Managing the transition to central bank digital currency

Katrin Assenmacher European Central Bank Massimo Ferrari Minesso European Central Bank

Arnaud Mehl European Central Bank & CEPR Maria Sole Pagliari De Nederlandsche Bank

Conference Digital Currency and the Financial System 4 June 2024

Disclaimer: The views expressed in this paper are solely those of the authors and do not represent the views of either the ECB or the ESCB.

Assenmacher et al. (2023)

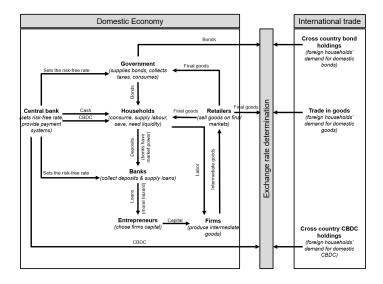
CBDC & transition

Introduction

Motivation

- ✓ Many central banks are investigating options to introduce a retail CBDC.
- \checkmark In this context,
 - $\rightarrow~$ limits on individual's CBDC holdings,
 - $\rightarrow\,$ negative interest on CBDC exceeding a certain baseline amount,
 - $\rightarrow~$ limited access to CBDC for for eigners

have been proposed as measures to deal with structural bank disintermediation through deposit substitution.


✓ To avoid an unintended tightening of the monetary policy stance, the central bank could also provide additional liquidity (Brunnermeier and Niepelt, 2019; Adalid et al., 2020).

What we do

- ✓ We study the transition from a steady state without CBDC to one with CBDC, when the central bank can implement policies to mitigate welfare effects that arise during the transition (as occasionally binding constraints).
- ✓ We find that CBDC demand overshoots persistently during the transition to the new steady state, causing deposits, investments, GDP and welfare to fall.
- $\checkmark\,$ Mitigating policies can reduce the welfare loss during the transition.
 - $\rightarrow\,$ Holding limits turn out to be most effective.
 - $\rightarrow\,$ Interest policies and asset purchases also reduce welfare loss but are less effective.

The model

Model in one chart

Key features

HHs demand payment services:

$$C_t = \chi_L \left[\mu_M M^{1 - \eta_L} + \mu_D D^{1 - \eta_L} + \mu_{DC} D C^{1 - \eta_L} \right]^{\frac{1}{1 - \eta_L}}$$

Payment instruments such as cash, deposits and CBDC carry a liquidity premium.

Key features

HHs demand payment services:

$$C_t = \chi_L \left[\mu_M M^{1 - \eta_L} + \mu_D D^{1 - \eta_L} + \mu_{DC} D C^{1 - \eta_L} \right]^{\frac{1}{1 - \eta_L}}$$

Payment instruments such as cash, deposits and CBDC carry a liquidity premium.

Cash is issued by the central bank and carries a holding cost.

$$\underbrace{\gamma_t \mu_M \chi_L C_t^{\eta_L} M_t^{-\eta_L}}_{\text{Value for payments}} = \lambda_t - \underbrace{\beta E_t \left(\lambda_{t+1} \frac{\xi}{\pi_{t+1}}\right)}_{\text{Weiler}}$$

Holding cost

Key features

HHs demand payment services:

$$C_t = \chi_L \left[\mu_M M^{1 - \eta_L} + \mu_D D^{1 - \eta_L} + \mu_{DC} D C^{1 - \eta_L} \right]^{\frac{1}{1 - \eta_L}}$$

Payment instruments such as cash, deposits and CBDC carry a liquidity premium.

Cash is issued by the central bank and carries a holding cost.

$$\underbrace{\gamma_t \mu_M \chi_L C_t^{\eta_L} M_t^{-\eta_L}}_{\text{Value for payments}} = \lambda_t - \underbrace{\beta E_t \left(\lambda_{t+1} \frac{\xi}{\pi_{t+1}} \right)}_{\text{Holding cost}}$$

The domestic central bank issues a CBDC in a monetary policy neutral way (no expansion of the balance sheet). Foreign HHs can hold CBDC but face a cost. CBDC demand in the home country is:

$$\gamma_t \mu_{DC} \chi_L C_t^{\eta_L} D C_t^{-\eta_L} = \lambda_t - \beta E_t \left(\lambda_{t+1} \frac{R_t^{DC}}{\pi_{t+1}} \right)$$

Banks

Banks maximise profits under monopolistic competition in the deposit market and extract a rent through the deposit contract (Andolfatto, 2021):

$$\gamma_t \mu_D \chi_L C_t^{\eta_L} D_t^{-\eta_L} = \lambda_t - \beta E_t \left(\lambda_{t+1} rac{R_t^D}{\pi_{t+1}}
ight)$$

The optimal deposit rate is endogenously determined as a mark-down on the loan rate F_t .

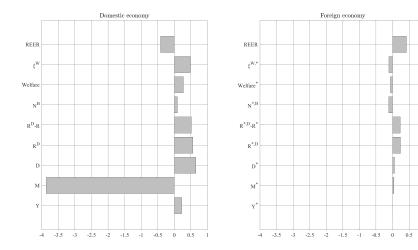
$$F_t = R_t^D \frac{\theta_{t,D} - 1}{\theta_{t,D}}$$

with $\frac{\theta_{t,D}-1}{\theta_{t,D}} > 1$.

Banks

Banks maximise profits under monopolistic competition in the deposit market and extract a rent through the deposit contract (Andolfatto, 2021):

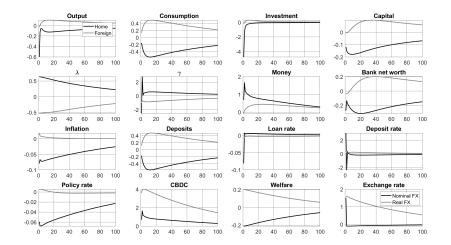
$$\gamma_t \mu_D \chi_L C_t^{\eta_L} D_t^{-\eta_L} = \lambda_t - \beta E_t \left(\lambda_{t+1} rac{R_t^D}{\pi_{t+1}}
ight)$$


The optimal deposit rate is endogenously determined as a mark-down on the loan rate F_t .

$$F_t = R_t^D \frac{\theta_{t,D} - 1}{\theta_{t,D}}$$

with $\frac{\theta_{t,D}-1}{\theta_{t,D}} > 1$.

 \rightarrow A CBDC reduces the market power of banks by adding a new payment instrument to HHs' portfolio.


Steady-state impact

1

Transition dynamics

Transition from steady state without to one with CBDC

Shown as percent relative to new steady state.

Assenmacher et al. (2023)

Policies during the transition

Quantity limits

$$DC_{t} = \begin{cases} DC \text{ demand} & \text{if } DC_{t} < \overline{DC} \\ \overline{DC} & \text{if } DC_{t} \ge \overline{DC} \end{cases}$$
$$DC_{t}^{*} = \begin{cases} DC^{*} \text{ demand} & \text{if } DC_{t}^{*} < \overline{DC}^{*} \\ \overline{DC}^{*} & \text{if } DC_{t}^{*} \ge \overline{DC}^{*} \end{cases}$$

✓ \overline{DC} and \overline{DC}^* are domestic and foreign quantity limits.

 $\checkmark\,$ Quantity limits can be set differently for domestic and for eign households.

Tiered remuneration

$$R_t^{DC} = \begin{cases} 1 \text{ (no remuneration)} & \text{if } DC_t < \overline{DC} \\ 1 \frac{\overline{DC}}{DC_t} + R_-^{DC} \frac{DC_t - \overline{DC}}{DC_t} & \text{if } DC_t \ge \overline{DC} \end{cases}$$

- ✓ The thresholds $(\overline{DC}, \overline{DC}^*)$ are set to 50% of steady-state CBDC demand in each country.
- ✓ The penalty rate R_{-}^{DC} is set to 0.97 (300 basis points below parity), and to 0.95 (500 basis points below parity).

Policy rules

Central bank balance sheet expansion

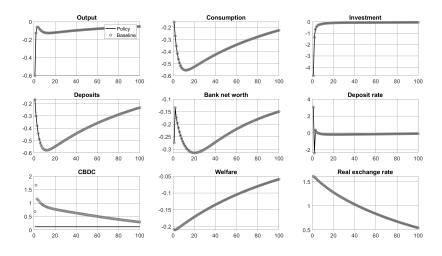
The central bank purchases assets (AP) proportional to excess CBDC demand with $\chi_{AP} \in (0, 1]$:

$$AP_t = \begin{cases} 0 & \text{if } DC_t < DC_{ss} \\ DC_t - \chi_{AP}DC_{ss} & \text{if } DC_t \ge DC_{ss} \end{cases}$$

Revenues are transferred to the government.

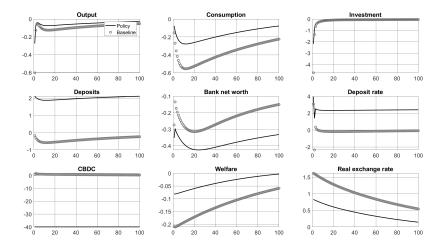
Limited access of foreigners to CBDC

Foreigners can either not access the CBDC at all:


 $DC_t^* = 0 \quad \forall t$

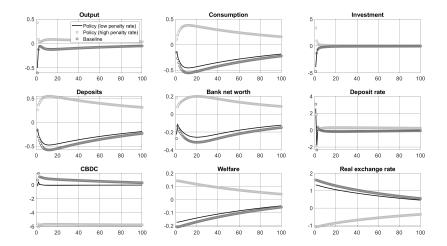
or there are higher costs for CBDC cross-border transactions:

$$\phi^{*,DC} = 0.1$$


Transition dynamics with mitigating policies

Holding limit at new steady-state demand

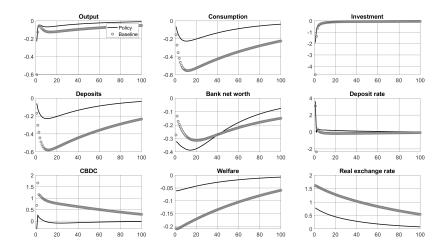
Holding limit of 50% of steady-state demand



The holding limit is kept at 50% until the economy is close to the new steady state (period 100) and then gradually relaxed.

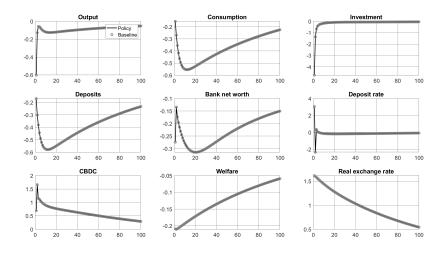
Assenmacher et al. (2023)

CBDC & transition

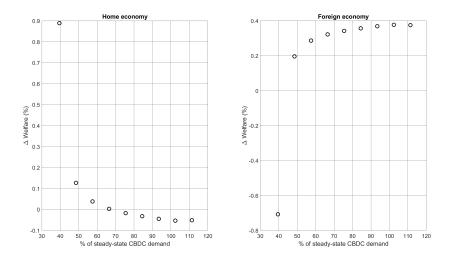

Two-tiered remuneration

Penalty rates are 3% and 5%, respectively, for holdings above 50% of steady-state demand.

Assenmacher et al. (2023)


Balance sheet expansion

The central bank buys assets for CBDC demand in excess of new steady state.


Assenmacher et al. (2023)

Domestic CBDC

High holding costs ■

"Optimal" holding limit

Conclusions

Conclusions

- $\checkmark\,$ In steady-state a CBDC reduces the market power of banks.
- ✓ Endogenously deposits and the deposit rate increase, credit supply expands slightly, welfare improves (by about 0.5% of consumption)
- $\checkmark\,$ During the transition, HHs demand excess CBDC:
 - $\rightarrow~$ Deposits decrease below steady-state,
 - $\rightarrow\,$ Investment and return on capital fall, remuneration on deposits stagnants,
 - $\rightarrow\,$ GDP contracts in the home country (by about 1%), for eign economy largely unaffected.
- \checkmark Policies are effective in governing the transition:
 - $\rightarrow\,$ A hard holding limit prevents the crowding out of deposits and reduce GDP losses by more than 50%.
 - $\rightarrow~{\rm A}$ two-tiered remuneration system is less effective.
 - $\rightarrow\,$ Balance sheet expansion policies are effective in closing the output gap, but do not fully prevent the crowding out of deposits.

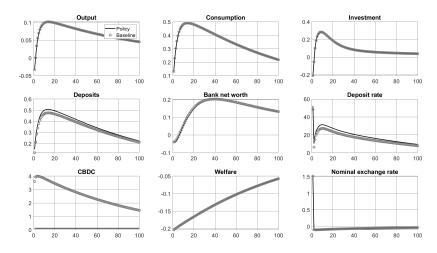
Appendix

Key friction – foreign economy

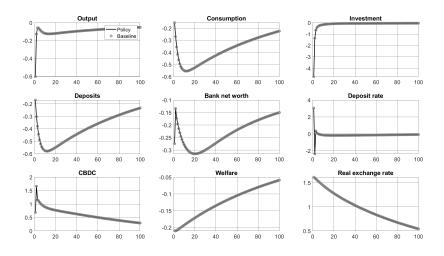
The problem is similar for the foreign economy. HH need liquidity:

$$C_t^* = \chi_L^* \left[\mu_M^* (M^*)^{1-\eta_L^*} + \mu_D^* (D^*)^{1-\eta_L^*} + \mu_{DC}^* \left(\frac{DC^*}{\mathbf{RER}_t} \right)^{1-\eta_L^*} \right]^{\frac{1}{1-\eta_L^*}}$$

cross-country CBDC holdings are subject to a quadratic cost proportional to ϕ^{DC} :


$$Cost_t = \phi^{DC} \left(\frac{DC_t^*}{RER_t} \right)^2$$

Assenmacher et al. (2023)


Appendix

Soft holding limit – foreign economy

◀ Go back.

High holding costs

Go back.

References

- Andolfatto, D., 2021. Assessing the Impact of Central Bank Digital Currency on Private banks. The Economic Journal 131, 525–540.
- Assenmacher, K., Bitter, L., Ristiniemi, A., 2023. *CBDC and business cycle dynamics in a New Monetarist New Keynesian model*. Working Paper Series, 2811.
- Barrdear, J., Kumhof, M., 2022. *The macroeconomics of central bank digital currencies.* Journal of Economic Dynamics and Control, 142(C).
- Burlon, L., Montes-Galdón, C., Muñoz, M., Smets, F., 2022. The optimal quantity of CBDC in a bank-based economy. Working Paper Series, 2689.
- Fernandez-Villaverde J., Sanches, D., Schilling, L., Uhlig, H., 2021. *Central Bank Digital Currency: Central Banking For All?*. Review of Economic Dynamics, vol. 41, pages 225-242.
- Ferrari Minesso, M., Mehl, A., Stracca, L., 2022. Central bank digital currency in an open economy," Journal of Monetary Economics, vol. 127(C), pages 54-68.
- Kumhof, M., Pinchetti, M., Rungcharoenkitkul, P., Sokol, A., 2023. *CBDC* policies in open economies. BIS Working Papers 1086.
- Moro A., Nispi Landi, V., 2023. *The external financial spillovers of CBDCs*. Temi di discussione di Banca d'Italia 1416.