𝑚𝑚 − 𝑏𝑏𝑏𝑏)[1 − 𝐹𝐹𝐹𝐹(𝑧𝑧𝑧𝑧)] < 0 

Similarly, differentiating equation (6) with respect to z yields: 

(8)       𝜕𝜕𝜕𝜕𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎
(𝑄𝑄𝑄𝑄,𝑧𝑧𝑧𝑧)

𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧
= 𝑄𝑄𝑄𝑄 �𝑓𝑓𝑓𝑓(1 − 𝑧𝑧𝑧𝑧)�𝑏𝑏𝑏𝑏𝑧𝑧𝑧𝑧 − �𝑏𝑏𝑏𝑏𝑧𝑧𝑧𝑧 + 𝑚𝑚𝑚𝑚(1 − (1 − 𝑧𝑧𝑧𝑧) − 𝑧𝑧𝑧𝑧)�� − (𝑚𝑚𝑚𝑚 − 𝑏𝑏𝑏𝑏)∫ 𝑓𝑓𝑓𝑓(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡1−𝑧𝑧𝑧𝑧

0 � 

             = −𝑄𝑄𝑄𝑄(𝑚𝑚𝑚𝑚 − 𝑏𝑏𝑏𝑏)∫ 𝑓𝑓𝑓𝑓(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡1−𝑧𝑧𝑧𝑧
0 = −𝑄𝑄𝑄𝑄(𝑚𝑚𝑚𝑚 − 𝑏𝑏𝑏𝑏)𝐹𝐹𝐹𝐹(1 − 𝑧𝑧𝑧𝑧) < 0 

As one would expect, equations (7) and (8) reveal that an increase in Congo’s daily van capacity 

results in a decrease in the expected variable costs it incurs to deliver a given volume of parcels 

over the course of the day.   

From equation (7), we see that the magnitude of this expected morning variable cost 

decrease is equal to the product of three terms: the total number of units, Q; the variable cost 

savings on each unit carried by the added van, m – b; and the probability, 1 – F(z), that morning 

In this case, available van capacity will be adequate for large realizations of t: i.e., for small 

afternoon parcel volumes. That is, for all values of t > tpm. The expected variable costs for those 

cases are measured by the second integral in equation (6). For large realized afternoon parcel 

volumes (i.e., t < tpm), the first integral in equation (6) measures the expected afternoon variable 

costs when the per piece option must also be employed. 

As we shall see, it is important to determine how these variable costs are affected by a 

change in Congo’s van coverage ratio, z. Differentiating equation (5) with respect to z yields:

(7)
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In this case, available van capacity will be adequate for large realizations of t: i.e., for small 

afternoon parcel volumes.  That is, for all values of t > tpm.  The expected variable costs for 

those cases are measured by the second integral in equation (6).  For large realized afternoon 

parcel volumes (i.e., t < tpm), the first integral in equation (6) measures the expected afternoon 

variable costs when the per piece option must also be employed.   

As we shall see, it is important to determine how these variable costs are affected by a 

change in Congo’s van coverage ratio, z.  Differentiating equation (5) with respect to z yields: 

(7)     𝜕𝜕𝜕𝜕𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑄𝑄𝑄𝑄,𝑧𝑧𝑧𝑧)
𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧

= 𝑄𝑄𝑄𝑄 �𝑓𝑓𝑓𝑓(𝑧𝑧𝑧𝑧)�𝑏𝑏𝑏𝑏𝑧𝑧𝑧𝑧 − �𝑏𝑏𝑏𝑏𝑧𝑧𝑧𝑧 + 𝑚𝑚𝑚𝑚(𝑧𝑧𝑧𝑧 − 𝑧𝑧𝑧𝑧)�� − (𝑚𝑚𝑚𝑚 − 𝑏𝑏𝑏𝑏)∫ 𝑓𝑓𝑓𝑓(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡1
𝑧𝑧𝑧𝑧 � 

                    = −𝑄𝑄𝑄𝑄(𝑚𝑚𝑚𝑚 − 𝑏𝑏𝑏𝑏)�𝑓𝑓𝑓𝑓(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡
1

𝑧𝑧𝑧𝑧

= −𝑄𝑄𝑄𝑄(𝑚𝑚𝑚𝑚 − 𝑏𝑏𝑏𝑏)[1 − 𝐹𝐹𝐹𝐹(𝑧𝑧𝑧𝑧)] < 0 

Similarly, differentiating equation (6) with respect to z yields: 

(8)       𝜕𝜕𝜕𝜕𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎
(𝑄𝑄𝑄𝑄,𝑧𝑧𝑧𝑧)

𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧
= 𝑄𝑄𝑄𝑄 �𝑓𝑓𝑓𝑓(1 − 𝑧𝑧𝑧𝑧)�𝑏𝑏𝑏𝑏𝑧𝑧𝑧𝑧 − �𝑏𝑏𝑏𝑏𝑧𝑧𝑧𝑧 + 𝑚𝑚𝑚𝑚(1 − (1 − 𝑧𝑧𝑧𝑧) − 𝑧𝑧𝑧𝑧)�� − (𝑚𝑚𝑚𝑚 − 𝑏𝑏𝑏𝑏)∫ 𝑓𝑓𝑓𝑓(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡1−𝑧𝑧𝑧𝑧

0 � 

             = −𝑄𝑄𝑄𝑄(𝑚𝑚𝑚𝑚 − 𝑏𝑏𝑏𝑏)∫ 𝑓𝑓𝑓𝑓(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡1−𝑧𝑧𝑧𝑧
0 = −𝑄𝑄𝑄𝑄(𝑚𝑚𝑚𝑚 − 𝑏𝑏𝑏𝑏)𝐹𝐹𝐹𝐹(1 − 𝑧𝑧𝑧𝑧) < 0 

As one would expect, equations (7) and (8) reveal that an increase in Congo’s daily van capacity 

results in a decrease in the expected variable costs it incurs to deliver a given volume of parcels 

over the course of the day.   

From equation (7), we see that the magnitude of this expected morning variable cost 

decrease is equal to the product of three terms: the total number of units, Q; the variable cost 

savings on each unit carried by the added van, m – b; and the probability, 1 – F(z), that morning 

Similarly, differentiating equation (6) with respect to z yields:

(8)
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+ 𝑏𝑏𝑏𝑏𝑄𝑄𝑄𝑄 �(1 − 𝑡𝑡𝑡𝑡)𝑓𝑓𝑓𝑓(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡

1

1−𝑧𝑧𝑧𝑧

 

In this case, available van capacity will be adequate for large realizations of t: i.e., for small 

afternoon parcel volumes.  That is, for all values of t > tpm.  The expected variable costs for 

those cases are measured by the second integral in equation (6).  For large realized afternoon 

parcel volumes (i.e., t < tpm), the first integral in equation (6) measures the expected afternoon 

variable costs when the per piece option must also be employed.   

As we shall see, it is important to determine how these variable costs are affected by a 
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As one would expect, equations (7) and (8) reveal that an increase in Congo’s daily van capacity 

results in a decrease in the expected variable costs it incurs to deliver a given volume of parcels 

over the course of the day.   

From equation (7), we see that the magnitude of this expected morning variable cost 

decrease is equal to the product of three terms: the total number of units, Q; the variable cost 

savings on each unit carried by the added van, m – b; and the probability, 1 – F(z), that morning 

As one would expect, equations (7) and (8) reveal that an increase in Congo’s daily van capacity 

results in a decrease in the expected variable costs it incurs to deliver a given volume of parcels 

over the course of the day. 

From equation (7), we see that the magnitude of this expected morning variable cost 

decrease is equal to the product of three terms: the total number of units, Q; the variable cost 

savings on each unit carried by the added van, m – b; and the probability, 1 – F(z), that morning 
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parcel volumes will exceed van capacity. Similarly, equation (8) reveals that the magnitude 

of expected afternoon variable cost saving, again, involves Q(m – b), the product of the total 

number of units and the variable cost savings per unit. However, in this case, that amount is 

multiplied by the probability, F(1 – z), that the number of afternoon parcels will exceed van 

capacity.

Congo’s daily total expected costs, EC(Q,z), are obtained by adding the amount 

committed to van rental, BzQ, to the expected variable costs discussed above. Congo is assumed 

to minimize these total costs by trading off the (certain) expense resulting from an increase in 

van capacity against the sum of the expected delivery cost reductions made possible by that 

added capacity. The First Order Necessary Conditions (“FONCs”) for a non negative solution to 

this minimization problem are given by:

(9)
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parcel volumes will exceed van capacity.  Similarly, equation (8) reveals that the magnitude of 

expected afternoon variable cost saving, again, involves Q(m – b), the product of the total 

number of units and the variable cost savings per unit.  However, in this case, that amount is 

multiplied by the probability, F(1 – z), that the number of afternoon parcels will exceed van 

capacity. 

Congo’s daily total expected costs, EC(Q,z), are obtained by adding the amount 

committed to van rental, BzQ, to the expected variable costs discussed above.  Congo is 

assumed to minimize these total costs by trading off the (certain) expense resulting from an 

increase in van capacity against the sum of the expected delivery cost reductions made possible 

by that added capacity.  The First Order Necessary Conditions (“FONCs”) for a non negative 

solution to this minimization problem are given by: 

(9)  𝜕𝜕𝜕𝜕𝐸𝐸𝐸𝐸𝜕𝜕𝜕𝜕(𝑄𝑄𝑄𝑄,𝑧𝑧𝑧𝑧)
𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧

= 𝐵𝐵𝐵𝐵𝑄𝑄𝑄𝑄 + 𝜕𝜕𝜕𝜕𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑄𝑄𝑄𝑄,𝑧𝑧𝑧𝑧)
𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧

+ 𝜕𝜕𝜕𝜕𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎(𝑄𝑄𝑄𝑄,𝑧𝑧𝑧𝑧)

𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧
≥ 0;         𝑧𝑧𝑧𝑧 ≥ 0;            𝑧𝑧𝑧𝑧 𝜕𝜕𝜕𝜕𝐸𝐸𝐸𝐸𝜕𝜕𝜕𝜕(𝑄𝑄𝑄𝑄,𝑧𝑧𝑧𝑧)

𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧
= 0 

Substituting in the results from equations (7) and (8) yields: 

(10)      𝜕𝜕𝜕𝜕𝐸𝐸𝐸𝐸𝜕𝜕𝜕𝜕(𝑄𝑄𝑄𝑄,𝑧𝑧𝑧𝑧)
𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧

= 𝑄𝑄𝑄𝑄{𝐵𝐵𝐵𝐵 − (𝑚𝑚𝑚𝑚 − 𝑏𝑏𝑏𝑏)[1 − 𝐹𝐹𝐹𝐹(𝑧𝑧𝑧𝑧) + 𝐹𝐹𝐹𝐹(1 − 𝑧𝑧𝑧𝑧)]} ≥ 0;       𝑧𝑧𝑧𝑧 ≥ 0;       𝑧𝑧𝑧𝑧 𝜕𝜕𝜕𝜕𝐸𝐸𝐸𝐸𝜕𝜕𝜕𝜕(𝑄𝑄𝑄𝑄,𝑧𝑧𝑧𝑧)
𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧

= 0           

When equation (10) holds with equality, it states that, at the margin, the cost of an additional 

unit of van capacity (B) is equal to the savings in per unit variable costs (m – b) multiplied by the 

sum of the probabilities that that unit will be utilized in the morning and/or afternoon.  An 

interior solution in which Congo optimally purchases a strictly positive amount of van capacity 

requires: 

(11)        𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ≡ 𝐵𝐵𝐵𝐵 = (𝑚𝑚𝑚𝑚 − 𝑏𝑏𝑏𝑏)[1 − 𝐹𝐹𝐹𝐹(𝑧𝑧𝑧𝑧) + 𝐹𝐹𝐹𝐹(1 − 𝑧𝑧𝑧𝑧)] ≡ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀0(𝑧𝑧𝑧𝑧; 𝑏𝑏𝑏𝑏,𝑚𝑚𝑚𝑚) 

Let z0(m,b,B) denote the solution to this equation. 

Substituting in the results from equations (7) and (8) yields:

(10)
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parcel volumes will exceed van capacity.  Similarly, equation (8) reveals that the magnitude of 

expected afternoon variable cost saving, again, involves Q(m – b), the product of the total 

number of units and the variable cost savings per unit.  However, in this case, that amount is 

multiplied by the probability, F(1 – z), that the number of afternoon parcels will exceed van 
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Congo’s daily total expected costs, EC(Q,z), are obtained by adding the amount 
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When equation (10) holds with equality, it states that, at the margin, the cost of an additional 

unit of van capacity (B) is equal to the savings in per unit variable costs (m – b) multiplied by the 

sum of the probabilities that that unit will be utilized in the morning and/or afternoon.  An 

interior solution in which Congo optimally purchases a strictly positive amount of van capacity 

requires: 
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Let z0(m,b,B) denote the solution to this equation. 
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interior solution in which Congo optimally purchases a strictly positive amount of van capacity 
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parcel volumes will exceed van capacity.  Similarly, equation (8) reveals that the magnitude of 

expected afternoon variable cost saving, again, involves Q(m – b), the product of the total 

number of units and the variable cost savings per unit.  However, in this case, that amount is 

multiplied by the probability, F(1 – z), that the number of afternoon parcels will exceed van 

capacity. 

Congo’s daily total expected costs, EC(Q,z), are obtained by adding the amount 

committed to van rental, BzQ, to the expected variable costs discussed above.  Congo is 

assumed to minimize these total costs by trading off the (certain) expense resulting from an 

increase in van capacity against the sum of the expected delivery cost reductions made possible 

by that added capacity.  The First Order Necessary Conditions (“FONCs”) for a non negative 

solution to this minimization problem are given by: 

(9)  𝜕𝜕𝜕𝜕𝐸𝐸𝐸𝐸𝜕𝜕𝜕𝜕(𝑄𝑄𝑄𝑄,𝑧𝑧𝑧𝑧)
𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧

= 𝐵𝐵𝐵𝐵𝑄𝑄𝑄𝑄 + 𝜕𝜕𝜕𝜕𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑄𝑄𝑄𝑄,𝑧𝑧𝑧𝑧)
𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧

+ 𝜕𝜕𝜕𝜕𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎(𝑄𝑄𝑄𝑄,𝑧𝑧𝑧𝑧)

𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧
≥ 0;         𝑧𝑧𝑧𝑧 ≥ 0;            𝑧𝑧𝑧𝑧 𝜕𝜕𝜕𝜕𝐸𝐸𝐸𝐸𝜕𝜕𝜕𝜕(𝑄𝑄𝑄𝑄,𝑧𝑧𝑧𝑧)

𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧
= 0 

Substituting in the results from equations (7) and (8) yields: 

(10)      𝜕𝜕𝜕𝜕𝐸𝐸𝐸𝐸𝜕𝜕𝜕𝜕(𝑄𝑄𝑄𝑄,𝑧𝑧𝑧𝑧)
𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧

= 𝑄𝑄𝑄𝑄{𝐵𝐵𝐵𝐵 − (𝑚𝑚𝑚𝑚 − 𝑏𝑏𝑏𝑏)[1 − 𝐹𝐹𝐹𝐹(𝑧𝑧𝑧𝑧) + 𝐹𝐹𝐹𝐹(1 − 𝑧𝑧𝑧𝑧)]} ≥ 0;       𝑧𝑧𝑧𝑧 ≥ 0;       𝑧𝑧𝑧𝑧 𝜕𝜕𝜕𝜕𝐸𝐸𝐸𝐸𝜕𝜕𝜕𝜕(𝑄𝑄𝑄𝑄,𝑧𝑧𝑧𝑧)
𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧

= 0           

When equation (10) holds with equality, it states that, at the margin, the cost of an additional 

unit of van capacity (B) is equal to the savings in per unit variable costs (m – b) multiplied by the 

sum of the probabilities that that unit will be utilized in the morning and/or afternoon.  An 

interior solution in which Congo optimally purchases a strictly positive amount of van capacity 

requires: 

(11)        𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ≡ 𝐵𝐵𝐵𝐵 = (𝑚𝑚𝑚𝑚 − 𝑏𝑏𝑏𝑏)[1 − 𝐹𝐹𝐹𝐹(𝑧𝑧𝑧𝑧) + 𝐹𝐹𝐹𝐹(1 − 𝑧𝑧𝑧𝑧)] ≡ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀0(𝑧𝑧𝑧𝑧; 𝑏𝑏𝑏𝑏,𝑚𝑚𝑚𝑚) 

Let z0(m,b,B) denote the solution to this equation. Let z0(m,b,B) denote the solution to this equation.
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For future reference, it is important to note that equation (10) also reveals the conditions 

under which delivery prices are so low that Congo (optimally) chooses not to acquire any van 

capacity. This situation arises when the derivative of expected costs with respect to the van 

coverage ratio is positive when evaluated at z = 0. Since, by definition, F(0) equals 0 and F( 1 – 0) 

= 1, this will occur when B > 2(m – b). Intuitively, this condition says that the capacity cost (B) 

of the first unit of van capacity purchased costs more than the variable cost savings it makes 

possible. In that case, it does not pay to install even the first unit.8

2.2 Case 1: Intermediate Post rates: i.e., m > a > b.

It is assumed that the majority of the Postal Service’s parcels are delivered once a 

day along with the letters and flats. For the purpose of simplification, this is expressed in the 

model as the assumption that the Post can meet Congo’s delivery requirements only for parcels 

arriving in the morning. Therefore, the (minimized) variable cost for afternoon arriving parcels is 

unchanged. However, in the morning, Congo can use the Post as its per piece option rather than 

FPS or UX. The formula for morning variable costs in this case is given by

(12)
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(12)   𝑉𝑉𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖 (𝑡𝑡𝑡𝑡, 𝑄𝑄𝑄𝑄, 𝑧𝑧𝑧𝑧) = �𝑏𝑏𝑏𝑏𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡:                                  𝑡𝑡𝑡𝑡 ≤ 𝑧𝑧𝑧𝑧
𝑏𝑏𝑏𝑏𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧 + 𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄(𝑡𝑡𝑡𝑡 − 𝑧𝑧𝑧𝑧):         𝑡𝑡𝑡𝑡 ≥ 𝑧𝑧𝑧𝑧    

Then, the expected morning variable cost can be written as: 

(13)  𝐸𝐸𝐸𝐸𝑉𝑉𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖 (𝑄𝑄𝑄𝑄, 𝑧𝑧𝑧𝑧) = ∫ 𝑉𝑉𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖 (𝑡𝑡𝑡𝑡, 𝑄𝑄𝑄𝑄, 𝑧𝑧𝑧𝑧)𝑓𝑓𝑓𝑓(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡1
0 = 𝑏𝑏𝑏𝑏𝑄𝑄𝑄𝑄 ∫ 𝑡𝑡𝑡𝑡𝑓𝑓𝑓𝑓(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡𝑧𝑧𝑧𝑧

0 + 𝑄𝑄𝑄𝑄 ∫ [𝑏𝑏𝑏𝑏𝑧𝑧𝑧𝑧 + 𝑎𝑎𝑎𝑎(𝑡𝑡𝑡𝑡 − 𝑧𝑧𝑧𝑧)]𝑓𝑓𝑓𝑓(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡1
𝑧𝑧𝑧𝑧  

The derivative of these expected costs with respect to the van coverage ratio is given by: 

                                                      
8 The marginal variable cost savings curve MS0 is a decreasing function of z {i.e., dMS0/dz = –(m–b)[f(z)+f(1–z)] < 0} 

and the marginal cost of capacity is constant (at B).  Therefore, if it does not pay to install the first unit of van 

coverage, it does not pay to install any unit.  See also Figure 1, below. 

Then, the expected morning variable cost can be written as:
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The derivative of these expected costs with respect to the van coverage ratio is given by:

8	 The marginal variable cost savings curve MS0 is a decreasing function of z {i.e., dMS0/dz = –(m–b)[f(z)+f(1–z)] < 0} and the 
marginal cost of capacity is constant (at B). Therefore, if it does not pay to install the first unit of van coverage, it does not 
pay to install any unit. See also Figure 1, below.
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(14)    𝜕𝜕𝜕𝜕𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝑖𝑖𝑖𝑖 (𝑄𝑄𝑄𝑄,𝑧𝑧𝑧𝑧)
𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧

= 𝑄𝑄𝑄𝑄 �𝑓𝑓𝑓𝑓(𝑧𝑧𝑧𝑧)�𝑏𝑏𝑏𝑏𝑧𝑧𝑧𝑧 − �𝑏𝑏𝑏𝑏𝑧𝑧𝑧𝑧 + 𝑎𝑎𝑎𝑎(𝑧𝑧𝑧𝑧 − 𝑧𝑧𝑧𝑧)�� − (𝑎𝑎𝑎𝑎 − 𝑏𝑏𝑏𝑏) ∫ 𝑓𝑓𝑓𝑓(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡1
𝑧𝑧𝑧𝑧 � 

                                   = −𝑄𝑄𝑄𝑄(𝑎𝑎𝑎𝑎 − 𝑏𝑏𝑏𝑏)[1 − 𝐹𝐹𝐹𝐹(𝑧𝑧𝑧𝑧)] 

As in the Base Case, the analysis proceeds by choosing the van coverage ratio to 

minimize this new expected cost function in which expected variable costs have been reduced 

by the option of using the Post for morning parcel delivery.  That is, expected costs with an 

intermediate Post price are given by: 𝐸𝐸𝐸𝐸𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖(𝑄𝑄𝑄𝑄, 𝑧𝑧𝑧𝑧) = 𝐵𝐵𝐵𝐵𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 + 𝐸𝐸𝐸𝐸𝑉𝑉𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖 + 𝐸𝐸𝐸𝐸𝑉𝑉𝑉𝑉𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎.   

The FONCs for a nonnegative solution to the expected cost minimization problem are given by: 

(15) 𝜕𝜕𝜕𝜕𝐸𝐸𝐸𝐸𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖(𝑄𝑄𝑄𝑄,𝑧𝑧𝑧𝑧)
𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧

= 𝐵𝐵𝐵𝐵𝑄𝑄𝑄𝑄 + 𝜕𝜕𝜕𝜕𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖 (𝑄𝑄𝑄𝑄,𝑧𝑧𝑧𝑧)
𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧

+ 𝜕𝜕𝜕𝜕𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎(𝑄𝑄𝑄𝑄,𝑧𝑧𝑧𝑧)

𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧
≥ 0;         𝑧𝑧𝑧𝑧 ≥ 0;            𝑧𝑧𝑧𝑧 𝜕𝜕𝜕𝜕𝐸𝐸𝐸𝐸𝜕𝜕𝜕𝜕

𝑖𝑖𝑖𝑖(𝑄𝑄𝑄𝑄,𝑧𝑧𝑧𝑧)
𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧

= 0 

Using the results of equation (8) and equation (14) yields, 

(16) 𝜕𝜕𝜕𝜕𝐸𝐸𝐸𝐸𝜕𝜕𝜕𝜕
𝑖𝑖𝑖𝑖(𝑄𝑄𝑄𝑄,𝑧𝑧𝑧𝑧)
𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧

= 𝑄𝑄𝑄𝑄{𝐵𝐵𝐵𝐵 − (𝑎𝑎𝑎𝑎 − 𝑏𝑏𝑏𝑏)[1 − 𝐹𝐹𝐹𝐹(𝑧𝑧𝑧𝑧)] − (𝑚𝑚𝑚𝑚 − 𝑏𝑏𝑏𝑏)𝐹𝐹𝐹𝐹(1 − 𝑧𝑧𝑧𝑧)} ≥ 0; 𝑧𝑧𝑧𝑧 ≥ 0; 𝑧𝑧𝑧𝑧 𝜕𝜕𝜕𝜕𝐸𝐸𝐸𝐸𝜕𝜕𝜕𝜕
ℎ(𝑄𝑄𝑄𝑄,𝑧𝑧𝑧𝑧)
𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧

= 0           

Again recasting this result in marginal terms (for an interior solution), we obtain the condition: 

(17)       𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ≡ 𝐵𝐵𝐵𝐵 = (𝑎𝑎𝑎𝑎 − 𝑏𝑏𝑏𝑏)[1 − 𝐹𝐹𝐹𝐹(𝑧𝑧𝑧𝑧)] + (𝑚𝑚𝑚𝑚 − 𝑏𝑏𝑏𝑏)𝐹𝐹𝐹𝐹(1 − 𝑧𝑧𝑧𝑧) ≡ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖(𝑧𝑧𝑧𝑧; 𝑎𝑎𝑎𝑎, 𝑏𝑏𝑏𝑏,𝑚𝑚𝑚𝑚) 

That is, the cost minimizing amount of van coverage is that which equates the marginal van cost 

to the marginal expected variable cost savings that can be obtained by utilizing both the Post 

and FPS/UX alternatives.  Let z* denote the (optimal) value of van coverage that satisfies 

equation (17).  Clearly, this optimal value will change as the parameters of the model change.  I 

will often denote the optimal van coverage ratio as z*(a,m,b,B) to reflect this functional 

dependence. 

 Equation (16) can also be used to characterize the delivery rates that are so low as to 

make it unattractive for Congo to invest in van capacity of its own.  An analysis similar to the 

As in the Base Case, the analysis proceeds by choosing the van coverage ratio to 

minimize this new expected cost function in which expected variable costs have been reduced 

by the option of using the Post for morning parcel delivery. That is, expected costs with an 

intermediate Post price are given by: . 

The FONCs for a nonnegative solution to the expected cost minimization problem are given by:
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𝑧𝑧𝑧𝑧 � 

                                   = −𝑄𝑄𝑄𝑄(𝑎𝑎𝑎𝑎 − 𝑏𝑏𝑏𝑏)[1 − 𝐹𝐹𝐹𝐹(𝑧𝑧𝑧𝑧)] 

As in the Base Case, the analysis proceeds by choosing the van coverage ratio to 

minimize this new expected cost function in which expected variable costs have been reduced 

by the option of using the Post for morning parcel delivery.  That is, expected costs with an 

intermediate Post price are given by: 𝐸𝐸𝐸𝐸𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖(𝑄𝑄𝑄𝑄, 𝑧𝑧𝑧𝑧) = 𝐵𝐵𝐵𝐵𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 + 𝐸𝐸𝐸𝐸𝑉𝑉𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖 + 𝐸𝐸𝐸𝐸𝑉𝑉𝑉𝑉𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎.   

The FONCs for a nonnegative solution to the expected cost minimization problem are given by: 

(15) 𝜕𝜕𝜕𝜕𝐸𝐸𝐸𝐸𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖(𝑄𝑄𝑄𝑄,𝑧𝑧𝑧𝑧)
𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧

= 𝐵𝐵𝐵𝐵𝑄𝑄𝑄𝑄 + 𝜕𝜕𝜕𝜕𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖 (𝑄𝑄𝑄𝑄,𝑧𝑧𝑧𝑧)
𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧

+ 𝜕𝜕𝜕𝜕𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎(𝑄𝑄𝑄𝑄,𝑧𝑧𝑧𝑧)

𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧
≥ 0;         𝑧𝑧𝑧𝑧 ≥ 0;            𝑧𝑧𝑧𝑧 𝜕𝜕𝜕𝜕𝐸𝐸𝐸𝐸𝜕𝜕𝜕𝜕

𝑖𝑖𝑖𝑖(𝑄𝑄𝑄𝑄,𝑧𝑧𝑧𝑧)
𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧

= 0 

Using the results of equation (8) and equation (14) yields, 

(16) 𝜕𝜕𝜕𝜕𝐸𝐸𝐸𝐸𝜕𝜕𝜕𝜕
𝑖𝑖𝑖𝑖(𝑄𝑄𝑄𝑄,𝑧𝑧𝑧𝑧)
𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧

= 𝑄𝑄𝑄𝑄{𝐵𝐵𝐵𝐵 − (𝑎𝑎𝑎𝑎 − 𝑏𝑏𝑏𝑏)[1 − 𝐹𝐹𝐹𝐹(𝑧𝑧𝑧𝑧)] − (𝑚𝑚𝑚𝑚 − 𝑏𝑏𝑏𝑏)𝐹𝐹𝐹𝐹(1 − 𝑧𝑧𝑧𝑧)} ≥ 0; 𝑧𝑧𝑧𝑧 ≥ 0; 𝑧𝑧𝑧𝑧 𝜕𝜕𝜕𝜕𝐸𝐸𝐸𝐸𝜕𝜕𝜕𝜕
ℎ(𝑄𝑄𝑄𝑄,𝑧𝑧𝑧𝑧)
𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧

= 0           

Again recasting this result in marginal terms (for an interior solution), we obtain the condition: 

(17)       𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ≡ 𝐵𝐵𝐵𝐵 = (𝑎𝑎𝑎𝑎 − 𝑏𝑏𝑏𝑏)[1 − 𝐹𝐹𝐹𝐹(𝑧𝑧𝑧𝑧)] + (𝑚𝑚𝑚𝑚 − 𝑏𝑏𝑏𝑏)𝐹𝐹𝐹𝐹(1 − 𝑧𝑧𝑧𝑧) ≡ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖(𝑧𝑧𝑧𝑧; 𝑎𝑎𝑎𝑎, 𝑏𝑏𝑏𝑏,𝑚𝑚𝑚𝑚) 

That is, the cost minimizing amount of van coverage is that which equates the marginal van cost 

to the marginal expected variable cost savings that can be obtained by utilizing both the Post 

and FPS/UX alternatives.  Let z* denote the (optimal) value of van coverage that satisfies 

equation (17).  Clearly, this optimal value will change as the parameters of the model change.  I 

will often denote the optimal van coverage ratio as z*(a,m,b,B) to reflect this functional 

dependence. 

 Equation (16) can also be used to characterize the delivery rates that are so low as to 

make it unattractive for Congo to invest in van capacity of its own.  An analysis similar to the 

(15)
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(14)    𝜕𝜕𝜕𝜕𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝑖𝑖𝑖𝑖 (𝑄𝑄𝑄𝑄,𝑧𝑧𝑧𝑧)
𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧

= 𝑄𝑄𝑄𝑄 �𝑓𝑓𝑓𝑓(𝑧𝑧𝑧𝑧)�𝑏𝑏𝑏𝑏𝑧𝑧𝑧𝑧 − �𝑏𝑏𝑏𝑏𝑧𝑧𝑧𝑧 + 𝑎𝑎𝑎𝑎(𝑧𝑧𝑧𝑧 − 𝑧𝑧𝑧𝑧)�� − (𝑎𝑎𝑎𝑎 − 𝑏𝑏𝑏𝑏) ∫ 𝑓𝑓𝑓𝑓(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡1
𝑧𝑧𝑧𝑧 � 

                                   = −𝑄𝑄𝑄𝑄(𝑎𝑎𝑎𝑎 − 𝑏𝑏𝑏𝑏)[1 − 𝐹𝐹𝐹𝐹(𝑧𝑧𝑧𝑧)] 

As in the Base Case, the analysis proceeds by choosing the van coverage ratio to 

minimize this new expected cost function in which expected variable costs have been reduced 

by the option of using the Post for morning parcel delivery.  That is, expected costs with an 

intermediate Post price are given by: 𝐸𝐸𝐸𝐸𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖(𝑄𝑄𝑄𝑄, 𝑧𝑧𝑧𝑧) = 𝐵𝐵𝐵𝐵𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 + 𝐸𝐸𝐸𝐸𝑉𝑉𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖 + 𝐸𝐸𝐸𝐸𝑉𝑉𝑉𝑉𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎.   

The FONCs for a nonnegative solution to the expected cost minimization problem are given by: 

(15) 𝜕𝜕𝜕𝜕𝐸𝐸𝐸𝐸𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖(𝑄𝑄𝑄𝑄,𝑧𝑧𝑧𝑧)
𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧

= 𝐵𝐵𝐵𝐵𝑄𝑄𝑄𝑄 + 𝜕𝜕𝜕𝜕𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖 (𝑄𝑄𝑄𝑄,𝑧𝑧𝑧𝑧)
𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧

+ 𝜕𝜕𝜕𝜕𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎(𝑄𝑄𝑄𝑄,𝑧𝑧𝑧𝑧)

𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧
≥ 0;         𝑧𝑧𝑧𝑧 ≥ 0;            𝑧𝑧𝑧𝑧 𝜕𝜕𝜕𝜕𝐸𝐸𝐸𝐸𝜕𝜕𝜕𝜕

𝑖𝑖𝑖𝑖(𝑄𝑄𝑄𝑄,𝑧𝑧𝑧𝑧)
𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧

= 0 

Using the results of equation (8) and equation (14) yields, 

(16) 𝜕𝜕𝜕𝜕𝐸𝐸𝐸𝐸𝜕𝜕𝜕𝜕
𝑖𝑖𝑖𝑖(𝑄𝑄𝑄𝑄,𝑧𝑧𝑧𝑧)
𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧

= 𝑄𝑄𝑄𝑄{𝐵𝐵𝐵𝐵 − (𝑎𝑎𝑎𝑎 − 𝑏𝑏𝑏𝑏)[1 − 𝐹𝐹𝐹𝐹(𝑧𝑧𝑧𝑧)] − (𝑚𝑚𝑚𝑚 − 𝑏𝑏𝑏𝑏)𝐹𝐹𝐹𝐹(1 − 𝑧𝑧𝑧𝑧)} ≥ 0; 𝑧𝑧𝑧𝑧 ≥ 0; 𝑧𝑧𝑧𝑧 𝜕𝜕𝜕𝜕𝐸𝐸𝐸𝐸𝜕𝜕𝜕𝜕
ℎ(𝑄𝑄𝑄𝑄,𝑧𝑧𝑧𝑧)
𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧

= 0           

Again recasting this result in marginal terms (for an interior solution), we obtain the condition: 

(17)       𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ≡ 𝐵𝐵𝐵𝐵 = (𝑎𝑎𝑎𝑎 − 𝑏𝑏𝑏𝑏)[1 − 𝐹𝐹𝐹𝐹(𝑧𝑧𝑧𝑧)] + (𝑚𝑚𝑚𝑚 − 𝑏𝑏𝑏𝑏)𝐹𝐹𝐹𝐹(1 − 𝑧𝑧𝑧𝑧) ≡ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖(𝑧𝑧𝑧𝑧; 𝑎𝑎𝑎𝑎, 𝑏𝑏𝑏𝑏,𝑚𝑚𝑚𝑚) 

That is, the cost minimizing amount of van coverage is that which equates the marginal van cost 

to the marginal expected variable cost savings that can be obtained by utilizing both the Post 

and FPS/UX alternatives.  Let z* denote the (optimal) value of van coverage that satisfies 

equation (17).  Clearly, this optimal value will change as the parameters of the model change.  I 

will often denote the optimal van coverage ratio as z*(a,m,b,B) to reflect this functional 

dependence. 

 Equation (16) can also be used to characterize the delivery rates that are so low as to 

make it unattractive for Congo to invest in van capacity of its own.  An analysis similar to the 

Using the results of equation (8) and equation (14) yields,

(16) 
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(14)    𝜕𝜕𝜕𝜕𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝑖𝑖𝑖𝑖 (𝑄𝑄𝑄𝑄,𝑧𝑧𝑧𝑧)
𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧

= 𝑄𝑄𝑄𝑄 �𝑓𝑓𝑓𝑓(𝑧𝑧𝑧𝑧)�𝑏𝑏𝑏𝑏𝑧𝑧𝑧𝑧 − �𝑏𝑏𝑏𝑏𝑧𝑧𝑧𝑧 + 𝑎𝑎𝑎𝑎(𝑧𝑧𝑧𝑧 − 𝑧𝑧𝑧𝑧)�� − (𝑎𝑎𝑎𝑎 − 𝑏𝑏𝑏𝑏) ∫ 𝑓𝑓𝑓𝑓(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡1
𝑧𝑧𝑧𝑧 � 

                                   = −𝑄𝑄𝑄𝑄(𝑎𝑎𝑎𝑎 − 𝑏𝑏𝑏𝑏)[1 − 𝐹𝐹𝐹𝐹(𝑧𝑧𝑧𝑧)] 

As in the Base Case, the analysis proceeds by choosing the van coverage ratio to 

minimize this new expected cost function in which expected variable costs have been reduced 

by the option of using the Post for morning parcel delivery.  That is, expected costs with an 

intermediate Post price are given by: 𝐸𝐸𝐸𝐸𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖(𝑄𝑄𝑄𝑄, 𝑧𝑧𝑧𝑧) = 𝐵𝐵𝐵𝐵𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 + 𝐸𝐸𝐸𝐸𝑉𝑉𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖 + 𝐸𝐸𝐸𝐸𝑉𝑉𝑉𝑉𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎.   

The FONCs for a nonnegative solution to the expected cost minimization problem are given by: 

(15) 𝜕𝜕𝜕𝜕𝐸𝐸𝐸𝐸𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖(𝑄𝑄𝑄𝑄,𝑧𝑧𝑧𝑧)
𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧

= 𝐵𝐵𝐵𝐵𝑄𝑄𝑄𝑄 + 𝜕𝜕𝜕𝜕𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖 (𝑄𝑄𝑄𝑄,𝑧𝑧𝑧𝑧)
𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧

+ 𝜕𝜕𝜕𝜕𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎(𝑄𝑄𝑄𝑄,𝑧𝑧𝑧𝑧)

𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧
≥ 0;         𝑧𝑧𝑧𝑧 ≥ 0;            𝑧𝑧𝑧𝑧 𝜕𝜕𝜕𝜕𝐸𝐸𝐸𝐸𝜕𝜕𝜕𝜕

𝑖𝑖𝑖𝑖(𝑄𝑄𝑄𝑄,𝑧𝑧𝑧𝑧)
𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧

= 0 

Using the results of equation (8) and equation (14) yields, 

(16) 𝜕𝜕𝜕𝜕𝐸𝐸𝐸𝐸𝜕𝜕𝜕𝜕
𝑖𝑖𝑖𝑖(𝑄𝑄𝑄𝑄,𝑧𝑧𝑧𝑧)
𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧

= 𝑄𝑄𝑄𝑄{𝐵𝐵𝐵𝐵 − (𝑎𝑎𝑎𝑎 − 𝑏𝑏𝑏𝑏)[1 − 𝐹𝐹𝐹𝐹(𝑧𝑧𝑧𝑧)] − (𝑚𝑚𝑚𝑚 − 𝑏𝑏𝑏𝑏)𝐹𝐹𝐹𝐹(1 − 𝑧𝑧𝑧𝑧)} ≥ 0; 𝑧𝑧𝑧𝑧 ≥ 0; 𝑧𝑧𝑧𝑧 𝜕𝜕𝜕𝜕𝐸𝐸𝐸𝐸𝜕𝜕𝜕𝜕
ℎ(𝑄𝑄𝑄𝑄,𝑧𝑧𝑧𝑧)
𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧

= 0           

Again recasting this result in marginal terms (for an interior solution), we obtain the condition: 

(17)       𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ≡ 𝐵𝐵𝐵𝐵 = (𝑎𝑎𝑎𝑎 − 𝑏𝑏𝑏𝑏)[1 − 𝐹𝐹𝐹𝐹(𝑧𝑧𝑧𝑧)] + (𝑚𝑚𝑚𝑚 − 𝑏𝑏𝑏𝑏)𝐹𝐹𝐹𝐹(1 − 𝑧𝑧𝑧𝑧) ≡ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖(𝑧𝑧𝑧𝑧; 𝑎𝑎𝑎𝑎, 𝑏𝑏𝑏𝑏,𝑚𝑚𝑚𝑚) 

That is, the cost minimizing amount of van coverage is that which equates the marginal van cost 

to the marginal expected variable cost savings that can be obtained by utilizing both the Post 

and FPS/UX alternatives.  Let z* denote the (optimal) value of van coverage that satisfies 

equation (17).  Clearly, this optimal value will change as the parameters of the model change.  I 

will often denote the optimal van coverage ratio as z*(a,m,b,B) to reflect this functional 

dependence. 

 Equation (16) can also be used to characterize the delivery rates that are so low as to 

make it unattractive for Congo to invest in van capacity of its own.  An analysis similar to the 

Again recasting this result in marginal terms (for an interior solution), we obtain the condition:

(17)
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(14)    𝜕𝜕𝜕𝜕𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝑖𝑖𝑖𝑖 (𝑄𝑄𝑄𝑄,𝑧𝑧𝑧𝑧)
𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧

= 𝑄𝑄𝑄𝑄 �𝑓𝑓𝑓𝑓(𝑧𝑧𝑧𝑧)�𝑏𝑏𝑏𝑏𝑧𝑧𝑧𝑧 − �𝑏𝑏𝑏𝑏𝑧𝑧𝑧𝑧 + 𝑎𝑎𝑎𝑎(𝑧𝑧𝑧𝑧 − 𝑧𝑧𝑧𝑧)�� − (𝑎𝑎𝑎𝑎 − 𝑏𝑏𝑏𝑏) ∫ 𝑓𝑓𝑓𝑓(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡1
𝑧𝑧𝑧𝑧 � 

                                   = −𝑄𝑄𝑄𝑄(𝑎𝑎𝑎𝑎 − 𝑏𝑏𝑏𝑏)[1 − 𝐹𝐹𝐹𝐹(𝑧𝑧𝑧𝑧)] 

As in the Base Case, the analysis proceeds by choosing the van coverage ratio to 

minimize this new expected cost function in which expected variable costs have been reduced 

by the option of using the Post for morning parcel delivery.  That is, expected costs with an 

intermediate Post price are given by: 𝐸𝐸𝐸𝐸𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖(𝑄𝑄𝑄𝑄, 𝑧𝑧𝑧𝑧) = 𝐵𝐵𝐵𝐵𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 + 𝐸𝐸𝐸𝐸𝑉𝑉𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖 + 𝐸𝐸𝐸𝐸𝑉𝑉𝑉𝑉𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎.   

The FONCs for a nonnegative solution to the expected cost minimization problem are given by: 

(15) 𝜕𝜕𝜕𝜕𝐸𝐸𝐸𝐸𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖(𝑄𝑄𝑄𝑄,𝑧𝑧𝑧𝑧)
𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧

= 𝐵𝐵𝐵𝐵𝑄𝑄𝑄𝑄 + 𝜕𝜕𝜕𝜕𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖 (𝑄𝑄𝑄𝑄,𝑧𝑧𝑧𝑧)
𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧

+ 𝜕𝜕𝜕𝜕𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎(𝑄𝑄𝑄𝑄,𝑧𝑧𝑧𝑧)

𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧
≥ 0;         𝑧𝑧𝑧𝑧 ≥ 0;            𝑧𝑧𝑧𝑧 𝜕𝜕𝜕𝜕𝐸𝐸𝐸𝐸𝜕𝜕𝜕𝜕

𝑖𝑖𝑖𝑖(𝑄𝑄𝑄𝑄,𝑧𝑧𝑧𝑧)
𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧

= 0 

Using the results of equation (8) and equation (14) yields, 

(16) 𝜕𝜕𝜕𝜕𝐸𝐸𝐸𝐸𝜕𝜕𝜕𝜕
𝑖𝑖𝑖𝑖(𝑄𝑄𝑄𝑄,𝑧𝑧𝑧𝑧)
𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧

= 𝑄𝑄𝑄𝑄{𝐵𝐵𝐵𝐵 − (𝑎𝑎𝑎𝑎 − 𝑏𝑏𝑏𝑏)[1 − 𝐹𝐹𝐹𝐹(𝑧𝑧𝑧𝑧)] − (𝑚𝑚𝑚𝑚 − 𝑏𝑏𝑏𝑏)𝐹𝐹𝐹𝐹(1 − 𝑧𝑧𝑧𝑧)} ≥ 0; 𝑧𝑧𝑧𝑧 ≥ 0; 𝑧𝑧𝑧𝑧 𝜕𝜕𝜕𝜕𝐸𝐸𝐸𝐸𝜕𝜕𝜕𝜕
ℎ(𝑄𝑄𝑄𝑄,𝑧𝑧𝑧𝑧)
𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧

= 0           

Again recasting this result in marginal terms (for an interior solution), we obtain the condition: 

(17)       𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ≡ 𝐵𝐵𝐵𝐵 = (𝑎𝑎𝑎𝑎 − 𝑏𝑏𝑏𝑏)[1 − 𝐹𝐹𝐹𝐹(𝑧𝑧𝑧𝑧)] + (𝑚𝑚𝑚𝑚 − 𝑏𝑏𝑏𝑏)𝐹𝐹𝐹𝐹(1 − 𝑧𝑧𝑧𝑧) ≡ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖(𝑧𝑧𝑧𝑧; 𝑎𝑎𝑎𝑎, 𝑏𝑏𝑏𝑏,𝑚𝑚𝑚𝑚) 

That is, the cost minimizing amount of van coverage is that which equates the marginal van cost 

to the marginal expected variable cost savings that can be obtained by utilizing both the Post 

and FPS/UX alternatives.  Let z* denote the (optimal) value of van coverage that satisfies 

equation (17).  Clearly, this optimal value will change as the parameters of the model change.  I 

will often denote the optimal van coverage ratio as z*(a,m,b,B) to reflect this functional 

dependence. 

 Equation (16) can also be used to characterize the delivery rates that are so low as to 

make it unattractive for Congo to invest in van capacity of its own.  An analysis similar to the 

That is, the cost minimizing amount of van coverage is that which equates the marginal 

van cost to the marginal expected variable cost savings that can be obtained by utilizing both 

the Post and FPS/UX alternatives. Let z* denote the (optimal) value of van coverage that satisfies 

equation (17). Clearly, this optimal value will change as the parameters of the model change. 

I will often denote the optimal van coverage ratio as z*(a,m,b,B) to reflect this functional 

dependence.

Equation (16) can also be used to characterize the delivery rates that are so low as to 

make it unattractive for Congo to invest in van capacity of its own. An analysis similar to the 
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above reveals that this will be true in Case 1 when m + a < B + 2b. Notice that the key condition 

depends only upon the sum of the FPS/UX rate and the Post rate.

2.3 Case 2: Low Post Rates: m > b > a.

Again, the assumption that the Post option can be used only for acceptance of morning 

parcels, means that the afternoon expected variable cost relationships are as in the Base Case. 

However, the situation in the morning is changed, so that:

(18)
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Congo is no longer constrained in the morning by its prearranged van capacity.  Any number of 

parcels that arrive for morning delivery are optimally diverted to the Post. 

 Proceeding as above, the expected morning variable cost with a low Post access charge 

can be written as: 
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0  

(Notice that these expected costs are not affected by the van coverage ratio.)  As in the Base 

Case, the analysis proceeds by choosing the van coverage ratio to minimize this new expected 

cost function in which expected variable costs have been reduced by using the Post for all 

morning parcel deliveries.  That is, total expected costs with a low Post price are given by: 

𝐸𝐸𝐸𝐸𝑀𝑀𝑀𝑀𝑙𝑙𝑙𝑙(𝑄𝑄𝑄𝑄, 𝑧𝑧𝑧𝑧) = 𝐵𝐵𝐵𝐵𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 + 𝐸𝐸𝐸𝐸𝑉𝑉𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑙𝑙𝑙𝑙 + 𝐸𝐸𝐸𝐸𝑉𝑉𝑉𝑉𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎.  The First Order Necessary Conditions for a nonnegative 

solution to this minimization problem are given by: 

(20)  𝜕𝜕𝜕𝜕𝐸𝐸𝐸𝐸𝜕𝜕𝜕𝜕𝑙𝑙𝑙𝑙(𝑄𝑄𝑄𝑄,𝑧𝑧𝑧𝑧)
𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧

= 𝐵𝐵𝐵𝐵𝑄𝑄𝑄𝑄 + 𝜕𝜕𝜕𝜕𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎(𝑄𝑄𝑄𝑄,𝑧𝑧𝑧𝑧)

𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧
≥ 0;         𝑧𝑧𝑧𝑧 ≥ 0;            𝑧𝑧𝑧𝑧 𝜕𝜕𝜕𝜕𝐸𝐸𝐸𝐸𝜕𝜕𝜕𝜕

𝑙𝑙𝑙𝑙(𝑄𝑄𝑄𝑄,𝑧𝑧𝑧𝑧)
𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧

= 0 

Using equation (8) yields, 

(21)   𝜕𝜕𝜕𝜕𝐸𝐸𝐸𝐸𝜕𝜕𝜕𝜕𝑙𝑙𝑙𝑙(𝑄𝑄𝑄𝑄,𝑧𝑧𝑧𝑧)
𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧

= 𝑄𝑄𝑄𝑄{𝐵𝐵𝐵𝐵 − (𝑚𝑚𝑚𝑚 − 𝑏𝑏𝑏𝑏)𝐹𝐹𝐹𝐹(1 − 𝑧𝑧𝑧𝑧)} ≥ 0;    𝑧𝑧𝑧𝑧 ≥ 0;    𝑧𝑧𝑧𝑧 𝜕𝜕𝜕𝜕𝐸𝐸𝐸𝐸𝜕𝜕𝜕𝜕
𝑙𝑙𝑙𝑙(𝑄𝑄𝑄𝑄,𝑧𝑧𝑧𝑧)
𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧

= 0 

Congo is no longer constrained in the morning by its prearranged van capacity. Any number of 

parcels that arrive for morning delivery are optimally diverted to the Post.

Proceeding as above, the expected morning variable cost with a low Post access charge 

can be written as:

(19)
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(Notice that these expected costs are not affected by the van coverage ratio.) As in 

the Base Case, the analysis proceeds by choosing the van coverage ratio to minimize this new 

expected cost function in which expected variable costs have been reduced by using the Post for 

all morning parcel deliveries. That is, total expected costs with a low Post price are given by:  
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cost function in which expected variable costs have been reduced by using the Post for all 

morning parcel deliveries.  That is, total expected costs with a low Post price are given by: 

𝐸𝐸𝐸𝐸𝑀𝑀𝑀𝑀𝑙𝑙𝑙𝑙(𝑄𝑄𝑄𝑄, 𝑧𝑧𝑧𝑧) = 𝐵𝐵𝐵𝐵𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 + 𝐸𝐸𝐸𝐸𝑉𝑉𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑙𝑙𝑙𝑙 + 𝐸𝐸𝐸𝐸𝑉𝑉𝑉𝑉𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎.  The First Order Necessary Conditions for a nonnegative 

solution to this minimization problem are given by: 

(20)  𝜕𝜕𝜕𝜕𝐸𝐸𝐸𝐸𝜕𝜕𝜕𝜕𝑙𝑙𝑙𝑙(𝑄𝑄𝑄𝑄,𝑧𝑧𝑧𝑧)
𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧

= 𝐵𝐵𝐵𝐵𝑄𝑄𝑄𝑄 + 𝜕𝜕𝜕𝜕𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎(𝑄𝑄𝑄𝑄,𝑧𝑧𝑧𝑧)

𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧
≥ 0;         𝑧𝑧𝑧𝑧 ≥ 0;            𝑧𝑧𝑧𝑧 𝜕𝜕𝜕𝜕𝐸𝐸𝐸𝐸𝜕𝜕𝜕𝜕

𝑙𝑙𝑙𝑙(𝑄𝑄𝑄𝑄,𝑧𝑧𝑧𝑧)
𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧

= 0 

Using equation (8) yields, 

(21)   𝜕𝜕𝜕𝜕𝐸𝐸𝐸𝐸𝜕𝜕𝜕𝜕𝑙𝑙𝑙𝑙(𝑄𝑄𝑄𝑄,𝑧𝑧𝑧𝑧)
𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧

= 𝑄𝑄𝑄𝑄{𝐵𝐵𝐵𝐵 − (𝑚𝑚𝑚𝑚 − 𝑏𝑏𝑏𝑏)𝐹𝐹𝐹𝐹(1 − 𝑧𝑧𝑧𝑧)} ≥ 0;    𝑧𝑧𝑧𝑧 ≥ 0;    𝑧𝑧𝑧𝑧 𝜕𝜕𝜕𝜕𝐸𝐸𝐸𝐸𝜕𝜕𝜕𝜕
𝑙𝑙𝑙𝑙(𝑄𝑄𝑄𝑄,𝑧𝑧𝑧𝑧)
𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧

= 0 

. The First Order Necessary Conditions for a nonnegative 

solution to this minimization problem are given by:

(20)
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above reveals that this will be true in Case 1 when m + a < B + 2b.  Notice that the key condition 

depends only upon the sum of the FPS/UX rate and the Post rate. 

2.3 Case 2:  Low Post rates: m > b > a. 

 Again, the assumption that the Post option can be used only for acceptance of morning 

parcels, means that the afternoon expected variable cost relationships are as in the Base Case.  

However, the situation in the morning is changed, so that: 

(18)    𝑉𝑉𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑙𝑙𝑙𝑙 (𝑡𝑡𝑡𝑡, 𝑄𝑄𝑄𝑄, 𝑧𝑧𝑧𝑧) = 𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡    ∀𝑡𝑡𝑡𝑡 ∈ [0,1] 

Congo is no longer constrained in the morning by its prearranged van capacity.  Any number of 

parcels that arrive for morning delivery are optimally diverted to the Post. 

 Proceeding as above, the expected morning variable cost with a low Post access charge 

can be written as: 

(19)    𝐸𝐸𝐸𝐸𝑉𝑉𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑙𝑙𝑙𝑙 (𝑄𝑄𝑄𝑄, 𝑧𝑧𝑧𝑧) = ∫ 𝑉𝑉𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑙𝑙𝑙𝑙 (𝑡𝑡𝑡𝑡, 𝑄𝑄𝑄𝑄, 𝑧𝑧𝑧𝑧)𝑓𝑓𝑓𝑓(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡1
0 = 𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄 ∫ 𝑡𝑡𝑡𝑡𝑓𝑓𝑓𝑓(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡1

0  

(Notice that these expected costs are not affected by the van coverage ratio.)  As in the Base 

Case, the analysis proceeds by choosing the van coverage ratio to minimize this new expected 

cost function in which expected variable costs have been reduced by using the Post for all 

morning parcel deliveries.  That is, total expected costs with a low Post price are given by: 

𝐸𝐸𝐸𝐸𝑀𝑀𝑀𝑀𝑙𝑙𝑙𝑙(𝑄𝑄𝑄𝑄, 𝑧𝑧𝑧𝑧) = 𝐵𝐵𝐵𝐵𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 + 𝐸𝐸𝐸𝐸𝑉𝑉𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑙𝑙𝑙𝑙 + 𝐸𝐸𝐸𝐸𝑉𝑉𝑉𝑉𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎.  The First Order Necessary Conditions for a nonnegative 

solution to this minimization problem are given by: 

(20)  𝜕𝜕𝜕𝜕𝐸𝐸𝐸𝐸𝜕𝜕𝜕𝜕𝑙𝑙𝑙𝑙(𝑄𝑄𝑄𝑄,𝑧𝑧𝑧𝑧)
𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧

= 𝐵𝐵𝐵𝐵𝑄𝑄𝑄𝑄 + 𝜕𝜕𝜕𝜕𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎(𝑄𝑄𝑄𝑄,𝑧𝑧𝑧𝑧)

𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧
≥ 0;         𝑧𝑧𝑧𝑧 ≥ 0;            𝑧𝑧𝑧𝑧 𝜕𝜕𝜕𝜕𝐸𝐸𝐸𝐸𝜕𝜕𝜕𝜕

𝑙𝑙𝑙𝑙(𝑄𝑄𝑄𝑄,𝑧𝑧𝑧𝑧)
𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧

= 0 

Using equation (8) yields, 

(21)   𝜕𝜕𝜕𝜕𝐸𝐸𝐸𝐸𝜕𝜕𝜕𝜕𝑙𝑙𝑙𝑙(𝑄𝑄𝑄𝑄,𝑧𝑧𝑧𝑧)
𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧

= 𝑄𝑄𝑄𝑄{𝐵𝐵𝐵𝐵 − (𝑚𝑚𝑚𝑚 − 𝑏𝑏𝑏𝑏)𝐹𝐹𝐹𝐹(1 − 𝑧𝑧𝑧𝑧)} ≥ 0;    𝑧𝑧𝑧𝑧 ≥ 0;    𝑧𝑧𝑧𝑧 𝜕𝜕𝜕𝜕𝐸𝐸𝐸𝐸𝜕𝜕𝜕𝜕
𝑙𝑙𝑙𝑙(𝑄𝑄𝑄𝑄,𝑧𝑧𝑧𝑧)
𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧

= 0 

Using equation (8) yields,

(21)
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above reveals that this will be true in Case 1 when m + a < B + 2b.  Notice that the key condition 

depends only upon the sum of the FPS/UX rate and the Post rate. 

2.3 Case 2:  Low Post rates: m > b > a. 

 Again, the assumption that the Post option can be used only for acceptance of morning 

parcels, means that the afternoon expected variable cost relationships are as in the Base Case.  

However, the situation in the morning is changed, so that: 

(18)    𝑉𝑉𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑙𝑙𝑙𝑙 (𝑡𝑡𝑡𝑡, 𝑄𝑄𝑄𝑄, 𝑧𝑧𝑧𝑧) = 𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡    ∀𝑡𝑡𝑡𝑡 ∈ [0,1] 

Congo is no longer constrained in the morning by its prearranged van capacity.  Any number of 

parcels that arrive for morning delivery are optimally diverted to the Post. 

 Proceeding as above, the expected morning variable cost with a low Post access charge 

can be written as: 

(19)    𝐸𝐸𝐸𝐸𝑉𝑉𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑙𝑙𝑙𝑙 (𝑄𝑄𝑄𝑄, 𝑧𝑧𝑧𝑧) = ∫ 𝑉𝑉𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑙𝑙𝑙𝑙 (𝑡𝑡𝑡𝑡, 𝑄𝑄𝑄𝑄, 𝑧𝑧𝑧𝑧)𝑓𝑓𝑓𝑓(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡1
0 = 𝑎𝑎𝑎𝑎𝑄𝑄𝑄𝑄 ∫ 𝑡𝑡𝑡𝑡𝑓𝑓𝑓𝑓(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡1

0  

(Notice that these expected costs are not affected by the van coverage ratio.)  As in the Base 

Case, the analysis proceeds by choosing the van coverage ratio to minimize this new expected 

cost function in which expected variable costs have been reduced by using the Post for all 

morning parcel deliveries.  That is, total expected costs with a low Post price are given by: 

𝐸𝐸𝐸𝐸𝑀𝑀𝑀𝑀𝑙𝑙𝑙𝑙(𝑄𝑄𝑄𝑄, 𝑧𝑧𝑧𝑧) = 𝐵𝐵𝐵𝐵𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 + 𝐸𝐸𝐸𝐸𝑉𝑉𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑙𝑙𝑙𝑙 + 𝐸𝐸𝐸𝐸𝑉𝑉𝑉𝑉𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎.  The First Order Necessary Conditions for a nonnegative 

solution to this minimization problem are given by: 

(20)  𝜕𝜕𝜕𝜕𝐸𝐸𝐸𝐸𝜕𝜕𝜕𝜕𝑙𝑙𝑙𝑙(𝑄𝑄𝑄𝑄,𝑧𝑧𝑧𝑧)
𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧

= 𝐵𝐵𝐵𝐵𝑄𝑄𝑄𝑄 + 𝜕𝜕𝜕𝜕𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎(𝑄𝑄𝑄𝑄,𝑧𝑧𝑧𝑧)

𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧
≥ 0;         𝑧𝑧𝑧𝑧 ≥ 0;            𝑧𝑧𝑧𝑧 𝜕𝜕𝜕𝜕𝐸𝐸𝐸𝐸𝜕𝜕𝜕𝜕

𝑙𝑙𝑙𝑙(𝑄𝑄𝑄𝑄,𝑧𝑧𝑧𝑧)
𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧

= 0 

Using equation (8) yields, 

(21)   𝜕𝜕𝜕𝜕𝐸𝐸𝐸𝐸𝜕𝜕𝜕𝜕𝑙𝑙𝑙𝑙(𝑄𝑄𝑄𝑄,𝑧𝑧𝑧𝑧)
𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧

= 𝑄𝑄𝑄𝑄{𝐵𝐵𝐵𝐵 − (𝑚𝑚𝑚𝑚 − 𝑏𝑏𝑏𝑏)𝐹𝐹𝐹𝐹(1 − 𝑧𝑧𝑧𝑧)} ≥ 0;    𝑧𝑧𝑧𝑧 ≥ 0;    𝑧𝑧𝑧𝑧 𝜕𝜕𝜕𝜕𝐸𝐸𝐸𝐸𝜕𝜕𝜕𝜕
𝑙𝑙𝑙𝑙(𝑄𝑄𝑄𝑄,𝑧𝑧𝑧𝑧)
𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧

= 0 
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Again, for an interior solution, restating this condition in marginal terms yields:

(22)
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Again, for an interior solution, restating this condition in marginal terms yields: 

(22)        𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ≡ 𝐵𝐵𝐵𝐵 = (𝑚𝑚𝑚𝑚 − 𝑏𝑏𝑏𝑏)𝐹𝐹𝐹𝐹(1 − 𝑧𝑧𝑧𝑧) ≡ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑙𝑙𝑙𝑙(𝑧𝑧𝑧𝑧; 𝑏𝑏𝑏𝑏, 𝑐𝑐𝑐𝑐) 

That is, the cost minimizing amount of van coverage is that which equates the marginal cost to 

the marginal variable cost savings that can be obtained by utilizing a low priced FPS alternative 

in the afternoon.  Let zl(m,b,B) denote the value of the van coverage ratio satisfying equation 

(22).  Similar to the discussions in Cases 0 and 1, equation (21) establishes the conditions under 

which it is not optimal for Congo to invest in van capacity.  That is, given a < b, zl = 0 whenever 

m < B + b.  

3. Graphical Analysis of Congo’s Dispatch Choice 

 It is perhaps useful to recast the equations of the previous section in terms of a more 

familiar graphical economic analysis.  I begin with the Base Case.  The marginal variable cost 

savings curve, MS0(z;b,m), is shown in Figure 1.9  It is a decreasing function of the van coverage 

ratio z.  Examining the term in square brackets on the right hand side of equation (11), we see 

that marginal variable cost savings are equal to 2(m – b) when van coverage is zero and equal to 

zero when the van coverage is equal to 1 (i.e., when there are enough vans to deliver all parcel 

volume in either period).  The optimality condition expressed in equation (11), i.e., the familiar 

textbook condition that “marginal savings (benefit) equals marginal cost (B),” is satisfied at the 

van coverage ratio z0. 

                                                      
9 This curve need not be linear.  However, it will be linear when the proportion of morning arriving packages is 

uniformly distributed between 0 and 1; i.e., when f(t) = 1. 

That is, the cost minimizing amount of van coverage is that which equates the marginal 

cost to the marginal variable cost savings that can be obtained by utilizing a low priced FPS 

alternative in the afternoon. Let zl(m,b,B) denote the value of the van coverage ratio satisfying 

equation (22). Similar to the discussions in Cases 0 and 1, equation (21) establishes the 

conditions under which it is not optimal for Congo to invest in van capacity. That is, given a < b, zl 

= 0 whenever m < B + b. 

3. Graphical Analysis of Congo’s Dispatch Choice

It is perhaps useful to recast the equations of the previous section in terms of a more 

familiar graphical economic analysis. I begin with the Base Case. The marginal variable cost 

savings curve, MS0(z;b,m), is shown in Figure 1.9 It is a decreasing function of the van coverage 

ratio z. Examining the term in square brackets on the right hand side of equation (11), we see 

that marginal variable cost savings are equal to 2(m – b) when van coverage is zero and equal to 

zero when the van coverage is equal to 1 (i.e., when there are enough vans to deliver all parcel 

volume in either period). The optimality condition expressed in equation (11), i.e., the familiar 

textbook condition that “marginal savings (benefit) equals marginal cost (B),” is satisfied at the 

van coverage ratio z0.

9	 This curve need not be linear. However, it will be linear when the proportion of morning arriving packages is uniformly 
distributed between 0 and 1; i.e., when f(t) = 1.
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FIGURE 1 

The case of an intermediate access price, a∈(b,m), can be analyzed similarly.  From the 

term in square brackets on the right hand side of equation (17), we see that marginal variable 

cost savings are equal to (a – b) + (m – b) when van coverage is zero and equal to zero when 

van coverage is equal to 1.  This relationship is depicted as the curve MSi in Figure 1.  The 

optimality condition expressed in equation (17) is now satisfied at the van coverage ratio of zi = 

z*(a,m,b,B).  Finally, the case of a low Post price, a < b, gives rise to the marginal variable cost 

savings curve MSl in Figure 1.  From the right hand side of equation (22), we see that marginal 

variable cost savings are equal to (m – b) when van coverage is zero and, yet again, equal to 

zero when van coverage is equal to 1.  The marginal condition in equation (22) is satisfied at the 

van coverage ratio zl.  The three cases can be unified in terms of the optimal van coverage 

FIGURE 1

The case of an intermediate access price, a∈(b,m), can be analyzed similarly. From the 

term in square brackets on the right hand side of equation (17), we see that marginal variable 

cost savings are equal to (a – b) + (m – b) when van coverage is zero and equal to zero when van 

coverage is equal to 1. This relationship is depicted as the curve MSi in Figure 1. The optimality 

condition expressed in equation (17) is now satisfied at the van coverage ratio of zi = z*(a,m,b,B). 

Finally, the case of a low Post price, a < b, gives rise to the marginal variable cost savings curve 

MSl in Figure 1. From the right hand side of equation (22), we see that marginal variable cost 

savings are equal to (m – b) when van coverage is zero and, yet again, equal to zero when van 

coverage is equal to 1. The marginal condition in equation (22) is satisfied at the van coverage 

ratio zl. The three cases can be unified in terms of the optimal van coverage function,
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 z*, defined above. As Figure 1 hopefully makes clear: z0 = z*(a=m,m,b,B); zi = z*(a,m,b,B); and zl = 

z*(a=b,m,b,B).

Thus Figure 1 can be used to “trace out” the effects of changes in Congo’s optimal van 

coverage ratio as the price charged by the Post falls from (very slightly) above the FPS delivery 

price (m) to (very slightly) below the unit variable cost (b) of Congo’s van operations. One can 

interpret these price changes as “rotating” the marginal variable cost savings curve to the left, 

keeping the curve anchored at its horizontal intercept of z = 1. As a is decreased from m to b, the 

resulting optimal van coverage ratio decreases from z0 to zl.

Figure 1 also provides insight into the conditions under which it is optimal for Congo to 

optimally choose a van coverage ratio of zero. This is most easily seen in Case 1, when m > a > 

b. The vertical intercept of MSi, the marginal variable cost savings curve, is a + m – 2b. Clearly, 

when this intercept is below B, the marginal cost of van coverage, the optimal choice of van 

capacity is zero. Thus, zi = 0 when the sum of the delivery rates charged by FPS and the Post are 

sufficiently low: i.e., for a + m < B + 2b. 

The next step in my diagrammatic analysis is to examine the effects of van coverage 

on the expected parcel delivery volumes of the Post, which I will denote by X. The relationship 

is shown in Figure 2. I begin with the Base Case. As explained above, this case can also be 

viewed as the outcome when the Post price is “irrelevantly high:” i.e., a > m. Because FPS and 

UX can deliver in both the morning and afternoon, Post volumes are always zero under these 

circumstances, regardless of the realized value of t. However, as soon as a falls even slightly 

below m, the Post captures all of Congo’s morning parcel volumes, 
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function, z*, defined above.  As Figure 1 hopefully makes clear: z0 = z*(a=m,m,b,B); zi = 

z*(a,m,b,B); and zl = z*(a=b,m,b,B). 

Thus Figure 1 can be used to “trace out” the effects of changes in Congo’s optimal van 

coverage ratio as the price charged by the Post falls from (very slightly) above the FPS delivery 

price (m) to (very slightly) below the unit variable cost (b) of Congo’s van operations.  One can 
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Hence the “flat” portion of the demand curve depicted in Figure 2.
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that case, the Post receives all of the morning volumes for delivery. Using equation (19), we see 

that the expected number of morning parcels is given by:
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only indirectly, through their effects on Congo’s optimal van coverage ratio.  Volumes increase 

as the optimal van coverage ratio, z*, decreases.  As discussed above, when the sum of parcel 

delivery prices is sufficiently low (i.e., a + m < B + 2b), z* = 0.  In that case, expected Post 

demand is also at its maximal level Xmax = Qt*.     
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this quantity is not affected by further reductions in the Post’s delivery price, a.

For intermediate values of the access price, a∈(b,m), we see from equation (13) that the 

expected value of parcels delivered by the Post is given by:

(24)

 
18 

 

prices are equal, Congo is indifferent with respect how its parcels are routed in the morning.  

Hence the “flat” portion of the demand curve depicted in Figure 2. 

It is also easy to determine expected Post parcel volumes for very low prices, a < b.  In 

that case, the Post receives all of the morning volumes for delivery.  Using equation (19), we 

see that the expected number of morning parcels is given by: 

(23)        𝑋𝑋𝑋𝑋𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚 ≡ 𝑄𝑄𝑄𝑄 ∫ 𝑡𝑡𝑡𝑡𝑓𝑓𝑓𝑓(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡1
0 = 𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡∗   

Here, t* is the expected proportion of parcels that arrive in time for morning delivery.  Notice 

that this quantity is not affected by further reductions in the Post’s delivery price, a. 

 For intermediate values of the access price, a∈(b,m), we see from equation (13) that the 

expected value of parcels delivered by the Post is given by: 

(24)    𝑋𝑋𝑋𝑋 = 𝑋𝑋𝑋𝑋[𝑧𝑧𝑧𝑧∗(𝑎𝑎𝑎𝑎, 𝑐𝑐𝑐𝑐, 𝑏𝑏𝑏𝑏, 𝐵𝐵𝐵𝐵)] ≡ 𝑄𝑄𝑄𝑄 ∫ [𝑡𝑡𝑡𝑡 − 𝑧𝑧𝑧𝑧∗]𝑓𝑓𝑓𝑓(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡1
𝑧𝑧𝑧𝑧∗  

It is important to note that expected Post parcel volumes depend upon the model parameters 

only indirectly, through their effects on Congo’s optimal van coverage ratio.  Volumes increase 

as the optimal van coverage ratio, z*, decreases.  As discussed above, when the sum of parcel 

delivery prices is sufficiently low (i.e., a + m < B + 2b), z* = 0.  In that case, expected Post 

demand is also at its maximal level Xmax = Qt*.     

It is important to note that expected Post parcel volumes depend upon the model 

parameters only indirectly, through their effects on Congo’s optimal van coverage ratio. Volumes 

increase as the optimal van coverage ratio, z*, decreases. As discussed above, when the sum of 

parcel delivery prices is sufficiently low (i.e., a + m < B + 2b), z* = 0. In that case, expected Post 

demand is also at its maximal level Xmax = Qt*. 

Play to Win: Competition in Last-Mile Delivery 
Report Number RARC-WP-17-009 20



 
19 

 

 

Finally, it is interesting to consider the impact of Post access charges on the expected 

volume of parcels carried by its rivals, FPS and UX.  In the Base Case, when the Post rate is non 

competitive (i.e., a > m), the expected number of morning parcels delivered by FPS or UX is 

given by: 

(25)    𝑈𝑈𝑈𝑈𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎0 = 𝑄𝑄𝑄𝑄 ∫ (𝑡𝑡𝑡𝑡 − 𝑧𝑧𝑧𝑧0)𝑓𝑓𝑓𝑓(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡1
𝑧𝑧𝑧𝑧0  

Intuitively, this integral is the average number of excess parcels that arrive when parcel arrivals 

in the morning (tQ) exceed van capacity (z0Q).  Similarly, the expected number of parcels 

delivered by FPS in the afternoon is given by: 

(26)    𝑈𝑈𝑈𝑈𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎0 = 𝑄𝑄𝑄𝑄 ∫ [(1 − 𝑡𝑡𝑡𝑡) − 𝑧𝑧𝑧𝑧0]𝑓𝑓𝑓𝑓(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡1−𝑧𝑧𝑧𝑧0

0  

FIGURE 2
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The intuitive interpretation, again, is that the integral measures the average number of excess 

parcels arriving in the afternoon. Adding together the morning and afternoon expected values 

yields the total expected value of parcels routed through FPS:

(27)
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The situation is somewhat less complicated when the Post rate is at an intermediate 

level, i.e., between Congo’s variable per unit cost and the FPS per piece rate (m > a > b).  The 

number of morning parcels routed via FPS falls to zero when a < m.  The expected number of 

afternoon parcels routed via FPS is given by:  
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depends on the model parameters only through their effects on the optimal van coverage ratio, 

z*.  Expected FPS/UX parcels decrease as the Post access price increases.  This is because the 

optimal van coverage ratio increases as a increases; which, in turn, leads to a decrease in the 

expected amount by which the number of afternoon parcels exceeds available van capacity.   
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number of morning parcels routed via FPS falls to zero when a < m.  The expected number of 

afternoon parcels routed via FPS is given by:  

(28)   𝑈𝑈𝑈𝑈 = 𝑈𝑈𝑈𝑈[𝑧𝑧𝑧𝑧∗(𝑎𝑎𝑎𝑎,𝑚𝑚𝑚𝑚, 𝑏𝑏𝑏𝑏,𝐵𝐵𝐵𝐵)] = 𝑄𝑄𝑄𝑄 ∫ [(1 − 𝑡𝑡𝑡𝑡) − 𝑧𝑧𝑧𝑧∗]𝑓𝑓𝑓𝑓(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡1−𝑧𝑧𝑧𝑧∗

0  

As before, this expression measures the expected amount by which afternoon parcel volumes 

exceed available van capacity.  In this case, however, the optimal van coverage ratio, z*, is a 

function of the Post price (as well as the other parameters of the model).  As was true in the 

case of expected Post parcel volume, the expected amount of parcels carried by FPS or UX 

depends on the model parameters only through their effects on the optimal van coverage ratio, 

z*.  Expected FPS/UX parcels decrease as the Post access price increases.  This is because the 

optimal van coverage ratio increases as a increases; which, in turn, leads to a decrease in the 

expected amount by which the number of afternoon parcels exceeds available van capacity.   

 For low Post rates (a < b), all morning parcels are routed through the Post and, as shown 

in Figure 1, the optimal van coverage ratio is zl = z*(a=b,m,b,B).  The expected number of excess 

afternoon parcels routed through FPS or UX is 

(29)   𝑈𝑈𝑈𝑈𝑙𝑙𝑙𝑙 = 𝑈𝑈𝑈𝑈[𝑧𝑧𝑧𝑧∗(𝑎𝑎𝑎𝑎 = 𝑏𝑏𝑏𝑏,𝑚𝑚𝑚𝑚, 𝑏𝑏𝑏𝑏,𝐵𝐵𝐵𝐵)] = 𝑄𝑄𝑄𝑄 ∫ [(1 − 𝑡𝑡𝑡𝑡) − 𝑧𝑧𝑧𝑧𝑙𝑙𝑙𝑙]𝑓𝑓𝑓𝑓(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡1−𝑧𝑧𝑧𝑧𝑙𝑙𝑙𝑙

0  
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This relationship between the expected volume of parcels routed through FPS and the Post’s 

access charge is depicted in the following diagram: 
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 For Post rates greater than m, the expected volume is constant at U0(m).  When a = m 

Congo is indifferent between routing it morning parcels via FPS or the Post.  However, as soon 

as a drops even slightly below m, the morning volumes go to the Post and FPS expected 

volumes drop discontinuously to 𝑈𝑈𝑈𝑈𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎0 (𝑚𝑚𝑚𝑚).  Further decreases in a reduce Congo’s optimal van 

coverage ratio, resulting in an increase in expected FPS afternoon volumes.  This increase 

ceases when a drops to slightly below b.  Intuitively, one might think that routing parcels via 

FPS or UX and routing parcels via the Post are substitute activities from the point of view of 

Congo.  However, it turns out that this is not the case in the current situation.  Figure 3 
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. Further decreases in a reduce Congo’s optimal van coverage 

ratio, resulting in an increase in expected FPS afternoon volumes. This increase ceases when a 

drops to slightly below b. Intuitively, one might think that routing parcels via FPS or UX and routing 

parcels via the Post are substitute activities from the point of view of Congo. However, it turns 
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out that this is not the case in the current situation. Figure 3 illustrates that, over the 

competitive range a∈[b,m), the (expected) combined utilization of FPS and UX routing decreases 

(rather than increases) as the price of Post routing increases.

Figure 4 completes the graphical analysis of parcel demand relationships by plotting 

combined volumes of the parcel carriers as a function of the rate, m, that they charge, holding 

constant the rate, a > b, charged by the Post. For values of m > a, the analysis of Case 1 applies, 

with the Post capturing all of the morning arriving parcels. The demand curve has the traditional 

downward sloping shape, resulting from the fact that decreases in m reduces the number of 

Congo vans on the streets.10 There is a “jump” in the expected volumes of the parcel carriers 

when m falls from (very, very) slightly above a to (very, very) slightly below a because all of the 

outsourced morning parcels are shifted to them.11 For values of m < a, the analysis of the Base 

Case applies. Parcel carrier volumes increase because decreases in m lead to fewer Congo vans 

on the street. Once m falls to (very, very) slightly below b + B/2, Congo takes all of its vans off 

the street, leaving all Q parcels to be delivered by FPS and UX. Obviously, further decreases in m 

have no effect on parcel volumes.

10	 See the comparative static results derived in Appendix 1.
11	 If m = a, Congo is indifferent between the Post and FPS/UX options. The volume routed through the parcel carriers can take 

on any value between U0
pm and U0, as indicated in Figure 4.
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FIGURE 4

The above characterization of the real time dispatching problem of a parcel delivery 

customer (e.g., Congo) serves as a foundation for the analysis of competition for that customer’s 

business between the Post and a parcel carriers such as FPS and UX. It also provides a 

framework in which to analyze co-opetition between the Post and FPS or UX. As mentioned 

above, the situation without unbundled delivery pricing by the Post is equivalent to the case in 

which the Post charges a (wholesale) delivery price greater than the parcel carriers’ per piece 

delivery rate: i.e., a > m. Obviously, in this case, Congo’s operations are not affected by the Post’s 

price. 

Congo faces a tradeoff between the use of its own van capacity and the purchase of per 

piece delivery services from FPS and/or UX. Its choice is determined by the relative unit costs of 

those options and the distribution of parcel arrivals over the day. As equation (11) and Figure 1 
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make clear, the optimal van coverage ratio in the Base Case, z0, depends crucially on the ratio of 

the van’s variable cost advantage, m – b, to the unit cost, B, of van capacity: i.e., z0 = z0(m,b,B). 

If this ratio is very low, i.e., (m – b)/B < ½, vans will not be purchased at all (z0 = 0) because they 

are too expensive.12 Conversely, van coverage will always be less than complete, z0 < 1, as long as 

vans are costly and there is positive probability that some parcels will arrive in both the morning 

and afternoon.13

The purchase of delivery from the Post by Congo becomes a relevant option when the 

rate it charges falls below the unit cost of Congo’s existing per piece option: i.e., a < m. As Figure 

2 indicates, expected deliveries by the Post are zero for prices above m. Once the price falls to 

(slightly below) m, expected Post deliveries “jump” to the Base Case level previously delivered 

by FPS or UX in the morning. Further decreases in the Post price result in the expected delivery 

volume increasing steadily to its maximum level of Qt*
. This volume is obtained when the Post 

price falls to (slightly below) b, the per unit variable cost of van operation. As Figure 1 reveals, 

the source of the increase in Post expected sales is the decrease in Congo’s optimal van coverage 

ratio as a decreases: i.e., from z0 to zl.14 However, once the van coverage ratio falls to zl, further 

decreases in the delivery price charged by the Post have no additional impact on the optimal van 

coverage ratio. This is because it is optimal for Congo to cease all morning deliveries using its 

vans once a has decreased to (slightly) below b. Further decreases in a reduce Posts revenues, 

but do not increase expected delivery volume because the Post is assumed to be unable to 

successfully deliver afternoon parcels.

12	  In terms of Figure 1, this would occur when the horizontal van Marginal Cost curve, B, intersects the vertical axis above the 
vertical intercept of the Marginal Savings curve, MS0: i.e., when B > 2(m – b).

13	  In Figure 1, the intersection between B and MS0 cannot occur at z = 1 unless B = 0.
14	  Recall that the MSh curve in Figure 2 shifts to the left as a (and the curve’s vertical intercept) decreases.
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4. Competition between the Parcel Carriers and the Post for 
Congo’s Business: General Discussion

The analysis thus far has served to characterize Congo’s cost minimizing dispatch choices 

as a function of the per piece parcel delivery rates a and m charged, respectively, by the Post 

and the parcel carriers. It is now possible to examine the outcome of targeted competition 

between these two carriers for Congo’s parcel volumes.15 Before proceeding, it is important to 

recognize the interesting complications that the introduction of arrival time heterogeneity has 

introduced into the problem. From Congo’s point of view, the morning parcel delivery services 

of the Post and FPS/UX are perfect substitutes. As a result, the firm charging the lower price gets 

all of the parcels not delivered by Congo’s vans in the morning. However, in the afternoon, all of 

the parcels not delivered by Congo’s vans are routed via FPS or UX, regardless of those carriers’ 

prices. In an important sense, the Post and FPS/UX are competing more directly with Congo’s 

vans than they are with each other.

Examining equations (24) and (28), the expressions for the expected volumes of the Post 

and the combined volumes of FPS and UX in the interactive range (i.e., when m > a > b), reveal 

that each firm’s demand depends upon the other’s price only through its effect on Congo’s 

optimal van coverage ratio, z*(a,m,b,B). This means that, in the interactive range, the effect of 

an increase in one firm’s price leads to a decrease in the other firm’s demand. In that range, the 

delivery products of the Post and its rivals are complements, not substitutes, from Congo’s point 

of view!16 

15	 I assume that this competition takes place by means of Negotiated Service Agreements (NSAs) so that the Post and the 
parcel carriers are able to charge Congo delivery only prices that are independent of both E2E prices and the delivery only 
prices charged to those carriers’ other customers.

16	 This complementary relationship was also noted in discussion of the graph in Figure 3.
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It is often tricky to analyze competitive outcomes when the services in question are 

complements. To illustrate the issues, assume for simplicity that the distribution of Congo’s 

parcel arrivals over the day is symmetric: i.e., f(t) = f(1 – t) so that F(1 – t) = 1 – F(t) and t* = 

½. Intuitively, this assumption means that, on average, one half the parcels will arrive in the 

morning and one half in the afternoon and the probability that the realized proportion will be 

between, say, 0.3 and 0.4 is exactly the same as the probability that it will be between 0.7 and 

0.6. That is, the probability density function is symmetric around its mean of 0.5. When f is 

symmetric, and parcel rates are in the complementary range (m > a > b), Appendix 1 shows that:

(1)	 The optimal van coverage ratio chosen by Congo, z*, depends only upon the sum of 

the two parcel rates, p ≡ a + m.

(2)	 The expected volumes of the Post and FPS/UX are always equal.

Begin by considering the situation without the unbundling of delivery access by the Post: 

i.e., our Base Case. Under symmetry, equation (12) can be solved implicitly for the optimal van 

coverage ratio:

(30)
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Begin by considering the situation without the unbundling of delivery access by the 

Post: i.e., our Base Case.  Under symmetry, equation (12) can be solved implicitly for the 

optimal van coverage ratio: 

(30) 𝐹𝐹𝐹𝐹[𝑧𝑧𝑧𝑧0(𝑚𝑚𝑚𝑚, 𝑏𝑏𝑏𝑏,𝐵𝐵𝐵𝐵)] = 1 − 𝐵𝐵𝐵𝐵
2(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)   ⟹ 𝑧𝑧𝑧𝑧0(𝑚𝑚𝑚𝑚, 𝑏𝑏𝑏𝑏,𝐵𝐵𝐵𝐵) = 𝐹𝐹𝐹𝐹−1 �1 − 𝐵𝐵𝐵𝐵

2(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)�         

                                                      
16 This complementary relationship was also noted in discussion of the graph in Figure 3. 

Note that the function F – 1 is defined only for values between zero and one. Thus equation (30) is 

valid only for values of m < B/2 + b. For lower values of the FPS/UX parcel rate, Congo’s optimal 

van coverage ratio is zero.
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4.1 The Result of “Perfect Competition” between FPS and UX in the  

Absence of the Post

I begin with the situation in which FPS and UX aggressively compete for Congo’s parcel 

volumes. As a benchmark, I analyze the case in which FPS and UX have identical unit parcel 

delivery costs, denoted by cF.
17 Since they are assumed to offer identical products from Congo’s 

point of view, the competitive equilibrium market delivery price, will be given by mC = cF. As 

noted above, this price is available to Congo for both morning and afternoon arriving parcels.

The substantive issue that arises in this case is whether or not Congo finds it profitable 

to operate any vans, given the extreme competitive behavior of its suppliers. From equations 

(10) and (11) and the subsequent discussion, we see that Congo will choose to operate its own 

vans (i.e., z0(m=cF,b,B) > 0) only if B < 2(cF – b). Otherwise, it will choose to rely entirely on the 

parcel carriers. Thus, the market outcome in this benchmark case is easy to summarize: (i) as 

perfect competitors, FPS and UX earn zero economic profits; (ii) Congo operates vans only if 

it can save money by doing so; and (iii) the outcome is efficient in that it minimizes the total 

expected costs of the delivering the parcel volume Q in the absence of the Post’s participation 

in the market. 

17	 The parameter cF refers to the parcel carriers’ unit cost in a single market. However, as was the case with Congo’s cost 
parameters, it is likely that there is substantial market – to – market variation in cF, with greater unit costs in rural areas 
than in urban areas. Then, market outcomes are likely to vary regionally as well. Also, the unit cost parameter cF is the 
result of network optimization on the part of FPS and UX. Indeed, the real time routing problem facing FPS and UX is 
probably quite similar to that of Congo. And, like Congo, they might find it desirable to contract with the Post for the last 
mile routing of some of their parcels. Such co-opetition between the Postal Service and E2E parcel carriers was the subject 
of my earlier paper, OIG (2016). Appendix 2 discusses how cF can be derived from the choices of FPX or UX, both with and 
without co-opetition from the Post.
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4.2 The Result of “Perfect Coordination” between FPS and UX in the  

Absence of the Post

It is assumed that, in the absence of the Post, FPS and UX operate as duopolists. 

Therefore, it may be unreasonable to assume that they always behave as perfect (Bertrand) 

competitors. As the Industrial Organization literature has amply demonstrated, market 

outcomes in such situations can range between the perfectly competitive outcome and the 

collusive monopoly price.18 Thus, it is instructive to analyze the Congo parcel market under the 

assumption that FPS and UX are (somehow) apply to coordinate on the joint profit – maximizing 

delivery price.19

The combined profits of FPS and UX when operating without competition from the Post 

are given by:

(31)
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0 = �

(𝑚𝑚𝑚𝑚− 𝑐𝑐𝑐𝑐𝐹𝐹𝐹𝐹)𝑈𝑈𝑈𝑈0[𝑧𝑧𝑧𝑧0(𝑚𝑚𝑚𝑚)]:                                  𝑚𝑚𝑚𝑚 ≥ 𝐵𝐵𝐵𝐵
2

+ 𝑏𝑏𝑏𝑏

�𝐵𝐵𝐵𝐵
2

+ 𝑏𝑏𝑏𝑏 − 𝑐𝑐𝑐𝑐𝐹𝐹𝐹𝐹�𝑄𝑄𝑄𝑄:                                            𝑚𝑚𝑚𝑚 ≤ 𝐵𝐵𝐵𝐵
2

+ 𝑏𝑏𝑏𝑏
 

Note that the upper branch of equation (31) reflects Congo’s optimal choice of van coverage 

ratio for each delivery rate set by the parcel carriers.  The lower branch of the equation reflects 

the fact that further reductions in m do not increase combined FPS and UX expected parcel 

                                                      
18 See, for example, Carlton and Perloff (2005), Tirole (1989), Viscusi et. al. (2005) and Vives (1999). 
19 By focusing on this case, I do not mean to suggest that FPS and UX are in violation of the antitrust statutes.  

Firms may be able to sustain high price outcomes via so-called tacit collusion, which Carlton and Perloff define (p. 

785) as “the coordinated actions of firms in an oligopoly despite the lack of an explicit [illegal] cartel agreement.” 

Note that the upper branch of equation (31) reflects Congo’s optimal choice of van coverage 

ratio for each delivery rate set by the parcel carriers. The lower branch of the equation reflects 

the fact that further reductions in m do not increase combined FPS and UX expected parcel 

18	 See, for example, Carlton and Perloff (2005), Tirole (1989), Viscusi et. al. (2005) and Vives (1999).
19	 By focusing on this case, I do not mean to suggest that FPS and UX are in violation of the antitrust statutes. Firms may 

be able to sustain high price outcomes via so-called tacit collusion, which Carlton and Perloff define (p. 785) as “the 
coordinated actions of firms in an oligopoly despite the lack of an explicit [illegal] cartel agreement.”
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volumes once z0(m) = 0. Let mM denote the solution to this profit maximization problem in the 

Base Case. That is, 
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 Later, I shall make stronger assumptions that allow one to solve explicitly for mM as a 

function of the parameters of the model.  For the moment, it sufficient to note that mM will be 

greater than the competitive rate: i.e., mM > cF.  Note also, that if mM < B/2 + b, z0(mM) = 0 and 

Congo does not operate any vans.  Therefore, even though the price is higher than in the 

competitive case, there may be no efficiency loss if collusion does not result in Congo “putting 

vans on the streets.”  Relative to the competitive outcome, FPS and UX profits go up at Congo’s 

expense, but total delivery costs remain the same.  However, inefficiencies will arise if the 

higher coordinated prices leads to an increase in the number of Congo vans on the street.  This 

is obviously true if cF < B/2 + b but mM > B/2 + b because collusion results in the efficient 

outcome of zero Congo vans on the streets being replaced by an inefficient outcome with 

Congo vans on the streets.  Inefficiency also results from collusion when there are (efficiently) 

Congo vans operating initially.  This is because, under competition, Congo’s van coverage choice 

minimizes both the private and social costs of delivery.  Relative to the efficient competitive 

outcome, an increase in the delivery price leads Congo to invest in a socially inefficient increase 

in van coverage. 

4.3 Market Outcomes when Unbundled Delivery is Also Offered by the 
Post  

Now suppose that the Post wishes to offer Congo a delivery NSA and calculates its initial 

rate offering under the assumption that the FPS/UX rate is fixed.  Of course the Post recognizes 

that it will get no business unless it undercuts the parcel carriers’ rate.  In the competitive case, 
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competitive case, that is the end of the matter. The Post must offer a price at least slightly below 

cF to obtain any business, and, if it does so, it cannot be undercut by FPS or UX. 20 If, initially, 

carrier competition was sufficient to keep Congo’s vans off the street, i.e., cF < B/2 + b, there 

is no reason for the Post to lower its price further. Matters are somewhat more complicated if 

Congo found it profitable to operate its own vans under parcel carrier competition. In that case, 

it may be profitable for the Post to set a rate well below cF in order to reduce the number of 

Congo vans on the road. However, determining exactly how much the Post will wish to undercut 

cF requires stronger assumptions about the distribution function f.21 In any case, this lower price 

cannot be profitably undercut by the parcel carriers. 

Analyzing the coordinated case in the presence of competition from the Post is decidedly 

more complex. Again, in order to obtain any parcels at all, it must undercut mM, the price 

charged by the parcel carriers. However, given that it does so, the analysis of Case 1 applies. 

Under symmetry, Congo’s optimal van coverage ratio will depend only upon the sum of a and m. 

Let c denote the unit delivery cost of the Post. One strategy for the Post is to very, very slightly 

undercut the FPS/UX price. If it does so, its expected profits will be:

(32)
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business, and, if it does so, it cannot be undercut by FPS or UX. 20  If, initially, carrier 

competition was sufficient to keep Congo’s vans off the street, i.e., cF < B/2 + b, there is no 

reason for the Post to lower its price further.  Matters are somewhat more complicated if 

Congo found it profitable to operate its own vans under parcel carrier competition.  In that 

case, it may be profitable for the Post to set a rate well below cF in order to reduce the number 

of Congo vans on the road.  However, determining exactly how much the Post will wish to 

undercut cF requires stronger assumptions about the distribution function f.21  In any case, this 

lower price cannot be profitably undercut by the parcel carriers.   

Analyzing the coordinated case in the presence of competition from the Post is 

decidedly more complex.  Again, in order to obtain any parcels at all, it must undercut mM, the 

price charged by the parcel carriers.  However, given that it does so, the analysis of Case 1 

applies.  Under symmetry, Congo’s optimal van coverage ratio will depend only upon the sum 

of a and m.  Let c denote the unit delivery cost of the Post.  One strategy for the Post is to very, 

very slightly undercut the FPS/UX price.  If it does so, its expected profits will be: 

(32)   𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑃𝑃𝑃𝑃 = (𝑚𝑚𝑚𝑚𝑀𝑀𝑀𝑀 − 𝑐𝑐𝑐𝑐)𝑋𝑋𝑋𝑋[𝑧𝑧𝑧𝑧∗(2𝑚𝑚𝑚𝑚𝑀𝑀𝑀𝑀)] 

                                                      
20 Of course, this strategy is potentially profitable only if c < m0.  If the Post’s delivery cost advantage is great 

enough, it may wish to undercut m0 more than slightly. 
21 In the uniform distribution example (i.e., f(t) = 1) developed in Section 5, the following results can be derived: (i) 

The optimal rate for the Post to charge is b as long as there are Congo vans on the street in equilibrium; and (ii)  

Given that the parcel carriers’ are charging cF, Congo vans will be driven of the street for all Post rates less than or 

equal to B + 2b – cF.  Therefore, the profit maximizing rate for the Post to charge when the parcel carriers are 

competitive is given by aC = max {b,2b+B–cF}. 

Things do not end there, however. It is necessary to examine the parcel carriers’ reactions to this 

undercutting on the part of the Post.

20	 Of course, this strategy is potentially profitable only if c < m0. If the Post’s delivery cost advantage is great enough, it may 
wish to undercut m0 more than slightly.

21	 In the uniform distribution example (i.e., f(t) = 1) developed in Section 5, the following results can be derived: (i) The 
optimal rate for the Post to charge is b as long as there are Congo vans on the street in equilibrium; and (ii) Given that the 
parcel carriers’ are charging cF, Congo vans will be driven of the street for all Post rates less than or equal to B + 2b – cF. 
Therefore, the profit maximizing rate for the Post to charge when the parcel carriers are competitive is given by aC = max 
{b,2b+B–cF}.
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First, notice that, after the Post has captured the morning arriving half of their business, 

the parcel carriers can double their profits merely by very slightly undercutting the Post rate 

(which, in turn, was very slightly below mM). To see this, consider two values of m, one slightly 

above a and the other slightly below a. Congo’s optimal van coverage ratio will be essentially 

the same at the two prices. This means that the total amount of both morning and afternoon 

parcels not carried by Congo’s vans will also be the same. But, when m is slightly less than a, 

the morning parcels will go to FPS or UX. If m is slightly greater than a, the morning parcels 

will be routed via the Post. Of course, given this response, the Post will likely rethink its simple 

undercutting strategy. The next section solves for a Stackleberg Equilibrium of this pricing game 

for the case in which the proportion of Congo’s morning arriving parcels is uniformly distributed 

between 0 and 1: i.e., f(t) = 1.

5. Equilibrium Analysis of Coordinated FPS/UX Pricing with Post 
Competition and a Uniform Distribution of Parcel Arrivals

The assumptions used in this example are as follows: (i) Congo’s morning and afternoon 

parcel arrival proportions are uniformly distributed: i.e., f(t) = 1 and F(t) = t; (ii) The Post’s unit 

delivery cost is assumed to be less than the variable (operating) cost of a van, which, in turn, is 

assumed to be less than the unit costs of FPS and UX: i.e., c < b < cF; and (iii) It is assumed that 

the per unit van operating cost is greater than the average unit costs of the Post and the parcel 

carriers: i.e., b > (c + cF)/2.
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The market outcome I analyze is one in which the Post is the price leader. That is, it is 

assumed that the Post first chooses a delivery rate a. Then, FPS and UX successfully coordinate 

on the rate mR(a) that maximizes their joint profits given the Post’s choice of a. Of course, the 

Post chooses a to maximize its profits knowing that the parcel carriers will coordinate on the 

rate that is their Best Response to its choice. 22

5.1 Case 1: Vans Are (Relatively) “Inexpensive”

I begin with the case in which vans are relatively inexpensive to purchase or rent (i.e., B is 

“small”), so that Congo’s optimal van coverage ratio is positive for all relevant parameter values: 

i.e., z*(a,m,B,b) > 0. Substitute f(t) = 1 into equation (24) to obtain:

(33)
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The market outcome I analyze is one in which the Post is the price leader.  That is, it is 

assumed that the Post first chooses a delivery rate a.  Then, FPS and UX successfully coordinate 

on the rate mR(a) that maximizes their joint profits given the Post’s choice of a.  Of course, the 

Post chooses a to maximize its profits knowing that the parcel carriers will coordinate on the 

rate that is their Best Response to its choice. 22 

5.1 Case 1: Vans are (relatively) “inexpensive” 

I begin with the case in which vans are relatively inexpensive to purchase or rent (i.e., B 

is “small”), so that Congo’s optimal van coverage ratio is positive for all relevant parameter 

values: i.e., z*(a,m,B,b) > 0.  Substitute f(t) = 1 into equation (24) to obtain: 

(33)  𝑋𝑋𝑋𝑋 = 𝑄𝑄𝑄𝑄 ∫ [𝑡𝑡𝑡𝑡 − 𝑧𝑧𝑧𝑧∗]𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡1
𝑧𝑧𝑧𝑧∗ = 𝑄𝑄𝑄𝑄 �1−𝑧𝑧𝑧𝑧

∗2

2
− 𝑧𝑧𝑧𝑧∗(1 − 𝑧𝑧𝑧𝑧∗)� = 𝑄𝑄𝑄𝑄

2
(1 − 𝑧𝑧𝑧𝑧∗)2 

Similarly, upon substituting f(t) = 1 into equation (28), we have: 

(34)  𝑈𝑈𝑈𝑈 = 𝑄𝑄𝑄𝑄 ∫ [(1 − 𝑡𝑡𝑡𝑡) − 𝑧𝑧𝑧𝑧∗]𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡1−𝑧𝑧𝑧𝑧∗

0 = 𝑄𝑄𝑄𝑄 �(1 − 𝑧𝑧𝑧𝑧∗)2 − (1−𝑧𝑧𝑧𝑧∗)2

2
� = 𝑄𝑄𝑄𝑄

2
(1 − 𝑧𝑧𝑧𝑧∗)2 

Applying the uniformity assumption to equation (A1.6), we see that: 

(35)  𝐹𝐹𝐹𝐹[𝑧𝑧𝑧𝑧∗(𝑎𝑎𝑎𝑎,𝑚𝑚𝑚𝑚, 𝑏𝑏𝑏𝑏,𝐵𝐵𝐵𝐵)] = 𝑧𝑧𝑧𝑧∗(𝑎𝑎𝑎𝑎,𝑚𝑚𝑚𝑚, 𝑏𝑏𝑏𝑏,𝐵𝐵𝐵𝐵) = 1 − 𝐵𝐵𝐵𝐵
(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)+(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)      

and 

(36)   𝑈𝑈𝑈𝑈 = 𝑋𝑋𝑋𝑋 = 𝑄𝑄𝑄𝑄
2

(1 − 𝑧𝑧𝑧𝑧∗)2 = 𝑄𝑄𝑄𝑄𝐵𝐵𝐵𝐵2

2[(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)+(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)]2 

 Use of the uniform distribution also simplifies the analysis of the non competitive case 

in which a > m > b.  Now, equation (11) can be solved to obtain: 

                                                      
22 This is a price setting Stackelberg oligopoly model.  The analysis solves for a subgame perfect Nash equilibrium.  

See, for example, Tirole (1989) and Vives (1999).  

Similarly, upon substituting f(t) = 1 into equation (28), we have:

(34)
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The market outcome I analyze is one in which the Post is the price leader.  That is, it is 

assumed that the Post first chooses a delivery rate a.  Then, FPS and UX successfully coordinate 

on the rate mR(a) that maximizes their joint profits given the Post’s choice of a.  Of course, the 

Post chooses a to maximize its profits knowing that the parcel carriers will coordinate on the 

rate that is their Best Response to its choice. 22 

5.1 Case 1: Vans are (relatively) “inexpensive” 

I begin with the case in which vans are relatively inexpensive to purchase or rent (i.e., B 

is “small”), so that Congo’s optimal van coverage ratio is positive for all relevant parameter 

values: i.e., z*(a,m,B,b) > 0.  Substitute f(t) = 1 into equation (24) to obtain: 

(33)  𝑋𝑋𝑋𝑋 = 𝑄𝑄𝑄𝑄 ∫ [𝑡𝑡𝑡𝑡 − 𝑧𝑧𝑧𝑧∗]𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡1
𝑧𝑧𝑧𝑧∗ = 𝑄𝑄𝑄𝑄 �1−𝑧𝑧𝑧𝑧

∗2

2
− 𝑧𝑧𝑧𝑧∗(1 − 𝑧𝑧𝑧𝑧∗)� = 𝑄𝑄𝑄𝑄

2
(1 − 𝑧𝑧𝑧𝑧∗)2 

Similarly, upon substituting f(t) = 1 into equation (28), we have: 

(34)  𝑈𝑈𝑈𝑈 = 𝑄𝑄𝑄𝑄 ∫ [(1 − 𝑡𝑡𝑡𝑡) − 𝑧𝑧𝑧𝑧∗]𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡1−𝑧𝑧𝑧𝑧∗

0 = 𝑄𝑄𝑄𝑄 �(1 − 𝑧𝑧𝑧𝑧∗)2 − (1−𝑧𝑧𝑧𝑧∗)2

2
� = 𝑄𝑄𝑄𝑄

2
(1 − 𝑧𝑧𝑧𝑧∗)2 

Applying the uniformity assumption to equation (A1.6), we see that: 

(35)  𝐹𝐹𝐹𝐹[𝑧𝑧𝑧𝑧∗(𝑎𝑎𝑎𝑎,𝑚𝑚𝑚𝑚, 𝑏𝑏𝑏𝑏,𝐵𝐵𝐵𝐵)] = 𝑧𝑧𝑧𝑧∗(𝑎𝑎𝑎𝑎,𝑚𝑚𝑚𝑚, 𝑏𝑏𝑏𝑏,𝐵𝐵𝐵𝐵) = 1 − 𝐵𝐵𝐵𝐵
(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)+(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)      

and 

(36)   𝑈𝑈𝑈𝑈 = 𝑋𝑋𝑋𝑋 = 𝑄𝑄𝑄𝑄
2

(1 − 𝑧𝑧𝑧𝑧∗)2 = 𝑄𝑄𝑄𝑄𝐵𝐵𝐵𝐵2

2[(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)+(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)]2 

 Use of the uniform distribution also simplifies the analysis of the non competitive case 

in which a > m > b.  Now, equation (11) can be solved to obtain: 

                                                      
22 This is a price setting Stackelberg oligopoly model.  The analysis solves for a subgame perfect Nash equilibrium.  

See, for example, Tirole (1989) and Vives (1999).  

Applying the uniformity assumption to equation (A1.6), we see that: 

(35)
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The market outcome I analyze is one in which the Post is the price leader.  That is, it is 

assumed that the Post first chooses a delivery rate a.  Then, FPS and UX successfully coordinate 

on the rate mR(a) that maximizes their joint profits given the Post’s choice of a.  Of course, the 

Post chooses a to maximize its profits knowing that the parcel carriers will coordinate on the 

rate that is their Best Response to its choice. 22 

5.1 Case 1: Vans are (relatively) “inexpensive” 

I begin with the case in which vans are relatively inexpensive to purchase or rent (i.e., B 

is “small”), so that Congo’s optimal van coverage ratio is positive for all relevant parameter 

values: i.e., z*(a,m,B,b) > 0.  Substitute f(t) = 1 into equation (24) to obtain: 

(33)  𝑋𝑋𝑋𝑋 = 𝑄𝑄𝑄𝑄 ∫ [𝑡𝑡𝑡𝑡 − 𝑧𝑧𝑧𝑧∗]𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡1
𝑧𝑧𝑧𝑧∗ = 𝑄𝑄𝑄𝑄 �1−𝑧𝑧𝑧𝑧

∗2

2
− 𝑧𝑧𝑧𝑧∗(1 − 𝑧𝑧𝑧𝑧∗)� = 𝑄𝑄𝑄𝑄

2
(1 − 𝑧𝑧𝑧𝑧∗)2 

Similarly, upon substituting f(t) = 1 into equation (28), we have: 

(34)  𝑈𝑈𝑈𝑈 = 𝑄𝑄𝑄𝑄 ∫ [(1 − 𝑡𝑡𝑡𝑡) − 𝑧𝑧𝑧𝑧∗]𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡1−𝑧𝑧𝑧𝑧∗

0 = 𝑄𝑄𝑄𝑄 �(1 − 𝑧𝑧𝑧𝑧∗)2 − (1−𝑧𝑧𝑧𝑧∗)2

2
� = 𝑄𝑄𝑄𝑄

2
(1 − 𝑧𝑧𝑧𝑧∗)2 

Applying the uniformity assumption to equation (A1.6), we see that: 

(35)  𝐹𝐹𝐹𝐹[𝑧𝑧𝑧𝑧∗(𝑎𝑎𝑎𝑎,𝑚𝑚𝑚𝑚, 𝑏𝑏𝑏𝑏,𝐵𝐵𝐵𝐵)] = 𝑧𝑧𝑧𝑧∗(𝑎𝑎𝑎𝑎,𝑚𝑚𝑚𝑚, 𝑏𝑏𝑏𝑏,𝐵𝐵𝐵𝐵) = 1 − 𝐵𝐵𝐵𝐵
(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)+(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)      

and 

(36)   𝑈𝑈𝑈𝑈 = 𝑋𝑋𝑋𝑋 = 𝑄𝑄𝑄𝑄
2

(1 − 𝑧𝑧𝑧𝑧∗)2 = 𝑄𝑄𝑄𝑄𝐵𝐵𝐵𝐵2

2[(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)+(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)]2 

 Use of the uniform distribution also simplifies the analysis of the non competitive case 

in which a > m > b.  Now, equation (11) can be solved to obtain: 

                                                      
22 This is a price setting Stackelberg oligopoly model.  The analysis solves for a subgame perfect Nash equilibrium.  

See, for example, Tirole (1989) and Vives (1999).  

and
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The market outcome I analyze is one in which the Post is the price leader.  That is, it is 

assumed that the Post first chooses a delivery rate a.  Then, FPS and UX successfully coordinate 

on the rate mR(a) that maximizes their joint profits given the Post’s choice of a.  Of course, the 

Post chooses a to maximize its profits knowing that the parcel carriers will coordinate on the 

rate that is their Best Response to its choice. 22 

5.1 Case 1: Vans are (relatively) “inexpensive” 

I begin with the case in which vans are relatively inexpensive to purchase or rent (i.e., B 

is “small”), so that Congo’s optimal van coverage ratio is positive for all relevant parameter 

values: i.e., z*(a,m,B,b) > 0.  Substitute f(t) = 1 into equation (24) to obtain: 

(33)  𝑋𝑋𝑋𝑋 = 𝑄𝑄𝑄𝑄 ∫ [𝑡𝑡𝑡𝑡 − 𝑧𝑧𝑧𝑧∗]𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡1
𝑧𝑧𝑧𝑧∗ = 𝑄𝑄𝑄𝑄 �1−𝑧𝑧𝑧𝑧

∗2
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− 𝑧𝑧𝑧𝑧∗(1 − 𝑧𝑧𝑧𝑧∗)� = 𝑄𝑄𝑄𝑄

2
(1 − 𝑧𝑧𝑧𝑧∗)2 

Similarly, upon substituting f(t) = 1 into equation (28), we have: 

(34)  𝑈𝑈𝑈𝑈 = 𝑄𝑄𝑄𝑄 ∫ [(1 − 𝑡𝑡𝑡𝑡) − 𝑧𝑧𝑧𝑧∗]𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡1−𝑧𝑧𝑧𝑧∗

0 = 𝑄𝑄𝑄𝑄 �(1 − 𝑧𝑧𝑧𝑧∗)2 − (1−𝑧𝑧𝑧𝑧∗)2

2
� = 𝑄𝑄𝑄𝑄

2
(1 − 𝑧𝑧𝑧𝑧∗)2 

Applying the uniformity assumption to equation (A1.6), we see that: 

(35)  𝐹𝐹𝐹𝐹[𝑧𝑧𝑧𝑧∗(𝑎𝑎𝑎𝑎,𝑚𝑚𝑚𝑚, 𝑏𝑏𝑏𝑏,𝐵𝐵𝐵𝐵)] = 𝑧𝑧𝑧𝑧∗(𝑎𝑎𝑎𝑎,𝑚𝑚𝑚𝑚, 𝑏𝑏𝑏𝑏,𝐵𝐵𝐵𝐵) = 1 − 𝐵𝐵𝐵𝐵
(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)+(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)      

and 

(36)   𝑈𝑈𝑈𝑈 = 𝑋𝑋𝑋𝑋 = 𝑄𝑄𝑄𝑄
2

(1 − 𝑧𝑧𝑧𝑧∗)2 = 𝑄𝑄𝑄𝑄𝐵𝐵𝐵𝐵2

2[(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)+(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)]2 

 Use of the uniform distribution also simplifies the analysis of the non competitive case 

in which a > m > b.  Now, equation (11) can be solved to obtain: 

                                                      
22 This is a price setting Stackelberg oligopoly model.  The analysis solves for a subgame perfect Nash equilibrium.  

See, for example, Tirole (1989) and Vives (1999).  

Use of the uniform distribution also simplifies the analysis of the non competitive case in 

which a > m > b. Now, equation (11) can be solved to obtain:

22	 This is a price setting Stackelberg oligopoly model. The analysis solves for a subgame perfect Nash equilibrium. See, for 
example, Tirole (1989) and Vives (1999). 
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(37)   𝑧𝑧𝑧𝑧0(𝑚𝑚𝑚𝑚, 𝑏𝑏𝑏𝑏,𝐵𝐵𝐵𝐵) = 1 − 𝐵𝐵𝐵𝐵
2(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)    

Using equation (28), we see that the expected number of parcels routed through FPS and UX is 

then given by: 

(38)   𝑈𝑈𝑈𝑈0 = 𝑄𝑄𝑄𝑄(1 − 𝑧𝑧𝑧𝑧0)2 = 𝑄𝑄𝑄𝑄𝐵𝐵𝐵𝐵2

4[𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏]2 

Of course, the Post receives no parcels from Congo in this case. 

 Finally, it will also prove useful to apply the uniform distribution to the case in which the 

Post chooses a price below the variable cost of operating a van: i.e., a < b.  In that case, we see 

from equation (22) that: 

(39)     (1 − 𝑧𝑧𝑧𝑧𝑙𝑙𝑙𝑙) = 𝐵𝐵𝐵𝐵
𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏

  

Substituting this result into the demand equation for FPS, yields: 

(40)    𝑈𝑈𝑈𝑈𝑙𝑙𝑙𝑙 = 𝑄𝑄𝑄𝑄
2

(1 − 𝑧𝑧𝑧𝑧𝑙𝑙𝑙𝑙)2 = 𝑄𝑄𝑄𝑄𝐵𝐵𝐵𝐵2

2[𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏]2 

Given that a < b, the Post captures all the morning arriving parcels, so its expected parcel 

demand is given by: 

(41)     𝑋𝑋𝑋𝑋𝑙𝑙𝑙𝑙 = 𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡∗ = 𝑄𝑄𝑄𝑄
2

  

As a benchmark, I first derive the profit maximizing price that FPS and UX would charge 

Congo in the absence of delivery competition from the Post.  In that case, FPS expected profits 

would be given by 

(42)    𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐹𝐹𝐹𝐹0 = (𝑚𝑚𝑚𝑚− 𝑐𝑐𝑐𝑐𝐹𝐹𝐹𝐹)𝑈𝑈𝑈𝑈0[𝑧𝑧𝑧𝑧0(𝑚𝑚𝑚𝑚)] = (𝑚𝑚𝑚𝑚− 𝑐𝑐𝑐𝑐𝐹𝐹𝐹𝐹)[1 − 𝑧𝑧𝑧𝑧0(𝑚𝑚𝑚𝑚)]2 = 𝑄𝑄𝑄𝑄𝐵𝐵𝐵𝐵2(𝑎𝑎𝑎𝑎−𝑐𝑐𝑐𝑐𝐹𝐹𝐹𝐹)
4(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)2

 

Differentiating with respect to m yields the following FONCs for the optimal FPS delivery rate: 

(43)  𝜕𝜕𝜕𝜕𝐸𝐸𝐸𝐸𝜋𝜋𝜋𝜋𝐹𝐹𝐹𝐹
0

𝜕𝜕𝜕𝜕𝑎𝑎𝑎𝑎
= 𝑄𝑄𝑄𝑄𝐵𝐵𝐵𝐵2�(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)2−2(𝑎𝑎𝑎𝑎−𝑐𝑐𝑐𝑐𝐹𝐹𝐹𝐹)(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)�

4(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)4
= 𝑄𝑄𝑄𝑄𝐵𝐵𝐵𝐵2[2𝑐𝑐𝑐𝑐𝐹𝐹𝐹𝐹−𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏]

4(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)3
= 0 

Using equation (28), we see that the expected number of parcels routed through FPS and UX is then given by:

(38)

 
33 

 

(37)   𝑧𝑧𝑧𝑧0(𝑚𝑚𝑚𝑚, 𝑏𝑏𝑏𝑏,𝐵𝐵𝐵𝐵) = 1 − 𝐵𝐵𝐵𝐵
2(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)    

Using equation (28), we see that the expected number of parcels routed through FPS and UX is 

then given by: 

(38)   𝑈𝑈𝑈𝑈0 = 𝑄𝑄𝑄𝑄(1 − 𝑧𝑧𝑧𝑧0)2 = 𝑄𝑄𝑄𝑄𝐵𝐵𝐵𝐵2

4[𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏]2 

Of course, the Post receives no parcels from Congo in this case. 

 Finally, it will also prove useful to apply the uniform distribution to the case in which the 

Post chooses a price below the variable cost of operating a van: i.e., a < b.  In that case, we see 

from equation (22) that: 

(39)     (1 − 𝑧𝑧𝑧𝑧𝑙𝑙𝑙𝑙) = 𝐵𝐵𝐵𝐵
𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏

  

Substituting this result into the demand equation for FPS, yields: 

(40)    𝑈𝑈𝑈𝑈𝑙𝑙𝑙𝑙 = 𝑄𝑄𝑄𝑄
2

(1 − 𝑧𝑧𝑧𝑧𝑙𝑙𝑙𝑙)2 = 𝑄𝑄𝑄𝑄𝐵𝐵𝐵𝐵2

2[𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏]2 

Given that a < b, the Post captures all the morning arriving parcels, so its expected parcel 

demand is given by: 

(41)     𝑋𝑋𝑋𝑋𝑙𝑙𝑙𝑙 = 𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡∗ = 𝑄𝑄𝑄𝑄
2

  

As a benchmark, I first derive the profit maximizing price that FPS and UX would charge 

Congo in the absence of delivery competition from the Post.  In that case, FPS expected profits 

would be given by 

(42)    𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐹𝐹𝐹𝐹0 = (𝑚𝑚𝑚𝑚− 𝑐𝑐𝑐𝑐𝐹𝐹𝐹𝐹)𝑈𝑈𝑈𝑈0[𝑧𝑧𝑧𝑧0(𝑚𝑚𝑚𝑚)] = (𝑚𝑚𝑚𝑚− 𝑐𝑐𝑐𝑐𝐹𝐹𝐹𝐹)[1 − 𝑧𝑧𝑧𝑧0(𝑚𝑚𝑚𝑚)]2 = 𝑄𝑄𝑄𝑄𝐵𝐵𝐵𝐵2(𝑎𝑎𝑎𝑎−𝑐𝑐𝑐𝑐𝐹𝐹𝐹𝐹)
4(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)2

 

Differentiating with respect to m yields the following FONCs for the optimal FPS delivery rate: 

(43)  𝜕𝜕𝜕𝜕𝐸𝐸𝐸𝐸𝜋𝜋𝜋𝜋𝐹𝐹𝐹𝐹
0

𝜕𝜕𝜕𝜕𝑎𝑎𝑎𝑎
= 𝑄𝑄𝑄𝑄𝐵𝐵𝐵𝐵2�(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)2−2(𝑎𝑎𝑎𝑎−𝑐𝑐𝑐𝑐𝐹𝐹𝐹𝐹)(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)�

4(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)4
= 𝑄𝑄𝑄𝑄𝐵𝐵𝐵𝐵2[2𝑐𝑐𝑐𝑐𝐹𝐹𝐹𝐹−𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏]

4(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)3
= 0 

Of course, the Post receives no parcels from Congo in this case.

Finally, it will also prove useful to apply the uniform distribution to the case in which the Post chooses a price below the variable cost 

of operating a van: i.e., a < b. In that case, we see from equation (22) that:

(39)
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(37)   𝑧𝑧𝑧𝑧0(𝑚𝑚𝑚𝑚, 𝑏𝑏𝑏𝑏,𝐵𝐵𝐵𝐵) = 1 − 𝐵𝐵𝐵𝐵
2(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)    

Using equation (28), we see that the expected number of parcels routed through FPS and UX is 

then given by: 

(38)   𝑈𝑈𝑈𝑈0 = 𝑄𝑄𝑄𝑄(1 − 𝑧𝑧𝑧𝑧0)2 = 𝑄𝑄𝑄𝑄𝐵𝐵𝐵𝐵2

4[𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏]2 

Of course, the Post receives no parcels from Congo in this case. 

 Finally, it will also prove useful to apply the uniform distribution to the case in which the 

Post chooses a price below the variable cost of operating a van: i.e., a < b.  In that case, we see 

from equation (22) that: 

(39)     (1 − 𝑧𝑧𝑧𝑧𝑙𝑙𝑙𝑙) = 𝐵𝐵𝐵𝐵
𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏

  

Substituting this result into the demand equation for FPS, yields: 

(40)    𝑈𝑈𝑈𝑈𝑙𝑙𝑙𝑙 = 𝑄𝑄𝑄𝑄
2

(1 − 𝑧𝑧𝑧𝑧𝑙𝑙𝑙𝑙)2 = 𝑄𝑄𝑄𝑄𝐵𝐵𝐵𝐵2

2[𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏]2 

Given that a < b, the Post captures all the morning arriving parcels, so its expected parcel 

demand is given by: 

(41)     𝑋𝑋𝑋𝑋𝑙𝑙𝑙𝑙 = 𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡∗ = 𝑄𝑄𝑄𝑄
2

  

As a benchmark, I first derive the profit maximizing price that FPS and UX would charge 

Congo in the absence of delivery competition from the Post.  In that case, FPS expected profits 

would be given by 

(42)    𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐹𝐹𝐹𝐹0 = (𝑚𝑚𝑚𝑚− 𝑐𝑐𝑐𝑐𝐹𝐹𝐹𝐹)𝑈𝑈𝑈𝑈0[𝑧𝑧𝑧𝑧0(𝑚𝑚𝑚𝑚)] = (𝑚𝑚𝑚𝑚− 𝑐𝑐𝑐𝑐𝐹𝐹𝐹𝐹)[1 − 𝑧𝑧𝑧𝑧0(𝑚𝑚𝑚𝑚)]2 = 𝑄𝑄𝑄𝑄𝐵𝐵𝐵𝐵2(𝑎𝑎𝑎𝑎−𝑐𝑐𝑐𝑐𝐹𝐹𝐹𝐹)
4(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)2

 

Differentiating with respect to m yields the following FONCs for the optimal FPS delivery rate: 

(43)  𝜕𝜕𝜕𝜕𝐸𝐸𝐸𝐸𝜋𝜋𝜋𝜋𝐹𝐹𝐹𝐹
0

𝜕𝜕𝜕𝜕𝑎𝑎𝑎𝑎
= 𝑄𝑄𝑄𝑄𝐵𝐵𝐵𝐵2�(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)2−2(𝑎𝑎𝑎𝑎−𝑐𝑐𝑐𝑐𝐹𝐹𝐹𝐹)(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)�

4(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)4
= 𝑄𝑄𝑄𝑄𝐵𝐵𝐵𝐵2[2𝑐𝑐𝑐𝑐𝐹𝐹𝐹𝐹−𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏]

4(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)3
= 0 

Substituting this result into the demand equation for FPS, yields:

(40)
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(37)   𝑧𝑧𝑧𝑧0(𝑚𝑚𝑚𝑚, 𝑏𝑏𝑏𝑏,𝐵𝐵𝐵𝐵) = 1 − 𝐵𝐵𝐵𝐵
2(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)    

Using equation (28), we see that the expected number of parcels routed through FPS and UX is 

then given by: 

(38)   𝑈𝑈𝑈𝑈0 = 𝑄𝑄𝑄𝑄(1 − 𝑧𝑧𝑧𝑧0)2 = 𝑄𝑄𝑄𝑄𝐵𝐵𝐵𝐵2

4[𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏]2 

Of course, the Post receives no parcels from Congo in this case. 

 Finally, it will also prove useful to apply the uniform distribution to the case in which the 

Post chooses a price below the variable cost of operating a van: i.e., a < b.  In that case, we see 

from equation (22) that: 

(39)     (1 − 𝑧𝑧𝑧𝑧𝑙𝑙𝑙𝑙) = 𝐵𝐵𝐵𝐵
𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏

  

Substituting this result into the demand equation for FPS, yields: 

(40)    𝑈𝑈𝑈𝑈𝑙𝑙𝑙𝑙 = 𝑄𝑄𝑄𝑄
2

(1 − 𝑧𝑧𝑧𝑧𝑙𝑙𝑙𝑙)2 = 𝑄𝑄𝑄𝑄𝐵𝐵𝐵𝐵2

2[𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏]2 

Given that a < b, the Post captures all the morning arriving parcels, so its expected parcel 

demand is given by: 

(41)     𝑋𝑋𝑋𝑋𝑙𝑙𝑙𝑙 = 𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡∗ = 𝑄𝑄𝑄𝑄
2

  

As a benchmark, I first derive the profit maximizing price that FPS and UX would charge 

Congo in the absence of delivery competition from the Post.  In that case, FPS expected profits 

would be given by 

(42)    𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐹𝐹𝐹𝐹0 = (𝑚𝑚𝑚𝑚− 𝑐𝑐𝑐𝑐𝐹𝐹𝐹𝐹)𝑈𝑈𝑈𝑈0[𝑧𝑧𝑧𝑧0(𝑚𝑚𝑚𝑚)] = (𝑚𝑚𝑚𝑚− 𝑐𝑐𝑐𝑐𝐹𝐹𝐹𝐹)[1 − 𝑧𝑧𝑧𝑧0(𝑚𝑚𝑚𝑚)]2 = 𝑄𝑄𝑄𝑄𝐵𝐵𝐵𝐵2(𝑎𝑎𝑎𝑎−𝑐𝑐𝑐𝑐𝐹𝐹𝐹𝐹)
4(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)2

 

Differentiating with respect to m yields the following FONCs for the optimal FPS delivery rate: 

(43)  𝜕𝜕𝜕𝜕𝐸𝐸𝐸𝐸𝜋𝜋𝜋𝜋𝐹𝐹𝐹𝐹
0

𝜕𝜕𝜕𝜕𝑎𝑎𝑎𝑎
= 𝑄𝑄𝑄𝑄𝐵𝐵𝐵𝐵2�(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)2−2(𝑎𝑎𝑎𝑎−𝑐𝑐𝑐𝑐𝐹𝐹𝐹𝐹)(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)�

4(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)4
= 𝑄𝑄𝑄𝑄𝐵𝐵𝐵𝐵2[2𝑐𝑐𝑐𝑐𝐹𝐹𝐹𝐹−𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏]

4(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)3
= 0 

Given that a < b, the Post captures all the morning arriving parcels, so its expected parcel demand is given by:

(41)
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(37)   𝑧𝑧𝑧𝑧0(𝑚𝑚𝑚𝑚, 𝑏𝑏𝑏𝑏,𝐵𝐵𝐵𝐵) = 1 − 𝐵𝐵𝐵𝐵
2(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)    

Using equation (28), we see that the expected number of parcels routed through FPS and UX is 

then given by: 

(38)   𝑈𝑈𝑈𝑈0 = 𝑄𝑄𝑄𝑄(1 − 𝑧𝑧𝑧𝑧0)2 = 𝑄𝑄𝑄𝑄𝐵𝐵𝐵𝐵2

4[𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏]2 

Of course, the Post receives no parcels from Congo in this case. 

 Finally, it will also prove useful to apply the uniform distribution to the case in which the 

Post chooses a price below the variable cost of operating a van: i.e., a < b.  In that case, we see 

from equation (22) that: 

(39)     (1 − 𝑧𝑧𝑧𝑧𝑙𝑙𝑙𝑙) = 𝐵𝐵𝐵𝐵
𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏

  

Substituting this result into the demand equation for FPS, yields: 

(40)    𝑈𝑈𝑈𝑈𝑙𝑙𝑙𝑙 = 𝑄𝑄𝑄𝑄
2

(1 − 𝑧𝑧𝑧𝑧𝑙𝑙𝑙𝑙)2 = 𝑄𝑄𝑄𝑄𝐵𝐵𝐵𝐵2

2[𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏]2 

Given that a < b, the Post captures all the morning arriving parcels, so its expected parcel 

demand is given by: 

(41)     𝑋𝑋𝑋𝑋𝑙𝑙𝑙𝑙 = 𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡∗ = 𝑄𝑄𝑄𝑄
2

  

As a benchmark, I first derive the profit maximizing price that FPS and UX would charge 

Congo in the absence of delivery competition from the Post.  In that case, FPS expected profits 

would be given by 

(42)    𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐹𝐹𝐹𝐹0 = (𝑚𝑚𝑚𝑚− 𝑐𝑐𝑐𝑐𝐹𝐹𝐹𝐹)𝑈𝑈𝑈𝑈0[𝑧𝑧𝑧𝑧0(𝑚𝑚𝑚𝑚)] = (𝑚𝑚𝑚𝑚− 𝑐𝑐𝑐𝑐𝐹𝐹𝐹𝐹)[1 − 𝑧𝑧𝑧𝑧0(𝑚𝑚𝑚𝑚)]2 = 𝑄𝑄𝑄𝑄𝐵𝐵𝐵𝐵2(𝑎𝑎𝑎𝑎−𝑐𝑐𝑐𝑐𝐹𝐹𝐹𝐹)
4(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)2

 

Differentiating with respect to m yields the following FONCs for the optimal FPS delivery rate: 

(43)  𝜕𝜕𝜕𝜕𝐸𝐸𝐸𝐸𝜋𝜋𝜋𝜋𝐹𝐹𝐹𝐹
0

𝜕𝜕𝜕𝜕𝑎𝑎𝑎𝑎
= 𝑄𝑄𝑄𝑄𝐵𝐵𝐵𝐵2�(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)2−2(𝑎𝑎𝑎𝑎−𝑐𝑐𝑐𝑐𝐹𝐹𝐹𝐹)(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)�

4(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)4
= 𝑄𝑄𝑄𝑄𝐵𝐵𝐵𝐵2[2𝑐𝑐𝑐𝑐𝐹𝐹𝐹𝐹−𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏]

4(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)3
= 0 

As a benchmark, I first derive the profit maximizing price that FPS and UX would charge Congo in the absence of delivery competition 

from the Post. In that case, FPS expected profits would be given by

(42)
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(37)   𝑧𝑧𝑧𝑧0(𝑚𝑚𝑚𝑚, 𝑏𝑏𝑏𝑏,𝐵𝐵𝐵𝐵) = 1 − 𝐵𝐵𝐵𝐵
2(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)    

Using equation (28), we see that the expected number of parcels routed through FPS and UX is 

then given by: 

(38)   𝑈𝑈𝑈𝑈0 = 𝑄𝑄𝑄𝑄(1 − 𝑧𝑧𝑧𝑧0)2 = 𝑄𝑄𝑄𝑄𝐵𝐵𝐵𝐵2

4[𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏]2 

Of course, the Post receives no parcels from Congo in this case. 

 Finally, it will also prove useful to apply the uniform distribution to the case in which the 

Post chooses a price below the variable cost of operating a van: i.e., a < b.  In that case, we see 

from equation (22) that: 

(39)     (1 − 𝑧𝑧𝑧𝑧𝑙𝑙𝑙𝑙) = 𝐵𝐵𝐵𝐵
𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏

  

Substituting this result into the demand equation for FPS, yields: 

(40)    𝑈𝑈𝑈𝑈𝑙𝑙𝑙𝑙 = 𝑄𝑄𝑄𝑄
2

(1 − 𝑧𝑧𝑧𝑧𝑙𝑙𝑙𝑙)2 = 𝑄𝑄𝑄𝑄𝐵𝐵𝐵𝐵2

2[𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏]2 

Given that a < b, the Post captures all the morning arriving parcels, so its expected parcel 

demand is given by: 

(41)     𝑋𝑋𝑋𝑋𝑙𝑙𝑙𝑙 = 𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡∗ = 𝑄𝑄𝑄𝑄
2

  

As a benchmark, I first derive the profit maximizing price that FPS and UX would charge 

Congo in the absence of delivery competition from the Post.  In that case, FPS expected profits 

would be given by 

(42)    𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐹𝐹𝐹𝐹0 = (𝑚𝑚𝑚𝑚− 𝑐𝑐𝑐𝑐𝐹𝐹𝐹𝐹)𝑈𝑈𝑈𝑈0[𝑧𝑧𝑧𝑧0(𝑚𝑚𝑚𝑚)] = (𝑚𝑚𝑚𝑚− 𝑐𝑐𝑐𝑐𝐹𝐹𝐹𝐹)[1 − 𝑧𝑧𝑧𝑧0(𝑚𝑚𝑚𝑚)]2 = 𝑄𝑄𝑄𝑄𝐵𝐵𝐵𝐵2(𝑎𝑎𝑎𝑎−𝑐𝑐𝑐𝑐𝐹𝐹𝐹𝐹)
4(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)2

 

Differentiating with respect to m yields the following FONCs for the optimal FPS delivery rate: 

(43)  𝜕𝜕𝜕𝜕𝐸𝐸𝐸𝐸𝜋𝜋𝜋𝜋𝐹𝐹𝐹𝐹
0

𝜕𝜕𝜕𝜕𝑎𝑎𝑎𝑎
= 𝑄𝑄𝑄𝑄𝐵𝐵𝐵𝐵2�(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)2−2(𝑎𝑎𝑎𝑎−𝑐𝑐𝑐𝑐𝐹𝐹𝐹𝐹)(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)�

4(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)4
= 𝑄𝑄𝑄𝑄𝐵𝐵𝐵𝐵2[2𝑐𝑐𝑐𝑐𝐹𝐹𝐹𝐹−𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏]

4(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)3
= 0 

Differentiating with respect to m yields the following FONCs for the optimal FPS delivery rate:

(43)
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(37)   𝑧𝑧𝑧𝑧0(𝑚𝑚𝑚𝑚, 𝑏𝑏𝑏𝑏,𝐵𝐵𝐵𝐵) = 1 − 𝐵𝐵𝐵𝐵
2(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)    

Using equation (28), we see that the expected number of parcels routed through FPS and UX is 

then given by: 

(38)   𝑈𝑈𝑈𝑈0 = 𝑄𝑄𝑄𝑄(1 − 𝑧𝑧𝑧𝑧0)2 = 𝑄𝑄𝑄𝑄𝐵𝐵𝐵𝐵2

4[𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏]2 

Of course, the Post receives no parcels from Congo in this case. 

 Finally, it will also prove useful to apply the uniform distribution to the case in which the 

Post chooses a price below the variable cost of operating a van: i.e., a < b.  In that case, we see 

from equation (22) that: 

(39)     (1 − 𝑧𝑧𝑧𝑧𝑙𝑙𝑙𝑙) = 𝐵𝐵𝐵𝐵
𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏

  

Substituting this result into the demand equation for FPS, yields: 

(40)    𝑈𝑈𝑈𝑈𝑙𝑙𝑙𝑙 = 𝑄𝑄𝑄𝑄
2

(1 − 𝑧𝑧𝑧𝑧𝑙𝑙𝑙𝑙)2 = 𝑄𝑄𝑄𝑄𝐵𝐵𝐵𝐵2

2[𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏]2 

Given that a < b, the Post captures all the morning arriving parcels, so its expected parcel 

demand is given by: 

(41)     𝑋𝑋𝑋𝑋𝑙𝑙𝑙𝑙 = 𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡∗ = 𝑄𝑄𝑄𝑄
2

  

As a benchmark, I first derive the profit maximizing price that FPS and UX would charge 

Congo in the absence of delivery competition from the Post.  In that case, FPS expected profits 

would be given by 

(42)    𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐹𝐹𝐹𝐹0 = (𝑚𝑚𝑚𝑚− 𝑐𝑐𝑐𝑐𝐹𝐹𝐹𝐹)𝑈𝑈𝑈𝑈0[𝑧𝑧𝑧𝑧0(𝑚𝑚𝑚𝑚)] = (𝑚𝑚𝑚𝑚− 𝑐𝑐𝑐𝑐𝐹𝐹𝐹𝐹)[1 − 𝑧𝑧𝑧𝑧0(𝑚𝑚𝑚𝑚)]2 = 𝑄𝑄𝑄𝑄𝐵𝐵𝐵𝐵2(𝑎𝑎𝑎𝑎−𝑐𝑐𝑐𝑐𝐹𝐹𝐹𝐹)
4(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)2

 

Differentiating with respect to m yields the following FONCs for the optimal FPS delivery rate: 

(43)  𝜕𝜕𝜕𝜕𝐸𝐸𝐸𝐸𝜋𝜋𝜋𝜋𝐹𝐹𝐹𝐹
0

𝜕𝜕𝜕𝜕𝑎𝑎𝑎𝑎
= 𝑄𝑄𝑄𝑄𝐵𝐵𝐵𝐵2�(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)2−2(𝑎𝑎𝑎𝑎−𝑐𝑐𝑐𝑐𝐹𝐹𝐹𝐹)(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)�

4(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)4
= 𝑄𝑄𝑄𝑄𝐵𝐵𝐵𝐵2[2𝑐𝑐𝑐𝑐𝐹𝐹𝐹𝐹−𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏]

4(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)3
= 0 
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Solving the above, we see that the optimal monopoly FPS rate is given by mM = 2cF – b.

Turning to the case with effective competition from the Post (m > a > b), the expected 

joint profits of FPS and UX are given by

(44)
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Solving the above, we see that the optimal monopoly FPS rate is given by mM = 2cF – b. 

 Turning to the case with effective competition from the Post (m > a > b), the expected 

joint profits of FPS and UX are given by 

(44)  𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐹𝐹𝐹𝐹/𝑈𝑈𝑈𝑈
𝑖𝑖𝑖𝑖 = (𝑚𝑚𝑚𝑚− 𝑐𝑐𝑐𝑐𝐹𝐹𝐹𝐹)𝑈𝑈𝑈𝑈[𝑧𝑧𝑧𝑧∗(𝑚𝑚𝑚𝑚,𝑎𝑎𝑎𝑎)] = (𝑚𝑚𝑚𝑚 − 𝑐𝑐𝑐𝑐𝐹𝐹𝐹𝐹)[1 − 𝑧𝑧𝑧𝑧∗(𝑚𝑚𝑚𝑚)]2 = 𝑄𝑄𝑄𝑄𝐵𝐵𝐵𝐵2(𝑎𝑎𝑎𝑎−𝑐𝑐𝑐𝑐𝐹𝐹𝐹𝐹)

2[(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)+(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)]2
 

Differentiating with respect to m yields the following FONC for the optimal coordinated delivery 

rate for the parcel carriers: 

(45)  
𝜕𝜕𝜕𝜕𝐸𝐸𝐸𝐸𝜋𝜋𝜋𝜋𝐹𝐹𝐹𝐹/𝑈𝑈𝑈𝑈

𝑖𝑖𝑖𝑖

𝜕𝜕𝜕𝜕𝑎𝑎𝑎𝑎
= 𝑄𝑄𝑄𝑄𝐵𝐵𝐵𝐵2�[(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)+(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)]2−2(𝑎𝑎𝑎𝑎−𝑐𝑐𝑐𝑐𝐹𝐹𝐹𝐹)[(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)+(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)]�

4[(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)+(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)]4
= 𝑄𝑄𝑄𝑄𝐵𝐵𝐵𝐵2[2𝑐𝑐𝑐𝑐𝐹𝐹𝐹𝐹−𝑎𝑎𝑎𝑎+𝑎𝑎𝑎𝑎−2𝑏𝑏𝑏𝑏]

4(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)3
= 0 

Solving the above, we see that the optimal FPS/UX rate in the competitive range depends upon 

the level of the Post rate and is given by mi = a + 2(cF – b).  

Finally, consider the joint profits of FPS and UX when the Post sets its rates below the 

variable cost of Congo van operation: i.e., a < b.  In that case joint profits are given by: 

(46)  𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐹𝐹𝐹𝐹/𝑈𝑈𝑈𝑈
𝑙𝑙𝑙𝑙 = (𝑚𝑚𝑚𝑚− 𝑐𝑐𝑐𝑐𝐹𝐹𝐹𝐹)𝑈𝑈𝑈𝑈𝑙𝑙𝑙𝑙[𝑧𝑧𝑧𝑧𝑙𝑙𝑙𝑙(𝑚𝑚𝑚𝑚)] = (𝑚𝑚𝑚𝑚− 𝑐𝑐𝑐𝑐𝐹𝐹𝐹𝐹)[1 − 𝑧𝑧𝑧𝑧𝑙𝑙𝑙𝑙(𝑚𝑚𝑚𝑚)]2 = 𝑄𝑄𝑄𝑄𝐵𝐵𝐵𝐵2(𝑎𝑎𝑎𝑎−𝑐𝑐𝑐𝑐𝐹𝐹𝐹𝐹)

2(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)2
  

Differentiating with respect to m yields the FONC used to determine the optimal coordinated 

rate with low access pricing by the Post: 

(47)  
𝜕𝜕𝜕𝜕𝐸𝐸𝐸𝐸𝜋𝜋𝜋𝜋𝐹𝐹𝐹𝐹/𝑈𝑈𝑈𝑈

𝑙𝑙𝑙𝑙

𝜕𝜕𝜕𝜕𝑎𝑎𝑎𝑎
= 𝑄𝑄𝑄𝑄𝐵𝐵𝐵𝐵2�(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)2−2(𝑎𝑎𝑎𝑎−𝑐𝑐𝑐𝑐𝐹𝐹𝐹𝐹)(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)�

2(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)4
= 𝑄𝑄𝑄𝑄𝐵𝐵𝐵𝐵2[2𝑐𝑐𝑐𝑐𝐹𝐹𝐹𝐹−𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏]

2(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)3
= 0 

Solving yields the result that ml = 2cF – b. 

It is now possible to use the above analyses to construct a Best Response relationship 

for the parcel carriers, mR(a).  This specifies the joint profit maximizing parcel rate given any 

rate, a, charged by the Post.  This relationship is depicted by the solid green lines in Figure 4.  To 

develop one’s intuition, imagine that the parcel carriers are initially operating in the absence of 

Differentiating with respect to m yields the following FONC for the optimal coordinated delivery 

rate for the parcel carriers:

(45)
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Solving the above, we see that the optimal monopoly FPS rate is given by mM = 2cF – b. 

 Turning to the case with effective competition from the Post (m > a > b), the expected 
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Differentiating with respect to m yields the following FONC for the optimal coordinated delivery 
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(45)  
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𝑖𝑖𝑖𝑖

𝜕𝜕𝜕𝜕𝑎𝑎𝑎𝑎
= 𝑄𝑄𝑄𝑄𝐵𝐵𝐵𝐵2�[(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)+(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)]2−2(𝑎𝑎𝑎𝑎−𝑐𝑐𝑐𝑐𝐹𝐹𝐹𝐹)[(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)+(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)]�

4[(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)+(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)]4
= 𝑄𝑄𝑄𝑄𝐵𝐵𝐵𝐵2[2𝑐𝑐𝑐𝑐𝐹𝐹𝐹𝐹−𝑎𝑎𝑎𝑎+𝑎𝑎𝑎𝑎−2𝑏𝑏𝑏𝑏]

4(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)3
= 0 

Solving the above, we see that the optimal FPS/UX rate in the competitive range depends upon 

the level of the Post rate and is given by mi = a + 2(cF – b).  

Finally, consider the joint profits of FPS and UX when the Post sets its rates below the 

variable cost of Congo van operation: i.e., a < b.  In that case joint profits are given by: 
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Differentiating with respect to m yields the FONC used to determine the optimal coordinated 

rate with low access pricing by the Post: 

(47)  
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2(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)4
= 𝑄𝑄𝑄𝑄𝐵𝐵𝐵𝐵2[2𝑐𝑐𝑐𝑐𝐹𝐹𝐹𝐹−𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏]

2(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)3
= 0 

Solving yields the result that ml = 2cF – b. 

It is now possible to use the above analyses to construct a Best Response relationship 

for the parcel carriers, mR(a).  This specifies the joint profit maximizing parcel rate given any 

rate, a, charged by the Post.  This relationship is depicted by the solid green lines in Figure 4.  To 

develop one’s intuition, imagine that the parcel carriers are initially operating in the absence of 

Solving the above, we see that the optimal FPS/UX rate in the competitive range depends upon 

the level of the Post rate and is given by mi = a + 2(cF – b). 

Finally, consider the joint profits of FPS and UX when the Post sets its rates below the 

variable cost of Congo van operation: i.e., a < b. In that case joint profits are given by:

(46)
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Solving the above, we see that the optimal monopoly FPS rate is given by mM = 2cF – b. 

 Turning to the case with effective competition from the Post (m > a > b), the expected 

joint profits of FPS and UX are given by 

(44)  𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐹𝐹𝐹𝐹/𝑈𝑈𝑈𝑈
𝑖𝑖𝑖𝑖 = (𝑚𝑚𝑚𝑚− 𝑐𝑐𝑐𝑐𝐹𝐹𝐹𝐹)𝑈𝑈𝑈𝑈[𝑧𝑧𝑧𝑧∗(𝑚𝑚𝑚𝑚,𝑎𝑎𝑎𝑎)] = (𝑚𝑚𝑚𝑚 − 𝑐𝑐𝑐𝑐𝐹𝐹𝐹𝐹)[1 − 𝑧𝑧𝑧𝑧∗(𝑚𝑚𝑚𝑚)]2 = 𝑄𝑄𝑄𝑄𝐵𝐵𝐵𝐵2(𝑎𝑎𝑎𝑎−𝑐𝑐𝑐𝑐𝐹𝐹𝐹𝐹)

2[(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)+(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)]2
 

Differentiating with respect to m yields the following FONC for the optimal coordinated delivery 

rate for the parcel carriers: 

(45)  
𝜕𝜕𝜕𝜕𝐸𝐸𝐸𝐸𝜋𝜋𝜋𝜋𝐹𝐹𝐹𝐹/𝑈𝑈𝑈𝑈

𝑖𝑖𝑖𝑖

𝜕𝜕𝜕𝜕𝑎𝑎𝑎𝑎
= 𝑄𝑄𝑄𝑄𝐵𝐵𝐵𝐵2�[(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)+(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)]2−2(𝑎𝑎𝑎𝑎−𝑐𝑐𝑐𝑐𝐹𝐹𝐹𝐹)[(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)+(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)]�

4[(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)+(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)]4
= 𝑄𝑄𝑄𝑄𝐵𝐵𝐵𝐵2[2𝑐𝑐𝑐𝑐𝐹𝐹𝐹𝐹−𝑎𝑎𝑎𝑎+𝑎𝑎𝑎𝑎−2𝑏𝑏𝑏𝑏]

4(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)3
= 0 

Solving the above, we see that the optimal FPS/UX rate in the competitive range depends upon 

the level of the Post rate and is given by mi = a + 2(cF – b).  

Finally, consider the joint profits of FPS and UX when the Post sets its rates below the 

variable cost of Congo van operation: i.e., a < b.  In that case joint profits are given by: 

(46)  𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐹𝐹𝐹𝐹/𝑈𝑈𝑈𝑈
𝑙𝑙𝑙𝑙 = (𝑚𝑚𝑚𝑚− 𝑐𝑐𝑐𝑐𝐹𝐹𝐹𝐹)𝑈𝑈𝑈𝑈𝑙𝑙𝑙𝑙[𝑧𝑧𝑧𝑧𝑙𝑙𝑙𝑙(𝑚𝑚𝑚𝑚)] = (𝑚𝑚𝑚𝑚− 𝑐𝑐𝑐𝑐𝐹𝐹𝐹𝐹)[1 − 𝑧𝑧𝑧𝑧𝑙𝑙𝑙𝑙(𝑚𝑚𝑚𝑚)]2 = 𝑄𝑄𝑄𝑄𝐵𝐵𝐵𝐵2(𝑎𝑎𝑎𝑎−𝑐𝑐𝑐𝑐𝐹𝐹𝐹𝐹)

2(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)2
  

Differentiating with respect to m yields the FONC used to determine the optimal coordinated 

rate with low access pricing by the Post: 

(47)  
𝜕𝜕𝜕𝜕𝐸𝐸𝐸𝐸𝜋𝜋𝜋𝜋𝐹𝐹𝐹𝐹/𝑈𝑈𝑈𝑈

𝑙𝑙𝑙𝑙

𝜕𝜕𝜕𝜕𝑎𝑎𝑎𝑎
= 𝑄𝑄𝑄𝑄𝐵𝐵𝐵𝐵2�(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)2−2(𝑎𝑎𝑎𝑎−𝑐𝑐𝑐𝑐𝐹𝐹𝐹𝐹)(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)�

2(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)4
= 𝑄𝑄𝑄𝑄𝐵𝐵𝐵𝐵2[2𝑐𝑐𝑐𝑐𝐹𝐹𝐹𝐹−𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏]

2(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)3
= 0 

Solving yields the result that ml = 2cF – b. 

It is now possible to use the above analyses to construct a Best Response relationship 

for the parcel carriers, mR(a).  This specifies the joint profit maximizing parcel rate given any 

rate, a, charged by the Post.  This relationship is depicted by the solid green lines in Figure 4.  To 

develop one’s intuition, imagine that the parcel carriers are initially operating in the absence of 

Differentiating with respect to m yields the FONC used to determine the optimal coordinated 

rate with low access pricing by the Post:

(47)
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Solving the above, we see that the optimal monopoly FPS rate is given by mM = 2cF – b. 

 Turning to the case with effective competition from the Post (m > a > b), the expected 

joint profits of FPS and UX are given by 

(44)  𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐹𝐹𝐹𝐹/𝑈𝑈𝑈𝑈
𝑖𝑖𝑖𝑖 = (𝑚𝑚𝑚𝑚− 𝑐𝑐𝑐𝑐𝐹𝐹𝐹𝐹)𝑈𝑈𝑈𝑈[𝑧𝑧𝑧𝑧∗(𝑚𝑚𝑚𝑚,𝑎𝑎𝑎𝑎)] = (𝑚𝑚𝑚𝑚 − 𝑐𝑐𝑐𝑐𝐹𝐹𝐹𝐹)[1 − 𝑧𝑧𝑧𝑧∗(𝑚𝑚𝑚𝑚)]2 = 𝑄𝑄𝑄𝑄𝐵𝐵𝐵𝐵2(𝑎𝑎𝑎𝑎−𝑐𝑐𝑐𝑐𝐹𝐹𝐹𝐹)

2[(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)+(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)]2
 

Differentiating with respect to m yields the following FONC for the optimal coordinated delivery 

rate for the parcel carriers: 

(45)  
𝜕𝜕𝜕𝜕𝐸𝐸𝐸𝐸𝜋𝜋𝜋𝜋𝐹𝐹𝐹𝐹/𝑈𝑈𝑈𝑈

𝑖𝑖𝑖𝑖

𝜕𝜕𝜕𝜕𝑎𝑎𝑎𝑎
= 𝑄𝑄𝑄𝑄𝐵𝐵𝐵𝐵2�[(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)+(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)]2−2(𝑎𝑎𝑎𝑎−𝑐𝑐𝑐𝑐𝐹𝐹𝐹𝐹)[(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)+(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)]�

4[(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)+(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)]4
= 𝑄𝑄𝑄𝑄𝐵𝐵𝐵𝐵2[2𝑐𝑐𝑐𝑐𝐹𝐹𝐹𝐹−𝑎𝑎𝑎𝑎+𝑎𝑎𝑎𝑎−2𝑏𝑏𝑏𝑏]

4(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)3
= 0 

Solving the above, we see that the optimal FPS/UX rate in the competitive range depends upon 

the level of the Post rate and is given by mi = a + 2(cF – b).  

Finally, consider the joint profits of FPS and UX when the Post sets its rates below the 

variable cost of Congo van operation: i.e., a < b.  In that case joint profits are given by: 

(46)  𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐹𝐹𝐹𝐹/𝑈𝑈𝑈𝑈
𝑙𝑙𝑙𝑙 = (𝑚𝑚𝑚𝑚− 𝑐𝑐𝑐𝑐𝐹𝐹𝐹𝐹)𝑈𝑈𝑈𝑈𝑙𝑙𝑙𝑙[𝑧𝑧𝑧𝑧𝑙𝑙𝑙𝑙(𝑚𝑚𝑚𝑚)] = (𝑚𝑚𝑚𝑚− 𝑐𝑐𝑐𝑐𝐹𝐹𝐹𝐹)[1 − 𝑧𝑧𝑧𝑧𝑙𝑙𝑙𝑙(𝑚𝑚𝑚𝑚)]2 = 𝑄𝑄𝑄𝑄𝐵𝐵𝐵𝐵2(𝑎𝑎𝑎𝑎−𝑐𝑐𝑐𝑐𝐹𝐹𝐹𝐹)

2(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)2
  

Differentiating with respect to m yields the FONC used to determine the optimal coordinated 

rate with low access pricing by the Post: 

(47)  
𝜕𝜕𝜕𝜕𝐸𝐸𝐸𝐸𝜋𝜋𝜋𝜋𝐹𝐹𝐹𝐹/𝑈𝑈𝑈𝑈

𝑙𝑙𝑙𝑙

𝜕𝜕𝜕𝜕𝑎𝑎𝑎𝑎
= 𝑄𝑄𝑄𝑄𝐵𝐵𝐵𝐵2�(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)2−2(𝑎𝑎𝑎𝑎−𝑐𝑐𝑐𝑐𝐹𝐹𝐹𝐹)(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)�

2(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)4
= 𝑄𝑄𝑄𝑄𝐵𝐵𝐵𝐵2[2𝑐𝑐𝑐𝑐𝐹𝐹𝐹𝐹−𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏]

2(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)3
= 0 

Solving yields the result that ml = 2cF – b. 

It is now possible to use the above analyses to construct a Best Response relationship 

for the parcel carriers, mR(a).  This specifies the joint profit maximizing parcel rate given any 

rate, a, charged by the Post.  This relationship is depicted by the solid green lines in Figure 4.  To 

develop one’s intuition, imagine that the parcel carriers are initially operating in the absence of 

Solving yields the result that ml = 2cF – b.

It is now possible to use the above analyses to construct a Best Response relationship for 

the parcel carriers, mR(a). This specifies the joint profit maximizing parcel rate given any rate, a, 

charged by the Post. This relationship is depicted by the solid green lines in Figure 4. To develop 

one’s intuition, imagine that the parcel carriers are initially operating in the absence of Post 
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competition. As was shown above, the coordinated, joint profit maximizing rate would then be 

mM = 2cF – b. This is indicated by the point M on the 45 degree line in the diagram. Now suppose 

that the Post were to begin to provide delivery service but charged a price a > m0. Clearly, the 

Post would not receive any business, and the joint profit maximizing strategy of the parcel 

carriers would be to continue to charge rate m0 in response to any Post rate a > m0. Thus, mR(a) 

is simply a horizontal line for all values of a lying to the right of the 45 degree line m = a in Figure 4.

Now, suppose that the Post adopted a strategy of (very, very) slightly undercutting the 

initial parcel carrier rate of m0. Three things would happen: (i) the Post would capture all of the 

morning arriving parcel volumes not delivered in Congo vans; (ii) the number of vans operated 

by Congo would remain unchanged (because the sum of morning and afternoon parcel rates 

was essentially unchanged); and (iii) the combined volume and profits of FPS and UX would be 

cut in half. To determine the parcel carriers’ Best Response to this strategy, notice that they can 

(nearly) recover their profits merely by very slightly undercutting the Post rate (which, in turn, 

was very slightly below m0). To see this, consider two values of m, one slightly above a and the 

other slightly below a. Congo’s optimal van coverage ratio will be essentially the same at the 

two prices. This means that the total amount of both morning and afternoon parcels not carried 

by Congo’s vans will also be the same. But, when m is slightly less than a, the morning parcels 

will go to FPS. If m is slightly greater than a, the morning parcels will be routed via the Post. This 

argument is valid for any price a < m0. As indicated in the diagram, this undercutting argument 

means that the parcel carriers’ Best Response follows the 45 degree line between M and D.
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FIGURE 5

What happens at point D, where the Post rate equals a*? Intuitively, the undercutting 

strategy ensures that the parcel carriers capture all of the parcels not carried by Congo’s vans. 

But, since the Post cannot deliver afternoon arriving parcels, the parcel carriers always have 

the option of conceding the morning volumes to the Post and raising the coordinated price 

substantially. They will still retain the afternoon parcel volumes not delivered by Congo’s vans. 

Equation (45) allows us to calculate the higher price that will yield the greatest profit: i.e., 

according to the formula mi(a) = a + 2(cF – b). The Post rate a* is determined by the condition 

that parcel carriers earn the same joint profits by (very, very) slightly undercutting a* at point 

D as they do by charging the substantially higher price mi(a*) = a* + 2(cF – b) at point F. More 
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precisely, this point of discontinuity in the parcel carriers’ Best Response relation is determined 

by the condition that:

(48)
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precisely, this point of discontinuity in the parcel carriers’ Best Response relation is determined 

by the condition that: 

(48)    𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐹𝐹𝐹𝐹/𝑈𝑈𝑈𝑈(𝑎𝑎𝑎𝑎∗, 𝑎𝑎𝑎𝑎∗) = 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐹𝐹𝐹𝐹/𝑈𝑈𝑈𝑈�𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖(𝑎𝑎𝑎𝑎∗),𝑎𝑎𝑎𝑎∗�    

Under the assumptions made for this example, it is straightforward to show23 that 

(49)     𝑎𝑎𝑎𝑎∗ = 𝑏𝑏𝑏𝑏 + (𝑐𝑐𝑐𝑐𝐹𝐹𝐹𝐹 − 𝑏𝑏𝑏𝑏)√2 

Thus, the Best Response relation of the parcel carriers “jumps up” discontinuously at a*.  

Expected joint profits are the same at point D, where the carriers charge a rate slightly less than 

a*, and at point F, where they collude on a rate  𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖(𝑎𝑎𝑎𝑎∗) = 𝑎𝑎𝑎𝑎∗ + 2(𝑐𝑐𝑐𝑐𝐹𝐹𝐹𝐹 − 𝑏𝑏𝑏𝑏) = 𝑏𝑏𝑏𝑏 + (𝑐𝑐𝑐𝑐𝐹𝐹𝐹𝐹 − 𝑏𝑏𝑏𝑏)(2 +

√2).  

From point F, the Best Response relation mR(a) continues to follow mi(a), the optimal 

response derived in equation (45) until point E is reached, where a = b.  To the left of this point, 

the Best Response of the parcel carriers is determined by ml(a) instead of mi(a).  The Best 

Response function, mR(a), becomes horizontal at the level 2cF – b = ml(b) = mi(b).    Intuitively, 

the Best Response of the parcel carriers to Post rates, mR(a), remains horizontal at 2cF – b until 

a = b at point E.  For higher values of a, the parcel carriers set the price that optimally exploits 

their joint afternoon parcel monopoly (given a), until point F is reached.  There, the parcel 

carriers are indifferent between colluding on the price an afternoon monopolist would choose 

and also capturing the morning market by slightly undercutting the Post price.  For Post rates to 

the right of point D, the parcel carriers strictly prefer to serve all of the parcel volumes 

                                                      
23 When f(t) =1, 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐹𝐹𝐹𝐹(𝑎𝑎𝑎𝑎∗, 𝑎𝑎𝑎𝑎∗) = 𝑄𝑄𝑄𝑄𝐵𝐵𝐵𝐵2{(𝑎𝑎𝑎𝑎∗ − 𝑐𝑐𝑐𝑐𝐹𝐹𝐹𝐹)/4(𝑎𝑎𝑎𝑎∗ − 𝑏𝑏𝑏𝑏)2} and 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐹𝐹𝐹𝐹(𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖(𝑎𝑎𝑎𝑎∗), 𝑎𝑎𝑎𝑎∗) = 𝑄𝑄𝑄𝑄𝐵𝐵𝐵𝐵2/8(𝑎𝑎𝑎𝑎∗ + 𝑐𝑐𝑐𝑐𝐹𝐹𝐹𝐹 − 2𝑏𝑏𝑏𝑏).  

Equating the two values and cancelling terms yields: 2(𝑎𝑎𝑎𝑎∗ − 𝑐𝑐𝑐𝑐𝐹𝐹𝐹𝐹)(𝑎𝑎𝑎𝑎∗ + 𝑐𝑐𝑐𝑐𝐹𝐹𝐹𝐹 − 2𝑏𝑏𝑏𝑏) = (𝑎𝑎𝑎𝑎∗ − 𝑏𝑏𝑏𝑏)2.  Solving this condition 

for a* yields the result in equation (49).  

Under the assumptions made for this example, it is straightforward to show23 that

(49)

Thus, the Best Response relation of the parcel carriers “jumps up” discontinuously at a*. 

Expected joint profits are the same at point D, where the carriers charge a rate slightly less than 

a*, and at point F, where they collude on a rate 
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precisely, this point of discontinuity in the parcel carriers’ Best Response relation is determined 

by the condition that: 

(48)    𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐹𝐹𝐹𝐹/𝑈𝑈𝑈𝑈(𝑎𝑎𝑎𝑎∗, 𝑎𝑎𝑎𝑎∗) = 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐹𝐹𝐹𝐹/𝑈𝑈𝑈𝑈�𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖(𝑎𝑎𝑎𝑎∗),𝑎𝑎𝑎𝑎∗�    

Under the assumptions made for this example, it is straightforward to show23 that 

(49)     𝑎𝑎𝑎𝑎∗ = 𝑏𝑏𝑏𝑏 + (𝑐𝑐𝑐𝑐𝐹𝐹𝐹𝐹 − 𝑏𝑏𝑏𝑏)√2 

Thus, the Best Response relation of the parcel carriers “jumps up” discontinuously at a*.  
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23 When f(t) =1, 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐹𝐹𝐹𝐹(𝑎𝑎𝑎𝑎∗, 𝑎𝑎𝑎𝑎∗) = 𝑄𝑄𝑄𝑄𝐵𝐵𝐵𝐵2{(𝑎𝑎𝑎𝑎∗ − 𝑐𝑐𝑐𝑐𝐹𝐹𝐹𝐹)/4(𝑎𝑎𝑎𝑎∗ − 𝑏𝑏𝑏𝑏)2} and 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐹𝐹𝐹𝐹(𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖(𝑎𝑎𝑎𝑎∗), 𝑎𝑎𝑎𝑎∗) = 𝑄𝑄𝑄𝑄𝐵𝐵𝐵𝐵2/8(𝑎𝑎𝑎𝑎∗ + 𝑐𝑐𝑐𝑐𝐹𝐹𝐹𝐹 − 2𝑏𝑏𝑏𝑏).  

Equating the two values and cancelling terms yields: 2(𝑎𝑎𝑎𝑎∗ − 𝑐𝑐𝑐𝑐𝐹𝐹𝐹𝐹)(𝑎𝑎𝑎𝑎∗ + 𝑐𝑐𝑐𝑐𝐹𝐹𝐹𝐹 − 2𝑏𝑏𝑏𝑏) = (𝑎𝑎𝑎𝑎∗ − 𝑏𝑏𝑏𝑏)2.  Solving this condition 

for a* yields the result in equation (49).  

. Solving this condition for 
a* yields the result in equation (49). 
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Congo by undercutting any rate set by the Post. However, if the Post where to set a rate higher 

than the monopoly rate of m = m0 = 2cF – b, the parcel carriers would have nothing to gain by 

slightly undercutting the increased rate. By maintaining its rate at m0, they capture both the 

afternoon and morning outsourced volumes at the profit maximizing rate. That is, the Best 

Response relation mR(a) is horizontal beyond a = 2cF – b. 

Having determined the coordinated Best Response of the parcel carriers for any chosen 

a, the problem facing the Post is to choose that a which maximizes its expected profits, taking 

into account the response of the parcel carriers. More precisely, its problem is to  
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Differentiating with respect to a yields: 
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(51)     𝜕𝜕𝜕𝜕𝐸𝐸𝐸𝐸𝜋𝜋𝜋𝜋𝑃𝑃𝑃𝑃(𝑎𝑎𝑎𝑎,𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅(𝑎𝑎𝑎𝑎))
𝜕𝜕𝜕𝜕𝑎𝑎𝑎𝑎

= 𝑄𝑄𝑄𝑄𝐵𝐵𝐵𝐵2[2𝑐𝑐𝑐𝑐−𝑎𝑎𝑎𝑎+𝑐𝑐𝑐𝑐𝐹𝐹𝐹𝐹−2𝑏𝑏𝑏𝑏]
8[𝑎𝑎𝑎𝑎+𝑐𝑐𝑐𝑐𝐹𝐹𝐹𝐹−2𝑏𝑏𝑏𝑏]3

 

Evaluating this derivative at the lowest relevant value: i.e., a = b, we see that 

(52)   �𝜕𝜕𝜕𝜕𝐸𝐸𝐸𝐸𝜋𝜋𝜋𝜋𝑃𝑃𝑃𝑃
𝜕𝜕𝜕𝜕𝑎𝑎𝑎𝑎

�
𝑎𝑎𝑎𝑎=𝑏𝑏𝑏𝑏

= 𝑄𝑄𝑄𝑄𝐵𝐵𝐵𝐵2[2𝑐𝑐𝑐𝑐−𝑎𝑎𝑎𝑎+𝑐𝑐𝑐𝑐𝐹𝐹𝐹𝐹−2𝑏𝑏𝑏𝑏]
8[𝑐𝑐𝑐𝑐𝐹𝐹𝐹𝐹−𝑏𝑏𝑏𝑏]3

= 𝑄𝑄𝑄𝑄𝐵𝐵𝐵𝐵2[(𝑐𝑐𝑐𝑐−𝑏𝑏𝑏𝑏)+(𝑐𝑐𝑐𝑐𝐹𝐹𝐹𝐹+𝑐𝑐𝑐𝑐−2𝑏𝑏𝑏𝑏]
8[𝑐𝑐𝑐𝑐𝐹𝐹𝐹𝐹−𝑏𝑏𝑏𝑏]3

< 0 

The strict inequality follows from the assumptions made at the beginning of the section that the 

variable costs of operating Congo’s vans are (i) greater than the Post’s marginal costs (b > c) and 

(ii) greater than the average of the marginal costs of the Post and parcel carriers.  Since the 

Post’s expected profits are a convex function of a, equation (52) establishes that, in the present 

example, increasing the Post’s rate above b will reduce the Post’s expected profits after taking 

into account the responses of the parcel carriers and Congo.  We have already established that 

the Post’s expected profits are higher at b than at any lower rate.  Therefore, the expected 

profit maximizing rate for the Post to set in the case of low Congo van costs is a = b - ε: i.e., a 

rate (very, very) slightly below Congo’s variable operating costs.  This will induce Congo to keep 

its vans off the street in the morning.  What will be the market outcome?  The parcel carriers 

Best Response to this rate is given by mR(b) = b + 2(cF – b) = 2cF – b.  

 The Stackelberg Equilibrium of the pricing rivalry between the parcel carriers and the 

Post occurs at point E, which maximizes the Post’s expected profits along the Best Response 

function of the parcel carriers.  There are several interesting features of this equilibrium 

outcome: 

(i)  The parcel rate charged by the parcel carriers remains the same as it was before the 

entry of the Post, at mM = mE = 2cF – b. 
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The strict inequality follows from the assumptions made at the beginning of the section 

that the variable costs of operating Congo’s vans are (i) greater than the Post’s marginal costs (b 

> c) and (ii) greater than the average of the marginal costs of the Post and parcel carriers. Since 

the Post’s expected profits are a convex function of a, equation (52) establishes that, in the 

present example, increasing the Post’s rate above b will reduce the Post’s expected profits after 

taking into account the responses of the parcel carriers and Congo. We have already established 

that the Post’s expected profits are higher at b than at any lower rate. Therefore, the expected 

profit maximizing rate for the Post to set in the case of low Congo van costs is a = b - e: i.e., a 

rate (very, very) slightly below Congo’s variable operating costs. This will induce Congo to keep 

its vans off the street in the morning. What will be the market outcome? The parcel carriers Best 

Response to this rate is given by mR(b) = b + 2(cF – b) = 2cF – b.	

The Stackelberg Equilibrium of the pricing rivalry between the parcel carriers and the 

Post occurs at point E, which maximizes the Post’s expected profits along the Best Response 

function of the parcel carriers. There are several interesting features of this equilibrium 

outcome:

(i)	 The parcel rate charged by the parcel carriers remains the same as it was before the 

entry of the Post, at mM = mE = 2cF – b.
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(ii)	 The equilibrium Post parcel rate, aE = b - e, is just low enough to induce Congo to 

idle its vans in the morning.

(iii)	 Congo’s optimal van coverage ratio decreases substantially as a result of Post entry. 

Because the equilibrium Post price is (very, very) slightly below b, Congo finds itself in 

Case 2 in the above analysis of its parcel dispatch problem: i.e., equation (22) and Figure 

1. Under a uniform distribution, this means that 1 – zl(mE) = B/(m – b) = B/2(cF – b). In 

contrast, we see from equation (37), that in the absence of Post competition, it was 

initially the case that (1 – z0(mM)) = B/2(m – b) = B/4(cF – b). Thus, as a result of Post 

competition, Congo chooses to reduce its van coverage ratio from zM = 1 – B/4(cF – b) to 

zE = 1 – B/2(cF – b), for a difference of Dz = zM – zE = B/4(cF – b). 

(iv)	 The Post takes over morning parcel deliveries, and its expected parcel volume grows 

from 0 to XE = Xl = Qt* = Q/2 (with a uniform arrival distribution).

(v)	 The expected total number of parcels delivered by the parcel carriers increases, 

despite the loss of all of their morning parcel deliveries to the Post. This is due to the 

decrease in Congo’s van coverage choice which, in turn, results from the complementary 

roles that the Post and parcel carrier delivery options play in Congo’s parcel dispatch 

problem. Using equation (40), we see that equilibrium expected volumes of the parcel 

carriers are given by UE = UI(zi) = B2Q/2(mE – b)2 = B2Q/8(cF – b)2. Using equation (38), it is 

straightforward to compare this volume to the initial FPS expected parcel carrier volume 

at point M, i.e., when the parcel carriers were charging the same price without Post 

competition: UM = U0(z0) = B2Q/4(mM – b)2 = B2Q/16(cF – b)2 = UE/2. 

(vi)	 Parcel carrier expected profits double as a result of Post delivery of morning arriving 

parcels. This follows immediately from the facts that: (i) the equilibrium price received 
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by the parcel carriers is the same as the coordinated monopoly price; and (iv) their 

expected volume of parcel deliveries doubled.

(vii)		 Introduction of unbundled parcel delivery by the Post provides it with a positive 

profit contribution. In the case a uniform parcel arrival distribution, this contribution 

equals (aE – c)Xi = (b – c)Q/2. 

(viii)	 Congo’s expected total delivery expenditures for any given parcel volume Q are 

reduced as a result of Post competition.24

(ix)	 This win – win – win result is due to the cost savings that occur as a result of getting 

many of Congo’s relatively inefficient vans off the road.

5.1 Case 2: Congo’s Vans Are (Relatively) “Expensive”

The foregoing analysis has dealt with the case of markets in which Congo’s van costs are 

so low relative to the unit costs of FPS and UX, that Congo finds it desirable to operate at least 

some vans both with and without an unbundled delivery option from the Post. In my view, this is 

the case of primary interest because it reflects what is currently happening in many markets. It is 

also of some interest to analyze last mile competition between the Post and FPS/UX in markets 

in which the outcome does not lead to Congo operating any of its own vans. It turns out that 

24	  In the uniform distribution case, these expected expenditures were initially given by:
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 In the equilibrium after the introduction of Post competition, expected Congo expenditures are: 

 𝐸𝐸𝐸𝐸𝑀𝑀𝑀𝑀𝐸𝐸𝐸𝐸 = 𝑄𝑄𝑄𝑄(𝑏𝑏𝑏𝑏 + 𝑧𝑧𝑧𝑧𝐸𝐸𝐸𝐸𝐵𝐵𝐵𝐵) + (𝑚𝑚𝑚𝑚𝐸𝐸𝐸𝐸 − 𝑏𝑏𝑏𝑏)𝑈𝑈𝑈𝑈𝐸𝐸𝐸𝐸 + (𝑎𝑎𝑎𝑎𝐸𝐸𝐸𝐸 − 𝑏𝑏𝑏𝑏)𝑋𝑋𝑋𝑋𝐸𝐸𝐸𝐸 = 𝑄𝑄𝑄𝑄 �𝑏𝑏𝑏𝑏 + 𝐵𝐵𝐵𝐵 �1 − 𝐵𝐵𝐵𝐵
4(𝑐𝑐𝑐𝑐𝐹𝐹𝐹𝐹−𝑏𝑏𝑏𝑏)

� − 𝐵𝐵𝐵𝐵2

4(𝑎𝑎𝑎𝑎0−𝑏𝑏𝑏𝑏)
� = 𝑄𝑄𝑄𝑄 �𝐵𝐵𝐵𝐵 + 𝑏𝑏𝑏𝑏 − 𝐵𝐵𝐵𝐵2

2(𝑐𝑐𝑐𝑐𝐹𝐹𝐹𝐹−𝑏𝑏𝑏𝑏)
�.  

The reduction in expected Congo expenditures is thus ECM – ECE = QB2/4(cF – b). 
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the analysis of this case is somewhat more complicated. Therefore, it is relegated to Appendix 3. 

Here, I merely state the revised conclusions.

In brief, the impact of unbundled Post entry is not as dramatic when Congo van costs 

are high or very high. This is because relatively inefficient Congo vans were not operating at the 

coordinated monopoly price. The effects of Post entry are as follows:

(i)	 The parcel carriers’ coordinated price increases from the original monopoly price of 

b + B/2.

(ii)	 The equilibrium price charged by the Post “mirrors” that of FPS/UX, keeping the sum 

of any equilibrium price pair constant at a + m = B + 2b = 2mN. 

(iii)	 Congo’s expected total expenditure for delivering its Q parcels does not change: it 

remains at Q[b + B/2]. However, Congo expenditures will now fluctuate on a daily basis, 

being relatively high when the proportion of afternoon arriving parcels is high, and 

conversely. In the initial situation, Congo’s realized costs were the same each day.

(iv)	 Total expected parcel delivery costs decrease by an amount equal to the expected 

number of morning arriving parcels times the Post morning delivery cost advantage: i.e., 

(Q/2)(cF – c).

(v)	 Given results (iii) and (iv), it is not surprising that the parcel carriers’ expected profits 

fall as a result of Post entry into the morning delivery market. 

6. Conclusion

The results of my analysis can be summarized quite succinctly. They all flow directly from 

my main finding:
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This model describes a market in which the Postal Service delivers parcels primarily on 

letter routes, so that parcels arriving in the afternoon are not delivered until the next 

day. Under these conditions, an interesting discovery is that the last mile parcel delivery 

services provided by the Post and its rivals to Congo are complements, not substitutes. In 

a very real sense, the parcel carriers and the Post are competing primarily with Congo’s 

self-delivery vans, not with each other!

This surprising discovery leads directly to the following results regarding the effects of 

competition and co-opetition for Congo’s business between FPS and the Post:

(i)	 If competitive behavior by FPS and UX deters Congo from operating vans, the effect 

of entry by the Post is to efficiently capture morning volumes. The rates paid by Congo 

remain unchanged and the Post gains profits. (The profits of UX and FPS are unaffected 

by assumption.)

(ii)	 If Congo finds it profitable to operate vans in spite of competitive behavior by FPS 

and UX, entry by the Post results in a win – win outcome. Morning parcels are efficiently 

shifted to the Post, Congo’s delivery costs go down, and the Post gains profits. (The 

profits of UX and FPS are unaffected by assumption.)

(iii)	 If, initially, Congo chooses to operate its own vans when FPS and UX coordinate 

on the monopoly price, Post unbundled entry results in a win – win – win outcome.25 

Congo’s costs go down while the profits of the parcel carriers and the Post go up. This 

surprising result occurs because competition between the Post and its parcel rivals 

lowers the morning delivery price and reduces the number of vans Congo chooses to 

operate.

25	  As mentioned earlier, I do not mean to suggest that FPS and UX are in violation of the antitrust statutes, but instead may be 
able to sustain high price outcomes via so called tacit collusion.
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(iv)	 (ii) If vans are so expensive that Congo does not operate any vans at the initial 

coordinated price, Post entry will be profitable and will reduce the profits of the parcel 

carriers, but it will not change the equilibrium rates paid by Congo. 
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Appendix 1: Analysis of Expected Parcel Demand Functions 

The effect of a change in the delivery rate of the parcel carriers on the expected parcel 

volume of the Post is obtained by differentiating equation (24) with respect to m, which yields:

(A1.1)	
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(A1.1) 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑎𝑎𝑎𝑎

= 𝑄𝑄𝑄𝑄 �− �𝑧𝑧𝑧𝑧∗ − 𝑧𝑧𝑧𝑧∗]𝑓𝑓𝑓𝑓(𝑧𝑧𝑧𝑧∗) 𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧
∗

𝜕𝜕𝜕𝜕𝑎𝑎𝑎𝑎
� − ∫ 𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧∗

𝜕𝜕𝜕𝜕𝑎𝑎𝑎𝑎
𝑓𝑓𝑓𝑓(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡1

𝑧𝑧𝑧𝑧∗ � = −𝑄𝑄𝑄𝑄 𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧∗

𝜕𝜕𝜕𝜕𝑎𝑎𝑎𝑎
[1 − 𝐹𝐹𝐹𝐹(𝑧𝑧𝑧𝑧∗)] < 0. 

The effect of a change in its own unbundled rate is obtained by differentiating equation (24) 

with respect to a, which yields 

 (A1.2) 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
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∗

𝜕𝜕𝜕𝜕𝑎𝑎𝑎𝑎
� − ∫ 𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧∗

𝜕𝜕𝜕𝜕𝑎𝑎𝑎𝑎
𝑓𝑓𝑓𝑓(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡1

𝑧𝑧𝑧𝑧∗ � = −𝑄𝑄𝑄𝑄 𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧∗

𝜕𝜕𝜕𝜕𝑎𝑎𝑎𝑎
[1 − 𝐹𝐹𝐹𝐹(𝑧𝑧𝑧𝑧∗)] < 0. 

Similarly, the effect of an increase in the Post access charge on the expected volumes of the 

parcel carriers is obtained by differentiating equation (28) with respect to a, which yields: 

(A1.3)   𝜕𝜕𝜕𝜕𝑈𝑈𝑈𝑈
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= 𝑄𝑄𝑄𝑄 ��𝑧𝑧𝑧𝑧∗ − 𝑧𝑧𝑧𝑧∗]𝑓𝑓𝑓𝑓(1 − 𝑧𝑧𝑧𝑧∗) 𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧
∗
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� − ∫ 𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧∗
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𝑓𝑓𝑓𝑓(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡1−𝑧𝑧𝑧𝑧∗

0 � = −𝑄𝑄𝑄𝑄 𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧∗

𝜕𝜕𝜕𝜕𝑎𝑎𝑎𝑎
𝐹𝐹𝐹𝐹(1 − 𝑧𝑧𝑧𝑧∗) < 0 

And, finally, the effect of an increase in the rate charged by the parcel carriers on their 

expected volume of parcels is given by: 

(A1.4)   𝜕𝜕𝜕𝜕𝑈𝑈𝑈𝑈
𝜕𝜕𝜕𝜕𝑎𝑎𝑎𝑎
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∗
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𝐹𝐹𝐹𝐹(1 − 𝑧𝑧𝑧𝑧∗) < 0 

The key comparative statics effects in equations (A1.1) – (A1.4) are that the increases in 

m and/or a increase Congo’s optimal choice of its van coverage ratio z*.  Intuitively, the fact 

that both effects are positive follows directly from examining Figure 1.  If either m or a increase, 

the vertical intercept of the MSi curve shifts upward.  Since its horizontal intercept is 

unchanged, the intersection of MSi with must move to the right, increasing z*. 

 More formally, the comparative statics effects of interest can be derived using the 

Implicit Function Theorem.  At an interior solution in which z* > 0, equation (19) holds with 

.

The effect of a change in its own unbundled rate is obtained by differentiating equation (24) with 

respect to a, which yields

(A1.2)	
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� − ∫ 𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧∗

𝜕𝜕𝜕𝜕𝑎𝑎𝑎𝑎
𝑓𝑓𝑓𝑓(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡1

𝑧𝑧𝑧𝑧∗ � = −𝑄𝑄𝑄𝑄 𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧∗

𝜕𝜕𝜕𝜕𝑎𝑎𝑎𝑎
[1 − 𝐹𝐹𝐹𝐹(𝑧𝑧𝑧𝑧∗)] < 0. 

The effect of a change in its own unbundled rate is obtained by differentiating equation (24) 

with respect to a, which yields 

 (A1.2) 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑎𝑎𝑎𝑎

= 𝑄𝑄𝑄𝑄 �− �𝑧𝑧𝑧𝑧∗ − 𝑧𝑧𝑧𝑧∗]𝑓𝑓𝑓𝑓(𝑧𝑧𝑧𝑧∗) 𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧
∗

𝜕𝜕𝜕𝜕𝑎𝑎𝑎𝑎
� − ∫ 𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧∗

𝜕𝜕𝜕𝜕𝑎𝑎𝑎𝑎
𝑓𝑓𝑓𝑓(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡1

𝑧𝑧𝑧𝑧∗ � = −𝑄𝑄𝑄𝑄 𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧∗

𝜕𝜕𝜕𝜕𝑎𝑎𝑎𝑎
[1 − 𝐹𝐹𝐹𝐹(𝑧𝑧𝑧𝑧∗)] < 0. 

Similarly, the effect of an increase in the Post access charge on the expected volumes of the 

parcel carriers is obtained by differentiating equation (28) with respect to a, which yields: 

(A1.3)   𝜕𝜕𝜕𝜕𝑈𝑈𝑈𝑈
𝜕𝜕𝜕𝜕𝑎𝑎𝑎𝑎

= 𝑄𝑄𝑄𝑄 ��𝑧𝑧𝑧𝑧∗ − 𝑧𝑧𝑧𝑧∗]𝑓𝑓𝑓𝑓(1 − 𝑧𝑧𝑧𝑧∗) 𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧
∗

𝜕𝜕𝜕𝜕𝑎𝑎𝑎𝑎
� − ∫ 𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧∗

𝜕𝜕𝜕𝜕𝑎𝑎𝑎𝑎
𝑓𝑓𝑓𝑓(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡1−𝑧𝑧𝑧𝑧∗

0 � = −𝑄𝑄𝑄𝑄 𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧∗

𝜕𝜕𝜕𝜕𝑎𝑎𝑎𝑎
𝐹𝐹𝐹𝐹(1 − 𝑧𝑧𝑧𝑧∗) < 0 

And, finally, the effect of an increase in the rate charged by the parcel carriers on their 

expected volume of parcels is given by: 

(A1.4)   𝜕𝜕𝜕𝜕𝑈𝑈𝑈𝑈
𝜕𝜕𝜕𝜕𝑎𝑎𝑎𝑎

= 𝑄𝑄𝑄𝑄 ��𝑧𝑧𝑧𝑧∗ − 𝑧𝑧𝑧𝑧∗]𝑓𝑓𝑓𝑓(1 − 𝑧𝑧𝑧𝑧∗) 𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧
∗

𝜕𝜕𝜕𝜕𝑎𝑎𝑎𝑎
� − ∫ 𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧∗

𝜕𝜕𝜕𝜕𝑎𝑎𝑎𝑎
𝑓𝑓𝑓𝑓(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡1−𝑧𝑧𝑧𝑧∗

0 � = −𝑄𝑄𝑄𝑄 𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧∗

𝜕𝜕𝜕𝜕𝑎𝑎𝑎𝑎
𝐹𝐹𝐹𝐹(1 − 𝑧𝑧𝑧𝑧∗) < 0 

The key comparative statics effects in equations (A1.1) – (A1.4) are that the increases in 

m and/or a increase Congo’s optimal choice of its van coverage ratio z*.  Intuitively, the fact 

that both effects are positive follows directly from examining Figure 1.  If either m or a increase, 

the vertical intercept of the MSi curve shifts upward.  Since its horizontal intercept is 

unchanged, the intersection of MSi with must move to the right, increasing z*. 

 More formally, the comparative statics effects of interest can be derived using the 

Implicit Function Theorem.  At an interior solution in which z* > 0, equation (19) holds with 

.

Similarly, the effect of an increase in the Post access charge on the expected volumes of the 

parcel carriers is obtained by differentiating equation (28) with respect to a, which yields:

(A1.3)	
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Appendix 1:  Analysis of Expected Parcel Demand Functions 

The effect of a change in the delivery rate of the parcel carriers on the expected parcel 

volume of the Post is obtained by differentiating equation (24) with respect to m, which yields: 

(A1.1) 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑎𝑎𝑎𝑎

= 𝑄𝑄𝑄𝑄 �− �𝑧𝑧𝑧𝑧∗ − 𝑧𝑧𝑧𝑧∗]𝑓𝑓𝑓𝑓(𝑧𝑧𝑧𝑧∗) 𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧
∗

𝜕𝜕𝜕𝜕𝑎𝑎𝑎𝑎
� − ∫ 𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧∗

𝜕𝜕𝜕𝜕𝑎𝑎𝑎𝑎
𝑓𝑓𝑓𝑓(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡1

𝑧𝑧𝑧𝑧∗ � = −𝑄𝑄𝑄𝑄 𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧∗

𝜕𝜕𝜕𝜕𝑎𝑎𝑎𝑎
[1 − 𝐹𝐹𝐹𝐹(𝑧𝑧𝑧𝑧∗)] < 0. 

The effect of a change in its own unbundled rate is obtained by differentiating equation (24) 

with respect to a, which yields 

 (A1.2) 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑎𝑎𝑎𝑎

= 𝑄𝑄𝑄𝑄 �− �𝑧𝑧𝑧𝑧∗ − 𝑧𝑧𝑧𝑧∗]𝑓𝑓𝑓𝑓(𝑧𝑧𝑧𝑧∗) 𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧
∗

𝜕𝜕𝜕𝜕𝑎𝑎𝑎𝑎
� − ∫ 𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧∗

𝜕𝜕𝜕𝜕𝑎𝑎𝑎𝑎
𝑓𝑓𝑓𝑓(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡1

𝑧𝑧𝑧𝑧∗ � = −𝑄𝑄𝑄𝑄 𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧∗

𝜕𝜕𝜕𝜕𝑎𝑎𝑎𝑎
[1 − 𝐹𝐹𝐹𝐹(𝑧𝑧𝑧𝑧∗)] < 0. 

Similarly, the effect of an increase in the Post access charge on the expected volumes of the 

parcel carriers is obtained by differentiating equation (28) with respect to a, which yields: 

(A1.3)   𝜕𝜕𝜕𝜕𝑈𝑈𝑈𝑈
𝜕𝜕𝜕𝜕𝑎𝑎𝑎𝑎

= 𝑄𝑄𝑄𝑄 ��𝑧𝑧𝑧𝑧∗ − 𝑧𝑧𝑧𝑧∗]𝑓𝑓𝑓𝑓(1 − 𝑧𝑧𝑧𝑧∗) 𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧
∗

𝜕𝜕𝜕𝜕𝑎𝑎𝑎𝑎
� − ∫ 𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧∗

𝜕𝜕𝜕𝜕𝑎𝑎𝑎𝑎
𝑓𝑓𝑓𝑓(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡1−𝑧𝑧𝑧𝑧∗

0 � = −𝑄𝑄𝑄𝑄 𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧∗

𝜕𝜕𝜕𝜕𝑎𝑎𝑎𝑎
𝐹𝐹𝐹𝐹(1 − 𝑧𝑧𝑧𝑧∗) < 0 

And, finally, the effect of an increase in the rate charged by the parcel carriers on their 

expected volume of parcels is given by: 

(A1.4)   𝜕𝜕𝜕𝜕𝑈𝑈𝑈𝑈
𝜕𝜕𝜕𝜕𝑎𝑎𝑎𝑎

= 𝑄𝑄𝑄𝑄 ��𝑧𝑧𝑧𝑧∗ − 𝑧𝑧𝑧𝑧∗]𝑓𝑓𝑓𝑓(1 − 𝑧𝑧𝑧𝑧∗) 𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧
∗

𝜕𝜕𝜕𝜕𝑎𝑎𝑎𝑎
� − ∫ 𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧∗

𝜕𝜕𝜕𝜕𝑎𝑎𝑎𝑎
𝑓𝑓𝑓𝑓(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡1−𝑧𝑧𝑧𝑧∗

0 � = −𝑄𝑄𝑄𝑄 𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧∗

𝜕𝜕𝜕𝜕𝑎𝑎𝑎𝑎
𝐹𝐹𝐹𝐹(1 − 𝑧𝑧𝑧𝑧∗) < 0 

The key comparative statics effects in equations (A1.1) – (A1.4) are that the increases in 

m and/or a increase Congo’s optimal choice of its van coverage ratio z*.  Intuitively, the fact 

that both effects are positive follows directly from examining Figure 1.  If either m or a increase, 

the vertical intercept of the MSi curve shifts upward.  Since its horizontal intercept is 

unchanged, the intersection of MSi with must move to the right, increasing z*. 

 More formally, the comparative statics effects of interest can be derived using the 

Implicit Function Theorem.  At an interior solution in which z* > 0, equation (19) holds with 

. 

And, finally, the effect of an increase in the rate charged by the parcel carriers on their expected 

volume of parcels is given by:

(A1.4)	
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Appendix 1:  Analysis of Expected Parcel Demand Functions 

The effect of a change in the delivery rate of the parcel carriers on the expected parcel 

volume of the Post is obtained by differentiating equation (24) with respect to m, which yields: 

(A1.1) 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑎𝑎𝑎𝑎

= 𝑄𝑄𝑄𝑄 �− �𝑧𝑧𝑧𝑧∗ − 𝑧𝑧𝑧𝑧∗]𝑓𝑓𝑓𝑓(𝑧𝑧𝑧𝑧∗) 𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧
∗

𝜕𝜕𝜕𝜕𝑎𝑎𝑎𝑎
� − ∫ 𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧∗

𝜕𝜕𝜕𝜕𝑎𝑎𝑎𝑎
𝑓𝑓𝑓𝑓(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡1

𝑧𝑧𝑧𝑧∗ � = −𝑄𝑄𝑄𝑄 𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧∗

𝜕𝜕𝜕𝜕𝑎𝑎𝑎𝑎
[1 − 𝐹𝐹𝐹𝐹(𝑧𝑧𝑧𝑧∗)] < 0. 

The effect of a change in its own unbundled rate is obtained by differentiating equation (24) 

with respect to a, which yields 

 (A1.2) 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑎𝑎𝑎𝑎

= 𝑄𝑄𝑄𝑄 �− �𝑧𝑧𝑧𝑧∗ − 𝑧𝑧𝑧𝑧∗]𝑓𝑓𝑓𝑓(𝑧𝑧𝑧𝑧∗) 𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧
∗

𝜕𝜕𝜕𝜕𝑎𝑎𝑎𝑎
� − ∫ 𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧∗

𝜕𝜕𝜕𝜕𝑎𝑎𝑎𝑎
𝑓𝑓𝑓𝑓(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡1

𝑧𝑧𝑧𝑧∗ � = −𝑄𝑄𝑄𝑄 𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧∗

𝜕𝜕𝜕𝜕𝑎𝑎𝑎𝑎
[1 − 𝐹𝐹𝐹𝐹(𝑧𝑧𝑧𝑧∗)] < 0. 

Similarly, the effect of an increase in the Post access charge on the expected volumes of the 

parcel carriers is obtained by differentiating equation (28) with respect to a, which yields: 

(A1.3)   𝜕𝜕𝜕𝜕𝑈𝑈𝑈𝑈
𝜕𝜕𝜕𝜕𝑎𝑎𝑎𝑎

= 𝑄𝑄𝑄𝑄 ��𝑧𝑧𝑧𝑧∗ − 𝑧𝑧𝑧𝑧∗]𝑓𝑓𝑓𝑓(1 − 𝑧𝑧𝑧𝑧∗) 𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧
∗

𝜕𝜕𝜕𝜕𝑎𝑎𝑎𝑎
� − ∫ 𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧∗

𝜕𝜕𝜕𝜕𝑎𝑎𝑎𝑎
𝑓𝑓𝑓𝑓(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡1−𝑧𝑧𝑧𝑧∗

0 � = −𝑄𝑄𝑄𝑄 𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧∗

𝜕𝜕𝜕𝜕𝑎𝑎𝑎𝑎
𝐹𝐹𝐹𝐹(1 − 𝑧𝑧𝑧𝑧∗) < 0 

And, finally, the effect of an increase in the rate charged by the parcel carriers on their 

expected volume of parcels is given by: 

(A1.4)   𝜕𝜕𝜕𝜕𝑈𝑈𝑈𝑈
𝜕𝜕𝜕𝜕𝑎𝑎𝑎𝑎

= 𝑄𝑄𝑄𝑄 ��𝑧𝑧𝑧𝑧∗ − 𝑧𝑧𝑧𝑧∗]𝑓𝑓𝑓𝑓(1 − 𝑧𝑧𝑧𝑧∗) 𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧
∗

𝜕𝜕𝜕𝜕𝑎𝑎𝑎𝑎
� − ∫ 𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧∗

𝜕𝜕𝜕𝜕𝑎𝑎𝑎𝑎
𝑓𝑓𝑓𝑓(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡1−𝑧𝑧𝑧𝑧∗

0 � = −𝑄𝑄𝑄𝑄 𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧∗

𝜕𝜕𝜕𝜕𝑎𝑎𝑎𝑎
𝐹𝐹𝐹𝐹(1 − 𝑧𝑧𝑧𝑧∗) < 0 

The key comparative statics effects in equations (A1.1) – (A1.4) are that the increases in 

m and/or a increase Congo’s optimal choice of its van coverage ratio z*.  Intuitively, the fact 

that both effects are positive follows directly from examining Figure 1.  If either m or a increase, 

the vertical intercept of the MSi curve shifts upward.  Since its horizontal intercept is 

unchanged, the intersection of MSi with must move to the right, increasing z*. 

 More formally, the comparative statics effects of interest can be derived using the 

Implicit Function Theorem.  At an interior solution in which z* > 0, equation (19) holds with 

.

The key comparative statics effects in equations (A1.1) – (A1.4) are that the increases in 

m and/or a increase Congo’s optimal choice of its van coverage ratio z*. Intuitively, the fact that 

both effects are positive follows directly from examining Figure 1. If either m or a increase, the 

vertical intercept of the MSi curve shifts upward. Since its horizontal intercept is unchanged, the 

intersection of MSi with must move to the right, increasing z*.

More formally, the comparative statics effects of interest can be derived using the 

Implicit Function Theorem. At an interior solution in which z* > 0, equation (19) holds with 
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equality and implicitly defines z* as a function of the parameters of the model. Differentiating 

that equation with respect to a yields:

(A1.5) 
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equality and implicitly defines z* as a function of the parameters of the model.  Differentiating 

that equation with respect to a yields: 

(A1.5)        𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧
∗

𝜕𝜕𝜕𝜕𝑎𝑎𝑎𝑎
= −

𝜕𝜕𝜕𝜕2𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑎𝑎𝑎𝑎
𝜕𝜕𝜕𝜕2𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕2

= − −[1−𝐹𝐹𝐹𝐹(𝑧𝑧𝑧𝑧∗)]
(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)𝑓𝑓𝑓𝑓(𝑧𝑧𝑧𝑧∗)+(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)𝑓𝑓𝑓𝑓(1−𝑧𝑧𝑧𝑧∗) = 1−𝐹𝐹𝐹𝐹(𝑧𝑧𝑧𝑧∗)

(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)𝑓𝑓𝑓𝑓(𝑧𝑧𝑧𝑧∗)+(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)𝑓𝑓𝑓𝑓(1−𝑧𝑧𝑧𝑧∗) > 0 

Similarly, differentiating with respect to m yields: 

(A1.6)       𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧
∗

𝜕𝜕𝜕𝜕𝑎𝑎𝑎𝑎
= −

𝜕𝜕𝜕𝜕2𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑎𝑎𝑎𝑎
𝜕𝜕𝜕𝜕2𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕2

= − −𝐹𝐹𝐹𝐹(1−𝑧𝑧𝑧𝑧∗)
(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)𝑓𝑓𝑓𝑓(𝑧𝑧𝑧𝑧∗)+(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)𝑓𝑓𝑓𝑓(1−𝑧𝑧𝑧𝑧∗) = 𝐹𝐹𝐹𝐹(1−𝑧𝑧𝑧𝑧∗)

(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)𝑓𝑓𝑓𝑓(𝑧𝑧𝑧𝑧∗)+(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)𝑓𝑓𝑓𝑓(1−𝑧𝑧𝑧𝑧∗) > 0 

Substituting these results into equations (A1.1) and (A1.3) yields the result that the cross 

derivatives of the expected demands for parcel services are equal: i.e., 

(A1.7)            𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑎𝑎𝑎𝑎

= −𝑄𝑄𝑄𝑄 𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧∗

𝜕𝜕𝜕𝜕𝑎𝑎𝑎𝑎
[1 − 𝐹𝐹𝐹𝐹(𝑧𝑧𝑧𝑧∗)] = −𝑄𝑄𝑄𝑄[1−𝐹𝐹𝐹𝐹(𝑧𝑧𝑧𝑧∗)]𝐹𝐹𝐹𝐹(1−𝑧𝑧𝑧𝑧∗)

(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)𝑓𝑓𝑓𝑓(𝑧𝑧𝑧𝑧∗)+(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)𝑓𝑓𝑓𝑓(1−𝑧𝑧𝑧𝑧∗) = −𝑄𝑄𝑄𝑄 𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧∗

𝜕𝜕𝜕𝜕𝑎𝑎𝑎𝑎
𝐹𝐹𝐹𝐹(1 − 𝑧𝑧𝑧𝑧∗) = 𝜕𝜕𝜕𝜕𝑈𝑈𝑈𝑈

𝜕𝜕𝜕𝜕𝑎𝑎𝑎𝑎
 

This (standard) symmetry result is due to the fact that both demands are derived from Congo’s 

cost minimizing behavior with respect to its van coverage ratio. 

 The relationship between the (derived) expected demands for parcel delivery by the 

Post and the parcel carriers becomes even more interesting if it is assumed that the probability 

distribution of Congo arrival times between the morning and the afternoon is symmetric:  i.e., 

f(x) = f(1 – x) for all x∈[0,1].  All such distributions are mirror images around their mean of ½, 

and their cumulative distribution functions have the property that [1 – F(x)] = F(1 – x) for all 

x∈[0,1].  Under this symmetry assumption, the Congo’s expected demands for Post and FPS 

parcel delivery are perfect complements as long as a < m! 

 To see this, note that under symmetry, the equality version of equation (16) becomes 

(A1.8)    𝜕𝜕𝜕𝜕𝐸𝐸𝐸𝐸𝜕𝜕𝜕𝜕
𝑖𝑖𝑖𝑖(𝑄𝑄𝑄𝑄,𝑧𝑧𝑧𝑧)
𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧

= 𝑄𝑄𝑄𝑄{𝐵𝐵𝐵𝐵 − [(𝑎𝑎𝑎𝑎 − 𝑏𝑏𝑏𝑏) + (𝑚𝑚𝑚𝑚 − 𝑏𝑏𝑏𝑏)][1 − 𝐹𝐹𝐹𝐹(𝑧𝑧𝑧𝑧)} = 0           

This can be rewritten to implicitly define z* as a function of model parameters: 

Similarly, differentiating with respect to m yields:

(A1.6)	
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equality and implicitly defines z* as a function of the parameters of the model.  Differentiating 

that equation with respect to a yields: 

(A1.5)        𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧
∗

𝜕𝜕𝜕𝜕𝑎𝑎𝑎𝑎
= −

𝜕𝜕𝜕𝜕2𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑎𝑎𝑎𝑎
𝜕𝜕𝜕𝜕2𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕2

= − −[1−𝐹𝐹𝐹𝐹(𝑧𝑧𝑧𝑧∗)]
(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)𝑓𝑓𝑓𝑓(𝑧𝑧𝑧𝑧∗)+(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)𝑓𝑓𝑓𝑓(1−𝑧𝑧𝑧𝑧∗) = 1−𝐹𝐹𝐹𝐹(𝑧𝑧𝑧𝑧∗)

(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)𝑓𝑓𝑓𝑓(𝑧𝑧𝑧𝑧∗)+(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)𝑓𝑓𝑓𝑓(1−𝑧𝑧𝑧𝑧∗) > 0 

Similarly, differentiating with respect to m yields: 

(A1.6)       𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧
∗

𝜕𝜕𝜕𝜕𝑎𝑎𝑎𝑎
= −

𝜕𝜕𝜕𝜕2𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑎𝑎𝑎𝑎
𝜕𝜕𝜕𝜕2𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕2

= − −𝐹𝐹𝐹𝐹(1−𝑧𝑧𝑧𝑧∗)
(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)𝑓𝑓𝑓𝑓(𝑧𝑧𝑧𝑧∗)+(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)𝑓𝑓𝑓𝑓(1−𝑧𝑧𝑧𝑧∗) = 𝐹𝐹𝐹𝐹(1−𝑧𝑧𝑧𝑧∗)

(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)𝑓𝑓𝑓𝑓(𝑧𝑧𝑧𝑧∗)+(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)𝑓𝑓𝑓𝑓(1−𝑧𝑧𝑧𝑧∗) > 0 

Substituting these results into equations (A1.1) and (A1.3) yields the result that the cross 

derivatives of the expected demands for parcel services are equal: i.e., 

(A1.7)            𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑎𝑎𝑎𝑎

= −𝑄𝑄𝑄𝑄 𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧∗

𝜕𝜕𝜕𝜕𝑎𝑎𝑎𝑎
[1 − 𝐹𝐹𝐹𝐹(𝑧𝑧𝑧𝑧∗)] = −𝑄𝑄𝑄𝑄[1−𝐹𝐹𝐹𝐹(𝑧𝑧𝑧𝑧∗)]𝐹𝐹𝐹𝐹(1−𝑧𝑧𝑧𝑧∗)

(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)𝑓𝑓𝑓𝑓(𝑧𝑧𝑧𝑧∗)+(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)𝑓𝑓𝑓𝑓(1−𝑧𝑧𝑧𝑧∗) = −𝑄𝑄𝑄𝑄 𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧∗

𝜕𝜕𝜕𝜕𝑎𝑎𝑎𝑎
𝐹𝐹𝐹𝐹(1 − 𝑧𝑧𝑧𝑧∗) = 𝜕𝜕𝜕𝜕𝑈𝑈𝑈𝑈

𝜕𝜕𝜕𝜕𝑎𝑎𝑎𝑎
 

This (standard) symmetry result is due to the fact that both demands are derived from Congo’s 

cost minimizing behavior with respect to its van coverage ratio. 

 The relationship between the (derived) expected demands for parcel delivery by the 

Post and the parcel carriers becomes even more interesting if it is assumed that the probability 

distribution of Congo arrival times between the morning and the afternoon is symmetric:  i.e., 

f(x) = f(1 – x) for all x∈[0,1].  All such distributions are mirror images around their mean of ½, 

and their cumulative distribution functions have the property that [1 – F(x)] = F(1 – x) for all 

x∈[0,1].  Under this symmetry assumption, the Congo’s expected demands for Post and FPS 

parcel delivery are perfect complements as long as a < m! 

 To see this, note that under symmetry, the equality version of equation (16) becomes 

(A1.8)    𝜕𝜕𝜕𝜕𝐸𝐸𝐸𝐸𝜕𝜕𝜕𝜕
𝑖𝑖𝑖𝑖(𝑄𝑄𝑄𝑄,𝑧𝑧𝑧𝑧)
𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧

= 𝑄𝑄𝑄𝑄{𝐵𝐵𝐵𝐵 − [(𝑎𝑎𝑎𝑎 − 𝑏𝑏𝑏𝑏) + (𝑚𝑚𝑚𝑚 − 𝑏𝑏𝑏𝑏)][1 − 𝐹𝐹𝐹𝐹(𝑧𝑧𝑧𝑧)} = 0           

This can be rewritten to implicitly define z* as a function of model parameters: 

Substituting these results into equations (A1.1) and (A1.3) yields the result that the cross 

derivatives of the expected demands for parcel services are equal: i.e.,

(A1.7) 
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equality and implicitly defines z* as a function of the parameters of the model.  Differentiating 

that equation with respect to a yields: 

(A1.5)        𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧
∗

𝜕𝜕𝜕𝜕𝑎𝑎𝑎𝑎
= −

𝜕𝜕𝜕𝜕2𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑎𝑎𝑎𝑎
𝜕𝜕𝜕𝜕2𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕2

= − −[1−𝐹𝐹𝐹𝐹(𝑧𝑧𝑧𝑧∗)]
(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)𝑓𝑓𝑓𝑓(𝑧𝑧𝑧𝑧∗)+(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)𝑓𝑓𝑓𝑓(1−𝑧𝑧𝑧𝑧∗) = 1−𝐹𝐹𝐹𝐹(𝑧𝑧𝑧𝑧∗)

(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)𝑓𝑓𝑓𝑓(𝑧𝑧𝑧𝑧∗)+(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)𝑓𝑓𝑓𝑓(1−𝑧𝑧𝑧𝑧∗) > 0 

Similarly, differentiating with respect to m yields: 

(A1.6)       𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧
∗

𝜕𝜕𝜕𝜕𝑎𝑎𝑎𝑎
= −

𝜕𝜕𝜕𝜕2𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑎𝑎𝑎𝑎
𝜕𝜕𝜕𝜕2𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕2

= − −𝐹𝐹𝐹𝐹(1−𝑧𝑧𝑧𝑧∗)
(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)𝑓𝑓𝑓𝑓(𝑧𝑧𝑧𝑧∗)+(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)𝑓𝑓𝑓𝑓(1−𝑧𝑧𝑧𝑧∗) = 𝐹𝐹𝐹𝐹(1−𝑧𝑧𝑧𝑧∗)

(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)𝑓𝑓𝑓𝑓(𝑧𝑧𝑧𝑧∗)+(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)𝑓𝑓𝑓𝑓(1−𝑧𝑧𝑧𝑧∗) > 0 

Substituting these results into equations (A1.1) and (A1.3) yields the result that the cross 

derivatives of the expected demands for parcel services are equal: i.e., 

(A1.7)            𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑎𝑎𝑎𝑎

= −𝑄𝑄𝑄𝑄 𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧∗

𝜕𝜕𝜕𝜕𝑎𝑎𝑎𝑎
[1 − 𝐹𝐹𝐹𝐹(𝑧𝑧𝑧𝑧∗)] = −𝑄𝑄𝑄𝑄[1−𝐹𝐹𝐹𝐹(𝑧𝑧𝑧𝑧∗)]𝐹𝐹𝐹𝐹(1−𝑧𝑧𝑧𝑧∗)

(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)𝑓𝑓𝑓𝑓(𝑧𝑧𝑧𝑧∗)+(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)𝑓𝑓𝑓𝑓(1−𝑧𝑧𝑧𝑧∗) = −𝑄𝑄𝑄𝑄 𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧∗

𝜕𝜕𝜕𝜕𝑎𝑎𝑎𝑎
𝐹𝐹𝐹𝐹(1 − 𝑧𝑧𝑧𝑧∗) = 𝜕𝜕𝜕𝜕𝑈𝑈𝑈𝑈

𝜕𝜕𝜕𝜕𝑎𝑎𝑎𝑎
 

This (standard) symmetry result is due to the fact that both demands are derived from Congo’s 

cost minimizing behavior with respect to its van coverage ratio. 

 The relationship between the (derived) expected demands for parcel delivery by the 

Post and the parcel carriers becomes even more interesting if it is assumed that the probability 

distribution of Congo arrival times between the morning and the afternoon is symmetric:  i.e., 

f(x) = f(1 – x) for all x∈[0,1].  All such distributions are mirror images around their mean of ½, 

and their cumulative distribution functions have the property that [1 – F(x)] = F(1 – x) for all 

x∈[0,1].  Under this symmetry assumption, the Congo’s expected demands for Post and FPS 

parcel delivery are perfect complements as long as a < m! 

 To see this, note that under symmetry, the equality version of equation (16) becomes 

(A1.8)    𝜕𝜕𝜕𝜕𝐸𝐸𝐸𝐸𝜕𝜕𝜕𝜕
𝑖𝑖𝑖𝑖(𝑄𝑄𝑄𝑄,𝑧𝑧𝑧𝑧)
𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧

= 𝑄𝑄𝑄𝑄{𝐵𝐵𝐵𝐵 − [(𝑎𝑎𝑎𝑎 − 𝑏𝑏𝑏𝑏) + (𝑚𝑚𝑚𝑚 − 𝑏𝑏𝑏𝑏)][1 − 𝐹𝐹𝐹𝐹(𝑧𝑧𝑧𝑧)} = 0           

This can be rewritten to implicitly define z* as a function of model parameters: 

This (standard) symmetry result is due to the fact that both demands are derived from Congo’s 

cost minimizing behavior with respect to its van coverage ratio.

The relationship between the (derived) expected demands for parcel delivery by the 

Post and the parcel carriers becomes even more interesting if it is assumed that the probability 

distribution of Congo arrival times between the morning and the afternoon is symmetric: i.e., 

f(x) = f(1 – x) for all x∈[0,1]. All such distributions are mirror images around their mean of ½, and 

their cumulative distribution functions have the property that [1 – F(x)] = F(1 – x) for all x∈[0,1]. 

Under this symmetry assumption, the Congo’s expected demands for Post and FPS parcel 

delivery are perfect complements as long as a < m!

To see this, note that under symmetry, the equality version of equation (16) becomes

(A1.8)	
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equality and implicitly defines z* as a function of the parameters of the model.  Differentiating 

that equation with respect to a yields: 

(A1.5)        𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧
∗

𝜕𝜕𝜕𝜕𝑎𝑎𝑎𝑎
= −

𝜕𝜕𝜕𝜕2𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑎𝑎𝑎𝑎
𝜕𝜕𝜕𝜕2𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕2

= − −[1−𝐹𝐹𝐹𝐹(𝑧𝑧𝑧𝑧∗)]
(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)𝑓𝑓𝑓𝑓(𝑧𝑧𝑧𝑧∗)+(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)𝑓𝑓𝑓𝑓(1−𝑧𝑧𝑧𝑧∗) = 1−𝐹𝐹𝐹𝐹(𝑧𝑧𝑧𝑧∗)

(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)𝑓𝑓𝑓𝑓(𝑧𝑧𝑧𝑧∗)+(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)𝑓𝑓𝑓𝑓(1−𝑧𝑧𝑧𝑧∗) > 0 

Similarly, differentiating with respect to m yields: 

(A1.6)       𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧
∗

𝜕𝜕𝜕𝜕𝑎𝑎𝑎𝑎
= −

𝜕𝜕𝜕𝜕2𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑎𝑎𝑎𝑎
𝜕𝜕𝜕𝜕2𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕2

= − −𝐹𝐹𝐹𝐹(1−𝑧𝑧𝑧𝑧∗)
(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)𝑓𝑓𝑓𝑓(𝑧𝑧𝑧𝑧∗)+(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)𝑓𝑓𝑓𝑓(1−𝑧𝑧𝑧𝑧∗) = 𝐹𝐹𝐹𝐹(1−𝑧𝑧𝑧𝑧∗)

(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)𝑓𝑓𝑓𝑓(𝑧𝑧𝑧𝑧∗)+(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)𝑓𝑓𝑓𝑓(1−𝑧𝑧𝑧𝑧∗) > 0 

Substituting these results into equations (A1.1) and (A1.3) yields the result that the cross 

derivatives of the expected demands for parcel services are equal: i.e., 

(A1.7)            𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑎𝑎𝑎𝑎

= −𝑄𝑄𝑄𝑄 𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧∗

𝜕𝜕𝜕𝜕𝑎𝑎𝑎𝑎
[1 − 𝐹𝐹𝐹𝐹(𝑧𝑧𝑧𝑧∗)] = −𝑄𝑄𝑄𝑄[1−𝐹𝐹𝐹𝐹(𝑧𝑧𝑧𝑧∗)]𝐹𝐹𝐹𝐹(1−𝑧𝑧𝑧𝑧∗)

(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)𝑓𝑓𝑓𝑓(𝑧𝑧𝑧𝑧∗)+(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)𝑓𝑓𝑓𝑓(1−𝑧𝑧𝑧𝑧∗) = −𝑄𝑄𝑄𝑄 𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧∗

𝜕𝜕𝜕𝜕𝑎𝑎𝑎𝑎
𝐹𝐹𝐹𝐹(1 − 𝑧𝑧𝑧𝑧∗) = 𝜕𝜕𝜕𝜕𝑈𝑈𝑈𝑈

𝜕𝜕𝜕𝜕𝑎𝑎𝑎𝑎
 

This (standard) symmetry result is due to the fact that both demands are derived from Congo’s 

cost minimizing behavior with respect to its van coverage ratio. 

 The relationship between the (derived) expected demands for parcel delivery by the 

Post and the parcel carriers becomes even more interesting if it is assumed that the probability 

distribution of Congo arrival times between the morning and the afternoon is symmetric:  i.e., 

f(x) = f(1 – x) for all x∈[0,1].  All such distributions are mirror images around their mean of ½, 

and their cumulative distribution functions have the property that [1 – F(x)] = F(1 – x) for all 

x∈[0,1].  Under this symmetry assumption, the Congo’s expected demands for Post and FPS 

parcel delivery are perfect complements as long as a < m! 

 To see this, note that under symmetry, the equality version of equation (16) becomes 

(A1.8)    𝜕𝜕𝜕𝜕𝐸𝐸𝐸𝐸𝜕𝜕𝜕𝜕
𝑖𝑖𝑖𝑖(𝑄𝑄𝑄𝑄,𝑧𝑧𝑧𝑧)
𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧

= 𝑄𝑄𝑄𝑄{𝐵𝐵𝐵𝐵 − [(𝑎𝑎𝑎𝑎 − 𝑏𝑏𝑏𝑏) + (𝑚𝑚𝑚𝑚 − 𝑏𝑏𝑏𝑏)][1 − 𝐹𝐹𝐹𝐹(𝑧𝑧𝑧𝑧)} = 0           

This can be rewritten to implicitly define z* as a function of model parameters: 
This can be rewritten to implicitly define z* as a function of model parameters:
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(A1.9)	

The import of equation (A1.9) is that, when the services are in the complementary range (a < 

m), Congo’s optimal van coverage level depends only upon the total a + m: i.e., the sum of the 

two delivery rates.

Even more remarkably, when the distribution is symmetric, the expected parcel volumes 

of FPS and the Post are exactly equal as long as a > c! To see this, define the new variable of 

integration r = 1 – t and dr = – dt. Substituting 1 – r for t, we can rewrite equation (28) as

(A1.10)	
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(A1.9) 𝐹𝐹𝐹𝐹[𝑧𝑧𝑧𝑧∗(𝑎𝑎𝑎𝑎,𝑚𝑚𝑚𝑚, 𝑏𝑏𝑏𝑏,𝐵𝐵𝐵𝐵)] = 1 − 𝐵𝐵𝐵𝐵
(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)+(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)   ⟹ 𝑧𝑧𝑧𝑧∗(𝑎𝑎𝑎𝑎,𝑚𝑚𝑚𝑚, 𝑏𝑏𝑏𝑏,𝐵𝐵𝐵𝐵) = 𝐹𝐹𝐹𝐹−1 �1 − 𝐵𝐵𝐵𝐵

(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)+(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)�         

The import of equation (A1.9) is that, when the services are in the complementary range (a < 

m), Congo’s optimal van coverage level depends only upon the total a + m: i.e., the sum of the 

two delivery rates. 

Even more remarkably, when the distribution is symmetric, the expected parcel volumes 

of FPS and the Post are exactly equal as long as a > c!  To see this, define the new variable of 

integration r = 1 – t and dr = – dt.  Substituting 1 – r for t, we can rewrite equation (28) as 

(A1.10)  𝑈𝑈𝑈𝑈(𝑧𝑧𝑧𝑧∗) = 𝑄𝑄𝑄𝑄 ∫ [(1 − 𝑡𝑡𝑡𝑡) − 𝑧𝑧𝑧𝑧∗]𝑓𝑓𝑓𝑓(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡1−𝑧𝑧𝑧𝑧∗

0 = 𝑄𝑄𝑄𝑄 ∫ [𝑟𝑟𝑟𝑟 − 𝑧𝑧𝑧𝑧∗]𝑓𝑓𝑓𝑓(1 − 𝑟𝑟𝑟𝑟)𝑑𝑑𝑑𝑑(1 − 𝑟𝑟𝑟𝑟)𝑧𝑧𝑧𝑧∗

1    

By symmetry of the density function, i.e., f(1 – r) = f(r), this becomes: 

(A1.11)  𝑈𝑈𝑈𝑈(𝑧𝑧𝑧𝑧∗) = 𝑄𝑄𝑄𝑄 ∫ [𝑟𝑟𝑟𝑟 − 𝑧𝑧𝑧𝑧∗]𝑓𝑓𝑓𝑓(1 − 𝑟𝑟𝑟𝑟)𝑑𝑑𝑑𝑑(1 − 𝑟𝑟𝑟𝑟)𝑧𝑧𝑧𝑧∗

1 = 𝑄𝑄𝑄𝑄 ∫ [𝑟𝑟𝑟𝑟 − 𝑧𝑧𝑧𝑧∗]𝑓𝑓𝑓𝑓(𝑟𝑟𝑟𝑟)𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟 = 𝑋𝑋𝑋𝑋(𝑧𝑧𝑧𝑧∗)1
𝑧𝑧𝑧𝑧∗  
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(A1.9) 𝐹𝐹𝐹𝐹[𝑧𝑧𝑧𝑧∗(𝑎𝑎𝑎𝑎,𝑚𝑚𝑚𝑚, 𝑏𝑏𝑏𝑏,𝐵𝐵𝐵𝐵)] = 1 − 𝐵𝐵𝐵𝐵
(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)+(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)   ⟹ 𝑧𝑧𝑧𝑧∗(𝑎𝑎𝑎𝑎,𝑚𝑚𝑚𝑚, 𝑏𝑏𝑏𝑏,𝐵𝐵𝐵𝐵) = 𝐹𝐹𝐹𝐹−1 �1 − 𝐵𝐵𝐵𝐵

(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)+(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)�         

The import of equation (A1.9) is that, when the services are in the complementary range (a < 

m), Congo’s optimal van coverage level depends only upon the total a + m: i.e., the sum of the 

two delivery rates. 

Even more remarkably, when the distribution is symmetric, the expected parcel volumes 

of FPS and the Post are exactly equal as long as a > c!  To see this, define the new variable of 

integration r = 1 – t and dr = – dt.  Substituting 1 – r for t, we can rewrite equation (28) as 

(A1.10)  𝑈𝑈𝑈𝑈(𝑧𝑧𝑧𝑧∗) = 𝑄𝑄𝑄𝑄 ∫ [(1 − 𝑡𝑡𝑡𝑡) − 𝑧𝑧𝑧𝑧∗]𝑓𝑓𝑓𝑓(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡1−𝑧𝑧𝑧𝑧∗

0 = 𝑄𝑄𝑄𝑄 ∫ [𝑟𝑟𝑟𝑟 − 𝑧𝑧𝑧𝑧∗]𝑓𝑓𝑓𝑓(1 − 𝑟𝑟𝑟𝑟)𝑑𝑑𝑑𝑑(1 − 𝑟𝑟𝑟𝑟)𝑧𝑧𝑧𝑧∗

1    

By symmetry of the density function, i.e., f(1 – r) = f(r), this becomes: 

(A1.11)  𝑈𝑈𝑈𝑈(𝑧𝑧𝑧𝑧∗) = 𝑄𝑄𝑄𝑄 ∫ [𝑟𝑟𝑟𝑟 − 𝑧𝑧𝑧𝑧∗]𝑓𝑓𝑓𝑓(1 − 𝑟𝑟𝑟𝑟)𝑑𝑑𝑑𝑑(1 − 𝑟𝑟𝑟𝑟)𝑧𝑧𝑧𝑧∗

1 = 𝑄𝑄𝑄𝑄 ∫ [𝑟𝑟𝑟𝑟 − 𝑧𝑧𝑧𝑧∗]𝑓𝑓𝑓𝑓(𝑟𝑟𝑟𝑟)𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟 = 𝑋𝑋𝑋𝑋(𝑧𝑧𝑧𝑧∗)1
𝑧𝑧𝑧𝑧∗  

  

By symmetry of the density function, i.e., f(1 – r) = f(r), this becomes:

(A1.11)	
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(A1.9) 𝐹𝐹𝐹𝐹[𝑧𝑧𝑧𝑧∗(𝑎𝑎𝑎𝑎,𝑚𝑚𝑚𝑚, 𝑏𝑏𝑏𝑏,𝐵𝐵𝐵𝐵)] = 1 − 𝐵𝐵𝐵𝐵
(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)+(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)   ⟹ 𝑧𝑧𝑧𝑧∗(𝑎𝑎𝑎𝑎,𝑚𝑚𝑚𝑚, 𝑏𝑏𝑏𝑏,𝐵𝐵𝐵𝐵) = 𝐹𝐹𝐹𝐹−1 �1 − 𝐵𝐵𝐵𝐵

(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)+(𝑎𝑎𝑎𝑎−𝑏𝑏𝑏𝑏)�         

The import of equation (A1.9) is that, when the services are in the complementary range (a < 

m), Congo’s optimal van coverage level depends only upon the total a + m: i.e., the sum of the 

two delivery rates. 

Even more remarkably, when the distribution is symmetric, the expected parcel volumes 

of FPS and the Post are exactly equal as long as a > c!  To see this, define the new variable of 

integration r = 1 – t and dr = – dt.  Substituting 1 – r for t, we can rewrite equation (28) as 

(A1.10)  𝑈𝑈𝑈𝑈(𝑧𝑧𝑧𝑧∗) = 𝑄𝑄𝑄𝑄 ∫ [(1 − 𝑡𝑡𝑡𝑡) − 𝑧𝑧𝑧𝑧∗]𝑓𝑓𝑓𝑓(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡1−𝑧𝑧𝑧𝑧∗

0 = 𝑄𝑄𝑄𝑄 ∫ [𝑟𝑟𝑟𝑟 − 𝑧𝑧𝑧𝑧∗]𝑓𝑓𝑓𝑓(1 − 𝑟𝑟𝑟𝑟)𝑑𝑑𝑑𝑑(1 − 𝑟𝑟𝑟𝑟)𝑧𝑧𝑧𝑧∗

1    

By symmetry of the density function, i.e., f(1 – r) = f(r), this becomes: 

(A1.11)  𝑈𝑈𝑈𝑈(𝑧𝑧𝑧𝑧∗) = 𝑄𝑄𝑄𝑄 ∫ [𝑟𝑟𝑟𝑟 − 𝑧𝑧𝑧𝑧∗]𝑓𝑓𝑓𝑓(1 − 𝑟𝑟𝑟𝑟)𝑑𝑑𝑑𝑑(1 − 𝑟𝑟𝑟𝑟)𝑧𝑧𝑧𝑧∗

1 = 𝑄𝑄𝑄𝑄 ∫ [𝑟𝑟𝑟𝑟 − 𝑧𝑧𝑧𝑧∗]𝑓𝑓𝑓𝑓(𝑟𝑟𝑟𝑟)𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟 = 𝑋𝑋𝑋𝑋(𝑧𝑧𝑧𝑧∗)1
𝑧𝑧𝑧𝑧∗  
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Appendix 2:  
Determining Parcel 
Carrier Delivery Costs

Appendix 2: Determining Parcel Carrier Delivery Costs

In principle, the parcel carriers face a problem quite similar to Congo’s in operating their 

network: i.e., they must arrange for transportation to deliver their parcel volumes while meeting 

their service standards. I will analyze a simplified version of this problem for an individual parcel 

carrier; e.g., FPS. I will discuss the solutions both with and without co-opetition with the Post. 

FPS is assumed to know with substantial accuracy QF, the total volume of parcels arriving each 

day. However it is uncertain about their arrival times over the day. Assume that the proportion, 

s, arrives in the morning, with the remainder arriving in the afternoon. The probability density 

function of s, the proportion arriving in the morning, is assumed to be given by g(s), with 

cumulative distribution function G(s). (For ease of exposition, it is assumed that the distributions 

of s and t are independent.) FPS purchases van capacity, KF, at a daily cost of BF which is available 

to deliver parcels in both the morning and afternoon. The variable cost of delivering each parcel, 

regardless of time of day, is assumed to be bF. 

To be sure of meeting its service standards without co-opetition, FPS must hire enough 

van capacity to deal with the possibility that all of its parcels will arrive in either the morning 

or afternoon: i.e., it must choose KF = QF, so that its unavoidable fixed costs are given by BFQF. 

Since the variable costs of delivery are assumed to be the same in each period, the total amount 

of FPS’s variable costs are independent of parcel arrival times. Therefore, its variable costs are 

given by bFQF. Total costs are thus always bF + BF per unit.

Now consider the case under co-opetition, in which the Post offers to deliver FPS’s 

morning arriving parcels at a delivery access price of aF < bF. (As above, it is assumed that the 

Post cannot meet the delivery standards associated with FPS’s afternoon arriving parcels.)  

In this situation, for any morning arrival proportion s, FPS’s realized morning variable costs  

are given by 
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this situation, for any morning arrival proportion s, FPS’s realized morning variable costs are 

given by 𝑉𝑉𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑈𝑈𝑈𝑈 = 𝑎𝑎𝑎𝑎𝑈𝑈𝑈𝑈𝑠𝑠𝑠𝑠𝑄𝑄𝑄𝑄𝐹𝐹𝐹𝐹 and its realized afternoon variable costs are given by 𝑉𝑉𝑉𝑉𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝐹𝐹𝐹𝐹 = 𝑏𝑏𝑏𝑏𝐹𝐹𝐹𝐹(1 −

𝑠𝑠𝑠𝑠)𝑄𝑄𝑄𝑄𝐹𝐹𝐹𝐹.  After adding its fixed costs of BFQF, the expression for FPS’s expected total costs is 

obtained by integrating over s: i.e., 

(A2.1)   𝐸𝐸𝐸𝐸𝑀𝑀𝑀𝑀𝐹𝐹𝐹𝐹 = 𝐵𝐵𝐵𝐵𝐹𝐹𝐹𝐹𝑄𝑄𝑄𝑄𝐹𝐹𝐹𝐹 + ∫ �𝑉𝑉𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐹𝐹𝐹𝐹 (𝑠𝑠𝑠𝑠) + 𝑉𝑉𝑉𝑉𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝐹𝐹𝐹𝐹 (𝑠𝑠𝑠𝑠)�𝑔𝑔𝑔𝑔(𝑠𝑠𝑠𝑠)𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠1
0  

           = 𝐵𝐵𝐵𝐵𝐹𝐹𝐹𝐹𝑄𝑄𝑄𝑄𝐹𝐹𝐹𝐹 + 𝑄𝑄𝑄𝑄𝐹𝐹𝐹𝐹 �[𝑎𝑎𝑎𝑎𝐹𝐹𝐹𝐹𝑠𝑠𝑠𝑠
1

0
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Appendix 3: Equilibrium When Congo Vans Are “Expensive”

In this case, it is assumed that the Basic Assumptions of Section 5.1 continue to hold, but 

I also assume that vans are so expensive that Congo chooses not to purchase them, even in the 

situation in which the parcel carriers charge a monopoly price. In terms of the present model, 

this means that the optimal price without Post competition is given by m0 = B/2 + b.26 In terms 

of Congo’s van coverage decision (see Figure 1), this is the highest price which would result in 

z0(m0) = 0. All Q parcels would be delivered by FPS/UX, regardless of whether they arrived in the 

morning or afternoon.

In order to analyze the effects of Post entry into (morning) parcel delivery in this case, 

it is useful to begin by determining the Best Response of the parcel carriers to any morning 

parcel delivery price a offered by the Post. This process is explained in Figure 6. The diagram is 

complicated because there are two types of responses that the parcel carriers can make to the 

introduction of a morning delivery offering of the Post at price a. One option is to simply charge 

a price less than that of the Post. In that case, Congo will choose not to patronize the Post at 

all, even in the morning. With identical delivery services, the best such price cut response is to 

merely undercut the Post rate very, very slightly.

26	 As shown above, when van costs are “low,” Congo van coverage is strictly positive and the profit maximizing monopoly FPS 
price is given by 
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+ 𝑏𝑏𝑏𝑏.  As can be seen from Figure 1, the 

greater is m0, the greater is z0.  Therefore, it must be the case that 𝑚𝑚𝑚𝑚ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖ℎ 𝐵𝐵𝐵𝐵
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0 .  Thus, the “high cost” van 

situation pertains when B/2 + b > 2cF – b: i.e., when B > 4(cF – b).  For lower values of B, the earlier analysis 

pertains.    

. In the current case, in which “high” van costs lead to zero van coverage, the profit 
maximizing FPS monopoly price is given by 
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The purple lines in Figure 6, mR(a) –, depict the results of this undercutting strategy. 

The logic behind this outcome is as follows. Suppose the Post attempts to enter the market by 

offering any rate greater than the monopoly rate of b + B/2. Clearly, the Post would gain no sales 

from any such offering and the Best Response by the parcel carriers to any Post rate a > B/2 + 

b would be to leave its monopoly rate unchanged. Thus, one part of the parcel carriers’ Best 

Response curve is just the horizontal line to the right point N.

Now suppose the Post quoted a morning delivery rate a somewhat lower than the 

parcel carriers’ rate, thereby capturing the entire morning parcel market. Rather than lose the 

morning market, FPS and UX could seek to recapture their morning parcel delivery market by 

lowering their rate until it is (very, very) slightly below that of the Post rate: i.e., by setting m = 

a - e. This “undercutting portion” of the parcel carriers’ Best Response curve would continue 

along the diagram’s 45 degree line to the left of point N until point L. Here, where m = cF, the 

parcel carriers will not follow further decreases by the Post since it is better to give up the 
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market rather than price below cost. Thus, for a < cF, the undercutting Best Response curve of 

the parcel carriers is the horizontal line to the left of point L. To summarize, the parcel carriers’ 

undercutting Best Response curve, mR(a) –, consist of three parts: (i) a horizontal segment from 

point cF on the vertical axis to point L on the m = a, 45 degree line; (ii) an increasing portion 

running along the 45 degree line from L to the monopoly point N; and (iii) an additional 

horizontal segment to the right of point N.

However, the fact that the Post cannot deliver afternoon arriving parcels means that 

the parcel carriers always have an alternative to the simple undercutting strategy. They can 

respond to a Post rate offering by charging a significantly higher price, thereby focusing their 

attention on afternoon deliveries not threatened by the Post. Indeed, this type of response was 

the focus of much of the analysis in the “low van cost” example discussed above. The upward 

sloping yellow line in Figure 5 replicates the similar green line in Figure 4. In this case, however, 

this upward sloping portion of mR(a) +, the FPS/UX high price Best Response curve, is truncated 

when it reaches point I on the a + m = B + 2b line because, for any values of a and m that sum 

to less than B + 2b, the optimal van coverage chosen by Congo is zero. Therefore, the total 

expected parcel demand for FPS, UX and the Post remains constant (at quantity Q) for all price 

combinations below the negatively sloped 45 degree line through point N. For price pairs to 

the right of the 45 degree line through the origin, FPS and UX deliver all the parcel volumes. 

For price pairs to the left of that line, where the Post offers a lower price, the expected parcel 

volumes of the Post and the parcel carriers (combined) are both Q/2.

The implication is that it would never be desirable for parcel carriers to charge a price 

that is both higher than that of the Post that results in a combined price below the expected 

demand maximizing combined price of B + 2b. Thus, the “high price” Best Response curve of 

TPS, mR(a)+, consists of two segments. For high Post rates (to the right of the a + m = B + 2b line), 

the Best Response of the parcel carriers is to respond with an even higher rate, along the solid 

yellow line through points I and J. This will induce Congo to invest in a positive amount of van 
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coverage, and the analysis is the same as in the low van cost case, above. This portion of the 

curve is upward sloping, so FPS will respond to decrease in a by decreasing m, and conversely. 

However, things become quite different should the Post rate be reduced below aI. The parcel 

carriers now have nothing to gain by reducing their price below mI because this will not result in 

any increase in their expected demand. All that would happen is that FPS and UX would receive 

less money from the sale of the same (expected) number of units. A better strategy is to respond 

to any reduction in a by a dollar for dollar matching increase in m! By keeping the sum a + m 

constant at B + 2b, the parcel carriers would increase their profits by selling the same number of 

expected units at a higher price. Thus, for Post prices lower than aI, the high price Best Response 

curve of FPS becomes the downward sloping solid yellow line to the left of I.

To finish the construction of the parcel carriers’ Best Response function, mR(a), is to 

compare, for every value of a, the profits realized by parcel carriers from charging mR(a) – to 

those obtained from charging mR(a) +. The outcome of this process is summarized by the heavy 

green line in Figure 6. As noted above, for Post prices greater than the initial monopoly price of 

m = B/2 + b, there is no need for the parcel carriers to change their price since the Post would 

not obtain any share of the market, even in the morning. Thus, mR(a) follows the horizontal line 

to the right of point N. However, for Post prices below B/2 + b, the parcel carriers will lose their 

morning market unless they undercut the Post rate. Initially, the most profitable response is for 

the parcel carriers to charge a price slightly below a, and its Best Response follows the 45 degree 

line to the left of point N. However, as the price that must be undercut decreases, the prospect 

of giving up the morning business and setting a higher price as an afternoon only coordinated 

monopoly becomes increasingly attractive increasingly attractive.

This turning point is reached when the Post’s rate falls to aJ. Here, parcel carrier profits 

from (very, very) slightly undercutting aJ (thereby capturing the entire market) are equal to those 

obtained by significantly raising price to point J on the yellow, high price Best Response curve. 

This substantial price increase will induce Congo to invest in a strictly positive amount of van 
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coverage because a + m is now greater than B + 2b. Thus, FPS, UX and the Post capture only the 

afternoon and morning volumes that exceed Congo’s van capacity. For further reductions in the 

Post rate, the parcel carriers respond by decreasing their price as in the low van cost example 

discussed above. This process continues until the Post price falls to aI. As explained earlier, it 

is never optimal for the parcel carriers to allow the sum of the two rates to fall below B + 2b. 

Therefore, their Best Response to Post prices below aI is to increase the price above mI, following 

the downward sloping portion of m(a) + to the left of point I.

To summarize, the heavy green parcel carriers’ Best Response function has four 

segments, with a “jump” in between. The optimal response of the parcel carriers to any Post 

price above B/2 + b is just the monopoly rate of B/2 + b, indicated by the horizontal line to the 

right of point N. For lower Post rates between N and K, FPS and UX do best by (very, very) slightly 

undercutting the Post rate in order to retain the morning delivery market. For Post rates below 

aJ, it is optimal for them to abandon the morning parcel delivery market to the Post. Instead, 

they respond by drastically increasing their rates in the afternoon, even though that induces 

Congo to purchase some vans. Further reductions in the Post rate are met by moving down the 

upward sloping portion of the mR(a) + curve from point J to point I. However, as explained above, 

Post rate reductions below aI are most profitably met by increases in m along the downward 

sloping portion of the a + m = B + 2b curve to the left of point I.

This is not the end of the story, however. The alert reader may have wonder how it was 

determined that the “jump point” in mR(a) lies to the right of point I rather than to the left: i.e., 

that aJ > aI. Indeed, it can be shown27 that if Congo van costs are “very high,” i.e., B > 8(cF – b), 

27	 All that is required is to show that parcel carrier profits from the undercutting and afternoon – only strategies  
are precisely equal at a Post rate of aI. Profits from the afternoon – only strategy at aI are given by 

 
56 

 

price above B/2 + b is just the monopoly rate of B/2 + b, indicated by the horizontal line to the 

right of point N.  For lower Post rates between N and K, FPS and UX do best by (very, very) 

slightly undercutting the Post rate in order to retain the morning delivery market.  For Post 

rates below aJ, it is optimal for them to abandon the morning parcel delivery market to the 

Post.  Instead, they respond by drastically increasing their rates in the afternoon, even though 

that induces Congo to purchase some vans.  Further reductions in the Post rate are met by 

moving down the upward sloping portion of the mR(a) + curve from point J to point I.  However, 

as explained above, Post rate reductions below aI are most profitably met by increases in m 

along the downward sloping portion of the a + m = B + 2b curve to the left of point I. 

This is not the end of the story, however.  The alert reader may have wonder how it was 

determined that the “jump point” in mR(a) lies to the right of point I rather than to the left: i.e., 

that aJ > aI.  Indeed, it can be shown27 that if Congo van costs are “very high,” i.e., B > 8(cF – b), 

the point at which it pays the parcel carriers to switch from a low price, undercutting strategy 

to a high price, afternoon – only strategy occurs at Post rates below aI.  This situation is 

illustrated in Figure A3 – 2.  There, a Post rate of aJ’ will cause the parcel carriers’ Best Response 

curve to jump up from point K’ to point J’.  The Best Response curve is somewhat simpler in this 

                                                      
27 All that is required is to show that parcel carrier profits from the undercutting and afternoon – only strategies 

are precisely equal at a Post rate of aI.  Profits from the afternoon – only strategy at aI are given by 𝐸𝐸𝐸𝐸𝐹𝐹𝐹𝐹𝐴𝐴𝐴𝐴 =

(𝑚𝑚𝑚𝑚𝐼𝐼𝐼𝐼 − 𝑐𝑐𝑐𝑐𝐹𝐹𝐹𝐹)𝑄𝑄𝑄𝑄/2 = [𝑎𝑎𝑎𝑎𝐼𝐼𝐼𝐼 + 𝑐𝑐𝑐𝑐𝐹𝐹𝐹𝐹 − 2𝑏𝑏𝑏𝑏]𝑄𝑄𝑄𝑄/2 and its profits from the undercutting strategy are given by 𝐸𝐸𝐸𝐸𝐹𝐹𝐹𝐹𝑈𝑈𝑈𝑈 = (𝑎𝑎𝑎𝑎𝐼𝐼𝐼𝐼 − 𝑐𝑐𝑐𝑐𝐹𝐹𝐹𝐹)𝑄𝑄𝑄𝑄.  

The former exceeds the latter when aI < 3cF – 2b.  But aI is just the x – axis value of the intersection of the two 

linear curves: a + m = B + 2b and mR(a+) = a + 2(cF – b).  Solving simultaneously yields the result that  𝑎𝑎𝑎𝑎𝐼𝐼𝐼𝐼 = 𝐵𝐵𝐵𝐵
2

+ 2𝑏𝑏𝑏𝑏 −

𝑐𝑐𝑐𝑐𝐹𝐹𝐹𝐹.  So the afternoon – only profits are greater than the undercutting profits at a Post price of aI when B < 8(cF – b).  

This means that the jump point must occur to the right of aI, as in Figure 6 .  Similarly, if the inequality is reversed, 

the jump point lies to the left of aI, as in Figure 6.  
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price above B/2 + b is just the monopoly rate of B/2 + b, indicated by the horizontal line to the 

right of point N.  For lower Post rates between N and K, FPS and UX do best by (very, very) 

slightly undercutting the Post rate in order to retain the morning delivery market.  For Post 

rates below aJ, it is optimal for them to abandon the morning parcel delivery market to the 

Post.  Instead, they respond by drastically increasing their rates in the afternoon, even though 

that induces Congo to purchase some vans.  Further reductions in the Post rate are met by 

moving down the upward sloping portion of the mR(a) + curve from point J to point I.  However, 

as explained above, Post rate reductions below aI are most profitably met by increases in m 

along the downward sloping portion of the a + m = B + 2b curve to the left of point I. 

This is not the end of the story, however.  The alert reader may have wonder how it was 
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the point at which it pays the parcel carriers to switch from a low price, undercutting strategy 

to a high price, afternoon – only strategy occurs at Post rates below aI.  This situation is 

illustrated in Figure A3 – 2.  There, a Post rate of aJ’ will cause the parcel carriers’ Best Response 

curve to jump up from point K’ to point J’.  The Best Response curve is somewhat simpler in this 
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+ 2𝑏𝑏𝑏𝑏 −

𝑐𝑐𝑐𝑐𝐹𝐹𝐹𝐹.  So the afternoon – only profits are greater than the undercutting profits at a Post price of aI when B < 8(cF – b).  
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price above B/2 + b is just the monopoly rate of B/2 + b, indicated by the horizontal line to the 

right of point N.  For lower Post rates between N and K, FPS and UX do best by (very, very) 

slightly undercutting the Post rate in order to retain the morning delivery market.  For Post 

rates below aJ, it is optimal for them to abandon the morning parcel delivery market to the 

Post.  Instead, they respond by drastically increasing their rates in the afternoon, even though 

that induces Congo to purchase some vans.  Further reductions in the Post rate are met by 

moving down the upward sloping portion of the mR(a) + curve from point J to point I.  However, 

as explained above, Post rate reductions below aI are most profitably met by increases in m 

along the downward sloping portion of the a + m = B + 2b curve to the left of point I. 

This is not the end of the story, however.  The alert reader may have wonder how it was 

determined that the “jump point” in mR(a) lies to the right of point I rather than to the left: i.e., 

that aJ > aI.  Indeed, it can be shown27 that if Congo van costs are “very high,” i.e., B > 8(cF – b), 

the point at which it pays the parcel carriers to switch from a low price, undercutting strategy 

to a high price, afternoon – only strategy occurs at Post rates below aI.  This situation is 

illustrated in Figure A3 – 2.  There, a Post rate of aJ’ will cause the parcel carriers’ Best Response 

curve to jump up from point K’ to point J’.  The Best Response curve is somewhat simpler in this 
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The former exceeds the latter when aI < 3cF – 2b.  But aI is just the x – axis value of the intersection of the two 

linear curves: a + m = B + 2b and mR(a+) = a + 2(cF – b).  Solving simultaneously yields the result that  𝑎𝑎𝑎𝑎𝐼𝐼𝐼𝐼 = 𝐵𝐵𝐵𝐵
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+ 2𝑏𝑏𝑏𝑏 −

𝑐𝑐𝑐𝑐𝐹𝐹𝐹𝐹.  So the afternoon – only profits are greater than the undercutting profits at a Post price of aI when B < 8(cF – b).  

This means that the jump point must occur to the right of aI, as in Figure 6 .  Similarly, if the inequality is reversed, 

the jump point lies to the left of aI, as in Figure 6.  
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price above B/2 + b is just the monopoly rate of B/2 + b, indicated by the horizontal line to the 

right of point N.  For lower Post rates between N and K, FPS and UX do best by (very, very) 

slightly undercutting the Post rate in order to retain the morning delivery market.  For Post 

rates below aJ, it is optimal for them to abandon the morning parcel delivery market to the 

Post.  Instead, they respond by drastically increasing their rates in the afternoon, even though 

that induces Congo to purchase some vans.  Further reductions in the Post rate are met by 

moving down the upward sloping portion of the mR(a) + curve from point J to point I.  However, 

as explained above, Post rate reductions below aI are most profitably met by increases in m 

along the downward sloping portion of the a + m = B + 2b curve to the left of point I. 

This is not the end of the story, however.  The alert reader may have wonder how it was 

determined that the “jump point” in mR(a) lies to the right of point I rather than to the left: i.e., 

that aJ > aI.  Indeed, it can be shown27 that if Congo van costs are “very high,” i.e., B > 8(cF – b), 

the point at which it pays the parcel carriers to switch from a low price, undercutting strategy 

to a high price, afternoon – only strategy occurs at Post rates below aI.  This situation is 

illustrated in Figure A3 – 2.  There, a Post rate of aJ’ will cause the parcel carriers’ Best Response 

curve to jump up from point K’ to point J’.  The Best Response curve is somewhat simpler in this 
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are precisely equal at a Post rate of aI.  Profits from the afternoon – only strategy at aI are given by 𝐸𝐸𝐸𝐸𝐹𝐹𝐹𝐹𝐴𝐴𝐴𝐴 =
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The former exceeds the latter when aI < 3cF – 2b.  But aI is just the x – axis value of the intersection of the two 

linear curves: a + m = B + 2b and mR(a+) = a + 2(cF – b).  Solving simultaneously yields the result that  𝑎𝑎𝑎𝑎𝐼𝐼𝐼𝐼 = 𝐵𝐵𝐵𝐵
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+ 2𝑏𝑏𝑏𝑏 −

𝑐𝑐𝑐𝑐𝐹𝐹𝐹𝐹.  So the afternoon – only profits are greater than the undercutting profits at a Post price of aI when B < 8(cF – b).  

This means that the jump point must occur to the right of aI, as in Figure 6 .  Similarly, if the inequality is reversed, 

the jump point lies to the left of aI, as in Figure 6.  

cF. So the afternoon – 
only profits are greater than the undercutting profits at a Post price of aI when B < 8(cF – b). This means that the jump point 
must occur to the right of aI, as in Figure 6. Similarly, if the inequality is reversed, the jump point lies to the left of aI, as in 
Figure 6. 
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the point at which it pays the parcel carriers to switch from a low price, undercutting strategy to 

a high price, afternoon – only strategy occurs at Post rates below aI. This situation is illustrated in 

Figure A3 – 2. There, a Post rate of aJ’ will cause the parcel carriers’ Best Response curve to jump 

up from point K’ to point J’. The Best Response curve is somewhat simpler in this case because 

there is no “up and down zigzag” as there is between points I and J in Figure A3 – 1.

Having determined the profit maximizing coordinated response of the parcel carriers to 

any rate offering of the Post, it is straightforward to determine the profit maximizing rate for the 

Post to set. It’s problem is to select the rate, aS, such that its profits are maximized by the price 

combination aS and mR(aS): i.e., 
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case because there is no “up and down zigzag” as there is between points I and J in Figure A3 – 

1. 

 

 Having determined the profit maximizing coordinated response of the parcel carriers to 

any rate offering of the Post, it is straightforward to determine the profit maximizing rate for 

the Post to set.  It’s problem is to select the rate, aS, such that its profits are maximized by the 

price combination aS and mR(aS): i.e., 𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆 = argmax
𝑎𝑎𝑎𝑎

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑃𝑃𝑃𝑃(𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆,𝑚𝑚𝑚𝑚𝑅𝑅𝑅𝑅(𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆)).  We can eliminate rates 

that are to the right of point N or are between point N and points K or K’.  As we have seen, 

those values of a lead to an undercutting response by the parcel carriers, resulting in zero 

volumes and zero profits for the Post.  In addition, we can eliminate those rates along the 

. We can eliminate rates that are 

to the right of point N or are between point N and points K or K’. As we have seen, those values 

of a lead to an undercutting response by the parcel carriers, resulting in zero volumes and zero 

Play to Win: Competition in Last-Mile Delivery 
Report Number RARC-WP-17-009 59



profits for the Post. In addition, we can eliminate those rates along the segment IJ in Figure 

A3 – 1. This is because Post profits decrease as one moves to the right along the curve mi(a) 

from point I. The argument is similar to that in Section 5.1, above. First, obtain the coordinates 

of point I by simultaneously solving the equations aI + mI = B + 2b and mI = aI + 2 (cF – b). Then 

evaluate the derivative in equation (51) at the solution point, aI = B/2 + 2b – cF, which yields:
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segment IJ in Figure A3 – 1.  This is because Post profits decrease as one moves to the right 

along the curve mi(a) from point I.  The argument is similar to that in Section 5.1, above.  First, 

obtain the coordinates of point I by simultaneously solving the equations aI + mI = B + 2b and mI 

= aI + 2 (cF – b).  Then evaluate the derivative in equation (51) at the solution point, aI = B/2 + 2b 

– cF, which yields: 
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8[𝑎𝑎𝑎𝑎𝐼𝐼𝐼𝐼+𝑐𝑐𝑐𝑐𝐹𝐹𝐹𝐹−2𝑏𝑏𝑏𝑏]3

= −𝑄𝑄𝑄𝑄𝐵𝐵𝐵𝐵2[4(2𝑏𝑏𝑏𝑏−𝑐𝑐𝑐𝑐−𝑐𝑐𝑐𝑐𝐹𝐹𝐹𝐹)+𝐵𝐵𝐵𝐵]
2𝐵𝐵𝐵𝐵3

< 0 

Thus Post profits are higher at point I than at any point between I and J. 

 This means that we need consider only those points on the m + a = B + 2b line between 

a = 0 and a = aJ, in the case of “high” Congo van costs, or a = aJ’, in the case of “very high” 

Congo van costs.  Because all points on the m + a = B + 2b line result in there being no Congo 

vans on the street, the Post’s profit maximizing rate is the highest value of a that avoids an 

undercutting response by the parcel carriers: i.e., either aI or aJ’.  
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a = 0 and a = aJ, in the case of “high” Congo van costs, or a = aJ’, in the case of “very high” Congo 

van costs. Because all points on the m + a = B + 2b line result in there being no Congo vans on 

the street, the Post’s profit maximizing rate is the highest value of a that avoids an undercutting 

response by the parcel carriers: i.e., either aI or aJ’. 
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Appendix 4: 
Management’s Comments
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Contact Information

Contact us via our Hotline and FOIA forms. 
Follow us on social networks.

Stay informed.

For media inquiries, contact Agapi Doulaveris
Telephone: 703-248-2286
adoulaveris@uspsoig.gov
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