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1 Introduction

Structural changes in the economy often necessitate labor market shifts, leading to changes

in overall labor demand and composition. While some sectors and skills become obsolete

and certain regions decline, others gain prominence. For instance, the rise of information

technology and automation reduced labor demand and increased inequality, favoring high-

skilled workers (Acemoglu & Restrepo, 2018; Adão et al., 2023). Currently, many countries

are undergoing a structural change driven by the energy transition, shifting from a fossil fuel-

dependent economy to one led by renewable energy. This industrial transition can result in

major sectoral shifts and geographical redistribution of economic opportunities for workers.

While the phase-out of coal has led to an entrenched decline in some sectors and localities,

renewable energy has the potential to create new jobs and stimulate regional economies.1 For

example, young workers equipped with skills for solar panel maintenance and operation may

now find more opportunities and potentially higher wage growth. Will local economies

experience job creation and wage growth? If so, which sectors and what type of workers

benefit from these increases? Answering these questions and identifying the winners and

losers of the green-energy transition is vital for designing efficient and equitable energy

policies. However, recent evidence regarding the overall workforce and its sub-population’s

response to renewable energy mostly comes from calibrated evidence (Wei et al., 2010; Lehr

et al., 2013) and ex-ante projections (ILO, 2011; IRENA, 2021).

In this paper, we examine the causal impact of renewable energy expansion from solar and

wind power on local labor market outcomes in the United States, exploring the overall effect,

distributional consequences, and impacts on the local economy. We focus on the period from

2005 to 2019, during which the US witnessed substantial growth in renewable energy.

We conduct our analysis at the commuting zone (CZ) level, following the prior literature

studying the effect of economy-wide industrial shocks on workers, such as the China shock

and automation (e.g., Autor & Dorn, 2013; Autor et al., 2013). We examine various labor

1Recent studies find that the phase-out of coal has led to a decline in energy-intensive sectors, particularly
impacting lower-educated workers in affected locations (Hanson, 2023; Haywood et al., forthcoming).
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market outcomes, including changes in employment, labor participation, wages, and hours

worked, all constructed from the Public Use Microdata Sample (PUMS) dataset from the

American Community Survey (ACS). To understand the distributional effects on who gains

and who loses as well as the key drivers of the overall effect, we also examine these outcomes

across sub-populations, stratifying them by sectors, demographics (e.g., age, educational

attainment, race, and gender), and occupation greenness.

Similar to past studies that investigated the impact of industrial shocks on local economies, we

face the challenge of a potential correlation between the growth of renewable energy and

changes in local labor market profiles. To address this potential endogeneity, we develop an

empirical strategy that leverages exogenous variation in solar and wind potentials across

commuting zones, obtained from remote sensing data. We also collect data on aggregate

shocks that could drive temporal changes in renewable capacity, such as the renewable

portfolio standards (RPS) at the state level and changes in the federal production tax credit

(PTC) for wind energy. We interact the cross-sectional renewable potentials with policy

shifters to construct our instrumental variables. This strategy allows us to predict which CZs

are more likely to experience growth in solar and wind energy as the renewable industry

expands. We implement our IV strategy by estimating a stacked one-year first-difference (FD)

estimator.

Our findings reveal a significant increase in employment and other extensive margins

resulting from renewable capacity growth, particularly solar. Specifically, a 10% expansion in

solar capacity would lead to an average increase of 0.3% in both employment and labor force

participation, indicating that a 12 MW increase in solar capacity would result in

approximately 1,100 additional employment in its CZ in 2019. We also observe a 0.1% increase

in the working-age population and a 0.3% increase in the working-age new residents,

suggesting a potential in-migration effect. The expansion of wind energy has a similar effect

on these margins, albeit roughly half the magnitude of the solar energy expansion. These

employment effects from solar and wind energies are of the same order of magnitude as a 10%

reduction in China import exposure or routine-occupation share (as in Autor & Dorn, 2013;

Autor et al., 2013); similar to a 2 percentage-point decline in recent coal shock in Appalachian
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locations (as in Krause, 2023); and comparable to a 10% increase in national oil and gas

employment (Allcott & Keniston, 2018).

We also observe wages in the local labor markets increase as a result of solar energy growth,

while the effect of wind energy growth is negligible and statistically insignificant. A 10%

increase in solar energy capacity would raise the average annual, weekly, and hourly wage by

0.15%-0.3% (approximately $51 in annual salary and $2 in weekly salary in 2019). Our results

on employment and wages remain robust when including residential solar installations and

accounting for potential spatial spillovers from neighboring CZs.

Renewable energy often faces criticisms that the new jobs created are concentrated among

construction workers in the early stage of renewable projects, and consequently, the concern

that the local labor market gains are likely short-lived once the construction phase concludes.

Contrary to this concern, we find that the labor market gains are more than transitory, and the

employment gains persist after the initial installation of renewable energy. While we find a

strong increase in construction jobs, we witness a greater increase in manufacturing

employment and modest employment growth across many other sectors following the

increase in solar energy. Consistent with the sectoral increase in employment, we also observe

an increase in business establishments across various sectors, especially in manufacturing.

Similarly, we observe wage increases in many sectors as well.

The above results suggest that renewable energy has contributed to growth in their local

economy, particularly from the expansion of solar energy. Several mechanisms may contribute

to the overall growth. First, the sectoral increases in employment suggest a potential local

multiplier effect, similarly observed from the recent oil and shale gas boom (Feyrer et al., 2017;

Allcott & Keniston, 2018). Second, the findings regarding the new-resident population indicate

an in-migration effect. As we also observe very weak local spillover, the gains from the

renewable energy growth appear highly localized. Lastly, the change in population composition

may contribute to the growth of the local economy. In particular, we find a CZs witnessing

renewable growth also experience an increase in younger and lower-educated working-age

population, which is crucial for the booming renewable sectors and many other sectors.
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Consistent with our main results of a growing local economy, we observe a reduction across

most government transfer payments, such as supplementary security income, food stamps,

Medicaid, and social security. This finding is notable considering the simultaneous increase in

population in these locations. The reductions can be attributed to both the thriving regional

economies in these localities as well as the influx of young workers. Our results suggest that

the demographic shift helps alleviate the financial burden on federal and local governments in

providing social safety nets.

While transitioning to new energy sources offers opportunities for the broader workforce, our

findings reveal substantial heterogeneity in the impacts on different groups of workers.

Notably, young and less-educated workers (those with less than a high school degree)

experience substantial positive gains in both employment and wages. In contrast, older

workers see limited benefits, and employment among black workers even declines. Workers

with the highest level of educational attainment (those with a post-graduate degree) also see

moderate gains. These disparities highlight the uneven distribution of economic benefits

resulting from the growth of green energy, as well as the nature of the jobs created by the

growth of renewable energy.

Related to the green job literature, we also find that workers in green occupations experience a

relatively greater increase in employment, particularly in the manufacturing sector. However,

we find no evidence of wage increases for these workers. This suggests that while the rise of

green energy has created job opportunities for workers in green occupations, it has not

improved their wage profiles. This pattern stands in contrast to the previous fracking boom,

which resulted in both increased employment and higher wages for workers in affected

industries (e.g., Feyrer et al., 2017; Kearney & Wilson, 2018).

This work contributes to three main strands of literature. First, our study contributes to the

broad literature that investigates how technological changes and macroeconomic shocks affect

the local labor markets, such as China shock, automation, coal phase-out, (e.g., Autor & Dorn,

2013; Autor et al., 2013; Chetty et al., 2014; Autor et al., 2019; Acemoglu & Restrepo, 2020; Allcott

& Keniston, 2018; Feyrer et al., 2017; Hanson, 2023; Krause, 2023). Some of these work explored
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previous boom and bust in the energy transition and their effects on labor markets, such as the

oil and gas boom (e.g., Allcott & Keniston, 2018; Feyrer et al., 2017), and the decline in the coal

industry (e.g., Hanson, 2023; Haywood et al., 2023; Krause, 2023). Despite the importance of the

recent development of green energy, past studies have focused on calibrating the effect of green

energy growth on workers (e.g., Wei et al., 2010; Lehr et al., 2013). Our study adds new insights

into the green energy transition, provides empirical estimates of its local labor market effect,

and explores potential mechanisms. Our employment effects are comparable to results from

earlier studies on China import exposure (Autor et al., 2013) and recent coal shock (Krause,

2023), and our wage effects are comparable to past oil and gas boom (Allcott & Keniston, 2018),

substantiating the labor market impact of the green energy transition.

Also, in terms of empirical methodology, many of these studies adopt a shift-share approach,

constructing a measure based on cross-sectional variation from labor factor endowment such

as industry-specific routine-task intensity in Autor & Dorn (2013) and coal-worker share in

Hanson (2023), with time-series labor market shifters such as changes in Chinese import

generation by industry in Autor et al. (2019). We construct our instrumental variable designs

based on these methodologies and recent econometric discussions (e.g., Goldsmith-Pinkham

et al., 2020), exploiting the unique exogenous distribution of renewable resources endowment

and the industrial shocks for renewable energy.

Second, our study adds to the growing body of literature investigating the effect of green energy

on local economies. This strand of work particularly focuses on understanding political support

(or sometimes the lack of political support) for green energy by examining the local spillover

effect (e.g., Costa & Veiga, 2021; Fabra et al., 2023; Gilbert et al., 2023b), the social equity and

justice aspect for green energy (Gilbert et al., 2023a), or directly analyzing the voting pattern

(Germeshausen et al., 2023). Our study adds to the literature by first examining the local labor

market effects from solar and wind and exploring potential mechanisms.

Lastly, our work contributes to the literature that studies the growing demand for green

occupations by analyzing task or job-listing data. Using job-listing data, Curtis & Marinescu

(2023) lay out the distribution of green jobs and find solar and wind jobs listed across many
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industries such as manufacturing, utility, sales, etc, and Curtis et al. (2023) document the

proportion of dirty jobs transitioned into clean jobs. Also, a group of studies analyzed the

occupation-level green tasks data, and documented that occupations with a greater share of

green tasks are in higher demand in locations experiencing shocks such as environmental

regulation, infrastructure subsidies, and technological innovation (Vona et al., 2018; Popp

et al., 2021, 2022). Our study contributes by examining the role of green energy (solar and

wind) in creating green jobs, identifying the sectors where these jobs are added, and assessing

the attractiveness of these jobs in terms of wage levels.

The rest of the paper is organized as follows. Section 2 describes the data sources and presents

the motivating evidence for using renewable potentials as a source of identification. Section 3

outlines the empirical model. In Section 4, we present and discuss our estimation results and

their implications. We report robustness checks in Section 5. In Section 6, we conclude.

2 Data and Background

Local labor market data. We derive labor market characteristics from the Public Use Microdata

Sample of annual American Community Surveys (ACS-PUMS) conducted by the US Census

Bureau between 2005 and 2019. This period coincides with a significant surge in renewable

energy use in the US. These surveys, representing 1% of the US population each year, offer

detailed cross-sectional microdata. They encompass comprehensive individual and household-

level information, including labor market data (such as employment status, wage income, hours

and weeks worked, industries, and occupations), as well as demographic data (including age,

gender, race, educational attainment, and other socioeconomic factors). Our sample includes

all individuals of prime working ages, defined as 16 to 64 years.

We aggregate the microdata to the CZ-level to examine local labor market outcomes (e.g.,

employment and wage), following the approach of studies that investigate economic shocks

on local labor markets (e.g., Autor et al., 2013, 2019; Acemoglu & Restrepo, 2020; Hanson,

2023). Compared to other geographical classifications such as the metropolitan statistical areas

or counties, CZ preserves strong intra-zone commuting ties and weaker inter-zone ties (see
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discussions in Tolbert & Sizer, 1996; Autor et al., 2013). Our final dataset encompasses 721

commuting zones across the continental US. Leveraging the richness of the microdata, we

further compute local labor market outcomes for specific sub-populations, such as

employment and wages for workers of different ages and educational attainment, outcomes

for workers in specific sectors, and those for green occupations. These sub-population

measures form the foundation of our distributional analysis.

Renewable generation capacity data. Our main explanatory variables are the operational

capacity of solar and onshore wind generation in a CZ, which we use to measure the level of

renewable energy penetration within each CZ.2 We gather plant-level solar and wind power

generation capacities (in megawatts) from Form-860 provided by the US Energy Information

Administration (EIA) and aggregate the data to the CZ level based on the geographical

location of the plants. For robustness, we also consider solar and wind power generation as

additional measures. We collect plant-level net generation (in megawatt-hours) from solar and

wind energy from EIA Form-923 and similarly aggregate the data to the CZ level.

Figures 1 and 2 illustrate the changes in solar and onshore wind generating capacities from

2001 to 2019. Among all the CZs in our sample, 41% of the CZs eventually adopted utility-scale

solar energy, while 59% never had solar during our sample period. As for wind, 35% of the CZs

ended up adopting onshore wind projects, while 65% never experienced investment in onshore

wind energy during our sample period. In addition to the considerable solar and wind energy

growth over time, Figures 1 and 2 reveal significant heterogeneity across CZs. Utility-scale

solar energy has been widely adopted across the US, particularly in the Southwest, the East,

and the Midwest. In contrast, wind energy adoption has been primarily concentrated in Texas,

the Midwest, and some locations near the Great Lakes.

Renewable energy potential data. To account for the cross-sectional variation in renewable

energy adoption, we utilize the renewable energy potential in each CZ, using remote-sensing

2For wind, we exclude offshore wind as its geographical location falls outside the CZs’ political boundaries.
We exclude other renewable sources, such as hydroelectric and geothermal power, as their capacities have remained
stable over time in our sample period. Moreover, renewable sources like hydroelectric and geothermal power require
specific geographical features that are not universally present across CZs.
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data from the National Renewable Energy Laboratory (NREL). For solar energy potential, we

employ the annual Solar Global Horizontal Irradiance (GHI) on a 4-km by 4-km grid, obtained

from NREL’s National Solar Radiation Database. The solar GHI, which measures the total solar

radiation incident on a horizontal surface, is an excellent indicator of solar energy potential. It

is widely used to predict potential solar power generation and is exogenous to socioeconomic

outcomes. We compute the average GHI for each CZ and illustrate the distribution of solar GHI

across CZs in Figure 3. As expected, solar GHI level is higher in the Southwest and Florida, and

this geographic pattern aligns with the observed growth in solar capacity, as shown in Figure

1.

We collect average wind speed at the 120-meter altitude for each 2-km by 2-km onshore grid

cell using NREL’s Wind Prospector database to compute the wind potential. This database,

produced from satellite and modeling data from 2007 to 2013, has proven instrumental in

demonstrating that potential wind power generation is a cubic function of wind speed which

we incorporate into our analysis. Figure 4 displays the distribution of the average 120-meter

wind speed for all CZs. Regions with the highest wind potential are typically found in the

mountain states, the Midwest, and parts of Texas, while areas like the Great Lake regions and

sections of New England also exhibit moderate wind potential. This geographic distribution is

also consistent with the observed wind adoption pattern, as depicted in Figure 2.

Data on aggregate shifters. We have gathered data on several industrial and policy shocks

that could influence the adoption and expansion of solar and wind capacities. One of the most

prevalent renewable policies is the renewable portfolio standards (RPS), which has been

adopted at the state level across the US. RPS requires a specified percentage of the electricity

sold in the state to come from renewable energy. We obtained data on the year of enactment

and obligations (in MWh) from the RPS Compliance Dataset provided by the Lawrence

Berkeley National Laboratory (LBNL). We also cross-referenced the Database of State

Incentives for Renewables & Efficiency, following past studies on RPS (e.g., Wolverton et al.,

2022). Figure 5 indicates a correlation between the early adopters and the regions where we

observe solar and wind energy expansion as depicted in Figures 1 and 2.
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We also sourced the production tax credit (PTC) data from the US Department of Energy.

Introduced in 1992, the PTC is a national-level subsidy for wind energy production. This

production subsidy has been found to drive increased investment in wind energy capacity

(Aldy et al., 2022).

These shocks broadly serve as supply shifters, and help us predict when and in which major

region firms are likely to adopt or expand solar and wind capacities. Our instrumental variable

(IV) strategy, which we will elaborate on later, combines the variation generated by these shocks

with the geographic variation derived from satellite data on renewable potentials.

For robustness, we collected data on capacities and vintage for coal-fired generating units

from the EIA Form-860 as an additional shifter. We aggregated the data to the subregions

defined by the North American Electricity Reliability Corporation (NERC) to take into account

substitution across the state border. Appendix Figure A.1 shows that the geographic decline of

coal correlates with the expansion of solar and wind in areas such as the Great Lake regions

near the Rust Belt, the South, the Midwest, Texas, and Arizona, as shown in Figures 1 and 2.

Also, we collect residential solar photovoltaic installation and capacity from the Tracking the

Sun database from LBNL.

Other data. To investigate differences in occupations and classify their greenness, we utilized

task data from the Occupational Information Network (O*NET) database, provided by the US

Department of Labor. We identified green tasks and constructed green occupations using the

task-level greenness, following the methodology in Vona et al. (2018). These measures enable

us to calculate outcome variables (such as employment and wages) for sub-populations based

on the “greenness" of their occupation.

To explore the impacts on regional economies, we collected annual business establishment

data from the County Business Patterns dataset provided by the US Census Bureau and

aggregated the information to the CZ level. Additionally, we compiled county-level

government transfer receipts using the Regional Economic Accounts from the US Bureau of

Economic Analysis, and similarly aggregated the data to each CZ. The transfer payment data

include total government transfers to individuals and detailed categorical transfers such as
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Supplementary Security Income, food stamps, medical transfers, Unemployment Insurance,

Social Security, and more.

3 Empirical strategy

For a commuting zone (CZ) i in year t, we relate its annual changes in local labor market

outcomes ∆Yit to its annual changes in renewable energy (RE), ∆REit, of solar and wind. We

estimate the following first-difference (FD) equation:

∆Yit = βs∆REsolar
it + βw∆REwind

it + X′
itδ + ϕt + ϕs + ϕs · t + ε it (1)

Equation (1) is estimated on stacked 1-year first-differences from 2005 to 2019, with each CZ

weighted using its starting population in 2005. The outcome variable Y includes extensive

labor market margins (e.g., log employment and labor force participation), intensive margins

and other equilibrium outcomes (e.g., log hours worked per week, log weekly wages), and

other measures (e.g., log population). As discussed in Section 2, we measure renewable energy

penetration using log of operating generation capacities in our baseline specification.3

Alternatively, we use log of net generation to measure RE in one of the robustness checks.

Our primary parameters of interest are βs for solar and βw for wind. By construction, our first-

differenced outcomes and main variables of interest eliminate time-invariant unobservables

within a CZ. Our control vector X contains the log of the lagged population and the log of

retired coal capacity: the former captures a potential scale effect, and the latter controls for

the potential employment and wage effect directly from coal phasing-out. Also, we include

year fixed effects ϕt, state fixed effects ϕs, and a linear year trend for each state ϕs · t to control

for potential unobservables such as macroeconomic trends.4 This specification is equivalent

to controlling for commuting zone fixed effects, year fixed effects and state-specific quadratic

3We take the log of the solar and wind capacities which are measured in 100 MW. If capacity = 0, we assign the
log capacity, RE ≡ log(capacity), as 0, and include a separate dummy variable in X that indicates if capacityi,t−1 is
zero. We introduce two such dummies in X for both solar and wind. Treating zeros using this methodology, our
baseline is identical if we scale capacities in MW, 10MW, 100MW, GW, etc. Our results are similar if we include in
X both dummies that indicate capacityi,t−1 = 0 and dummies that indicate capacityit = 0 for both solar and wind
(i.e., four dummies in total).

4For CZs that cross the state border, we assign state s to a CZ i if it is primarily in state s.
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time trends before first differencing. Standard errors are clustered at the state level to allow for

potential correlation across CZs within a state.

The empirical challenge in identifying βs and βw is that shocks in the local labor market may

correlate with the propensity of renewable investment in a location. For instance, solar energy

utilities may find it attractive to expand their business in regions with certain types of

workers, such as construction workers, which may exaggerate our results. Or, they may look

for routine-task intensive workers, which is likely to decline due to automation, which may

underestimate our results. Our results may also be subject to a downward bias if the local

government encourages new businesses, such as renewable energy, when the local economic

conditions worsen.

To correct for such potential endogeneity, we employ an instrumental variable (IV) design that

exploits the exogenous geographical variation in the endowed renewable potentials (RP) in solar

and wind using the remote sensing data discussed above, as well as the temporal variation in

industrial shocks (i.e., RPS and PTC). For each CZ i, we construct its solar potential, RPsolar
i , by

multiplying its average solar GHI by its area to account for the size of the CZ. Similarly, for CZ

i’s wind potential, RPwind
i , we construct it by multiplying its cubic 120-meter wind speed by its

area.

We construct our instrumental variables by interacting (i) the solar and wind renewable

potentials constructed above with (ii) the two temporal shifters, which include (a) a state’s

renewable obligation under RPS in a year and (b) the federal production tax credit that applies

to a renewable source’s initial year of production (in 2005 dollars per MWh). Using both

sources of variation, our IVs enable us to predict which area, to what extent, and when an area

is more likely to grow in renewable energy given its renewable potentials at a time when the

renewables are expanding in the broader economy.

Our identification strategy resembles the shift-share approach commonly used in studies

examining the effect of aggregate shocks on local labor markets. These studies typically rely

on (i) the exogeneity of the ‘initial share’ for a sub-population of workers with various

exposure to shocks within a region (e.g., industry-specific shares of routine workers, male
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workers, or import-exposed workers in a CZ) and (ii) the subsequent temporal ‘shifts’ for

those industries or sub-populations in those industries in the aggregate economy (see

examples in Autor & Dorn, 2013; Autor et al., 2013, 2019; Hanson, 2023 and econometric

discussions in Goldsmith-Pinkham et al., 2020). Similar to shift-share IVs, we rely on the

exogeneity of the ‘shares’, i.e., renewable potentials, as well as the exclusion restriction that the

variation in renewable potentials only affects the variation in changes in outcomes via affecting

changes in solar and wind capacity. Unlike typical shift-share IVs, our ‘shares’ only vary across

CZs rather than across sub-populations or industries within a CZ.5 While the ‘shares’ in past

studies measure the exposure to macroeconomic conditions and policies using labor

endowments in sub-populations, our ‘shares’ measure the exposure to renewable policy

shocks using a proxy for capital productivity endowment, which we use to generate variations

in the renewable energy installations across CZs.

It is worth noting that past studies have used RPS as an instrument for renewable capacity

when studying other outcomes (see e.g., Johnson & Oliver, 2019, for studying electricity price

volatility). While the functional form of our instruments includes both renewable potentials

and policy shifters such as RPS, we only require exogeneity in the renewable potentials in

identification. Related to our identification, Costa & Veiga (2021) and Fabra et al. (2023)

directly use municipality fixed effects under the assumption that renewable potentials are

exogenous across locations; Germeshausen et al. (2023) use the “reference yield model” which

implicitly incorporates the wind speed from a benchmark simulating model produced by

German’s Renewable Source Acts (EEG) to study the effect of wind projects in Germany; and

5Canonical Bartik or Bartik-like IVs take an inner product structure and are constructed by summing or
averaging over (i) sub-unit shocks, i.e., ’shifts’, weighted by (ii) proxies of shock exposure, i.e., ’shares’. Goldsmith-
Pinkham et al. (2020) demonstrate the identification can solely come from the exogeneity of ‘shares’ in those IVs,
and the Bartik IV estimator is equivalent to a weighted GMM estimator using only ‘shares’ as (multiple) IVs.
Alternatively, Borusyak et al. (2022) suggests consistency can be achieved if ‘shares’ are not exogenous but ‘shifts’
are quasi-random and mutually uncorrelated. Recent econometric development highlights that the estimator can
be inconsistent even when ‘shares’ are strictly exogenous, and therefore recommends various correction techniques
such as re-centering and controlling (e.g., Borusyak & Hull, forthcoming; Borusyak et al., 2024). Our IV does not
take an inner product structure: (i) the ‘shares’ in our setting vary at the CZ level rather than the sub-population
level within a CZ, and (ii) our ‘shifts’ are common shocks (national or in aggregate economies). Therefore, we do
not sum or average the weighted shifts as in the Bartik setting, where the IVs can be vulnerable to endogeneity
when ‘shifts’ can be anticipated (e.g., industry-specific shifts in the context of import shock). See more discussions
in Borusyak et al. (2024).
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Gilbert et al. (2023b) incorporate wind speed when formulating their instruments across

different hexagons.

Also, we study the distributional effects of renewable energy deployment by re-estimating

Equation (1) for various sub-populations of workers in a CZ. Specifically, we construct Y’s such

as employment and wage based on a worker’s demographics (e.g., age group, race, gender,

and educational attainment), sectors, occupation greenness, and industry characteristics using

the detailed individual-level microdata from the ACS-PUMS dataset. We also construct Y’s

for some intersected groups for detailed analysis (e.g., female workers with less than a high

school education, and green occupation workers in manufacturing). To gain a comprehensive

understanding of the impact of renewable energy deployment on various aspects of the regional

economies, we also analyze other outcomes, such as the number of business establishments and

transfer payments using a similar specification.

4 Results

4.1 Effects for the overall workforce

Employment and other extensive margins. We begin by analyzing the labor market outcomes

for the overall workforce in the prime working ages from 16 to 64. We estimate Equation (1) on

total employment and report the results in Table 1 Panel A Column 1.6 The increases in solar

and wind capacity have led to a modest increase in total employment. To interpret the effect,

we consider a 10% increase in solar or wind capacity, which approximates the annual change

in these energy sources for a typical CZ (see Appendix Table A.1 Panel A.2). A 10% increase in

solar generation capacity would result in a 0.29% increase in employment for a typical CZ. The

effect for wind is smaller at 0.14% but remains statistically significant.

The implied percentage changes are quite sizable compared to the average annual changes in

these outcomes. These results indicate notable job opportunities generated by the growth in

6We report the first-stage results in Appendix Table A.2. Variation in RPS obligation effectively predicts solar
energy expansion, and variation in PTC helps predict wind energy growth. In addition, we find that a CZ with
greater wind potential is less likely to expand in solar energy, and vice versa, a CZ with greater solar potential is
less likely to expand in wind energy. These opposite coefficients suggest potential substitution effects between these
two renewable energy sources in a location.
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these energy sources, in particular, an increase of 1,143 jobs from a 10% solar capacity increase

(about 12 MW) and 369 jobs from a 10% wind energy increase (about 41 MW) in 2019 for an

average CZ, as reported in Table 1 Panel B.7 One contributing factor for a stronger

employment effect from solar over wind is that solar requires a lot of manual labor, with many

tasks requiring minimal education and work experience, such as cleaners with only a 10-hour

Occupational Safety and Health Administration (OSHA) card and no prior work experience

and journeyman electricians with a 50-hour OSHA card with some work experience (see

NREL, 2018).8

We re-estimate Equation (1) on labor force participation and total population to better

understand the drivers of the employment increase. We present the results in Table 1 columns

2 and 3. The coefficients on labor force participation (column 2) closely mirror the estimates

on employment (column 1). The coefficients on population (column 3) are in the same order of

magnitudes as those in columns 1 and 2, specifically, with a smaller coefficient for solar and a

slightly larger coefficient for wind. These findings imply the increase in employment is closely

linked to existing working-age residents aged 16 to 64 staying in the locations and entering the

workforce as well as an influx of migrant workers. The in-migration effect is also evident in

Table 1 column 4 when we directly focus on the new resident population, although the

coefficient for wind is not precisely estimated. In summary, these results show the positive

effects of renewable growth on job opportunities and highlight their roles in retaining

employable working-age workers and attracting new workers.

Wages and intensive margins. We proceed to analyze other margins, focusing on workers’

wages and the extent to which they work. We infer weekly wages from annual wage income

7To offer an additional interpretation, we evaluate the effect of the overall cumulative change in solar and wind
over the period 2005-2019 on employment for the year 2019. Over our sample period, an average CZ has witnessed
a growth in solar capacity by 51 MW and wind capacity by 132 MW (see Appendix Table A.1 Panel B). Our results
imply that the solar capacity expansion over 2005-2019 has led to a 3.8% increase in employment for an average
CZ (or 15,000 jobs in 2019); the wind capacity expansion over our sample period has led to a 1.9% increase in
employment on average, or 5,200 jobs in 2019.

8For additional examples, the US Bureau of Labor Statistics (BLS) provides examples of occupations relevant
to solar power: https://www.bls.gov/green/solar_power/. This includes skilled workers in welding, glazing,
and coating in manufacturing, equipment operators in construction and installation, high-wage workers such as
civil engineers, and production and construction managers. In a recent study, Curtis & Marinescu (2023) also
documented the spectrum of new jobs listed in the solar and wind industry as well as jobs in other industries with
keywords associated with solar and wind energy.
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and weeks worked per year, and compute hourly wages from annual wages, weeks worked per

year, and hours worked per week. We re-estimate Equation (1) on these outcomes. Table 2 Panel

A columns 1 to 3 present the wage effect. The expansion of solar energy consistently leads to

positive effects on annual, weekly, and hourly wages, but the effects are small. Specifically, a

10% solar capacity expansion would increase weekly wages by 0.3% or $1.9 (2005 US dollars)

in the year 2019, as reported in Table 2 Panel B.

In addition to a positive wage effect, we also find a small decrease of 0.16% in weeks per work

year (Table 2 column 4), and a negligible increase of 0.01% in hours worked per week (Table

2 column 5). These results together suggest that workers receive higher weekly and hourly

wages and work fewer weeks in equilibrium. In contrast, we do not find any significant effects

on wages or work extent resulting from wind expansion. The coefficients β̂w are much smaller

than β̂s and they are not precisely estimated.

Throughout this paper, we use robust standard error clustered at the state level to allow

correlation across CZs within a state. For robustness, we also produce the Conley standard

errors to correct for spatial correlation in the error term (Conley, 1999, 2010) as well as the

Newey-West heteroskedasticity and autocorrelation consistent (HAC) standard errors.

Appendix Table A.3 presents the alternative standard errors for our employment and wage

equations. Columns 2a to 2c show that our results are robust to generalizing spatial

correlation. Columns 3a to 3c show that the standard errors tend to be greater when allowing

for serial correlation, and our results are robust, especially for employment.

Temporal dynamics. While our baseline in Table 1 and 2 present the contemporaneous effect

of utility-scale solar and wind expansion, it is of policy interest whether the short-run effect

of renewable boom translates into a long-term effect. Previous studies on wind energy, in

particular, suggest different stages of renewable projects may have different effects (e.g., ILO,

2011; Fabra et al., 2023). Therefore, we investigate the medium-run dynamics of the initial solar

and wind investment using the recently developed local projections difference-in-differences

(LP-DID) estimator proposed by Dube et al. (2023) adapted from the local projections estimator

in Jordá (2005). To adapt the LP-DID estimator to our setting, we redefine our continuous
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variable of interest as a dummy variable of whether a CZ has first experienced any capacity

increase in solar and wind, Dsolar
it and Dwind

it , and take a first difference.9

Figure 6 shows the results for the LP-DID estimation for employment and weekly wage. Panels

A and B show a positive and significant effect on both employment and wage for the initial

increase in solar capacity at event time h = 0. This result is qualitatively similar to our short-run

results in Tables 1 and 2. In the subsequent years following the initial solar capacity installation,

we continue to observe a positive employment and wage effect, indicating an accumulative

effect over time from the initial capacity installation.10

While Figure 6 appears to suggest a permanent positive effect from solar, we cannot

conclusively determine whether the mechanism suggests a permanent long-run effect, an

effect of repeated treatments, or both, since most treated CZs continue to grow their capacities.

The potential repeated treatment also informs us of the appropriateness of specifying a 1-year

FD in our main equation (1) as longer-term local projections (LP) require clean control across a

longer time horizon, which is not plausible at the CZ level.

Figure 6 suggests a similar pattern for wind capacity installation, but we lack sufficient power

for each individual post-event coefficient as the clean control condition further restricts our

sample. Using a first-difference estimator, we find a short-run effect on employment but a null

effect on wages, while the LP-DID estimator suggests an increasing slope after the initial event

for both despite a lack of power.

9In particular, we estimate a modified equation based on our main specification:

∆Yit,t+h = γs,h∆Dsolar
it + γw,h∆Dwind

it + X′
itδ + ϕt + ϕs + ϕs · t + εit (2)

where h ∈ [−6, 6] is the event time, i.e., the number of years before or after the year when a CZ experiences its
initial expansion in solar or wind energy. As it is still under development in the econometric literature how the
LP-DID estimator behaviors for a continuous treatment that not only varies in magnitude cross-sectionally but also
expands over time (i.e., repeated treated), we follow the base specification in Dube et al. (2023) and set the variable
interest Dit being the dummy variable indicates whether a CZ i has first experienced any investment in solar or
wind in year t, and we use the same clean control condition as in Dube et al. (2023). Equation (2) includes the same
set of controls, fixed effects, and instruments as in the baseline equation (1). As identifying γ for solar and wind
requires different clean control conditions, we estimate equation (2) separately when identifying γs,h and γs,w for
solar and wind. Lastly, we normalize to two years before the first capacity increase to consider the construction
stage as discussed in past studies (Fabra et al., 2023; Gilbert et al., 2023b).

10Our results also complement recent studies that analyze the long-run effect of coal phase-out, where Hanson
(2023) find long-run negative effects of a shrinking coal industry on local workers’ employment and wages.
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Spatial spillover. We next explore the possibility that the changes in renewable energy in

nearby locations may affect the labor market outcomes of workers in a CZ, resulting in spatial

spillover. In Table 3 column 2, we include the changes in average utility-scale solar and wind

capacity in adjacent CZs and in column 3, the changes in average solar and wind capacity

in other CZs in the same state as control variables. We find that solar growth in nearby CZs

tends to reduce a CZ’s employment, with the order of magnitude being a small fraction of

the main effect. These results suggest that a solar boom in close CZs may attract workers to

relocate to those locations (as supportive evidence, we find a negative coefficient of adjacent

CZs’ solar capacity expansion on the population in a CZ). The effect of other CZs’ wind energy

has a statistically and economically insignificant effect on employment. As for wages, we find a

negative effect from both solar and wind in nearby CZs, with small and only detectable effects

for adjacent CZs’ solar energy. The primary coefficients on solar and wind capacity are slightly

smaller but remain similar to the baseline. Our weak evidence of geographical spillover aligns

with Gilbert et al. (2023b), where authors find the effect of new wind turbines on local workers

dampens as the distance increases. Overall, we do not find strong evidence of spatial spillover.

In summary, baseline estimates in Tables 1 and 2 indicate a positive impact of solar and wind

energy growth on the overall workforce in affected CZs. Figure 6 shows that the effect of

the initial investment is not short-lived. The expansion of solar and wind has translated into

increased job opportunities, with solar also leading to wage increases. These gains in local

labor markets are mostly localized as we observe (i) a weak spatial spillover effect and (ii) an

in-migration effect.

4.2 Sectoral growth and implications for local businesses

This section delves into possible underlying factors contributing to the employment and wage

gains for the overall workforce documented in Section 4.1. In particular, it is of policy interest

whether most of the gains are concentrated in certain related sectors such as construction, or if

they have a similar effect on other sectors in the local economy.
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Sectoral effects on employment and wage. To address this question, we categorize workers

into sub-populations based on their employment in the following four main sectors:

manufacturing, service, public, and other sectors. We also examine specific sectors in the

broad “other sectors" such as construction. We present the sectoral employment effects in

Table 4 Panel A and the sectoral wage effects in Panel B.

As expected, we find some positive effects on labor market outcomes from renewable energy in

directly affected sectors. Specifically for workers in the construction sector, column 4a in Table

4 in Panels A and B shows a notable positive employment effect from both solar (stronger than

the baseline) and wind (with a magnitude similar to baseline), and a positive wage effect from

solar (stronger than the baseline). Also, for workers in the utility sector, we observe a positive

wage effect from solar with a magnitude similar to the baseline (see column 4a in Panel B).

More importantly, we also find renewable energy sources indirectly benefit workers in other

sectors of the local economy. For example, we observe a sizable employment increase from

solar energy expansion for service and other sectors (such as wholesale and retail trade, and

transportation and warehousing). Notably, we find a substantial employment gain in the

manufacturing sector, which is more than twice as large as the average effect. This is

consistent with the examples of job creation in the manufacturing sector following solar

energy installation, illustrated in the study by the BLS (see footnote 8). The employment

growth across many sectors, in particular in manufacturing, is likely a combination outcome

of (i) that energy-intensive industries in manufacturing sectors may move to locations with a

lower energy price and efficient fuel source, (ii) a local agglomeration effect, and (iii) that

manufacturing plants, in general, producing tradable goods, are relatively mobile in capital

(see more discussions regarding manufacturing sector during energy transition in e.g.,

Hanson, 2023). To investigate the importance of the local agglomeration effect, we further

break down manufacturing sectors into tradable and non-tradable sectors based on definitions

used in Allcott & Keniston (2018) and Holmes & Stevens (2014). Consistent with such local

multiplier effect, we find positive employment and wage effects from solar energy for both

tradable and non-tradable sectors, rather than tradable sectors alone.11

11The results are available upon request.
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As for wind energy, we find the strongest effects on the manufacturing and service sectors,

although the estimate for the former lacks precision. Similar to employment, we find wage

increases from solar energy growth in these sectors, although the wage outcomes exhibit less

variation across sectors.

Third, while we find employment increases in all private sectors, we find a reduction in

employment in the public sector from solar power, as shown in Table 4 Panel A column 5. Part

of this result can be driven by the small wage increase, as the public sector experiences the

lowest wage growth across all sectors, as shown in Table 4 Panel B. This possibility suggests a

potential job displacement effect - workers leave the public sector for other jobs in affected

locations or move to other locations as the public sector becomes less appealing in terms of

wage profiles while other sectors and other locations present better job prospects.

In summary, our results indicate a growing local economy in locations that witness solar and

wind growth, as the increases in employment and wages are not only restricted in directly

affected sectors such as construction but also spilled over to many other sectors.12 This local

agglomeration effect has been observed in earlier work on oil and gas booms in the United

States.13 In our setting, we observe a strong employment and wage effect in manufacturing,

which can come from a combination of (i) a greater demand for continuous manufacturing of

parts needed for operation and maintenance, (ii) a propagated effect to other forms of

manufacturing linked to solar and wind energy, and (iii) a local spillover effect through

general equilibrium channels. The local growth is also evident in service, construction, utility,

as well as other local industries (The sectoral distributional effects on employment for new

residents resemble Table 4 Panel A).14

12Our finding is consistent with previous descriptive studies that examine solar- and wind-related job listings
and find these jobs primarily concentrate in “blue collar” industries (construction, manufacturing, agriculture,
transportation, etc.), followed by “white collar” industries (all service industries except for healthcare, arts and rec,
and accommodations), then utilities and trade (Curtis & Marinescu, 2023).

13Specifically, Michaels (2011) studies the early 1940-1990 oil boom on manufacturing and agriculture, Allcott
& Keniston (2018) study the 1969-2014 oil and gas boom on manufacturing, and Feyrer et al. (2017) and Kearney
& Wilson (2018) study the recent shale gas boom on other sectors. Allcott & Keniston (2018) find both industrial
linkage effects and local agglomeration effects can explain such agglomeration effects.

14While we find regional growth, our results may not extrapolate to economy-wide growth. One possibility is the
growth in local industries, especially manufacturing, may represent a zero-sum re-distribution effect across locations
as capital is relatively mobile. This is a phenomenon typically observed in the effects of place-based policies. The
growth we observe in the manufacturing sector may come from the decline in other locations.
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Sectoral growth in business establishments. To explore the drivers of the sectoral labor market

growth and shift we document above, we examine the outcomes on local businesses. We repeat

the baseline Equation (1) on the changes in the log number of business establishments using

the County Business Pattern dataset. Table 5 column 1 shows no evidence that more businesses

emerged due to the solar energy expansion in a CZ, and only weak evidence of a small positive

effect for wind energy. This result suggests that the baseline employment gains discussed in

Section 4.1 can be driven by the increasing scale of individual firms.

While the overall business count shows no evidence of notable change, we observe some

sectoral shifts in business opportunities. In Table 5 columns 2 through 4, we analyze how the

pattern in business establishments changes among the manufacturing, service, and other

sectors. We find that an increase in solar energy capacity leads to more business

establishments in manufacturing. The coefficient for manufacturing business establishments,

despite moderate, is smaller than the coefficient for manufacturing employment (in Table 4

Panel A column 2). This result indicates that the growth in manufacturing jobs that we

observe comes from both (i) an increasing number of firms brought by solar energy and (ii) an

increasing size of these firms.15

We find an opposite pattern for businesses in service and other sectors. We find no evidence

of increasing service and other businesses from solar, despite observing an increase in

employment. These estimates suggest that although the service and other sectors did not

expand in terms of the number of businesses, the increase in solar energy likely led to an

increase in their scale. As for wind energy growth, we find a moderate coefficient for

manufacturing, but the effect is not precisely estimated. Moreover, we find mostly small

coefficients for other sectors, suggesting wind energy generally does not lead to a growth in

business opportunities for local firms, despite its positive yet small effect on employment.

15The sectoral employment pattern closely resembles the pattern of annual payroll, which we report in Appendix
Table A.4. A caveat is that there may be measurement errors associated with the annual payroll measure, as CBP
does not report annual payrolls for industries with only a few establishments.
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Taking all sectoral evidence together, the employment gains for the overall workforce come

from (i) the increasing number and size of firms in manufacturing, and (ii) the increasing size

of firms in service and other sectors brought by solar energy.

4.3 Distributional effects by demographics

In this section, we focus on studying the heterogeneous effects on various sub-populations of

workers based on their demographics. While we studied various labor market outcomes for the

overall workforce in Section 4.1, here we specifically focus on employment and weekly wage to

highlight the differential effects across workers. We first begin by analyzing the employment

and wage effects on different age groups, then we analyze workers with different levels of

educational attainment to better understand the differential effects of renewable expansion

between lower- and higher-skill workers, and finish this subsection by studying the effects

across different racial groups and genders.

Effects by age. We find that the positive employment effects are concentrated among young

workers. Table 6 Panel A presents the distributional employment effects. The most substantial

positive employment effect is observed among the youngest group of workers aged 16 to 35 for

both solar and wind energy: both coefficients are higher than the average effect, and both are

precisely estimated. For workers aged 36 to 50, solar energy also exhibits a strong employment

effect, with β̂s being about 25% higher than the average. By contrast, the employment effects

are notably weaker, almost negligible, for older workers aged 51 to 64.

We find a similar pattern in wages. Table 7 Panel A shows that the positive effect of wages

from solar energy is the strongest for the youngest group of workers aged 16 to 35 and smaller

for the rest of workers from 36 to 64. Consistent with the baseline, we do not find evidence of

wage effect from wind energy expansion.

These strong positive effects observed among younger workers are likely attributable to their

greater job mobility. Appendix Table A.5 Panel A shows the changes in population

composition by age group, with patterns comparable to the employment effect in Table 6.

Wind energy growth particularly raised the younger-age population from 16 to 35, and solar
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increased population groups for both from 36 to 50 and from 16 to 35. Comparing the effect to

the decline of coal, studies have shown that the younger workers in those locations are

affected more in extensive margins and less in terms of wages or other measures of well-being

compared to their older counterparts, as younger workers are more likely to move to a

different location or occupation (Hanson, 2023; Haywood et al., 2023).

Effects by educational attainment. We find that the gains are most pronounced among the

least educated workers with less than a high school degree. Table 6 Panel B shows that both

solar and wind energy have the strongest positive impact on workers with less than a high

school degree: both β̂s and β̂w are approximately 4 times the average, although the latter is

only statistically significant at the 10% level. Our finding of the pronounced effect of wind

energy on unskilled workers is consistent with previous evidence of wind projects in Portugal

(Costa & Veiga, 2021). Also, the employment effect is notably strong, although less pronounced,

for the workers with a post-graduate degree, where β̂w is almost twice the baseline.

Table 7 Panel B shows a similar pattern for the weekly wage. Column 2 highlights that β̂s is

almost three times the baseline for workers with less than a high school degree. Solar energy’s

wage effect remains sizable for workers with higher educational attainment (columns 4 through

6), although the estimates are less heterogeneous. Again, we find no wage effect observed from

wind energy growth.

The sizable employment and wage benefits at both ends of the educational attainment spectrum

suggest that the solar and wind growth leads to the greatest labor market opportunities for the

lowest- and highest-skill workers. Again, this can come from a potential migration channel (see

changes in population composition by education categories in Appendix Table A.5 Panel B).

While less-educated workers have shown to be less responsive to negative shocks as they are

less mobile (Autor et al., 2013; Hanson, 2023), these workers are found to respond to and gain

from positive shocks in our context when the location they reside in experience the green energy

boom. On the other hand, for higher-educated workers, our positive results are consistent with

past studies as these workers are relatively mobile (Autor et al., 2013; Haywood et al., 2023).
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Effects by race. We find consistent evidence of employment gains for non-Hispanic white

workers, while the effects for other racial groups are mixed. Table 6 Panel C shows a positive

and significant effect for non-Hispanic white workers from both solar and wind energy growth.

We further compare the distributional employment effects versus changes in the population

composition in Appendix Table A.5 Panel C. The overall patterns suggest that while white

workers benefit from solar and wind growth, solar projects are likely to benefit existing local

workers and wind projects may attract white workers to locate in this area.

The positive effect is absent for other racial groups. For Asian workers, the effect of solar

energy is smaller and statistically insignificant, and the effect of wind energy is negligible and

insignificant. The effect turns negative for both black and Hispanic workers, although only β̂s

for black workers is sizable and precisely estimated. Our estimation implies that a 10% increase

in solar capacity would decrease black employment by 0.4%.

Table 7 Panel C shows a positive and significant wage effect of solar energy for non-Hispanic

white, Hispanic white, and Asian workers (the last group is only significant at 10%). By

contrast, no significant wage changes are found for black workers. For wind energy, we find

minimum wage effects across racial groups except for a negative effect for Hispanic workers

(only statistically significant at 10%).

Effects by gender. Table 6 Panel D shows that while both genders experience increases in

employment from solar and wind energy expansion, the effect is slightly stronger for male

workers and the difference between genders is not substantial. On the other hand, the gap

between male and female wage gains is more notable. Table 7 Panel D shows that the positive

wage effect from solar energy is twice as large for male workers as it is for female workers. It

is yet unclear what drives the greater gains for male workers. This can be correlated with the

type of jobs that solar and wind energy created, although past studies have documented that

male workers experience a greater hit in employment and wage compared to female workers

when facing a negative shock (e.g., Autor et al., 2019).

To gain further insight into effects across gender and educational attainment groups, we study

the differential impacts of educational attainment for both male and female workers. Appendix
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Table A.6 Panel A shows that both genders witness the greatest employment gains among

workers with less than a high-school degree workers and the gains are of similar magnitude

for both genders. However, the sizable gains for workers with a post-graduate degree that we

previously found in Table 6 are only observed for male workers. Consistent with Table 6 Panel

D, the gender disparities in employment gains are not notable on average.

For the wage effect, female workers with less than a high school degree experience the greatest

gains compared to both (i) other women with higher education and (ii) male counterparts with

the same educational attainment. While higher-educated male workers with a high-school

degree or more still enjoy wage gains, their female counterparts do not appear to receive any

gains except for college-educated women. These education-specific differences across genders

contribute to the gap that we observe in Appendix Table 7 Panel D.

In summary, our demographic analysis shows that the positive employment and wage effects

are predominantly concentrated on young, white, male workers with educational attainment

at both ends of the spectrum, especially workers with less than a high school degree. Our

analysis also highlights the groups that are left out of the renewable energy growth that

policymakers may need to be aware of, such as older workers, black workers, and workers

with some education.

4.4 Effects on transfer payments and other outcomes

Effects on public transfer payments. The positive labor market outcomes from solar and wind

energy expansion for the overall workforce and regional economies likely reduce the welfare

payments to local residents. To explore this directly, we study CZ-level transfer payments by

aggregating county-level transfer data from the Regional Economic Accounts. Government

transfers can provide valuable insights into the well-being of workers in a location and the

overall health of the regional economy. We present our analysis in Table 8.

We find strong evidence of lower transfer payments due to solar energy expansion, with a

smaller and less precise effect from wind energy expansion. Table 8 column 1 shows that a
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10% increase in solar energy capacity would lower the total individual transfer payments by

0.2%. This reduction is at the same order of magnitude as the increase in wage income (Table

2, columns 1-3), suggesting the increasing wage income may be a contributing factor to the

reduced transfer payments.

The reduction in the overall transfer payments comes from various sources, including a

reduction in income maintenance benefits, medical benefits, and other benefits. Within income

benefits, we see a notable reduction in the Supplemental Nutrition Assistance Program (SNAP,

commonly referred to as the food stamps) and the Supplemental Security Income. Looking at

medical benefits, the reduction is more pronounced for Medicaid and much weaker and

inconclusive for Medicare. The reduction in income benefits and Medicaid is consistent with

our findings of the employment and wage gains as these programs target low-income

individuals. Our inconclusive findings for Medicare are consistent with weak employment

and wage gains for the older workforce.16 We also observe a lower expenditure on other safety

nets such as social security, unemployment unsurance, and educational assistance, although

the latter two are not precisely estimated. As for wind energy, the coefficients are mostly small

and not statistically different from zero, except for a reduction in education assistance and

training.

Combining these results and the demographics analysis in Section 4.3, we find that locations

growing in renewable energy tend to (i) offer the working-age population more jobs with better

pay and (ii) attract and retain younger workers. As a result, the population residing in these

locations is more likely to be employed, better paid, younger, and consequently likely less

dependent on government subsidies.

Effects on other outcomes. Finally, Table 9 shows the positive effects of solar energy on

several additional outcomes, including total individual income, total household income and

educational attainments. The expansion of solar energy not only contributes to the growth of

regional economies by attracting younger workers with the lowest and highest levels of

16Although the eligible individuals for Medicare (65+) are not included in our sample, it is plausible our findings
for older prime working-age workers (51 to 64) can be extrapolated to populations above 65 and explain why
coefficients in Table 8 column 3a are small and imprecise.
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education to stay or migrate, but also leads to an increase in the average educational

attainment in the local community. This is consistent with our earlier findings on growth of

employment and the number of business establishments. The effects of wind energy on these

outcomes are negligible.

4.5 Effects on green jobs and their sectoral differences

Green jobs have been an interest of the US environmental and energy policy designs. Previous

studies have documented growth in green jobs in response to stricter environmental policies

and increased government investment in the green economy (e.g., Vona et al., 2018; Popp et al.,

2021). It is plausible that some of the labor market gains we documented in Section 4.1 from

solar and wind can be attributed to the increase in green jobs. However, studying the magnitude

of such effects and their sectoral differences remains an empirical question.

To unpack the effect, we first identify “green tasks” for each occupation based on the textual

description of each task provided by the O*NET database, and next define the “greenness” of

an occupation based on the fraction of green tasks within that occupation following Vona et al.

(2018) and Vona (2021).17 We link the occupation greenness to the ACS microdata and construct

outcome variables for three groups of workers depending on the greenness of their jobs: jobs

with the least greenness level (greenness = 0, which constitute the majority of the jobs), jobs

with a certain level of greenness (greenness ranging from 0 to 0.1), and jobs with the highest

level of greenness (greenness > 0.1).

Table 10 Panel A reports the employment effects by occupation greenness. We find greater

employment effects for workers with greener jobs from solar energy growth. This differential

effect is also notable in the manufacturing sector and other sectors (see Table 11 estimates for

β̂s), suggesting a possibility of greater demand for those jobs in these sectors. In contrast, Table

10 Panel A shows that the employment gains from wind energy are mostly concentrated in the

least green jobs. This pattern is consistently observed in the manufacturing and other sectors

17As O*NET categorizes occupation in an 8-digit code while ACS only uses a 6-digit occupation code, we use the
minimum operator similarly as in Vona et al. (2018), as the average operator is likely subject to greater bias. We
calculate the greenness of an 8-digit occupation using the fraction of green tasks (e.g., 1) out of all tasks (e.g., 10),
yielding a greenness of 0.1 in this example. We then compute the minimum greenness of all 8-digit occupations
within an ACS 6-digit occupation.
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(see Table 11 estimates for β̂w), which suggests that wind energy growth leads to a greater

demand for less green jobs.

Furthermore, Table 10 Panel B reports the differential wage effect. The positive wage effect

from solar falls mostly on brown occupations. Taking all results together, while solar leads to

more jobs for green occupations, especially in manufacturing, there is no clear evidence that

these jobs have become attractive in terms of payoff; meanwhile wind energy leads to more

conventional, less green jobs.

5 Robustness and additional results

In this section, we perform robustness checks for our baseline analysis and produce additional

results to further our discussions.18

Alternative measure of renewable energy. In our main analysis, we measure renewable energy

penetration in each Commuting Zone using its aggregate generation capacity. However, the

green energy transition may also affect local workers during the ongoing operation of existing

renewable plants.

To explore this possibility, we examine the effect of solar and wind power generation (measured

by net generation) in Appendix Table A.7. The results are qualitatively similar to our main

findings. The effect of solar energy growth is slightly smaller: A 10% increase in solar energy

generation would increase employment by 0.2% and weekly wage by 0.2%. The effect of wind

is also smaller and not precisely estimated. The reduced impact observed with net generation

indicates that the benefits identified from renewable energy are linked to the creation of support

jobs, rather than deriving from operational benefits of these generators, such as decreased

electricity prices.

18In addition to the robustness tests presented below, our baseline results also remain robust (i) under alternative
sets of fixed effects, such as census division trends, census region trends, NERC region trends, or without any
regional trends; and (ii) with additional controls for the spillover from the residential solar industry using data from
Tracking the Sun. These results are available upon request.
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Coal phasing-out as an additional shifter for the IV. Our baseline analysis employs two

temporal shifters, the Renewable Portfolio Standards and the Production Tax Credit. However,

it is plausible that the decline of coal also plays an important role in the renewable energy

industry as the energy supply transitions away from fossil fuels toward alternative sources.

Appendix Figure A.1 shows the retirement of coal-fired units from 2001 to 2019 across

subregions of the North American Electric Reliability Corporation (NERC). We observe some

correlation with the patterns seen in Figures 1 and 2.

To incorporate this possibility, we introduce an additional temporal shifter to capture the coal

shock, resulting in a total of six instrumental variables. We measure the decline of coal by

constructing the capacity-weighted vintage of coal-fired units in a NERC subregion, with the

variation driven by both capacity changes and retirement timing, which Davis et al. (2021)

document as exogenous for a unit. In Appendix Table A.8, we re-produce our analysis on

employment and weekly wage with this additional shifter. The point estimates are very similar

to the baseline results.

Longer first differences. Our main results are produced on stacked one-year first differences of

outcome variables Y’s and renewable energy RE’s. We examine the robustness of our baseline

using longer differences, which are commonly employed in many studies on local labor markets

(e.g., Autor & Dorn, 2013; Autor et al., 2013, 2019) to study the medium-term effect of the energy

transition. Appendix Table A.9 shows that our results are similar if we use two-year, three-

year, five-year, and seven-year differences. In this specification, we are studying the effect of a

medium-term change in renewable energy on medium-term changes in employment and wage,

these results are still a reflection of a contemporaneous effect of renewable capacity expansion,

but with a perspective of a longer time horizon.

6 Conclusion

In this paper, we provide a comprehensive study of the effects of the growth in solar and wind

energy on local labor market outcomes in the United States. Our findings reveal substantial

gains in employment, labor force participation, and wages resulting from the expansion in
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solar and wind energy between 2005 and 2019. Importantly, we find these job market gains are

not just short-lived, confined to the construction phase, or exclusive to construction workers.

Instead, they lead to the growth of manufacturing plants and an increase in employment

across multiple sectors in the years following the completion of the installation. Alongside the

increase in employment and business activities, we also observe a reduction in government

transfer payments. This reduction in the public finance burden opens up an opportunity for

policymakers to reallocate resources to assist sub-populations that have been left out or

adversely affected by the expansion of solar and wind energy.

Our results suggest the types of jobs that the renewable energy boom creates. The growth in

renewable energy has increased employment and wages for individuals with the lowest (with

less than a high school degree) and the highest (with a post-graduate degree) levels of skills.

We observe minimal employment benefits for older workers, mirroring the coal decline effect

documented in Hanson (2023), and negative job prospects for black workers. This diverse range

of effects highlights the gains and losses that policymakers must consider when designing green

energy policies.

We find the benefits of the green energy transition tend to be localized, as we observe weak

spatial spillover from neighboring commuting zones, accompanied by a strong in-migration

effect that suggests jobs and higher wages are likely concentrated in the commuting zones

experiencing growth in renewables. This finding aligns with past studies that find the effect of

economy-wide industrial shocks tends to be localized (Autor & Dorn, 2013; Autor et al., 2013;

Hanson, 2023). Given that both the negative shocks from the decline of coal industries (Hanson,

2023) and the positive gains from renewables that we find are localized, future research should

explore how well the green energy shock replaces workers that experience job loss from the

energy transition as well as the potential barriers preventing workers from capitalizing on the

new opportunities created by the energy transition. Understanding the underlying mechanism

of the transition dynamics can help ensure an efficient energy transition and equitable growth

of the local economy.
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Lastly, while this study examines the outcomes of workers in wage profiles and how workers

move across sectors and infers potential migration patterns, our results cannot directly speak

to labor market efficiency as a result of the renewable booms driven by both market forces

and policy incentives. We leave room for future research to study labor productivity, allocative

efficiency, and other challenges that the energy transition has led to.
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Figures

Figure 1: Changes in Solar Energy Generation Capacities by Commuting Zone

Notes: This map shows the changes in solar energy generation capacity (in Megawatts) from 2001 to 2019 using
EIA data for the continental US.

Figure 2: Changes in Onshore Wind Energy Generation Capacities by Commuting Zone

Notes: This map shows the changes in onshore wind energy generation capacity (in Megawatts) from 2001 to 2019
using EIA data for the continental US.
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Figure 3: Average Solar GHI by Commuting Zone

Note: This map shows the average solar Global Horizontal Irradiance (GHI) by CZ using NREL data.

Figure 4: Average Inland 120-meter Wind Speed by Commuting Zone

Note: This map shows the average inland 120-meter wind speed by CZ using NREL data.
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Figure 5: Enacted Year of the Renewable Portfolio Standards (RPS)

Note: This map shows the enacted year of the Renewable Portfolio Standards (RPS) by state using data from the
Lawrence Berkeley National Laboratory (LBNL).
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Figure 6: Local Projection of the Initial Capacity Increase Event

Note: This plot reproduces the baseline using the local projector estimator following Dube et al. (2023) inspired by
Jordá (2005). We run our estimation separately for wind and solar shocks. We include the same controls and fixed
effects, and we use the same instrumental variables as in Equation (1). We re-define the variable of interest as the
first-differenced dummy variable if capacity increases from zero to a positive number. We define the clean control
exactly following Dube et al. (2023).
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Tables

Table 1: Effects of Renewable Deployment on Extensive Margins of Work

Dependent variable: ∆ ln employment ∆ ln labor force ∆ ln population ∆ ln new-resident
participation population

(1) (2) (3) (4)

A. Estimates
∆ ln(solar capacity) 0.0287∗∗∗∗ 0.0277∗∗∗∗ 0.0120∗∗ 0.0349∗∗∗∗

(0.0031) (0.0028) (0.0049) (0.0081)

∆ ln(wind capacity) 0.0138∗∗ 0.0134∗∗ 0.0162∗ 0.0118
(0.0066) (0.0066) (0.0095) (0.0128)

ln(population)t−1 X X
ln(coal capacity retirement)t X X X X
Number of observations 10,094 10,094 10,094 10,094
Sargan over-id. p-value 1.00 1.00 1.00 1.00

B. Effect for a 10% increase in renewable capacity in 2019 (share in %)
(for CZs with non-zero solar or wind capacity in 2019)
B.1 ∆ solar cap. = 10% (≈ 12MW): 1,143 (0.3%) 1,132 (0.3%) 511 (0.1%) 224 (0.4%)
B.2 ∆ wind cap. = 10% (≈ 41MW): 369 (0.1%) 368 (0.1%) 464 (0.2%) 50 (0.1%)

Notes: Robust standard errors clustered at the state level in parenthesis. ∗, ∗∗, ∗∗∗, and ∗∗∗∗ indicate statistical
significance at 10, 5, 1, and 0.1 percent levels, respectively. All regressions are conducted at CZ by year level using
first-differenced variables. All regressions include fixed effects of year, state, and a linear trend for each state. All
regressions control for log coal retirement capacity in a CZ, a lag of log population, and dummy variables that
represent whether the lagged solar or wind capacity in a CZ was zero.
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Table 2: Effects of Renewable Deployment on Other Margins of Work

Dependent variable: ∆ ln wage ∆ ln wage ∆ ln wage ∆ ln weeks ∆ ln hours
annually weekly hourly worked worked

per year per week

(1) (2) (3) (4) (5)

A. Estimates
∆ ln(solar capacity) 0.0150∗∗∗∗ 0.0246∗∗∗∗ 0.0291∗∗∗∗ -0.0156∗∗∗∗ 0.0008∗

(0.0037) (0.0044) (0.0065) (0.0019) (0.0004)

∆ ln(wind capacity) -0.0013 -0.0004 -0.0091 0.0012 0.0013
(0.0051) (0.0073) (0.0105) (0.0030) (0.0012)

Number of observations 10,094 10,094 10,094 10,094 10,094
Sargan over-id. p-value 1.00 1.00 1.00 1.00 1.00

B. Effect for a 10% increase in solar capacity (≈ 12MW) in 2019 (with wages in 2005 USD)
(for CZs with non-zero solar capacity in 2019)

$50.6 (0.2%) $1.9 (0.3%) $0.06 (0.3%) -0.07 (-0.02%) 0.03 (0.01%)

Notes: Number of observations = 10,094. Robust standard errors clustered at the state level in parenthesis. ∗, ∗∗, ∗∗∗,
and ∗∗∗∗ indicate statistical significance at 10, 5, 1, and 0.1 percent levels, respectively. All regressions in Panel A
repeat the baseline as in Table 1 Panel A columns 1-2, i.e., all regressions fixed effects of year, state, a linear trend
for each state, and the same sets of control variables. All calculations in Panels B to D repeat Table 1 Panel B to D
and only evaluate on commuting zones with non-zero solar in 2019.
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Table 3: Potential Spillover from Local Locations

Panel A. Dependent variable: ∆ ln employment

(1) (2) (3)

Base Average capacity of local CZs:
adjacent CZs others in the state

∆ ln(solar capacity) 0.0287∗∗∗∗ 0.0283∗∗∗∗ 0.0271∗∗∗∗

(0.0031) (0.0031) (0.0034)

∆ ln(wind capacity) 0.0138∗∗ 0.0131∗∗ 0.0138∗∗

(0.0066) (0.0065) (0.0066)

∆ ln(solar capacity for local CZs) -0.0033∗∗ -0.0031∗∗∗

(0.0013) (0.0010)

∆ ln(wind capacity for local CZs) 0.0010 0.0013
(0.0011) (0.0015)

Panel B. Dependent variable: ∆ ln weekly wage

(1) (2) (3)

Base Average capacity of local CZs:
adjacent CZs others in the state

∆ ln(solar capacity) 0.0246∗∗∗∗ 0.0231∗∗∗∗ 0.0231∗∗∗∗

(0.0044) (0.0044) (0.0041)

∆ ln(wind capacity) -0.0004 -0.0002 -0.0004
(0.0073) (0.0067) (0.0072)

∆ ln(solar capacity for local CZs) -0.0037∗∗ -0.0027
(0.0015) (0.0016)

∆ ln(wind capacity for local CZs) -0.0018 -0.0005
(0.0015) (0.0031)

Notes: Number of observations = 10,094. Robust standard errors clustered at the state level in parenthesis. ∗, ∗∗, ∗∗∗,
and ∗∗∗∗ indicate statistical significance at 10, 5, 1, and 0.1 percent levels, respectively. Column 1 repeats the baseline
from Table 1 column 1 and Table 2 column 2. In columns 4 and 5, we control for renewable capacity in local CZs.
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Table 4: Sectoral Outcomes on Employment and Wage

Panel A. Dependent variable: ∆ ln employment

A.1 Main sectors: All workers Manufacturing
sector

Service
sector

Other
sectors

Public and
government

(1) (2) (3) (4) (5)

∆ ln(solar capacity) 0.0287∗∗∗∗ 0.0745∗∗∗∗ 0.0228∗∗∗∗ 0.0210∗∗∗∗ -0.0190∗∗∗

(0.0031) (0.0086) (0.0030) (0.0040) (0.0068)

∆ ln(wind capacity) 0.0138∗∗ 0.0180 0.0166∗∗ 0.0075 -0.0166
(0.0066) (0.0150) (0.0071) (0.0059) (0.0151)

A.2 Selected sectors in
“other sectors":

Agriculture Utility Construction Wholesale &
retail

Transport. &
warehousing

(4a) (4b) (4c) (4d) (4e)

∆ ln(solar capacity) 0.0429 -0.0081 0.0480∗∗∗∗ 0.0109∗∗∗ 0.0234∗∗∗

(0.0263) (0.0158) (0.0102) (0.0036) (0.0071)

∆ ln(wind capacity) -0.0008 0.0010 0.0113 0.0010 -0.0119
(0.0263) (0.0273) (0.0114) (0.0079) (0.0213)

Panel B. Dependent variable: ∆ ln weekly wage

B.1 Main sectors: All workers Manufacturing
sector

Service
sector

Other
sectors

Public and
government

(1) (2) (3) (4) (5)

∆ ln(solar capacity) 0.0246∗∗∗∗ 0.0195∗∗∗ 0.0190∗∗∗∗ 0.0396∗∗∗∗ 0.0134∗∗∗

(0.0044) (0.0070) (0.0039) (0.0073) (0.0042)

∆ ln(wind capacity) -0.0004 -0.0040 0.0092 -0.0115 -0.0033
(0.0073) (0.0171) (0.0082) (0.0096) (0.0103)

B.2 Selected sectors in
“other sectors":

Agriculture Utility Construction Wholesale &
retail

Transport. &
warehousing

(4a) (4b) (4c) (4d) (4e)

∆ ln(solar capacity) -0.0373 0.0262∗∗∗ 0.0178∗∗ 0.0410∗∗∗∗ 0.0402∗∗∗∗

(0.0295) (0.0095) (0.0072) (0.0104) (0.0104)

∆ ln(wind capacity) 0.0089 -0.0154 -0.0273∗ 0.0068 -0.0225
(0.0376) (0.0171) (0.0154) (0.0121) (0.0221)

Notes: Number of observations = 10,094. Robust standard errors clustered at the state level in parenthesis. ∗, ∗∗,
∗∗∗, and ∗∗∗∗ indicate statistical significance at 10, 5, 1, and 0.1 percent levels, respectively. All regressions repeat the
baseline as in Table 1 column 1 using the outcome on various sub-populations. The “other sectors”, as in column 4,
include all sectors excluding manufacturing, service, and the public sector, i.e., all sectors with the first-digit North
American Industry Classification System (NAICS) code being 1, 2, and 4. Specifically, they are agriculture, forestry,
fishing, and hunting; mining; utilities; construction; wholesale and retail trade; and transportation.
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Table 5: Sectoral Effects on Local Business Establishments

Dependent variable: ∆ ln business establishments for

A. Main sectors: All sectors Manufacturing
sector

Service
sector

Other
sectors

(1) (2) (3) (4)

∆ ln(solar capacity) 0.0025 0.0372∗∗∗∗ -0.0037 -0.0016
(0.0020) (0.0067) (0.0028) (0.0024)

∆ ln(wind capacity) 0.0076∗ 0.0166 0.0058 0.0051
(0.0040) (0.0133) (0.0041) (0.0042)

B. Selected sectors in
“other sectors":

Agriculture Utility Construction Wholesale &
retail

Transport. &
warehousing

(4a) (4b) (4c) (4d) (4e)

∆ ln(solar capacity) 0.0505∗∗∗ 0.0971∗∗∗∗ 0.0035 -0.0103∗∗∗∗ 0.0108
(0.0156) (0.0193) (0.0051) (0.0024) (0.0101)

∆ ln(wind capacity) 0.0306 0.0223 0.0058 0.0041 -0.0005
(0.0239) (0.0219) (0.0058) (0.0047) (0.0114)

Notes: Number of observations = 10,094. Robust standard errors clustered at the state level in parenthesis. ∗,
∗∗, ∗∗∗, and ∗∗∗∗ indicate statistical significance at 10, 5, 1, and 0.1 percent levels, respectively. All regressions
repeat the baseline as in Table 1 columns 1-2 and Table 2 on alternative outcome variables. The “other business
establishments”, as in column 4, include business establishments in all sectors excluding manufacturing and service
sectors. All columns exclude the public sector as we only include business establishments.
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Table 6: Distributional Employment Effects by Demographics

Dep. var.:
∆ ln employment (1) (2) (3) (4) (5) (6)

A. Effects by Age
All workers 16–35 36–50 51–64

∆ ln(solar cap.) 0.0287∗∗∗∗ 0.0377∗∗∗∗ 0.0358∗∗∗∗ 0.0061∗∗

(0.0031) (0.0058) (0.0038) (0.0026)

∆ ln(wind cap.) 0.0138∗∗ 0.0230∗∗ 0.0106 0.0012
(0.0066) (0.0113) (0.0086) (0.0062)

B. Effects by Educational Attainment

All workers Less than High school Some College Post-grad
high school degree college degree degree

∆ ln(solar cap.) 0.0287∗∗∗∗ 0.1159∗∗∗∗ 0.0049 0.0179∗∗∗ 0.0064∗ 0.0184∗∗∗

(0.0031) (0.0149) (0.0031) (0.0063) (0.0036) (0.0052)

∆ ln(wind cap.) 0.0138∗∗ 0.0584∗ 0.0063 -0.0224∗∗ 0.0046 0.0260∗∗

(0.0066) (0.0292) (0.0066) (0.0104) (0.0086) (0.0120)

C. Effects by Race

All workers Non-hispanic
white

Hispanic
white

Black Asian

∆ ln(solar cap.) 0.0287∗∗∗∗ 0.0164∗∗∗∗ -0.0180 -0.0408∗∗ 0.0121
(0.0031) (0.0035) (0.0150) (0.0190) (0.0112)

∆ ln(wind cap.) 0.0138∗∗ 0.0222∗∗ -0.0224 -0.0249 -0.0008
(0.0066) (0.0095) (0.0331) (0.0369) (0.0206)

D. Effects by Gender

All workers Male Female

∆ ln(solar cap.) 0.0287∗∗∗∗ 0.0318∗∗∗∗ 0.0249∗∗∗∗

(0.0031) (0.0032) (0.0029)

∆ ln(wind cap.) 0.0138∗∗ 0.0157∗∗ 0.0111∗

(0.0066) (0.0073) (0.0061)

Notes: Number of observations = 10,094. Robust standard errors clustered at the state level in parenthesis. ∗, ∗∗,
∗∗∗, and ∗∗∗∗ indicate statistical significance at 10, 5, 1, and 0.1 percent levels, respectively. All regressions repeat the
baseline as in Table 1 column 1 using the outcome on various sub-populations.
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Table 7: Distributional Wage Effects by Demographics

Dep. var.:
∆ ln weekly wage (1) (2) (3) (4) (5) (6)

A. Effects by Age
All workers 16–35 36–50 51–64

∆ ln(solar cap.) 0.0246∗∗∗∗ 0.0407∗∗∗∗ 0.0216∗∗∗∗ 0.0197∗∗∗

(0.0044) (0.0060) (0.0036) (0.0057)

∆ ln(wind cap.) -0.0004 0.0019 0.0032 -0.0007
(0.0073) (0.0121) (0.0084) (0.0115)

B. Effects by Educational Attainment

All workers Less than High school Some College Post-grad
high school degree college degree degree

∆ ln(solar cap.) 0.0246∗∗∗∗ 0.0722∗∗∗∗ 0.0119∗ 0.0260∗∗∗∗ 0.0300∗∗∗∗ 0.0292∗∗∗∗

(0.0044) (0.0119) (0.0062) (0.0066) (0.0075) (0.0059)

∆ ln(wind cap.) -0.0004 0.0300 0.0034 -0.0043 -0.0018 0.0034
(0.0073) (0.0361) (0.0093) (0.0097) (0.0132) (0.0098)

C. Effects by Race

All workers Non-hispanic
white

Hispanic
white

Black Asian

∆ ln(solar cap.) 0.0246∗∗∗∗ 0.0196∗∗∗∗ 0.0420∗∗∗∗ -0.0019 0.0244∗

(0.0044) (0.0038) (0.0071) (0.0116) (0.0135)

∆ ln(wind cap.) -0.0004 -0.0020 -0.0294∗ 0.0178 0.0319
(0.0073) (0.0066) (0.0155) (0.0162) (0.0254)

D. Effects by Gender

All workers Male Female

∆ ln(solar cap.) 0.0246∗∗∗∗ 0.0304∗∗∗∗ 0.0159∗∗∗∗

(0.0044) (0.0055) (0.0033)

∆ ln(wind cap.) -0.0004 -0.0059 0.0069
(0.0073) (0.0096) (0.0054)

Notes: Number of observations = 10,094. Robust standard errors clustered at the state level in parenthesis. ∗, ∗∗,
∗∗∗, and ∗∗∗∗ indicate statistical significance at 10, 5, 1, and 0.1 percent levels, respectively. All regressions repeat the
baseline as in Table 2 column 2 using the outcome on various sub-populations.
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Table 8: Effects on Regional Government Transfer Receipts

Dependent variable: ∆ ln Government transfer per capita

1. Total 2. Income maintenance benefits

Total
individual

transfer

Total
individual

income
benefits

Supplemental
security
income

(SSI)

SNAP EITC

(1) (2) (2a) (2b) (2c)

∆ ln(solar cap.) -0.0172∗∗∗∗ -0.0471∗∗∗∗ -0.0145∗ -0.0269∗∗∗ 0.0115
(0.0039) (0.0066) (0.0077) (0.0080) (0.0070)

∆ ln(wind cap.) -0.0026 -0.0037 0.0038 -0.0134 0.0059
(0.0098) (0.0145) (0.0137) (0.0151) (0.0085)

3. Medical benefits 4. Other programs

Total
medical

Medicare Medicaid UI Social
security

(SS)

Education
assistance

(3) (3a) (3b) (4a) (4b) (4c)

∆ ln(solar cap.) -0.0126∗ -0.0077 -0.0186∗∗∗ -0.0110 -0.0085∗∗ -0.0066
(0.0071) (0.0076) (0.0064) (0.0317) (0.0041) (0.0066)

∆ ln(wind cap.) -0.0003 0.0007 -0.0023 -0.0360 0.0000 -0.0337∗∗∗

(0.0107) (0.0128) (0.0107) (0.0219) (0.0078) (0.0167)

Notes: Number of observations = 10,094. Robust standard errors clustered at the state level in parenthesis. ∗, ∗∗,
∗∗∗, and ∗∗∗∗ indicate statistical significance at 10, 5, 1, and 0.1 percent levels, respectively. All regressions repeat the
baseline as in Table 1 column 1 on alternative outcome variables.

Table 9: Effects on Other Outcomes

Dependent variable: ∆ ln total personal ∆ ln total household ∆ ln years of
annual income annual income educational

attainment
(1) (2) (3)

∆ ln(solar capacity) 0.0162∗∗∗∗ 0.0210∗∗∗∗ 0.0286∗∗∗∗

(0.0031) (0.0029) (0.0028)

∆ ln(wind capacity) -0.0018 0.0018 0.0130∗

(0.0050) (0.0066) (0.0067)

Notes: Number of observations = 10,094. Robust standard errors clustered at the state level in parenthesis. ∗, ∗∗,
∗∗∗, and ∗∗∗∗ indicate statistical significance at 10, 5, 1, and 0.1 percent levels, respectively. All models repeat the
baseline as in Table 1 column 1.
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Table 10: Distributional Employment Effects by Occupation Greenness

All workers Least green: Somewhat green: The greenest:
If minimum If minimum If minimum
occupation occupation occupation
greenness greenness greenness

= 0 ∈ (0, 0.1] > 0.1
(1) (2) (3) (4)

A. Dependent variable: ∆ ln employment

∆ ln(solar capacity) 0.0287∗∗∗∗ 0.0263∗∗∗∗ 0.1246∗∗∗∗ 0.0333∗∗∗

(0.0031) (0.0031) (0.0097) (0.0073)

∆ ln(wind capacity) 0.0138∗∗ 0.0154∗∗∗ 0.0249 -0.0109
(0.0066) (0.0066) (0.0269) (0.0103)

B. Dependent variable: ∆ ln weekly wage

∆ ln(solar capacity) 0.0246∗∗∗∗ 0.0256∗∗∗∗ -0.0133 0.0153
(0.0044) (0.0039) (0.0120) (0.0164)

∆ ln(wind capacity) -0.0004 0.0026 0.0101 -0.0179
(0.0073) (0.0074) (0.0158) (0.0221)

Share of workers 93.2% 1.6% 5.1%

Notes: Number of observations = 10,094. Robust standard errors clustered at the state level in parenthesis. ∗, ∗∗,
∗∗∗, and ∗∗∗∗ indicate statistical significance at 10, 5, 1, and 0.1 percent levels, respectively. All regressions repeat
the baseline as in Table 1 column 1 using the outcome on various sub-populations. We calculate the greenness for
an 8-digit occupation in the O*NET using the fraction of green tasks out of all tasks, and construct the greenness
for a 6-digit occupation in the ACS data using the minimum greenness of all 8-digit occupations within a 6-digit
occupation as following Vona et al. (2018).
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Table 11: Distributional Employment Effects by Sector and Occupation Greenness

Dependent variable: ∆ ln employment

Manufacturing sector Other sectors (excl. service and gov’t.)

All occp.: Other occp.: Green occp.: All occp.: Other occp.: Green occp.:
min green = 0 min green > 0 min green = 0 min green > 0

(1a) (1b) (1c) (2a) (2b) (2c)

∆ ln(solar cap.) 0.0745∗∗∗∗ 0.0676∗∗∗∗ 0.1177∗∗∗∗ 0.0210∗∗∗∗ 0.0201∗∗∗∗ 0.0295∗∗∗

(0.0086) (0.0081) (0.0198) (0.0040) (0.0040) (0.0089)

∆ ln(wind cap.) 0.0180 0.0162 -0.0007 0.0075 0.0107∗ -0.0136
(0.0150) (0.0136) (0.0297) (0.0059) (0.0061) (0.0106)

Share of workers
in a sector 87.6% 12.4% 89.4% 10.6%

Notes: Number of observations = 10,094. Robust standard errors clustered at the state level in parenthesis. ∗, ∗∗,
∗∗∗, and ∗∗∗∗ indicate statistical significance at 10, 5, 1, and 0.1 percent levels, respectively. All regressions repeat the
baseline as in Table 1 column 1 using the outcome on various sub-populations. The greenness for an occupation is
constructed as in Table 10. Green occupations in this table are defined as occupations with greenness greater than
0. We exclude the service and public sectors from this analysis as they have fewer green occupations.

48



Online Appendix

Appendix A. Additional Figures and Tables

Figure A.1: Changes in Coal-fired Power Generation Capacity

Notes: This map displays the retirements in coal-fired generation capacity (in Megawatts) from 2001 to 2019 for
each NERC subregion in the continental US. We thank Erin Mansur for his generosity in sharing his code and
shapefiles, which allowed us to match utilities to each county and the balancing authority.
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Table A.1: Summary Statistics for Key Variables

Panel A. Annual Changes in Key Variables

Variable name: Mean St. Dev. Variable name: Mean St. Dev.

A.1 Outcome variables A.2 Variables of interest

∆ ln(employment) 0.002 0.044 ∆ ln(solar capacity) 0.092 0.435
∆ ln(labor force part.) 0.001 0.040 ∆ ln(wind capacity) 0.099 0.609
∆ ln(population) -0.002 0.037 ∆ ln(solar net gen.) 0.101 0.586
∆ ln(annual wage) 0.009 0.058 ∆ ln(wind net gen.) 0.120 0.690
∆ ln(weekly wage) 0.008 1.403
∆ ln(hourly wage) 0.011 1.378
∆ ln(weeks worked/year) -0.001 0.019
∆ ln(hours worked/week) 0.004 1.220

Number of observations 10,094

Panel B. Cumulative Changes in Renewable Energy in a CZ from 2005 to 2019

Variable name: Mean St. Dev. Variable name: Mean St. Dev.

B.1 Solar B.2 Wind

Capacity (MW) in 2005 0.6 14.9 Capacity (MW) in 2005 12.0 61.9
Capacity (MW) in 2019 51.8 253.7 Capacity (MW) in 2019 144.0 375.0
∆ ln(capacity)2019−2005 1.29 1.93 ∆ ln(capacity)2019−2005 1.39 2.31

Net gen. (GWh) in 2005 0.8 19.9 Net gen. (GWh) in 2005 24.5 136.2
Net gen. (GWh) in 2019 99.3 561.4 Net gen. (GWh) in 2019 409.1 1,053.7
∆ ln(net gen)2019−2005 1.42 2.15 ∆ ln(net gen)2019−2005 1.68 2.74
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Table A.2: First-stage Regressions

Dependent variable: ∆ ln (solar capacity) ∆ ln (wind capacity)
(1) (2)

State-level RPS Obligation (TWh) 0.0712∗∗ 0.0230
× CZ Area × Solar GHI (0.0268) (0.0270)

State-level RPS Obligation (TWh) -0.0022∗∗∗∗ -0.0005
× CZ Area × 120-meter wind speed3 (0.0005) (0.0007)

PTC (Dollar-per-MWh) -0.0460 -0.1894∗∗∗

× CZ Area × Solar GHI (0.0593) (0.0546)

PTC (Dollar-per-MWh) 0.0008 0.0045∗∗∗∗

× CZ Area × 120-meter wind speed3 (0.0008) (0.0012)

Number of observations 10,094 10,094
R-squared 0.13 0.08
Joint-sig. Wald-stat (IVs) 77.5 12.0
Joint-sig. Wald-stat p-value (IVs) 0.000 0.000

Notes: Robust standard errors clustered at the state level in parenthesis. ∗, ∗∗, ∗∗∗, and ∗∗∗∗ indicate statistical
significance at 10, 5, 1, and 0.1 percent levels, respectively. This table reports the first-stage regression for the
baseline regression as in Table 1 columns 1-2 and Table 2.
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Table A.3: Alternative Standard Errors

Base Conely spatial SE HAC SE

robust SE cutoff distance at: serial correlation:

cluster 165 mile 250 mile 375 mile 2 10 14
at state (265 km) (400 km) (600 km) years years years

(1) (2a) (2b) (2c) (3a) (3b) (3c)

A. Dependent variable: ∆ ln employment

∆ ln(solar cap.) 0.0287∗∗∗∗ 0.0287∗∗∗∗ 0.0287∗∗∗∗ 0.0287∗∗∗∗ 0.0287∗∗ 0.0287∗∗ 0.0287∗∗

(0.0031) (0.0051) (0.0048) (0.0031) (0.0130) (0.0110) (0.0102)

∆ ln(wind cap.) 0.0138∗∗ 0.0138∗∗ 0.0138∗∗∗ 0.0138∗∗∗ 0.0138 0.0138∗ 0.0138∗

(0.0066) (0.0063) (0.0053) (0.0050) (0.0086) (0.0074) (0.0072)

B. Dependent variable: ∆ ln weekly wage

∆ ln(solar cap.) 0.0246∗∗∗∗ 0.0246∗∗∗∗ 0.0246∗∗∗∗ 0.0246∗∗∗∗ 0.0246 0.0246∗ 0.0246∗

(0.0044) (0.0056) (0.0026) (0.0027) (0.0154) (0.0138) (0.0125)

∆ ln(wind cap.) -0.0004 -0.0004 -0.0004 -0.0004 -0.0004 -0.0004 -0.0004
(0.0073) (0.0071) (0.0079) (0.0069) (0.0093) (0.0083) (0.0078)

Notes: Number of observations = 10,094. Standard errors in parenthesis. ∗, ∗∗, ∗∗∗, and ∗∗∗∗ indicate statistical
significance at 10, 5, 1, and 0.1 percent levels, respectively. Panel A repeats Table 1 column 1 and Panel B repeats 2
column 2 using alternative standard errors. In column 1, we report the baseline standard error, the robust standard
errors clustered at the state level. In columns 2a through 2c, we use the Conley standard error. For reference,
165 miles are roughly the mean distance of the nearest 5 neighboring commuting zones (CZs). In columns 3a
through 3c, we compute the Newey-West heteroskedasticity and autocorrelation consistent (HAC) standard errors.
For reference, 14 years is the panel length of the stacked 1-year first-differenced data.

Table A.4: Sectoral Effects on Annual Payroll for Local Business Establishment

Dependent variable: All businesses Manufacturing Service Business in
∆ ln annual payroll in sector sector other sectors

establishments for (1) (2) (3) (4)

∆ ln(solar capacity) 0.0357∗∗∗ 0.0505∗∗∗∗ 0.0560∗∗∗∗ 0.0235
(0.0121) (0.0153) (0.0071) (0.0178)

∆ ln(wind capacity) -0.0134 0.0115 0.0186 -0.0297
(0.0272) (0.0215) (0.0120) (0.0296)

Notes: Number of observations = 10,094. Robust standard errors clustered at the state level in parenthesis. ∗, ∗∗,
∗∗∗, and ∗∗∗∗ indicate statistical significance at 10, 5, 1, and 0.1 percent levels, respectively. All regressions repeat the
baseline as in Table 1 columns 1 on alternative outcome variables.
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Table A.5: Changes in Population Composition

Dep. var.:
∆ ln population (1) (2) (3) (4) (5) (6)

A. Effects by Age
All workers 16–35 36–50 51–64

∆ ln(solar cap.) 0.0120∗∗ 0.0161∗∗ 0.0219∗∗∗∗ -0.0095∗

(0.0049) (0.0074) (0.0043) (0.0048)

∆ ln(wind cap.) 0.0162∗ 0.0243∗ 0.0130 0.0043
(0.0095) (0.0141) (0.0106) (0.0082)

B. Effects by Educational Attainment

All workers Less than High school Some College Post-grad
high school degree college degree degree

∆ ln(solar cap.) 0.0120∗∗ 0.0642∗∗∗∗ -0.0058 0.0229∗∗∗ -0.0025 0.0009
(0.0049) (0.0149) (0.0051) (0.0070) (0.0042) (0.0057)

∆ ln(wind cap.) 0.0162∗ 0.0551∗ 0.0078 -0.0196∗ 0.0064 0.0289∗∗

(0.0095) (0.0286) (0.0095) (0.0100) (0.0092) (0.0127)

C. Effects by Race

All workers Non-hispanic
white

Hispanic
white

Black Asian

∆ ln(solar cap.) 0.0120∗∗ 0.0062 0.0123 0.0155 0.0374∗∗∗∗

(0.0049) (0.0045) (0.0172) (0.0181) (0.0068)

∆ ln(wind cap.) 0.0162∗ 0.0234∗∗ -0.0222 -0.0369 -0.0004
(0.0095) (0.0108) (0.0365) (0.0431) (0.0195)

D. Effects by Gender

All workers Male Female

∆ ln(solar cap.) 0.0120∗∗ 0.0166∗∗∗∗ 0.0066
(0.0049) (0.0045) (0.0053)

∆ ln(wind cap.) 0.0162∗ 0.0177∗ 0.0143
(0.0095) (0.0090) (0.0105)

Notes: Number of observations = 10,094. Robust standard errors clustered at the state level in parenthesis. ∗, ∗∗,
∗∗∗, and ∗∗∗∗ indicate statistical significance at 10, 5, 1, and 0.1 percent levels, respectively. All regressions repeat the
baseline as in Table 2 column 2 using the outcome on various sub-populations.
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Table A.6: Distributional Effects by Gender and Educational Attainment

Panel A. Dependent variable: ∆ ln employment

(1) (2) (3) (4) (5) (6)

A.1 For male All male Less than High school Some College Post-grad
workers high school degree college degree degree

∆ ln(solar cap.) 0.0318∗∗∗∗ 0.1130∗∗∗∗ 0.0101∗∗∗ 0.0078 0.0139∗∗∗∗ 0.0330∗∗∗

(0.0032) (0.0167) (0.0029) (0.0083) (0.0038) (0.0092)

∆ ln(wind cap.) 0.0157∗∗ 0.0585∗∗ 0.0072 -0.0301∗∗ 0.0076 0.0368∗∗

(0.0073) (0.0273) (0.0063) (0.0138) (0.0113) (0.0162)

A.2 For female All female Less than High school Some College Post-grad
workers high school degree college degree degree

∆ ln(solar cap.) 0.0249∗∗∗∗ 0.1181∗∗∗∗ -0.0012 0.0278∗∗∗∗ -0.0009 0.0116∗∗

(0.0029) (0.0122) (0.0037) (0.0064) (0.0044) (0.0054)

∆ ln(wind cap.) 0.0111∗ 0.0574 0.0051 -0.0143 0.0005 0.0180
(0.0061) (0.0328) (0.0085) (0.0119) (0.0088) (0.0137)

Panel B. Dependent variable: ∆ ln weekly wage

(1) (2) (3) (4) (5) (6)

B.1 For male All male Less than High school Some College Post-grad
workers high school degree college degree degree

∆ ln(solar cap.) 0.0304∗∗∗∗ 0.0652∗∗∗∗ 0.0198∗∗∗ 0.0477∗∗∗∗ 0.0344∗∗∗∗ 0.0503∗∗∗∗

(0.0055) (0.0099) (0.0065) (0.0060) (0.0090) (0.0078)

∆ ln(wind cap.) -0.0059 0.0234 0.0043 -0.0076 -0.0143 0.0034
(0.0096) (0.0351) (0.0118) (0.0124) (0.0174) (0.0123)

B.2 For female All female Less than High school Some College Post-grad
workers high school degree college degree degree

∆ ln(solar cap.) 0.0159∗∗∗∗ 0.0911∗∗∗∗ -0.0020 0.0021 0.0186∗∗∗ 0.0066
(0.0033) (0.0174) (0.0059) (0.0086) (0.0069) (0.0069)

∆ ln(wind cap.) 0.0069 0.0453 0.0020 0.0066 0.0119 0.0081
(0.0054) (0.0432) (0.0067) (0.0104) (0.0105) (0.0115)

Notes: Number of observations = 10,094. Robust standard errors clustered at the state level in parenthesis. ∗, ∗∗,
∗∗∗, and ∗∗∗∗ indicate statistical significance at 10, 5, 1, and 0.1 percent levels, respectively. All regressions repeat the
baseline as in Table 4 column 2 using the outcome on various sub-populations.
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Table A.7: Effects of Renewable Generation

Panel A. Effect on extensive margins of work

Dependent variable: ∆ ln(Employment) ∆ ln(Labor force ∆ ln(Population)
participation)

(1) (2) (3)

∆ ln(solar net generation) 0.0168∗∗∗ 0.0159∗∗∗ 0.0013
(0.0053) (0.0056) (0.0055)

∆ ln(wind net generation) 0.0088 0.0087 0.0203
(0.0114) (0.0116) (0.0141)

Number of observation 10,094 10,094 10,094

Panel B. Effect on other margins of work

Dependent variable: ∆ ln wage ∆ ln wage ∆ ln wage ∆ ln weeks ∆ ln hours
annually weekly hourly worked worked

per year per week

(1) (2) (3) (4) (5)

∆ ln(solar net generation) 0.0120∗∗ 0.0160∗∗ 0.0219∗∗ -0.0007 0.0015∗

(0.0047) (0.0071) (0.0089) (0.0026) (0.0007)

∆ ln(wind net generation) -0.0092 -0.0093 -0.0243 -0.0021 0.0003
(0.0085) (0.0128) (0.0191) (0.063) (0.0016)

Number of observation 10,094 10,094 10,094 10,094 10,094

Notes: Robust standard errors clustered at the state level in parenthesis. ∗, ∗∗, ∗∗∗, and ∗∗∗∗ indicate statistical
significance at 10, 5, 1, and 0.1 percent levels, respectively. Panel A repeats Table 1 and Panel B repeats Table 2 with
different endogenous variables, net generation, while keeping the same fixed effects and sets of controls, except we
include dummy variables that represent whether the lagged solar or wind net generation in a CZ was non-positive
(instead of zero as net generation can be negative).
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Table A.8: Additional Temporal Shifters for the IVs Using Coal Phase-out

Dependent variable: ∆ ln employment ∆ ln weekly wage

base 3 temporal
shifters

base 3 temporal
shifters

(1a) (1b) (2a) (2b)

∆ ln(solar capacity) 0.0287∗∗∗∗ 0.0295∗∗∗∗ 0.0255∗∗∗∗ 0.0230∗∗∗∗

(0.0031) (0.0044) (0.0038) (0.0041)

∆ ln(wind capacity) 0.0138∗∗ 0.0168∗∗ -0.0011 -0.0001
(0.0066) (0.0066) (0.0076) (0.0067)

Number of observation 10,094 10,094 10,094 10,094
Sargan over-id. p-value 1.00 1.00 1.00 1.00

Notes: Number of observations = 10,094. Robust standard errors clustered at the state level in parenthesis. ∗, ∗∗, ∗∗∗,
and ∗∗∗∗ indicate statistical significance at 10, 5, 1, and 0.1 percent levels, respectively. Columns 1a and 2a repeat the
baseline as in Tables 1 and 2. In columns 1b and 2b, we include the average vintage of coal-fired units at the NERC
subregions as an additional temporal shifter (making a total of 6 IVs).
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Table A.9: Alternative Time Intervals for the First-Difference Estimator

Panel A. Dependent variable: ∆ ln employment

Time interval: Every Every Every Every Every
year 2 years 3 years 5 years 7 years

(base)
(1) (2) (3) (4) (5)

∆ ln(solar capacity) 0.0287∗∗∗∗ 0.0272∗∗∗∗ 0.0268∗∗∗∗ 0.0251∗∗∗∗ 0.0355∗∗∗∗

(0.0031) (0.0025) (0.0027) (0.0035) (0.0044)

∆ ln(wind capacity) 0.0138∗∗ 0.0138∗∗ 0.0163∗∗ 0.0174∗∗ 0.0218∗∗

(0.0066) (0.0063) (0.0077) (0.0080) (0.0082)

Number of obs. 10,094 5,047 3,605 2,163 1,442

Panel B. Dependent variable: ∆ ln weekly wage

Time interval: Every Every Every Every Every
year 2 years 3 years 5 years 7 years

(base)
(1) (2) (3) (4) (5)

∆ ln(solar capacity) 0.0246∗∗∗∗ 0.0226∗∗∗∗ 0.0239∗∗∗∗ 0.0179∗∗∗∗ 0.0214∗∗∗

(0.0044) (0.0036) (0.0043) (0.0045) (0.0065)

∆ ln(wind capacity) -0.0004 0.0024 0.0056 0.0067 0.0095
(0.0073) (0.0076) (0.0096) (0.0100) (0.0100)

Number of obs. 10,094 5,047 3,605 2,163 1,442

Notes: Robust standard errors clustered at the state level in parenthesis. ∗, ∗∗, ∗∗∗, and ∗∗∗∗ indicate statistical
significance at 10, 5, 1, and 0.1 percent levels, respectively. Panel A repeats Table 1 column 1, and Panel B repeats
Table 2 column 2 on alternative samples. In column 2, we take the first difference over sample years 2005, 2007,
2009, 2011, 2013, 2015, 2017, and 2019. In column 3, we take the first difference over sample years 2005, 2008, 2011,
2014, 2017, and 2019. In column 4, we take the first difference over sample years 2005, 2010, 2015, and 2019. In
column 5, we take the long first difference over sample years 2005, 2012, and 2019.
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