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Abstract

Data combination and analytics can generate valuable insights for firms and society
as a whole. Multiple firms can do so by means of new technologies that bring the
analysis to the data (“analytics sharing”) or, more conventionally, by sharing the data
(“data sharing”). Analytics sharing technologies are gaining traction because of their
advantages in terms of privacy, security, and environmental impact. We present a
model that allows us to study the economic incentives generated by these technologies
for both firms and a platform facilitating data combination. First, we find that the
platform chooses data sharing unless the insights delivered by the analytics sharing
technology are sufficiently superior to those associated to the data sharing technol-
ogy for a given combination of datasets. Second, we show that analytics sharing
results in a higher total data contribution than data sharing under general conditions.
Third, we highlight scenarios in which, in presence of data externalities, there can be a
misalignment between the choice of the platform and the preference of a social planner.
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1 Introduction

The data generated by businesses and individuals in their every day activities have a great
value, which goes beyond the economic impact. Combining and using data responsibly is
essential for disparate matters such as predicting cancer or designing better products and
services. To exploit data at their maximum potential, policy makers are experimenting the
best ways to guarantee the necessary control without deterring their use for the benefit of
society (AEPD, 2023).

Technological innovation can help achieve this objective. It is, in fact, increasingly common
for multiple firms to combine their datasets in order to benefit from the economies of scale
and scope in data aggregation that a common and richer dataset can bring about. One of
the main drivers of inter-firm data combination is the training of artificial intelligence (AI)
models, which can result in enhanced analytics. In this context, “federated learning” is a
rising technology that allows to train algorithms by ‘bringing the analysis to the data’. This
innovative type of technological solution, which we label “analytics sharing”, provides an
alternative to more established practices such as “data sharing”, which involves sharing
the data with other parties.

Analytics sharing approaches have benefits that make them particularly appealing to
policy makers. For example, there are well documented advantages in terms of privacy
and security (Mothukuri et al., 2021; Blanco-Justicia et al., 2021; Ma et al., 2020), and these
technological solutions can also reduce the environmental footprint of AI models training
(Qiu et al., 2023; Yousefpour et al., 2023; Guler and Yener, 2021; Qiu et al., 2020).

While these novel data-combination technologies are being widely studied from a technical
perspective, the economic drivers and implications of choosing a technology that brings the
analysis to the data, like analytics sharing, over one that implies sharing the data remain
understudied. What are the economic incentives driving firms to choose one technology
over the other? Can one of these technologies prompt firms to combine more data than
the other? In presence of externalities, positive or negative, that data may generate, under
which conditions is the private choice of a data-combination technology socially optimal?

This article provides a first answer to these questions by analyzing how the characteristics
of each type of data-combination technology act on firms’ incentives to combine data, and
the welfare implications of their choices. The analysis builds upon a model in which a
platform can facilitate data combination by choosing between data sharing and analytics
sharing. Firms, with possibly heterogeneous data endowments, decide whether or not
to join the platform and, if so, how much data to contribute to it. The main benefit for
firms is to access insights from enhanced analytics, whereas both firms and the platform
face costs from combining data through the platform. Both benefits and costs can be
technology-specific.
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A fundamental difference between the two technologies is the following. Under data
sharing, firms can exploit the joint dataset along with all the other data they have, regardless
of how much data they decided to share. The dataset can be directly accessed so that
analytics can be performed in-house. On the contrary, under analytics sharing, firms access
analytics services from the platform, which extracts insights from the data made available
by firms to train the platform’s algorithm. In this case, there is no direct data transfer from
firms to the platform; rather, it is the platform’s centralized data analytics service that
“travels” to the data firms have contributed. Given that a specialized platform’s centralized
analytics service are likely to be more efficient than firms’ in-house analytics, we focus on
the scenario in which analytics sharing provides better analytics than data sharing.

The analysis of the model delivers three major findings. First, a platform with complete
information about firms’ data endowments opts for analytics sharing only if it guarantees
a sufficiently higher level of analytics than data sharing. This finding derives from the
balance of two effects: the endowment effect, that favors data sharing, as all data in possession
of the firm can be used to extract analytics, and the data analytics effect that favors analytics
sharing. The baseline model considers a platform using personalized and public contracts.
Similar findings hold if we consider alternative contractual agreements that preserve
anonymity. Interestingly, we obtain that analytics sharing is more likely to be adopted in
the presence of uniform public contracts, while the opposite holds for secret personalized
contracts.

Second, we compare data contributions under data sharing and analytics sharing. We
find that analytics sharing leads to higher equilibrium data contributions under general
conditions that appear to be consistent with recent studies investigating economies of scale
and scope in data combination. A key mechanism behind this finding is that, under data
sharing, firms can benefit from the data contributed by other firms even if they do not
contribute data themselves, whereas analytics sharing requires that data be contributed
to be combined with other firms’ data. This results in a lower marginal benefit from
contributing data under data sharing than under analytics sharing.

Third, we analyze the role of the externalities that combining data can generate, and show
that the choice of a social planner may not be aligned with the platform’s. For example, if
there are positive data externalities not accounted for by the platform and the superiority
of data analytics under analytics sharing is relatively weak, then data sharing may be
privately chosen although the social planner has a preference for analytics sharing. The
opposite may occur, mutatis mutandis, in case of negative externalities.

We also extend our analysis to account for the potential occurrence of data leakages. We
consider two scenarios, depending on whether the leakage has a technology-specific impact
on firms or on the externality. When data leakage negatively affects firms’ profits, it is
reasonable to assume that contributing data is more costly under data sharing, which
requires data transfers from firms to the platform. As a consequence, analytics sharing
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is more likely to be adopted and to generate more data contributions. Instead, when
data leakage affects (negative) externalities, the private decision of the platform does not
change, but analytics sharing is more likely to be favored by the social planner as it limits
third-party access to data.

Our analysis has relevant policy implications. For given efficiency levels of data analytics,
there is no one-size-fits-all optimal data-combination technology. Indeed, policymakers
should encourage the adoption of analytics sharing in industries with high data endow-
ments and strong positive data externalities. Conversely, they should incentivize data
sharing technologies in industries with low data endowments and strong, negative data
externalities. In the remaining cases, no intervention is needed, as the market will adopt
the socially-optimal technology. Nevertheless, policymakers focused on strengthening
privacy and security of data-combination technologies should design policies aimed at
improving the efficiency of analytics sharing’s generated insights with respect to data
sharing. Doing so would increase the probability of analytics sharing being the socially-
and privately-optimal technology whether data externalities are positive or negative.

Analytics sharing and federated learning. Data combination solutions for data or ana-
lytics sharing have found promising applications in a number of sectors in recent years,
ranging from mobility (e.g., to develop mobility-as-a-service solutions and to develop
autonomous driving technologies), health (e.g., by advancing research on vaccines, treat-
ments, and diagnosis) and to the aviation sector (e.g., to facilitate operational-, commercial-,
and maintenance-related inter-firm coordination along the value chain).

The ascent of analytics sharing is tightly linked to technological advances such as Federated
Learning, which is an innovative machine learning technique that trains an algorithm via
multiple independent sessions. Unlike traditional machine learning, where all the data
must be gathered together, Federated Learning makes it possible to extract knowledge
from data distributed across different organizations. For this machine learning technique
to be adopted, firms must make data available without sharing that data or moving it to a
central location. This can be done by allowing data scientists and machine learning experts
to run advanced analytics and train models in a federated (or distributed) manner.

Federated Learning can then be considered as the main driver of a potential shift in the data-
combination paradigm from data sharing to analytics sharing. Figures 1a and 1b report
the growth of Federated Learning in the last decade, in terms of scientific publications and
patents, interest on Google search, and grants and tenders in the EU. The trends clearly
illustrate how private firms and public actors are gaining interest in these technologies
and are starting to implement it.
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(a) Number of scientific publications and patents filed containing the term “federated
learning” for years 2012-2022.
Source: own elaboration based on Web of Science and Google Patents.

(b) Cumulative European Commission grants and tenders containing the term “federated
learning” (left axis) and annual average of the Google Trends Interest Index for the search
term “federated learning” (right axis) for years 2012-2022.
Source: own elaboration based on European Commission and Google Trends. The Google Interest
index equals 100 at the peak monthly popularity of the term.

For example, a consortium of firms including WeBank, Tencent, Huawei, and Intel collab-
orate through the Federated AI Technology Enabler (FATE) project to train AI models
with their combined datasets while protecting data security and privacy. Another recent
example is the ACCESS program funded by the European Medicines Agency. It uses
federated learning on multiple countries’ institutions to “monitor benefits, coverage and
safety risks of new COVID-19 vaccines in the post-authorisation stage” at a continental
scale. Still within the health sector, the MELLODDY consortium gathers ten pharmaceu-
tical companies, universities start-ups and the tech company Nvidia to train a common
drug-discovery model without sharing the confidential datasets of the individual partners.
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One of the first experiments with Federated Learning may prove insightful to better
understand the idea behind this new approach to data combination. The experiment
involved sending algorithms to mobile phones in order to improve next-word prediction
models of Google’s Gboard keyboard (McMahan et al., 2017; Hard et al., 2018). The
fundamental difference between this technique and more standard approaches used until
then, is that messages no longer had to be sent to a central server. The experiment led to
more accurate and faster predictions. This is a typical application of horizontal Federated
Learning, where the algorithms improve when each device is used.

In other situations, as in health applications, different entities possess different records
about the same individuals. Learning requires that these pieces of information are put
together. Vertical Federated Learning can avoid that these data remain siloed. The institu-
tions need to identify common patients without sharing names or other identifiers, using
secure multi-part computing techniques (Bringer et al., 2013). Then, each entity has an
algorithm that processes its data locally, extracting the necessary insights (Liu et al., 2022).
Our approach is sufficiently general to encompass both scenarios.

Structure. The rest of the article is structured as follows. Section 2 discusses how the
article relates to other streams of literature. Section 3 develops a baseline model of data
combination with data sharing and analytics sharing technologies. Section 4 provides our
main results. Section 5 extends the baseline model to analyze the impact of anonymity in
contracting. Section 6 considers the possibility of data leakages. Section 7 discusses some
policy implications of our findings. Section 8 concludes.

2 Related literature

Data gathering, use, sharing and re-use play a crucial part in today’s highly digitized
economy. For example, it is estimated that the contribution of the data market to the
EU’s economy in 2017 was 335.6 billion euros, corresponding to 2.4 per cent of total GDP
(Frontier Technology Quarterly, 2019). As data are mostly non-rival, Jones and Tonetti
(2020) study the positive externalities of sharing personal data, and how they can boost
macroeconomic growth. Farboodi et al. (2019) and Farboodi and Veldkamp (2021) consider
the implications of data generated by firms as information, and their implications for firms’
growth and size distribution in both a partial and general equilibrium perspective.

Our article takes a different approach to focus on the microeconomic incentives that firms
face when deciding whether to combine (some of) their data in order to exploit a joint
dataset through a platform. In that respect, it mainly relates to the literature on data
sharing between firms. Data sharing can be “vertical” or “horizontal”. It is vertical when
it occurs through sales by data brokers to downstream firms. Bergemann et al. (2022),
Ichihashi (2021), Gu et al. (2022) and Abrardi et al. (2023), among others, study upstream
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competition, or lack thereof, between data brokers. Data need not to be sold to one or to
all firms: Abrardi et al. (2022) and Delbono et al. (2023) show that data may be sold only
to a subset of competitors, whereas Bounie et al. (2021) identify the optimal partition of
data to be sold to downstream competitors.

Horizontal sharing takes place at the same market level. Information sharing between
competing firms has been studied, for example, in duopoly retail markets (Liu and Serfes,
2006; Jentzsch et al., 2013). Customer-specific data are gathered in a first market interaction
and are used for price discrimination in future ones. Data sharing can be unilateral or
bilateral. A related problem has been studied in credit markets (Padilla and Pagano,
1997; Pagano and Jappelli, 1993; Gehrig and Stenbacka, 2007, inter alia). When sharing
data, lenders face a trade-off between reducing adverse selection and facing enhanced
competition. Data are shared through a “credit bureau” that resembles our platform.

Platforms facilitate data sharing beyond the financial sector. Carballa Smichowski (2018)
studies mobility-as-a-service (MaaS) platforms, that give consumers a one-stop shop to
compare routes and purchase multimodal transportation services. Joining the platform,
transportation service providers trade off a wider market reach with increased competition,
particularly from providers with more overlapping routes. Martens et al. (2021) study
data sharing between sellers and a hybrid platform, i.e., that acts both as an intermediary
and as a seller. To tackle the platform’s data advantage, they propose a new data sharing
mode, “in-situ” data access, that involves the seller to use its own algorithms on its data
generated on the platform, and compare it to data portability to a rival platform.

Despite its similarities with this body of work, our analysis differs in many respects. For
example, our model is general enough to encompass the sharing of different types of data.
On top of that, our focus is on the different properties of two data-combination technologies.
Furthermore, we analyze multilateral data sharing through a platform rather than dyadic
data sharing between firms. Finally, we abstract away from any form of downstream
market competition between the firms contributing data to the platform.

There is a vast literature comparing alternative data-combination technologies in the
computer science and engineering fields. Drainakis et al. (2023) and AbdulRahman et al.
(2020), for example, provide reviews of the literature comparing federated learning and
traditional centralized algorithm training techniques. In technology law, Mattioli (2017)
has posed the “data pooling problem”, and has shown that potential pooling contributors
may be impeded by reputational and professional concerns, even if the goal is as high and
socially valuable as optimizing cancer treatment.

At the same time, more limited is the number of studies on multi-firm data combination
from an economics perspective. In this perspective, the closest work to ours is Calzolari
et al. (2023). In both their model and ours, there is a monopolistic aggregator that has to
create incentives for data-holding firms to decide whether to combine their data or not. If a
firm decides to do so, it has to choose how much data to contribute, at a cost proportional
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to this contribution. The aggregator, in turn, uses a per-unit-of-data transfer to incentivize
contributions and a fixed fee to extract surplus. Notwithstanding these similarities, their
article differs substantially from ours both in its focus and research questions. Indeed,
they consider a situation in which producers own machine-generated non-personal data
and there is value in combining datasets in order to obtain the same machine learning
analytics. Our article, instead, focuses on the economic incentives resulting from different
technological options for combining data and sheds light on the determinants of the choice
between data sharing and analytics sharing and the potential inefficiencies associated to
this choice.

Finally, our article assumes that firms’ benefits from data analytics increase when they
combine their datasets because doing so generates economies of scale and scope. In that
respect, it relates to a recent strand of empirical literature that validates this assumption by
studying the impact of the number of observations in a dataset on prediction accuracy in
various setting such as search engines (Schäfer and Sapi, 2023; Klein et al., 2022; Chiou and
Tucker, 2017; McAfee et al., 2015), sales forecast (Bajari et al., 2019), user jokes rating (Lee
and Wright, 2023), consumer profiling (Neumann et al., 2019), news recommendations
(Claussen et al., 2023) and advertisement (Agrawal et al., 2018). Hocuk et al. (2022), in
turn, provide an empirical measurement of “economies of scope in data aggregation”. They
study how the increase in the number of socio-economic variables in a dataset increases
the accuracy of prediction of health-related outcomes while the number of observations
(individuals) remains constant.

3 A model of data combination with data sharing and analytics
sharing

We consider an economy in which there are N(≥ 2) firms and one data platform. The goal
is to analyze the platform’s and the social planner’s choice between two alternative and
technically feasible options for combining data and extracting valuable insights from it,
and derive the conditions under which these choices may differ. To this end, we focus on
the previously introduced two technologies for data combination, data sharing and analytics
sharing. We index them as t = D,A, and describe each in detail in what follows.

Firms. The firms, i = 1, . . . , N are heterogeneous in their data endowments, yi. The vector
of data endowments is y. Define as x = (x1, . . . , xN ) the vector of all data contributed by
firms to the platform, and as x−i the vector of all contributed data apart from the ones of
firm i. Firms joining the platform benefit from insights from the application of analytics
on the combined data. We capture these benefits through the function Bt

i(·), increasing in
all its arguments, which we discuss in detail below when introducing the two technology
options for data combination.
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All firms face a cost of contributing data to the platform that depends on their data
contribution. This cost is captured by the function gti(xi), which is increasing in xi. In
principle, the technology can affect both the effectiveness and the costs of each firm, which
explains the superscript t. If a firm decides not to join the platform, its outside option is
normalized to 0 and it is the same for all firms.

Platform. The platform aims to maximize its profits. To start with, we assume that the
platform perfectly knows the firms’ characteristics and can offer each firm a two-part-tariff
contract. Under the chosen data-combination technology t, this amounts to offering to
each firm: (i) f ti , a fixed fee to join the platform, and (ii) mt

i, a transfer (that, a priori, can
be positive or negative) per unit of data contributed to the platform. Denote as f and m

the vectors of the fixed fees and per-unit transfers, respectively.

The platform faces an operational cost to manage all the data that has been contributed
by the firms, which is captured by the function Gt(x) increasing in all its arguments. The
platform’s profit function may be written as:

πt0(x, f ,m) ≡
∑
i

[
f ti −mt

ixi
]
−Gt(x).

Technologies. We consider the two technologies of data combination introduced above.
Both technologies allow to combine data and obtain insights from it. However, each
generates different incentives to contribute data.

Let us first consider data sharing. Through this technology, the platform provides a data-
combination service (i.e., access to the contributed data from other firms) to firms. The
characterizing feature is that, since firms can access the contributed data from other firms,
they can do data analytics in-house with it. Hence, a firm can also use its full data endowment
to extract value, even from the share that it has not contributed to the platform.

Therefore, the firms that join the platform obtain insights from the combination of two
types of data. On the one hand, regardless of how much data they have contributed to the
platform, all firms can exploit the data contributed by other firms to the platform, x−i, to
get insights from it. On the other hand, the data contributed by other firms are combined
with a firm’s own data endowments, yi. The combination of these two data components
generates the benefits that can be harvested from data analytics. Bringing it all together, in
presence of the data sharing technology, the firms’ profit functions are:

πDi (yi,x, f
D
i ,m

D
i ) ≡ BD

i (yi,x−i)− gDi (xi) +mD
i xi − fDi . (1)

Second, let us consider analytics sharing. In presence of this technology, the platform
provides a centralized data analytics that is performed on the data contributed by the firms.
Importantly, under analytics sharing, firms cannot access the data contributed by other
firms. A joining firm can only use the platform’s analytics, which is trained on the overall
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data available to the algorithm, including the data endowment the firm has made available
to the platform.

Therefore, on the one hand, as under the data sharing technology, all firms gain insights
through the availability of the platform’s data contributed by other firms, x−i. On the
other hand, and contrary to the previously discussed technology, these data have to be
combined with the share of its data endowment that it has contributed to the platform
(xi) in order to obtain data analytics’ insights. Hence, in presence of an analytics-sharing
technology, the firms’ profit functions are:

πAi (x, fAi ,m
A
i ) ≡ BA

i (xi,x−i)− gAi (xi) +mA
i xi − fAi . (2)

Timing. The game unfolds as follows.

1. The platform chooses the data combining technology t, t = D,A.

2. The platform chooses its contracts, i.e., (f t,mt).

3. The firms decide whether to join the platform or not and, if they do, the amount of
data to contribute xti.

Welfare. Data can create (positive or negative) externalities that firms and the platform
may fail to take into account. For example, shared health data that help developing a vaccine
imply societal benefits that go beyond the ones accruing to the developing consortium.1
Conversely, leakages of personal data due for example to cybersecurity attacks may lead to
serious privacy damages. Sharing data and analytics has also energy intensive data storing
and computational requirements, which can create severe environmental footprints.

In presence of externalities, the total surplus generated by data sharing and analytics
sharing are respectively given by:

WD(y,x) ≡ ΠD(y,x) + ED(y,x),

and:
WA(x) ≡ ΠA(x) + EA(x),

where Πt(·) is the industry profit (i.e., the sum of the profit of the platform and of the
firms) and Et(·) is a function capturing the data externalities generated by data. Further
note that:

1Survey evidence seems suggestive of a lack of internalization: in the case of targeted cancer treatment,
Mattioli (2017) reports that between the most typical questions, from healthcare firms and professionals
considering to contribute to data-combination projects, feature the following: “What is the value of sharing this
data?” and “What is the value for me to share my data?”. One interviewee, a prominent academic researcher,
stated that the message “it’s good for the World” is often not sufficient to convince potential contributors.
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ΠD(y,x) ≡
∑
i

[
BD

i (yi,x−i)− gDi (xi)
]
−GD(x),

ΠA(x) ≡
∑
i

[
BA

i (xi,x−i)− gAi (xi)
]
−GA(x).

4 Analysis

Let us start by considering stage 3. Under the data sharing technology, recall that the firms’
profits are as in Equation (1). Conditional on joining the platform, firm i contributes an
amount xDi (mD

i )—independent of x−i—which solves the following first order condition
(henceforth, FOC)

mD
i = gD

′
i (xi). (3)

Firm i participates if and only if:

πDi (yi, x
D
i (mD

i ),x−i, f
D
i ,m

D
i ) ≥ 0.

Consider now the analytics sharing technology. The firms’ profits are as in Equation (2).
Conditional on joining the platform, firm i contributes an amount xi = BRA

i (x−i,m
A
i ),

which solves the following FOC:

∂BA
i

∂xi
(xi,x−i) +mA

i = gA
′

i (xi). (4)

Assume that the system of equations xi = BRA
i (x−i,m

A
i ), i = 1, . . . , N has a unique

interior solution xAi (mA
i ).

Comparing FOCs (3) and (4) reveals that, for a given per-unit transfer mD
i = mA

i = mi,
a firm’s marginal benefit from contributing data (i.e., the left-hand side of the FOC) is
higher under analytics sharing than under data sharing. The intuition behind this is as
follows. Under data sharing, the only benefit that a firm derives from contributing data is
the payment received from the platform. Under analytics sharing, there is a second benefit
stemming from the fact that a necessary condition for a firm’s own data to be combined
with other firms’ data is that this data is contributed to the platform. This makes the benefit
from an additional unit of contributed data greater under analytics sharing.

Consider now stage 2. Let us assume that the industry profit function Πt is concave in x

and denote xt∗ the unique vector of data contributions that maximizes Πt under technology
t = D,A. Under complete information, it is straightforward that the optimal two-part
contract (f t∗, mt∗) is such that: xti(mt∗

i ) = xt∗i , and the participation constraints of all firms
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are binding. The two-part contract chosen by the platform induces data contributions that
maximizes the industry profits, and such profits are fully captured by the platform.

At stage 1, the platform compares

ΠD(y,xD∗) = max
x

ΠD(y,x)

with
ΠA(xA∗) = max

x
ΠA(x).

This boils down to determining the sign of

ΠD(y,xD∗)−ΠA(xA∗) =∑
i

[(
BD

i (y,xD∗)−BA
i (xA∗)

)
−
(
gDi (xD∗i )− gAi (xA∗i )

)]
−
[
GD(xD∗)−GA(xA∗)

]
. (5)

To focus on the role of asymmetric benefits, we assume that (data-related) costs endured
by both the firms and the platform are the same under both technologies:

Assumption 1 (Cost Symmetry). gDi (·) = gAi (·) = gi(·) and GD(·) = GA(·) = G(·).

As per the asymmetric benefits related to the two different technologies, we assume that
the performance of data analytics under analytics sharing is (weakly) superior than under
data sharing. Specifically, we assume that:

Assumption 2 (Superiority of data analytics under analytics sharing). BD
i (yi,x−i) =

Bi(yi,x−i) and BA
i (xi,x−i) = (1 + αA)Bi(xi,x−i) where αA ≥ 0.

Assumption 1 improves the tractability of our analysis by allowing us to focus on the role
of the benefits of different technologies. In Assumption 2, instead, the parameter αA can
be interpreted as a measure of the performance of data analytics under analytics sharing
relative to data sharing.

The assumption builds upon the fact that, under analytics sharing, the platform provides
data combination and centralized data analytics services. Under data sharing, on the other
hand, analytics is performed directly by the firms. Hence, under analytics sharing the
platform gains more specialized knowledge regarding data analytics, that can grow with
the number of data-combination consortia it manages.2 Therefore, one can expect the
platform’s centralized analytics service to be more efficient than the analytics firms do
in-house.

2For example, NVIDIA’s Clara AI toolkit pilot program allows more than 38,000 doctors to use AI for
diagnostic radiology building on federated learning. This AI-driven service’s quality improves with the total
data medical professionals contribute.
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In some applications, Assumption 2 can also relate to the higher accuracy of data analytics
that travel to the data vis-à-vis data analytics relied upon in conventional data sharing. The
superior performance of analytics sharing has been documented, for example, in keyboard
word prediction(Hard et al., 2018), image recognition (Chou et al., 2021), and various
health applications (Lee and Shin, 2020; Xiong et al., 2021; Li et al., 2019). Finally, given
the great policy and commercial interest in analytics sharing solutions, it is likely that their
technical performance will improve further in the years to come.

We suppose hereafter that Assumptions 1 and 2 hold unless stated otherwise.

We can express (5) as:

ΠD(y,xD∗)−ΠA(xA∗) = ΠD(y,xD∗)−ΠD(xD∗,xD∗)︸ ︷︷ ︸
data endowment effect≥0

+ ΠD(xD∗,xD∗)−ΠA(xA∗)︸ ︷︷ ︸
data analytics effect≤0

.

The data endowment effect captures the fact that the data sharing technology allows firms to
combine the data shared by other firms with all their data endowment, while the analytics
sharing technology does not. This effect is (weakly) positive (i.e., it favors data sharing)
and increasing in the data endowments yi. The data analytics effects captures the superiority
of data analytics under analytics sharing. This effect is (weakly) negative (i.e., it favors
analytics sharing) and is increasing in αA. To see why it is negative, note that:

ΠD(xD∗,xD∗) ≤
∑
i

[
(1 + αA)Bi(x

D∗
i ,xD∗

−i )− gi(xD∗
i )
]
−G(xD∗) ≤ max

x
ΠA(x) = ΠA(xA∗).

The next proposition shows that analytics sharing is chosen if and only if data analytics
under this technology is sufficiently more performant than under data sharing, and that
this condition is more stringent the greater data endowments are.

Proposition 1 (Technological Choice). There exists a threshold α̃A(y) ≥ 0 such that the
platform chooses the analytics sharing technology if and only if αA ≥ α̃A(y). Moreover, α̃A(y) is
increasing in firms’ data endowments yi.

Proof: See Appendix A.1

Data contributions. The marginal net benefits of increasing data contribution respec-
tively under data sharing and under analytics sharing are given by:

∂ΠD(y,x)

∂xi
=
∑
j 6=i

∂BD
j

∂xi
(yj ,x−j)︸ ︷︷ ︸
>0

−g′i(xi)−
∂G

∂xi
(x);

∂ΠA(x)

∂xi
=
∂BA

i

∂xi
(xi,x−i)︸ ︷︷ ︸
>0

+
∑
j 6=i

∂BA
j

∂xi
(xj ,x−j)︸ ︷︷ ︸
>0

−g′i(xi)−
∂G

∂xi
(x).

12



By substracting these two marginal benefits we obtain:

∂ΠA(x)

∂xi
− ∂ΠD(y,x)

∂xi
=
∂BA

i

∂xi
(xi,x−i)︸ ︷︷ ︸
>0

+
∑
j 6=i

∂BA
j

∂xi
(xj ,x−j)−

∂BD
j

∂xi
(yj ,x−j)︸ ︷︷ ︸

≷0

 .

Under Assumption 2, it follows that:

∂ΠA(x)

∂xi
− ∂ΠD(y,x)

∂xi
= (1 + αA)

∂Bi

∂xi
(xi,x−i)︸ ︷︷ ︸
>0

+
∑
j 6=i

∂Bj

∂xi
(xj ,x−j)−

∂Bj

∂xi
(yj ,x−j)︸ ︷︷ ︸

≷0


+αA

∑
j 6=i

∂Bj

∂xi
(xj ,x−j)︸ ︷︷ ︸
>0

.

Notice that:
∑
j 6=i

[
∂Bj

∂xi
(xj ,x−j)−

∂Bj

∂xi
(yj ,x−j)

]
> 0(< 0) if ∂2Bj

∂xj∂xi
< 0(> 0) for any i 6= j.

Moreover, ∂2Bj

∂xj∂xi
is negative when Bj is submodular in (xi, xj), and positive when it is

supermodular in (xi, xj). As a consequence, if αA > 0 and Bj is weakly submodular for
all j, then ∂ΠA(x)

∂xi
≥ ∂ΠD(y,x)

∂xi
. This, combined with the fact that Πt is concave in x for

t = D,A, implies that, for a given x−i, the optimal data contribution for firm i under
analytics sharing xAi (x−i) is greater than its counterpart under data sharing xDi (y,x−i). It
can be easily shown that this property also holds if the benefit functions are supermodular
as long as they are not “too supermodular”.

The following proposition goes one step beyond the above analysis by showing that
analytics sharing leads to more equilibrium data contributions than data sharing under two
relatively mild assumptions on the profit and benefit functions.

Proposition 2 (Data Contributions). Analytics sharing generates more equilibrium data contri-
butions than data sharing (i.e., xA∗i > xD∗i for any i) under the following assumptions: (i) ΠA(x)

and ΠD(y,x) are supermodular in (xi, xj) for any i 6= j, i.e., ∂2ΠA(x)
∂xj∂xi

> 0 and ∂2ΠD(y,x)
∂xj∂xi

> 0,

(ii) Bj is not “too supermodular” in (xi, xj), i.e., ∂2Bj

∂xj∂xi
< k̃ =

mini minx
∂Bi
∂xi

(xi,x−i)∑
j yj

for any x
and any i and j such that i 6= j.

Proof: See Appendix A.2

Proposition 2 provides conditions under which the intuition that contributing a unit of
data is more valuable under analytics sharing than under data sharing discussed in the
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analysis of stage 3 (for a given per-unit of transfer) remains true in equilibrium when
the per-unit of transfer is endogenized under both regimes. The reasoning behind this
proposition proceeds in two steps.

First, as shown in the analysis preceding the proposition, the condition that the benefit
functions are not too supermodular3 (i.e. there are no strong economies of scope in data
combination) ensures that contributing an additional unit of data leads to a higher increase
in profits under analytics sharing than under data sharing for given contributions by the
other firms. The requirement that the benefit function is not too supermodular appears to
be in line with recent empirical evidence on data combination and the returns to machine
learning analytics. Indeed, several studies have identified increasing returns to scale and
scope in data combination only up to a certain amount of data contributed (Hocuk et al.,
2022; Schäfer and Sapi, 2023; Lee and Wright, 2023).

Once it is established that the marginal increase in profits from contributing data is higher
under analytics sharing than data sharing, it remains to show that this leads to higher
equilibrium data contributions. A sufficient condition for this to be true is that the profit
functions satisfy the supermodularity property.

We assume in the remainder of this section that conditions (i) and (ii) of Proposition 2
hold, meaning that analytics sharing generates more data contribution than data sharing.

Welfare implications. As we have shown above, the privately optimal regime is deter-
mined by comparing ΠD(y,xD∗) and ΠA(xA∗). The socially optimal (second-best) regime
is instead determined by comparing ΠD(y,xD∗) + ED(y,xD∗) and ΠA(xA∗) + EA(xA∗).

We focus here on the special case in which ED(y,x) = EA(x) = E(x) = e · h(x) for any x

where e > 0 is a scale parameter that captures the strength of data externalities and h(·) is
monotonic in all xi, with h(0) = 0.

Consider first the case of positive data externalities (i.e., ∂h
∂xi

> 0 for all i). In this case, if
the privately optimal technology is the one that generates the largest data contributions
(that is, under our maintained assumption that conditions (i) and (ii) of Proposition 2
hold, analytics sharing), then it is also socially optimal. However, if the privately optimal
technology is the one that generates the smallest data contributions (that is, under the same
conditions, data sharing), then there is a potential for divergence between the privately
optimal and socially optimal choice of technology. This is because the privately optimal
technology generates less positive externalities than the other.

Consider now the case of negative data externalities (i.e., ∂h
∂xi

< 0 for all i). In this case, if
the privately optimal technology is the one that generates the smallest data contributions
(that is, data sharing), then it is also socially optimal. However, if the privately optimal

3This encompasses both the case in which the functions are submodular and the one in which they are
“moderately” supermodular.
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technology is the one that generates the largest data contributions (that is, analytics
sharing), then then there is again a potential for divergence between the privately optimal
and socially optimal choices, this time because the privately optimal technology generates
more negative externalities than the other one.

The following proposition provides necessary and sufficient conditions for the privately
optimal technology to coincide with the socially optimal one.

Proposition 3. If data externalities are positive, then there exists a threshold e+ > 0 such that
the privately and socially optimal technologies coincide if and only if α ≥ α̃A or e ≤ e+. If data
externalities are negative, then there exists a threshold e− > 0 such that the privately and socially
optimal technologies coincide if and only if α ≤ α̃A or e ≤ e−.

Proof: See Appendix A.3

Proposition 3 shows that there are two cases in which the socially optimal technology
differs from the privately optimal one. First, if the superiority of data analytics under
analytics sharing is relatively limited and data externalities are positive and strong enough,
the platform chooses data sharing whereas the social planner prefers analytics sharing.
Second, if data analytics are substantially superior under analytics sharing than under data
sharing and data externalities are negative and strong enough, then the platform chooses
analytics sharing whereas the social planner prefers data sharing.

5 Data sharing and analytics sharing under anonymity

In the baseline model, the platform uses personalized and public contracts. However, as dis-
cussed by Calzolari et al. (2023), firms producing data may value anonymity over whether
they have joined the platform and the contractual details. If this information is public,
data analytics might reveal information about firms’ production strategies. Anonymity
can be preserved either through secret personalized contracts or through a uniform public
contract offered to all firms.

5.1 Secret personalized contracts

Assume that the platform offers secret personalized contracts and that firms hold passive
beliefs (i.e., if they receive an off-equilibrium contract offer, they believe that the platform
did not change the offers made to the other firms).

Note first that assuming that contracts are secret does not affect the outcomes of stages 2
and 3 under data sharing. The reason is that, under this technology, firms’ optimal data
contributions in stage 3 do not depend on other firms’ data contributions. This implies that,
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under data sharing, the platform is still able to induce data contributions that maximize
industry profits (and capture these profits). Thus, the platform’s profit under data sharing
remains the same as in the baseline model.

In contrast, if the platform offers secret personalized contracts, its profit under analytics
sharing are (strictly) lower than its counterpart in the baseline model. The reason is that
firms’ optimal data contributions now depend on other firms’ data contributions, which
prevents the platform from inducing industry-profit-maximizing data contributions. This
is due to a classic opportunism problem in vertical contracting with multiple firms (see,
e.g., McAfee and Schwartz, 1994) and has been illustrated in the case of data transactions
by Calzolari et al. (2023). In our setting, if we denote xe

−i firm i’s beliefs about other firms’
data contributions, the first-order condition determining firm i’s optimal data contribution
under analytics sharing for a given mA

i is given by

(1 + αA)
∂Bi

∂xi
(xi,x

e
−i) +mA

i = g′i(xi).

Denoting x̂Ai (xe
−i,m

A
i ) the solution to the equation above, the platform’s maximization

program can be written as

max
(fA,mA)

∑
i

[fAi −mA
i x̂

A
i (xe

−i,m
A
i )]−G((x̂Ai (x̂−i,m

A
i ))1≤i≤n)

subject to the participation constraints

(1 + αA)Bi(x̂
A
i (xe

−i,m
A
i ),xe

−i)− gi(x̂Ai (xe
−i,m

A
i )) +mA

i x̂
A
i (xe

−i,m
A
i )− fAi ≥ 0,

i = 1, ..., N . Since the participation constraints must be binding at the optimum, i.e., the
fixed fees must be given by fAi = BA

i (x̂Ai (xe
−i,m

A
i ),xe

−i)−gi(x̂Ai (xe
−i,m

A
i ))+mA

i x̂
A
i (xe

−i,m
A
i ),

the platform’s maximization program with respect to mA can be rewritten as

max
mA

∑
i

[(1 + αA)Bi(x̂
A
i (xe

−i,m
A
i ),xe

−i)− gi(x̂Ai (xe
−i,m

A
i ))]−G((x̂Ai (x̂−i,m

A
i ))1≤i≤n).

The first-order condition with respect to mA
i yields

∂x̂Ai
∂mA

i

{
(1 + αA)

∂Bi

∂xi
(x̂Ai (xe

−i,m
A
i ),xe

−i)−
∂gi
∂xi

(x̂Ai (xe
−i,m

A
i ))− ∂G

∂xi
((x̂Ai (x̂−i,m

A
i ))1≤i≤n)

}
= 0

or, equivalently,

(1 + αA)
∂Bi

∂xi
(x̂Ai (xe

−i,m
A
i ),xe

−i)−
∂gi
∂xi

(x̂Ai (xe
−i,m

A
i ))− ∂G

∂xi
((x̂Ai (x̂−i,m

A
i ))1≤i≤n) = 0.

This first-order condition is different from the one that maximizes industry profits with
respect to data contributions. More specifically, the terms capturing the effect of a firm’s
data endowments on other firms in the first-order condition associated to industry-profit
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maximization are missing. This shows that the platform’s profit under analytics sharing
are (strictly) lower than in the baseline model. Note, however, that it is still the case that
the platform’s profit under analytics sharing are (strictly) increasing in αA and goes to
infinity as αA goes to infinity. It is also still the case that the platform’s profit under data
sharing is increasing in data endowments yi. Therefore, we have the following result.

Proposition 4. Assume that the platform offers secret personalized contracts. There exists a thresh-
old α̂A(y) increasing in data endowments yi such that the platform chooses analytics sharing if
and only if α ≥ α̂A(y). However, analytics sharing is less likely to be chosen than in the baseline
model with public personalized contracts, i.e., α̂A(y) > α̃A(y).

5.2 Uniform public contract

Let us now assume that the platform preserves anonymity through a uniform public
contract offered to all firms. In this case, the result obtained in the previous section can be
reversed, i.e., analytics sharing can become more likely to be chosen than in the baseline
model.

We show this in a stark way, by assuming that all firms have the same benefit and cost
functions under a given technology, i.e., Bi(·) = Bj(·) and gi(·) = gj(·) for all i 6= j. This
implies that the firms are heterogeneous only with respect to their data endowments. This
heterogeneity is payoff-relevant in the case of data sharing but is not in the case of analytics
sharing. This in turn implies that the platform’s profit under analytics sharing remains the
same whether contracts are personalized and public (as in the baseline model) or uniform
and public. However, if contracts are uniform and public, the platform’s profit under data
sharing is lower than with personalized and public contracts. This, combined with the fact
that the platform’s profit under data sharing increases with data endowments yi and its
profit under analytics sharing increases with αA and goes to infinity as αA goes to infinity,
leads to the following result.

Proposition 5. Assume that the platform offers a uniform pubic contract to all firms and that all
firms have the same benefit and cost functions under a given technology. There exists a threshold
α̌A(y) increasing in data endowments yi such that the platform chooses analytics sharing if and
only if α ≥ α̌A(y). Moreover, analytics sharing is more likely to be chosen than in the baseline
model with public personalized contracts, i.e., α̌A(y) < α̃A(y).

6 Data leakages

In this section, we consider how our results are affected by the potential occurrence of
data leakages. A data leakage is the unauthorized transmission of data from within

17



a firm or organization to an external destination or recipient. Data can be transferred
both electronically or physically, and such leakages constitute one of the most important
cybersecurity threats for organizations(European Parliament, 2023). The damages caused,
regardless of size of the firm or the industry of operation, can be extremely serious. They
range from revenue loss to tarnished reputation, financial penalties and lawsuits. The
damage can extend to external stakeholders, whose private and sensitive data can be
exposed.

We distinguish between two scenarios. In the first one, we assume that the data leakage
has a negative impact on firms’ profits that is technology-specific, while its impact on data
externalities is the same for both technologies. Conversely, in the second scenario, we
assume that the data leakeage generates a negative externality that is technology-specific,
while its impact on firms’ profits is identical between the two technologies.

6.1 Technology-specific effects of data leakages on firms

A simple way of capturing this scenario in which, from the viewpoint of the firm, the
consequences of data leakages are technology specific, is to drop Assumption 1 (i.e., cost
symmetry). This amounts to assume that the expected cost of data leakages for firm i

is part of the cost gti(xi). Given that data sharing leads to giving the platform and other
firms direct access to data while analytics sharing does not, it is reasonable to assume that
gAi (xi) ≤ gDi (xi) for all firms i and all levels of data, xi.

It is straightforward to show that Proposition 1 still holds in this case. However, the
corresponding threshold is (weakly) lower than in the baseline model. This implies that it
is more likely that analytics sharing is chosen over data sharing, relative to the baseline
model, which is very intuitive given the lower overall costs of data contributions. Indeed,
the lower expected risk of a data leakage, and its associated costs, imply that even a more
moderate analytics advantage is sufficient to lead a platform towards the analytics sharing
technology.

It is also clear that Proposition 2 still holds. The reason is that, under conditions (i) and
(ii), analytics sharing generates more data than data sharing if gAi (xi) = gDi (xi). Then, this
is a fortiori true if gAi (xi) ≤ gDi (xi) because a decrease in data contribution costs, due to the
lower risks of analytics sharing, leads to more data contributions under this technology.
Finally, Proposition 3 is unaffected because we assume in this subsection that the effect of
data leakages on externalities is not technology-specific.

6.2 Technology-specific effects of data leakages on externalities

Data leakages have effects that go beyond the firms and the platform that combine data.
Private and sensitive information of partner firms, organizations and individuals may
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be compromised, made public or used unlawfully. Breaches may even have negative
market-wide effects on firms unrelated to the victim (Ashraf, 2021). As a result, we assume
in this subsection that externalities are negative and that there exist eD and eA such that
ED(y,x) = eDh(x) and EA(x) = eAh(x). Given that analytics sharing limits third-party
access to data relative to data sharing (Blanco-Justicia et al., 2021; Mothukuri et al., 2021),
it is reasonable to assume that 0 < eA ≤ eD.

Note first that Propositions 1 and 2 remain unchanged because they do not depend on
data externalities.

Let us now turn to the comparison between the privately optimal and socially optimal
technologies. We need again to distinguish between the case in which the analytics under
analytics sharing are sizably more performant than under data sharing, αA ≥ α̃A, and the
one in which they are not, αA < α̃A.

Consider the former case to begin with. If αA ≥ α̃A, then analytics sharing is privately
optimal. However, it is socially optimal if and only if

ΠD(y,xD∗)−ΠA(xA∗) + eDh(xD∗)− eAh(xA∗) ≤ 0,

which can be rewritten as

eA ≤ ΠD(y,xD∗)−ΠA(xA∗)

h(xA∗)︸ ︷︷ ︸
>0

+eD
h(xD∗)

h(xA∗)︸ ︷︷ ︸
>0

≡ e−(eD).

In the first inequality above, the first term on the right hand side is positive, as both the
numerator and the denominator are negative, and so is the second one, which is also
increasing in eD.

Turn then to the second case. If αA < α̃A then data sharing is privately optimal. However,
it is socially optimal if and only if

ΠD(y,xD∗)−ΠA(xA∗) + eDh(xD∗)− eAh(xA∗) ≥ 0,

which can be rewritten as

eA ≥ max

0,
ΠD(y,xD∗)−ΠA(xA∗)

h(xA∗)︸ ︷︷ ︸
<0

+eD
h(xD∗)

h(xA∗)︸ ︷︷ ︸
>0

 ≡ e−(eD).

Consider the second expression in curly brackets on the right hand side of the previous
inequality. The first term is now negative, as the numerator is positive and the denominator
negative. The second term is instead positive, and increasing in eD. If the first term
dominates, then the whole expression is negative, and data sharing is also socially optimal.
If, instead, the second term is relatively large, there is a positive threshold value of eA
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above which data sharing is both privately and socially preferred.

Figure 2: Analytics sharing or data sharing in presence of negative externalities. The effect
of technology-specific data leakages.

αA

eA

α̃A

eA = e−|eD=eA

eA = e−|eD>eA

DP socially optimal

DS socially optimal
DP privately optimalDS privately optimal

Figure 2 provides a visualization of the results in the previous discussion. In intuitive terms,
if data sharing is sufficiently profitable compared to analytics sharing (i.e., αA is low),
then the profit effect may more than compensate for the stronger negative externalities
compared to analytics sharing. This can be seen on the left hand side of the figure. As the
profit advantage of data sharing becomes thinner (i.e., αA increases towards α̃A), then
this technology can still be socially optimal, but that is the case only if it does not generate
too much (negative) externalities compared to analytics sharing. This happens if the
externality rate under analytics sharing, eA, is relatively large with respect to the respective
rate under data sharing, eD. In our illustration, this takes place above the increasing line
eA = e−(eD).

A similar intuition explains a social preference for analytics sharing when this technology
is also privately optimal (i.e., αA is high). Indeed, the planner would prefer this technology
in the lower-right part of the figure, below the line eA = e−(eD). In other words, analytics
sharing is both privately and socially desirable when the externality rate , eA, is not too
high compared to data sharing, and the negative data externality does not offset the relative
profit advantage of the technology.

The figure also shows that in our baseline model data sharing is necessarily socially optimal
when leading to higher profits (αA < α̃A). Through the movement of the threshold line
eA = e−(eD), it can be seen that this is not the case in this extension, which captures the
reduction in the risks of externalities connected to data breaches under analytics sharing.
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7 Policy implications

The analysis in sections 4 to 6 sheds some light on the economic drivers and implications
of choosing a data-combination technology that brings the analysis to the data, analytics
sharing, over conventional data sharing. In this section we discuss two policy implications
of these findings.

Analytics sharing and the privacy-efficiency trade-off

The vast literature on the economics of privacy shows that, in many different contexts, there
is a trade-off between privacy-reducing data combination and the efficiency gains that
combining (consumer) data can bring about to firms, consumers and society. As several
authors have pointed out, the advent of privacy-enhancing technologies such as analytics
sharing have the potential of relaxing and even eliminating this trade-off (Acquisti et al.,
2016; Johnson, 2022).

We have shown that data sharing has an intrinsic efficiency premium with respect to
analytics sharing, as the former allows firms to interact the platform’s data with all their
data endowments. Therefore, in order for analytics sharing to be adopted, the performance
of its data analytics has to be sufficiently superior. This result of our model, which puts
forward the platform’s choice of a data-combination technology, inverts the causality of
the privacy-efficiency trade-offs discussed in the literature. In the literature, increased
data combination reduces privacy and increases efficiency. In our model, by increasing
analytics sharing’s efficiency with respect to data sharing’s, the likelihood of adopting a
privacy-enhancing technology (analytics sharing) raises, and so does the amount of data
being combined, as analytics sharing leads to higher contributions than data sharing.

This has a direct policy implication. Policymakers concerned about strengthening privacy
protection should design technological policies aiming at encouraging the improvement of
the efficiency of analytics sharing’s data analytics capacity with respect to data sharing’s.
As shown in Section 4, doing so would increase the probability of analytics sharing being
the socially- and privately-optimal technology whether data externalities are positive
or negative. In this case, policies aiming at enhancing the capacity of analytics sharing
technologies to perform analytics without actual data sharing are to be favored. As the
literature in computer science and related disciplines shows, this is one of the major areas of
interest in the current research on federated learning (Drainakis et al., 2023; AbdulRahman
et al., 2020; Nilsson et al., 2018).

Industry-specific social desirability of a data-combination technology

We have shown that the threshold of the performance of data analytics under analytics
sharing relative to data sharing above which analytics sharing is chosen by the platform is
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increasing in firms’ data endowments. Moreover, we have identified conditions suggesting
that is likely that more data is combined under analytics sharing than under data sharing.
Hence, ceteris paribus, under positive (negative) data externalities, analytics sharing is
preferred (disfavored) by the social planner over data sharing. By combining these two
findings, we can provide some insights on how, in the short run (i.e., when policymakers
cannot influence the efficiency of data analytics), the social desirability of the private choice
of a data-combination technology depends on sector characteristics.

In industries with low data endowments and strong positive data externalities, it is more
likely that the analytics sharing technology will be chosen by both the platform and the
social planner. Conversely, in sectors with high data endowments and strong negative
data externalities both the platform and the social planner would more likely opt for data
sharing. A possible example of the latter is the banking sector, in which the increasing
digitization of payments and the advent of fintech have substantially increased the amount
and the granularity of the data collected. At the same time, the nature of finance poses
important cybersecurity and privacy risks. The implication is that in both type of industries
policymakers should be a priori technology-agnostic, as it is more likely that firms will
choose the socially-optimal technology.

On the contrary, if either (i) data endowments are low and data externalities strongly
negative, or, (ii) data endowments are high and data externalities strongly positive, it
is more likely that the platform’s and the social planner’s choice of technology differ.
A possible example of the latter case is the mobility sector, for which vasts amounts
of data (e.g., multimodal ticketing, routing queries, GPS tracking, etc.) exist and, as
shown by many open data initiatives, the availability of large, comprehensive datasets
has positive spillovers in terms of competition and innovation in the mobility sector. In
such cases, policymakers should be more prone to do industry-specific interventions that
create incentives for firms to adopt analytics sharing technologies (if data endowments
are high and positive externalities strong and positive) or, on the contrary, data sharing
technologies (if data endowments are low and data externalities strong and negative),
depending on the industry’s characteristics.

8 Conclusion

In this article we have studied how the choice of a data-combination technology affects
firms’ incentives to combine data, and the welfare consequences of such a choice. We have
shown that even if firms internalize the security and privacy advantages of technologies
that bring the analysis to the data (i.e., analytics sharing) compared to standard data
sharing, the former is chosen only if its data analytics performs sufficiently better than
the latter’s. However, because analytics sharing leads to higher data contributions than
data sharing, and given the existence of positive and negative externalities generated
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by data, the privately-optimal technology can differ from the socially-optimal one. This
is the case when either (i) the superiority of data analytics under analytics sharing is
relatively limited and data externalities are positive and strong enough, or, (ii) if data
analytics are substantially superior under analytics sharing than under data sharing and
data externalities are negative and strong enough. Finally, we have shown that our findings
hold qualitatively in presence of secret contracting or if the platform cannot condition
contracts to the firms’ data endowments, as well as in presence of technology-specific
effects of data leakages that can be internalized by firms or not.

Our setting can be extended to investigate other interesting policy issues related to multi-
firm data-combination technologies. First, by considering that data-holding firms might be
competitors, we can study the competition-relaxing and competition-enhancing effects of
data combination. This would allow us to extend our analysis to understand the antitrust
implications of the choice of a data-combination technology, and the tensions that might
arise between privacy and security protection, on the one hand, and competition, on
the other hand. Second, we can consider competition between platforms offering data-
combination services. As analytics sharing technologies mature and become widespread,
incumbent data combination platforms based on data sharing (e.g., Caruso in the connected
car industry, the NINDS Parkinson’s Disease Biomarkers Program in the health sector),
will likely face the threat of entry using analytics sharing technologies.
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Bajari, P., Chernozhukov, V., Hortaçsu, A., and Suzuki, J. (2019). The impact of big data on
firm performance: An empirical investigation. AEA Papers and Proceedings, 109:33–37.

Bergemann, D., Bonatti, A., and Gan, T. (2022). The economics of social data. The RAND
Journal of Economics, 53(2):263–296.

Blanco-Justicia, A., Domingo-Ferrer, J., Martı́nez, S., Sánchez, D., Flanagan, A., and Tan,
K. E. (2021). Achieving security and privacy in federated learning systems: Survey,
research challenges and future directions. Engineering Applications of Artificial Intelligence,
106:104468.

Bounie, D., Dubus, A., and Waelbroek, P. (2021). Selling strategic information in competi-
tive markets. RAND Journal of Economics, 52(2):283–313.

Bringer, J., Chabanne, H., and Patey, A. (2013). Privacy-preserving biometric identification
using secure multiparty computation: An overview and recent trends. IEEE Signal
Processing Magazine, 30(2):42–52.

Calzolari, G., Cheysson, A., and Rovatti, R. (2023). Cooperative data-analytics: a market
for machine-data. CEPR Discussion Paper DP17842.

24

https://www.aepd.es/en/prensa-y-comunicacion/blog/federated-learning-artificial-intelligence-without-compromising-privacy
https://www.aepd.es/en/prensa-y-comunicacion/blog/federated-learning-artificial-intelligence-without-compromising-privacy
https://www.aepd.es/en/prensa-y-comunicacion/blog/federated-learning-artificial-intelligence-without-compromising-privacy


Carballa Smichowski, B. (2018). Determinants of coopetition through data sharing in
MaaS. Management & Data Science, 2(3).

Chiou, L. and Tucker, C. (2017). Search engines and data retention: Implications for
privacy and antitrust. NBER Working Paper 23815.

Chou, L., Liu, Z., Wang, Z., and Shrivastava, A. (2021). Efficient and less centralized feder-
ated learning. In Machine Learning and Knowledge Discovery in Databases. Research Track:
European Conference, ECML PKDD 2021, Bilbao, Spain, September 13–17, 2021, Proceedings,
Part I 21, pages 772–787. Springer.

Claussen, J., Peukert, C., and Sen, A. (2023). The editor and the Algorithm: Recommenda-
tion technology in online news. Management Science, forthcoming.

Delbono, F., Reggiani, C., and Sandrini, L. (2023). Strategic data sales with partial segment
profiling. SSRN Working Paper 4046961.

Drainakis, G., Pantazopoulos, P., Katsaros, K. V., Sourlas, V., Amditis, A., and Kaklamani,
D. I. (2023). From centralized to federated learning: Exploring performance and end-to-
end resource consumption. Computer Networks, 225:109657.

European Parliament (2023). Cybersecurity: main and emerging threats. https:

//www.europarl.europa.eu/news/en/headlines/society/20220120STO21428/

cybersecurity-main-and-emerging-threats. [Last accessed December 27, 2023].

Farboodi, M., Mihet, R., Philippon, T., and Veldkamp, L. (2019). Big data and firm dynamics.
American Economic Association: Papers and Proceedings, 109:38–42.

Farboodi, M. and Veldkamp, L. (2021). A model of the data economy. NBER Working Paper
28427.

Frontier Technology Quarterly (2019). Data economy: Radical transformation or
dystopia? https://www.un.org/development/desa/dpad/wp-content/uploads/

sites/45/publication/FTQ_1_Jan_2019.pdf. [Last accessed December 27, 2023].

Gehrig, T. and Stenbacka, R. (2007). Information sharing and lending market competition
with switching costs and poaching. European Economic Review, 51(1):77–99.

Gu, Y., Madio, L., and Reggiani, C. (2022). Data brokers co-opetition. Oxford Economic
Papers, 74(3):820–839.

Guler, B. and Yener, A. (2021). Sustainable federated learning. arXiv preprint
arXiv:2102.11274.

Hard, A., Rao, K., Mathews, R., Ramaswamy, S., Beaufays, F., Augenstein, S., Eichner, H.,
Kiddon, C., and Ramage, D. (2018). Federated learning for mobile keyboard prediction.
arXiv preprint arXiv:1811.03604.

25

https://www.europarl.europa.eu/news/en/headlines/society/20220120STO21428/cybersecurity-main-and-emerging-threats
https://www.europarl.europa.eu/news/en/headlines/society/20220120STO21428/cybersecurity-main-and-emerging-threats
https://www.europarl.europa.eu/news/en/headlines/society/20220120STO21428/cybersecurity-main-and-emerging-threats
https://www.un.org/development/desa/dpad/wp-content/uploads/sites/45/publication/FTQ_1_Jan_2019.pdf
https://www.un.org/development/desa/dpad/wp-content/uploads/sites/45/publication/FTQ_1_Jan_2019.pdf


Hocuk, S., Martens, B., Prufer, P., Carballa Smichowski, B., and Duch-Brown, N. (2022).
Economies of scope in data aggregation: Evidence from health data. TILEC Discussion
Paper DP2022-020.

Ichihashi, S. (2021). Competing data intermediaries. RAND Journal of Economics, 52(3):515–
537.

Jentzsch, N., Sapi, G., and Suleymanova, I. (2013). Targeted pricing and customer data
sharing among rivals. International Journal of Industrial Organization, 31(2):131–144.

Johnson, G. (2022). Economic research on privacy regulation: Lessons from the GDPR
and beyond. NBER Working Paper 30705.

Jones, C. I. and Tonetti, C. (2020). Nonrivalry and the economics of data. American Economic
Review, 110(9):2819–58.
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A Proofs

A.1 Proof of Proposition 1

Given that: (i) ΠA(xA∗) is continuous and increasing in αA; (ii) ΠA(xA∗) ≤ ΠD(y,xD∗) for
αA = 0 because in this case ΠA(x) ≤ ΠD(y,x) for any x (which implies that maxx ΠA(x) ≤
maxx ΠD(y,x)); (iii) ΠA(xA∗)→∞ if αA → ∞, then ∃ α̃A(y) > 0 such that ΠA(xA∗) ≥
ΠD(y,xD∗)⇔ αA ≥ α̃A. Since ΠD(y,x) increases with yi, it follows that ΠD(y,xD∗) also
increases with yi, which implies that α̃A(y) is increasing in yi. Q.E.D.

A.2 Proof of Proposition 2

We proceed in two steps.

Step 1: Let us show that ∂ΠA(x)
∂xi

> ∂ΠD(y,x)
∂xi

if condition (ii) holds.

Denote ki = maxj 6=i maxx
∂2Bj

∂xi∂xj
(xj ,x−i). Notice that

∂Bj

∂xi
(yj ,x−j)−

∂Bj

∂xi
(xj ,x−j) ≤ (yj − xj)ki ≤ yjki.

Therefore,
∑
j 6=i

[
∂Bj

∂xi
(xj ,x−j)−

∂Bj

∂xi
(yj ,x−j)

]
> −ki

∑
j 6=i

yj > −ki
∑
j

yj .

Hence,

(1 + αA)
∂Bi

∂xi
(xi,x−i) +

∑
j 6=i

[
∂Bj

∂xi
(xj ,x−j)−

∂Bj

∂xi
(yj ,x−j)

]
+ αA

∑
j 6=i

∂Bj

∂xi
(xj ,x−j)

≥ (1 + αA)
∂Bi

∂xi
(xi,x−i)− ki

∑
j

yj + αA
∑
j 6=i

∂Bj

∂xi
(xj ,x−j).

If αA > 0, then
∂ΠA(x)

∂xi
− ∂ΠD(y,x)

∂xi
≥ ∂Bi

∂xi
(xi,x−i)− ki

∑
j

yj .

because ∂Bj

∂xi
(xi,x−i) > 0 and ∂Bj

∂xi
(xj ,x−j) > 0. Hence, a sufficient condition for ∂ΠA(x)

∂xi
>

∂ΠD(y,x)
∂xi

is ki ≤
∂Bi
∂xi

(xi,x−i)∑
j yj

, which holds if ki ≤
mini minx

∂Bj
∂xj

(xj ,x−j)∑
j yj

≡ k̃, which completes
the first step.

Step 2: Let us now show that, under condition (i), the set of inequalities ∂ΠA(x)
∂xi

> ∂ΠD(y,x)
∂xi

for any x and any y implies that xA∗i > xD∗i for any i. Notice that the supermodularity
of ΠA(x) and ΠD(y,x) with respect to (xi, xj) for any i 6= j implies that xAi (x−i) and
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xDi (y,x−i) are increasing in all xj ’s. To see why, recall that the first order condition defining
xAi (x−i) is:

∂ΠA

∂xi
(xAi (x−i),x−i) = 0

Differentiating the above equation with respect to xj and rearranging terms, we obtain:

∂xAi
∂xj

=

∂2ΠA

∂xi∂xj

−∂2ΠA

∂x2
i

> 0

because the numerator is positive due to supermodularity of ΠA and the denominator is
positive due to the concavity of ΠA. A similar reasoning applies to xDi (y,x−i).

We establish Step 2 recursively, that is, we show that the result holds for N = 2 and,
whenever it holds for a given N ≥ 2, it holds for N + 1 too.

Let us first show that the result holds for N = 2. Define HA
2 (·) and HD

2 (y, ·) as follows:

HA
2 (x2) = xA2 (xA1 (x2))− x2 and HD

2 (y, x2) = xD2 (y2, x
D
1 (y1, x2))− x2.

Since xA∗2 = xA2 (xA∗1 ) = xA2 (xA1 (xA∗2 )) and xD∗2 = xD2 (y2, x
D∗
1 ) = xD2 (y2, x

D
1 (y1, x

D∗
2 )) we

have that:
HA

2 (xA∗2 ) = 0 and HD
2 (y, xD∗2 ) = 0.

Since HA
2 (0) > 0, the uniqueness of (xA∗1 , xA∗2 ) as a maximizer of ΠA(x1, x2) ensures that

HA
2 (x2) > 0 for any x2 < xA∗2 and HA

2 (x2) < 0 for any x2 > xA∗2 . Similarly, HD
2 (y, x2) > 0

for any x2 < xD∗2 and HD
2 (y, x2) < 0 for any x2 > xD∗2 .

Let us now show that xA∗2 > xD∗2 . In order to do so, assume that the reverse holds, i.e.
xA∗2 ≤ xD∗2 . Then, this implies that HA

2 (xs∗2 ) ≤ 0. Moreover,

HD
2 (y, xD∗2 )−HA

2 (xD∗2 ) = xD2 (y2, x
D
1 (y1, x

D∗
2 ))− xA2 (xA1 (xD∗2 ))

< xD2 (y2, x
D
1 (y1, x

D∗
2 ))− xD2 (y2, x

A
1 (xD∗2 )) < 0.

The first inequality results from xA2 (xA1 (xD∗2 )) > xD2 (y2, x
A
1 (xD∗2 )) (which itself results

from ∂ΠA

∂x2
> ∂ΠD

∂x2
and the concavity of ΠA and ΠD). The second inequality results from

xA1 (xD∗2 ) > xD1 (y1, x
D∗
2 ) (which results itself from ∂ΠA

∂x1
> ∂ΠD

∂x1
and the concavity of ΠA

and ΠD) and the fact that xD2 (y2, x1) is increasing in x1 (which results itself from the
supermodularity of ΠD, as shown before). Therefore, we haveHD

2 (y, xD∗2 ) < HA
2 (xD∗2 ) ≤ 0

which leads to a contradiction because HD
2 (y, xD∗2 ) = 0. This proves that xA∗2 > xD∗2 . We

can show that xA∗1 > xD∗1 in a similar way, which completes the proof for N = 2.

Let us now assume that the result stated in Step 2 holds for a given N and show that it
holds for N + 1 too. Denote

(x̃1
A(xN+1), x̃2

A(xN+1), ..., x̃N
A(xN+1)) = arg max

(x1,...,xN )
ΠA(x1, ..., xN , xN+1)
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and

(x̃1
D(y1, xN+1), x̃2

D(y2, xN+1), ..., x̃N
D(yN , xN+1)) = arg max

(x1,...,xN )
ΠD(y, x1, ..., xN , xN+1).

The fact that the result holds for N implies that x̃iA(xN+1) > x̃i
D(yi, xN+1) for any i =

1, ..., N and any xN+1.

Now define HA
N+1(·) and HD

N+1(·) as follows:

HA
N+1(xN+1) = xAN+1(x̃1

A(xN+1), x̃2
A(xN+1), ..., x̃N

A(xN+1))− xN+1

and

HD
N+1(y, xN+1) = xDN+1(yN+1, x̃1

D(y1xN+1), x̃2
D(y2, xN+1), ..., x̃N

D(yN , xN+1))− xN+1.

From
(xA∗1 , xA∗2 , ..., xA∗N , xA∗N+1) = arg max

(x1,...,xN ,xN+1)
ΠA(x1, ..., xN , xN+1)

it follows that

(xA∗1 , xA∗2 , ..., xA∗N ) = arg max
(x1,...,xN )

ΠA(x1, ..., xN , xN+1)

which implies (by uniqueness of the maximizer) that xA∗i = x̃i
A(xA∗N+1) for all i = 1, 2, ..., N.

Using this we obtain the following:

HA
N+1(xA∗N+1) = xA∗N+1(xA∗1 , xA∗2 , ..., xA∗N )− xA∗N+1 = 0.

Similarly, we get that HD
N+1(y, xD∗N+1) = 0. As in the proof for N = 2, the uniqueness of

the maximizer ensures that HA
N+1(xN+1) > 0 if xN+1 < xA∗N+1 and HA

N+1(xN+1) < 0 if
xN+1 > xA∗N+1, and, similarly, HD

N+1(y, xN+1) > 0 if xN+1 < xD∗N+1 and HD
N+1(y, xN+1) > 0

if xN+1 > xD∗N+1.

Using a reasoning by contradiction, similar to the one used in the proof of the case N = 2,
we can show that xA∗N+1 > xD∗N+1. Moreover, for any i = 1, 2, ..., N,

xA∗i = x̃i
A(xA∗N+1) > xDi (yi, x

A∗
N+1) > x̃i

D(yi, x
D∗
N+1) = xD∗i ,

where the first inequality follows from the fact that the result we want to show for N + 1 is
assumed to hold for N , and the second inequality follows from xA∗N+1 > xD∗N+1 and the fact
that x̃iD(yi, xN+1) is increasing in xN+1 (due to supermodularity of ΠD in (xi, xj)).

Thus, we have shown that xA∗i > xD∗i for all i = 1, 2, ..., N,N + 1 which completes the
proof of Step 2. Q.E.D.
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A.3 Proof of Proposition 3

Consider the scenario in which data externalities are positive. Assume first that α ≥ α̃A.
In this case, analytics sharing is at the same time privately optimal and socially optimal.
Assume now that α < α̃A. Then, data sharing is privately optimal, but it is socially optimal
if and only if

ΠD(y,xD∗)−ΠA(xA∗) + e(h(xD∗)− h(xA∗)) ≥ 0,

From xD∗i < xA∗i and ∂h
∂xi

> 0 for all i it follows that

h(xD∗)− h(xA∗) < 0.

Therefore, data sharing is socially optimal if and only if

e ≤ ΠD(y,xD∗)−ΠA(xA∗)

h(xA∗)− h(xD∗)
≡ e+.

Consider now the scenario in which data externalities are negative. Assume first that
α ≤ α̃A. In this case, data sharing is at the same time privately optimal and socially optimal.
Assume now that α > α̃A. Then, analytics sharing is privately optimal, but it is socially
optimal if and only if

ΠD(y,xD∗)−ΠA(xA∗) + e(h(xD∗)− h(xA∗)) ≤ 0,

From xD∗i < xA∗i and ∂h
∂xi

< 0 for all i it follows that

h(xD∗)− h(xA∗) > 0.

Therefore, analytics sharing is socially optimal if and only if

e ≤ ΠA(xA∗)−ΠD(y,xD∗)

h(xD∗)− h(xA∗)
≡ e−.

Q.E.D.
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