Motivation	Data and empirical strategy	Main results	Distributional effects	Additional results	Conclusions
0000	000	000000		O	00

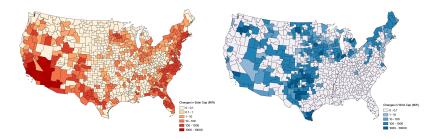
Charged Up: Impacts of Green Energy Transition on Local Labor Markets

H. Ron Chan¹ Yichen Christy Zhou²

¹The University of Manchester ²Clemson University

14th Toulouse Conference on the Economics of Energy and Climate June 7 2024

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ ��


Motivation Data and empirical strategy Main results Distributional effects Additional results Conclusions •ooo ooo oo oo oo oo oo Research area: Energy transition and local labor market

- The shift from fossil fuel to renewable energy will undoubtedly lead to labor market re-organization
- The sectoral shift and geographical redistribution of economic opportunities will have implications on workers' welfare
- How are local workers affected? What might have been the potential explaining factors? What about distributional consequences?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ のへで

Does the grow in renewable energy lead to a local agglomeration effect? What are the obstacles that hinders the job transition?

Motivation	Data and empirical strategy	Main results	Distributional effects	Additional results	Conclusions
O●OO	000	000000	00	O	00
This pap	per				

- We study the effect of utility-scale solar and wind expansion on the US local labor markets from 2005 to 2019
- We study (i) temporal dynamics, (ii) local spillover, (iii) sectoral differences in order to gain some insights on the mechanism
- We conduct a comprehensive distributional analysis across workers

Motivation	Data and empirical strategy	Main results	Distributional effects	Additional results	Conclusions
00●0	000	000000	OO	O	00

Our focus: Workers in the Local Economy

We look at:

- employment & other extensive margins (e.g., labor participation, population)
- wages & intensive margins (e.g., weeks/hours worked)
- sectoral & other distributional effects (e.g., by demographics), government transfer payments, local business, and other outcomes

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ のへで

Motivation	Data and empirical strategy	Main results	Distributional effects	Additional results	Conclusions
000●	000	000000	00	O	00
Findings	in our paper				

We study the effect of solar and wind expansion on the US local labor markets from 2005 to 2019

- We find solar and wind increase employment in the area, and induce in-migration
- Solar power also increases wages

We study (i) temporal dynamics, (ii) local spillover, (iii) sectoral differences in order to gain some insights on the mechanism

- Initial capacity investment leads to positive gains five years later
- Limited spatial spillover
- Growth in manufacturing jobs and number of establishments

We conduct a comprehensive distributional analysis across workers

Positive impact is concentrated among younger, lower-educated, non-Hispanic white workers

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

Motivation	Data and empirical strategy	Main results	Distributional effects	Additional results	Conclusions
000●	000	000000	00	O	00
Findings	in our paper				

- We study the effect of solar and wind expansion on the US local labor markets from 2005 to 2019
 - We find solar and wind increase employment in the area, and induce in-migration
 - Solar power also increases wages
- We study (i) temporal dynamics, (ii) local spillover, (iii) sectoral differences in order to gain some insights on the mechanism
 - Initial capacity investment leads to positive gains five years later
 - Limited spatial spillover
 - Growth in manufacturing jobs and number of establishments

We conduct a comprehensive distributional analysis across workers

Positive impact is concentrated among younger, lower-educated, non-Hispanic white workers

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

Motivation	Data and empirical strategy	Main results	Distributional effects	Additional results	Conclusions
000●	000	000000	00	O	00
Findings	in our paper				

- We study the effect of solar and wind expansion on the US local labor markets from 2005 to 2019
 - We find solar and wind increase employment in the area, and induce in-migration
 - Solar power also increases wages
- We study (i) temporal dynamics, (ii) local spillover, (iii) sectoral differences in order to gain some insights on the mechanism
 - Initial capacity investment leads to positive gains five years later
 - Limited spatial spillover
 - Growth in manufacturing jobs and number of establishments

We conduct a comprehensive distributional analysis across workers

Positive impact is concentrated among younger, lower-educated, non-Hispanic white workers

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 </p

Motivation	Data and empirical strategy	Main results	Distributional effects	Additional results	Conclusions
000●	000	000000	00	O	00
Findings	in our paper				

- We study the effect of solar and wind expansion on the US local labor markets from 2005 to 2019
 - We find solar and wind increase employment in the area, and induce in-migration
 - Solar power also increases wages
- We study (i) temporal dynamics, (ii) local spillover, (iii) sectoral differences in order to gain some insights on the mechanism
 - Initial capacity investment leads to positive gains five years later
 - Limited spatial spillover
 - Growth in manufacturing jobs and number of establishments
- We conduct a comprehensive distributional analysis across workers
 - Positive impact is concentrated among younger, lower-educated, non-Hispanic white workers

For a commuting zone (CZ) i in a year t, we estimate:

 $\Delta Y_{it} = \alpha_t + \beta_s \Delta R E_{it}^{solar} + \beta_w \Delta R E_{it}^{wind} + \mathbf{X}'_{it} \delta + \phi_s + \phi_t + \phi_s \cdot t + \varepsilon_{it}$ (1)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ のへで

- Y log employment, labor force participation, wage, …
- RE log solar and wind capacity
- **X** controls: log population $_{t-1}$, log coal capacity retirement
- Baseline FD: stacked 1-year first-difference (FD)
- Standard errors clustered at state level

Motivation 0000	Data and empirical strategy ○●○	Main results 000000	Distributional effects 00	Additional results O	Conclusions 00
	al specification				

- Identification challenge: shocks in the local labor market may correlate with the propensity of renewable investment in a location
- Need to find an instrument that captures potential benefit of installing renewable energy in a particular CZ
- Our solutions: combining cross-sectional renewable potentials with temporal policy shifters
- Renewable potentials are solar irradiance and (cubic) wind speed that are highly correlated with generation capacity

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 Temporal shifters: Renewable portfolio standards (RPS) and production tax credits (PTC)

Solar potential

Wind potential

Motivation	Data and empirical strategy	Main results	Distributional effects	Additional results	Conclusions
0000	○○●	000000	00	O	00
Data sou	urces				

- Main specifications:
 - Employment and wage: aggregated from ACS microdata
 - Solar and wind capacity: EIA-860
 - Solar and wind potential: aggregated from grid-level solar GHI and average wind speed³ from NREL
 - Renewable portfolio standard: the Berkeley Lab + DSIRE
 - Production tax credits: DOE
- Additional results:
 - Occupation code: Occupational Information Network (O*NET) database from US Department of Labor
 - Sectoral business establishment: County Business Patterns (CBP) database from US Census
 - Government transfer receipt payment: Regional Economic Accounts from the US Bureau of Economic Analysis (BEA)

Motivation	Data and empirical strategy	Main results	Distributional effects	Additional results	Conclusions
0000	000	●00000	00	O	00
Results Employme	nt and migration				

Dependent variable:	Δ In employment	Δ In labor force participation	Δ In population	Δ In new-resident population
	(1)	(2)	(3)	(4)
$\Delta \ln (ext{solar capacity})$	0.0287**** (0.0031)	0.0277**** (0.0028)	0.0120** (0.0049)	0.0349**** (0.0081)
$\Delta \ln ({\sf wind \ capacity})$	0.0138 ^{**} (0.0066)	0.0134** (0.0066)	0.0162* (0.0095)	0.0118 (0.0128)
$ln(population)_{t-1}$ $ln(coal capacity retirement)_t$ Number of observations	X X 10,094	X X 10,094	X 10,094	X 10,094

First stage

a 10% increase in solar capacity in 2019 (around 12 MW) will lead increase employment by 1,143 (0.3%), population by 511 (0.1%), and new resident population by 224 (0.4%)

▲□▶▲□▶▲≡▶▲≡▶ Ξ|= めぬ⊙

Motivation	Data and empirical strategy	Main results	Distributional effects	Additional results	Conclusions
0000	000	●00000	00	O	00
Results Employmer	nt and migration				

Dependent variable:	Δ In employment	Δ In labor force participation	Δ In population	Δ In new-resident population
	(1)	(2)	(3)	(4)
$\Delta \ln (ext{solar capacity})$	0.0287**** (0.0031)	0.0277**** (0.0028)	0.0120** (0.0049)	0.0349**** (0.0081)
$\Delta \ln (wind capacity)$	0.0138 ^{**} (0.0066)	0.0134** (0.0066)	0.0162* (0.0095)	0.0118 (0.0128)
In (population) _{t-1} In (coal capacity retirement) _t Number of observations	X X 10,094	X X 10,094	X 10,094	X 10,094

▶ First stage

a 10% increase in wind capacity in 2019 (around 41 MW) will lead increase employment by 369 (0.1%) and population by 464 (0.2%)

▲□▶▲□▶▲≡▶▲≡▶ Ξ|= めぬ⊙

Motivation	Data and empirical strategy	Main results	Distributional effects	Additional results	Conclusions
0000	000	0●0000	00	O	00
Results ^{Wages} and	hours worked				

Dependent variable:	$\Delta \ln$ wage annually	∆In wage weekly	$\Delta \ln$ wage hourly	∆ In weeks worked per year	∆ In hours worked per week
	(1)	(2)	(3)	(4)	(5)
$\Delta \ln ({ m solar \ capacity})$	0.0150**** (0.0037)	0.0246**** (0.0044)	0.0291**** (0.0065)	-0.0156**** (0.0019)	0.0008* (0.0004)
$\Delta \ln({\sf wind \ capacity})$	-0.0013 (0.0051)	-0.0004 (0.0073)	-0.0091 (0.0105)	0.0012 (0.0030)	0.0013 (0.0012)
Number of observations	10,094	10,094	10,094	10,094	10,094

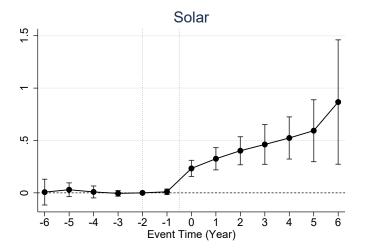
<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Motivation	Data and empirical strategy	Main results	Distributional effects	Additional results	Conclusions
0000	000	0●0000	00	O	00
Results ^{Wages} and	hours worked				

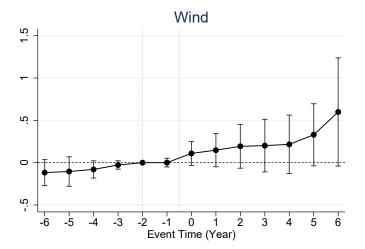
Dependent variable:	Δ In wage annually	$\Delta \ln$ wage weekly	$\Delta \ln$ wage hourly	∆ In weeks worked per year	∆ In hours worked per week
	(1)	(2)	(3)	(4)	(5)
$\Delta \ln (\text{solar capacity})$	0.0150**** (0.0037)	0.0246**** (0.0044)	0.0291**** (0.0065)	-0.0156**** (0.0019)	0.0008* (0.0004)
$\Delta \ln(wind capacity)$	-0.0013 (0.0051)	-0.0004 (0.0073)	-0.0091 (0.0105)	0.0012 (0.0030)	0.0013 (0.0012)
Number of observations	10,094	10,094	10,094	10,094	10,094

 a 10% increase in solar capacity in 2019 leads to a \$1.9 increase in weekly wage (0.3%) and a \$50.6 increase in annual wage (0.2%) (in 2005 USD)

Motivation	Data and empirical strategy	Main results	Distributional effects	Additional results	Conclusions
0000	000	00●000	00	O	00
Results _{Evaluating}	temporal effects using l	LP-DiD			


▶ We estimate the equation below based on our main specification:

$$\Delta Y_{it,t+h} = \gamma_{s,h} \Delta D_{it}^{solar} + \gamma_{w,h} \Delta D_{it}^{wind} + \mathbf{X}'_{it} \delta + \phi_t + \phi_s + \phi_s \cdot t + \varepsilon_{it} \quad (1)$$


where $h \in [-6, 6]$ is the event time, i.e., the number of years before or after the year when a CZ experiences its initial expansion in solar or wind energy.

- Following the base specification in Dube et al. (2023):
 - set the variable interest D_{it} being the dummy variable indicates whether a CZ i has ever experienced any wind/solar investment
 - set a clean control condition (separately for each wind and solar)
 - includes the same set of controls, fixed effects, and instruments
- We normalize to two years before the first capacity increase to consider the construction stage as discussed in past studies

Motivation 0000	Data and empirical strategy 000	Main results 000●00	Distributional effects OO	Additional results O	Conclusions 00
Results					
Temporal	effects on employment				

Motivation 0000	Data and empirical strategy 000	Main results 0000●0	Distributional effects 00	Additional results O	Conclusions 00
Results					
Temporal	effects on employment				

Motivation 0000	Data and empirical strategy 000	Main results 00000●	Distributional effects 00	Additional results O	Conclusions 00
Results Sectoral imp	acts				

Dep. var: $\Delta \ln$ employment

	All	Manufacturing	Service	Other	Public
	(1)	(2)	(3)	(4)	(5)
$\Delta \ln (ext{solar capacity})$	0.0287****	0.0745****	0.0228****	0.0210****	-0.0190***
	(0.0031)	(0.0086)	(0.0030)	(0.0040)	(0.0068)
$\Delta \ln ({\sf wind \ capacity})$	0.0138**	0.0180	0.0166**	0.0075	-0.0166
	(0.0066)	(0.0150)	(0.0071)	(0.0059)	(0.0151)
	Utility (4a)	Construction (4b)	Wholesale (4c)	Transport (4d)	
		()	(10)	()	
$\Delta \ln(ext{solar capacity})$	-0.0081 (0.0158)	0.0480**** (0.0102)	0.0109*** (0.0036)	0.0234*** (0.0071)	

Motivation 0000	Data and empirical strategy 000	Main results 00000●	Distributional effects 00	Additional results O	Conclusions 00
Results Sectoral imp	acts				

Dep. var: $\Delta \ln$ employment

	All	Manufacturing	Service	Other	Public
	(1)	(2)	(3)	(4)	(5)
$\Delta \ln(ext{solar capacity})$	0.0287****	0.0745****	0.0228****	0.0210****	-0.0190***
	(0.0031)	(0.0086)	(0.0030)	(0.0040)	(0.0068)
$\Delta \ln(wind capacity)$	0.0138**	0.0180	0.0166**	0.0075	-0.0166
	(0.0066)	(0.0150)	(0.0071)	(0.0059)	(0.0151)
	Utility (4a)	Construction (4b)	Wholesale (4c)	Transport (4d)	
$\Delta \ln ({ m solar capacity})$	2				

Employment gain due to solar also happens in other sectors such as manufacturing and service sectors, in addition to construction

Motivation	Data and empirical strategy	Main results	Distributional effects	Additional results	Conclusions
0000	000	000000		O	00

Distributional effects

Employment effects by age and educational attainment

Dep. var.: ∆ In employment	(1)	(2)	(3)	(4)	(5)	(6)		
A. Effects by Age								
	All workers	16-35	36–50	51-64				
$\Delta \ln(\text{solar cap.})$	0.0287**** (0.0031)	0.0377**** (0.0058)	0.0358**** (0.0038)	0.0061** (0.0026)				
$\Delta \ln (wind cap.)$	0.0138** (0.0066)	0.0230** (0.0113)	0.0106 (0.0086)	0.0012 (0.0062)				

B. Effects by Educational Attainment

	All workers	Less than high school	High school degree	Some college	College degree	Post-grad degree
$\Delta \ln(\text{solar cap.})$	0.0287****	0.1159****	0.0049	0.0179***	0.0064*	0.0184***
	(0.0031)	(0.0149)	(0.0031)	(0.0063)	(0.0036)	(0.0052)
$\Delta \ln (\text{wind cap.})$	0.0138**	0.0584*	0.0063	-0.0224**	0.0046	0.0260**
	(0.0066)	(0.0292)	(0.0066)	(0.0104)	(0.0086)	(0.0120)

Motivation	Data and empirical strategy	Main results	Distributional effects	Additional results	Conclusions
0000	000	000000	●O	O	00

Distributional effects

Employment effects by age and educational attainment

Dep. var.: ∆ In employment	(1)	(2)	(3)	(4)	(5)	(6)
A. Effects by Age						
	All workers	16-35	36–50	51-64		
$\Delta \ln(\text{solar cap.})$	0.0287**** (0.0031)	0.0377**** (0.0058)	0.0358**** (0.0038)	0.0061 ^{**} (0.0026)		
$\Delta \ln (\text{wind cap.})$	0.0138** (0.0066)	0.0230** (0.0113)	0.0106 (0.0086)	0.0012 (0.0062)		

B. Effects by Educational Attainment

	All workers	Less than high school	High school degree	Some college	College degree	Post-grad degree
$\Delta \ln(\text{solar cap.})$	0.0287****	0.1159****	0.0049	0.0179***	0.0064*	0.0184***
	(0.0031)	(0.0149)	(0.0031)	(0.0063)	(0.0036)	(0.0052)
$\Delta \ln (\text{wind cap.})$	0.0138**	0.0584*	0.0063	-0.0224**	0.0046	0.0260**
	(0.0066)	(0.0292)	(0.0066)	(0.0104)	(0.0086)	(0.0120)

Motivation 0000	Data and emp 000	irical strategy	Main results 000000	Distributional ef O●	fects	Additional resul O		Conclusions 00
	butional eff		ender					
	Dep. var.: ∆ In employment	(1)	(2)	(3)	(4)	(5)	(6)	_
	C. Effects by Race	2						-
		All workers	Non-hisp. white	Hispanic white	Black	Asian		
	$\Delta \ln(ext{solar cap.})$	0.0287**** (0.0031)	0.0164**** (0.0035)	-0.0180 (0.0150)	-0.0408** (0.0190)	0.0121 (0.0112)		
	$\Delta \ln (wind cap.)$	0.0138** (0.0066)	0.0222** (0.0095)	-0.0224 (0.0331)	-0.0249 (0.0369)	-0.0008 (0.0206)		
	D. Effects by Gene	der						-
		All workers	Male	Female				
	$\Delta \ln(\text{solar cap.})$	0.0287**** (0.0031)	0.0318**** (0.0032)	0.0249**** (0.0029)				
	$\Delta \ln (\text{wind cap.})$	0.0138** (0.0066)	0.0157 ^{**} (0.0073)	0.0111* (0.0061)				

Motivation 0000	Data and emp 000	irical strategy	Main results 000000	Distributional ef O●	fects	Additional result O		Conclusions 00
Distri	butional eff	ects						
Employ	ment effects by	race and g	ender					
								_
	Dep. var.: ∆ In employment	(1)	(2)	(3)	(4)	(5)	(6)	
	C. Effects by Race	2						_
		All workers	Non-hisp. white	Hispanic white	Black	Asian		
	$\Delta \ln(ext{solar cap.})$	0.0287**** (0.0031)	0.0164**** (0.0035)	-0.0180 (0.0150)	-0.0408** (0.0190)	0.0121 (0.0112)		
	$\Delta \ln (wind cap.)$	0.0138** (0.0066)	0.0222** (0.0095)	-0.0224 (0.0331)	-0.0249 (0.0369)	-0.0008 (0.0206)		
	D. Effects by Gen	der						_
		All workers	Male	Female				
	$\Delta \ln(ext{solar cap.})$	0.0287**** (0.0031)	0.0318**** (0.0032)	0.0249**** (0.0029)				
	$\Delta \ln (\text{wind cap.})$	0.0138**	0.0157**	0.0111*				

(0.0061)

(0.0066) (0.0073)

Motivation	Data and empirical strategy	Main results	Distributional effects	Additional results	Conclusions
0000	000	000000	00		00
Addition	al results and rol	oustness			

- Heterogeneity by green occupations: solar leads to increase in green jobs while wind leads to an increase of brown jobs
- We find a reduction in government transfers such as income benefits and food stamps
- Robustness:
 - Similar but smaller effect from solar and wind power generation
 Details
 - Robust to including coal retirement as an additional IV shifter
 Details

▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨヨ のへで

- Robust to Conley spacial SE and HAC SE
- Similar results for longer differences

Motivation	Data and empirical strategy	Main results	Distributional effects	Additional results	Conclusions
0000	000	000000	00	O	
Discussio	ons				

- So far, we find that an increase in renewable energy in the commuting zone leads to
 - higher employment and wage
 - increase in employment in multiple sectors
 - increase in number of manufacturing establishments
 - Iower benefit transfer payments to individuals
- Suggestive evidence that the local economy grows as a result of the green investment
- Our results also suggest there is a multiplier and agglomeration effect from renewable energy installation
 - Similar to earlier evidence found in oil and gas markets in the US (Feyrer et al., 2017; Allcott and Keniston, 2018)

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 </p

Motivation	Data and empirical strategy	Main results	Distributional effects	Additional results	Conclusions
0000	000	000000	00	O	O
Summary	and future direc	ctions			

- We study the impact of renewable energy expansion in the US on local labor markets
- We find positive effects in employment and wage evidence of growing regional economies (e.g., employment in mfg., business establishment, welfare transfer, etc.) and the effects are not short-lived
- Gains in employment and wages are concentrated in the relatively young, less-educated/lower-skilled, and white workers
- Future directions:
 - How large is the local agglomeration effect, relative to the fossil fuel retirements?
 - Can governments design any place-based policies to improve equity and efficiency?
 - Do these positive effects lead to a change in preference or attitude towards renewable energy?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ のへで

- Allcott, H. and Keniston, D. (2018). Dutch Disease or Agglomeration? The Local Economic Effects of Natural Resource Booms in Modern America. *The Review of Economic Studies*, 85(2):695–731.
- Dube, A., Girardi, D., Jordá, O., and Taylor, A. M. (2023). A local projections approach to difference-in-differences event studies. Working Paper 31184, National Bureau of Economic Research.
- Feyrer, J., Mansur, E., and Sacerdote, B. (2017). Geographic dispersion of economic shocks: Evidence from the fracking revolution. American Economic Review, 107(4):1313–1334.
- Popp, D., Vona, F., Marin, G., and Chen, Z. (2021). The employment impact of green fiscal push: Evidence from the American Recovery Act. Brookings Papers on Economic Activity, Fall 2021:1–49.
- Vona, F. (2021). Labour markets and the green transition: A practitioner's guide to the task-based approach. In Biagi, F. and Bitat, A., editors, Labour Markets and the Green Transition: A practitioner's guide to the task-based approach. Publications Office of the European Union, Luxembourg. JRC126681.
- Vona, F., Marin, G., Consoli, D., and Popp, D. (2018). Environmental regulation and green skills: An empirical exploration. Journal of the Association of Environmental and Resource Economists, 5(4):713–753.

Solar potential by CZ

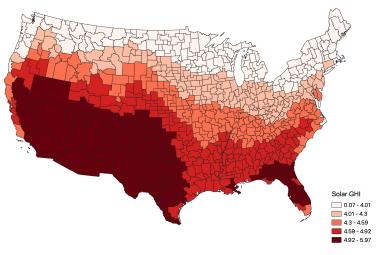


Figure: Solar Global Horizontal Irradiance (GHI)

Wind potential by CZ

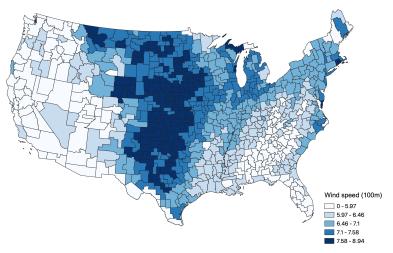


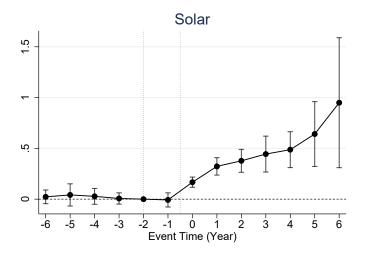
Figure: 120-meter Wind Speed

Summary statistics Annual Changes in Key Variables

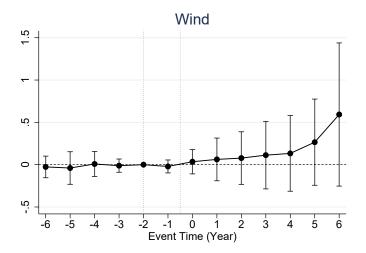
Variable name:	Mean	St. Dev.	Variable name:	Mean	St. Dev.		
A.1 Outcome variables			A.2 Variables of interest				
$\Delta \ln (employment)$	0.002	0.044	$\Delta \ln(\text{solar capacity})$	0.092	0.435		
$\Delta \ln(\text{labor force part.})$	0.001	0.040	$\Delta \ln (wind capacity)$	0.099	0.609		
$\Delta \ln (population)$	-0.002	0.037	$\Delta \ln (\text{solar net gen.})$	0.101	0.586		
$\Delta \ln (ext{annual wage})$	0.009	0.058	$\Delta \ln (\text{wind net gen.})$	0.120	0.690		
$\Delta \ln (ext{weekly wage})$	0.008	1.403					
$\Delta \ln (ext{hourly wage})$	0.011	1.378					
$\Delta \ln$ (weeks worked/year)	-0.001	0.019					
$\Delta \ln(hours worked/week)$	0.004	1.220					
Number of observations					10,094		

Summary statistics Cumulative Changes in Renewable Energy in a CZ

Variable name:	Mean	St. Dev.	Variable name:	Mean	St. Dev.
B.1 Solar			B.2 Wind		
Capacity (MW) in 2005	0.6	14.9	Capacity (MW) in 2005	12.0	61.9
Capacity (MW) in 2019	51.8	253.7	Capacity (MW) in 2019	144.0	375.0
$\Delta \ln (ext{capacity})_{2019-2005}$	1.29	1.93	$\Delta \ln (ext{capacity})_{2019-2005}$	1.39	2.31
Net gen. (GWh) in 2005	0.8	19.9	Net gen. (GWh) in 2005	24.5	136.2
Net gen. (GWh) in 2019	99.3	561.4	Net gen. (GWh) in 2019	409.1	1,053.7
$\Delta \ln (\text{net gen})_{2019-2005}$	1.42	2.15	$\Delta \ln (\text{net gen})_{2019-2005}$	1.68	2.74



First Stage


Dependent variable:	$\Delta \ln$ (solar capacity) (1)	$\Delta \ln$ (wind capacity) (2)	
State-level RPS Obligation (TWh) $ imes$ CZ Area $ imes$ Solar GHI	0.0712** (0.0268)	0.0230 (0.0270)	
State-level RPS Obligation (TWh) \times CZ Area $\times~120\text{-meter}$ wind speed^3	-0.0022**** (0.0005)	-0.0005 (0.0007)	
PTC (Dollar-per-MWh) $ imes$ CZ Area $ imes$ Solar GHI	-0.0460 (0.0593)	-0.1894*** (0.0546)	
PTC (Dollar-per-MWh) \times CZ Area \times 120-meter wind speed 3	0.0008 (0.0008)	0.0045** (0.0012)	
Number of observation R-squared Joint-sig. Wald-stat (IVs) Joint-sig. Wald-stat p-value (IVs)	10,094 0.13 77.5 0.000	10,094 0.08 12.0 0.000	

Results Temporal effects on employment

Results Temporal effects on employment

Results Sectoral impacts

A I I .

Dep. var: $\Delta \ln busi$	ness establist	nments		
	All	Manufacturing	Service	Other
	(1)	(2)	(3)	(4)
$\Delta \ln(ext{solar capacity})$	0.0025	0.0372****	-0.0037	-0.0016
	(0.0020)	(0.0067)	(0.0028)	(0.0024)
$\Delta \ln ({\sf wind \ capacity})$	0.0076*	0.0166	0.0058	0.0051
	(0.0040)	(0.0133)	(0.0041)	(0.0042)
	Utility	Construction	Wholesale	Transport
	(4a)	(4b)	(4c)	(4d)
$\Delta \ln(ext{solar capacity})$	0.0971****	0.0035	-0.0103****	0.0108
	(0.0193)	(0.0051)	(0.0024)	(0.0101)
$\Delta \ln (\text{wind capacity})$	0.0223	0.0058	0.0041	-0.0005
	(0.0219)	(0.0058)	(0.0047)	(0.0114)

.

Results Sectoral impacts

Dep. var: $\Delta \ln$ business establishments									
	All	Manufacturing	Service	Other					
	(1)	(2)	(3)	(4)					
$\Delta \ln (ext{solar capacity})$	0.0025	0.0372****	-0.0037	-0.0016					
	(0.0020)	(0.0067)	(0.0028)	(0.0024)					
$\Delta \ln ({\sf wind \ capacity})$	0.0076*	0.0166	0.0058	0.0051					
	(0.0040)	(0.0133)	(0.0041)	(0.0042)					
	Utility	Construction	Wholesale	Transport					
	(4a)	(4b)	(4c)	(4d)					
$\Delta \ln (ext{solar capacity})$	0.0971****	0.0035	-0.0103****	0.0108					
	(0.0193)	(0.0051)	(0.0024)	(0.0101)					
$\Delta \ln ({\sf wind \ capacity})$	0.0223	0.0058	0.0041	-0.0005					
	(0.0219)	(0.0058)	(0.0047)	(0.0114)					

Notes: Robust standard errors clustered at the state level in parenthesis. *, **, ***, and **** indicate statistical significance at 10, 5, 1, and 0.1 percent levels, respectively.

We also observe a growth in the number of manufacturing establishments

Wage effects by age and educational attainment

Dep. var.: $\Delta \ln (weekly wage)$	(1)	(2)	(3)	(4)	(5)	(6)
A. Effects by Age						
	All workers	16-35	36–50	51–64		
$\Delta \ln(\text{solar cap.})$	0.0246****	0.0407****	0.0216****	0.0197***		
	(0.0044)	(0.0060)	(0.0036)	(0.0057)		
$\Delta \ln(\text{wind cap.})$	-0.0004	0.0019	0.0032	-0.0007		
	(0.0073)	(0.0121)	(0.0084)	(0.0115)		

B. Effects by Educational Attainment

	All workers	Less than high school	High school degree	Some college	College degree	Post-grad degree
$\Delta \ln(\text{solar cap.})$	0.0246****	0.0722****	0.0119*	0.0260****	0.0300****	0.0292****
	(0.0044)	(0.0119)	(0.0062)	(0.0066)	(0.0075)	(0.0059)
$\Delta \ln (wind cap.)$	-0.0004	0.0300	0.0034	-0.0043	-0.0018	0.0034
	(0.0073)	(0.0361)	(0.0093)	(0.0097)	(0.0132)	(0.0098)

Notes: Robust standard errors clustered at the state level in parenthesis. *, **, ***, and **** indicate statistical significance at 10, 5, 1, and 0.1 percent levels, respectively.

Wage effects by race and gender

Dep. var.: $\Delta \ln$ (weekly wage)	(1)	(2)	(3)	(4)	(5)	(6)
C. Effects by Race						
	All workers	Non-hisp. white	Hispanic white	Black	Asian	
$\Delta \ln (\text{solar cap.})$	0.0246**** (0.0044)	0.0196**** (0.0038)	0.0420 ^{****} (0.0071)	-0.0019 (0.0116)	0.0244* (0.0135)	
$\Delta \ln (wind cap.)$	-0.0004 (0.0073)	-0.0020 (0.0066)	-0.0294* (0.0155)	0.0178 (0.0162)	0.0319 (0.0254)	
D. Effects by Gender	r					
	All workers	Male	Female			
$\Delta \ln ({ m solar \ cap.})$	0.0246**** (0.0044)	0.0304**** (0.0055)	0.0159**** (0.0033)			
$\Delta \ln (wind cap.)$	-0.0004 (0.0073)	-0.0059 (0.0096)	0.0069 (0.0054)			

Notes: Robust standard errors clustered at the state level in parenthesis. *, **, ***, and **** indicate statistical significance at 10, 5, 1, and 0.1 percent levels, respectively.

Employment effects by gender and educational attainment

	(1)	(2)	(3)	(4)	(5)	(6)
A.1 For male	All male	Less than	High school	Some	College	Post-grad
	workers	high school	degree	college	degree	degree
$\Delta \ln (\text{solar cap.})$	0.0318****	0.1130****	0.0101***	0.0078	0.0139****	0.0330***
	(0.0032)	(0.0167)	(0.0029)	(0.0083)	(0.0038)	(0.0092)
$\Delta \ln (\text{wind cap.})$	0.0157**	0.0585**	0.0072	-0.0301**	0.0076	0.0368**
	(0.0073)	(0.0273)	(0.0063)	(0.0138)	(0.0113)	(0.0162)
A.2 For female	All female	Less than	High school	Some	College	Post-grad
	workers	high school	degree	college	degree	degree
$\Delta \ln (\text{solar cap.})$	0.0249****	0.1181****	-0.0012	0.0278****	-0.0009	0.0116**
	(0.0029)	(0.0122)	(0.0037)	(0.0064)	(0.0044)	(0.0054)
$\Delta \ln (\text{wind cap.})$	0.0111*	0.0574	0.0051	-0.0143	0.0005	0.0180
	(0.0061)	(0.0328)	(0.0085)	(0.0119)	(0.0088)	(0.0137)

Back

Wage effects by gender and educational attainment

	(1)	(2)	(3)	(4)	(5)	(6)
B.1 For male	All male	Less than	High school	Some	College	Post-grad
	workers	high school	degree	college	degree	degree
$\Delta \ln (\text{solar cap.})$	0.0304****	0.0652****	0.0198***	0.0477****	0.0344****	0.0503****
	(0.0055)	(0.0099)	(0.0065)	(0.0060)	(0.0090)	(0.0078)
$\Delta \ln (\text{wind cap.})$	-0.0059	0.0234	0.0043	-0.0076	-0.0143	0.0034
	(0.0096)	(0.0351)	(0.0118)	(0.0124)	(0.0174)	(0.0123)
B.2 For female	All female	Less than	High school	Some	College	Post-grad
	workers	high school	degree	college	degree	degree
$\Delta \ln (\text{solar cap.})$	0.0159****	0.0911****	-0.0020	0.0021	0.0186***	0.0066
	(0.0033)	(0.0174)	(0.0059)	(0.0086)	(0.0069)	(0.0069)
$\Delta \ln (wind cap.)$	0.0069	0.0453	0.0020	0.0066	0.0119	0.0081
	(0.0054)	(0.0432)	(0.0067)	(0.0104)	(0.0105)	(0.0115)

Measuring occupation greenness

- Green jobs have been an interest of the US environmental and energy policy designs
 - Previous studies have documented growth in green jobs in response to stricter environmental policies and increased government investment in the green economy (e.g., Vona et al., 2018; Popp et al., 2021)
- We first identify "green tasks" for each occupation based on the textual description of each task provided by the O*NET database and define the "greenness" of an occupation based on the fraction of green tasks within that occupation (Vona et al., 2018; Vona, 2021)
- We then compute the minimum greenness of all 8-digit occupations within an ACS 6-digit occupation to link the occupation greenness to the ACS microdata
 - Caveat: underestimate the number of green jobs

Employment and wage effects by occupation greenness

All wo	If minimu occupati greenne = 0	$\begin{array}{llllllllllllllllllllllllllllllllllll$	occupation greenness > 0.1
(1) (2)	(3)	(4)

A. Dependent variable: $\Delta \ln$ employment

$\Delta \ln(\text{solar capacity})$	0.0287****	0.0263****	0.1246****	0.0333***
	(0.0031)	(0.0031)	(0.0097)	(0.0073)
$\Delta \ln ({\sf wind \ capacity})$	0.0138**	0.0154***	0.0249	-0.0109
	(0.0066)	(0.0066)	(0.0269)	(0.0103)

B. Dependent variable: $\Delta \ln$ weekly wage

$\Delta \ln(\text{solar capacity})$	0.0246****	0.0256****	-0.0133	0.0153
	(0.0044)	(0.0039)	(0.0120)	(0.0164)
	(0.0044)	(0.0039)	(0.0120)	(0.0104)
$\Delta \ln (\text{wind capacity})$	-0.0004	0.0026	0.0101	-0.0179
	(0.0073)	(0.0074)	(0.0158)	(0.0221)
Share of workers	· · /	93.2%	1.6%	5.1%

▲□▶▲□▶▲≡▶▲≡▶ Ξ|= めぬ⊙

Distributional effects

Employment effects by sector and occupation greenness

Dependent	variable:	$\Delta \ln employment$
-----------	-----------	-------------------------

		Manufacturing se	ctor	Other sectors (excl. service and gov't.)			
	All occp.:	Other occp.: min green $= 0$	Green occp.: min green > 0	All occp.:	Other occp.: min green $= 0$	Green occp.: min green > 0	
	(1a)	(1b)	(1c)	(2a)	(2b)	(2c)	
$\Delta \ln(\text{solar cap.})$	0.0745**** (0.0086)	0.0676**** (0.0081)	0.1177**** (0.0198)	0.0210**** (0.0040)	0.0201**** (0.0040)	0.0295*** (0.0089)	
$\Delta \ln (wind cap.)$	0.0180 (0.0150)	0.0162 (0.0136)	-0.0007 (0.0297)	0.0075 (0.0059)	0.0107* (0.0061)	-0.0136 (0.0106)	
Share of workers in a sector		87.6%	12.4%		89.4%	10.6%	

Notes: Robust standard errors clustered at the state level in parenthesis. *, **, ***, and **** indicate statistical significance at 10, 5, 1, and 0.1 percent levels, respectively.

Back

Additional results Government transfers

Dependent varial	ble: $\Delta \ln Government$	nt transfer per capita				
	1. Total	2.	Income mainte	nance benefits		
	Total transfer (1)	Income benefits (2)	SSI (2a)	SNAP (2b)	EITC (2c)	
$\Delta \ln(\text{solar cap.})$	-0.0172**** (0.0039)	-0.0471**** (0.0066)	-0.0145* (0.0077)	-0.0269*** (0.0080)	0.0115 (0.0070)	
$\Delta \ln (\text{wind cap.})$	-0.0026 (0.0098)	-0.0037 (0.0145)	0.0038 (0.0137)	-0.0134 (0.0151)	0.0059 (0.0085)	
	3	B. Medical benefits			4. Other program	s
	Total medical (3)	Medicare (3a)	Medicaid (3b)	UI (4a)	Social security (4b)	Education (4c)
$\Delta \ln (\text{solar cap.})$	-0.0126* (0.0071)	-0.0077 (0.0076)	-0.0186*** (0.0064)	-0.0110 (0.0317)	-0.0085** (0.0041)	-0.0066 (0.0066)
$\Delta \ln (\text{wind cap.})$	-0.0003 (0.0107)	0.0007 (0.0128)	-0.0023 (0.0107)	-0.0360 (0.0219)	0.0000 (0.0078)	-0.0337*** (0.0167)

Notes: Robust standard errors clustered at the state level in parenthesis. *, **, ***, and **** indicate statistical significance at 10, 5, 1, and 0.1 percent levels, respectively.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ④○♡

Robustness Net Generation instead of Capacity

Panel A. Effect on extensive margins of work

Dependent variable:	$\Delta \ln(\text{Employment}) \Delta \ln(\text{Labor force})$		$\Delta \ln(Population)$
	(1)	(2)	(3)
$\Delta \ln(\text{solar net generation})$	0.0168*** (0.0053)	0.0159*** (0.0056)	0.0013 (0.0055)
$\Delta \ln ({\sf wind net generation})$	0.0088 (0.0114)	0.0087 (0.0116)	0.0203 (0.0141)
Number of observation	10,094	10,094	10,094

◆□▶ ◆□▶ ◆目▶ ◆目▶ ④○♡

Panel B. Effect on other margins of work

Dependent variable:	$\Delta \ln$ wage annually	$\Delta \ln$ wage weekly	∆ In wage hourly	∆ In weeks worked per year	∆ In hours worked per week
	(1)	(2)	(3)	(4)	(5)
$\Delta \ln(\text{solar net generation})$	0.0120** (0.0047)	0.0160** (0.0071)	0.0219** (0.0089)	-0.0007 (0.0026)	0.0015* (0.0007)
$\Delta \ln ({\sf wind net generation})$	-0.0092 (0.0085)	-0.0093 (0.0128)	-0.0243 (0.0191)	-0.0021 (0.063)	0.0003 (0.0016)
Number of observation	10,094	10,094	10,094	10,094	10,094

Back

Robustness Coal capacity retirement



Figure: Changes in Coal-fired Generation Capacity (2001-2019)

◆□▶ ◆□▶ ◆目▶ ◆目▶ ④○♡

Robustness Coal capacity retirement as an additional shifter

Dependent variable:	Δ In employment		Δ In weekly wage		
	base	3 temporal shifters	base	3 temporal shifters	
	(1a)	(1b)	(2a)	(2b)	
$\Delta \ln(ext{solar capacity})$	0.0287****	0.0295****	0.0255****	0.0236****	
	(0.0031)	(0.0044)	(0.0038)	(0.0004)	
$\Delta \ln(wind capacity)$	0.0138**	0.0168 ^{**}	-0.0011	-0.0008	
	(0.0066)	(0.0066)	(0.0076)	(0.0069)	
Number of observation	10,094	10,094	10,094	10,094	
Sargan over-id. p-value	1.00	1.00	1.00	1.00	

Panel A. Dependent variable: $\Delta \ln employment$

Time interval:	Every year (base)	Every 2 years	Every 3 years	Every 5 years	Every 7 years
	(1)	(2)	(3)	(4)	(5)
$\Delta \ln(ext{solar capacity})$	0.0287**** (0.0031)	0.0272**** (0.0025)	0.0268**** (0.0027)	0.0251**** (0.0035)	0.0355**** (0.0044)
$\Delta \ln(wind capacity)$	0.0138** (0.0066)	0.0138** (0.0063)	0.0163** (0.0077)	0.0174** (0.0080)	0.0218** (0.0082)
Number of obs.	10,094	5,047	3,605	2,163	1,442

Panel B. Dependent variable:	Δ In weekly wage
------------------------------	-------------------------

Time interval:	Every	Every	Every	Every	Every
	year	2 years	3 years	5 years	7 years
	(base) (1)	(2)	(3)	(4)	(5)
$\Delta \ln$ (solar capacity)	0.0246 ^{****}	0.0226 ^{****}	0.0239****	0.0179 ^{****}	0.0214 ^{***}
	(0.0044)	(0.0036)	(0.0043)	(0.0045)	(0.0065)
$\Delta \ln ({\sf wind \ capacity})$	-0.0004	0.0024	0.0056	0.0067	0.0095
	(0.0073)	(0.0076)	(0.0096)	(0.0100)	(0.0100)
Number of obs.	10,094	5,047	3,605	2,163	1,442

