Jean-Guillaume Sahuc^{1, 2} Frank Smets^{3, 4} Gauthier Vermandel^{5, 6, 1}

¹Banque de France
²Université Paris-Nanterre
³European Central Bank
⁴Ghent University
⁵CMAP, Ecole polytechnique, Institut Polytechnique de Paris.
⁶LEDa, Paris-Dauphine and PSL Universities.

– BDF-TSE Workshop, 22 May 2024 –

Introduction

- ► Climate change will change the macroeconomic landscape in the next decades and the central bank will have to face 2 phenomena [Schnabel 2022]:
 - ightharpoonup On the one hand, a warming planet causes damages that will make resources scarcer & prices higher \rightarrow climateflation.
 - On the other hand, the fight against climate change (through increasing carbon taxes) will make fossil fuels & raw materials more expensive \rightarrow greenflation.
- ▶ How should the central bank conduct monetary policy in this new landscape?
- Answering this question requires to understand the effects of climate change on the economy.

THIS PAPER.

- ▶ The canonical New Keynesian model is silent on climate developments.
- ► This paper develops The New Keynesian Climate (NKC) model by:
 - extending the canonical model with a carbon accumulation constraint and a mitigation policy from the Integrated Assessment Model (IAM) literature;
 - estimating this model for the world economy with techniques that take into account nonlinearities resulting from climate change;
 - ▶ providing projections up to horizon 2100 under mitigation versus *laissez-faire* policy by changing an exogenous carbon tax rate.
- ► This allows us to analyze the impact of climate change on inflation and monetary policy.

METHODOLOGICAL BREAKTHROUGH

- ► <u>Standard view:</u> stable propagation mechanism with fluctuations naturally decaying over time back to a steady state.
- Climate problem: the way carbon emissions cumulate over time permanently changes the propagation patterns \rightarrow no steady state.
- ▶ We solve our nonlinear model taking into account both long and short term effects using the Fair and Taylor (1983)'s extended path solution method.
- ▶ We estimate the model using Bayesian nonlinear techniques based on the inversion filter from Fair and Taylor (1983).

LITERATURE

Our paper is connected to three literatures:

- ▶ IAMs analyze the long-term effect of carbon accumulation [Nordhaus 1992; Dietz and Venmans 2019; Barrage and Nordhaus 2023], but take a benign view of fluctuations and price rigidity.
- ▶ E-DSGE with nominal rigidities [Annicchiarico and Di Dio 2015; Ferrari and Nispi Landi 2022; Coenen et al. 2023; Del Negro et al. 2023], but no explicit demographic and climate trends.
- ► Standard New Keynesian models [Woodford 2003; Smets and Wouters 2007], without climate change.

OUTLINE

- 1 Introduction
- 2 The NKC model
- 3 Estimation
- 4 The Anatomy of Green/Climateflation
- 5 Sensitivity analysis to alternative simple rules
- 6 Conclusion

PLAN

- 1 Introduction
- 2 The NKC model
- 3 Estimation
- 4 The Anatomy of Green/Climateflation
- 5 Sensitivity analysis to alternative simple rules
- 6 Conclusion

USUAL INGREDIENTS

► Households:

- choose consumption, saving and labor supply by maximizing intertemporal utility;
- ▶ Demographic trend: population size is exogenous and time-varying.

► Firms:

- \triangleright solve a two-stage problem: (i) choose labor to maximize profits and (ii) decide their selling price under a Rotemberg price setting.
- ► Central bank:
 - ▶ chooses interest rate by following a Taylor-type rule

IS:
$$(\tilde{y}_{t}x_{t})^{-\sigma_{c}} = \beta \mathbb{E}_{t} \frac{\varepsilon_{b,t+1}}{\varepsilon_{b,t}} \frac{r_{t}}{\pi_{t+1}} (\tilde{y}_{t+1}x_{t+1})^{-\sigma_{c}}$$

$$x_{t} = 1 - \kappa (\pi_{t} - \pi_{t}^{*})^{2}$$
PC:
$$(\pi_{t} - \pi_{t}^{*}) \pi_{t} = \beta \mathbb{E}_{t} g_{z,t} \tilde{y}_{t+1} / \tilde{y}_{t} (\pi_{t+1} - \pi_{t+1}^{*}) \pi_{t+1} + \zeta \kappa^{-1} \varepsilon_{p,t} m c_{t} + \kappa^{-1} (1 - \zeta)$$

$$m c_{t} = \psi (x_{t} \tilde{y}_{t})^{\sigma_{c}} \tilde{y}_{t}^{\sigma_{n}}$$
MP:
$$r_{t} = r_{t-1}^{\rho} \left[r (\pi_{t}^{*}/\pi) (\pi_{t}/\pi_{t}^{*})^{\phi_{\pi}} (\tilde{y}_{t}/\tilde{y}_{t}^{n})^{\phi_{y}} \right]^{1-\rho} (\pi_{t}^{*}/\pi_{t-1}^{*})^{\phi_{\pi^{*}}} \varepsilon_{r,t}$$

Detrended GDP

IS:
$$(\tilde{y}_t x_t)^{-\sigma_c} = \beta \mathbb{E}_t \frac{\varepsilon_{b,t+1}}{\varepsilon_{b,t}} \frac{r_t}{\pi_{t+1}} (\tilde{y}_{t+1} x_{t+1})^{-\sigma_c}$$
$$x_t = 1 - \kappa (\pi_t - \pi_t^*)^2$$

PC:
$$(\pi_t - \pi_t^*) \pi_t = \beta \mathbb{E}_t \ g_{z,t} \tilde{y}_{t+1} / \tilde{y}_t \left(\pi_{t+1} - \pi_{t+1}^* \right) \pi_{t+1} + \zeta \kappa^{-1} \varepsilon_{p,t} m c_t + \kappa^{-1} \left(1 - \zeta \right)$$

$$m c_t = \psi \left(x_t \tilde{y}_t \right)^{\sigma_c} \tilde{y}_t^{\sigma_n}$$

MP:
$$r_t = r_{t-1}^{\rho} \left[r \left(\pi_t^* / \pi \right) \left(\pi_t / \pi_t^* \right)^{\phi_{\pi}} \left(\tilde{y}_t / \tilde{y}_t^n \right)^{\phi_y} \right]^{1-\rho} \left(\pi_t^* / \pi_{t-1}^* \right)^{\phi_{\pi^*}} \varepsilon_{r,t}$$

Detrended GDP

The core New Keynesian model comprises three equations:

IS:
$$(\tilde{y}_t x_t)^{-\sigma_c} = \beta \mathbb{E}_t \frac{\varepsilon_{b,t+1}}{\varepsilon_{b,t}} \frac{r_t}{\pi_{t+1}} (\tilde{y}_{t+1} x_{t+1})^{-\sigma_c}$$

$$x_t = 1 - \kappa (\pi_t - \pi_t^*)^2$$

$$\text{cons-to-gdp}$$
PC: $(\pi_t - \pi_t^*) \pi_t = \beta \mathbb{E}_t g_{z,t} \tilde{y}_{t+1} / \tilde{y}_t (\pi_{t+1} - \pi_{t+1}^*) \pi_{t+1} + \zeta \kappa^{-1} \varepsilon_{p,t} m c_t + \kappa^{-1} (1 - \zeta)$

$$m c_t = \psi (x_t \tilde{y}_t)^{\sigma_c} \tilde{y}_t^{\sigma_n}$$

MP: $r_t = r_{t-1}^{\rho} \left[r (\pi_t^* / \pi) (\pi_t / \pi_t^*)^{\phi_\pi} (\tilde{y}_t / \tilde{y}_t^n)^{\phi_y} \right]^{1-\rho} (\pi_t^* / \pi_{t-1}^*)^{\phi_{\pi^*}} \varepsilon_{r,t}$

Detrended GDP

The core New Keynesian model comprises three equations:

IS:
$$(\tilde{y}_t x_t)^{-\sigma_c} = \beta \mathbb{E}_t \frac{\varepsilon_{b,t+1}}{\varepsilon_{b,t}} \frac{r_t}{\pi_{t+1}} (\tilde{y}_{t+1} x_{t+1})^{-\sigma_c}$$
 $x_t = 1 - \kappa (\pi_t - \pi_t^*)^2$

Inflation

PC: $(\pi_t - \pi_t^*) \pi_t = \beta \mathbb{E}_t g_{z,t} \tilde{y}_{t+1} / \tilde{y}_t (\pi_{t+1} - \pi_{t+1}^*) \pi_{t+1} + \zeta \kappa^{-1} \varepsilon_{p,t} m c_t + \kappa^{-1} (1 - \zeta)$

 $mc_t = \psi(x_t\tilde{y}_t)^{\sigma_c}\tilde{y}_t^{\sigma_n}$

MP:
$$r_t = r_{t-1}^{\rho} \left[r \left(\pi_t^* / \pi \right) \left(\pi_t / \pi_t^* \right)^{\phi_{\pi}} \left(\tilde{y}_t / \tilde{y}_t^n \right)^{\phi_y} \right]^{1-\rho} \left(\pi_t^* / \pi_{t-1}^* \right)^{\phi_{\pi^*}} \varepsilon_{r,t}$$

Detrended GDP

The core New Keynesian model comprises three equations:

IS:
$$(\tilde{y}_t x_t)^{-\sigma_c} = \beta \mathbb{E}_t \frac{\varepsilon_{b,t+1}}{\varepsilon_{b,t}} \frac{r_t}{\pi_{t+1}} (\tilde{y}_{t+1} x_{t+1})^{-\sigma_c}$$

$$x_t = 1 - \kappa (\pi_t - \pi_t^*)^2$$
Inflation

PC: $(\pi_t - \pi_t^*) \pi_t = \beta \mathbb{E}_t g_{z,t} \tilde{y}_{t+1} / \tilde{y}_t (\pi_{t+1} - \pi_{t+1}^*) \pi_{t+1} + \zeta \kappa^{-1} \varepsilon_{p,t} m c_t + \kappa^{-1} (1 - \zeta)$

$$m c_t = \psi (x_t \tilde{y}_t)^{\sigma_c} \tilde{y}_t^{\sigma_n}$$
marginal cost

MP:
$$r_t = r_{t-1}^{\rho} \left[r (\pi_t^* / \pi) (\pi_t / \pi_t^*)^{\phi_{\pi}} (\tilde{y}_t / \tilde{y}_t^n)^{\phi_y} \right]^{1-\rho} (\pi_t^* / \pi_{t-1}^*)^{\phi_{\pi^*}} \varepsilon_{r,t}$$

Detrended GDP

IS:
$$(\tilde{y}_{t}x_{t})^{-\sigma_{c}} = \beta \mathbb{E}_{t} \frac{\varepsilon_{b,t+1}}{\varepsilon_{b,t}} \frac{r_{t}}{\pi_{t+1}} (\tilde{y}_{t+1}x_{t+1})^{-\sigma_{c}}$$

$$x_{t} = 1 - \kappa (\pi_{t} - \pi_{t}^{*})^{2}$$

$$\text{cons-to-gdp}$$
PC: $(\pi_{t} - \pi_{t}^{*}) \pi_{t} = \beta \mathbb{E}_{t} g_{z,t} \tilde{y}_{t+1} / \tilde{y}_{t} (\pi_{t+1} - \pi_{t+1}^{*}) \pi_{t+1} + \zeta \kappa^{-1} \varepsilon_{p,t} m c_{t} + \kappa^{-1} (1 - \zeta)$

$$m c_{t} = \psi (x_{t} \tilde{y}_{t})^{\sigma_{c}} \tilde{y}_{t}^{\sigma_{n}}$$

$$\text{marginal cost}$$
MP:
$$r_{t} = r_{t-1}^{\rho} \left[r (\pi_{t}^{*}/\pi) (\pi_{t}/\pi_{t}^{*})^{\phi_{\pi}} (\tilde{y}_{t}/\tilde{y}_{t}^{n})^{\phi_{y}} \right]^{1-\rho} (\pi_{t}^{*}/\pi_{t-1}^{*})^{\phi_{\pi *}} \varepsilon_{r,t}$$
Interest rate

MP:

IS:
$$(\tilde{y}_{t}x_{t})^{-\sigma_{c}} = \beta \mathbb{E}_{t} \frac{\varepsilon_{b,t+1}}{\varepsilon_{b,t}} \frac{r_{t}}{\pi_{t+1}} (\tilde{y}_{t+1}x_{t+1})^{-\sigma_{c}}$$

$$x_{t} = 1 - \kappa (\pi_{t} - \pi_{t}^{*})^{2}$$
PC:
$$(\pi_{t} - \pi_{t}^{*}) \pi_{t} = \beta \mathbb{E}_{t} g_{z,t} \tilde{y}_{t+1} / \tilde{y}_{t} (\pi_{t+1} - \pi_{t+1}^{*}) \pi_{t+1} + \zeta \kappa^{-1} \varepsilon_{p,t} m c_{t} + \kappa^{-1} (1 - \zeta)$$

$$m c_{t} = \psi (x_{t} \tilde{y}_{t})^{\sigma_{c}} \tilde{y}_{t}^{\sigma_{n}}$$
MP:
$$r_{t} = r_{t-1}^{\rho} \left[r (\pi_{t}^{*} / \pi) (\pi_{t} / \pi_{t}^{*})^{\phi_{\pi}} (\tilde{y}_{t} / \tilde{y}_{t}^{n})^{\phi_{y}} \right]^{1-\rho} (\pi_{t}^{*} / \pi_{t-1}^{*})^{\phi_{\pi^{*}}} \varepsilon_{r,t}$$

THE CORE NEW KEYNESIAN Demand

Demand shock

IS:
$$(\tilde{y}_t x_t)^{-\sigma_c} = \beta \mathbb{E}_t \frac{\varepsilon_{b,t+1}}{\varepsilon_{b,t}} \frac{r_t}{\pi_{t+1}} (\tilde{y}_{t+1} x_{t+1})^{-\sigma_c}$$

$$x_t = 1 - \kappa (\pi_t - \pi_t^*)^2$$

PC:
$$(\pi_t - \pi_t^*) \pi_t = \beta \mathbb{E}_t \ g_{z,t} \tilde{y}_{t+1} / \tilde{y}_t \left(\pi_{t+1} - \pi_{t+1}^* \right) \pi_{t+1} + \zeta \kappa^{-1} \varepsilon_{p,t} m c_t + \kappa^{-1} \left(1 - \zeta \right)$$

$$m c_t = \psi \left(x_t \tilde{y}_t \right)^{\sigma_c} \tilde{y}_t^{\sigma_n}$$

MP:
$$r_t = r_{t-1}^{\rho} \left[r \left(\pi_t^* / \pi \right) \left(\pi_t / \pi_t^* \right)^{\phi_{\pi}} \left(\tilde{y}_t / \tilde{y}_t^n \right)^{\phi_y} \right]^{1-\rho} \left(\pi_t^* / \pi_{t-1}^* \right)^{\phi_{\pi^*}} \varepsilon_{r,t}$$

THE CORE NEW KEYNESIAN

Demand shock

IS:
$$(\tilde{y}_{t}x_{t})^{-\sigma_{c}} = \beta \mathbb{E}_{t} \frac{\varepsilon_{b,t+1}}{\varepsilon_{b,t}} \frac{r_{t}}{\pi_{t+1}} (\tilde{y}_{t+1}x_{t+1})^{-\sigma_{c}}$$

$$x_{t} = 1 - \kappa (\pi_{t} - \pi_{t}^{*})^{2}$$
Supply shock

PC:
$$(\pi_{t} - \pi_{t}^{*}) \pi_{t} = \beta \mathbb{E}_{t} g_{z,t} \tilde{y}_{t+1} / \tilde{y}_{t} (\pi_{t+1} - \pi_{t+1}^{*}) \pi_{t+1} + \zeta \kappa^{-1} \varepsilon_{p,t} m c_{t} + \kappa^{-1} (1 - \zeta)$$

$$m c_{t} = \psi (x_{t} \tilde{y}_{t})^{\sigma_{c}} \tilde{y}_{t}^{\sigma_{n}}$$
MP:
$$r_{t} = r_{t-1}^{\rho} \left[r (\pi_{t}^{*} / \pi) (\pi_{t} / \pi_{t}^{*})^{\phi_{\pi}} (\tilde{y}_{t} / \tilde{y}_{t}^{n})^{\phi_{y}} \right]^{1-\rho} (\pi_{t}^{*} / \pi_{t-1}^{*})^{\phi_{\pi *}} \varepsilon_{r,t}$$

THE CORE NEW KEYNESIAN

IS:
$$(\tilde{y}_{t}x_{t})^{-\sigma_{c}} = \beta \mathbb{E}_{t} \frac{\varepsilon_{b,t+1}}{\varepsilon_{b,t}} \frac{r_{t}}{\pi_{t+1}} (\tilde{y}_{t+1}x_{t+1})^{-\sigma_{c}}$$

$$x_{t} = 1 - \kappa (\pi_{t} - \pi_{t}^{*})^{2}$$
Supply shock

PC:
$$(\pi_{t} - \pi_{t}^{*}) \pi_{t} = \beta \mathbb{E}_{t} g_{z,t} \tilde{y}_{t+1} / \tilde{y}_{t} (\pi_{t+1} - \pi_{t+1}^{*}) \pi_{t+1} + \zeta \kappa^{-1} \varepsilon_{p,t} m c_{t} + \kappa^{-1} (1 - \zeta)$$

$$m c_{t} = \psi (x_{t} \tilde{y}_{t})^{\sigma_{c}} \tilde{y}_{t}^{\sigma_{n}}$$
MP shock

MP:
$$r_{t} = r_{t-1}^{\rho} \left[r (\pi_{t}^{*} / \pi) (\pi_{t} / \pi_{t}^{*})^{\phi_{\pi}} (\tilde{y}_{t} / \tilde{y}_{t}^{n})^{\phi_{y}} \right]^{1-\rho} (\pi_{t}^{*} / \pi_{t-1}^{*})^{\phi_{\pi *}} \varepsilon_{r,t}$$

Modification: Higher discounting

- ▶ Discounting is a critical and pervasive issue in macroeconomic analyses.
- ▶ In New Keynesian models, long term policies lead to implausibly large effects in present value terms (e.g., the *forward guidance puzzle*).
- ► This issue is particularly pronounced when considering mitigation of climate change and other long-term environmental policies.
- ▶ <u>Several solutions:</u> OLG structure, myopic discounting, heterogenous agents...
- ▶ We introduce: (i) income risk à la McKay et al. $2017 \Rightarrow$ discounted Euler equation and (ii) firms's exit à la Bilbiie et al. $2012 \Rightarrow$ discounted Phillips curve.

DISCOUNTED EULER EQUATION

- ▶ The fraction 1ω of high productive workers receives a wage payments $w_t n_{i,H,t}$;
- ▶ The discounted Euler equation for high and low productive workers $\{H, L\}$:

$$c_{i,H,t}^{-\sigma_c} = \mathbb{E}_t \left\{ \frac{\tilde{\beta}_{t,t+1} \varepsilon_{b,t+1} r_t}{\varepsilon_{b,t} \pi_{t+1}} \left((1 - \omega) c_{i,H,t+1}^{-\sigma_c} + \omega c_{i,L,t+1}^{-\sigma_c} \right) \right\}$$
(1)

$$c_{i,L,t} = D_t (2$$

$$c_t = (1 - \omega) c_{H,t} + \omega c_{L,t} \tag{3}$$

DISCOUNTED PHILLIPS CURVE

▶ Obtained from the determination of selling price:

$$\max_{\{p_{j,t}\}} \mathbb{E}_{t} \left\{ \sum_{s=0}^{\infty} \beta^{s} \omega_{j,t+s} \left(y_{j,t+s} \frac{p_{j,t+s}}{p_{t+s}} - \varepsilon_{p,t+s} m c_{t+s} y_{j,t+s} - \frac{\kappa}{2} \left(\frac{p_{j,t+s}}{p_{j,t-1+s}} - \pi_{t}^{*} \right)^{2} \frac{y_{t+s}}{l_{t+s}} \right) \right\}$$

$$\omega_{j,t} \in \{0,1\}$$
 an idiosyncratic exit shock with $\Pr(\omega_{j,t} = 0) = \vartheta$

$$\varepsilon_{p,t}$$
 an AR(1) cost-push shock

THE MODIFIED NEW KEYNESIAN MODEL

Two frictions to attenuate the expectation channel:

IS:
$$\left(\frac{\tilde{y}_{t}x_{t}-\omega d}{1-\omega}\right)^{-\sigma_{c}} = \beta \mathbb{E}_{t} \frac{\varepsilon_{b,t+1}}{\varepsilon_{b,t}} \frac{r_{t}}{\pi_{t+1}} \left(\left(1-\omega\right) \left(\frac{\tilde{y}_{t+1}x_{t+1}-\omega d}{1-\omega}\right)^{-\sigma_{c}} + \omega d^{-\sigma_{c}}\right)$$

$$x_{t} = 1-\kappa \left(\pi_{t}-\pi_{t}^{*}\right)^{2} \left(1-\vartheta\right) - \vartheta \left(1-\varepsilon_{p,t}mc_{t}\right)$$
PC:
$$(\pi_{t}-\pi_{t}^{*}) \pi_{t} = \left(1-\vartheta\right)\beta \mathbb{E}_{t} g_{z,t}\tilde{y}_{t+1}/\tilde{y}_{t} \left(\pi_{t+1}-\pi_{t+1}^{*}\right) \pi_{t+1} + \zeta \kappa^{-1}\varepsilon_{p,t}mc_{t} + \kappa^{-1} \left(1-\zeta\right)$$

$$mc_{t} = \psi \left(x_{t}\tilde{y}_{t}-\omega d\right)^{\sigma_{c}}\tilde{y}_{t}^{\sigma_{n}}$$
MP:
$$r_{t} = r_{t-1}^{\rho} \left[r \left(\pi_{t}^{*}/\pi\right) \left(\pi_{t}/\pi_{t}^{*}\right)^{\phi_{\pi}} \left(\tilde{y}_{t}/\tilde{y}_{t}^{n}\right)^{\phi_{y}}\right]^{1-\rho} \left(\pi_{t}^{*}/\pi_{t-1}^{*}\right)^{\phi_{\pi *}} \varepsilon_{r,t}$$

THE MODIFIED NEW KEYNESIAN MODEL

Euler discounting

Two frictions to attenuate the expectation channel:

IS:
$$\left(\frac{\tilde{y}_{t}x_{t}-\omega d}{1-\omega}\right)^{-\sigma_{c}} = \beta \mathbb{E}_{t} \frac{\varepsilon_{b,t+1}}{\varepsilon_{b,t}} \frac{r_{t}}{\pi_{t+1}} \left(\left(1-\omega\right)\left(\frac{\tilde{y}_{t+1}x_{t+1}-\omega d}{1-\omega}\right)^{-\sigma_{c}} + \omega d^{-\sigma_{c}}\right)$$

$$x_{t} = 1-\kappa \left(\pi_{t}-\pi_{t}^{*}\right)^{2} \left(1-\vartheta\right) - \vartheta\left(1-\varepsilon_{p,t}mc_{t}\right)$$
PC:
$$\left(\pi_{t}-\pi_{t}^{*}\right)\pi_{t} = \left(1-\vartheta\right)\beta \mathbb{E}_{t} g_{z,t}\tilde{y}_{t+1}/\tilde{y}_{t} \left(\pi_{t+1}-\pi_{t+1}^{*}\right)\pi_{t+1} + \zeta\kappa^{-1}\varepsilon_{p,t}mc_{t} + \kappa^{-1}\left(1-\zeta\right)$$

$$mc_{t} = \psi \left(x_{t}\tilde{y}_{t}-\omega d\right)^{\sigma_{c}}\tilde{y}_{t}^{\sigma_{n}}$$
MP:
$$r_{t} = r_{t-1}^{\rho} \left[r\left(\pi_{t}^{*}/\pi\right)\left(\pi_{t}/\pi_{t}^{*}\right)^{\phi_{\pi}}\left(\tilde{y}_{t}/\tilde{y}_{t}^{n}\right)^{\phi_{y}}\right]^{1-\rho} \left(\pi_{t}^{*}/\pi_{t-1}^{*}\right)^{\phi_{\pi *}}\varepsilon_{r,t}$$

THE MODIFIED NEW KEYNESIAN MODEL

Euler discounting

Two frictions to attenuate the expectation channel:

IS:
$$\left(\frac{\tilde{y}_{t}x_{t}-\omega d}{1-\omega}\right)^{-\sigma_{c}} = \beta \mathbb{E}_{t} \frac{\varepsilon_{b,t+1}}{\varepsilon_{b,t}} \frac{r_{t}}{\pi_{t+1}} \left(\left(1-\omega\right)\left(\frac{\tilde{y}_{t+1}x_{t+1}-\omega d}{1-\omega}\right)^{-\sigma_{c}} + \omega d^{-\sigma_{c}}\right)$$

PC $t_{t} = 1-\kappa \left(\pi_{t}-\pi_{t}^{*}\right)^{2} \left(1-\vartheta\right) - \vartheta \left(1-\varepsilon_{p,t}mc_{t}\right)$

PC: $(\pi_{t}-\pi_{t}^{*}) \pi_{t} = \left(1-\vartheta\right)\beta \mathbb{E}_{t} g_{z,t}\tilde{y}_{t+1}/\tilde{y}_{t} \left(\pi_{t+1}-\pi_{t+1}^{*}\right)\pi_{t+1} + \zeta\kappa^{-1}\varepsilon_{p,t}mc_{t} + \kappa^{-1}\left(1-\zeta\right)$
 $t_{t} = \psi \left(x_{t}\tilde{y}_{t}-\omega d\right)^{\sigma_{c}}\tilde{y}_{t}^{\sigma_{n}}$

MP: $t_{t} = r_{t-1}^{\rho} \left[r\left(\pi_{t}^{*}/\pi\right)\left(\pi_{t}/\pi_{t}^{*}\right)^{\phi_{\pi}}\left(\tilde{y}_{t}/\tilde{y}_{t}^{n}\right)^{\phi_{y}}\right]^{1-\rho} \left(\pi_{t}^{*}/\pi_{t-1}^{*}\right)^{\phi_{\pi^{*}}}\varepsilon_{r,t}$

CLIMATE MAIN INGREDIENTS: CARBON STOCK

- \triangleright Firms contribute to climate change by emitting CO_2 as an unintended result of their production process. Those emissions fuel the atmospheric carbon stock.
- ► The law of motion of atmospheric carbon stock in gigatons (GtC):

$$m_t - m_{1750} = (1 - \delta_m)(m_{t-1} - m_{1750}) + \xi_m e_t,$$
 (4)

 $\delta_m \in [0, 1]$ rate of transfer of atmospheric carbon to the deep ocean; $\xi_m \geq 0$ physical parameter translating GtCO₂ into GtC.

▶ CO2 emissions are given by:

$$e_t = \sigma_t \left(1 - \mu_t \right) y_t \varepsilon_{e,t} \tag{5}$$

$$\sigma_t = \sigma_{t-1}(1 - g_{\sigma,t})$$
 decoupling rate of carbon emissions $\varepsilon_{e,t}$ AR(1) emission shock abatement share

CLIMATE MAIN INGREDIENTS: ABATEMENT COST

- ▶ Firms may decrease emissions by investing in abatement technology, but this change in the existing lines of production is costly.
- ▶ Determination of the marginal cost

$$\max_{\{y_{j,t},\mu_{j,t}\}} mc_{j,t}y_{j,t} - \underbrace{w_t n_{j,t}^d}_{\text{labor cost}} - \underbrace{\theta_{1,t} \mu_{j,t}^{\theta_2} y_{j,t}}_{\text{Abatement cost}} - \underbrace{\tau_{e,t} e_{j,t}}_{\text{carbon tax}}$$
(6)

 $\theta_{1,t} = (p_b/\theta_2)(1 - \delta_{pb})^{t-t_0}\sigma_t$ exogenous efficiency of a bating carbon $(\theta_{1,2020} \simeq 0.1 \to 10\%$ of output lost if $\mu = 1$, it takes 40 years for $\theta_{1,t}$ to divide by factor 2)

 $\tau_{e,t}$ exogenous carbon tax.

CLIMATE MAIN INGREDIENTS: DAMAGE FUNCTION

- ▶ TFP has 2 elements: (i) deterministic component of productivity and (ii) a damage function that represents the impact of climate change on the production process.
- ightharpoonup Monopolistic firm j's production function:

$$y_{j,t} = z_t \Phi\left(m_t\right) \left(n_{j,t}^d\right)^{\alpha} \tag{7}$$

 $z_t = z_{t-1}(1 + g_{z,t})$ exogenous vanishing productivity with $g_{z,t} = g_{z,t-1}(1 - \delta_z)$

▶ Following Golosov et al. (2014), exponential economic damages:

$$\Phi(m_t) = \exp(-\gamma(m_t - m_{1750})) \tag{8}$$

 $m_t - m_{1750} \ge 0$ the excess carbon in the atmosphere $\gamma \ge 0$ the damage parameter

Carbon accumulation and its damages:

IS:
$$\left(\frac{\tilde{y}_{t}x_{t}-\omega d}{1-\omega}\right)^{-\sigma_{c}} = \beta \mathbb{E}_{t} \frac{\varepsilon_{b,t+1}}{\varepsilon_{b,t}} \frac{r_{t}}{\pi_{t+1}} \left(\left(1-\omega\right) \left(\frac{x_{t+1}\tilde{y}_{t+1}-\omega d}{1-\omega}\right)^{-\sigma_{c}} + \omega d^{-\sigma_{c}}\right)$$

$$x_{t} = 1 - (1-\vartheta)0.5\kappa \left(\pi_{t} - \pi_{t}^{*}\right)^{2} - \vartheta \left(1-\varepsilon_{p,t}mc_{t}\right)$$
PC:
$$(\pi_{t} - \pi_{t}^{*}) \pi_{t} = (1-\vartheta)\beta \mathbb{E}_{t} g_{z,t}\tilde{y}_{t+1}/\tilde{y}_{t} \left(\pi_{t+1} - \pi_{t+1}^{*}\right) \pi_{t+1} + \zeta \kappa^{-1}\varepsilon_{p,t}mc_{t} + \kappa^{-1} \left(1-\zeta\right)$$

$$mc_{t} = \psi \left(x_{t}\tilde{y}_{t} - \omega d\right)^{\sigma_{c}} \tilde{y}_{t}^{\sigma_{n}} \Phi \left(\tilde{m}_{t}\right)^{-(1+\sigma_{n})}$$
MP:
$$r_{t} = r_{t-1}^{\rho} \left[r \left(\pi_{t}^{*}/\pi\right) \left(\pi_{t}/\pi_{t}^{*}\right)^{\phi_{\pi}} \left(\tilde{y}_{t}/\tilde{y}_{t}^{n}\right)^{\phi_{y}}\right]^{1-\rho} \left(\pi_{t}^{*}/\pi_{t-1}^{*}\right)^{\phi_{\pi^{*}}} \varepsilon_{r,t}$$
CC:
$$\tilde{m}_{t} = \left(1-\delta_{m}\right) \tilde{m}_{t-1} + \varepsilon_{m} \sigma_{t} z_{t} l_{t} \tilde{y}_{t} \varepsilon_{e,t}$$

Carbon accumulation and its damages:

IS:
$$\left(\frac{\tilde{y}_{t}x_{t}-\omega d}{1-\omega}\right)^{-\sigma_{c}} = \beta \mathbb{E}_{t} \frac{\varepsilon_{b,t+1}}{\varepsilon_{b,t}} \frac{r_{t}}{\pi_{t+1}} \left((1-\omega) \left(\frac{x_{t+1}\tilde{y}_{t+1}-\omega d}{1-\omega} \right)^{-\sigma_{c}} + \omega d^{-\sigma_{c}} \right)$$

$$x_{t} = 1 - (1-\vartheta)0.5\kappa \left(\pi_{t} - \pi_{t}^{*} \right)^{2} - \vartheta (1-\varepsilon_{p,t}mc_{t})$$
PC:
$$(\pi_{t} - \pi_{t}^{*}) \pi_{t} = (1-\vartheta)\beta \mathbb{E}_{t} g_{z,t}\tilde{y}_{t+1}/\tilde{y}_{t} \left(\pi_{t+1} - \pi_{t+1}^{*} \right) \pi_{t+1} + \zeta \kappa^{-1}\varepsilon_{p,t}mc_{t} + \kappa^{-1} \left(1 - \zeta \right)$$

$$mc_{t} = \psi \left(x_{t}\tilde{y}_{t} - \omega d \right)^{\sigma_{c}} \tilde{y}_{t}^{\sigma_{n}} \Phi \left(\tilde{m}_{t} \right)^{-(1+\sigma_{n})}$$
MP:
$$r_{t} = r_{t-1}^{\rho} \left[r \left(\pi_{t}^{*}/\pi \right) \left(\pi_{t}/\pi_{t}^{*} \right)^{\phi_{\pi}} \left(\tilde{y}_{t}/\tilde{y}_{t}^{n} \right)^{\phi_{y}} \right]^{1-\rho} \left(\pi_{t}^{*}/\pi_{t-1}^{*} \right)^{\phi_{\pi^{*}}} \varepsilon_{r,t}$$
CC:
$$\tilde{m}_{t} = (1-\delta_{m}) \tilde{m}_{t-1} + \xi_{m} \sigma_{t} z_{t} l_{t} \tilde{y}_{t} \varepsilon_{e,t}$$

Anthropogenic carbon stock

Carbon accumulation and its damages:

IS:
$$\left(\frac{\tilde{y}_{t}x_{t}-\omega d}{1-\omega}\right)^{-\sigma_{c}} = \beta \mathbb{E}_{t} \frac{\varepsilon_{b,t+1}}{\varepsilon_{b,t}} \frac{r_{t}}{\pi_{t+1}} \left((1-\omega) \left(\frac{x_{t+1}\tilde{y}_{t+1}-\omega d}{1-\omega}\right)^{-\sigma_{c}} + \omega d^{-\sigma_{c}} \right)$$

$$x_{t} = 1 - (1-\vartheta)0.5\kappa \left(\pi_{t} - \pi_{t}^{*}\right)^{2} - \vartheta (1-\varepsilon_{p,t}mc_{t})$$
PC: $(\pi_{t} - \pi_{t}^{*}) \pi_{t} = (1-\vartheta)\beta \mathbb{E}_{t} g_{z,t}\tilde{y}_{t+1}/\tilde{y}_{t} \left(\pi_{t+1} - \pi_{t+1}^{*}\right) \pi_{t+1} + \zeta \kappa^{-1}\varepsilon_{p,t}mc_{t} + \kappa^{-1} (1-\zeta)$

$$mc_{t} = \psi \left(x_{t}\tilde{y}_{t} - \omega d\right)^{\sigma_{c}} \tilde{y}_{t}^{\sigma_{n}} \Phi \left(\tilde{m}_{t}\right)^{-(1+\sigma_{n})}$$
Perministic
$$r_{t} = r_{t-1}^{\rho} \frac{\text{Deterministic}}{\left(\frac{1-\omega}{2}\right)^{2}} \left(\frac{1-\omega}{2}\right)^{2} \left(\frac{1-\omega}{2}\right)^{2}$$

Anthropogenic carbon stock

Carbon accumulation and its damages:

IS:
$$\left(\frac{\tilde{y}_{t}x_{t}-\omega d}{1-\omega}\right)^{-\sigma_{c}} = \beta \mathbb{E}_{t} \frac{\varepsilon_{b,t+1}}{\varepsilon_{b,t}} \frac{r_{t}}{\pi_{t+1}} \left((1-\omega) \left(\frac{x_{t+1}\tilde{y}_{t+1}-\omega d}{1-\omega}\right)^{-\sigma_{c}} + \omega d^{-\sigma_{c}} \right)$$

$$x_{t} = 1 - (1-\vartheta)0.5\kappa \left(\pi_{t} - \pi_{t}^{*}\right)^{2} - \vartheta (1-\varepsilon_{p,t}mc_{t})$$
PC:
$$(\pi_{t} - \pi_{t}^{*}) \pi_{t} = (1-\vartheta)\beta \mathbb{E}_{t} g_{z,t}\tilde{y}_{t+1}/\tilde{y}_{t} \left(\pi_{t+1} - \pi_{t+1}^{*}\right) \pi_{t+1} + \zeta \kappa^{-1}\varepsilon_{p,t}mc_{t} + \kappa^{-1} (1-\zeta)$$

$$mc_{t} = \psi \left(x_{t}\tilde{y}_{t} - \omega d\right)^{\sigma_{c}} \tilde{y}_{t}^{\sigma_{n}} \Phi \left(\tilde{m}_{t}\right)^{-(1+\sigma_{n})}$$

$$r_{t} = r_{t-1}^{\rho} \underbrace{\begin{array}{c} \mathbf{Deterministic} \\ \mathbf{Decoupling trend} \\ \mathcal{F}_{t}^{*} \mathcal{F}_{t}$$

Anthropogenic carbon stock

Deterministic
TFP trend

Carbon accumulation and its damages:

IS:
$$\left(\frac{\tilde{y}_{t}x_{t}-\omega d}{1-\omega}\right)^{-\sigma_{c}} = \beta \mathbb{E}_{t} \frac{\varepsilon_{b,t+1}}{\varepsilon_{b,t}} \frac{r_{t}}{\pi_{t+1}} \left((1-\omega)\left(\frac{x_{t+1}\tilde{y}_{t+1}-\omega d}{1-\omega}\right)^{-\sigma_{c}} + \omega d^{-\sigma_{c}}\right)$$

$$x_{t} = 1 - (1-\vartheta)0.5\kappa \left(\pi_{t} - \pi_{t}^{*}\right)^{2} - \vartheta(1-\varepsilon_{p,t}mc_{t})$$
PC: $(\pi_{t} - \pi_{t}^{*})\pi_{t} = (1-\vartheta)\beta \mathbb{E}_{t} g_{z,t}\tilde{y}_{t+1}/\tilde{y}_{t} \left(\pi_{t+1} - \pi_{t+1}^{*}\right)\pi_{t+1} + \zeta\kappa^{-1}\varepsilon_{p,t}mc_{t} + \kappa^{-1}\left(1-\zeta\right)$

$$mc_{t} = \psi \left(x_{t}\tilde{y}_{t} - \omega d\right)^{\sigma_{c}}\tilde{y}_{t}^{\sigma_{n}} \Phi \left(\tilde{m}_{t}\right)^{-(1+\sigma_{n})}$$
Deterministic
$$r_{t} = r_{t-1}^{\rho} \begin{bmatrix} \text{Deterministic} \\ \text{Decoupling trend} \\ t \end{bmatrix} \begin{bmatrix} \text{Deterministic} \\ \text{population trend} \end{bmatrix}^{*} \varepsilon_{r,t}$$
CC: $\tilde{m}_{t} = (1-\delta_{m})\tilde{m}_{t-1} + \xi_{m} \sigma_{t} z_{t} l_{t} \tilde{y}_{t} \varepsilon_{e,t}$
Deterministic

TFP trend

The New Keynesian Climate model

Carbon accumulation and its damages:

IS:
$$\left(\frac{\tilde{y}_{t}x_{t}-\omega d}{1-\omega}\right)^{-\sigma_{c}} = \beta \mathbb{E}_{t} \frac{\varepsilon_{b,t+1}}{\varepsilon_{b,t}} \frac{r_{t}}{\pi_{t+1}} \left((1-\omega) \left(\frac{x_{t+1}\tilde{y}_{t+1}-\omega d}{1-\omega}\right)^{-\sigma_{c}} + \omega d^{-\sigma_{c}} \right)$$

$$x_{t} = 1 - (1-\vartheta)0.5\kappa \left(\pi_{t} - \pi_{t}^{*}\right)^{2} - \vartheta (1-\varepsilon_{p,t}mc_{t})$$
PC: $(\pi_{t} - \pi_{t}^{*}) \pi_{t} = (1-\vartheta)\beta \mathbb{E}_{t} g_{z,t}\tilde{y}_{t+1}/\tilde{y}_{t} \left(\pi_{t+1} - \pi_{t+1}^{*}\right) \pi_{t+1} + \zeta \kappa^{-1}\varepsilon_{p,t}mc_{t} + \kappa^{-1} (1-\zeta)$

$$mc_{t} = \psi \left(x_{t}\tilde{y}_{t} - \omega d\right)^{\sigma_{c}} \tilde{y}_{t}^{\sigma_{n}} \Phi \left(\tilde{m}_{t}\right)^{-(1+\sigma_{n})}$$
Peterministic
Deterministic
Decoupling trend
$$r_{t} = r_{t-1}^{\rho} \frac{Deterministic}{Decoupling trend} \int_{t}^{t} \frac{Deterministi$$

Anthropogenic carbon stock

Deterministic
TFP trend

Carbon accumulation and its damages:

IS:
$$\left(\frac{\tilde{y}_{t}x_{t}-\omega d}{1-\omega}\right)^{-\sigma_{c}} = \beta \mathbb{E}_{t} \frac{\varepsilon_{b,t+1}}{\varepsilon_{b,t}} \frac{r_{t}}{\pi_{t+1}} \left(\left(1-\omega\right) \left(\frac{x_{t+1}\tilde{y}_{t+1}-\omega d}{1-\omega}\right)^{-\sigma_{c}} + \omega d^{-\sigma_{c}}\right)$$

$$x_{t} = 1 - (1-\vartheta)0.5\kappa \left(\pi_{t} - \pi_{t}^{*}\right)^{2} - \vartheta \left(1 - \varepsilon_{p,t}mc_{t}\right)$$
PC: $(\pi_{t} - \pi_{t}^{*}) \pi_{t} = (1-\vartheta)\beta \mathbb{E}_{t} g_{z,t}\tilde{y}_{t+1}/\tilde{y}_{t} \left(\pi_{t+1} - \pi_{t+1}^{*}\right) \pi_{t+1} + \zeta \kappa^{-1}\varepsilon_{p,t}mc_{t} + \kappa^{-1} \left(1 - \zeta\right)$

$$mc_{t} = \psi \left(x_{t}\tilde{y}_{t} - \omega d\right)^{\sigma_{c}} \tilde{y}_{t}^{\sigma_{n}} \Phi \left(\tilde{m}_{t}\right)^{-(1+\sigma_{n})}$$
Climate damages

MP:
$$r_{t} = r_{t-1}^{\rho} \left[r \left(\pi_{t}^{*}/\pi\right) \left(\pi_{t}/\pi_{t}^{*}\right)^{\phi_{\pi}} \left(\tilde{y}_{t}/\tilde{y}_{t}^{n}\right)^{\phi_{y}}\right]^{1-\rho} \left(\pi_{t}^{*}/\pi_{t-1}^{*}\right)^{\phi_{\pi^{*}}} \varepsilon_{r,t}$$
CC:
$$\tilde{m}_{t} = (1 - \delta_{m})\tilde{m}_{t-1} + \varepsilon_{m} \sigma_{t} z_{t} l_{t} \tilde{y}_{t} \varepsilon_{e,t}$$

Mitigation policies as function of exogenous carbon tax $\tilde{\tau}_t$:

IS:
$$\left(\frac{\tilde{y}_{t}x_{t}-\omega d}{1-\omega}\right)^{-\sigma_{c}} = \beta \mathbb{E}_{t} \frac{\varepsilon_{b,t+1}}{\varepsilon_{b,t}} \frac{r_{t}}{\pi_{t+1}} \left((1-\omega)\left(\frac{x_{t+1}\tilde{y}_{t+1}-\omega d}{1-\omega}\right)^{-\sigma_{c}} + \omega d^{-\sigma_{c}}\right)$$

Expenditures

$$x_{t} = 1 - (1-\vartheta)0.5\kappa \left(\pi_{t} - \pi_{t}^{*}\right)^{2} - \vartheta\left(1 - \varepsilon_{p,t}mc_{t}\right) - \theta_{1,t}\tilde{\tau}_{t}^{\theta_{2}/(\theta_{2}-1)}$$

PC: $(\pi_{t} - \pi_{t}^{*}) \pi_{t} = (1-\vartheta)\beta \mathbb{E}_{t} g_{z,t}\tilde{y}_{t+1}/\tilde{y}_{t} \left(\pi_{t+1} - \pi_{t+1}^{*}\right) \pi_{t+1} + \zeta \kappa^{-1}\varepsilon_{p,t}mc_{t} + \kappa^{-1}\left(1-\zeta\right)$

$$mc_{t} = \psi \left(x_{t}\tilde{y}_{t} - \omega d\right)^{\sigma_{c}} \tilde{y}_{t}^{\sigma_{n}} \Phi \left(\tilde{m}_{t}\right)^{-(1+\sigma_{n})} + \theta_{1,t}\tilde{\tau}_{t} \left(\theta_{2} + (1-\theta_{2})\tilde{\tau}_{t}^{1/(\theta_{2}-1)}\right)$$

MP:
$$r_{t} = r_{t-1}^{\rho} \left[r\left(\pi_{t}^{*}/\pi\right)\left(\pi_{t}/\pi_{t}^{*}\right)^{\phi_{\pi}} \left(\tilde{y}_{t}/\tilde{y}_{t}^{n}\right)^{\phi_{y}}\right]^{1-\rho} \left(\pi_{t}^{*}/\pi_{t-1}^{*}\right)^{\phi_{\pi^{*}}} \varepsilon_{r,t}$$

CC:
$$\tilde{m}_{t} = (1-\delta_{m})\tilde{m}_{t-1} + \xi_{m} \sigma_{t} z_{t} l_{t} \tilde{y}_{t} \varepsilon_{e,t} \left(1-\tilde{\tau}_{t}^{1/(\theta_{2}-1)}\right)$$

Mitigation policies as function of exogenous carbon tax $\tilde{\tau}_t$:

IS:
$$\left(\frac{\tilde{y}_{t}x_{t}-\omega d}{1-\omega}\right)^{-\sigma_{c}} = \beta \mathbb{E}_{t} \frac{\varepsilon_{b,t+1}}{\varepsilon_{b,t}} \frac{r_{t}}{\pi_{t+1}} \left(\left(1-\omega\right) \left(\frac{x_{t+1}\tilde{y}_{t+1}-\omega d}{1-\omega}\right)^{-\sigma_{c}} + \omega d^{-\sigma_{c}}\right)$$

$$x_{t} = 1 - (1-\vartheta)0.5\kappa \left(\pi_{t}-\pi_{t}^{*}\right)^{2} - \vartheta\left(1-\varepsilon_{p,t}mc_{t}\right) - \theta_{1,t}\tilde{\tau}_{t}^{\theta_{2}/(\theta_{2}-1)}$$

Carbon tax costs

PC: $(\pi_{t}-\pi_{t}^{*})\pi_{t} = (1-\vartheta)\beta \mathbb{E}_{t} g_{z,t}\tilde{y}_{t+1}/\tilde{y}_{t} \left(\pi_{t+1}-\pi_{t+1}^{*}\right)\pi_{t+1} + \zeta\kappa^{-1}\varepsilon_{p,t}mc_{t} + \kappa^{-1}\left(1-\zeta\right)$

$$mc_{t} = \psi \left(x_{t}\tilde{y}_{t}-\omega d\right)^{\sigma_{c}}\tilde{y}_{t}^{\sigma_{n}} \Phi \left(\tilde{m}_{t}\right)^{-(1+\sigma_{n})} + \theta_{1,t}\tilde{\tau}_{t} \left(\theta_{2}+(1-\theta_{2})\tilde{\tau}_{t}^{1/(\theta_{2}-1)}\right)$$

MP:
$$r_{t} = r_{t-1}^{\rho} \left[r\left(\pi_{t}^{*}/\pi\right)\left(\pi_{t}/\pi_{t}^{*}\right)^{\phi_{\pi}}\left(\tilde{y}_{t}/\tilde{y}_{t}^{n}\right)^{\phi_{y}}\right]^{1-\rho} \left(\pi_{t}^{*}/\pi_{t-1}^{*}\right)^{\phi_{\pi *}}\varepsilon_{r,t}$$

CC:
$$\tilde{m}_{t} = (1-\delta_{m})\tilde{m}_{t-1} + \xi_{m} \sigma_{t} z_{t} l_{t} \tilde{y}_{t} \varepsilon_{e,t} \left(1-\tilde{\tau}_{t}^{1/(\theta_{2}-1)}\right)$$

THE NEW KEYNESIAN CLIMATE MODEL

Mitigation policies as function of exogenous carbon tax $\tilde{\tau}_t$:

IS:
$$\left(\frac{\tilde{y}_{t}x_{t}-\omega d}{1-\omega}\right)^{-\sigma_{c}} = \beta \mathbb{E}_{t} \frac{\varepsilon_{b,t+1}}{\varepsilon_{b,t}} \frac{r_{t}}{\pi_{t+1}} \left(\left(1-\omega\right) \left(\frac{x_{t+1}\tilde{y}_{t+1}-\omega d}{1-\omega}\right)^{-\sigma_{c}} + \omega d^{-\sigma_{c}}\right)$$

Mitigation expenditures

$$x_{t} = 1 - (1-\vartheta)0.5\kappa \left(\pi_{t}-\pi_{t}^{*}\right)^{2} - \vartheta\left(1-\varepsilon_{p,t}mc_{t}\right) - \theta_{1,t}\tilde{\tau}_{t}^{\theta_{2}/(\theta_{2}-1)}$$

Carbon tax costs

PC: $(\pi_{t}-\pi_{t}^{*})\pi_{t} = (1-\vartheta)\beta \mathbb{E}_{t} g_{z,t}\tilde{y}_{t+1}/\tilde{y}_{t} \left(\pi_{t+1}-\pi_{t+1}^{*}\right)\pi_{t+1} + \zeta\kappa^{-1}\varepsilon_{p,t}mc_{t} + \kappa^{-1}\left(1-\zeta\right)$

$$mc_{t} = \psi \left(x_{t}\tilde{y}_{t}-\omega d\right)^{\sigma_{c}}\tilde{y}_{t}^{\sigma_{n}} \Phi \left(\tilde{m}_{t}\right)^{-(1+\sigma_{n})} + \theta_{1,t}\tilde{\tau}_{t} \left(\theta_{2}+(1-\theta_{2})\tilde{\tau}_{t}^{1/(\theta_{2}-1)}\right)$$

MP:
$$r_{t} = r_{t-1}^{\rho} \left[r \left(\pi_{t}^{*}/\pi\right) \left(\pi_{t}/\pi_{t}^{*}\right)^{\phi_{\pi}} \left(\tilde{y}_{t}/\tilde{y}_{t}^{n}\right)^{\phi_{y}}\right]^{1-\rho} \left(\pi_{t}^{*}/\pi_{t}^{*}\right)$$

Abatement share

CC:
$$\tilde{m}_{t} = (1-\delta_{m})\tilde{m}_{t-1} + \xi_{m} \sigma_{t} z_{t} l_{t} \tilde{y}_{t} \varepsilon_{e,t} \left(1-\tilde{\tau}_{t}^{1/(\theta_{2}-1)}\right)$$

PLAN

- 1 Introduction
- 2 The NKC model
- 3 Estimation
- 4 The Anatomy of Green/Climateflation
- 5 Sensitivity analysis to alternative simple rules
- 6 Conclusion

ESTIMATION

- Estimation on world data from 1985Q1 to 2023Q3 (<u>sources:</u> World Bank, OECD and OurWorldInData).
- ► There are four observable variables:

$$\begin{bmatrix} \text{Real output growth rate} \\ \text{Inflation rate} \\ \text{Short-term interest rate} \\ \text{CO}_2 \text{ emissions growth rate} \end{bmatrix} = 100 \times \begin{bmatrix} \Delta \log (y_t) \\ \pi_t - 1 \\ r_t - 1 \\ \Delta \log (e_t) \end{bmatrix}$$

ESTIMATION

➤ Our statistical model is an extension of Fair and Taylor (1983) to deal with trends:

$$\tilde{y}_t = g_{\Theta}(y_0, y, 0) \tag{9}$$

$$y_t = \mathbb{E}_{t,t+S} \left\{ g_{\Theta} \left(y_{t-1}, \tilde{y}_{t+S+1}, \varepsilon_t \right) \right\}$$
 (10)

$$\mathcal{Y}_t = h_{\Theta}\left(y_t\right) \tag{11}$$

$$\varepsilon_t \sim \mathcal{N}\left(0, \Sigma_{\varepsilon}\right)$$
 (12)

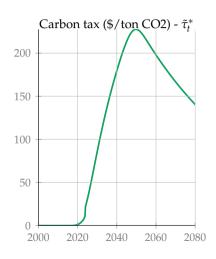
- ▶ Compute the deterministic path \tilde{y}_t , add stochastic innovations through extended path $\mathbb{E}_{t,t+S}\{\cdot\}$ with the expectation horizon S.
- Maximize sample likelihood $\mathcal{L}(\theta, \mathcal{Y}_{1:T^*})$ & run Metropolis-Hastings to compute uncertainty bands.

ESTIMATION

- ▶ Large uncertainty about future carbon tax: implications for estimation in particular at the end of the sample.
- Let $\tilde{\tau}_t^*$ denote the Paris-Agreement tax, with rising carbon tax up to 2050, we let the data inform about the market-based expectations on future carbon mitigation policies:

$$\mathbb{E}_{t,t+S}\{\tilde{\tau}_t\} = \varphi \tilde{\tau}_t^*$$

where $\varphi \in [0, 1]$ is the fraction of believers Paris-Agreement policy.



Calibrated parameters

Parameter	Name	VALUE
Panel A: Climate Parameters		
CO ₂ rate of transfer to deep oceans	δ_m	0.00125
Marginal atmospheric retention ratio	ξ_m	0.27273
Pre-industrial stock of carbon (GtC)	m_{1750}	545
Climate damage elasticity	γ	2.379e-05
Initial stock of carbon (GtC)	$m_{1984:4}$	736.98
Panel B: Socio-economic Parameters		
Firm exit shock	ν	0.025
Low productivity worker payoff-to-consumption	d/c	0.85
Initial population (billions)	$l_{1984:4}$	4.85
Terminal population (billions)	l_T	11.42107
Population growth growth	l_g	0.0055
Goods elasticity	Š	6
Decay rate of TFP	$\delta_z \times 400$	0.3
Initial hours worked	$h_{1984:4}$	1
Labor intensity	α	0.7
Initial emissions (GtCO ₂)	$e_{1984:4}$	5.0825
Initial GDP (trillions USD PPP)	$y_{1984:4}$	11.25
Panel C: Abatement Sector Parameters		
Initial abatement cost	$\theta_{1.1984:4}$	0.30604
Abatement cost	θ_2	2.6
Decay rate of abatement cost	δ_{pb}	0.004277
Initial abatement	$\mu_{1984:4}$	0.0001
Abatement in 2020	$\mu_{2020:1}$	0.05

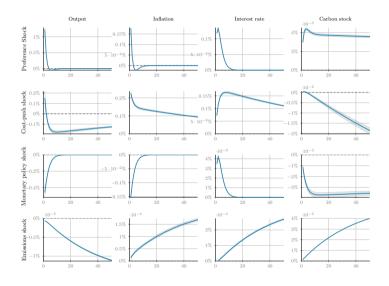
ESTIMATED PARAMETERS

		Prior Distribution				Posterior Distribution		
		Shape	Mean	Std	_	Mode	Me	ean [5%:95%]
Panel A: Shock proce	esses							
Std demand	σ_b	\mathcal{IG}_2	0.001	1		0.0245	0.0253	[0.0231:0.0275]
Std price	σ_p	\mathcal{IG}_2	0.001	1		0.0046	0.0051	[0.0045:0.0056]
Std MPR	σ_r	\mathcal{IG}_2	0.001	1		0.0009	0.0009	[0.0008:0.0011]
Std emissions	σ_e	\mathcal{IG}_2	0.001	1		0.0049	0.0047	[0.0042:0.005]
AR demand	ρ_b	\mathcal{B}	0.5	0.15		0.5974	0.6115	[0.5965:0.6322]
AR price	ρ_b	\mathcal{B}	0.5	0.15		0.9839	0.9839	[0.9839:0.9839]
AR MPR	ρ_r	\mathcal{B}	0.5	0.15		0.5407	0.5341	[0.4711:0.5932]
AR emissions	$ ho_e$	\mathcal{B}	0.5	0.15		0.9686	0.9707	[0.9592:0.9823]
Panel B: Structural p	arameters							
Initial TFP growth	$g_{z,t_0} \times 400$	\mathcal{G}	1.5	0.5		1.735	1.735	[1.735:1.735]
Decoupling rate	g_{σ,t_0}	\mathcal{G}	1.5	0.5		1.262	1.2254	[1.1465:1.323]
Decay TFP	$\delta_z \times 400$	\mathcal{G}	0.5	0.35		0.0464	0.0519	[0.0411:0.0732]
Risk aversion	σ_c	\mathcal{G}	2	0.15		1.1394	1.2608	[1.1371:1.3715]
Labor disutility	σ_h	\mathcal{G}	2	0.5		0.1708	0.1799	[0.1649:0.2094]
Rotemberg Cost	κ	\mathcal{G}	25	7.5		117.9202	117.9202	[117.9194:117.9205]
Initial inflation trend	$\pi_{*,t_0} \times 400$	\mathcal{G}	12	1		12.8434	12.6125	[11.3687:13.6154]
Initial inflation trend	$g_{\pi} \times 400$	\mathcal{N}	8	2		9.2703	9.2905	[9.1232:9.4962]
Initial interest rate	$r_{t_0} \times 400$	\mathcal{N}	12	2		8.7509	8.7746	[8.3039:9.362]
Share Low prod.	ω	\mathcal{B}	0.05	0.01		0.0512	0.0496	[0.0422:0.0556]
Inflation stance	ϕ_{π}	\mathcal{G}	0.75	0.05		0.5883	0.6367	[0.5702:0.6943]
MPR GDP stance	ϕ_y	\mathcal{G}	0.5	0.1		0.5265	0.5342	[0.4712:0.6058]
Discount rate	$(\beta^{-1} - 1) \times 100$	\mathcal{G}	1	0.5		0.8055	0.8282	[0.7976:0.8617]
Mitigation policy belief	φ	u	0.5	0.2887		0.5264	0.5235	[0.5047:0.552]
MPR smoothing	ρ	\mathcal{B}	0.5	0.075		0.9127	0.9127	[0.9127:0.9128]
Trend stance	ϕ_*	\mathcal{N}	0.5	0.5		-0.4482	-0.4434	[-0.4625:-0.4185]
Log marginal data densi	Log marginal data density -3104.54						-3104.54	

EMPIRICAL AND MODEL-IMPLIED MOMENTS

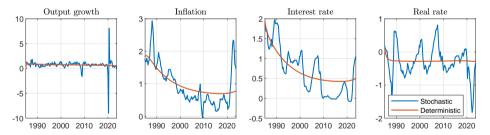
	Data	Baseline model [5%;95%]	Data	Baseline model [5%;95%]	
	Mean		Stand	ard deviations	
Output growth	0.007	[0.007;0.008]	0.012	[0.008; 0.010]	
Inflation rate	0.010	[0.006;0.031]	0.007	[0.005; 0.011]	
Nominal rate	0.009	[0.010; 0.049]	0.007	[0.004; 0.015]	
Emission growth	0.004	[0.004; 0.005]	0.013	[0.009; 0.011]	
	Aut	ocorrelation	Correlation w/ output		
Output growth	-0.221	[-0.193; 0.121]	1.000	[1.000; 1.000]	
Inflation rate	0.979	[0.464; 0.875]	-0.028	[-0.159;0.262]	
Nominal rate	0.994	[0.968; 0.998]	-0.038	[-0.187;0.234]	
Emission growth	-0.131	[-0.206;0.116]	0.911	[0.927; 0.968]	

GENERALIZED IMPULSE RESPONSE FUNCTIONS



STOCHASTIC AND DETERMINISTIC PATHS

Figure 1: Implied deterministic and stochastic paths



PLAN

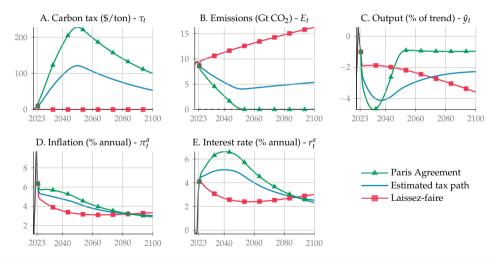
- 1 Introduction
- 2 The NKC model
- 3 Estimation
- 4 The Anatomy of Green/Climateflation
- 5 Sensitivity analysis to alternative simple rules
- 6 Conclusion

THE ANATOMY OF GREEN/CLIMATEFLATION

- ▶ What is the future macroeconomic landscape by the end of the century?
- We consider two alternative scenarios based on the realization of the carbon tax $\varphi \tilde{\tau}_{e,t}^*$:
- ▶ The realization of the carbon-neutrality path with $\varphi = 1$.
- ▶ The realization of the laissez-faire path with $\varphi = 0$.

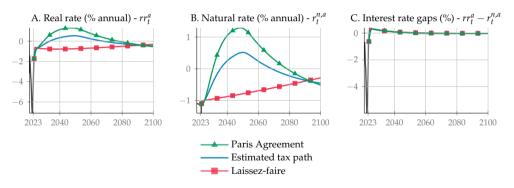
THREE TRANSITIONS

Figure 2: Model-implied projections based on alternative control rates of emissions



THREE TRANSITIONS

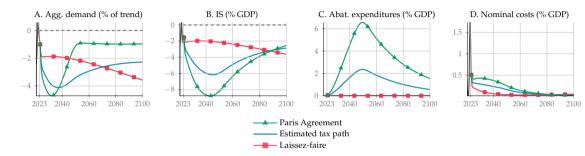
Figure 3: Model-implied projections based on alternative control rates of emissions



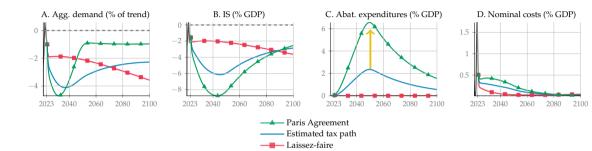
One can split the aggregate demand equation into three terms:

$$\widehat{y}_{t} = \underbrace{\widehat{IS}_{t}}_{\text{forward real interest rate}} + \underbrace{\theta_{1,t}\widetilde{\tau}_{e,t}^{\theta_{2}/(\theta_{2}-1)}}_{\text{green investment}} + \underbrace{(1-\vartheta)\frac{\kappa}{2}(\pi_{t}-\pi)^{2} + \vartheta(1-mc_{t})}_{\text{nominal wedge}}.$$

- ► Forward real interest rate term: from discounted Euler equation.
- ▶ Green investment term: from abating more carbon emissions.
- ▶ Nominal wedge term: from adjusting price and exit shock.

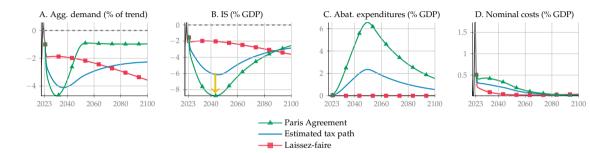


- ▶ Demand similar in the short term, and lower than trend because of in-sample inflation shock.
- ▶ Differences emerge in medium term.
- ▶ Which factors explain this gap in medium term?



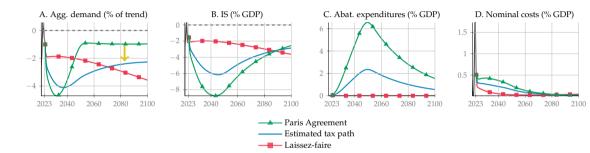
▶ Under Paris Agreement:

- ► The rise in carbon tax triggers a boost in abatement expenditures, and increases aggregate demand.
- ▶ Monetary policy dampens the boom by a real rate increase.
- ▶ Damages are stabilized, but let GDP 1% below the technological trend.



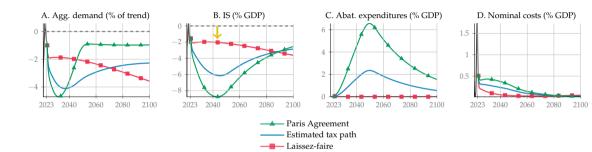
▶ Under Paris Agreement:

- ▶ The rise in carbon tax triggers a boost in abatement expenditure, and increases aggregate demand.
- ▶ Monetary policy dampens the boom by a real rate increase.
- ▶ Damages are stabilized, but let GDP 1% below the technological trend.

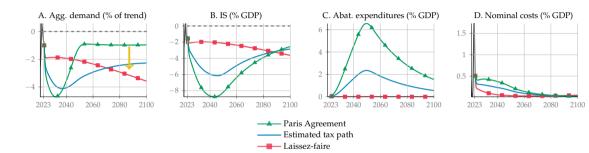


▶ Under Paris Agreement:

- ▶ The rise in carbon tax triggers a boost in abatement expenditure, and increases aggregate demand.
- ▶ Monetary policy dampens the boom by a real rate increase.
- ▶ Damages are stabilized, but let GDP 1% below the technological trend.



- ▶ Under Laissez-faire:
 - ▶ Monetary policy contains the surge in inflation by maintaining real rate high.
 - ► As damages grow, the IS permanently deteriorates aggregate demand.



- ▶ Under Laissez-faire:
 - ▶ Monetary policy contains the surge in inflation by maintaining real rate high.
 - ▶ As damages grow, the IS permanently deteriorates aggregate demand.

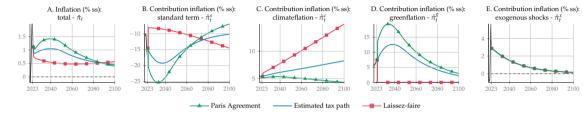
One can split the marginal cost into three term:

$$mc_{t} = \underbrace{\tilde{w}_{t}}_{\text{standard climateflation}} / \underbrace{\Phi(m_{t})}_{\text{elimateflation}} + \underbrace{\theta_{1,t}\mu_{t}^{\theta_{2}} + \tau_{e,t}\sigma_{t}(1-\mu_{t})\,\varepsilon_{e,t}}_{\text{greenflation}}, \tag{13}$$

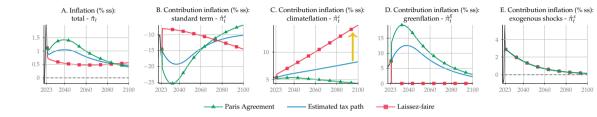
which allows us to break down inflation into 4 different forces:

$$\hat{\pi}_t \simeq \underbrace{\hat{\pi}_t^s}_{\text{standard term}} + \underbrace{\hat{\pi}_t^c}_{\text{climateflation}} + \underbrace{\hat{\pi}_t^g}_{\text{greenflation}} + \underbrace{\hat{\pi}_t^x}_{\text{exogenous shocks}}$$
(14)

with
$$\hat{\pi}_t = \pi_t - \pi_t^{\star}$$

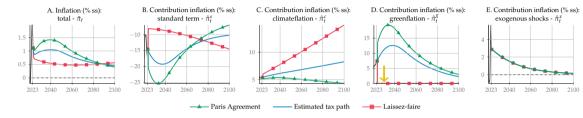


- ▶ Very different inflation dynamics between the 2 regimes.
- ▶ What drives this gap?



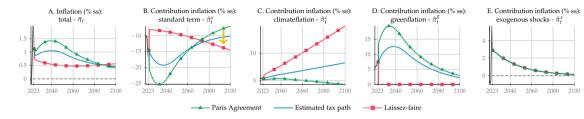
▶ Under Laissez-faire:

- ► The rising damage makes resources scarcer: ever growing inflation as long as planet warms.
- ▶ Disengagement from carbon policy makes carbon price to be zero.
- ▶ Standard term follows the recessionary forces from in-sample inflation, but decreases as climate grows.



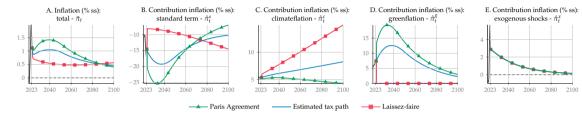
► Under Laissez-faire

- ► The rising damage makes resources scarcer: ever growing inflation as long as planet warms.
- ▶ Disengagement from carbon policy makes carbon price to be zero.
- ▶ Standard term follows the recessionary forces from in-sample inflation, but decreases as climate grows.



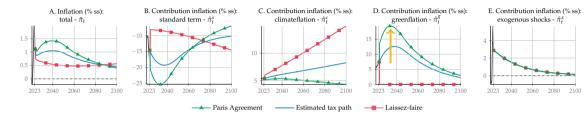
► Under Laissez-faire

- ► The rising damage makes resources scarcer: ever growing inflation as long as planet warms.
- ▶ Disengagement from carbon policy makes carbon price to be zero.
- ▶ Standard term follows the recessionary forces from in-sample inflation, but decreases as climate grows.



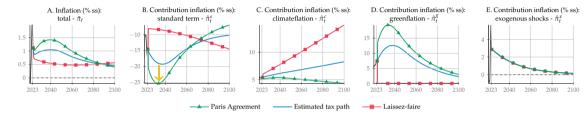
► Under Paris-Agreement:

- ► The immediate increase in carbon tax fuels inflation.
- ▶ But increasing abatement expenditures reduces both consumption and in turn the wealth effect on the labor supply.
- ▶ Reducing emissions also stabilizes damages and inflation.



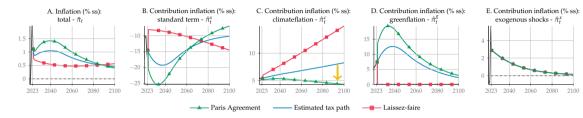
► Under Paris-Agreement:

- ► The immediate increase in carbon tax fuels inflation.
- ▶ But increasing abatement expenditures reduces both consumption and in turn the wealth effect on the labor supply.
- ▶ Reducing emissions also stabilizes damages and inflation.



► Under Paris-Agreement:

- ▶ The immediate increase in carbon tax fuels inflation.
- ▶ But increasing abatement expenditures reduces both consumption and in turn the wealth effect on the labor supply.
- ▶ Reducing emissions also stabilizes damages and inflation.



- ► Under Paris-Agreement:
 - ▶ The immediate increase in carbon tax fuels inflation.
 - ▶ But increasing abatement expenditures reduces both consumption and in turn the wealth effect on the labor supply.
 - ▶ Reducing emissions also stabilizes damages and inflation.

PLAN

- 1 Introduction
- 2 The NKC model
- 3 Estimation
- 4 The Anatomy of Green/Climateflation
- 5 Sensitivity analysis to alternative simple rules
- 6 Conclusion

SENSITIVITY ANALYSIS TO ALTERNATIVE SIMPLE RULES

► Monetary policy rule reads as:

$$\varsigma_{r,t} = \varsigma_{r,t-1}^{\rho} \left[\frac{\pi_t^*}{\pi} \left(\frac{\pi_t}{\pi_t^*} \right)^{\phi_{\pi}} \varsigma_{y,t}^{\phi_y} \right]^{1-\rho} \left(\frac{\pi_t^*}{\pi_{t-1}^*} \right)^{\phi_*} \varepsilon_{r,t},$$

► Baseline policy rule:

$$\varsigma_{r,t} = r_t/r, \ \varsigma_{y,t} = y_t/y_t^n.$$

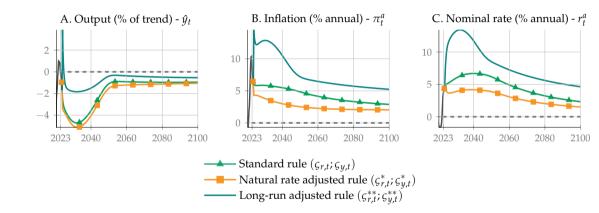
► Natural adjusted rule:

$$\varsigma_{r,t}^* = \frac{r_t}{r_{n,t}}, \ \varsigma_{y,t}^* = \frac{y_t}{y_t^n}$$

► Long run adjusted rule:

$$\varsigma_{r,t}^{**} = \frac{r_t}{r}, \ \varsigma_{y,t}^{**} = \frac{y_t}{y}$$

SENSITIVITY ANALYSIS TO ALTERNATIVE SIMPLE RULES



PLAN

- 1 Introduction
- 2 The NKC model
- 3 Estimation
- 4 The Anatomy of Green/Climateflation
- 5 Sensitivity analysis to alternative simple rules
- 6 Conclusion

CONCLUSION

- ► This paper has developed a four-dimensional New Keynesian model with climate externality.
- ➤ This framework allows us to identify two phenomena faced by the central bank:
 - ▶ The first one is a persistent negative supply shock called *climateflation* that arises from the deleterious effects of climate change itself:
 - ► The second one is a transitory positive demand shock called *greenflation* that appears following the implementation of a climate mitigation policy;
- Ongoing work: analyzing the conduct of monetary policy in the wake of those two phenomena.

Thank you for your attention

- Annicchiarico, B. and Di Dio, F. (2015). Environmental policy and macroeconomic dynamics in a New Keynesian model. Journal of Environmental Economics and Management, 69:1–21.
- Barrage, L. and Nordhaus, W. D. (2023). Policies, projections, and the social cost of carbon: Results from the dice-2023 model. Technical report, National Bureau of Economic Research.
- Bilbiie, F., Ghironi, F., and Melitz, M. (2012). Endogenous entry, product variety, and business cycles. Journal of Political Economy, 120:304–345.
- Coenen, G., Priftis, R., and Lozej, M. (2023). Macroeconomic effects of carbon transition policies: An assessment based on the ecb's new area-wide model with a disaggregated energy sector.
- Del Negro, M., Di Giovanni, J., and Dogra, K. (2023). Is the green transition inflationary? FRB of New York Staff Report, (1053).
- Dietz, S. and Venmans, F. (2019). Cumulative carbon emissions and economic policy: in search of general principles. Journal of Environmental Economics and Management, 96:108–129.
- Fair, R. and Taylor, J. (1983). Solution and maximum likelihood estimation of dynamic nonlinear rational expectations models. Econometrica, 51:1169–1185.

- Ferrari, A. and Nispi Landi, V. (2022). Will the green transition be inflationary? expectations matter.
- Golosov, M., Hassler, J., Krusell, P., and Tsyvinski, A. (2014). Optimal taxes on fossil fuel in general equilibrium. *Econometrica*, 82:41–88.
- McKay, A., Nakamura, E., and Steinsson, J. (2017). The Discounted Euler Equation: A Note. *Economica*, 84(336):820–831.
- Nordhaus, W. (1992). The 'DICE' model: Background and structure of a dynamic integrated climate-economy model of the economics of global warming. Technical report, Cowles Foundation for Research in Economics, Yale University.
- Schnabel, I. (2022). A new age of energy inflation: climateflation, fossilflation and greenflation. In Remarks at a panel on "Monetary Policy and Climate Change" at The ECB and its Watchers XXII Conference, Frankfurt am Main, volume 17.
- Smets, F. and Wouters, R. (2007). Shocks and frictions in US business cycles: A Bayesian DSGE approach. *American Economic Review*, 97:586–606.
- Woodford, M. (2003). Interest and prices.