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Plan

• Data-enabled learning (AI) vs. traditional network effects along dimensions 
relevant to defensibility, competitive advantage and market power
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Feedback loops and competitive advantage
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Plan

• Data-enabled learning (AI) vs. traditional network effects along dimensions 
relevant to defensibility, competitive advantage and market power:

1. Coordination and switching costs

2. Engineering feedback loops

3. Cost side

4. Hold-up of users

5. Market power and substitutes



1. Coordination and/or switching costs

• Fundamental source of defensibility for traditional network effects (platforms)?
• High coordination costs and/or switching costs

• Example: Craigslist (high coordination costs, low switching costs)



Craigslist home page January 2024



Craigslist vs. OfferUp



Craigslist vs. Facebook Marketplace



Craigslist home page January 2024

Craigslist 2021: ~$660 million revenues (99% US), 50 employees, >90% margin
No ratings & reviews, account not necessary => pure coordination

https://www.cnbc.com/2019/01/24/craigslist-
posts-annual-revenue-of-1-billion-study.html
https://www.prnewswire.com/news-
releases/craigslist-revenue-rebounds-traffic-slide-
continues-301477660.html

https://www.cnbc.com/2019/01/24/craigslist-posts-annual-revenue-of-1-billion-study.html
https://www.cnbc.com/2019/01/24/craigslist-posts-annual-revenue-of-1-billion-study.html
https://www.prnewswire.com/news-releases/craigslist-revenue-rebounds-traffic-slide-continues-301477660.html
https://www.prnewswire.com/news-releases/craigslist-revenue-rebounds-traffic-slide-continues-301477660.html
https://www.prnewswire.com/news-releases/craigslist-revenue-rebounds-traffic-slide-continues-301477660.html


1. Coordination and/or switching costs

• Fundamental source of defensibility for traditional network effects (platforms)?
• High coordination costs and/or switching costs

• Example: Craigslist (high coordination costs, low switching costs)
• No WhatsApp group for buyers and sellers to coordinate

• Examples with low coordination costs: 
• Zoom, Evite, etc.
• Honeycomb Credit: marketplace for small businesses to obtain crowdfunded loans, mainly from 

customers, locals that know the business, and family & friends

• Open Sea vs. Blur: coordination for switching via NFT-focused Discord groups

https://www.honeycombcredit.com/
https://opensea.io/
https://blur.io/
https://discord.com/


1. Coordination and/or switching costs

• For traditional network effects, coordination costs are determined by extent of 
discovery enabled by the platform
• If only interact with people you already know, then lower defensibility

• Lack of coordination costs can be mitigated by switching costs
• e.g., Zoom

• The most defensible platforms have both high coordination and switching costs 
• e.g., Airbnb, Amazon, Apple’s iOS and App Store, Instagram



1. Coordination and/or switching costs

• Fundamental source of defensibility for data-enabled learning?

• Discovery is meaningless, but coordination can matter with across-user learning
• If backward-looking learning or short consumption period, then coordination is irrelevant

• e.g., Netflix, Google search

• If learning includes current users but users are myopic, then coordination favors incumbent

• Users may be more myopic with data-enabled learning b/c feedback loop “under the hood”

• Users may be less likely to switch even with full coordination if learning materializes slowly

• Within-user learning creates compounding switching costs => switching costs can 
be higher with data-enabled learning (if WUL is present)



Generative AI and switching costs

• LLMs can create significant switching costs for enterprises using customized LLMs 
• e.g., Chat GPT Enterprise

• Customized LLM gets better the more the company and its employees use it – no 
leakage of data and learnings to generic LLM

• How easy would it be for enterprise to switch from Chat GPT Enterprise to 
Anthropic’s Claude for Enterprise? 

• Data portability policy?
• Giving user activity logs to competitors, including both users’ data AND provider’s data?

https://openai.com/enterprise
https://www.anthropic.com/


2. Engineering feedback loops

• Strength of feedback loops and network effects can be enhanced by design and 
firm strategy

• Naturally strong data feedback loops (rare): 
• e.g., Google search, Google Maps, Spotify 

• usage reveals clear signals about user preferences and value, learning is fully automated 

• Naturally weak data feedback loops: 
• e.g., “dumb” products (cars, furniture, clothes), credit scoring, venture investing 

• usage is hard to track, or doesn’t reveal useful information, or does so only very slowly

• need to ask users for explicit feedback or insert humans in the loop



HBR magazine Jan-Feb 2024

HBR online July 2023

https://hbr.org/2024/01/turn-generative-ai-from-an-existential-threat-into-a-competitive-advantage
https://hbr.org/2023/07/to-get-better-customer-data-build-feedback-loops-into-your-products


2. Engineering feedback loops

• Examples: 
• Wearables (e.g., Fitbit, Oura, Whoop)



Creating data feedback loops for wearables

• Data feedback loops ≠ summary statistics
• e.g., “your sleep has improved by X% over past Y months”, “readiness score for working out”

• Weak feedback loops:
• e.g., optimize user interface over time, recommend time to sleep/workout

• More meaningful feedback loops:
• e.g., connect to Peloton/Tonal and measure biometrics before & after standardized workout



2. Engineering feedback loops

• Examples: 
• Wearables (e.g., Fitbit, Oura, Whoop)

• LLMs (Chat GPT, Bard, Claude) – significant progress over past year
• choose between multiple responses, ability to bookmark/edit LLM responses, challenge games (AI 

vs. human answers) with user voting and leaderboards, thumbs up/down

• Chegg: generative AI personalized learning assistant for students

• Enhancing feedback loops with traditional network effects:
• better algorithms and recommendations (more discovery)

• escrow, dispute resolution, insurance, identity and quality verification, booking/scheduling, 
record keeping (more transaction value)

https://www.chegg.com/


3. Cost side

• Traditional network effects businesses (platforms) have very low costs. 
• e.g., Craigslist, eBay, Instagram, Etsy, Airbnb

• “[platforms] get better as I sleep”

• Data-enabled learning businesses tend to have higher cost structures:
• Fully automated data feedback loops are very rare

• Ongoing costs of gathering, cleaning, securing and processing data and improving algorithms

• Oftentimes need humans in the loop (cost to the firm) or user feedback (cost on users)



4. Hold-up of users

• Traditional network effects (platforms):





4. Hold-up of users

• Traditional network effects (platforms):
• General platform hold-up: network effects => power transfer to the platform => can extract 

higher fees over time
• e.g., Amazon, Microsoft, DoorDash, Property Guru

• Commoditization (for marketplace sellers): 
• more discovery => commoditization of sellers => less willing to participate

• e.g., Shopify (limited discovery, including Shop.app) vs. Amazon (full discovery) 

• “Amazon is trying to build an empire, and Shopify is trying to arm the rebels.”

• See “Optimal Discoverability on Platforms” (forthcoming Management Science)

https://www.todayonline.com/singapore/too-fast-too-much-property-agents-unhappy-over-propertyguru-hiking-prices-agent-packages
https://qz.com/1954108/shopify-is-arming-the-rebels-against-amazon
https://andreihagiu.com/wp-content/uploads/2024/01/PlatformDiscoverability_MS.pdf


4. Hold-up of users

• Data enabled learning:
• Similar general hold-up problem, both with across-user and within-user learning 

• Users keep adopting same product/service => value increases relative to outside option => can 
extract higher fees

• See “Data-enabled learning, network effects and competitive advantage” (RAND 2023): consumer 
surplus decreases as incumbent gets better and entrant gives up subsidizing in attempt to compete

• Still, data sharing policy can hurt consumer surplus by reducing incentives to compete

• Commoditization problem (for business users): 
• occurs in principle via data leakage, but in practice is already being solved as OpenAI and others 

offer siloed customized LLMs (e.g., Chat GPT Enterprise)

https://onlinelibrary.wiley.com/doi/10.1111/1756-2171.12453
https://openai.com/enterprise


5. Market power and substitutes

• Traditional network effects: hard to displace incumbent platforms once 
coordination and switching costs are in place
• e.g., Craigslist, Airbnb, Amazon, Etsy, X, YouTube, 

• With data-enabled learning, there are usually more ways around incumbents: 
• buying data is easier than acquiring uses: alternative data sources and/or better algorithms 

• existence of large publicly available data sets and open-source models => harder to build 
unassailable competitive positions with data-enabled learning

• …except when incumbents have truly unique and proprietary customer data – rare 





5. Market power and substitutes

• Traditional network effects (platforms): hard to displace incumbents once 
coordination and switching costs are in place
• e.g., Craigslist, Airbnb, Amazon, Etsy, X, YouTube, 

• With data-enabled learning, there are usually more ways around incumbents: 
• buying data is easier than acquiring uses: alternative data sources and/or better algorithms 

• existence of large publicly available data sets and open-source models => harder to build 
unassailable competitive positions with data-enabled learning

• …except when incumbents have truly unique and proprietary customer data – rare 

• Open-source for traditional platforms: blockchain-based decentralized platforms



Concluding thoughts

• Traditional network effects (NFX) vs. data-enabled learning (DEL):
• Similarities: coordination & switching costs drive defensibility, scope for enhancing via design 

and strategy, hold-up via increased market power

• Differences: cost structure, commoditization risk for users, threat of substitutes

• Strongest competitive positions will have both NFX and DEL
• e.g., Amazon, Instagram, YouTube, OpenAI (possibly with launch of GPT store 2 days ago)

• Some DEL (gen AI) will likely disrupt some existing NFX monopolies
• e.g., Google search



Thank you for your attention


	Slide 1: Feedback loops and competitive advantage:  data-enabled learning vs. traditional network effects
	Slide 2: Plan
	Slide 3: Feedback loops and competitive advantage
	Slide 4: Two types of data-enabled learning
	Slide 5
	Slide 6: Two types of data-enabled learning
	Slide 7: Feedback loops and competitive advantage
	Slide 8: Plan
	Slide 9: 1. Coordination and/or switching costs
	Slide 10: Craigslist home page January 2024
	Slide 11: Craigslist vs. OfferUp
	Slide 12: Craigslist vs. Facebook Marketplace
	Slide 13: Craigslist home page January 2024
	Slide 14: 1. Coordination and/or switching costs
	Slide 15: 1. Coordination and/or switching costs
	Slide 16: 1. Coordination and/or switching costs
	Slide 17: Generative AI and switching costs
	Slide 18: 2. Engineering feedback loops
	Slide 19
	Slide 20: 2. Engineering feedback loops
	Slide 21: Creating data feedback loops for wearables
	Slide 22: 2. Engineering feedback loops
	Slide 23: 3. Cost side
	Slide 24: 4. Hold-up of users
	Slide 25
	Slide 26: 4. Hold-up of users
	Slide 27: 4. Hold-up of users
	Slide 28: 5. Market power and substitutes
	Slide 29
	Slide 30: 5. Market power and substitutes
	Slide 31: Concluding thoughts
	Slide 32: Thank you for your attention

