Anticipating Climate Change Across the United States

Adrien Bilal Harvard University Esteban Rossi-Hansberg University of Chicago

May 2024

Introduction

- The planet is warming
 - Possibly severe economic impacts
 - Highly uneven across locations
- Many assessment frameworks do not account for
 - ▶ Extreme events with local incidence: heat waves, storms, floods...
 - Anticipation through forward-looking decisions: investment and migration

Question

• How do anticipation & adaptation shape climate change-induced heat wave & storm costs?

This paper

- Provide a dynamic spatial GE model for 3143 US counties with
 - Local extreme events and damages to capital
 - Anticipation through forward-looking investment and migration
 - ► Tractability using 'Master Equation' approach in Bilal (2023)
- Estimate damages from extreme events using 120 years of county-level weather data
 - ▶ Event study estimates of impact of extreme events on population, income and investment
 - Match in model to estimate structural damage functions
 - Storm = 17% capital depreciation, heat wave = 5% productivity + 7% amenity shock
- Social costs of climate change are much larger than previously thought
 - ▶ 5% present welfare loss (\$3,005/pc/year) in business-as-usual scenario
 - Damages to capital account for half
 - Anticipation increases mobility and migration reduces inequality

Literature

• Frameworks

- Spatial: , Desmet Rossi-Hansberg (2014) , Donaldson et al. (2016), Caliendo et al. (2019), Cruz Rossi-Hansberg (2021, 2022), Desmet et al. (2021), Nath (2021), Kleinman et al. (2021)
- ▶ Representative agent: Cai Longtzek (2019), Nordhaus Yang (1996)
- * Integrate capital acc., fwd-looking migration, investment, climate damages
- $\star\,$ Highly disaggregated environment with aggregate shocks

Measurement

- Capital depreciation: Tran Wilson (2022), Wilson (2017), Grenier et al. (2021), Geiger et al. (2016), Hsiang Jina (2014), Hsiang (2010), Elsner et al. (2008)
- ▶ Mortality: Carleton et al. (2021), Deschenes Greenstone (2011)
- Productivity & others: Carleton Greenstone (2021), Deryungina Hsiang (2017), Burke et al. (2015), Donaldson et al. (2016)
- * Integrate new measurement into quantitative GE model

Framework

Workers

- Two types of agents: workers and capitalists
- Counties *i*, continuous time $t \ge 0$
- Worker preferences

$$\rho V_{it} = \underbrace{\max_{c,h} u \left(\left(\frac{c}{1-\beta} \right)^{1-\beta} \left(\frac{h}{\beta} \right)^{\beta} \right) + A_{it}}_{\text{from aggregate changes}} + \underbrace{\mu \left\{ \mathbb{E}_{t} \left[\max_{j} V_{jt} - \tau_{ij} + \varepsilon_{jt} \right] - V_{it} \right\}}_{\text{continuation value}}$$
s.t. $c + r_{jt} h = w_{it}$

► No savings

Capitalists

• Immobile, risk-neutral, solve

$$\rho \mathcal{P}_{it}(K, b) = \max_{I,C} \underbrace{C}_{K,it} K - c_i(I/K)K + \mathcal{T}_{it} - C \underbrace{C}_{I,C} \underbrace{C}_{K,it} K - c_i(I/K)K + \mathcal{T}_{it} - C \underbrace{C}_{I,C} \underbrace{C}_{K,it} K - c_i(I/K)K + \mathcal{T}_{it} - C \underbrace{C}_{I,C} \underbrace{C}_{K,it} K - c_i(I/K)K + \mathcal{T}_{it} - C \underbrace{C}_{I,C} \underbrace{C}_{K,it} K - c_i(I/K)K + \mathcal{T}_{it} - C \underbrace{C}_{I,C} \underbrace{C}_{K,it} K - c_i(I/K)K + \mathcal{T}_{it} - C \underbrace{C}_{I,C} \underbrace{C}_{K,it} K - c_i(I/K)K + \mathcal{T}_{it} - C \underbrace{C}_{I,C} \underbrace{C}_{K,it} K - c_i(I/K)K + \mathcal{T}_{it} - C \underbrace{C}_{I,C} \underbrace{C}_{K,it} K - c_i(I/K)K + \mathcal{T}_{it} - C \underbrace{C}_{K,it} \underbrace{C}_{K,it} K - c_i(I/K)K + \mathcal{T}_{it} - C \underbrace{C}_{K,it} \underbrace{C}_{K,it} K - c_i(I/K)K + \mathcal{T}_{it} - C \underbrace{C}_{K,it} \underbrace{C}_{K,it} K - c_i(I/K)K + \mathcal{T}_{it} - C \underbrace{C}_{K,it} \underbrace{C}_{K,it} K - c_i(I/K)K + \mathcal{T}_{it} - C \underbrace{C}_{K,it} \underbrace{C}_{K,it} K - c_i(I/K)K + \mathcal{T}_{it} - C \underbrace{C}_{K,it} \underbrace{C}_{K,it} K - c_i(I/K)K + \mathcal{T}_{it} - C \underbrace{C}_{K,it} \underbrace{C}_{K,it} K - c_i(I/K)K + \mathcal{T}_{it} - C \underbrace{C}_{K,it} \underbrace{C}_{K,it} K - c_i(I/K)K + \mathcal{T}_{it} - C \underbrace{C}_{K,it} \underbrace{C}_{K,it} K - c_i(I/K)K + \mathcal{T}_{it} - C \underbrace{C}_{K,it} \underbrace{C}_{K,it} K - c_i(I/K)K + \mathcal{T}_{it} - C \underbrace{C}_{K,it} \underbrace{C}_{K,it} K - c_i(I/K)K + \mathcal{T}_{it} - C \underbrace{C}_{K,it} \underbrace{C}_{K,it} K - c_i(I/K)K + \mathcal{T}_{it} - C \underbrace{C}_{K,it} \underbrace{C}_{K,it} K - c_i(I/K)K + \mathcal{T}_{it} - C \underbrace{C}_{K,it} \underbrace{C}_{K,it} K - c_i(I/K)K + \mathcal{T}_{it} - C \underbrace{C}_{K,it} \underbrace{C}_{K,it} K - c_i(I/K)K + \mathcal{T}_{it} - C \underbrace{C}_{K,it} \underbrace{C}_{K,it} K - c_i(I/K)K + \mathcal{T}_{it} - C \underbrace{C}_{K,it} \underbrace{C}_{K,it} K - c_i(I/K)K + \mathcal{T}_{it} - C \underbrace{C}_{K,it} \underbrace{C}_{K,it} K - c_i(I/K)K + \mathcal{T}_{it} - C \underbrace{C}_{K,it} K - c_i(I/K)K + C \underbrace{C}_{K,it} K - c_i(I/K)K + C \underbrace{C}_{K,it} K$$

- Access to national bond market to fund local investment
- State-dependent depreciation rate δ_{it}
- > Proceeds \mathcal{T}_{it} from claims to national mutual fund that owns land

Production

• Capital stock in location *i*:

• Labor N_{it} in location i:

Labor
$$N_{it} \longrightarrow \begin{cases} Production \ labor \ N_{it}^P \\ Building \ construction \ labor \ N_{it}^B \end{cases}$$

Buildings

$$B_{it} = L_i^{\omega} (N_{it}^B)^{\varpi} K_{it}^{1-\omega-\varpi}$$

• Final goods

$$Y_{it} = \mathbf{Z}_{it} S^{\alpha}_{it} (N^P_{it})^{1-\alpha}$$

Climate damages

- Global mean temperature: $T_t = T^P + T_t^D$
 - Add natural climate variability in paper (aggregate, stochastic shocks)
 - ► Take global temperature path as exogenous since focus on US damages
- Fundamentals depend on global temperature, with the form

$$\delta_{it} = \delta_i^P + \delta_{i1} T_t^D$$

- ▶ Similar expression for *Z_{it}*, *A_{it}*
- Without loss given our perturbation approach
- Equivalent to nonlinear damages in local temperature
- **Damage functions** = slopes δ_{i1} for capital
 - Similar for productivity and amenities

Solution method

Solution method

- GE environment with
 - Aggregate shocks T_t^D
 - Distribution $\{N_{it}, K_{it}\}_{i}$ is a state variable: 6284 indiv. states + 6284 prices (wages, rental rates)
- Traditional solution methods hard to use in this context
- Use the 'Master Equation' approach developed in Bilal (2023)
 - State-space analytic perturbation around steady-state
 - Builds on mean-field game literature
 - Solve for transitional dynamics in seconds
- 1st order in this paper
 - ▶ Cost of climate risk (2nd order perturbation) coming soon in future work

Estimation

Data

- Economic data: 1960-2019
 - Investment: 5-year Census of manufactures
 - Wages and population from Census and BEA
- Historical climate data: Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) 1900-2019
 - Near-surface temperature, wind-speed and precipitation
 - Daily averages and within-day extremes
 - ► Convert from 0.5 degree × 0.5 degree cell to annual county-level

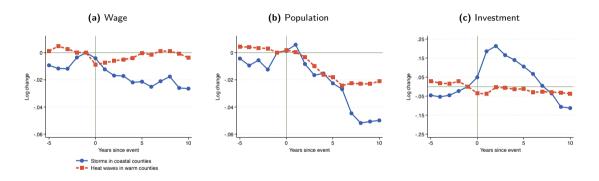
Distributed lag specification

$$y_{it} = \alpha_i + \beta_t + \delta_{S(i),t} + \sum_{h=-5}^{10} \gamma_h D_{i,t-h} + \gamma_{6-} \bar{D}_{i,t,6-} + \gamma_{10+} \bar{D}_{i,t,10+} + \varepsilon_{it}$$

- *i* = counties and *t* = years
- $y_{it} = \log$ wage, population, investment
- $\delta_{S(i),t}$ = state, weather decile, population and income deciles all interacted with year
- $D_{i,t-h}$ = event indicator h years ago
 - Storms = windspeed or precipitation above local threshold
 - Heat waves = prolonged heat above local threshold
- $\gamma_h = \text{impact of an event } h \text{ periods ago on outcomes today}$

Details

Storms and heat waves damage the economy



- Storms = capital depreciation shock in coastal counties only (no effect in inland counties)
- Heat waves = productivity + amenity shock in warm counties only (no effect in cold counties)

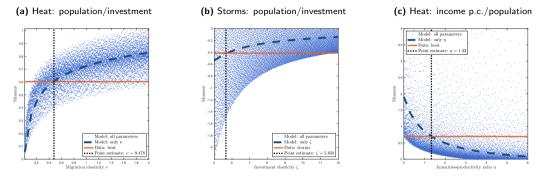
Damage functions: Strategy

- 1. Estimate steady-state parameters by inverting model
- 2. Match event study results in model to estimate
 - Migration and investment elasticities
 - Magnitude of shocks in model associated with a single event
- 3. Estimate effect of global temperature on local frequency of events
- ⇒ Combine single event damages with frequency changes to construct damage functions

Damage functions 1/3: Inversion of steady-state fundamentals

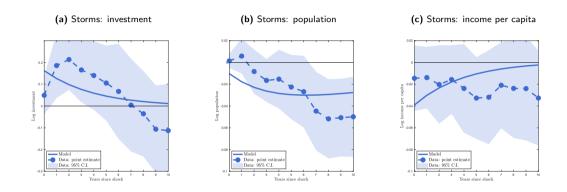
- Inversion: $\exists!$ vector $\{Z_i, A_i, L_i, c_i\}_i$ and symmetric matrix $\{\tau_{ij}\}_{ij}...$
- ... given elasticities and data $\{I_i, w_i, N_i, L_i\}_i, \{m_{ij}\}_{ij}$
- Standard inversion procedure in quantitative spatial frameworks

Damage functions 2/3: Migration and investment elasticities



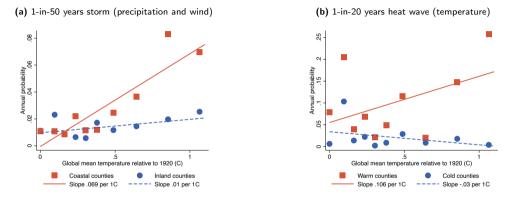
- · Relative IRFs independent from shock size in model: use relative CIRs 10 years out
- Simulate IRFs for 10,000 parameter vectors (u,ζ,η) \in [0,2] imes [5,12] imes [0,6]
 - For amenity-productivity and capital depreciation shock
 - Invert model, solve for steady-state, solve for FAME and IRFs
 - ▶ $\eta = \frac{\mathbf{a}_{i1}}{\chi_{i1}} = \text{relative amenity/productivity impact of heat}$

Damage functions 2'/3: Magnitude of storm shocks



- 1-in-50-years storm in coastal counties = 17% capital depreciation shock
- 1-in-20-years heat wave in warm counties = 5% productivity & 7% amenity shock

Damage functions 3/3: Warming makes extreme events more frequent



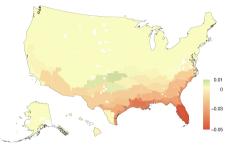
- Leverage 120 years of weather data
- Damage functions interact change in frequency with damages from event, e.g.:

$$\delta_{it} = \delta_i^{P} + \delta_{i1} T_t^{D} , \quad \delta_{i1} = \underbrace{p_{i1}^{\text{storm}}}_{\text{Freq. change with } T_t} \underbrace{17\% \cdot 1\{i \text{ coastal}\}}_{\text{single event}}$$

NOAA storm counts

Damage functions

(a) Change in annual capital depreciation δ_{i1} (+1°C)

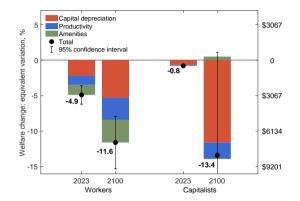


(b) Change in log productivity z_{i1} (+1°C)

• 26% of capital and 27% of population in counties where depreciation rises

Results

Climate damages are twice as large as previously thought



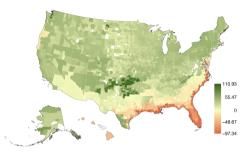
- Gradual 3°C warming from 2023 to 2100 as in BAU
- 45-88% of damages due to capital depreciation
- Damages are linear in global temperature: rescale results for any scenario

Neoclassical growth model calculation

Details

Welfare losses are most severe in Southeastern US

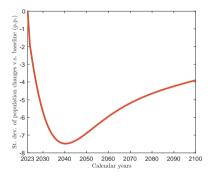
(a) 2023 worker welfare relative to aggregate (-4.9%)



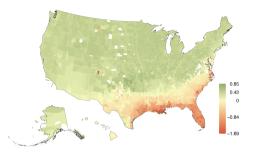
(b) Population change by 2100 (%)

- Workers in Louisiana, Texas, Florida, South Carolina lose over 10% (\$6,133/year)
- Florida loses half of its population by 2100

Mobility falls and inequality rises without anticipation



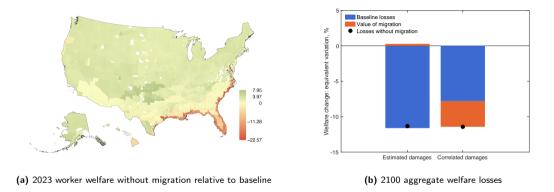
(a) Dispersion in population change relative to baseline



(b) Worker welfare in 2050 relative to baseline (p.p.)

- Agents now believe that future temperatures remain equal to time-t value
- Lack of mobility exacerbates climate damages for workers in exposed counties
- Capitalists benefit from lack of mobility through higher returns in exposed counties

Migration provides insurance in the cross-section only



- Welfare costs exceed 25% (\$15,333/year) on Atlantic coast without migration
- Aggregate benefits negligible in the US: climate damages \perp local valuations
 - ► Substantial aggregate benefits with artificial climate damages correlated to local valuations

Conclusion

Conclusion

- Quantitative dynamic spatial assessment model of the U.S. economy with 3,000+ counties
 - Forward-looking migration and capital investment decisions
- Estimate reduced-form and structural effect of storms and heat waves
 - Solve for counterfactuals in seconds
- Costly effects of climate change, largely due to capital
- Framework opens the door to
 - ▶ Cost of climate change risk: 2nd order perturbation (SAME, Bilal 2023)
 - Climate justice & inequality across worker groups
 - Integration with climate block & scale up to world economy

Thank you!

Appendix

State variables

- To understand method, simplify problem to simplify notation for now
 - Fixed capital in each location (no capitalist decision problem)
- State variables:
 - Fine t because deterministic rise in global mean temperature T_t^D
 - Distribution of workers across locations N_{it}
- Population distribution evolves according to

$$\frac{dN_{it}}{dt} = \mu\left(\sum_{k} \pi_{ji}(V_t)N_{jt} - N_{it}\right)$$

where

- $\pi_{ji}(V_t)$ are migration shares from j to i
- Depend on equilibrium values $V_t = (V_{1t}, ..., V_{lt})$

Back to main presentation

Master Equation: Step 1/3

- Write flow utility of workers as function of state variables
- Use static equilibrium conditions
- Obtain

$$\max_{c,h \text{ s.t. } c+r_{it}h=w_{it}} A_{it} + u\left(\left(\frac{c}{1-\beta}\right)^{1-\beta} \left(\frac{h}{\beta}\right)^{\beta}\right) \equiv \mathcal{U}_i(\mathcal{T}_t^D, \mathcal{N}_{it})$$

Master Equation: Step 2/3

- Express continuation value from aggregate changes in state space
- Use change of variables

$$V_{it} = V_{it}(N_t) \tag{(\star)}$$

where

- ▶ t subscript on V only captures dependence on deterministic temperature
- $N_t = (N_{1t}, ..., N_{lt})$ is population distribution
- Obtain

$$\mathbb{E}_{it}\left[\frac{dV_{it}}{dt}\right] = \underbrace{\frac{\partial V_{it}}{\partial t}}_{\text{change in } T_t^D} + \underbrace{\sum_{j} \frac{\partial V_{it}}{\partial N_j} \frac{\partial N_{jt}}{\partial t}}_{\substack{\text{change in } N_t:\\\text{chain rule on } (\star)}}$$

Master Equation: Step 3/3

• Use law of motion for population to relate change in N_t to equilibrium

$$\sum_{j} \frac{\partial V_{it}}{\partial N_{j}} \frac{\partial N_{jt}}{\partial t} = \sum_{j} \frac{\partial V_{it}}{\partial N_{j}} \mu \left(\sum_{k} \pi_{ji} (V_{t}) N_{jt} - N_{it} \right)$$

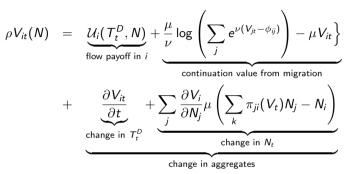
• Putting it all together, obtain Master Equation

ρ

$$V_{it} = \underbrace{\mathcal{U}_{i}(T_{t}^{D}, N)}_{\text{flow payoff in } i} + \underbrace{\frac{\mu}{\nu} \log \left(\sum_{j} e^{\nu(V_{jt} - \phi_{ij})} \right) - \mu V_{it}}_{\text{continuation value from migration}} + \underbrace{\frac{\partial V_{it}}{\partial t}}_{\text{change in } T_{t}^{D}} + \underbrace{\sum_{j} \frac{\partial V_{it}}{\partial N_{j}} \mu \left(\sum_{k} \pi_{ji}(V_{t}) N_{jt} - N_{it} \right)}_{\text{change in } N_{t}}$$

change in aggregates

The Master Equation



- State-space/recursive representation of equilibrium
- Single equation to be solved
- Introduced in Mean Field Games literature by Cardaliaguet et al. (2019)
- Bellman equation on space of population distributions $N = (N_1, ..., N_l)$: still hard to solve • Back to main presentation

Perturbations of the Master Equation

- To make progress, use analytic perturbation of the Master Equation
 - Suppose we have found a steady-state without aggregate shocks
 - \blacktriangleright When scale parameter ϵ is not too large, write to first order

$$V_{it}(z_1, N) = V_i^{SS} + \epsilon \left\{ \sum_j v_{ij} n_j + \Omega_{it}
ight\}$$

where

- $\begin{array}{l} \star \quad n_{j} = \frac{N_{j} N_{j}^{SS}}{\epsilon} \\ \star \quad v_{ij} = \frac{\partial V_{i}}{\partial N_{i}}(0, N^{SS}) \text{ is derivative around steady-state} \end{array}$
- Obtain First-order Approximation to the Master Equation
 - Substitute first-order perturbation into nonlinear Master Equation
 - Identify coefficients to get restrictions on v_{ij}, Ω_{it}
 - Just like linearizing the RBC model, just larger state space!
- Similar logic to second order, just more components

Back to main presentation

Deterministic FAME FAME for $v_{ij} \in \mathbb{R}^{l \times l}$ in matrix form

$$\rho \mathbf{v} = \mathbf{D} + \mathbf{M}\mathbf{v} + \mathbf{v}\mathbf{M}^* + \mathbf{v}\mathbf{G}\mathbf{v}$$

where

• D captures direct price impact of population changes

D is diagonal,
$$D_{ii} = \frac{\partial U_i}{\partial N_i} \Big|^{SS} = \xi (1 - \varpi) u'(C_i^{SS}) C_i^{SS} / N_i^{SS}$$

• Mv captures own migration response

$$M = \mu (m^{SS} - \mathrm{Id})$$

where m^{SS} is the matrix of steady-state migration shares

• vM* captures others' migration at steady-state decisions (GE direct)

 M^* is the transpose of M

• vGv captures others' migration responses (GE interaction)

$$G = \nu \mu \Big[\mathsf{diag}\big((m^{SS})^* N^{SS}\big) - (m^{SS})^* \mathsf{diag}\big(N^{SS}\big) m^{SS} \Big]$$

Back to main presentation

Properties of the FAME

FAME for $v_{ij} \in \mathbb{R}^{I \times I}$ in matrix form

 $\rho \mathbf{v} = D + M \mathbf{v} + \mathbf{v} M^* + \mathbf{v} G \mathbf{v}$

- Standard Bellman equation
- Block-recursive
 - v independent from Ω
 - ▶ No additional fixed point on distribution b/c embedded in Master Equation
- From infinite to finite dimension
 - ▶ Only need perturbation in N_j holding $N_k = N_k^{SS}$, $k \neq j$ fixed
- Explicit steady-state dependence of D, M, G

• Obtain similar FAMEs for temperature shocks

$$\rho \mathbf{v}_t^{\mathsf{T}} = \Psi T_t^D + \mathsf{M} \mathbf{v}_t^{\mathsf{T}} + \mathbf{v}^d \mathsf{P}^d \mathbf{v}_t^{\mathsf{T}} + \frac{\partial \mathbf{v}_t^{\mathsf{T}}}{\partial t}$$

- Even simpler because interaction takes determistic FAME \mathbf{v}^d as given
- Simply iterate backward over time t

Computation of the FAME FAME for $v_{ij} \in \mathbb{R}^{l \times l}$ in matrix form

$$0 = D + (M - \rho \mathsf{Id}) \mathbf{v} + \mathbf{v} (M^* + G \mathbf{v})$$

- Nonlinear Sylvester equation
- Standard Sylvester equation if G = 0, use standard routines
- Simple iterative algorithm: given $v^{(n)}$, solve for $v^{(n+1)}$

$$0 = D + (M - \rho \operatorname{Id}) \boldsymbol{v}^{(n+1)} + \boldsymbol{v}^{(n+1)} \left(M^* + G \boldsymbol{v}^{(n)} \right)$$

- Given $v^{(n)}$, becomes standard Sylvester equation in $v^{(n+1)}$
- Important to use last iteration $v^{(n)}$ as given in right part of interaction
- Because household $v^{(n+1)}$ takes as given others' valuations $v^{(n)}$

Law of motion

- · No fixed point on prices/distributions because embedded law of motion into HJB
- Given solution to FAME, obtain impulse responses directly

$$\frac{d\boldsymbol{n}_t}{dt} = (M^* + G\boldsymbol{v}^d)\boldsymbol{n}_t + G\boldsymbol{v}_t^T$$

- · Can also compute invariant distribution in stochastic steady-state
 - ▶ How far does economy wander from determinstic steady-state on average
- All derivations generalize to second order: it is the SAME
 - Working on it, for today only FAME

Treatment definition

- Use meteorological variables X_{it} in
 - (Storm) Maximum daily windspeed in the year
 - ▶ (Flood) Maximum daily precipitation in the year
 - \blacktriangleright (Heat) Fraction of days with temp. > p95 of national distrib. in 1900-1920
- Residualize to capture adaptation:

$$X_{it} = \alpha_i + \beta_t + Z_{it}$$

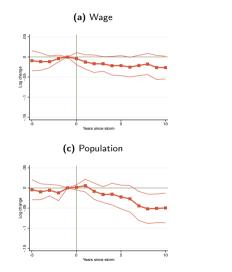
• Construct indicator of extreme value for Z_{it}

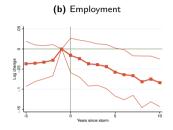
$$D_{it} = \mathbf{1}[Z_{it} \ge p(Z)]$$

where p(Z) denotes some percentile of Z_{it} across all *i* for $t \in [1900, 1920]$

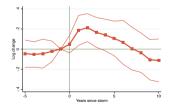
- ▶ 99th percentile for storms and floods
- ▶ 95th percentile for heat

Impact of 1-in-50-years storm in coastal counties

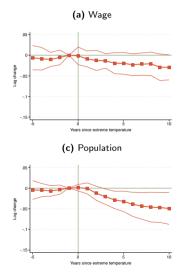


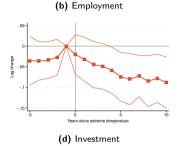


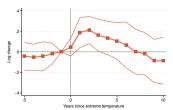
(d) Investment



Impact of 1-in-50-years storm in coastal counties, w/o Louisiana

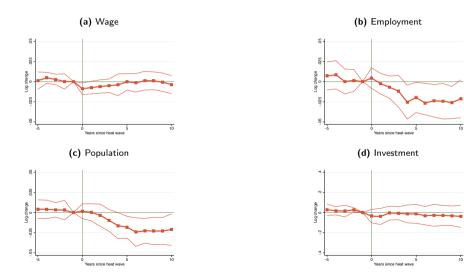




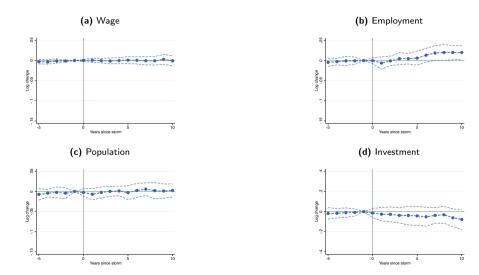


Back to main presentation

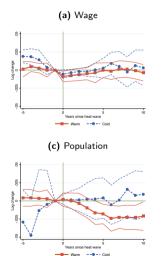
Impact of 1-in-20-years heat wave in warm counties



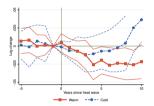
Impact of 1-in-50 years storm in inland counties



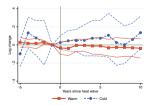
Impact of 1-in-20 years heat wave in warm and cold counties



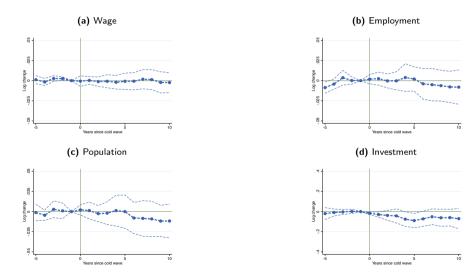
(b) Employment



(d) Investment



Impact of 1-in-20 years cold wave in cold counties

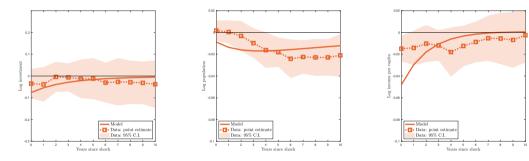


Size of shocks: Heat waves

(a) Heat: investment

(b) Heat: population

(c) Heat: wage



- 1-in-20-years heat wave in warm counties:
 - ▶ 5.1% negative productivity shock $\equiv \chi^{\text{heat,warm}}$
 - ▶ 6.8% negative amenity shock in warm locations $\equiv a^{\text{heat,warm}}$

Mechanisms

	Welfare				Allocations	
	Workers		Capitalists		Population	Capital
	2023	2100	2023	2100	2100	2100
Baseline						
Aggregate (%)	-4.9	-11.6	-0.8	-13.4		-31.8
St.dev. (p.p.)	2.4	4.2	5.6	46.4	40.8	45.9
Discount rate: Aggregate (%)						
5%	-3.4	-12.0	-0.5	-12.8		-32.0
2%	-6.2	-12.0	-0.6	-12.2		-33.8
1%	-8.5	-12.4	-0.6	-11.9		-34.7
By type of damages: Aggregate (%)						
Capital depreciation	-2.2	-5.3	-0.7	-11.6		-23.9
Temperature	-2.7	-6.3	-0.1	-1.8		-7.9
Productivity	-1.3	-3.1	-0.1	-2.3		-5.8
Amenities	-1.4	-3.2	0.0	0.5		-2.2

NOAA storm counts

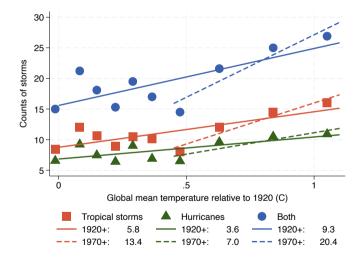


Figure: NOAA storm counts by global mean temperature

Neoclassical growth model calculation

• Consider the steady-state of the RBC model:

$$C + \delta K = K^{\alpha}$$

$$\alpha K^{\alpha - 1} = \delta + \beta^{-1}$$

Obtain

$$rac{C_{\delta}}{C} \hspace{.1in} = \hspace{.1in} rac{1}{\delta+rac{lphaeta^{-1}}{1-lpha}}+rac{1}{\delta+eta^{-1}}$$

• Using estimated damage functions, obtain 1 p.p. increase in δ in aggregate for $+3^{\circ}$ C

.

- ▶ 26% of capital exposed, 27% of population
- Using neoclassical growth formula with $\delta = 0.08, \alpha = 0.3, \beta = 0.95$, obtain

$$\frac{dC}{C} = 0.03,$$

similar to 0.05 in quantitative exercise by 2100.

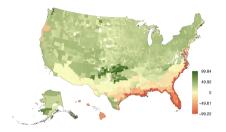
Back to main presentation

Mechanisms

	Welfare				Allocations	
	Workers		Capitalists		Population	Capital
	2023	2100	2023	2100	2100	2100
Baseline						
Aggregate (%)	-4.9	-11.6	-0.8	-13.4		-31.8
St.dev. (p.p.)	2.4	4.2	5.6	46.4	40.8	45.9
Discount rate: Aggregate (%)						
5%	-3.4	-12.0	-0.5	-12.8		-32.0
2%	-6.2	-12.0	-0.6	-12.2		-33.8
1%	-8.5	-12.4	-0.6	-11.9		-34.7
By type of damages: Aggregate (%)						
Capital depreciation	-2.2	-5.3	-0.7	-11.6		-23.9
Temperature	-2.7	-6.3	-0.1	-1.8		-7.9
Productivity	-1.3	-3.1	-0.1	-2.3		-5.8
Amenities	-1.4	-3.2	0.0	0.5		-2.2

Capitalists lose on the Southeastern coast

(a) 2023 capitalist welfare rel. to ag. (-0.8%)



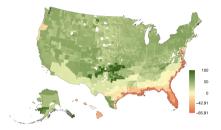
(b) Capital stock change by 2100 (%)

- Workers in Louisiana, Texas, Florida, Sth Carolina lose $\geq 10\%$ (\$6,133/year)
- Capitalists on the South-Eastern Atlantic coast lose $\geq 20\%$ (\$12,267/year)

2100 welfare cost of 3°C additional warming by 2100

(a) Worker welfare in 2100 rel. to ag. (-11.6%)

(b) Capitalist welfare in 2100 rel. to ag. (-13.4%)



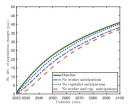
- Losses magnified in South-East
 - Workers in New Orleans: \geq 30%, \$18,400/year
 - ▶ Capitalists in New Orleans: \geq 60%, \$36,800/year
- Large gains for capitalists in North
 - Workers in-migrate \Rightarrow capital return & investment \uparrow

Mineral and Petroleum counties

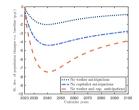
- Mineral county, Colorado, and Petroleum county, Montana differ from their neighbors
 - Large negative effects from climate relative to aggregate
 - Neighbors benefit relatively
 - ► Why?
- Consequence of bilateral migration flows in data
- Only migration destination from Mineral county, CO is Terrebone county, Louisiana
 - Just south of New Orleans
 - Only possible migration destination after inverting model
 - ▶ Implies that losses in coastal Louisiana spill over to Mineral county, CO
- Similarly, only migration destination from Petroleum county, MT is Baldwin county, Alabama
 - On Alabama coast, high damage area

Shutting down anticipations: workers

(a) Population change dispersion in baseline scenario.



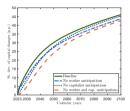
(c) Relative population change in 2050 (p.p.).



(d) Relative worker welfare change in 2050 (p.p.).

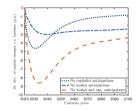
Shutting down anticipations: capital

(a) Capital change dispersion in baseline scenario.



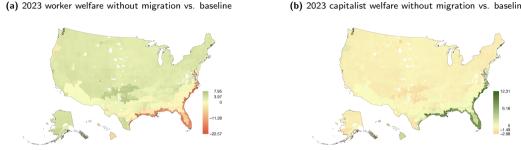
(c) Relative capital change in 2050 (p.p.).

(b) Capital change dispersion relative to baseline.



(d) Relative capitalist welfare change in 2050 (p.p.).

Migration provides insurance in the cross-section only



(b) 2023 capitalist welfare without migration vs. baseline

- ۰ Shutting down migration hurts workers in South-Eastern coastal counties
 - ▶ Welfare costs can exceed 25% (\$15,333/year)
- But helps capitalists who benefit from higher population & capital demand ۰
 - Welfare benefits can exceed 10% (\$6,133/year)

Welfare

• Changes in aggregate welfare $\overline{V}_t = \sum_i N_i V_{it}$:

$$d\overline{V} = \underbrace{\mathbb{E}_{N}[v_{t}^{T}]}_{\text{direct impact}} + \underbrace{\mathbb{C}ov_{N}\left[\frac{dN_{i}}{N_{i}}, V_{i}^{SS}\right]}_{\text{value reallocation}} + \underbrace{\mathbb{C}ov_{N}\left[\mathbb{E}_{N}[v_{\bullet j}^{N}], \frac{dN_{j}}{N_{j}}\right] + \mathbb{C}ov_{K}\left[\mathbb{E}_{N}[v_{\bullet j}^{K}], \frac{dK_{j}}{K_{j}}\right] + \mathbb{E}_{K}\left[\mathbb{E}_{N}[v_{\bullet j}^{K}]\right]d\overline{K}}_{\text{GE effects}}$$

• Identical if use $\mathcal{W}_{it} = rac{1}{
u} \log\left(\sum_{i} e^{
u(V_{it} - au_{ij})}\right)$ to account for taste shocks