Is Demand Reduction Enough to Rebuild Global Fisheries?

Anouch Missirian - with Olivier Deschênes, Christopher Costello, Gavin McDonald (UCSB), Mike Melnychuk (MSC)

May 22nd, 2024

Today's talk

1. Oceans, Biodiversity, and the Economy: A Broad Motivation
2. The Paper in a Nutshell
3. Data
4. Empirical strategy
5. Results: IV estimation and simulations
6. Conclusions

The Central Banker and the Sea

Oceans and Fisheries: What's in it for economists?

From an intellectual point of view:

- fisheries are the poster child of renewable resource economics;
- oceans and fish stocks cover the continuum of property rights from monopoly to full open access;
- in particular oceans and fisheries have served as playground for implementation/study of common pool resource management (Ostrom, 1990).

Oceans and Fisheries: What is so interesting to an economist?

Oceans cover about 70\% of the surface of the Earth.
They exert considerable influence on:

- the climate (heat storage and global circulation);
- our diets (marine fisheries, aquaculture);
- international trade;
- employment and livelihoods in coastal regions and beyond.

As such they feature prominently in heated international disputes, local policy debates.
The threats they currently face are commensurate with their size and importance: changing climate, resource extraction, habitat degradation.

And we know so little about them.

Fisheries: what's the big deal?

[^0]
Fisheries: what's the big deal?

"Fisheries and aquaculture provide livelihoods to around 820 million people worldwide." (FAO)
"Over 58 million people are engaged in the primary sector of capture fisheries and aquaculture. Of these, approximately 37% are engaged full time, 23% part time, and the remainder either occasional fishers or of unspecified status. Over 15 million are working full-time on board fishing vessels." (ILO)

Satellites can reveal global extent of forced labor in the world's fishing fleet

 Timothy Hochberg ${ }^{\text {d }} \odot$, David Kroodsma $^{\text {d }}$, Tracey Mangin ${ }^{\text {a,b }} \odot$, Kyle C. Meng ${ }^{\text {a,e }} \odot$, and Oliver Zahn ${ }^{\text {f }}$

[^1]
Fisheries: what's the big deal?

Fisheries: what's the big deal?

Seafood production: wild fish catch vs aquaculture, World
Aquaculture is the farming of aquatic organisms including fish, molluscs, crustaceans and aquatic plants. Capture
Our World in Data fishery production is the volume of wild fish catches landed for all commercial, industrial, recreational and subsistence purposes.

Fisheries: what's the big deal?

Source: Punch, January 17th, 1891

Fisheries: what's the big deal?

About 80 French boats gathered at the port in St Helier to protest against post-Brexit rules on fishing rights

Fisheries: what's the big deal?

INTER-AMERICAN TROPICAL TUNA COMMISSION COMISION INTERAMERICANA DEL ATUN TROPICAL

```
Bulletin - Boletin
    Vol. I, No. 2
```

SOME ASPECTS OF THE DYNAMICS OF POPULATIONS IMPORTANT TO THE MANAGEMENT OF THE

COMMERCIAL MARINE FISHERIES

Fisheries: what's the big deal?

D Profits

F Profits + subsidies (low labor cost bound)

The WTO Agreement on Fisheries Subsidies

What it does and what comes next

Fisheries: what's the big deal?

WTO must complete an ambitious fisheries subsidies agreement

U. Rashid Sumaila ${ }^{1,2 凶}$, Lubna Alam ${ }^{1}$, Patrizia R. Abdallah ${ }^{3}$, Denis Aheto ${ }^{4}$, Shehu L. Akintola ${ }^{5}$, Justin Alger ${ }^{6}$, Vania Andreoli ${ }^{7,8}$, Megan Bailey ${ }^{9}$, Colin Barnes ${ }^{10}$, Abdulrahman Ben-Hasan ${ }^{11}$, Cassandra M. Brooks ${ }^{12,13}$, Adriana R. Carvalho ${ }^{14}$, William W. L. Cheung ${ }^{1}$, Andrés M. Cisneros-Montemayor ${ }^{15}$, Jessica Dempsey ${ }^{16}$, Sharina A. Halim ${ }^{17}$, Nathalie Hilmi ${ }^{18}$, Matthew O. Ilori ${ }^{19}$, Jennifer Jacquet ${ }^{20}$, Selma T. Karuaihe ${ }^{21}$, Philippe Le Billon ${ }^{2,16}$, James Leape ${ }^{22}$, Tara G. Martin ${ }^{23}$, Jessica J. Meeuwig ${ }^{8}$, Fiorenza Micheli ${ }^{24}$, Mazlin Mokhtar ${ }^{17,25}$, Rosamond L. Naylor ${ }^{26}$, David Obura ${ }^{27}$, Maria L. D. Palomares ${ }^{28}$, Laura M. Pereira ${ }^{29,30}$, Abbie A. Rogers ${ }^{31}$, Ana M. M. Sequeira ${ }^{32,33}$, Temitope O. Sogbanmu ${ }^{34}$, Sebastian Villasante ${ }^{35}$, Dirk Zeller ${ }^{7}$ and Daniel Pauly ${ }^{1,28}$
npj Ocean Sustainability (2024)3:6; https://doi.org/10.1038/s44183-024-00042-0

The World Trade Organization (WTO) achieved a significant milestone in June 2022 by adopting a much-anticipated fisheries subsidies agreement ${ }^{1}$, aligning with strong recommendation from the global scientific community ${ }^{2}$. This pivotal
sustainable and equitable pathway forward with a commitment to more equitable trade.

We, a coalition of scientists representing all inhabited continents, urge the WTO to conclude the second round of

Fisheries: what's the big deal?

"More than 80% of our ocean is unmapped, unobserved, and unexplored." (NOA) Compare to $100 \% 100-\mathrm{m}$ mapping of the Moon, Mars, 98% Venus. (The Conversation)

Fisheries: what's the big deal?

"Dilution is the solution to pollution": old doctrine in pollution management. Oceans have long been a dumping ground for innocuous to extremely harmful waste.

Glass Beach: Fort Bragg, California. (visitmendocino.com)

DDT barrel off Southern California coast. (In: The Guardian, online, 2023)

But also: fishing nets, farming effluents, pharmaceutical substances, etc.

Oceans/Fisheries: What is so interesting to an economist? Coda

Oceans and the life forms they host can be seen as an asset delivering flows of goods and services (Heal, 2020).

The challenges associated to their management are economic questions, and affect the lives of millions.

Anthropogenic pressures are changing and demand new policy solutions.

Introduction

A policy gap

Despite recent improvements many fisheries remain unsustainably managed.

The State of World Fisheries and Aquaculture (FAO, 2020b).
Some management methods have been shown to work well (Costello et al., 2008), but are not / cannot be applied everywhere (high seas, etc.). Typically focus on limiting catch via quotas, seasons, or gear restrictions. Blindspot: "demand-side" interventions.

Demand for demand-side interventions

"Demand-side" interventions are gaining traction among conservationists (e.g., cf. Halpern et al., 2021).

Rely on changes in demand to reduce catch, e.g.: information interventions, substitution (aquaculture, lab-grown flesh), taxes.

Are these likely to do better than / complement "supply-side" interventions?
\rightarrow Implicit hypothesis: NEED fishing effort to be responsive to prices.

- What is the elasticity of supply?
- Can demand-side interventions rebuild global fisheries?

A matter of elasticities

Using global data on fisheries assessment and ex-vessel prices, this paper asks:

Absent management, are demand-side interventions suited to attain sustainability in fisheries?

Method: leverage the segmented nature of fish supply to get plausibly exogenous variations in prices and estimate the supply elasticity of seafood; compare policy options.

Preview of the results

1. Instrumental variable strategy using the segmented nature of production as a price-shifter works, first-ever supply elasticity for (wild-caught) fish.
2. Fisheries supply elasticity is small (0.12), and robust to alternative specifications or strategies.
3. Demand-side interventions barely deviate from the BAU scenario, no matter how mild or extreme.
4. Supply-side interventions (quota), on the other hand, lead to recovery while not detrimental to prices.

Contributions to economics, fisheries economics, and policy

1. Elasticity of supply: we uncover a fundamental parameter of an important sector, suggest why so low.
Griliches (1959); Roberts and Schlenker (2013)
2. Methodological contribution: we connect a model of supply and demand to a bioeconomic fisheries model. New instruments (segmented markets). ?Weitzman (2002)
3. Demand- vs. supply-side interventions: we solve a somewhat confidential theoretical debate, address quantitatively the merits of voguish policy options. Weitzman (2002); Jensen and Vestergaard (2003); Hannesson and Kennedy (2005); Hansen (2008); Halpern et al. (2021)

Data

Useful notation

A fish stock is a RR, it grows and gets tapped into:

$$
B_{t+1}=B_{t}+F\left(B_{t}\right)-q B_{t} E_{t}
$$

Most productive when harvested at MSY. Logistic: $B_{M S Y}=K / 2$, and $M S Y=r K / 4$.

MSY conditions are used to rescale fisheries variables:

$$
b=B / B_{M S Y}
$$

$$
h=H / M S Y
$$

$h=H / M S Y$
$F=H / B$ and $f=h / b$.

$$
F=H / B \text { and } f=h / b .
$$

$$
K=100, r=0.2, p=0.5
$$

Growth function

- Logisitio
- Pella-Tomir
Misnerres variabies:

Fisheries assessment and management

Stock assessments are key to fisheries management. The RAM database compiles them; those fisheries ($N_{M}=893$) are considered well managed, generally with a quota.

Unassessed fisheries ($N_{U}=2,287$) tend to have weaker management. Their status is obtained by combining data sources in the "Upsides" database (Costello et al., 2016).

Data sources

- Stock status for assessed and unassessed fisheries: RAM-LDB, Upsides (1980-2012) (Costello et al., 2016; RAM Legacy Stock Assessment Database) $\rightarrow B / B_{M S Y}$, H/MSY, F/FMSY
- Ex-vessel prices fish species (or group), year level, 1976-2012: Melnychuk et al. (2017) (converted to real 2012 USD/kg). 187 time series.
- Aquaculture: FAO's FishStat J (FAO, 2020a).
- TAC: Hilborn et al. (2020); Melnychuk et al. (2021).

Sample: 2,287 unmanaged stocks across 52,601 stock-years, comprising 464 unique species.

Descriptive statistics

Variable	Mean	Median	Min	Maximum	Std dev.
Ex-vessel price (USD/kg)	3.393	2.581	0.068	27.699	3.883

Unmanaged stocks ($\mathrm{N}=2,287$)

Relative biomass	0.963	0.839	0.070	2.420	0.456
Relative harvest	1.373	1.320	0.001	8.824	0.831
Fishing pressure	1.716	1.585	0.001	6.318	1.059

Managed stocks ($\mathrm{N}=893$)

Catch (10^{6} tons)	1.793	0.642	0.000	19.198	3.266
TAC-constrained catch (10	tons)	0.315	0.014	0.000	9.061

Notes: Summary statistics are at the ISSCAAP group by year level. Catch stands for the quantity (in 10^{6} tons) of fish caught within a year and an ISSCAAP group in stocks represented in the RAM database. TAC-constrained catch (in 10^{6} tons) is the subset of Catch stocks such that the catch-to-TAC (total allowable catch) ratio is between 0.9 and 1.1. Relative biomass and harvest are dimensionless (and relative to the biomass and harvest, respectively, ensuring maximum sustainable yield); fishing pressure is dimensionless as well, as the ratio of harvest over biomass.

Trends in unmanaged fisheries

Empirical strategy

IV: Intuition - Aquaculture in seafood production

ISSCAAP group

- Abalones, winkles, conchs
-a Clams, cockles, arkshells
- Cods, hakes, haddocks
a Crabs, sea-spiders
-a Flounders, halibuts, soles
- Freshwater molluscs
a Lobsters, spiny-rock lobsters
- Marine fishes not identified
- Miscellaneous aquatic invertebrates
\#- Miscellaneous coastal fishes
\# Miscellaneous demersal fishes
- Miscellaneous diadromous fishes
\# Miscellaneous freshwater fishes
- Miscellaneous marine crustaceans
\# Miscellaneous marine molluscs
- Miscellaneous pelagic fishes
\# Mussels
- Oysters
\& Pearls, mother-of-pearl, shells
$廿$ River eels
- Salmons, trouts, smelts
\& Scallops, pectens
- Sea-squirts and other tunicates
\& Sea-urchins and other echinoderms
4 Shads
- Shrimps, prawns
- Squids, cuttlefishes, octopuses
- Sturgeons, paddlefishes Tilapias and other cichlids Tunas, bonitos, billfishes

IV: Conceptual framework

Annual supply and demand of seafood follows:

$$
\begin{aligned}
q_{t}^{D} & =\alpha_{0}-\alpha_{1} p_{t}+\varepsilon_{t}^{D} \\
q_{t}^{W} & =\beta_{0}+\beta_{1} p_{t}+\varepsilon_{t}^{W} \\
q_{t}^{F} & =\bar{S}_{t}+\varepsilon_{t}^{F}
\end{aligned}
$$

$$
\text { And: } q_{t}^{D}=q_{t}^{W}+q_{t}^{F}, \forall t
$$

\rightarrow Supply is segmented.
\rightarrow Supply coming from farmed sources $\left(q_{F}\right)$ can serve as price shifter to the wild supply (q_{W}).

IV: Aquaculture production as a price shifter

Prices and quantities of wild-caught fish are endogenous.
Idea: Aquaculture products are close substitutes (relevance) but quantities are determined by aquaculture-specific dynamics and constraints (exogeneity).

First stage:

$$
p_{s t}=\alpha_{1} \text { aqua }_{s t}+\theta_{1} b_{s t}+\theta_{2} b_{s t}^{2}+\delta_{t}+\nu_{s t}
$$

Estimate the effect of price on (relative) catch/mortality:

$$
\begin{equation*}
y_{s t}=\beta_{1} \widehat{p_{s} t}+\gamma_{1} b_{s t}+\gamma_{2} b_{s t}^{2}+\lambda_{t}+\varepsilon_{s t} \tag{4}
\end{equation*}
$$

With:

- $y_{\text {st }}$: relative catch $(h=H / M S Y)$ or mortality $\left(f=F / F_{M S Y}\right)$ for stock s in year t
- $b_{s t}$: relative biomass ($B / B_{\text {MSY }}$) of stock s in year t
- $p_{\text {st }}$: ex-vessel price

Results

Results: Aquaculture IV - Graph

	OLS	FS	TSLS
	(1)	(2)	(3)
Ln price	$0.078^{* * *}$		$0.575^{* * *}$
	(0.009)		(0.056)
$B / B_{M S Y}$	$-0.873^{* * *}$	0.006	$-1.048^{* * *}$
	(0.019)	(0.013)	(0.019)
$B / B_{M S Y}{ }^{2}$	$0.034^{* * *}$	$0.002 \cdot$	$0.043^{* * *}$
	(0.001)	(0.001)	(0.002)
Ln quantity (aquaculture)		$-0.045^{* * *}$	
		(0.002)	
Num. obs.	21,542	21,542	21,542
R^{2} (proj model)	0.142	0.024	0.099
F-stat 1st stage		180.045	104.753
Notes: ${ }^{* * *} p<0.001 ;{ }^{* *} p<0.01 ;{ }^{*} p<0.05 ; \cdot<0.1$. Sample: all. Indepen-			
dent variable: price (instrumented with: In aquaculture). Dependent variable:			
In effort or mortality (fvfmsy). Year FEs in (1), (2), (3).			

Table 1: Prices on effort and catch, instrumenting with aquaculture

Simulations

Scenarios. For unmanaged stocks, from 1990 onward (2012):

- BAU: stocks remain unmanaged, fished according to equilibrium prices;
- "P scenarios": simulate demand shift / tax, price-responsive but lower demand;
- "Q scenarios": simulate management (ideal, realistic), supply at quota or less.

Procedure. Building on the conceptual framework (IV2), for all t :

1. Draw demand curves from the data (Costello et al., 2020);
2. Intersect the supply curve $(B A U+P)$;
3. ... or intersect the quota (Q);
4. Get equilibrium price and quantity caught;
5. Transmission to $t+1$ with Pella-Tomlinson model (Pella and Tomlinson, 1969).

Results: Simulations

a)
b)

c)

Results: Simulations

d)
e)

Results: redux

	No intervention	Q-optimal	Q-average	P-percent	P-unit
Median ex-vessel price (USD/kg)	5.00	4.60	4.72	1.12	3.14
Total biomass (million tons)	361.29	530.80	501.47	406.15	391.27
Total catch (million tons)	20.44	21.44	19.81	21.48	19.82
Relative fishing pressure (median)	2.76	1.00	1.30	2.11	2.28
Relative biomass (median)	0.42	1.01	0.81	0.53	0.46
Relative catch (median)	1.28	1.00	1.03	1.23	1.32
Collapsed stocks	2.00	1.00	1.00	1.00	2.00
Median post-tax price (USD/kg)	5.00	4.60	4.72	6.90	6.14
Change in total biomass (\%)	-34.91	-4.37	-9.66	-26.83	-29.51
Change in total catch (\%)	-27.35	-23.80	-29.59	-23.67	-29.55

Summary statistics from simulations. Percent change statistics represent changes in values from 1990 to 2012; all other statistics represent the value in 2012 (final time step).

Results: final biomass \& producer surplus

Results: final biomass \& producer surplus

Robustness \& sensitivity

Verify innocuity of assumptions:

- Regression specification;
- Is there such a thing as one price? one elasticity?
- Long(ish)-term elasticity (in progress);
- Non-zero correlation between error terms;
- Policy aggressiveness.

Conclusions

Parting thoughts

Using global data on fisheries in IVs we have calculated the supply elasticity of fisheries.
It is low; in simulations that account for the biology of fish stocks, that leads to mediocre performance of the demand-side policies.

Further work to determine:

- why the elasticity is so low (we think: subsidies, possibly capital);
- why we get different elasticities in IV $1 \& 2$ (we think: different samples);
- whether demand-side interventions might still work for some species / ISSCAAP groups;
- a more realistic counterfactual quota scenario (Q-average too demanding?);
- long-term elasticity of supply.

Further thoughts:

- external validity? (unclear)
- substitution between species/stocks?

Thank you!

Questions?

Contact me: anouch.missirian@tse-fr.eu
Or my coauthors: Olivier Deschênes, Christopher Costello, Gavin McDonald, Mike Melnychuk.

Appendix

Bibliography

RAM Legacy Stock Assessment Database. (Version 4.44-assessment-only), 2018. doi: 10.5281/zenodo. 2542919.
T. Bjørndal and J. Guillen. Market Competition Between Farmed and Wild Fish: A Literature Survey. FAO Fisheries \& Aquaculture Circular, (1114): i-22, 2016. ISSN 20706065.
J. Cai, H. Huang, and P. Leung. Understanding the Contribution of Aquaculture and Fisheries to gross domestic product (GDP). FAO Fisheries and Aquaculture Technical Paper, (606):80p, 2019.
M. D. Cattaneo, R. K. Crump, M. H. Farrell, and Y. Feng. On Binscatter. American Economic Review, 114(5):1488-1514, 2024. doi: 10.1257/aer. 20221576.
C. Costello and D. Ovando. Status, Institutions, and Prospects for Global Capture Fisheries. Annual Review of Environment and Resources, 44: 177-200, 2019. ISSN 15435938. doi: 10.1146/annurev-environ-101718-033310.
C. Costello, S. D. Gaines, and J. Lynham. Can catch shares prevent fisheries collapse? Science, 321(5896):1678-1681, 2008. ISSN 0036-8075. doi: 10.1126/science. 1159478.
C. Costello, D. Ovando, T. Clavelle, C. K. Strauss, R. Hilborn, M. C. Melnychuk, T. A. Branch, S. D. Gaines, C. S. Szuwalski, R. B. Cabral, D. N. Rader, and A. Leland. Global fishery prospects under contrasting management regimes. Proceedings of the National Academy of Sciences of the United States of America, 113(18):5125-5129, 2016. ISSN 10916490. doi: 10.1073/pnas. 1520420113.
C. Costello, L. Cao, S. Gelcich, M. Á. Cisneros-Mata, C. M. Free, H. E. Froehlich, C. D. Golden, J. Maier, I. Macadam-Somer, T. Mangin, M. C. Melnychuk, M. Miyahara, C. L. de Moor, R. L. Naylor, L. Nøstbakken, E. Ojea, E. O'Reilly, A. M. Parma, A. J. Plantinga, S. H. Thilsted, and J. Lubchenco. The Future of Food from the Sea. Nature, 2020. doi: 10.1038/s41586-020-2616-y.

FAO. Fishery and Aquaculture Statistics. Global aquaculture production 1950-2018 (FishstatJ). In FAO Fisheries and Aquaculture Department, page [online]. Rome, updated 20 edition, 2020a. URL www.fao.org/fishery/statistics/software/fishstatj/en.

Bibliography if

FAO. The State of World Fisheries and Aquaculture 2020. 2020b.
H. S. Gordon. The economic theory of a common-property resource: the fishery. The Journal of Political Economy, 62(2):124-142, 1954.
Z. Griliches. The Demand for Inputs in Agriculture and a Derived Supply Elasticity. Journal of Farm Economics, 41(2):309-322, 1959.
B. S. Halpern, J. Maier, H. J. Lahr, G. D. Blasco, C. Costello, R. S. Cottrell, O. Deschênes, D. M. Ferraro, H. E. Froehlich, G. G. McDonald, K. D. Millage, and M. J. Weir. The long and narrow path for novel cell-based seafood to reduce fishing pressure for marine ecosystem recovery. Fish and Fisheries, 22(3):652-664, 2021. ISSN 14672979. doi: 10.1111/faf.12541.
R. Hannesson and J. Kennedy. Landing fees versus fish quotas. Land Economics, 81(4):518-529, 2005. ISSN 00237639. doi: 10.3368/le.81.4.518.
L. G. Hansen. Prices versus Quantities in Fisheries Models: Comment. Land Economics, 84(4):708-711, 2008. ISSN 00237639. doi: 10.3368/le.84.4.708.
G. Heal. The Economic Case for Protecting Biodiversity. NBER Working Paper, (w27963), 2020. ISSN 10634584.
R. Hilborn, R. O. Amoroso, C. M. Anderson, J. K. Baum, T. A. Branch, C. Costello, C. L. De Moor, A. Faraj, D. Hively, O. P. Jensen, H. Kurota, L. R. Little, P. M. Mace, T. R. McClanahan, M. C. Melnychuk, C. Minto, G. C. Osio, A. M. Parma, M. Pons, S. Segurado, C. S. Szuwalski, J. R. Wilson, and Y. Ye. Effective fisheries management instrumental in improving fish stock status. Proceedings of the National Academy of Sciences of the United States of America, 117(4):2218-2224, 2020. ISSN 10916490. doi: 10.1073/pnas. 1909726116.
F. Jensen and N. Vestergaard. Prices versus Quantities in Fisheries Models. Land Economics, 79(3):415-425, 2003. ISSN 00237639. doi: 10.3368/le.84.4.708.
G. G. McDonald, C. Costello, J. Bone, R. B. Cabral, V. Farabee, T. Hochberg, D. Kroodsma, T. Mangin, K. C. Meng, and O. Zahn. Satellites can reveal global extent of forced labor in the world's fishing fleet. Proceedings of the National Academy of Sciences of the United States of America, pages 1-9, 2020. doi: $10.1073 /$ pnas. 2016238117.

Bibliography iii

M. C. Melnychuk, T. Clavelle, B. Owashi, and C. K. Strauss. Reconstruction of global ex-vessel prices of fished species. ICES Journal of Marine Science, 74(1):121-133, 2017. ISSN 10959289. doi: 10.1093/icesjms/fsw169.
M. C. Melnychuk, H. Kurota, P. M. Mace, M. Pons, C. Minto, G. C. Osio, O. P. Jensen, C. L. de Moor, A. M. Parma, L. Richard Little, D. Hively, C. E. Ashbrook, N. Baker, R. O. Amoroso, T. A. Branch, C. M. Anderson, C. S. Szuwalski, J. K. Baum, T. R. McClanahan, Y. Ye, A. Ligas, J. Bensbai, G. G. Thompson, J. DeVore, A. Magnusson, B. Bogstad, E. Wort, J. Rice, and R. Hilborn. Identifying management actions that promote sustainable fisheries. Nature Sustainability, 4(1), 2021. doi: 10.1038/s41893-020-00668-1.
E. Ostrom. Governing the Commons. The Evolution of Institutions for Collective Action. Cambridge University Press, Cambridge, UK, 1990.
J. J. Pella and P. K. Tomlinson. A generalized stock production model. Inter-American Tropical Tuna Commission Bulletin, 13(3):416-497, 1969. ISSN 17518644.

RAM Legacy Stock Assessment Database. Version 4.494-model-fits-included. Accessed 2021-05-27.
M. J. Roberts and W. Schlenker. Identifying Supply and Demand Elasticities of Agricultural Commodities: Implications for the US Ethanol Mandate. American Economic Review, 103(6):2265-2295, 2013. ISSN 0895-3309. doi: 10.1257/jep.6.3.79.
E. Sala, J. Mayorga, C. Costello, D. Kroodsma, M. L. D. Palomares, D. Pauly, U. R. Sumaila, and D. Zeller. The economics of fishing the high seas. Science Advances, 4(6):eaat2504, 2018. ISSN 2375-2548. doi: 10.1126/sciadv.aat2504.
M. B. Schaefer. Some aspects of the dynamics of populations important to the management of the commercial marine fisheries. Inter-American Tropical Tuna Commission Bulletin, 1(2):25-56, 1954.
M. L. Weitzman. Landing Fees vs. Harvest Quotas with Uncertain Fish Stocks. Journal of Environmental Economics and Management, 43(2): 325-338, 2002. ISSN 00950696. doi: 10.1006/jeem.2000.1181.

What do we talk about when we talk about sustainable fisheries management?

Fisheries 101: A fish stock is a RR, it grows and gets tapped into:

$$
B_{t+1}=B_{t}+F\left(B_{t}\right)-q B_{t} E_{t}
$$

Growh function

- Logisitic

- Logistia

Most productive when harvested at MSY. Logistic: $B_{M S Y}=K / 2$, and MSY $=r K / 4$.

MSY conditions are used to rescale fisheries variables:
$b=B / B_{M S Y}$
$h=H / M S Y$
$F=H / B$ and $f=h / b$.

The Upsides database (Costello et al., 2016)

The Upsides database provides status assessment for unassessed fisheries by combining:

- FAO landings data (FAO Global Marine Capture Production Database: annual, somewhat geographically resolved)
- SOFIA Assessment Database
- FishBase life history traits (species, or species group level)
... through a structural fisheries modeling and regression two-step approach.
\Rightarrow stock assessment for 5,338 fisheries not found in RAM.

IV 2: Intuition - The Bristol Bay Salmon Run (AK)

IV 2: Intuition - Beyond Anecdotal

Miscellaneous coastal fishes
Miscellaneous demersal fishes
Shrimps, prawns
Squids, cuttlefishes, octopuses
Sharks, rays, chimaeras
Flounders, halibuts, soles
Miscellaneous pelagic fishes
Crabs, sea-spiders
Lobsters, spiny-rock lobsters
Herrings, sardines, anchovies
Tunas, bonitos, billfishes
Cods, hakes, haddocks
Abalones, winkles, conchs
Salmons, trouts, smelts
Scallops, pectens
Miscellaneous diadromous fishes
King crabs, squat-lobsters

IV 2: Conceptual framework

Annual supply and demand of seafood follows:

$$
\begin{align*}
q_{t}^{D} & =\alpha_{0}-\alpha_{1} p_{t}+\varepsilon_{t}^{D} \tag{1}\\
q_{t}^{U} & =\beta_{0}+\beta_{1} p_{t}+\varepsilon_{t}^{U} \tag{2}\\
q_{t}^{M} & =\bar{S}_{t}+\varepsilon_{t}^{M} \tag{3}
\end{align*}
$$

\rightarrow Supply coming from managed fisheries $\left(q_{M}\right)$ can serve as price shifter.

IV 2: TAC

Idea: leverage variation in annual quota set by regulated fisheries.
First stage (s species, g ISSCAAP group, t year):

$$
\begin{equation*}
p_{s g t}=\pi_{0}+\pi_{1} q_{g t}^{M}+\theta_{1} b_{s g t}+\theta_{2} b_{s g t}^{2}+\lambda_{t}+u_{s g t} \tag{4}
\end{equation*}
$$

Second stage:

$$
\begin{equation*}
h_{s g t}=\beta_{1} \hat{p}_{s g t}+\gamma_{1} b_{s g t}+\gamma_{2} b_{s g t}^{2}+\delta_{t}+\varepsilon_{s g t} \tag{5}
\end{equation*}
$$

(Standard errors are two-way clustered at the species-year and country levels.)
Hinges on the fact that quotas in managed fisheries are exogenously determined (as far as the unregulated supply is concerned, as good as random), affect unregulated supply only through their effect on prices at the ISSCAAP group and year level.

Dep. var.: $h_{i t}$	OLS	First-stage	TSLS
Model \rightarrow	(1)	(2)	(3)
Ex-vessel price (USD/kg)	$0.01^{* * *}$	--	$0.05^{* * *}$
	(0.00)		(0.01)
$B / B_{M S Y}$	$3.12^{* * *}$	0.16	$3.25^{* * *}$
	(0.15)	(1.34)	(0.17)
$B / B_{M S Y}{ }^{2}$	$-1.42^{* * *}$	-0.47	$-1.43^{* * *}$
	(0.07)	(0.52)	(0.08)
RAM catch with binding TAC	--	$-0.62^{* * *}$	--
		(0.04)	
Implied elasticity	0.03	-	0.12
1st stage F-stat.	-	$1,447.8$	$1,447.8$
Observations	52,601	45,852	45,852

Signif. codes: ${ }^{* * *: ~ 0.001, ~ * *: ~} 0.01,{ }^{*}: 0.05 . B / B_{M S Y}$ is the relative biomass.
Table 2: Prices on effort and catch, instrumenting with TAC-regulated stocks

Definition of the instrument

Aquaculture IV: first stage

	(1)	(2)
Quantity (kg)	$-5.877 e^{-07 * *}$	
Ln quantity	$\left(2.035 e^{-07}\right)$	$-0.017^{* * *}$
		(0.004)
F-stat	8.343	17.940
Clustering	none	21542
Num. obs.	21542	0.438
R^{2} (full model)	0.437	0.001
R^{2} (proj model)	0.000	238
Num. groups: obscell	238	33
Num. groups: year	33	
Notes: ${ }^{* * *} p<0.001 ;{ }^{* *} p<0.01 ;{ }^{*} p<0.05$. Table shows OLS regression		
of aquaculture quantities (aggregated at the ISSCAAP group \times country \times year		
level) on wild catch prices, with year and ISSCAAP \times country fixed effects. The		
independent variable is either the quantity (column 1) or the logged quantity		
(column 2). The dependent variable is the logged price (in USD $/ \mathrm{kg}$). Robust		
s.e.		

Table 3: First stage: predicting prices with aquaculture quantities

Aquaculture IV: second stages

Table 4: IV: instrumented prices on effort and catch

	(1)	(2)	(3)	(4)
Ln price	$0.667^{* * *}$	$0.575^{* * *}$	$0.750^{* * *}$	$0.617^{* * *}$
	(0.076)	(0.056)	(0.080)	(0.059)
$B / B_{\text {MSY }}$	$-1.050^{* * *}$	$-1.048^{* * *}$	$0.118^{* * *}$	$0.121^{* * *}$
$B / B_{M S Y}{ }^{2}$	(0.020)	(0.019)	(0.021)	(0.020)
	$0.043^{* * *}$	$0.043^{* * *}$	$-0.010^{* * *}$	$-0.009^{* * *}$
	(0.002)	(0.002)	(0.002)	(0.002)
Dep. var.	LnEffort	LnEffort	LnCatch	LnCatch
Instrument	Quantity	LnQuantity	Quantity	LnQuantity
F-stat 1st stage	77.577	104.753	87.252	109.681
Std. err.	robust	robust	robust	robust
Num. obs.	21,542	21,542	21,542	21,542
R^{2} (proj model)	0.049	0.099	-0.188	-0.100
Notes: ${ }^{* * *} p<0.001 ;{ }^{* *} p<0.01 ;{ }^{*} p<0.05$.	Table shows IV regression of seafood			
prices (logged, USD $/ \mathrm{kg})$ instrumented by aquaculture quantities (at the ISSCAAP level),				
on fishing effort (logged, columns $1-2)$ and catch (logged (kg), columns 3-4), with year				

Bias of the OLS coefficient

Recall:

$$
\begin{align*}
q_{t}^{D} & =\alpha_{0}-\alpha_{1} p_{t}+\varepsilon_{t}^{D} \tag{6}\\
q_{t}^{U} & =\beta_{0}+\beta_{1} p_{t}+\varepsilon_{t}^{U} \tag{7}\\
q_{t}^{M} & =\bar{S}_{t}+\varepsilon_{t}^{M} \tag{8}
\end{align*}
$$

Suppose: $\varepsilon_{t}^{U}=\rho \varepsilon_{t}^{M}+(1-\rho) \tilde{\varepsilon}_{t}^{U}$, where $\tilde{\varepsilon}_{t}^{U}, \varepsilon_{t}^{M}, \varepsilon_{t}^{D}$ uncorrelated, and $\left.\rho \in\right] 0,1[$.
Market clearing yields: $p_{t}^{*}=\frac{\alpha_{0}+\varepsilon_{t}^{D}-\beta_{0}-\bar{S}-(1+\rho) \varepsilon_{t}^{M}-(1-\rho) \tilde{\varepsilon}_{t}^{U}}{\alpha_{1}+\beta_{1}}$
And finally $\frac{d q^{U}}{d p}=\beta_{1}-\left(\alpha_{1}+\beta_{1}\right) \frac{\rho}{1+\rho}$, so unless $\rho=0$ the OLS estimator of β_{1} will be biased.

Aquaculture instrument: details

Idea: Supply of farmed fish affects seafood prices (Bjørndal and Guillen, 2016), but drivers of supply are different (in the short run - e.g., licensing, rules and local regulations, grow-out times).

Data: FAO database on aquaculture production.

Procedure: 1 - draw demand curves from the data (Costello et al., 2020)

Procedure: 2 - intersect the supply curve (BAU + P)

Procedure: 2 - intersect the supply curve (BAU + P)

Procedure: $\quad 3$ - or intersect the quota (Q)

Procedure:

Relative biomass follows:

$$
b_{i t+1}=b_{i t}+\frac{\phi+1}{\phi} \times g \times b_{i t}\left(1-\frac{b_{i t}{ }^{\phi}}{\phi+1}\right)-g \times h_{i t}
$$

Regressions

Dependent Variable:	In_hvhmsy					
	IV: RAM catch					
Model:	(1)	(2)	IV: Catch TAC caught			
(3)	(4)					
Variables	$-1.29^{* * *}$		$-1.36^{* * *}$			
(Intercept)	(0.084)		(0.092)			
	$0.077^{* * *}$	$0.083^{* * *}$	$0.123^{* * *}$	$0.121^{* *}$		
In_price	(0.022)	(0.021)	(0.036)	(0.038)		
	$3.12^{* * *}$	$3.11^{* * *}$	$3.18^{* * *}$	$3.18^{* * *}$		
bvbmsy	(0.124)	(0.126)	(0.119)	(0.119)		
	$-1.45^{* * *}$	$-1.45^{* * *}$	$-1.45^{* * *}$	$-1.46^{* * *}$		
bvbmsy ${ }^{2}$	(0.052)	(0.051)	(0.051)	(0.050)		
Fixed-effects						
factor(year)		Yes		Yes		
Fit statistics						
F-test (1st stage)	$13,158.2$	$14,223.6$	$7,441.4$	$7,474.9$		

Notes: Signif. codes: ${ }^{* * *}$: $0.001,{ }^{* *}: 0.01,{ }^{*}: 0.05, .: 0.1$
Two-way commonnameXyear \& iso3 clustered standard-errors in parentheses.

Sensitivity: Possibility of a non-zero correlation between $\tilde{\varepsilon}^{U}$ and ε^{M}

	No intervention	Q-optimal	Q-average	P-percent	P-unit
Median ex-vessel price (USD/kg)	2.26	4.60	4.72	0.78	1.10
Total biomass (million tons)	399.32	530.80	501.47	417.70	419.40
Total catch (million tons)	22.25	21.44	19.81	21.88	21.82
Relative fishing pressure (median)	2.19	1.00	1.30	2.06	2.04
Median post-tax price (USD/kg)	2.26	4.60	4.72	4.81	4.10
Change in total biomass (\%)	-28.06	-4.37	-9.66	-24.75	-24.44
Change in total catch (\%)	-20.92	-23.80	-29.59	-22.24	-22.47

Normalized biomass
in final timestep
(median) 0.50

Varying the value of ρ

a)
b)

Total catch (million tons)

Median ex-vessel price (USD/kg)
c)

Total biomass (million tons)
d)

Normalized catch (median)
e)

Normalized biomass (median)

Scenario
— Historic
" = = = = \quad Base (business-as-usual; rho $=0$)
$--=-$ Business-as-usual; rho $=0.1$

- \quad - Business-as-usual; rho $=0.5$
. . . . Business-as-usual; rho $=0.9$

Were we just too harsh?

Was a unit tax of $3 \$ / \mathrm{kg}$ just too high?

Mostly yes, though some species exhibit substantial variation (across ports):

Prices from Melnychuk et al. (2017) on the horizontal axis, prices from EUMOFA monthly price data

Is it reasonable to assume there's one supply elasticity?

Of course not. ISSCAAP-group level elasticities make more sense, but the aquaculture instrument isn't able to recover them all:

2SLS estimates of the price*ISSCAAP group coefficient
Dependent variable: relative catch.

[^0]: Source: Food and Agriculture Organization of the United Nations

[^1]: ${ }^{\text {a Bren }}$ School of Environmental Science \& Management, University of California, Santa Barbara, CA 93106; ${ }^{\text {b }}$ Marine Science Institute, University of California, Santa Barbara, CA 93106; 'Liberty Shared, Washington, DC 20001; ${ }^{\mathrm{d}} \mathrm{G}$ lobal Fishing Watch Inc., Washington, DC 20036; ${ }^{\text {e Department of Economics, }}$ University of California, Santa Barbara, CA 93106; and 'Google, Mountain View, CA 94043

 Edited by James N. Sanchirico, University of California, Davis, CA, and accepted by Editorial Board Member Catherine L. Kling November 6, 2020 (received for review July 31, 2020)

 While forced labor in the world's fishing fleet has been widely documented, its extent remains unknown. No methods previously existed for remotely identifying individual fishing vessels potentially engaged in these abuses on a global scale. By combining expertise from human riahts practitioners and satellite vessel
 forestry, or fisheries (7). The Global Slavery Index reports that the seven countries with highest slavery risk in 2018 generated 39% of global fisheries catch $(3,8)$, and Tickler et al. found that the United States has slavery risks of 0.2 kg per metric ton for domestic seafood and 3.1 kg ner metric ton for imported seafood

