Delaying the Coal Twilight: Local Mines, Regulators, and the Energy Transition 14th Toulouse Conference on the Economics of Energy and Climate

Pello Aspuru

CEMFI

June 7th, 2024

- 1. Introduction
- 2. Descriptive Evidence
- 3. Model
- 4. Estimation
- 5. Counterfactuals
- 6. Conclusion

Model

Estimation

Counterfactua

Conclusion

Coal in the US

Figure 1: Unit cost (\$/MWh)

• In the last decade, coal alternatives became more affordable.

• In the same period, coal plant owners (utilities) invested \$29 billion in upgrades.

Why?

Coal in the US

Figure 1: Unit cost (\$/MWh)

Figure 2: Upgrade investment, cumulative (\$Bn)

- In the last decade, coal alternatives became more affordable.
- In the same period, coal plant owners (utilities) invested \$29 billion in upgrades.

Why?

Coal in the US

Figure 1: Unit cost (\$/MWh)

Figure 2: Upgrade investment, cumulative (\$Bn)

- In the last decade, coal alternatives became more affordable.
- In the same period, coal plant owners (utilities) invested **\$29 billion** in upgrades.

Why?

Coal in the US

Figure 1: Unit cost (\$/MWh)

Figure 2: Upgrade investment, cumulative (\$Bn)

This Paper

Studies the drivers of upgrade and closure decisions on US coal power plants in the 2008-2019 period.

The Setup

1. Coal mining is a major sector in some US states. \oplus

- Most mines extract high-sulfur coal.
- Wyoming extracts low-sulfur coal.
- 2. Coal power plant owners (utilities).
 - By 2016 had to invest in sulfur filters, or close.
 - Two filter types: standard and expensive Cost.
 - Standard filters require low-sulfur coal.
 - Expensive filters are compatible with local coal.
- 3. State electricity regulators. 🧲
 - Set the electricity price that plant owners charge.
 - Influence filter investment through the regulated price.

	Standard	
	Filter	
Low-sulfur Coal	\checkmark	
		\checkmark

ightarrow The regulator tradeoff: Expensive filters increase prices but may help the state mining sector. G

- 1. Coal mining is a major sector in some US states. 🕂
 - Most mines extract **high-sulfur** coal.
 - Wyoming extracts low-sulfur coal.
- 2. Coal power plant owners (utilities).
 - By 2016 had to invest in sulfur filters, or close.
 - Two filter types: standard and expensive Cost
 - Standard filters require low-sulfur coal.
 - Expensive filters are compatible with local coal.
- 3. State electricity regulators. 🧲
 - Set the electricity price that plant owners charge.
 - Influence filter investment through the regulated price.

	Standard	
	Filter	
Low-sulfur Coal	\checkmark	
		\checkmark

- 1. Coal mining is a major sector in some US states. 🕂
 - Most mines extract **high-sulfur** coal.
 - Wyoming extracts low-sulfur coal.
- 2. Coal power plant owners (utilities).
 - By 2016 had to invest in sulfur filters, or close.
 - Two filter types: standard and expensive Cost
 - Standard filters require low-sulfur coal.
 - Expensive filters are compatible with local coal.
- 3. State electricity regulators. 🧲
 - Set the electricity price that plant owners charge.
 - Influence filter investment through the regulated price.

	Standard	
	Filter	Filter
Low-sulfur Coal	\checkmark	
Local Coal		\checkmark

- 1. Coal mining is a major sector in some US states. 🕂
 - Most mines extract **high-sulfur** coal.
 - Wyoming extracts low-sulfur coal.
- 2. Coal power plant owners (utilities).
 - By 2016 had to invest in sulfur filters, or close.
 - Two filter types: standard and expensive Cost
 - Standard filters require low-sulfur coal.
 - Expensive filters are compatible with local coal.
- 3. State electricity regulators. 🧲
 - Set the electricity price that plant owners charge.
 - Influence filter investment through the regulated price.

	Standard	
	Filter	Filter
Low-sulfur Coal	\checkmark	
Local Coal		\checkmark

Descriptives

Model

Estimation

- 1. Coal mining is a major sector in some US states. 🕂
 - Most mines extract **high-sulfur** coal.
 - Wyoming extracts low-sulfur coal.
- 2. Coal power plant owners (utilities).
 - By 2016 had to invest in sulfur filters, or close. MATS
 - Two filter types: standard and expensive Cost
 - Standard filters require low-sulfur coal.
 - Expensive filters are compatible with local coal.
- 3. State electricity regulators. 🧲
 - Set the electricity price that plant owners charge.
 - Influence filter investment through the regulated price.

	Standard	Expensive
	Filter	Filter
Low-sulfur Coal	\checkmark	
Local Coal		\checkmark

- 1. Coal mining is a major sector in some US states. 🕂
 - Most mines extract **high-sulfur** coal.
 - Wyoming extracts low-sulfur coal.
- 2. Coal power plant owners (utilities).
 - By 2016 had to invest in sulfur filters, or close. MATS
 - $^-$ Two filter types: standard and expensive $^{
 m Cost}$
 - Standard filters require low-sulfur coal.
 - Expensive filters are compatible with local coal.
- 3. State electricity **regulators**. 🥊
 - Set the electricity price that plant owners charge.
 - Influence filter investment through the regulated price.

	Standard	Expensive
	Filter	Filter
Low-sulfur Coal	√	
Local Coal		

- 1. Coal mining is a major sector in some US states. 🕂
 - Most mines extract **high-sulfur** coal.
 - Wyoming extracts low-sulfur coal.
- 2. Coal power plant owners (utilities).
 - By 2016 had to invest in sulfur filters, or close. MATS
 - $^-$ Two filter types: standard and expensive \bigcirc
 - Standard filters require low-sulfur coal.
 - Expensive filters are compatible with local coal.
- 3. State electricity **regulators**.
 - Set the electricity price that plant owners charge.
 - Influence filter investment through the regulated price.

	Standard	Expensive
	Filter	Filter
Low-sulfur Coal	~	
Local Coal		\checkmark

- 1. Coal mining is a major sector in some US states. 🕂
 - Most mines extract **high-sulfur** coal.
 - Wyoming extracts low-sulfur coal.
- 2. Coal power plant owners (utilities).
 - By 2016 had to invest in sulfur filters, or close. MATS
 - Two filter types: standard and expensive Cost
 - Standard filters require low-sulfur coal.
 - Expensive filters are compatible with local coal.
- 3. State electricity regulators. \pm
 - Set the electricity price that plant owners charge.
 - Influence filter investment through the regulated price.

	Standard	Expensive
	Filter	Filter
Low-sulfur Coal	~	
Local Coal		\checkmark

The Setup

- 1. Coal mining is a major sector in some US states. 🕂
 - Most mines extract **high-sulfur** coal.
 - Wyoming extracts low-sulfur coal.
- 2. Coal power plant owners (utilities).
 - By 2016 had to invest in sulfur filters, or close. MATS
 - $^-$ Two filter types: standard and expensive \bigcirc
 - Standard filters require low-sulfur coal.
 - Expensive filters are compatible with local coal.
- 3. State electricity regulators. \pm
 - Set the electricity price that plant owners charge.
 - Influence filter investment through the regulated price.

Principal-agent between regulator and plant-owner. Abito (REStud 2019); Lim and Yurukoglu (JPE, 2018)

	Standard	Expensive
	Filter	Filter
Low-sulfur Coal	~	
Local Coal		\checkmark

The Setup

- 1. Coal mining is a major sector in some US states. 🛨
 - Most mines extract **high-sulfur** coal.
 - Wyoming extracts low-sulfur coal.
- 2. Coal power plant owners (utilities).
 - By 2016 had to invest in sulfur filters, or close. MATS
 - $^-$ Two filter types: standard and expensive \bigcirc
 - Standard filters require low-sulfur coal.
 - Expensive filters are compatible with local coal.
- 3. State electricity regulators. \pm
 - Set the electricity price that plant owners charge.
 - Influence filter investment through the regulated price.

Principal-agent between regulator and plant-owner. Abito (REStud 2019); Lim and Yurukoglu (JPE, 2018)

	Standard	Expensive
	Filter	Filter
Low-sulfur Coal	√	
Local Coal		\checkmark

Model

Estimatio

The Setup

OG&E power plant upgrades could raise rates 15-20%

Published June 12, 2014

Figure 3: Oklahoma, 2014

NEWS

PSC gives OK to millions of dollars in upgrades to keep coal-fired power plants open

Figure 5: West Virginia, 2011

State regulators approve \$430M upgrade to coal plant in Cohasset

Minnesota Power's Cohasset unit will be retrofitted to sharply reduce mercury emissions. Customers can expect a rate increase.

Figure 4: Minnesota, 2012

New Hampshire utility defends Merrimack scrubber project

O August 14, 2014 ▲ Barry Cassell 🗈 Generation

The executive director of the New Hampshire Public Utilities Commission on Aug. 12 issued a schedule covering the next few weeks of activity in a long-running case at the commission

Figure 6: New Hampshire, 2014

ightarrow The regulator tradeoff: Expensive filters increase prices but may help the state mining sector. (-1)

Descriptive Exercise

Test whether state regulators promoted expensive filter investment to protect local mines.

- 1. Whether the plant charges a regulated price.
 - \rightarrow Non-regulated plants do not charge a regulated price.
- 2. Whether the regulator is from a mining state.
- → Regulated plants in mining states are more likely to install expensive filters.

Descriptive Exercise

Test whether state regulators promoted expensive filter investment to protect local mines.

- 1. Whether the plant charges a regulated price.
 - $\rightarrow\,$ Non-regulated plants do not charge a regulated price.
- 2. Whether the regulator is from a mining state.
- → Regulated plants in mining states are more likely to install expensive filters.

Descriptive Exercise

Test whether state regulators promoted expensive filter investment to protect local mines.

- 1. Whether the plant charges a regulated price.
 - $\rightarrow\,$ Non-regulated plants do not charge a regulated price.
- 2. Whether the regulator is from a mining state.
- → Regulated plants in mining states are more likely to install expensive filters.

Descriptive Exercise

Test whether state regulators promoted expensive filter investment to protect local mines.

- 1. Whether the plant charges a regulated price.
 - $\rightarrow\,$ Non-regulated plants do not charge a regulated price.
- 2. Whether the regulator is from a mining state.
- → Regulated plants in mining states are more likely to install expensive filters.

Figure 7: US coal-mining states, 2008

Descriptive Exercise

Test whether state regulators promoted expensive filter investment to protect local mines.

- 1. Whether the plant charges a regulated price.
 - $\rightarrow\,$ Non-regulated plants do not charge a regulated price.
- 2. Whether the regulator is from a mining state.
- → Regulated plants in mining states are more likely to install expensive filters.

Figure 7: US coal-mining states, 2008

Descriptives

Model

Estimation

Empirical Specification

• Multinomial logit with four outcomes $j \in \{ \text{ Standard}, \text{ Expensive}, \text{ Close} \}$, J = No Filter

$$\log\left(\frac{p_j(\mathbf{x})}{p_J(\mathbf{x})}\right) = \sum_j \beta_{0j} + \sum_j \beta_{1j} \times X_i + \sum_j \beta_{2j} \times m_i + \sum_j \beta_{3j} \times \operatorname{Reg}_i + \sum_j \beta_{4j} \times \operatorname{Reg}_i \times m_i$$

X_i generator covariates: age, size...

- *m_i* size of close-by mining sector, **inside state border**.
- · Reg_i indicator for regulated plants.
- β_{4j} local mine protection channel.

Descriptives

Model

Estimation

Empirical Specification

$$\log\left(\frac{p_j(\mathbf{x})}{p_J(\mathbf{x})}\right) = \sum_j \beta_{0j} + \sum_j \beta_{1j} \times X_i + \sum_j \beta_{2j} \times m_i + \sum_j \beta_{3j} \times \operatorname{Reg}_i + \sum_j \beta_{4j} \times \operatorname{Reg}_i \times m_i$$

- X_i generator covariates: age, size...
- *m_i* size of close-by mining sector, inside state border.
- · Reg_i indicator for regulated plants.
- β_{4j} local mine protection channel.

Descriptives

Model

Estimation

Empirical Specification

$$\log\left(\frac{p_j(\mathbf{x})}{p_J(\mathbf{x})}\right) = \sum_j \beta_{0j} + \sum_j \beta_{1j} \times X_i + \sum_j \beta_{2j} \times m_i + \sum_j \beta_{3j} \times \operatorname{Reg}_i + \sum_j \beta_{4j} \times \operatorname{Reg}_i \times m_i$$

- X_i generator covariates: age, size...
- *m_i* size of close-by mining sector, **inside state border**.
- · Regi indicator for regulated plants
- β_{4j} local mine protection channel.

Descriptives

Model

Estimation

Empirical Specification

$$\log\left(\frac{p_j(\mathbf{x})}{p_J(\mathbf{x})}\right) = \sum_j \beta_{0j} + \sum_j \beta_{1j} \times X_i + \sum_j \beta_{2j} \times m_i + \sum_j \beta_{3j} \times \operatorname{Reg}_i + \sum_j \beta_{4j} \times \operatorname{Reg}_i \times m_i$$

- X_i generator covariates: age, size...
- *m_i* size of close-by mining sector, **inside state border**.
- · Regi indicator for regulated plants
- β_{4j} local mine protection channel.

Descriptives

Model

Estimation

Empirical Specification

$$\log\left(\frac{p_j(\mathbf{x})}{p_J(\mathbf{x})}\right) = \sum_j \beta_{0j} + \sum_j \beta_{1j} \times X_i + \sum_j \beta_{2j} \times m_i + \sum_j \beta_{3j} \times \operatorname{Reg}_i + \sum_j \beta_{4j} \times \operatorname{Reg}_i \times m_i$$

- X_i generator covariates: age, size...
- *m_i* size of close-by mining sector, **inside state border**.
- · Regi indicator for regulated plants
- β_{4j} local mine protection channel.

Descriptives

Model

Estimation

Empirical Specification

$$\log\left(\frac{p_j(\mathbf{x})}{p_J(\mathbf{x})}\right) = \sum_j \beta_{0j} + \sum_j \beta_{1j} \times X_i + \sum_j \beta_{2j} \times m_i + \sum_j \beta_{3j} \times \operatorname{Reg}_i + \sum_j \beta_{4j} \times \operatorname{Reg}_i \times m_i$$

- X_i generator covariates: age, size...
- *m_i* size of close-by mining sector, **inside state border**.
- · Regi indicator for regulated plants
- β_{4j} local mine protection channel.

Descriptives

Model

Estimation

Empirical Specification

$$\log\left(\frac{p_j(\mathbf{x})}{p_J(\mathbf{x})}\right) = \sum_j \beta_{0j} + \sum_j \beta_{1j} \times X_i + \sum_j \beta_{2j} \times m_i + \sum_j \beta_{3j} \times \operatorname{Reg}_i + \sum_j \beta_{4j} \times \operatorname{Reg}_i \times m_i$$

- X_i generator covariates: age, size...
- *m_i* size of close-by mining sector, **inside state border**.
- Reg_i indicator for regulated plants.
- β_{4j} local mine protection channel.

Descriptives

Model

Estimation

Empirical Specification

$$\log\left(\frac{p_j(\mathbf{x})}{p_J(\mathbf{x})}\right) = \sum_j \beta_{0j} + \sum_j \beta_{1j} \times X_i + \sum_j \beta_{2j} \times m_i + \sum_j \beta_{3j} \times \operatorname{Reg}_i + \sum_j \beta_{4j} \times \operatorname{Reg}_i \times m_i$$

- X_i generator covariates: age, size...
- *m_i* size of close-by mining sector, **inside state border**.
- Reg_i indicator for regulated plants.
- β_{4j} local mine protection channel.

$$\log\left(\frac{p_{j}(\mathbf{x})}{p_{J}(\mathbf{x})}\right) = \sum \beta_{0j} + \sum \beta_{1j} \times X_{i} + \sum \beta_{2j} \times m_{i} + \sum \beta_{3j} \times \operatorname{Reg}_{i} + \sum \beta_{4j} \times \operatorname{Reg}_{i} \times m_{i}$$

	Dependent variable		
	j = retire	j = standard	j = expensive
Demulated	0.243	1.034*	1.122***
Regulated	(0.349)	(0.590)	(0.372)
Mine Size (Million Ton, 2008)	0.024	0.008	-0.004
	(0.017)	(0.027)	(0.020)
Regulated \times Mine Size	0.044	0.005	0.075**
	(0.030)	(0.045)	(0.033)
		McFadden R2	0.218
		N	707

 \rightarrow +1 million Ton in mining sector increases expensive filter adoption relative probability by 7.7%.

Descriptives

Model

Estimation

Counterfactuals

Conclusion

Why Do I Need a Model?

So far...

Regulated plants from mining states are more likely to invest in expensive filters.

- 1. Establish a link between filter investment and plant retirement decisions.
- 2. Quantify the importance of the local mine protection mechanism.
- 3. Perform counterfactual exercises.

Closure Specification

Descriptives

Model

Estimation

Counterfactua

Conclusion

Why Do I Need a Model?

So far...

Regulated plants from mining states are more likely to invest in expensive filters.

- 1. Establish a link between filter investment and plant retirement decisions.
- 2. Quantify the importance of the local mine protection mechanism.
- 3. Perform counterfactual exercises.

Closure Specification

Model Summary

- * Dynamic model, infinite horizon. Two state variables:
 - Cost of natural gas, falling over time.
 - Countdown to 2016, filter becomes compulsory.
- Discrete-choice model
 - Remain open or retire.
 - Standard filter or expensive.
- Principal-agent model
 - The regulator (principal) cares about welfare and state mining revenue.
 - The coal plant owner (agent) is a profit maximizer.
- Estimation:
 - As in Rust 1987.

Figure 8: Unit cost (\$/MWh)

Model Summary

- Dynamic model, infinite horizon. Two state variables:
 - Cost of natural gas, falling over time.
 - Countdown to 2016, filter becomes compulsory.
- Discrete-choice model
 - Remain open or retire.
 - Standard filter or expensive.
- Principal-agent model
 - The regulator (principal) cares about welfare and state mining revenue.
 - The coal plant owner (agent) is a profit maximizer.
- Estimation:
 - As in Rust 1987.

Figure 8: Decomissioning

Figure 9: Filter

Model Summary

- Dynamic model, infinite horizon. Two state variables:
 - Cost of natural gas, falling over time.
 - Countdown to 2016, filter becomes compulsory.
- Discrete-choice model
 - Remain open or retire.
 - Standard filter or expensive.
- Principal-agent model
 - The regulator (principal) cares about welfare and state mining revenue.
 - The coal plant owner (agent) is a profit maximizer.
- Estimation:

Figure 8: Regulator

Figure 9: Plant-owner
Estimation

Model Summary

- Dynamic model, infinite horizon. Two state variables:
 - Cost of natural gas, falling over time.
 - Countdown to 2016, filter becomes compulsory.
- Discrete-choice model
 - Remain open or retire.
 - Standard filter or expensive.
- Principal-agent model
 - The regulator (principal) cares about welfare and state mining revenue.
 - The coal plant owner (agent) is a profit maximizer.
- Estimation:
 - As in Rust 1987.

Figure 8: Regulator

Figure 9: Plant-owner

The **regulator** offers a menu of **four** prices $p(\omega_t)$, depending on filter $\omega_t \in \{expensive, standard, none\}$.

p(*expensive*), *p*(*standard*), *p*(*none*)

The coal plant owner (agent): chooses a filter $\omega \in \{expensive, standard, none\}$ to maximize profits:

 $\pi(\omega_t) = q(\omega_t) \cdot (p(\omega_t) - \overline{c}(\omega_t)) - F_{\omega_t}$

Timing

The **regulator** offers a menu of **four** prices $p(\omega_t)$, depending on filter $\omega_t \in \{expensive, standard, none\}$.

p(expensive), p(standard), p(none)

The coal plant **owner** (agent): chooses a filter $\omega \in \{expensive, standard, none\}$ to maximize profits:

$$\pi(\omega_t) = q(\omega_t) \cdot (\underline{p(\omega_t)} - \overline{c}(\omega_t)) - F_{\omega_t}$$

Timing

The **regulator** offers a menu of **four** prices $p(\omega_t)$, depending on filter $\omega_t \in \{expensive, standard, none\}$.

p(*expensive*), *p*(*standard*), *p*(*none*)

The coal plant **owner** (agent): chooses a filter $\omega \in \{expensive, standard, none\}$ to maximize profits:

$$\pi(\omega_t) = q(\omega_t) \cdot (p(\omega_t) - \overline{c}(\omega_t)) - F_{\omega_t}$$

Descriptives

Model

Estimation

Counterfactuals

Conclusion

Mechanisms and Estimation Result

Regulator Utility Function

Welfare + $\alpha_1 \cdot Revenue$

+ Parameter α_1 weights the importance of local mine revenue for the regulator.

Descriptives

Model

Estimation

Counterfactuals

Conclusion

Mechanisms and Estimation Result

Regulator Utility Function

Welfare + $\alpha_1 \cdot Revenue$

• Parameter α_1 weights the importance of local mine revenue for the regulator.

	Standard Filter	Expensive filter	
	\downarrow Fixed Cost \rightarrow \uparrow Welfare		
Low-sulfur Coal	$\uparrow Unit \ Costs \to \downarrow Welfare$		
	↓ Local mine Revenue		
Local Coal			

Descriptives

Model

Estimation

Counterfactuals

Conclusion

Mechanisms and Estimation Result

Regulator Utility Function

Welfare + $\alpha_1 \cdot Revenue$

• Parameter α_1 weights the importance of local mine revenue for the regulator.

	Standard Filter	Expensive filter
	$\downarrow Fixed \ Cost \rightarrow \uparrow \ Welfare$	
Low-sulfur Coal	$\uparrow \ {\sf Unit} \ {\sf Costs} \rightarrow \downarrow \ {\sf Welfare}$	
	↓ Local mine Revenue	
Local Coal		

Descriptives

Model

Estimation

Counterfactuals

Conclusion

Mechanisms and Estimation Result

Regulator Utility Function

Welfare + $\alpha_1 \cdot Revenue$

• Parameter α_1 weights the importance of local mine revenue for the regulator.

	Standard Filter	Expensive filter	
	\downarrow Fixed Cost \rightarrow \uparrow Welfare		
Low-sulfur Coal	\uparrow Unit Costs $\rightarrow \downarrow$ Welfare		
	↓ Local mine Revenue		
		$\uparrow Fixed \ Cost \to \downarrow Welfare$	
Local Coal		$\downarrow Unit Cost \rightarrow \uparrow Welfare$	
		↑ Local Mine Revenue	

ntro

Descriptives

Model

Estimation

Counterfactuals

Conclusion

Mechanisms and Estimation Result

Regulator Utility Function

Welfare + $2.03 \cdot Revenue$

• Parameter α_1 weights the importance of local mine revenue for the regulator.

	Standard Filter	Expensive filter	
	$\downarrow Fixed \ Cost \rightarrow \uparrow \ Welfare$		
Low-sulfur Coal	$\uparrow Unit \ Costs \rightarrow \downarrow Welfare$		
	↓ Local mine Revenue		
Local Coal		$\uparrow Fixed \ Cost \to \downarrow Welfare$	
		$\downarrow \ {\sf Unit} \ {\sf Cost} \rightarrow \uparrow \ {\sf Welfare}$	
		↑ Local Mine Revenue	

- · How to disentangle the ambiguous effect of filter types on welfare?
- Exploit the distance d between the plant and Wyoming.

- · How to disentangle the ambiguous effect of filter types on welfare?
- Exploit the distance d between the plant and Wyoming.

- · How to disentangle the ambiguous effect of filter types on welfare?
- Exploit the distance d between the plant and Wyoming.

- · How to disentangle the ambiguous effect of filter types on welfare?
- Exploit the distance d between the plant and Wyoming.

- How to identify the local mine protection parameter?
- The effect of filter on local mine revenue depends on the presence of mines within its state borders.

ightarrow Mine-friendly regulators always install expensive filters regardless the distance to Wyoming.

- How to identify the local mine protection parameter?
- The effect of filter on local mine revenue depends on the presence of mines within its state borders.

ightarrow Mine-friendly regulators always install expensive filters regardless the distance to Wyoming

- How to identify the local mine protection parameter?
- The effect of filter on local mine revenue depends on the presence of mines within its state borders.

ightarrow Mine-friendly regulators always install expensive filters regardless the distance to Wyoming

- How to identify the local mine protection parameter?
- The effect of filter on local mine revenue depends on the presence of mines within its state borders.

ightarrow Mine-friendly regulators always install expensive filters regardless the distance to Wyoming.

Descriptives

Model

Estimation

Counterfactuals

Conclusion

Local Mine Protection

How many coal plants would have closed, absent local mine protection?

1. Simulate regulator decisions, original parameters.

2. Simulate decisions without local mine protection

 $\alpha_1 = 0$

- 3. Results:
 - = \downarrow 15% regulated plants in mining states.
 - \downarrow 0.4% of US CO2 emissions.
 - $^ \downarrow$ 1.3% of mining states' CO2 emissions. +

Figure 10: Coal capacity, mining states (GW)

Descriptives

Model

Estimation

Counterfactuals

Conclusion

Local Mine Protection

How many coal plants would have closed, absent local mine protection?

- 1. Simulate regulator decisions, original parameters.
- 2. Simulate decisions without local mine protection

 $\alpha_1 = 0$

- 3. Results:
 - = \downarrow 15% regulated plants in mining states.
 - \downarrow 0.4% of US CO2 emissions.
 - = \downarrow 1.3% of mining states' CO2 emissions. +

Figure 10: Coal capacity, mining states (GW)

Descriptives

Model

Estimation

Counterfactuals

Conclusion

Local Mine Protection

How many coal plants would have closed, absent local mine protection?

- 1. Simulate regulator decisions, original parameters.
- 2. Simulate decisions without local mine protection

 $\alpha_1 = 0$

- 3. Results:
 - \downarrow 15% regulated plants in mining states.
 - \downarrow 0.4% of US CO2 emissions.
 - $^ \downarrow$ 1.3% of mining states' CO2 emissions. \oplus

Figure 10: Coal capacity, mining states (GW)

How would a 100 \$/ Ton carbon tax interact with local mine protection?

- 1. Simulate regulator decisions, original parameters.
- 2. Simulate decisions with tax and no mine protection:

Tax and $\alpha_1 = 0$

- = \downarrow 78% regulated plants in mining states.
- 3. Simulate with tax and mine protection.

Tax and $\alpha_1 = 2.03$

= \downarrow 68% regulated plants in mining states.

Figure 11: Coal capacity, mining states (GW)

How would a 100 f Ton carbon tax interact with local mine protection?

- 1. Simulate regulator decisions, original parameters.
- 2. Simulate decisions with tax and no mine protection:

Tax and $\alpha_1 = 0$

- $^ \downarrow$ 78% regulated plants in mining states.
- 3. Simulate with tax and mine protection.

Tax and $\alpha_1 = 2.03$

= \downarrow 68% regulated plants in mining states.

Figure 11: Coal capacity, mining states (GW)

How would a 100 \$/ Ton carbon tax interact with local mine protection?

- 1. Simulate regulator decisions, original parameters.
- 2. Simulate decisions with tax and no mine protection:

Tax and $\alpha_1 = 0$

- \downarrow 78% regulated plants in mining states.
- 3. Simulate with tax and mine protection.

Tax and
$$\alpha_1 = 2.03$$

- \downarrow 68% regulated plants in mining states.

Figure 11: Coal capacity, mining states (GW)

- · I start by testing the existence of the mechanism in the data.
 - Local mining sector drives expensive filter adoption, for regulated plants.
- I next introduce a novel principal-agent model on filter investment and closure.
 - Model estimates show that regulators value mining revenue **twice** as much as consumer surplus.
- Lastly, I employ the model structural estimation to find that...
 - Mine protection reduces the effectiveness of environmental policies like a carbon tax.

- I start by testing the existence of the mechanism in the data.
 - Local mining sector **drives** expensive filter adoption, for regulated plants.
- · I next introduce a novel principal-agent model on filter investment and closure.
 - Model estimates show that regulators value mining revenue twice as much as consumer surplus.
- Lastly, I employ the model structural estimation to find that...
 - Mine protection reduces the effectiveness of environmental policies like a carbon tax.

- I start by testing the existence of the mechanism in the data.
 - Local mining sector **drives** expensive filter adoption, for regulated plants.
- I next introduce a novel principal-agent model on filter investment and closure.
 - Model estimates show that regulators value mining revenue twice as much as consumer surplus.
- · Lastly, I employ the model structural estimation to find that...
 - Mine protection reduces the effectiveness of environmental policies like a carbon tax.

- I start by testing the existence of the mechanism in the data.
 - Local mining sector drives expensive filter adoption, for regulated plants.
- I next introduce a novel principal-agent model on filter investment and closure.
 - Model estimates show that regulators value mining revenue twice as much as consumer surplus.
- · Lastly, I employ the model structural estimation to find that...
 - Mine protection reduces the effectiveness of environmental policies like a carbon tax.

Intro	Descriptives	Model	Estimation	Counterfactuals	Conclusion

Thank You!

pello.aspuru@cemfi.edu.es

Estimation

- MATS is a federal emission standard by the Environmental Protection Agency (EPA).
- · Introduced in 2011, enforced since 2016.
- Establishes sulfur emission threshold S per output unit.

$$\underbrace{\overline{s} \cdot (1 - \omega)}_{\text{Sulfur Emissions}} \leq S$$

- s̄ is the average sulfur concentration of the coal blend.
- $\omega \in \{h, I, 0\}$ is the **efficiency** of the filter, where 1 > h > I > 0
- MATS effectively forced filter adoption. MATS threshold

Estimation

- MATS is a federal emission standard by the Environmental Protection Agency (EPA).
- · Introduced in 2011, enforced since 2016.
- Establishes sulfur emission threshold S per output unit.

$$\underbrace{\overline{s} \cdot (1 - \omega)}_{\text{Sulfur Emissions}} \leq S$$

- s̄ is the average sulfur concentration of the coal blend.
- $\omega \in \{h, l, 0\}$ is the **efficiency** of the filter, where 1 > h > l > 0
- MATS effectively forced filter adoption. MATS threshold

Estimation

- MATS is a federal emission standard by the Environmental Protection Agency (EPA).
- · Introduced in 2011, enforced since 2016.
- Establishes sulfur emission threshold S per output unit.

$$\overline{s} \cdot (1 - \omega) \leq S$$

Sulfur Emissions

- s̄ is the average sulfur concentration of the coal blend.
- $\omega \in \{h, l, 0\}$ is the **efficiency** of the filter, where 1 > h > l > 0
- MATS effectively forced filter adoption. MATS threshold

Estimation

- MATS is a federal emission standard by the Environmental Protection Agency (EPA).
- · Introduced in 2011, enforced since 2016.
- Establishes sulfur emission threshold S per output unit.

$$\overline{s} \cdot (1 - \omega) \leq S$$

Sulfur Emissions

- $-\overline{s}$ is the average sulfur concentration of the coal blend.
- $-\omega \in \{h, I, 0\}$ is the **efficiency** of the filter, where 1 > h > I > 0
- MATS effectively forced filter adoption. MATS threshold

Estimation

- MATS is a federal emission standard by the Environmental Protection Agency (EPA).
- · Introduced in 2011, enforced since 2016.
- Establishes sulfur emission threshold S per output unit.

$$\underbrace{\overline{s} \cdot (1 - \omega)}_{\text{Sulfur Emissions}} \leq S$$

- $-\overline{s}$ is the average sulfur concentration of the coal blend.
- $-\omega \in \{h, I, 0\}$ is the **efficiency** of the filter, where 1 > h > I > 0
- MATS effectively forced filter adoption. MATS threshold

Estimation

Coal Mining in the US $% \left({{{\rm{US}}} \right)$

 $\overline{s} \cdot (1-\omega) \leq S$

• Plant owners purchase coal from two sources, which determine \overline{s} .

1. Local coal, with high sulfur concentration and little transport cost: $\uparrow \overline{s}$.

2. Wyoming coal, with low sulfur concentration high transport cost: $\downarrow \overline{s}$.

 \rightarrow **Tradeoff** between low-sulfur Wyoming coal and transportation cost.

Estimation

Coal Mining in the US

 $\overline{\mathbf{s}} \cdot (1-\omega) \leq S$

- Plant owners purchase coal from two sources, which determine \overline{s} .
 - 1. Local coal, with high sulfur concentration and little transport cost: $\uparrow \overline{s}$.
 - 2. Wyoming coal, with low sulfur concentration high transport cost: $\downarrow \overline{s}$.
- ightarrow Tradeoff between low-sulfur Wyoming coal and transportation cost.

Estimation

Coal Mining in the US

 $\overline{s} \cdot (1-\omega) \leq S$

- Plant owners purchase coal from two sources, which determine \overline{s} .
 - 1. Local coal, with high sulfur concentration and little transport cost: $\uparrow \overline{s}$.
 - 2. Wyoming coal, with low sulfur concentration high transport cost: $\downarrow \overline{s}$.
- \rightarrow Tradeoff between low-sulfur Wyoming coal and transportation cost.

Estimation

Coal Mining in the US

 $\overline{s} \cdot (1-\omega) \leq S$

- Plant owners purchase coal from two sources, which determine \overline{s} .
 - 1. Local coal, with high sulfur concentration and little transport cost: $\uparrow \overline{s}$.
 - 2. Wyoming coal, with low sulfur concentration high transport cost: $\downarrow \overline{s}$.
- $\rightarrow~$ Tradeoff between low-sulfur Wyoming coal and transportation cost.

Estimation

Coal Blend and Filter Efficiency

 $\overline{s} \cdot (1 - \omega) \leq S$

- Standard filters $\omega = I$ require low-sulfur Wyoming coal $\downarrow \overline{s}$. WY Appalachia WY South
- Expensive filters $\omega = h > l$ are compatible with a higher share of local coal $\uparrow \overline{s}$.
- ightarrow Tradeoff between filter fixed cost and local coal. (Filter Cost

Figure 13: Coal blend - Standard filters

Estimation

Coal Blend and Filter Efficiency

 $\overline{s} \cdot (1 - \omega) \leq S$

- Standard filters $\omega = I$ require low-sulfur Wyoming coal $\downarrow \overline{s}$. WY Appalachia WY South
- Expensive filters $\omega = h > l$ are compatible with a higher share of local coal $\uparrow \overline{s}$.
- ightarrow Tradeoff between filter fixed cost and local coal. (Filter Cost

Figure 13: Coal blend - Standard filters

Figure 14: Coal blend - Expensive Filters

Estimation

Coal Blend and Filter Efficiency

 $\overline{s} \cdot (1 - \omega) \leq S$

- Standard filters $\omega = I$ require low-sulfur Wyoming coal $\downarrow \overline{s}$. WY Appalachia WY South
- Expensive filters $\omega = h > l$ are compatible with a higher share of local coal $\uparrow \overline{s}$.
- \rightarrow Tradeoff between filter fixed cost and local coal. (Filter Cost

Figure 13: Coal blend - Standard filters

Figure 14: Coal blend - Expensive Filters

Estimation

Model Agents

Principal-agent model: the regulator indirectly chooses the filter through the regulated price.

The electricity **regulator** (principal): offers a menu of electricity prices $p(\omega)$, depending on filter ω .

• The regulator utility function values welfare W(p) and mine revenue $R(\omega)$.

$$U = W(p) + \alpha_1 \cdot R(\omega)$$

 $\rightarrow \alpha_1$ weights the mine revenue.

The coal plant owner (agent): chooses a filter $\omega \in \{h, l\}$, pays fixed cost F_{ω} .

$$\pi = q \cdot (p(\omega) - \overline{c}) - F_{\omega}$$

• More efficient filters are more expensive $F_h > F_l$.

Estimation

Model Agents

Principal-agent model: the regulator indirectly chooses the filter through the regulated price.

The electricity regulator (principal): offers a menu of electricity prices $p(\omega)$, depending on filter ω .

• The regulator utility function values welfare W(p) and mine revenue $R(\omega)$.

$$U = W(p) + \frac{\alpha_1}{\alpha_1} \cdot R(\omega)$$

 $\rightarrow \alpha_1$ weights the mine revenue.

The coal plant owner (agent): chooses a filter $\omega \in \{h, l\}$, pays fixed cost F_{ω} .

$$\pi = q \cdot (p(\omega) - \overline{c}) - F_{\omega}$$

• More efficient filters are more expensive $F_h > F_l$.

Estimation

Model Agents

Principal-agent model: the regulator indirectly chooses the filter through the regulated price.

The electricity regulator (principal): offers a menu of electricity prices $p(\omega)$, depending on filter ω .

• The regulator utility function values welfare W(p) and mine revenue $R(\omega)$.

$$U = W(p) + \alpha_1 \cdot R(\omega)$$

 $\rightarrow \alpha_1$ weights the mine revenue.

The coal plant **owner** (agent): chooses a filter $\omega \in \{h, I\}$, pays fixed cost F_{ω} .

$$\pi = \boldsymbol{q} \cdot (\boldsymbol{p}(\omega) - \overline{\boldsymbol{c}}) - \boldsymbol{F}_{\omega}$$

• More efficient filters are more expensive $F_h > F_l$.

Estimation

Mechanisms

 $U = W(p) + \alpha_1 \cdot R(\omega)$

· Expensive filters may decrease or increase welfare.

$$\begin{array}{ccc} \uparrow \omega & \to \\ \mathsf{Filter} & & \end{array} \left\{ \begin{array}{ccc} \uparrow F_{\omega} & \to & \uparrow p(\omega) & \to & \downarrow W(p) \\ \mathsf{Fixed \ Cost} & & \mathsf{Price} & & \mathsf{Welfare} \\ & & \uparrow \rho & \to & \downarrow \overline{c} & \to & \downarrow p(\omega) & \to & \uparrow W(\rho) \\ & & \mathsf{Local \ Coal} & & \mathsf{Unit \ Cost} & & \mathsf{Price} & & \mathsf{Welfare} \end{array} \right.$$

- \rightarrow Main tradeoff in **no-mining states**.
- · Expensive filters always increase local-mine revenue.

Estimation

Mechanisms

$$U = W(p) + \alpha_1 \cdot R(\omega)$$

· Expensive filters may decrease or increase welfare.

- \rightarrow Main tradeoff in **no-mining states**.
- · Expensive filters always increase local-mine revenue.

Estimation

Mechanisms

$$U = W(p) + \alpha_1 \cdot R(\omega)$$

• Expensive filters may decrease or increase welfare.

$$\begin{array}{cccc} \uparrow \omega & \rightarrow & \\ \mathsf{Filter} & & \\ \mathsf{Filter} & & \\ \end{array} \left\{ \begin{array}{cccc} \uparrow F_{\omega} & \rightarrow & \uparrow p(\omega) & \rightarrow & \downarrow W(p) \\ \mathsf{Fixed \ Cost} & & \mathsf{Price} & & \mathsf{Welfare} \\ & & \uparrow \rho & \rightarrow & \downarrow \overline{c} & \rightarrow & \downarrow p(\omega) & \rightarrow & \uparrow W(p) \\ & & \mathsf{Local \ Coal} & & \mathsf{Unit \ Cost} & & \mathsf{Price} & & \mathsf{Welfare} \end{array} \right.$$

- \rightarrow Main tradeoff in **no-mining states**.
- · Expensive filters always increase local-mine revenue.

Estimation

Mechanisms

$$U = W(p) + \alpha_1 \cdot R(\omega)$$

• Expensive filters may decrease or increase welfare.

$$\begin{array}{cccc} \uparrow \omega & \rightarrow & \\ \mathsf{Filter} & & \\ & \mathsf{Filter} & & \\ \end{array} \begin{array}{cccc} \uparrow F_{\omega} & \rightarrow & \uparrow p(\omega) & \rightarrow & \downarrow W(p) \\ & \mathsf{Fixed \ Cost} & & \mathsf{Price} & & \mathsf{Welfare} \\ & & \uparrow \rho & \rightarrow & \downarrow \overline{c} & \rightarrow & \downarrow p(\omega) & \rightarrow & \uparrow W(p) \\ & & \mathsf{Local \ Coal} & & \mathsf{Unit \ Cost} & & \mathsf{Price} & & \mathsf{Welfare} \end{array}$$

- $\rightarrow~$ Main tradeoff in **no-mining states**.
- Expensive filters always increase local-mine revenue.

Estimation

Mechanisms

$$U = W(p) + \alpha_1 \cdot R(\omega)$$

• Expensive filters may decrease or increase welfare.

$$\begin{array}{cccc} \uparrow \omega & \rightarrow & \\ \mathsf{Filter} & & \\ \mathsf{Filter} & & \\ \end{array} \begin{array}{cccc} \uparrow F_{\omega} & \rightarrow & \uparrow p(\omega) & \rightarrow & \downarrow W(p) \\ \mathsf{Fixed \ Cost} & & \mathsf{Price} & & \mathsf{Welfare} \\ & & \uparrow \rho & \rightarrow & \downarrow \overline{c} & \rightarrow & \downarrow p(\omega) & \rightarrow & \uparrow W(p) \\ & & \mathsf{Local \ Coal} & & \mathsf{Unit \ Cost} & & \mathsf{Price} & & \mathsf{Welfare} \end{array}$$

- \rightarrow Main tradeoff in **no-mining states**.
- Expensive filters always increase local-mine revenue.

$$egin{array}{ccc} \uparrow \omega & o & \uparrow
ho & o & \uparrow R(\omega) \ & ext{Filter} & ext{Local Coal} & ext{Mine Revenue} \end{array}$$

 \rightarrow Additional force for expensive filters, in mining states. Scatter

Estimation

Mechanisms

$$U = W(p) + \alpha_1 \cdot R(\omega)$$

• Expensive filters may decrease or increase welfare.

$$\begin{array}{cccc} \uparrow \omega & \rightarrow & \\ \mathsf{Filter} & & \\ \mathsf{Filter} & & \\ \end{array} \begin{array}{cccc} \uparrow F_{\omega} & \rightarrow & \uparrow p(\omega) & \rightarrow & \downarrow W(p) \\ \mathsf{Fixed \ Cost} & & \mathsf{Price} & & \mathsf{Welfare} \\ & & \uparrow \rho & \rightarrow & \downarrow \overline{c} & \rightarrow & \downarrow p(\omega) & \rightarrow & \uparrow W(p) \\ & & \mathsf{Local \ Coal} & & \mathsf{Unit \ Cost} & & \mathsf{Price} & & \mathsf{Welfare} \end{array}$$

- \rightarrow Main tradeoff in **no-mining states**.
- Expensive filters always increase local-mine revenue.

 \rightarrow Additional force for expensive filters, in mining states. (Scatter

Estimation

Coal Plant Dispatch

- Electricity supply.
 - 1. Coal power plant with unit capacity constraint (1MW) supplies at price p.
 - 2. Competitive fringe of **natural gas plants** sell at price $p^{gas} \sim \phi(p^{gas}|\mu)$

 $\rightarrow~\mu$ is the centering parameter of the natural gas price distribution.

- Electricity demand.
 - Demand is inelastic $Q \ge 1$
 - = Consumers only buy from coal plant when $p \leq p^{gas}$
 - Coal plant expected output is

$$q = Pr(p \leq p^{gas}) = 1 - \Phi(p|\mu)$$

- Welfare contribution: $W(p) = \int_{p}^{\infty} (p^{gas} p) \cdot \phi(p^{gas} \mid \mu) \cdot dp^{gas}$
- Local mine revenue: $R(\omega) = q \cdot
 ho \cdot c_{
 m rr}$

Estimation

Coal Plant Dispatch

- Electricity supply.
 - 1. Coal power plant with unit capacity constraint (1MW) supplies at price p.
 - 2. Competitive fringe of **natural gas plants** sell at price $p^{gas} \sim \phi(p^{gas}|\mu)$

 $\rightarrow~\mu$ is the centering parameter of the natural gas price distribution.

- Electricity demand.
 - $^-$ Demand is inelastic $Q \geq 1$
 - Consumers only buy from coal plant when $p \leq p^{gas}$.
 - Coal plant expected output is

$$q = Pr(p \leq p^{gas}) = 1 - \Phi(p|\mu)$$

- Welfare contribution: $W(p) = \int_{p}^{\infty} (p^{gas} p) \cdot \phi(p^{gas} \mid \mu) \cdot dp^{ga}$
- Local mine revenue: $R(\omega) = q \cdot \rho \cdot c_{\pi}$

Estimation

Coal Plant Dispatch

- Electricity supply.
 - 1. Coal power plant with unit capacity constraint (1MW) supplies at price p.
 - 2. Competitive fringe of **natural gas plants** sell at price $p^{gas} \sim \phi(p^{gas}|\mu)$

 $\rightarrow~\mu$ is the centering parameter of the natural gas price distribution.

- Electricity demand.
 - $^-$ Demand is inelastic $Q \ge 1$
 - Consumers only buy from coal plant when $p \leq p^{gas}$.
 - Coal plant expected output is

$$q = Pr(p \leq p^{gas}) = 1 - \Phi(p|\mu)$$

- Welfare contribution: $W(p) = \int_{p}^{\infty} (p^{gas} p) \cdot \phi(p^{gas} \mid \mu) \cdot dp^{gas}$
- Local mine revenue: $R(\omega) = q \cdot \rho \cdot c_m$

 $U = W(p) + \alpha_1 \cdot R(\omega)$

Estimation

Coal Plant Dispatch

- Electricity supply.
 - 1. Coal power plant with unit capacity constraint (1MW) supplies at price p.
 - 2. Competitive fringe of **natural gas plants** sell at price $p^{gas} \sim \phi(p^{gas}|\mu)$

 $\rightarrow~\mu$ is the centering parameter of the natural gas price distribution.

- Electricity demand.
 - $^-$ Demand is inelastic $Q \ge 1$
 - Consumers only buy from coal plant when $p \leq p^{gas}$.
 - Coal plant expected output is

$$q = Pr(p \leq p^{gas}) = 1 - \Phi(p|\mu)$$

• Welfare contribution:
$$W(p) = \int_{p}^{\infty} (p^{gas} - p) \cdot \phi(p^{gas} \mid \mu) \cdot dp^{gas}$$

• Local mine revenue:
$$R(\omega) = q \cdot
ho \cdot c_m$$

 $U = W(p) + \alpha_1 \cdot R(\omega)$

Estimation

Coal Plant Dispatch

- Electricity supply.
 - 1. Coal power plant with unit capacity constraint (1MW) supplies at price p.
 - 2. Competitive fringe of **natural gas plants** sell at price $p^{gas} \sim \phi(p^{gas}|\mu)$

 $\rightarrow~\mu$ is the centering parameter of the natural gas price distribution.

- Electricity demand.
 - Demand is inelastic $Q \geq 1$
 - Consumers only buy from coal plant when $p \leq p^{gas}$.
 - Coal plant expected output is

$$q = {\it Pr}(p \leq p^{gas}) = 1 - \Phi(p|\mu)$$

• Welfare contribution:
$$W(p) = \int_{p}^{\infty} (p^{gas} - p) \cdot \phi(p^{gas} \mid \mu) \cdot dp^{gas}$$

• Local mine revenue:
$$R(\omega) = q \cdot
ho \cdot c_m$$

$$U = W(p) + lpha_1 \cdot R(\omega)$$

Estimation

- 1. For plant without filter: $\max \{ \max_{\omega \in \{h,l,0\}} \{ W(\omega) + \alpha_1 \cdot R(\omega) \}, \Gamma_0 \}$ Four choices.
 - Γ_0 is the payoff of closing the plant, net of owner compensation.
- 2. For plants with filter efficiency ω^* : max $\{W(\omega^*) + \alpha_1 \cdot R(\omega^*), \Gamma\}$ Two choices
 - = Γ is the payoff of closing, **after** installing a filter.
 - As observed in the data, filter adoption is assumed to be irreversible.

Estimation

- 1. For plant without filter: $\max \{ \max_{\omega \in \{h,l,0\}} \{ W(\omega) + \alpha_1 \cdot R(\omega) \}, \Gamma_0 \}$ Four choices.
 - Γ_0 is the payoff of closing the plant, net of owner compensation.
- 2. For plants with filter efficiency ω^* : max $\{W(\omega^*) + \alpha_1 \cdot R(\omega^*), \Gamma\}$ Two choices
 - = Γ is the payoff of closing, after installing a filter.
 - As observed in the data, filter adoption is assumed to be irreversible.

Estimation

- 1. For plant without filter: $\max \{ \max_{\omega \in \{h,l,0\}} \{ W(\omega) + \alpha_1 \cdot R(\omega) \}, \Gamma_0 \}$ Four choices.
 - Γ_0 is the payoff of closing the plant, net of owner compensation.
- 2. For plants with filter efficiency ω^* : max $\{W(\omega^*) + \alpha_1 \cdot R(\omega^*), \Gamma\}$ Two choices
 - = Γ is the payoff of closing, after installing a filter.
 - As observed in the data, filter adoption is assumed to be irreversible.

Estimation

- 1. For plant without filter: $\max \left\{ \max_{\omega \in \{h,l,0\}} \left\{ W(\omega) + \alpha_1 \cdot R(\omega) \right\}, \Gamma_0 \right\}$ Four choices.
 - Γ_0 is the payoff of closing the plant, net of owner compensation.
- 2. For plants with filter efficiency ω^* : max { $W(\omega^*) + \alpha_1 \cdot R(\omega^*), \Gamma$ } Two choices
 - Γ is the payoff of closing, **after** installing a filter.
 - As observed in the data, filter adoption is assumed to be irreversible.

Estimation

- 1. For plant without filter: $\max \left\{ \max_{\omega \in \{h,l,0\}} \left\{ W(\omega) + \alpha_1 \cdot R(\omega) \right\}, \Gamma_0 \right\}$ Four choices.
 - Γ_0 is the payoff of closing the plant, net of owner compensation.
- 2. For plants with filter efficiency ω^* : max $\{W(\omega^*) + \alpha_1 \cdot R(\omega^*), \Gamma\}$ Two choices
 - Γ is the payoff of closing, **after** installing a filter.
 - $^-$ As observed in the data, filter adoption is assumed to be irreversible.

Estimation

Introducing Dynamics

- * During 2008-2019, the price of natural gas $p^{gas} \sim \phi(p^{gas}|\mu)$ fell significantly.
 - $-\,$ Regulators made filter investment and closure decisions in a context of falling $\mu.$
 - Allow for a dynamic μ_t , that changes every year t.
- The regulator problem becomes an infinite-horizon dynamic discrete-choice model:
 - 1. For plant with no filter yet, four-fold choice:

 $V\left(\omega_{t}=0\mid \boldsymbol{\mu_{t}}\right)=\max\left\{\max_{\omega_{t+1}\in\{h,l,0\}}\left\{U\left(0\mid \boldsymbol{\mu_{t}}\right)+\beta E\left[V\left(\omega_{t+1}\mid \boldsymbol{\mu_{t+1}}\right)\right]\right\},\quad U\left(0\mid \boldsymbol{\mu_{t}}\right)+\beta\cdot\Gamma_{0}\right\}\right\}$

2. For plans with a filter $\omega_t \in \{h, I\}$, two-fold choice:

 $V(\omega_t \mid \mu_t) = \max \{ U(\omega_t \mid \mu_t) + \beta E [V(\omega_t \mid \mu_{t+1})], \quad U(\omega_t \mid \mu_t) + \beta \cdot \Gamma \}$

· Assumption: filter investment and closure decisions are realized in the next period.

Estimation

Introducing Dynamics

- During 2008-2019, the price of natural gas $p^{gas} \sim \phi(p^{gas}|\mu)$ fell significantly.
 - $^-\,$ Regulators made filter investment and closure decisions in a context of falling $\mu.$
 - Allow for a dynamic μ_t , that changes every year t.
- The regulator problem becomes an infinite-horizon dynamic discrete-choice model:

1. For plant with no filter yet, four-fold choice:

 $V\left(\omega_{t}=0\mid\mu_{t}\right)=\max\left\{\max_{\omega_{t+1}\in\{h,l,0\}}\left\{U\left(0\mid\mu_{t}\right)+\beta E\left[V\left(\omega_{t+1}\mid\mu_{t+1}\right)\right]\right\},\quad U\left(0\mid\mu_{t}\right)+\beta\cdot\Gamma_{0}\right\}\right\}$

2. For plans with a filter $\omega_t \in \{h, l\}$, two-fold choice:

 $V(\omega_t \mid \mu_t) = \max \{ U(\omega_t \mid \mu_t) + \beta E [V(\omega_t \mid \mu_{t+1})], \quad U(\omega_t \mid \mu_t) + \beta \cdot \Gamma \}$

· Assumption: filter investment and closure decisions are realized in the next period.

Estimation

Introducing Dynamics

- + During 2008-2019, the price of natural gas $p^{gas} \sim \phi(p^{gas}|\mu)$ fell significantly.
 - $^-\,$ Regulators made filter investment and closure decisions in a context of falling $\mu.$
 - Allow for a dynamic μ_t , that changes every year t.
- The regulator problem becomes an infinite-horizon dynamic discrete-choice model:
 - 1. For plant with no filter yet, four-fold choice:

$$V\left(\omega_{t}=0\mid\mu_{t}\right)=\max\left\{\max_{\omega_{t+1}\in\{h,l,0\}}\left\{U\left(0\mid\mu_{t}\right)+\beta E\left[V\left(\omega_{t+1}\mid\mu_{t+1}\right)\right]\right\},\quad U\left(0\mid\mu_{t}\right)+\beta\cdot\Gamma_{0}\right\}\right\}$$

2. For plans with a filter $\omega_t \in \{h, I\}$, two-fold choice:

 $V(\omega_t \mid \mu_t) = \max \{ U(\omega_t \mid \mu_t) + \beta E [V(\omega_t \mid \mu_{t+1})], \quad U(\omega_t \mid \mu_t) + \beta \cdot \Gamma \}$

Assumption: filter investment and closure decisions are realized in the next period.

Estimation

Introducing Dynamics

- + During 2008-2019, the price of natural gas $p^{gas} \sim \phi(p^{gas}|\mu)$ fell significantly.
 - $^-\,$ Regulators made filter investment and closure decisions in a context of falling $\mu.$
 - Allow for a dynamic μ_t , that changes every year t.
- The regulator problem becomes an infinite-horizon dynamic discrete-choice model:
 - 1. For plant with no filter yet, four-fold choice:

$$V\left(\omega_{t}=0\mid\mu_{t}\right)=\max\left\{\max_{\omega_{t+1}\in\{h,l,0\}}\left\{U\left(0\mid\mu_{t}\right)+\beta E\left[V\left(\omega_{t+1}\mid\mu_{t+1}\right)\right]\right\},\quad U\left(0\mid\mu_{t}\right)+\beta\cdot\Gamma_{0}\right\}\right\}$$

2. For plans with a filter $\omega_t \in \{h, I\}$, two-fold choice:

$$V(\omega_t \mid \mu_t) = \max \{ U(\omega_t \mid \mu_t) + \beta E [V(\omega_t \mid \mu_{t+1})], \quad U(\omega_t \mid \mu_t) + \beta \cdot \Gamma \}$$

Assumption: filter investment and closure decisions are realized in the next period.

Estimation

Introducing Dynamics

- During 2008-2019, the price of natural gas $p^{gas} \sim \phi(p^{gas}|\mu)$ fell significantly.
 - $^-\,$ Regulators made filter investment and closure decisions in a context of falling $\mu.$
 - Allow for a dynamic μ_t , that changes every year t.
- The regulator problem becomes an infinite-horizon dynamic discrete-choice model:
 - 1. For plant with no filter yet, four-fold choice:

$$V\left(\omega_{t}=0\mid\mu_{t}\right)=\max\left\{\max_{\omega_{t+1}\in\{h,l,0\}}\left\{U\left(0\mid\mu_{t}\right)+\beta E\left[V\left(\omega_{t+1}\mid\mu_{t+1}\right)\right]\right\},\quad U\left(0\mid\mu_{t}\right)+\beta\cdot\Gamma_{0}\right\}\right\}$$

2. For plans with a filter $\omega_t \in \{h, I\}$, two-fold choice:

$$V(\omega_t \mid \mu_t) = \max \left\{ U(\omega_t \mid \mu_t) + \beta E \left[V(\omega_t \mid \mu_{t+1}) \right], \quad U(\omega_t \mid \mu_t) + \beta \cdot \Gamma \right\}$$

· Assumption: filter investment and closure decisions are realized in the next period.

Estimation

Estimation Overview

- Each generator i is characterized by a covariate vector χ_i , which includes age, size...
- Regulator utility becomes *i*-specific, includes EV-T1 shock ϵ_{it}^{EVT1} with scale parameter σ

$$U(\omega_{it}|\chi_i,\mu_{it}) = W(\omega_{it}|\chi_i,\mu_{it}) + \alpha_1 \cdot R(\mu_{it}|\chi_i,\mu_{it}) + \sigma \cdot \epsilon_{it}^{EVT}$$

• The cost of standard and expensive filters becomes *i*-specific, parameterized on generator size.

$$F_i^{\omega=h} = \beta_1 + \beta_2 \cdot Size_i + \epsilon_{it} \qquad F_i^{\omega=l} = \beta_3 + \beta_4 \cdot Size_i + \epsilon_{it}$$

 $= \phi$ unobserved cost parameter: plant adaptation, coal storage systems...

• The generator retirement payoffs become *i*-specific, parameterized on size and age:

$$\Gamma_i = \gamma_2 \cdot Age_i + \gamma_3 \cdot Size_i \qquad \qquad \Gamma_{0i} = \gamma_1 + \Gamma_i$$

ightarrow Six structural parameters to be estimated, remaining parameters eta imputed.

Estimation

Estimation Overview

- Each generator *i* is characterized by a covariate vector χ_i , which includes age, size...
- Regulator utility becomes *i*-specific, includes EV-T1 shock ϵ_{it}^{EVT1} with scale parameter σ

$$U(\omega_{it}|\chi_i,\mu_{it}) = W(\omega_{it}|\chi_i,\mu_{it}) + \alpha_1 \cdot R(\mu_{it}|\chi_i,\mu_{it}) + \sigma \cdot \epsilon_{it}^{EVT}$$

• The cost of standard and expensive filters becomes *i*-specific, parameterized on generator size.

$$F_i^{\omega=h} = \beta_1 + \beta_2 \cdot Size_i + \epsilon_{it} \qquad F_i^{\omega=l} = \beta_3 + \beta_4 \cdot Size_i + \epsilon_{it}$$

 $= \phi$ unobserved cost parameter: plant adaptation, coal storage systems...

• The generator retirement payoffs become *i*-specific, parameterized on size and age:

 $\Gamma_i = \gamma_2 \cdot Age_i + \gamma_3 \cdot Size_i \qquad \qquad \Gamma_{0i} = \gamma_1 + \Gamma_i$

ightarrow Six structural parameters to be estimated, remaining parameters eta imputed.

Estimation

Estimation Overview

- Each generator *i* is characterized by a covariate vector χ_i , which includes age, size...
- Regulator utility becomes *i*-specific, includes EV-T1 shock ϵ_{it}^{EVT1} with scale parameter σ

$$U(\omega_{it}|\chi_i,\mu_{it}) = W(\omega_{it}|\chi_i,\mu_{it}) + \alpha_1 \cdot R(\mu_{it}|\chi_i,\mu_{it}) + \sigma \cdot \epsilon_{it}^{EVT1}$$

• The cost of standard and expensive filters becomes *i*-specific, parameterized on generator size.

$$F_i^{\omega=h} = \beta_1 + \beta_2 \cdot Size_i + \epsilon_{it} \qquad F_i^{\omega=l} = \beta_3 + \beta_4 \cdot Size_i + \epsilon_{it}$$

- $-~\phi$ unobserved cost parameter: plant adaptation, coal storage systems...
- The generator retirement payoffs become *i*-specific, parameterized on size and age:

$$\Gamma_{i} = \gamma_{2} \cdot Age_{i} + \gamma_{3} \cdot Size_{i} \qquad \Gamma_{0i} = \gamma_{1} + \Gamma_{i}$$

 \rightarrow Six structural parameters to be estimated, remaining parameters β imputed.

Estimation

Estimation Overview

- Each generator *i* is characterized by a covariate vector χ_i , which includes age, size...
- Regulator utility becomes *i*-specific, includes EV-T1 shock ϵ_{it}^{EVT1} with scale parameter σ

$$U(\omega_{it}|\chi_i,\mu_{it}) = W(\omega_{it}|\chi_i,\mu_{it}) + \alpha_1 \cdot R(\mu_{it}|\chi_i,\mu_{it}) + \sigma \cdot \epsilon_{it}^{EVT1}$$

• The cost of standard and expensive filters becomes *i*-specific, parameterized on generator size.

$$F_i^{\omega=h} = \beta_1 + \beta_2 \cdot Size_i + \epsilon_{it} \qquad F_i^{\omega=l} = \beta_3 + \beta_4 \cdot Size_i + \epsilon_{it}$$

 $-~\phi$ unobserved cost parameter: plant adaptation, coal storage systems...

• The generator retirement payoffs become *i*-specific, parameterized on size and age:

$$\Gamma_i = \gamma_2 \cdot Age_i + \gamma_3 \cdot Size_i \qquad \qquad \Gamma_{0i} = \gamma_1 + \Gamma_i$$

 \rightarrow Six structural parameters to be estimated, remaining parameters β imputed.

Estimation

Estimation Overview

- Each generator *i* is characterized by a covariate vector χ_i , which includes age, size...
- Regulator utility becomes *i*-specific, includes EV-T1 shock ϵ_{it}^{EVT1} with scale parameter σ

$$U(\omega_{it}|\chi_i,\mu_{it}) = W(\omega_{it}|\chi_i,\mu_{it}) + \alpha_1 \cdot R(\mu_{it}|\chi_i,\mu_{it}) + \sigma \cdot \epsilon_{it}^{EVT1}$$

• The cost of standard and expensive filters becomes *i*-specific, parameterized on generator size.

$$F_i^{\omega=h} = \beta_1 + \beta_2 \cdot Size_i + \epsilon_{it} \qquad F_i^{\omega=l} = \beta_3 + \beta_4 \cdot Size_i + \epsilon_{it}$$

 $^ \phi$ unobserved cost parameter: plant adaptation, coal storage systems...

• The generator retirement payoffs become *i*-specific, parameterized on size and age:

$$\Gamma_{i} = \gamma_{2} \cdot Age_{i} + \gamma_{3} \cdot Size_{i} \qquad \Gamma_{0i} = \gamma_{1} + \Gamma_{i}$$

 \rightarrow Six structural parameters to be estimated, remaining parameters β imputed.

Estimation

Estimation Results

$$U = W + \alpha_1 \cdot R$$

Parameter	Note	Point-estimates	Standard Errors	
α_1	Coal Revenue R _{it}	2.03**	0.62	
ϕ	Standard filter, Unobserved Cost	1581.64**	304.66	
γ_1	Closure - no filter	5698.67**	645.85	
γ_2	Closure - age	203.56**	27.17	
γ_3	Closure - size	9.72**	2.58	
σ	Scale Parameter	1392.04**	172.22	

ightarrow The average regulator from a mining state values mining revenue twice as much as welfare.

Estimation

US Coal Mining Sector

	US	West Virginia	Kentucky	Pennsylvania	Illinois	Wyoming
GDP	45.84	7.14	1.9	3.59	2.85	4.3
(\$Billion)	0.18%	7.46%	0.75%	0.39%	0.28%	9.02%
Labor income	21.98	3.35	0.95	2.24	1.12	1.14
(\$Billion)	0.22%	10%	0.93%	0.62%	0.27%	7.4
Employment	291,943	45,633	20,620	35,864	14,809	15,353
(#)	0.17%	6.05%	1.04%	0.57%	0.2%	5.46%

Table 1: The importance of coal mining in selected states, 2021

Estimation

Public Utilities Commission Election Method

Figure 15: Electricity regulator election method
Estimation

Coal Electricity Production, Selected Countries

Figure 16: Coal electricity production, US

Figure 17: Coal electricity production, China

Estimation

CO2 Emissions Accounting

- * Coal intensity is 900 gr CO2 / KWh.
- Natural Gas intensity is 450 gr CO2 / KWh.
- · Absent local mine protection, the cal capacity is reduced in 10 GW
 - $^-$ Assuming 50% capacity of coal power plants, these produced: 10 GW \times 175 \times 24 = 4.2 e4 GWh
- * Emissions reduction: (900 4500) e6 gr CO2 / GWh \times 4.2 e4 GWh = 18.9 e12 gr CO2.
- · Emission reduction, relative terms
 - US CO2 emissions in 2023 were 5,000 million Ton Co2 \rightarrow 0.4% of all US emissions
 - US mining state CO2 emissions in 2022 were 1,892 million Ton Co2 \rightarrow 1.1%.
 - US electricity sector CO2 emissions in 2022 were 1,542 million Ton Co2 \rightarrow 1.3%.
 - US mining state electricity sector CO2 emissions in 2022 were 675 million Ton Co2 \rightarrow 2,96%.

Estimation

Filter Types in Detail

	Filter efficiency ω	Fixed Cost	
Standard	l = 95%	$F_l pprox 100 M$ \$	
Expensive	h=99%	$F_h pprox 200 M$ \$	

Back

Estimation

MATS threshold and Coal Types

$$\overline{s} \cdot (1-\omega) \leq S$$

- MATS threshold is S = 0.2 lbs/mm Btu
 - Equivalent to 1.5 SO2 lbs/MWh.
- S is **below** the lowest-sulfur coal \overline{s} ...
- * ...which forced the adoption of a filter ω .

Figure 18: MATS threshold (lbs/MM Btu).

Estimation

Related Literature Back

- Coal plant upgrades and phase-out. Gowrisankaran, Langer and Reguant (WP, 2023); Gowrisankaran, Langer and Zhang (WP, 2023); Fowlie (AER, 2010)
 - * Contribution: protection of local mines as a novel **obstacle** for the energy transition.
 - * Contribution: A theoretical and structural model on filter investment by regulated plants.
- 2. Political economy of regulation. Lim and Yurukoglu (JPE, 2018); Besley and Coate (JEEA, 2003)
 - * Contribution: **local mine interests** as a new source of sub-optimal regulation.
- 3. Coal procurement. Preonas (REStud, forthcoming); Cicala (AER, 2015); Jha (QE, 2023)
 - * Contribution: the **complementary** between high-efficiency filters and local coal.

Estimation

Related Literature Back

- Coal plant upgrades and phase-out. Gowrisankaran, Langer and Reguant (WP, 2023); Gowrisankaran, Langer and Zhang (WP, 2023); Fowlie (AER, 2010)
 - * Contribution: protection of local mines as a novel **obstacle** for the energy transition.
 - * Contribution: A theoretical and structural model on filter investment by regulated plants.
- 2. Political economy of regulation. Lim and Yurukoglu (JPE, 2018); Besley and Coate (JEEA, 2003)
 - * Contribution: **local mine interests** as a new source of sub-optimal regulation.
- 3. Coal procurement. Preonas (REStud, forthcoming); Cicala (AER, 2015); Jha (QE, 2023)
 - * Contribution: the **complementary** between high-efficiency filters and local coal.

Estimation

Related Literature Back

- Coal plant upgrades and phase-out. Gowrisankaran, Langer and Reguant (WP, 2023); Gowrisankaran, Langer and Zhang (WP, 2023); Fowlie (AER, 2010)
 - * Contribution: protection of local mines as a novel **obstacle** for the energy transition.
 - * Contribution: A theoretical and structural model on filter investment by regulated plants.
- 2. Political economy of regulation. Lim and Yurukoglu (JPE, 2018); Besley and Coate (JEEA, 2003)
 - * Contribution: **local mine interests** as a new source of sub-optimal regulation.
- 3. Coal procurement. Preonas (REStud, forthcoming); Cicala (AER, 2015); Jha (QE, 2023)
 - * Contribution: the **complementary** between high-efficiency filters and local coal.

Estimation

The (Patchy) Liberalization of the US Electricity Sector Back

- Vertical integration. $\pi_1 = q_1 \cdot (p_1 \overline{c}_1) F_\omega$
- Liberalization
 - 1. Wholesale market that sets p^{mkt} , q_2, q_3 .
 - 2. Plant **divestures** \rightarrow Plant 3 turns non-regulated.
- Regulated plant profits still depend on p1.

$$\pi_{2} = \underbrace{q_{2} \cdot (p_{2} - \overline{c}_{2})}_{\text{Regulated Plant}} + \underbrace{(Q - q_{2}) \cdot (p_{2} - p^{mkt})}_{\text{Import}} - F_{\omega}$$

• Non-regulated plant profits do not depend on p_3 .

$$\pi_3 = q_3 \cdot (p^{mkt} - \overline{c}_3) - F_\omega \quad \perp \quad p_3$$

Estimation

The (Patchy) Liberalization of the US Electricity Sector Back

- Vertical integration. $\pi_1 = q_1 \cdot (p_1 \overline{c}_1) F_\omega$
- Liberalization
 - 1. Wholesale market that sets p^{mkt} , q_2 , q_3 .
 - 2. Plant **divestures** \rightarrow Plant 3 turns non-regulated.
- Regulated plant profits still depend on p_1 .

$$\pi_{2} = \underbrace{q_{2} \cdot (p_{2} - \overline{c}_{2})}_{\text{Regulated Plant}} + \underbrace{(Q - q_{2}) \cdot (p_{2} - p^{mkt})}_{\text{Import}} - F_{\omega}$$

$$\pi_3 = q_3 \cdot (p^{mkt} - \overline{c}_3) - F_\omega \quad \perp \quad p_3$$

Estimation

The (Patchy) Liberalization of the US Electricity Sector Back

- Vertical integration. $\pi_1 = q_1 \cdot (p_1 \overline{c}_1) F_\omega$
- Liberalization
 - 1. Wholesale market that sets p^{mkt} , q_2 , q_3 .
 - 2. Plant **divestures** \rightarrow Plant 3 turns non-regulated.
- Regulated plant profits still depend on p1.

$$\tau_{2} = \underbrace{q_{2} \cdot (p_{2} - \overline{c}_{2})}_{\text{Regulated Plant}} + \underbrace{(Q - q_{2}) \cdot (p_{2} - p^{mkt})}_{\text{Import}} - F_{\omega}$$

$$\pi_3 = q_3 \cdot (p^{mkt} - \overline{c}_3) - F_\omega \quad \perp \quad p_3$$

Estimation

The (Patchy) Liberalization of the US Electricity Sector Back

- Vertical integration. $\pi_1 = q_1 \cdot (p_1 \overline{c}_1) F_\omega$
- Liberalization
 - 1. Wholesale market that sets p^{mkt} , q_2 , q_3 .
 - 2. Plant divestures \rightarrow Plant 3 turns non-regulated.
- Regulated plant profits still depend on p1.

$$\pi_{2} = \underbrace{q_{2} \cdot (p_{2} - \overline{c}_{2})}_{\text{Regulated Plant}} + \underbrace{(Q - q_{2}) \cdot (p_{2} - p^{mkt})}_{\text{Import}} - F_{\omega}$$

$$\pi_3 = q_3 \cdot (p^{mkt} - \overline{c}_3) - F_\omega \quad \perp \quad p_3$$

Estimation

The (Patchy) Liberalization of the US Electricity Sector Back

- Vertical integration. $\pi_1 = q_1 \cdot (p_1 \overline{c}_1) F_\omega$
- Liberalization
 - 1. Wholesale market that sets p^{mkt} , q_2 , q_3 .
 - 2. Plant divestures \rightarrow Plant 3 turns non-regulated.
- Regulated plant profits still depend on p_1 .

$$\pi_{2} = \underbrace{q_{2} \cdot (p_{2} - \overline{c}_{2})}_{\text{Regulated Plant}} + \underbrace{(Q - q_{2}) \cdot (p_{2} - p^{mkt})}_{\text{Import}} - F_{\omega}$$

$$\pi_3 = q_3 \cdot (p^{mkt} - \overline{c}_3) - F_\omega \quad \perp \quad \mathbf{p}_3$$

Estimation

The (Patchy) Liberalization of the US Electricity Sector Back

- Vertical integration. $\pi_1 = q_1 \cdot (p_1 \overline{c}_1) F_\omega$
- Liberalization
 - 1. Wholesale market that sets p^{mkt} , q_2 , q_3 .
 - 2. Plant divestures \rightarrow Plant 3 turns non-regulated.
- Regulated plant profits still depend on p_1 .

$$\pi_{2} = \underbrace{q_{2} \cdot (p_{2} - \overline{c}_{2})}_{\text{Regulated Plant}} + \underbrace{(Q - q_{2}) \cdot (p_{2} - p^{mkt})}_{\text{Import}} - F_{\omega}$$

• Non-regulated plant profits **do not** depend on p_3 .

$$\pi_3 = q_3 \cdot (p^{mkt} - \overline{c}_3) - F_\omega \quad \perp \quad p_3$$

Estimation

US Wholesale Electricity Markets

Figure 19: Wholesale electricity markets

Estimation

Wyoming Coal Destinations - Appalachia

Figure 20: Wyoming Coal bought by Appalachian states 2008-2019

Estimation

Wyoming Coal Destinations - South

Figure 21: Wyoming Coal bought by Southern states 2008-2019

The Model

Estimation

- 1. Panel of the universe of coal generators i.
 - Filter efficiency at each year.
 - Annual electricity output.
 - Covariates: size, age, productivity etc.
- 2. Panel of the universe of coal mines.
 - Mine location.
 - Sulfur concentration.
- 3. Mine-plant transactions.
 - Transaction payment.
- 4. Natural gas cost. Plants and Generators

Figure 22: US coal plants, 2008

The Model

Estimation

- 1. Panel of the universe of coal generators i.
 - Filter efficiency at each year.
 - Annual electricity output.
 - Covariates: size, age, productivity etc.
- 2. Panel of the universe of coal mines.
 - Mine location.
 - Sulfur concentration.
- 3. Mine-plant transactions.
 - Transaction payment.
- 4. Natural gas cost. Plants and Generators

Figure 22: US coal mines, 2008

The Model

Estimation

- 1. Panel of the universe of coal generators i.
 - Filter efficiency at each year.
 - Annual electricity output.
 - Covariates: size, age, productivity etc.
- 2. Panel of the universe of coal mines.
 - Mine location.
 - Sulfur concentration.
- 3. Mine-plant transactions.
 - Transaction payment.
- 4. Natural gas cost. Plants and Generators

Figure 22: US coal plants and mines, 2008

The Model

Estimation

- 1. Panel of the universe of coal generators i.
 - Filter efficiency at each year.
 - Annual electricity output.
 - Covariates: size, age, productivity etc.
- 2. Panel of the universe of coal mines.
 - Mine location.
 - Sulfur concentration.
- 3. Mine-plant transactions.
 - Transaction payment.
- 4. Natural gas cost.

Figure 22: US coal plants and mines, 2008

Estimation

Plants and Generators

Figure 23: Differences between plants, boilers and generators

Estimation

Balance Table

Table 2: Characteristics of coal generators open in 2008, by regulation and state type. Mean values.

	Regulated		Non-regulated	
	Mine-state	Non-mine state	Mine-state	Non-mine state
Age	40.38	40.98	37.84	35.05
Size	326.71	303.77	311.52	222.19
Heat rate	10099.13	10401.98	10015.13	9972.16
Closest mine distance	0.89	2.94	0.87	2.15
Closest mine sulfur	1.83	1.87	2.30	1.29
Distance to Wyoming	18.09	19.31	19.18	26.12
Ν	357	432	154	187

Estimation

Suggestive Evidence Back

(24.2) Mining states

Figure 24: Share of coal plants with expensive filters

Estimation

Suggestive Evidence Back

Figure 24: Share of coal plants with expensive filters

Estimation

- 1. Take one power plant location.
- 2. Take the mines within the plant's state.
- 3. Draw a circle around the mine.
 - Median distance of mine-plant transactions.
- 4. Select the in-state mines within the circle.

Estimation

- 1. Take one power plant location.
- 2. Take the mines within the plant's state.
- Draw a circle around the mine.
 - Median distance of mine-plant transactions.
- 4. Select the in-state mines within the circle.

Estimation

- 1. Take one power plant location.
- 2. Take the mines within the plant's state.
- 3. Draw a circle around the mine.
 - Median distance of mine-plant transactions.
- 4. Select the in-state mines within the circle.

Estimation

- 1. Take one power plant location.
- 2. Take the mines within the plant's state.
- 3. Draw a circle around the mine.
 - Median distance of mine-plant transactions.
- 4. Select the in-state mines within the circle.

Estimation

Results - Mine State Indicator

$$\log\left(\frac{p_j(\mathbf{x})}{p_J(\mathbf{x})}\right) = \sum_j \beta_{0j} + \sum_j \beta_{1j} \times X_i + \sum_j \beta_{2j} \times m_i + \sum_j \beta_{3j} \times \operatorname{Reg}_i + \sum_j \beta_{4j} \times \operatorname{Reg}_i \times m_i$$

	j = retire	j = standard	j = expensive
Regulated	0.039	-0.176	1.058**
	(0.484)	(0.720)	(0.531)
Mine state	-0.010	-2.257**	0.175
	(0.543)	(0.947)	(0.586)
Pagulated v Mina state	0.315	1.886*	0.735
Regulated X Mine state	(0.601)	(1.015)	(0.651)
		McFadden R2	0.223
	*p<0.1	**p<0.05	***p<0.01

Dependent variable

Estimation

Results - Share of in-state mines

$$\log\left(\frac{p_j(\mathbf{x})}{p_J(\mathbf{x})}\right) = \sum_j \beta_{0j} + \sum_j \beta_{1j} \times X_i + \sum_j \beta_{2j} \times m_i + \sum_j \beta_{3j} \times \operatorname{Reg}_i + \sum_j \beta_{4j} \times \operatorname{Reg}_i \times m_i$$

	j = retire	j=standard	j = expensive
Regulated	-0.787	-0.250	-0.218
	(0.509)	(0.762)	(0.545)
$Mine Share \in [0,1]$	-1.298**	-2.555**	-2.326***
	(0.660)	(1.082)	(0.744)
Regulated × Mine Share	1.884**	2.041*	3.480***
	(0.758)	(1.207)	(0.837)
		McFadden R2	0.225
	*p<0.1	**p<0.05	***p<0.01

Dependent variable

Estimation

Results - Mine Employment Back

$$\log\left(\frac{p_j(\mathbf{x})}{p_J(\mathbf{x})}\right) = \sum_j \beta_{0j} + \sum_j \beta_{1j} \times X_i + \sum_j \beta_{2j} \times m_i + \sum_j \beta_{3j} \times \operatorname{Reg}_i + \sum_j \beta_{4j} \times \operatorname{Reg}_i \times m_i$$

	Dependent variable		
	j = retire	j=standard	j = expensive
Perulated	0.221	1.207**	1.159***
Regulated	(0.341) (0.571)	(0.363)	
Miners (in Thousands, 2008)	0.542*	0.443	0.183
	(0.277)	(0.407)	(0.293)
Pagulated v Minars	0.733	-0.113	0.954**
Regulated x millers	(0.469)	(0.671)	(0.482)
		McFadden R2	0.226
	*p<0.1	**p<0.05	****p<0.01

- $\rightarrow~$ +100 miners increase expensive filter adoption relative probability by 10%.
 - This effect is only observed in regulated plants.

The Model

Estimation

Coal Plant Closure - Empirical Specification (Back

Test the correlation between filter investment on plant closure

$$h(t) = h_0(t) \exp\left(eta_1 X_i + eta_2 \cdot \omega_{it}
ight)$$

- h(t) is the expected probability of **closing** at time t, having survived t 1.
- $-X_i$ are generator covariates: age, size and heat rate.
- ω_{it} is an indicator for generators with a filter.
- + $\beta_2 < 0$ Plants are less likely to close after investing in a filter.

The Model

Estimation

Coal Plant Closure - Empirical Specification (Back

Test the correlation between filter investment on plant closure

Cox Proportional-hazards model on filter investment and plant closure.
 Figure

 $h(t) = h_0(t) \exp \left(\beta_1 X_i + \beta_2 \cdot \omega_{it}\right)$

- h(t) is the expected probability of **closing** at time t, having survived t 1.
- $-X_i$ are generator covariates: age, size and heat rate.
- ω_{it} is an indicator for generators with a filter.
- + $\beta_2 < 0$ Plants are less likely to close after investing in a filter.

The Model

Estimation

Coal Plant Closure - Empirical Specification (Back

Test the correlation between filter investment on plant closure

$$h(t) = h_0(t) \exp \left(eta_1 X_i + eta_2 \cdot \omega_{it}
ight)$$

- h(t) is the expected probability of **closing** at time t, having survived t 1.
- $-X_i$ are generator covariates: age, size and heat rate.
- $= \omega_{it}$ is an indicator for generators with a filter.
- $\beta_2 < 0$ Plants are less likely to close after investing in a filter.

The Model

Estimation

Coal Plant Closure - Empirical Specification (Back

Test the correlation between filter investment on plant closure

$$h(t) = h_0(t) \exp \left(eta_1 X_i + eta_2 \cdot \omega_{it}
ight)$$

- h(t) is the expected probability of **closing** at time t, having survived t 1.
- $-X_i$ are generator covariates: age, size and heat rate.
- ω_{it} is an indicator for generators with a filter.
- $\beta_2 < 0$ Plants are less likely to close after investing in a filter.

The Model

Estimation

Coal Plant Closure - Empirical Specification (Back

Test the correlation between filter investment on plant closure

$$h(t) = h_0(t) \exp \left(eta_1 X_i + eta_2 \cdot \omega_{it}
ight)$$

- h(t) is the expected probability of **closing** at time t, having survived t 1.
- $-X_i$ are generator covariates: age, size and heat rate.
- ω_{it} is an indicator for generators with a filter.
- * $\beta_2 < 0$ Plants are less likely to close after investing in a filter.
Institutional Context

The Model

Estimation

Coal Plant Closure - Results (Back)

 $h(t) = h_0(t) \exp \left(\beta_1 X_i + \frac{\beta_2}{2} \cdot \omega_{it}\right)$

	(1)	(2)	(3)
Generator Age	0.037***	0.024***	0.021***
	(0.007)	(0.008)	(0.008)
Filter indicator		-1.948^{***}	-2.009***
		(0.191)	(0.196)
Coal capacity share			0.871**
			(0.424)
Observations	7,109	7,109	7,109
Pseudo R ²	0.031	0.050	0.050

Estimation

Regulated Prices and Filter Investment Back to intro Back to model

Figure 25: Electricity Price and filter Investment, by state

Estimation

The Model - Equilibrium Conditions

- 1. Regulator chooses filter ω^{\ast} that maximizes its utility.
- 2. Filter efficiency determines the share of local coal and unit cost of coal:

$$\omega^* o
ho(\omega^*) o \overline{m{c}}(\omega^*)$$

3. Coal plant output q^* and regulated price p^* are jointly determined:

$$- \ q^*(
ho^*|\mu) = 1 - \Phi(
ho^*|\mu)$$

– Participation constraint: $\pi = q^*(p^*|\mu) \cdot (p^* - \overline{c}(\omega^*)) - F_{\omega^*} = 0$

Back

Estimation

Comparative Statics - Filter Investment

- Regulators from non-mining states have no mining revenue to protect $R(\omega)=0$ $\forall \omega$
- Install a filter $\omega \in \{h, I\}$, if:
 - 1. Filter provides more welfare than exit: $W(\omega) \ge \Gamma_0$ and...
 - 2. Filter provides more welfare than no-filter: $W(\omega) \ge W(0)$
 - ightarrow Choose expensive filter over standard if it increases welfare $W(h) \geq W(l)$
- Regulators from mining states want to protect mining revenue $R(\omega) \geq 0$:
 - 1. Are more likely to install filter. $W(\omega) + \alpha_1 \cdot R(\omega) \ge \Gamma_0$
 - 2. provides more welfare and local coal revenue than remaining no-filter: $W(\omega) + lpha_1 \cdot R(\omega) \geq W(0)$
 - ightarrow Are more likely to install an expensive filter. $W(h)+lpha_{f 1}\cdot(R(h)-R(l))\geq W(l)$

Estimation

Comparative Statics - Filter Investment

- Regulators from non-mining states have no mining revenue to protect $R(\omega)=0$ $\forall \omega$
- Install a filter $\omega \in \{h, I\}$, if:
 - 1. Filter provides more welfare than exit: $W(\omega) \ge \Gamma_0$ and...
 - 2. Filter provides more welfare than no-filter: $W(\omega) \ge W(0)$
 - \rightarrow Choose expensive filter over standard if it increases welfare $W(h) \geq W(l)$
- Regulators from mining states want to protect mining revenue $R(\omega) \ge 0$:
 - 1. Are more likely to install filter. $W(\omega) + \alpha_1 \cdot R(\omega) \ge \Gamma_0$
 - 2. provides more welfare and local coal revenue than remaining no-filter: $W(\omega) + \alpha_1 \cdot R(\omega) \ge W(0)$
 - \rightarrow Are more likely to install an expensive filter. $W(h) + \alpha_1 \cdot (R(h) R(l)) \geq W(l)$

Estimation

Comparative Statics - Plant Exit and Stranded Assets

- For a plant without filter, the regulator with some utility $U(\omega) = W(\omega) + \alpha_1 \cdot R(\omega)$ retires it if...
 - Closing is better than remaining: $\Gamma_0 \ge U(0)$.
 - − Closing is better than investing: $Γ_0 \ge U(ω)$ ∀ω.
- * For a plant with a filter, the regulator closes it if:
 - Closing is better than remaining: $\Gamma \geq U(\omega)$.
- · Stranded assets: plants with filters that would have otherwise closed.

 $\Gamma_0 \geq U(0) \geq U(\omega) \geq \Gamma$

ightarrow Once a plant gets a filter, it **becomes less likely to close**, delaying the energy transition.

Estimation

Comparative Statics - Plant Exit and Stranded Assets

- For a plant without filter, the regulator with some utility $U(\omega) = W(\omega) + \alpha_1 \cdot R(\omega)$ retires it if...
 - Closing is better than remaining: $\Gamma_0 \ge U(0)$.
 - − Closing is better than investing: $Γ_0 \ge U(ω)$ ∀ω.
- For a plant with a filter, the regulator closes it if:
 - Closing is better than remaining: $\Gamma \geq U(\omega)$.
- · Stranded assets: plants with filters that would have otherwise closed.

 $\Gamma_0 \geq U(0) \geq U(\omega) \geq \Gamma$

ightarrow Once a plant gets a filter, it becomes less likely to close, delaying the energy transition.

Institutional Context

The Model

Estimation

The Model - Identification Back to Estimation

• The effect of filters on welfare depends on the distance *d* between the plant and Wyoming.

$$\downarrow \omega \rightarrow \uparrow \underbrace{(1-\rho)}_{\text{low-sulfur coal}} \xrightarrow{d} \uparrow \overline{c} \rightarrow \downarrow W$$

$$\xrightarrow{\uparrow d} \uparrow \uparrow \overline{c} \rightarrow \downarrow \downarrow W$$

 The effect of filters on local mine revenue depends on plant location, mining state.

$$\begin{array}{ccc} \uparrow \omega & \to & \uparrow \rho & \stackrel{\text{mines No}}{\longrightarrow} & R = 0 \\ & \stackrel{\text{mines Yes}}{\longrightarrow} & \uparrow R \end{array}$$

Institutional Context

The Model

Estimation

The Model - Identification Back to Estimation

• The effect of filters on welfare depends on the distance *d* between the plant and Wyoming.

$$\downarrow \omega \rightarrow \uparrow \underbrace{(1-\rho)}_{\text{low-sulfur coal}} \xrightarrow{d} \uparrow \overline{c} \rightarrow \downarrow W$$

$$\xrightarrow{\uparrow d} \uparrow \uparrow \overline{c} \rightarrow \downarrow \downarrow W$$

• The effect of filters on local mine revenue depends on plant location, mining state.

$$\begin{array}{ccc} \uparrow \, \omega & \to & \uparrow \, \rho & \xrightarrow{\mbox{ mines No}} & R = 0 \\ & & \xrightarrow{\mbox{ mines Yes}} & \uparrow R \end{array}$$

Estimation

Estimation Algorithm Back to Estimation

1. Outer loop: Candidate structural parameters

$$\theta = (\alpha, \gamma, \phi, \sigma)$$

1.1 Obtain consumer welfare and local mine revenue for all generators *i*, at all aggregate state bins *b* and for all filter types ω .

$$W_{ib\omega}, R_{ib\omega} \quad \forall \quad i \times b \times \omega$$

- 1.2 Inner loop. Value function iteration to obtain conditional choice probabilities $\hat{P}_{ib\omega}$.
- 1.3 Compute the Log Likelihood comparing conditional choice probabilities with actual choices P_{it} :

$$LL = \sum_{t} \sum_{i} log \left(\hat{P}_{ib\omega} - P_{it} \right)$$

2. New candidate structural parameters θ' by Nelder Mead.

Estimation

Aggregate State Space Discretization Back to Estimation

Challenge: Model the permanent fall of natural gas prices, as in Gowrisankaran et. al. (WP, 2023).

1. μ_{st} : The average cost of natural gas electricity is obtained at state s and year t level.

2. μ_{st} sample is discretized into b = 1, 2, ..., B equal-size bins. Two-bin example B = 2:

$$\mu^{low} = 28.03 \$ / MWh$$
 $\mu^{high} = 60.77 \$ / MWh$

3. Obtain transition probability matrix

$$\begin{array}{c|c} & \mu_{t-1}^{low} & \mu_{t-1}^{high} \\ \\ \mu_t^{low} & 0.71 & 0.29 \\ \mu_t^{high} & 0.17 & 0.83 \end{array}$$

Estimation

Aggregate State Space Discretization Back to Estimation

Challenge: Model the permanent fall of natural gas prices, as in Gowrisankaran et. al. (WP, 2023).

- 1. μ_{st} : The average cost of natural gas electricity is obtained at state s and year t level.
- 2. μ_{st} sample is discretized into b = 1, 2, ..., B equal-size bins. Two-bin example B = 2:

$$\mu^{low} = 28.03$$
 / *MWh* $\mu^{high} = 60.77$ / *MWh*

3. Obtain transition probability matrix

$$\begin{array}{c|c} \mu_{t}^{low} & \mu_{t-1}^{high} \\ \mu_{t}^{low} & 0.71 & 0.29 \\ \mu_{t}^{high} & 0.17 & 0.83 \end{array}$$

Estimation

Aggregate State Space Discretization Back to Estimation

Challenge: Model the permanent fall of natural gas prices, as in Gowrisankaran et.. al. (WP, 2023).

1. μ_{st} : The average cost of natural gas electricity is obtained at state s and year t level.

2. μ_{st} sample is discretized into b = 1, 2, ..., B equal-size bins. Two-bin example B = 2:

$$\mu^{low} = 28.03\$/MWh$$
 $\mu^{high} = 60.77\$/MWh$

3. Obtain transition probability matrix

$$\begin{array}{c|c} & \mu_{t-1}^{low} & \mu_{t-1}^{high} \\ \\ \mu_t^{low} & 0.71 & 0.29 \\ \mu_t^{high} & 0.17 & 0.83 \end{array}$$

Estimation

Aggregate State Space Discretization Back to Estimation

Challenge: Model the permanent fall of natural gas prices, as in Gowrisankaran et.. al. (WP, 2023).

1. μ_{st} : The average cost of natural gas electricity is obtained at state s and year t level.

2. μ_{st} sample is discretized into b = 1, 2, ..., B equal-size bins. Two-bin example B = 2:

$$\mu^{low} = 28.03\$/MWh$$
 $\mu^{high} = 60.77\$/MWh$

3. Obtain transition probability matrix

$$\begin{array}{c|c} & \mu_{t-1}^{low} & \mu_{t-1}^{high} \\ \\ \mu_t^{low} & 0.71 & 0.29 \\ \mu_t^{high} & 0.17 & 0.83 \end{array}$$

Estimation

Aggregate State Space Discretization Back to Estimation

Challenge: Model the permanent fall of natural gas prices, as in Gowrisankaran et.. al. (WP, 2023).

1. μ_{st} : The average cost of natural gas electricity is obtained at state s and year t level.

2. μ_{st} sample is discretized into b = 1, 2, ..., B equal-size bins. Two-bin example B = 2:

$$\mu^{low} = 28.03\$/MWh$$
 $\mu^{high} = 60.77\$/MWh$

3. Obtain transition probability matrix

$$\begin{array}{c|c} & \mu_{t-1}^{low} & \mu_{t-1}^{high} \\ \\ \mu_t^{low} & 0.71 & 0.29 \\ \mu_t^{high} & 0.17 & 0.83 \end{array}$$

Estimation

Aggregate State Space Discretization, before and after MATS

	cheap gas,	expensive gas,	cheap gas,	expensive gas,
	post MATS	post MATS	pre MATS	pre MATS
cheap gas, post MATS	0.62	0.05	0.33	0.00
expensive gas, post MATS	0.17	0.44	0.17	0.22
cheap gas, pre MATS	0.00	0.00	0.53	0.48
expensive gas, pre MATS	0.00	0.00	0.15	0.85

Estimation

Imputation Back to Estimation

- Model estimation requires the econometrician to observe $\{W, R\}_{ib\omega}$.
 - − For all *i* generators, *b* aggregate state bins and $\omega \in \{h, I, 0\}$ filter types.
- Welfare contribution

$$W_{ib\omega} = K_i \cdot q_{ib\omega} \cdot \left(\mu^b - \overline{c}_{ib\omega}\right) - f_{i\omega}$$

- K_i and μ^b are observed.
- $q_{ib\omega}$, $\overline{c}_{ib\omega}$ and $f_{i\omega}$ are imputed using event-studies.
- · Local mine revenue

$$R_{ib\omega} = K_i \cdot HR_i \cdot q_{ib\omega} \cdot \rho_{ib\omega} \cdot c^m_{ib\omega}$$

- K_i and HR_i are observed.
- $q_{ib\omega}$, $\rho_{ib\omega}$ and $c^m_{i\omega}$ are imputed using event-studies.

Estimation

Filter Investment and Plant Closure - Sankey Diagram

Scrubber upgrade 2008–2019 Plant status 2019

Back

Estimation

Imputation - Dispatch

 $q_{it} = \alpha + \beta_1 \cdot \mu_{st} + \beta_2 \cdot Age_i + \beta_3 \cdot Size_i + \beta_4 \cdot HR_i + \beta_5 \cdot \omega_{it} + \beta_6 \cdot X_i + \beta_7 \cdot \omega_{it} \times X_i + \epsilon_{it}$

	Dependent variable: Number of active hours per year q _{it}						
	(1)	(2)	(3)	(4)	(5)	(6)	
Intercept	6,492.710***	10,091.550***	9,872.666***	7,809.374***	10,471.750***	10,154.180***	
Natural gas cost (cent/MWh)	0.189***	0.231***	0.222***	0.154***	0.187***	0.186***	
Plant Age	-22.569^{***}	-6.288°	-6.763**	-49.987^{***}	-35.786^{***}	-36.522^{***}	
Plant Size (MW)	1.778***	1.644***	1.501***	0.534***	0.643***	0.625***	
Heat Rate (Btu/KWh)	-0.054	-0.364^{***}	-0.364^{***}	-0.022	-0.221^{***}	-0.218^{***}	
Filter Indicator	-82.658	-136.703	330.408	-115.805^{*}	-34.753	366.443*	
Wyoming dist.		-129.004^{***}	-103.052^{***}		-103.837^{***}	-99.502***	
Filter \times Wyoming Dist.			-48.375^{***}			-3.459	
Filter type	Standard	Standard	Standard	Expensive	Expensive	Expensive	
Observations	1,259	1,259	1,259	4,295	4,295	4,295	
R ²	0.140	0.369	0.382	0.172	0.287	0.290	

*p<0.1; **p<0.05; ***p<0.01. Regulated plants, 2008-2019 period.

Estimation

Imputation - Coal Bundle Cost

 $\overline{c}_{it} = \alpha + \beta_1 \cdot \omega_{it} + \beta_2 \cdot \omega_{it} \times X_i + \epsilon_{it}$

	Dependent variable: Coal blend unit cost \overline{c}_{it}						
	(1)	(2)	(3)	(4)	(5)	(6)	
Intercept	197.285***	92.918***	133.961***	261.291***	160.375***	71.488**	
Filter Indicator	5.442	14.677***	-28.859	-10.520	-9.048	89.664***	
Distance to Wyoming		8.482***	0.252		8.717***	19.506***	
Filter $ imes$ Dist. to Wyoming			8.988***			-11.844^{***}	
Filter type	Standard	Standard	Standard	Expensive	Expensive	Expensive	
Observations	702	684	684	1,344	1,301	1,301	
R ²	0.001	0.626	0.638	0.001	0.473	0.484	
Adjusted R ²	-0.001	0.623	0.632	0.001	0.471	0.480	

*p<0.1; **p<0.05; ***p<0.01. All coal plants, 2008-2019 period.

Estimation

Imputation - Share of Local Coal

$$\rho_{it} = \alpha + \beta_1 \cdot \omega_{it} + \beta_2 \cdot \omega_{it} \times X_i + \epsilon_{it}$$

	Dependent variable: Share of Local Coal ρ_{it}					
	(1)	(2)	(3)	(4)	(5)	(6)
Intercept	0.163***	0.550***	0.671***	0.279***	0.428***	0.964***
Filter Indicator	0.137***	0.076*	0.088	0.234***	0.195***	-0.471^{***}
Distance to Closest Mine		-0.103^{***}	-0.163**		-0.121^{***}	-0.277***
Closest Mine Sulfur		-0.122^{***}	-0.176^{***}		0.0001	-0.262***
Distance $ imes$ Sulfur			0.033			0.075
Filter $ imes$ Distance			-0.034			0.283***
Filter $ imes$ Closest Sulfur		-0.050 0.353**				0.353***
$Filter \times Distance \times Sulfur$			0.039			-0.188***
Filter type	Standard	Standard	Standard	Expensive	Expensive	Expensive
Observations	443	443	443	1,144	1,144	1,144
Adjusted R ²	0.017	0.174	0.200	0.022	0.156	0.232

 $^{*}p{<}0.1;\ ^{**}p{<}0.05;\ ^{***}p{<}0.01.$ All coal plants, 2008-2019 period.

Estimation

Imputation - Filter Fixed Cost

 $F_i = \alpha + \beta_1 \cdot h_i + \beta_2 \cdot Size_i + \beta_3 \cdot h_i \times Size_i + \epsilon_{it}$

	Dependent variable: Filter fixed cost F _i				
	(1)	(2)	(3)		
Intercept	118.398***	96.072***	54.408**		
Expensive filter	81.613***	56.137***	116.842***		
Plant size (MW)		0.030**	0.085***		
Expensive $ imes$ Plant Size			-0.067**		
Observations	219	219	219		
Adjusted R ²	0.073	0.096	0.112		

p<0.1; **p<0.05; ***p<0.01. All filter installations 2008-2019.

Estimation

Model Fit Back

- 1. Take the sample of open regulated plants in 2008.
- 2. Simulate their investment and exit behavior according to the estimated parameters until 2019.
- 3. Compare 2019 simulated outcome with the actual 2019 outcome.

Figure 26: Actual and predicted capacity by the end of the period (GW).

Estimation

Model Fit Back

- 1. Take the sample of open regulated plants in 2008.
- 2. Simulate their investment and exit behavior according to the estimated parameters until 2019.
- 3. Compare 2019 simulated outcome with the actual 2019 outcome.

Figure 26: Actual and predicted capacity by the end of the period (GW).

Estimation

Model Fit - Number of Generators

Figure 27: Actual and predicted capacity by the end of the period (number of generators).

Estimation

Model Fit - Investment

Figure 28: Actual and predicted capacity by the end of the period (GW).

Estimation

Model Fit - Investment

Figure 29: Actual and predicted capacity by the end of the period (number of generators).

Estimation

Model Fit - Dynamics

Figure 30: Actual and predicted regulated coal plant capacity in the US, 2010-2019