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Abstract

Using rich data on hourly physical productivity and thousands of ownership changes
from US power plants, we study the effects of mergers and acquisitions on efficiency
and provide evidence on the mechanisms. We find that acquired plants experience
an average of 5% efficiency increase five to eighteen months after acquisition. 80%
percent of this efficiency gain is explained by increased productive efficiency; the rest
comes from dynamic efficiency by reducing ramps. Investigating the mechanism,
the evidence suggests that acquired plants achieve higher efficiency through low-cost
operational improvements rather than high-cost capital investments. Finally, acquired
plants improve their performance beyond efficiency by increasing output and reducing
outages and emission intensity.
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1 Introduction
A fundamental issue in antitrust policy is the trade-off between the efficiency and market
power effects of mergers. The increase in market power raises prices for consumers;
however, potential efficiency gains can counteract this effect, making the net effect of
mergers on welfare ambiguous (Williamson, 1968). While there is an extensive literature
on the price effects of mergers, we have limited evidence on how mergers affect efficiency.
With little guidance from empirical evidence, researchers analyzing the competitive effects
of prospectivemergers often rely onhypothetical efficiencygains (Farrell andShapiro, 2010;
Nocke and Whinston, 2022).1

A major challenge in analyzing the efficiency effects of mergers is distinguishing true
efficiency gains from other factors, such as changes in market power, buyer power, and
product quality. Due to the limitations of common production datasets, most research
has studied revenue-based productivity (TFPR), which is estimated from revenues and
input expenditures, rather than quantity-based measures (Foster et al., 2008; Atalay, 2014).
Using TFPR is particularly problematic in merger retrospectives because an increase in
market power, buyer power, or a decline in product quality could raise TFPR even in the
absence of any efficiency gains. This makes it difficult to identify true efficiency gains of
mergers.

In this paper, we provide a detailed and large-scale analysis on the efficiency effects of
mergers while tackling these challenges. We focus onmergers in the US electricity genera-
tion industry between 2000 and 2023. Four distinct features of this industry and available
rich data allowus to overcome the challenges of estimating the efficiency effects ofmergers.
First, we observe, at the hourly frequency, the physical quantities of both output and the
largest single input, the consumption of fuel (which makes 80% of variable cost) (Fabrizio
et al., 2007). We construct an efficiency measure (heat rate) using this high-frequency
data, and analyze how it changes around the time of acquisition. Second, electricity is
a homogeneous product, ruling out potential quality changes that could confound our
analysis. Third, the efficiency measure relies mainly on sensor measurements rather than
survey responses. Finally, and most importantly, the power generation industry experi-
enced a significant number of acquisitions during the sample period. Our sample includes
505 transactions with 3515 ownership changes, corresponding to an average of 4.5% of

1As an example, consider these quotes from Nocke and Whinston (2022): “there is a clear need for much
better evidence on the efficiency effects”; “we observe that the literature on efficiency effects of horizontal
mergers is extremely limited”; “while casual observation and the agencies’ skepticism about efficiency claims
suggest that 5% is rather optimistic for most mergers, there is remarkably little solid empirical evidence on
this point.”
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industry capacity annually. These ownership changes exhibit significant heterogeneity
by transaction, firm, and plant characteristics, which we use to study the mechanisms of
efficiency gains.

Our analysis begins by using a difference-in-differences estimator to compare the ef-
ficiency of acquired plants with those not involved in an acquisition. We find that, on
average, the efficiency of acquired plants increases by 2% two years after acquisitions. We
then explore the impact of different types of ownership changes on efficiency. Our data
reveals two types of ownership changes: at the parent owner level and at the subsidiary
owner level. We find that a parent company ownership change does not lead to any sig-
nificant increase in efficiency, whereas a subsidiary owner change leads to a 5% increase.
This finding underscores the limited role of the parent owner in operational changes oc-
curring at a power plant. When we look at the timing of efficiency increase, we find that
it begins to manifest five months after the acquisition and stabilize after eighteen months.
This suggests that new owners need time to implement changes that lead to efficiency
improvements.

We then move to other important outcomes that are indicator of generator perfor-
mance such as output, capacity utilization, outages and emissions. We find that acquired
generators show an average increase in generation by 6.3% and an increase in capacity
utilization by 1.4 percentage points following the acquisition. Moreover, they experience
a 25% reduction in outages and derates (forced reduction in available capacity). These re-
sults indicate that acquirers improve other dimensions of performance beyond efficiency,
so efficiency increase does not come at the expense of lower production and increased
outages. Finally, we find that acquired generators reduce their CO2 emission intensity by
4.4%, which reflects lower fuel usage.

Although the evidence of efficiency gains after mergers is itself important, to inform
merger policy and generalize the evidence from this industry to other industries, it is
crucial to understand the underlying mechanisms. With this motivation, we investigate
what observable acquisition characteristics are correlated with efficiency gains and what
potential mechanisms generate them.

We start by analyzing the characteristics of acquired plants, acquiring firms, and trans-
actions that might be indicative of overall efficiency gains. We consider two generator
characteristics: capacity and age. We find that the efficiency increase is 3% larger if the
generator capacity is higher than the median of acquired generator capacity. This may
reflect the fact that the acquirer has a greater incentive to improve efficiency in larger-
capacity units, as any improvement in efficiency would yield higher returns. Regarding
firm characteristics, efficiency improvement is 4.2% higher when the acquirer firm is larger
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than the median acquirer and 5.9% higher when the acquirer is a serial acquirer. These
results are consistentwith the interpretation that a firm’s experience in plant operation and
acquisition is an important predictor of post-acquisition efficiency gains. Finally, we study
whether the efficiency impact differs for cross-market acquisition and find cross-market
acquisition leads to efficiency gains that are 3.8% lower than within-market acquisitions.2

We then move to a more formal and structural analysis of mechanisms of efficiency
gains. We propose that a firm can improve the overall efficiency of electricity generation
via three distinct mechanisms: (i) increasing the productive efficiency at individual power
plants, (ii) reducing ramping by better dynamic allocation production within a plant (dy-
namic efficiency), and (iii) better allocating production across plants (portfolio efficiency).
We develop predictions for each of these mechanisms and test them empirically. The
test for productive efficiency involves comparing generator-specific cost curves for pre-
and post-acquisition periods. The test for dynamic efficiency looks at the volatility of an
acquired plant’s production profile, with less volatility over time indicating greater dy-
namic efficiency. Finally, testing for portfolio efficiency involves measuring the efficiency
improvements of the acquirer’s existing plants in the acquisition market.

We find that productive efficiency explains the majority, 75–80%, of the total efficiency
gain. The average cost curve of acquired generators shift down after acquisition at every
production level, suggesting that acquirers improve the efficiency of individual genera-
tors. We also find evidence for an increase in dynamic efficiency. Following acquisition,
generators’ coefficient of variation of production decrease and they cycle less often. We
find no evidence supporting portfolio efficiency theory.

After establishing the role of productive efficiency, we next ask how acquirers improve
productive efficiency. There are two potential channels: (i) low-cost process improve-
ments, which involve, for example, installing control software, effective maintenance,
personnel training, adopting best practices, and (ii) high-cost capital investments, which
involve equipment upgrades. Process improvements indicate information transfers after
acquisition (Atalay et al., 2014); capital upgrades indicate credit constraints of the former
owner. To distinguish between these two hypotheses, we augment the efficiency data with
two different datasets: (i) data on plant managers and (ii) annual non-fuel costs, capital
expenditures, and number of employees for a subset of plants. Starting with the manager
data, we find that 55% of acquired power plants change managers within three months
of acquisition. These managers are 5 percentage points more likely to have a master’s
degree and 4 percentage points more likely to have a bachelor’s degree than managers not

2This result might suggest the potential role of synergies in efficiency gains, which we investigate in Section
5.
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associated with with acquired plants. In contrast, we find no evidence of an increase in
capital expenditures after acquisition. These findings suggest that the new owner of the
power plant improves efficiency through operational improvements rather than high-cost
capital investment.

As in all retrospective merger analyses, an important concern in our paper is the
endogeneity of mergers. We include several additional analyses to address this concern.
First, we include a rich set of controls along with flexible time trends (fuel, technology,
vintage, state) that would account for factors that could lead to selection into acquisitions.
Second, we carefully analyze the timing of the effect, showing parallel trends between the
treated and control groups three years before acquisitions and an increase starting a few
months after acquisition. This suggests that efficiency gains are unlikely to be driven by
industry trends. Third, we run a battery of robustness tests and show that our results are
robust to empirical specification, acquisition definition, and data frequency. Fourth, we
look at whether other important changes in the plant in the absence of mergers generate
similar efficiency effects. For example, we look at howmanagement changes in the absence
ofmergers affect efficiency andfind thatmanagement change leads only to a 0.8% efficiency
gain, in contrast to 5% caused by mergers. Finally, we run placebo tests by looking at the
efficiency effects of minority acquisitions and company restructuring, finding no efficiency
effects in either.

We conclude the introduction by highlighting that our results do not fully characterize
the impact of mergers on consumers, as we identified only one component of the welfare
analysis. Moreover, the efficiency effects identified in this papermaynot be generalizable to
merger analyses in other industries, especially in industries where production techniques
differ significantly from electricity generation. While we focus on a single industry to
take advantage of the available data and numerous acquisitions, we provide detailed
evidence for mechanisms to draw broader lessons from this study. Our view is that more
research is needed to understand the net effects of mergers from different industries, and
we provide a detailed analysis of the efficiency effects from a large and important industry
with environmental externalities.

Contribution to the Literature This article contributes to several bodies of literature.
The first is the literature studying the effects of mergers and acquisitions on productivity.
Since many merger retrospectives focus on price effects, there is a very limited number of
papers that study the productivity effects of mergers (Braguinsky et al., 2015; Blonigen and
Pierce, 2016; Kulick, 2017). Blonigen and Pierce (2016) use the methods of De Loecker and
Warzynski (2012) to separately identify market power and productivity for manufacturing
plants in the US and study how mergers affect them. Their findings suggest significant
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effects of mergers on market power, but provide no evidence of a productivity effect.
Kulick (2017) studies mergers in the ready-mix concrete industry. He finds evidence for
a price increase due to a rise in market power post-merger despite a 6% productivity
increase in acquired plants. Braguinsky et al. (2015), which relates most closely to our
paper, studies the Japanese cotton spinning industry at the turn of the 20th century, which
experienced a wave of acquisitions over 30 years. They find that acquirers were not more
productive conditional on operation, but theyweremore profitable due to better inventory
management and higher capacity utilization. After acquisition, the acquirer improves
capacity utilization in the acquired plant, raising both productivity and profitability.3

This article also contributes to the literature studying efficiency in the power generation
industry. This literature has primarily focused on how deregulation that started in the
1990s affected efficiency (Knittel, 2002; Bushnell and Wolfram, 2005; Fabrizio et al., 2007;
Davis and Wolfram, 2012). These papers compare the performance of plants in states that
pursued restructuring against plants in states that did not. Overall, the results point to
a positive influence of restructuring on the operations of plants.4 Our paper differs from
this literature as we analyze the effects of mergers on productivity. We focus on the post-
deregulation period and exclude a small number of forced divestitures occurring during
our sample period from our analysis.

Finally, this paper is related to a recent wave of papers that use retrospective merger
analyses to understand how mergers affect firm behavior. The insights from this growing
literature advance the understanding of cross-market mergers (Lewis and Pflum, 2017;
Dafny et al., 2019), monopsony power (Prager and Schmitt, 2021), buyer power (Craig
et al., 2021), quality (Eliason et al., 2020), product availability (Atalay et al., 2020), firm
entry (Fan and Yang, 2020), and the price effects of mergers (Luco and Marshall, 2020;
Bhattacharya et al., 2022). We complement this literature by studying how mergers affect
firm efficiency and providing evidence on the mechanisms.

3Evidence of cost savings fromother industries includesmeat products (Nguyen andOllinger, 2006), railroads
(Bitzan and Wilson, 2007), electricity distribution (Clark and Samano, 2022; Chen, 2021), radio (Jeziorski,
2014), banking (Focarelli and Panetta, 2003), and healthcare (Dranove and Lindrooth, 2003; Harrison, 2011;
Schmitt, 2017). Another literature provides evidence on efficiency effects by analyzing a singlemerger. Some
examples are the Molson and Coors merger (Grieco et al., 2018), Miller and Coors merger (Ashenfelter et al.,
2015), and Boeing-McDonnell Douglas merger (An and Zhao, 2019)

4Bushnell and Wolfram (2005) studies the effect of ownership changes on efficiency. However, their study
focuses on utility divestitures that took place in the context of industry deregulation. By contrast, we study
ownership changes that took place after deregulation. Moreover, the ownership changes we look at are not
utility divestitures.
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2 Institutional Background and Plant Productivity
This section begins by describing the institutional background of the power generation
sector, followed by an overview of mergers and acquisitions in the industry. We then
explain power plant operation and our methodology for measuring its efficiency.

2.1 The Power Generation Sector in the US

The US electric power sector accounts for roughly 2% of the US GDP (Bradley & Asso-
ciates, LLC, 2017). Prior to 1990s, US electricity generation was overwhelmingly supplied
by regulated and vertically integrated utilities. Typically, these entities served a specific
territory and controlled all components of the sector: generation, transmission, distribu-
tion, and retailing. The returns of these utilities were regulated through rate-of-return on
capital investments and cost-of-service regulation. This highly regulated market structure
offeredminimal incentives for efficiency improvements, leading to significant inefficiencies
(Fabrizio et al., 2007; Cicala, 2015).

In the 1990s, the industry underwent significant deregulation. Electricity generation
was decoupled from transmission and distribution, with most generators transitioning to
market-based compensation. This shift coincided with the establishment of independent
system operators (ISOs), which manage the electricity grid and organize the wholesale
market where electricity is bought and sold. By 2020, about 70% of US electricity demand
was serviced through seven ISOs (EIA, 2003).5

2.2 Mergers and Acquisitions in the Power Sector

Large power companies are often structured into multiple subsidiaries under a single
parent company, each serving distinct locations and segments of the power sector. These
parent companies often own assets in generation, transmission, and distribution within
the same region, although some operate subsidiaries across various parts of the country.
Following the deregulation wave in the 1990s, there was a notable increase in mergers
and acquisitions among these entities (Davis and Wolfram, 2012). Additionally, financial
firms, especially private equity firms and bank funds, started to invest heavily in the power
generation sector (Andonov and Rauh, 2023).

Acquisitions in the power sector can be divided into three categories: (i) asset acquisi-
tions, (ii) subsidiary acquisitions, and (iii)mergers. Asset acquisitions involve a firm selling
parts of its power plant portfolio while retaining its corporate structure, with the acquired
assets then falling under a subsidiary of the acquiring company. Subsidiary acquisitions

5We use ISO as an umbrella term for both ISOs and regional transmission organizations.
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occur when a parent company acquires another company’s subsidiary, including all its
assets. In this scenario, the plant’s subsidiary owner remains the same, but the parent
owner changes. The third category, mergers, occur when two companies merge to form a
new entity. For a visual explanation of these acquisition types, see Appendix Figure OA-2

All proposed power plant acquisitions within the US electricity sector are subject to
review by the Federal Energy Regulatory Commission (FERC), the Department of Justice
(DOJ), and state Public Utility Commissions (PUCs) (Niefer, 2012). FERC conducts its
review under Section 203 of the Federal Power Act, assessing whether mergers align with
the public interest. The DOJ’s review focuses on the potential anticompetitive effects of
mergers.6 If either the DOJ, FERC, or the relevant state PUC concludes that an acquisition
harms consumers, they may challenge it or require remedies.7 Despite reviews by three
government agencies, the majority of mergers that were proposed in the US electricity
industry over the past two decades gained approval.8

Firms cite various motives for acquisitions, including improving efficiency of power
plants. Merging firms often argue that mergers will generate synergies, citing both finan-
cial benefits and complementarities between different asset types.9 Since fuel represents
an important part of operational costs, fuel efficiency improvements are often cited as an
important source of cost savings post-merger.10

2.3 Electricity Production and Construction of the Efficiency Measure

Amajor challenge in analyzing efficiency effects of mergers is the scarcity of suitable data,
as reliable measures of cost and physical productivity are often lacking in most industries.
The power generation industry is unusual in this respect due to the public availability
of detailed and high-frequency fuel efficiency data. This section describes the efficiency

6The FERC relies on the 1996 revision of the Horizontal Merger Guidelines (HMG) and puts more emphasis
on market concentration levels (Niefer, 2012), whereas the DOJ’s review relies on the 2023 HMG.

7To give some examples, in 2005, the Exelon-PSEG merger was not completed after failing to get approval
from state PUCs. In 2012, following the DOJ’s request, Exelon Corporation and Constellation divested three
generating plants in Maryland. The FERC concluded that the merger would not harm competition in both
cases.

8We reviewed a list of large mergers occurring between 2000 and 2022 provided by the FERC, in addition to
merger press releases, and found that only a few of them were publicly challenged.

9For most mergers in our sample, we have access to investor presentations and conference calls, which
allow us to identify the stated motives. Some examples are: (i) improvements in management (AES-DPL
merger); (ii) measurable and actionable cost synergies of $175 million per year (NRG-GenOn merger); (iii)
annual cost savings of $150 million (Mirant-RRI Energy merger); (iv) geographic, fuel, market, and earnings
diversification benefits (Vistra-Dynegy merger). Other cited reasons include increasing the consumer base,
diversifying the portfolio across technologies and regions, and accelerating efforts to meet potential future
environmental regulations.

10As an example, Figure OA-1 shows a slide from the investor presentation of the 2018 Dynegy and Vistra
Energy merger, in which merging parties argue that heat rate improvements will lead to 125 million dollars
in cost savings.
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measures used in this study and explains the production process at power plants.
A power plant is an industrial facility that generates electricity. As of 2020, there were

11,070 utility-scale electric power plants in the US (EIA, 2020). Typically, a power plant
includesmultiple generators, transformingdifferent forms of energy (primarily heat, wind,
or solar) into electricity using various production technologies. Our research focuses on
fossil fuel power plants (coal, natural gas, and oil), because their efficiency is easier to
measure and observable with available data. Fossil fuel power plants generate electricity
by using the heat energy released from burning fuel.11 In this process, the total input is
measured as the heat content of the fuel used in electricity generation. This leads to a
natural efficiency measure, called heat rate, which measures how efficiently a generator
converts fuel into electricity. Heat rate is calculated as the ratio of the fuel’s heat content, in
million British thermal units (MMBtu), to the generator’s electricity output in megawatt-
hours (MWh). Our primary measure of efficiency is the inverse of this measure:

Fuel Efficiency (Inv. Heat Rate) �
Energy Output (MWh)
Energy Input (MMBtu) . (1)

Heat rate is the critical determinant of generator efficiency since fuel is the major input,
representing roughly 80% of operating costs (Fabrizio et al., 2007). For this reason, it is
a standard efficiency metric in the industry, commonly used by regulatory agencies and
firms (EPRICA, 2014; EIA, 2015).

Most importantly for this paper, fuel efficiency provides key advantages in analyzing
the efficiency impacts of acquisitions. First, fuel efficiency is a quantity-based efficiency
measure derived from input and output quantities, rather than from revenues and input
expenditures. Consequently, it is not directly affected by changes in buyer and market
power, allowing us to distinguish efficiencies from other changes induced by mergers.
Second, electricity is a homogeneous product, precluding any potential quality impacts
of acquisitions.12 Finally, the efficiency measure relies primarily on sensor measurements
rather than survey responses as in many other industries.13

11In a typical thermal power plant, water is heated in a boiler to generate steam, which is then moved through
a turbine that is attached to a shaft. As the steam moves, it causes the shaft to spin. This spinning shaft is
connected to a generator, which produces electricity.

12Some changes post-acquisition, such as reliability and environmental performance, might be considered
aspects of the ’quality’ of electricity generation. We will revisit these aspects of electricity generation later in
the paper.

13It is worth noting that our efficiency measure is fuel efficiency rather than TFP, and does not take into
account non-fuel inputs. Although we believe that, in electricity generation, the role of other inputs is not
as significant as in other manufacturing industries and substitution from fuel to other inputs is limited, we
study them in Section 6.

8



Figure 1: Representative Heat Rate Curve
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Note: The green line represents the typical heat rate curve in electricity generation, showing how heat rate
changes with the production level. The blue bars represent a hypothetical distribution of production as a
function of capacity.

Several factors can influence the heat rate in a power plant. Figure 1 displays a hypo-
thetical example of a heat rate curve, where the green line represents the heat rate and
the blue bars represent a typical production distribution as a percentage of capacity. As
indicated by the heat rate curve, a power plant’s efficiency depends on its production
level, typically reaching its peak close to its capacity. Moreover, fluctuations in production
levels can significantly impact efficiency. Since electricity cannot be stored at scale and
demand is volatile, power plants frequently adjust their production in response to market
conditions. This adjustment cost, known as the ramp cost, can reduce overall efficiency
in electricity generation. These factors of power plant efficiency depend on the skills and
expertise of power plant personnel who monitor and control production (Bushnell and
Wolfram, 2009).

Although the electricity generation process may appear relatively mechanical, power
plant productivity in the US exhibits significant variation. Figure 2 shows the distribution
of yearly residual log efficiency of generators after controlling for a rich set of observables
that include production volatility, generator age, fuel type, technology, capacity, generator
manufacturer, andgeneratormodel.14 Thedifference between the 10th and 90thpercentiles
of log productivity is 0.32, indicating that generators in the top decile of the distribution
are more than twice as productive as those in the bottom decile of the distribution.15, 16

14We provide the details of this estimation procedure in Section B.1.
15This dispersion is slightly smaller than the dispersion documented in other industries (Syverson, 2011).
16This heterogeneity in productivity has also been observed by others (Sargent & Lundy, LLC, 2009; Staudt
and Macedonia, 2014). Sargent & Lundy, LLC (2009) report commissioned by the EPA found that the heat
rates of coal-fire power plants range from 5 MMBtu/MWh to 32.7 MMBtu/MWh. Staudt and Macedonia
(2014) examine factors that contributed to heat rate, including facility size, capacity factor, emission controls,
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Figure 2: Distribution of Residual Log Productivity
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Note: This figure shows the distribution of residual yearly log productivity of fossil fuel generators in the US
between 2000 and 2023, after controlling for ramp (standard deviation of heat rate), generator age, fuel type,
technology, capacity, generator manufacturer, and generator model.

The large dispersion in productivity conditional on a large set of observables highlights
the role of unobserved heterogeneity in efficiency and suggests the potential for efficiency
improvements in many power plants.

Improving the heat rate performance of a power plant is a complex process that can
be achieved in two main ways: (i) low-cost operational improvements and (ii) high-cost
capital upgrades. Low-cost improvements include a range of practices such as installing
control software, monitoring unit and equipment performance on a continuous basis, per-
sonnel training, immediate repairs of equipment that directly affect heat rate, and effective
maintenance.17 Every year, power plant managers gather at the Heat Rate Improvement
Conference to discuss these practices (EPRI, 2022).18 A second way to improve plant
efficiency is by upgrading critical equipment, such as boilers, fuel feeders, and cooling
systems, as old equipment degrades and new technology becomes available.

A critical factor influencing operational practices is managerial and engineering input.
As documented in detail in Bushnell and Wolfram (2009), the individual skills of key per-
sonnel can have a profound impact on the performance of power generating plants. These
personnel are responsible for continuous monitoring of unit and equipment performance,

steam cycle, and coal type. They determine that each factor is essential to the generator’s heat rate, but there
is considerable unexplained variability in the data.

17There are several control software products available to monitor and improve power plant performance,
such PI data historian, EtaPRO/Virtual Plant, and Emerson Enterprise Data Server. Moreover, heat rates
can be improved with turbine enhancements such as blade and seal repairs, cycle control optimization, and
deposit removal. Boiler improvements involve heat transfer surface maintenance, burner system inspection,
and intelligent sootblower utilization.

18Appendix Figure OA-3 highlights a few case studies of low-cost improvements from this conference.
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conducting periodic tests to assess equipment condition, and planning production and
maintenance schedules. Bushnell and Wolfram (2009) underscores the operator’s impact
with the following quote: "the act of balancing all of these input parameters was described
by one manager as playing the piano and one star operator was considered a virtuoso on
the instrument."19

Improving the efficiency of a power plant is also important for environmental consid-
erations. The higher a plant’s efficiency, the less fuel it needs, leading directly to reduced
emissions of local pollutants and greenhouse gases. As a result, improving fuel efficiency
can be an effective method to reduce pollution, which is recognized by policymakers in
the 2016 Clean Power Plan Act (EPA, 2018b).

3 Data and Summary Statistics
Our main objective is to construct a measure of generator efficiency and the universe of
ownership changes to study how acquisitions affect power plant productivity. We first
describe our datasets and then provide key summary statistics.

3.1 Data

We combine several datasets from FERC, the Environmental Protection Agency (EPA),
the Energy Information Administration (EIA), the North American Electric Reliability
Corporation (NERC), S&P Capital IQ, S&P Capital IQ Pro, and Velocity Suite at the firm,
plant, and generator levels for fossil fuel-fired power plants in the continental US between
January 2000 and March 2023. This section briefly describes the datasets, while Appendix
A provides more detailed information on the data sources, construction of variables, and
descriptive statistics.

Generator and Plant Level Data We use data from EIA Forms 860 and 923, EPA, FERC
Form 1, Velocity Suite, and S&P Capital IQ Pro to construct generator- and plant-level
datasets. For generators, the information includes the install year, fuel type, technology
type, capacity, boiler model, and boiler manufacturer. For plants, we construct data on
regulation status, location, ISO, and FERC region. In addition, for approximately half of
the power plants in the sample, we have information on the number of employees, non-fuel
costs, and capital expenditures between 2008 and 2023.20

19As another example of the importance of personnel, PacifiCorp Energy state in their 2016Heat Rate Improve-
ment PlanDocument that “Continuous improvement andmanagement of unit heat rates is the responsibility
of all plant personnel” and “Goodmanagement of heat rate requires that plantmanagementmake optimizing
heat rate a priority each day.” (PacifiCorp Energy, 2016)

20The data source for this information is FERC Form 1, which is available only for investor-owned utilities.
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Production DataWe use the EPA’s Continuous Emissions Monitoring Systems (CEMS) to
obtain hourly generation and input data. This dataset provides hourly power output, heat
input, and CO2 emission for nearly all fossil fuel generation units in the US.21 Addition-
ally, CEMS provides panel information on the environmental programs each generator is
subject to, and the scrubbers used for various pollutants. We merge this dataset with our
generator- and plant-level data as detailed in Appendix A.1.

Ownership and Acquisition Data We construct a detailed dataset on ownership of fossil
fuel generators. This dataset combines ownership and transaction data from S&P Capital
IQ Pro, as well as company press releases and newspaper articles. The ownership data
includes every shareholder of all US generators at the subsidiary and parent company
levels. The transaction data provides information on the transferred assets, transaction
size, the buyer and seller, announcement and close dates, conference call transcripts,
and deal descriptions. Since regulatory authorities review all transactions in the power
industry, this data is available for the universe of transactions during the sample period.
Ownership datasets can be prone to inaccurately identifying ownership changes as firm
name-changes and restructurings may be misinterpreted as acquisitions. We identify
these cases by cross-matching the transaction and ownership data, reading transaction
descriptions, and reviewing corresponding press releases and news articles.

Maintenance andOutageDataWe obtain event-level data on outages, derates (reductions
in available capacity), and maintenance from the Generating Availability Data System
Database (GADS) through a data-sharing agreement with NERC. This dataset covers all
generators with nameplate capacities over 20 MW, which are required to report events
affecting their electricity generation capabilities to NERC. This data is available starting
from 2013 through 2021 and includes each event’s start time, end time, type, and cause.
The generator names are deidentified in this dataset, but their capacity, state, fuel type,
andmonthly production hours are available. Using this information, wematched this data
to CEMS units using an algorithm described in Section A.7. We were able to successfully
match 92.8% of total CEMS units capacity.

Personnel Data We compile monthly panel data on plant personnel from the EPA, which
maintains a database of plant representatives, including names, tenure start and end dates,
and contact information. We successfully matched about 70% of the personnel names to
their LinkedInprofiles, thereby obtaining their titles, education, and employment histories.
Using LinkedIn data, we verify that 78% of the listed personnel are plant managers, while

21Every generator in the US with a capacity greater than 25 MW using fossil fuel must comply with the EPA
CEMS program. This sample represents approximately 95% of the US fossil fuel generating capacity.
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the rest are primarily environmental compliance personnel and engineers. Therefore, for
the purposes of this study, we consider plant representatives as plant managers.

Other Datasets We collect hourly data on ambient temperature, humidity, and weather
conditions from Velocity Suite for all power plants in our sample as weather can affect
generation performance. We also obtain information about power plant owners, including
asset size, market cap, and industry from S&P Capital IQ.

3.2 Generator and Acquisition Sample Construction

Our initial sample include all generators that operated in the continental United States be-
tween January 2000 andMarch 2023 andare subject toCEMS regulations (5,876 generators).
From this set, we first exclude cogenerators that produce both steam and electricity due to
the complexity of calculating their heat rate, which result in a total of 5,265 generators.

For acquisitions, we start with 6,336 generator acquisitions involved in a transaction
between January 2000 and March 2023. We eliminate acquisitions that occur before a unit
becomes operational and after its retirement (760), as well as minority acquisitions where
less than 50 percent of the shares change ownership (1103). We also exclude instances
of company restructuring where only the subsidiary owner changes, but the ultimate
parent owner remains the same (532). Additionally, we filter out ownership changes that
correspond to divestitures due to deregulation to eliminate the potential confounding
effects of deregulation (615). To identify these events, we use the EIA Electricity Monthly
Reports, Cicala (2015), Abito et al. (2023) and other data sources detailed in Appendix A.4.
This sample restriction gives us 3,769 generator acquisition events.

For our baseline specification, we limit our main sample to the first acquisition of each
generator if a generator is acquiredmultiple times. However,we conduct robustness checks
using the full acquisition sample. These criteria result in a total of 2,046 first acquisitions
used in our main analysis.

3.3 Descriptive Statistics on US Power Plant Acquisitions

This section provides descriptive statistics on fossil fuel power plant acquisitions in the US.
We show that the industry has seen a considerable number of acquisitions, exhibiting sig-
nificant heterogeneity in transaction size, type of acquirer firms, and plant characteristics,
which allow us to study several aspects of how acquisitions affect efficiency.

Figure 3(a) shows the percentage of fossil fuel electricity generation capacity that
changed ownership between 2000 and 2023.22 On average, 4.5% of industry capacity

22We define acquisition as an ownership change if a different firm owns the majority of the generator’s shares
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Figure 3: Transaction Characteristics
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Note: Panel (a) shows the percent of capacity of fossil fuel plants that change ownership annually in the US
between 2000 and 2023. Panel B shows the distribution of transaction size by fossil fuel generation capacity
in the US between 2000 and 2023. In Panel (b), the unit of observation is a transaction. The largest five
transactions are labeled.

changes ownership annually, with some fluctuations year-to-year. Cumulatively, this
corresponds to 103.0% of industry capacity during the sample period, including the gen-
erators acquired multiple times. As seen in Figure 3(b), these transactions show large
heterogeneity in terms of total capacity transacted. While most transactions include a few
plants, there are some moderately-sized transactions involving 5,000–10,000 MW capacity,
as well as mega-mergers involving over 10,000 MW capacity.23 Observing this hetero-
geneity is useful because it indicates that our results do not come from a small number
of large mergers, and we can test the heterogeneity of the effect by different transaction
characteristics.

Table 1 presents summary statistics on plants, firms, and deal characteristics from
acquisitions. Our acquisition sample, as shown in Column (2), includes 505 transactions
involving 3,515 generation units and 1,223 plants. We observe that 2,048 generators have
been acquired at least once. These generators are predominantly gas-fired generators (82%)
and operate in organized markets (77%). About half of these acquisitions are cross-market
transactions, where the acquirer does not have existing capacity in the acquisition market.
Finally, we note that there are 244 unique acquirer firms and 224 unique target firms in the
data, with acquirers owning a slightly higher number of units than the target firms.24

after the acquisition. For a small number of generators, no firm owns more than 50% of shares. For those
generators, an acquisition is defined as change in the largest shareholder.

23Appendix Table OA-1 lists the largest 25 transactions during the sample period.
24Despite many acquisitions in the study period, there has been no significant change in market concentration
in the US. Appendix Figure OA-4 reports the national market shares of the largest 5, 10, 20, and 30 firms
in terms of capacity owned. The concentration fluctuates over time; however, it is broadly stable in the
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Table 1: Acquisitions Summary Statistics

All
Units

All
Acquisitions

First
Acquisitions

Subsidiary/Parent
Change

Only Parent
Change

(1) (2) (3) (4) (5)

Panel A. Unit Characteristics

# of Units 5264 3515 2048 1089 1142
# of Plants 1581 1223 744 380 405
# of Unique Units 5264 2048 2048 1089 1142
# of Unique Plants 1581 726 726 373 400
% Gas 0.71 0.82 0.77 0.89 0.68
% Coal 0.18 0.09 0.12 0.04 0.17
% Other 0.10 0.09 0.11 0.07 0.15
% Cross-Market - 0.57 0.58 0.51 0.57
% in ISO 0.69 0.77 0.74 0.81 0.70
Avg. Unit Capacity 173.04 164.43 171.28 155.77 171.16

(184.75) (159.01) (173.39) (145.02) (179.41)
Avg. Installation Year 1986.37 1990.59 1989.29 1994.60 1984.43

(20.08) (16.24) (17.27) (14.25) (17.86)

Panel B. Firm Characteristics (Pre-merger)

# of Acquirer Firms - 244 182 126 61
# of Target Firms - 224 159 111 70
Avg. # of Units Acquirer Owns - 45.81 45.94 50.72 39.35

- (53.40) (49.20) (54.88) (39.54)
Avg. # of Units Target Owns 32.13 33.91 37.51 38.07

- (47.23) (49.57) (50.64) (53.30)
Avg. Acquirer Firm Capacity - 5244 5595 6369 6391

- (8698) (9112) (9605) (9507)
Avg. Target Firm Capacity - 7314 7466 8312 6200

- (9862) (9335) (9948) (7532)

Panel C. Transaction Characteristics

# of Deals - 505 318 213 72
Avg. Deal Size in # of Units - 7.0 6.4 5.1 15.9

- (12.9) (11.2) (7.8) (19.9)
Avg. Deal Size in Capacity - 1191 1164 812 2909

- (2378) (2039) (1491) (3510)

Note: This table includes summary statistics on acquisitions that include fossil fuel-generating units in the
US between 2000 and 2023. A description of the sample’s construction can be found in Section 3.2. Each
column reports the data’s counts and characteristics at varying sample restriction levels. Column (1) reports
statistics for the full sample of units, regardless of acquisition status. Column (2) reports data from all
majority acquisitions. Column (3) restricts the acquisition sample to the first acquisition of each generator.
Column (4) reports statistics of generators with both subsidiary and parent owner changes, whereas Column
(5) reports statistics for only parent owner changes. The numbers in parentheses represent the standard
deviation. The market definition for cross-market is the power control area. All capacity information is
reported in MWh.
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Figure 4: Market Share by Firm Type
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Note: Panel (a) shows the percent share of fossil fuel generation capacity in the US between 2000 and 2023 by
the primary industry type of the parent company. Panel (b) shows the same statistics by categorizing parent
owners into Public Company, Private Investment Firm, Private Company, and Government Institutions.
These classifications are obtained from S&P Capital IQ Pro.

In Column (3), we present the same statistics, but this time for the first acquisition of
each generator, which forms our baseline empirical sample. Observable unit characteristics
are similar between this subsample and all acquisitions, suggesting that focusing on first
acquisitions does not lead to a significant selection bias. When we compare acquired
generators with all units in our sample (Column 1), we see that they are broadly similar in
terms of average capacity, average installation year and operating in an organized market
(ISO). One important difference is the fuel type, where acquired generators are more likely
to be gas-fired than an average unit. This primarily comes from the large number of coal-
fired power plant retirements in the 2010s. We control for these differences by allowing
for fuel type, technology and install year specific trends in our empirical specification.

Finally, Columns (4) and (5) categorize the acquisition sample into two types of owner-
ship changes we identified: subsidiary and parent owner changes and parent-only owner
changes. Typically, a subsidiary of a parent company is the legal entity that owns the
power plant, with the parent company owning that subsidiary. Some transactions involve
changes in both subsidiary and parent ownership (asset acquisition, see Figure OA-2(b)),
while others involve only parent owner changes (subsidiary acquisition, see Figure OA-
2(c)). A comparison of Columns (4) and (5) reveals that these transaction types primarily
differ in transaction size, with parent-only ownership changes being significantly larger.

sample period. This is because there is a considerable firm turnover in the industry, as suggested by the
large number of acquirers and targets in Table 1. Some examples can be seen in Appendix Figures OA-5 and
OA-6, where we report firms with the largest capacity increase and decrease between 2010 and 2023.
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This observation is consistent with the nature of parent-only ownership changes, which
often include taking over a significant part of the target’s subsidiary portfolio.

To illustrate the composition of firms in the industry over time, Figure 4(a) displays the
evolution of ownership by the primary activity of the parent company (utilities, industrials,
andfinancials), and Figure 4(b) shows the evolution of ownership by company type. Figure
4(a) indicates an increasing presence of financial firms in the industry between 2000 and
2023.25 The share of total capacity owned by financial firms increased from 3% in 2000
to 20% in 2023, suggesting substantial asset reallocation from utilities to financial firms.
Figure 4(b) highlights that public firms own half of the industry capacity, and their share
has remained stable over time. Finally, government institutions own 12% of industry
capacity. With the exception of the federally run Tennessee Valley Authority, these are
predominantly local governments in rural areas operating power plants.

The return on power generation for plants in some states is closely governed by regu-
latory policies. One might be concerned about the role of regulations, as they change the
incentives to improve productivity after an acquisition. Table 1 shows that the majority
of acquisitions (77%) happen in organized markets where generators earn profit through
market mechanisms. This is also reflected in the geographic variation of acquisitions as
most large increases occur in deregulated states (Appendix Figure OA-7).

4 Empirical Results
Our empirical strategy aims to identify the causal effect of acquisitions on power plant
efficiency and other important outcomes. To do this, we compare productivity trends
of acquired generators to those that were never and not-yet acquired. We refer to the
latter type as “control generators.” In most estimations, each observation is a combination
of generator and week, with variables containing heat rate, ownership, and several other
generator characteristics and performancemeasures. Themain advantage of our empirical
setting is the availability of a high-frequencymeasure of generator efficiency, which allows
us to track productivity immediately before and after acquisition in a short time frame.

We find that acquisitions increase the productivity of power plants by 5%, but only
when there are ownership changes at both the subsidiary and parent owner levels. In
contrast, ownership changes only at the parent company level do not lead to a significant
increase in productivity. The productivity increase starts five months after the acquisition
and stabilizes after eighteenmonths. We conclude the section by studying the heterogene-
ity of the effects.

25These financial firms primarily include private equity firms, pension funds, and bank funds. The classifica-
tion is taken from S&P Capital IQ Pro.
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4.1 Effects of Ownership Change on Efficiency

This section presents the difference-in-differences results from estimating the effects of
mergers on efficiency. We estimate this effect using a regression of the following form:

log(yit) � δ11{Pre-year1} + δ21{Post-year1} + δ31{Post-year2} + δ41{Post-year3} + Xit + µt + αi + εit , (2)

where yit is the efficiency of generator i at week t (measured as inverse heat rate given in
Equation (1)), αi and µt are generator and week fixed effects, respectively. The controls,
Xit , include ambient temperature and humidity (which can influence heat rate), a dummy
variable for each environmental regulation indicating whether the generator is subject to
that regulation, and pollution control device (scrubber) indicators for NOx , SO2 and PM.26
Controlling for factors related to environmental regulation is particularly important due
to the changes in US environmental policies in the last two decades. These policy changes
could influence firms’ acquisition decisions or directly influence efficiency due to scrubber
installations.

In addition to these variables, Xit includes monthly time trends that vary by state,
generation installation year, fuel type, and technology type (combined cycle or not). By
incorporating state-specific time trends, we account for changes in the supply of non-
fossil fuel electricity generation (primarily entry of renewables) and demand factors at the
state level. Furthermore, the time trends for generator characteristics allow for different
efficiency trajectories basedongenerator type. For example, powerplantsmight experience
decline in efficiency over their lifespans, which can be nonlinear and vary by their vintage.
We capture this variation by including installation year by month fixed effects.

The regression in Equation (2) includes four coefficients of interest: (i) δ1, an indicator
variable for 1 to 12 months pre-acquisition; (ii) δ2, an indicator variable for 0 to 12 months
post-acquisition; (iii) δ3, an indicator variable for 13 to 24 months post-acquisition; and
(iv) δ4, an indicator variable for 25 to 36 months post-acquisition. By including year-
specific post-treatment indicators, we aim to capture the dynamic effects of acquisitions.
We include δ1 to examine whether there are any productivity effects of acquisitions before
the acquisition occurs. This could happen due to anticipation effects or disruptions in
the production process during the transition. The regression coefficients are normalized

26These programs are Clean Air Interstate Rule NOx Program, Nitrogen Oxides Budget Trading Program,
Cross-State NOx Program, Ozone Transport Commission Program, State Implementation Plan NOx Pro-
gram, Regional Greenhouse Gas Initiative, Clean Air Interstate Rule Ozone Season Program, Cross-State
Ozone Season Group 2 Program, Cross-State NOx Ozone Season Program, New Hampshire NOx Program,
Mercury and Air Toxics Standards, Clean Air Interstate Rule SO2 Program, Cross-State SO2 Group 2 Pro-
gram, Cross-State Ozone Season Group 3 Program, Cross-State Ozone Season Group 1 Program, Cross-State
SO2 Group 1 Program, New Source Performance Standards for Toxics, Texas SO2 Program.
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relative to 12-18 months before the acquisition. We cluster standard errors at the plant
level and exclude all treated generators from the sample three years after their acquisition,
ensuring their post-treatment periods are not used as controls for other units.

It is important to highlight that the unit of analysis is a generator rather than a plant.
Although a single firm usually owns all the generators within a plant, these generators
often have different production profiles, maintenance schedules and retirement years
(Gowrisankaran et al., 2022). Aggregating input and production at the plant level could
bias efficiency estimates. Therefore, we think the generator is the proper level of analysis,
and it is maintained throughout the paper.

Table 2 presents results from estimating Equation (2) with log productivity as the out-
come variable. These results cover the first acquisition of all acquired units with different
control variables (Columns 1-4) and different acquisition types based on subsidiary and
parent owner changes (Columns 5-6). The results from Columns 1-4 demonstrate that
efficiency increases following ownership changes. The efficiency of acquired generators
increases by 0.6% one year after acquisition and reaches 2% after two years. The efficiency
increase is robust to including a rich set of controls and flexible time trends, and there is no
efficiency change in the year leading up to the acquisition (δ1). Overall, we conclude that
the efficiency of acquired generators improves following acquisitions, although it takes
time for this to fully manifest.

Columns (5) and (6) of Table 2 test whether the efficiency effect differs by the type
of ownership change.27 Column (5) shows estimates from Equation (2) when including
ownership changes at both the parent and subsidiary levels. By contrast, Column (6) in-
cludes ownership changes at only the parent owner level. One might expect the efficiency
effects to differ in these two cases because the subsidiary owner typically has direct control
over the operation and personnel of the power plant, whereas the parent owner exercises
indirect control. Furthermore, ownership changes at the parent level tend to be financial
acquisitions, which could be motivated by diversification. The results suggest significant
heterogeneity in the efficiency impact based on acquisition type. When only the parent
owner changes, the effect is small and not statistically significant, whereas both subsidiary
and parent ownership change leads to an efficiency increase of 5%. This finding under-
scores that the direct owner plays a more important role than the parent in operational
changes occurring at a power plant after acquisitions.

After demonstrating the significant impact of acquisitions on generator efficiency, we

27When estimating the effects of acquisition on one subsample of acquired units, we completely exclude the
other subsample from the regression, as opposed to grouping them with the controls. In other words, the
control group is always the group of never-acquired generators, regardless of the subsample being studied.
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Table 2: Regression Results

All
Acquisitions

All
Acquisitions

All
Acquisitions

All
Acquisitions

Subsidiary
and Parent
Changes

Only
Parent
Changes

(1) (2) (3) (4) (5) (6)

Dependent Variable: Log of Efficiency

Pre-acquisition (1 Year) 0.002 0 -0.003 -0.003 -0.002 -0.007
(0.003) (0.003) (0.003) (0.003) (0.005) (0.003)

Post-acquisition (1 Year) 0.018 0.016 0.006 0.006 0.015 -0.01
(0.005) (0.005) (0.005) (0.005) (0.007) (0.005)

Post-acquisition (2 Years) 0.035 0.035 0.02 0.02 0.039 -0.002
(0.008) (0.007) (0.007) (0.007) (0.009) (0.007)

Post-acquisition (3 Years) 0.039 0.038 0.02 0.02 0.05 -0.007
(0.009) (0.009) (0.008) (0.008) (0.012) (0.008)

Temp. & Humidity Controls X X X X X X
Unit & Week FE X X X X X X
State by Month X X X X X
Unit Characteristic by Month FE X X X X
Scrubber & Enviro. Prog. FE X X X

R2 0.707 0.725 0.752 0.753 0.763 0.764
# of Observations 1.838M 1.838M 1.838M 1.838M 1.494M 1.575M
# of Control Units 2311 2311 2311 2311 2311 2311
# of Treated Units 2046 2046 2046 2046 1089 1142

Note: This table presents the coefficient estimates of δ1 , δ2 , δ3 , and δ4 from estimating Equation (2). Columns
(4-6) present our baseline specification, where we allow for time trends to vary flexibly by unit characteristic
and includeweather, scrubber, and environmental program controls. Unit characteristic fixed effects include
installation year, fuel type, technology type, and unit capacity. The dependent variable is the logarithm of
inverse heat rate. Standard errors are clustered at the plant level.

shift our focus to the dynamic effects. Our goal is to determine the timing of efficiency
changes and to assess if there are any different pre-treatment trends between the treated
and control groups. To this end, we estimate the change in efficiency around the time of
acquisition using the following regression specification:

log(yit) �
∑

s∈(−36,36)
δ̂sDi(t′−s) + Xit + µt + αi + εit , (3)

where Di(t′−s) is a monthly indicator variable equal to 1 for generator i if it is acquired in
month t′, and zero otherwise. Xit includes the full set of control variables as in Equation
(2). Since we find efficiency effects for acquisitions where both the subsidiary and parent
company change, we focus exclusively on those acquisitions hereafter.

The dynamic effect regression results are presented in Figure 5. The coefficients on
s ∈ (−36, 0) are small and not statistically significant, indicating that acquired generators
exhibit a similar efficiency trend prior to acquisition as those not acquired. The difference
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Figure 5: Impact of Merger on Productivity
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Note: This figure presents the coefficient estimates of δ̂s where s ∈ (−36, 36) from Equation (3) along with
standard errors. The dependent variable is the logarithm of the inverse weekly heat rate. The unit of
observation is the generator-week. Standard errors are clustered at the plant level.

between treated and control groups remains small until five months post-acquisition. Af-
terward, the efficiency of acquired plants begins to diverge from control units, increasing
on average by 5% eighteen months post-acquisition and then stabilizes. Observing effi-
ciency gains five months after the acquisition suggest that the new owner requires some
time to implement efficiency improvements.28

To interpret the results from the specification in Equation (2) as causal, we rely on the
assumption that an acquisition creates a discontinuous change in power plant behavior
and any efficiency trends that might lead to selection would be gradual enough to be
distinguished from the more discrete direct effect. This assumption is likely to hold in
our setting because we observe production at short intervals and incorporate a rich set
of controls along with flexible time trends that would account for factors likely to cause
selection into acquisitions. Moreover, the parallel trends observed between the treated
and control groups three years before acquisitions, along with the productivity increase
starting a few months after acquisition, offer additional evidence that efficiency gains are
not likely driven by industry trends.

Still, ownership changes in power plants are of course not random, and unobservable
factors could change efficiency in the absence of mergers. If those factors are observed
by the acquirers, they can lead to selection, violating the assumptions for causality. For

28This finding is suggestive of how the efficiency gain occurs. Our interviews with power plant managers
indicated that five months is insufficient to make costly capital investments and upgrades. This suggests
that efficiency improvements occur primarily due to operational changes and adopting best practices rather
than costly capital investments. We will return to this question later for a more formal analysis.
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example, the acquirer might observe that the target plant’s manager will retire soon and
decide to buy the plant, anticipating that the new manager will improve efficiency. To
address such a concern, we estimate the effects of manager changes on efficiency in the
absence of mergers and find that the efficiency increase is only 0.6% (Appendix Figure
OA-8). Finally, we do a battery of robustness checks including matching estimators, the
Callaway and SantAnna (2021) estimator, estimation with daily data, estimation with net
generation, andweighted estimation, and placebo testswithminority acquisitions and cor-
porate restructuring. We find that the results are robust to several specification choices.29
See Section 7 for a summary of robustness checks and placebo tests and Appendix E for
the corresponding results.

The results so far suggest that the efficiency of power plants improves with ownership
changes. Yet, it is important to recognize that this efficiency gain can occur in various
ways, not all of which are beneficial to overall welfare. For example, generators might
decrease production and reduce ramping, which would improve their average efficiency,
but could lead other plants to ramp more and become less efficient. Alternatively, new
owners might operate generators more intensively, increasing their short-term efficiency
but possibly causing increased outages and declining long-term performance. In the rest
of this section, we provide additional analysis to gain insights into efficiency gains, while
reserving a more formal mechanism investigation for the next section.

We investigate the impact of ownership changes on key generator outcomes beyond
efficiency, including generation, capacity utilization, operating hours, outages, and the
carbon intensity of production. Capacity utilization is defined as the average hourly
production as a proportion of capacity over a week, conditional on operation. Operating
hours are calculated as the total hours a unit is operational in a given week. For outages,
which is available only after 2013, we calculate the proportion of hours in a given week a
unit is in forced outage or derate (energy output curtailment). Finally, the CO2 intensity is
calculated by dividing total weekly CO2 emissions by the total weekly MWh of electricity
generation. Using these outcome measures, we estimate the same specification as in
Equation (2).

Table 3 presents the regression coefficients. In Column (1), we find that acquired
generators show an average increase in generation of 6.3% following the acquisition. This
result indicates that the efficiency improvements do not come at the expense of a decline in

29We also want to emphasize that our estimates report the average effects on treated (ATT) generators, specif-
ically the efficiency effects of the proposed and approved acquisitions. The ATT, not the ATE, is the main
(policy-relevant) object of interest in our setting because we are not interested in the effects of randomly
occurring mergers.
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Table 3: Impact of Merger on Generator Performance

Dep. Var. Log Total
Generation

Capacity
Utilization

Operating
Hours

Forced
Outages/Derates

Log CO2
Intensity

(1) (2) (3) (4) (5)

Pre-acquisition (1 Year) 0 0.002 -0.696 -0.009 0.007
(0.024) (0.004) (0.81) (0.014) (0.006)

Post-acquisition (1 Year) 0.052 0.005 0.77 -0.033 -0.008
(0.033) (0.005) (1.192) (0.017) (0.008)

Post-acquisition (2 Years) 0.089 0.012 1.409 -0.04 -0.035
(0.036) (0.006) (1.35) (0.021) (0.01)

Post-acquisition (3 Years) 0.063 0.014 1.68 -0.069 -0.044
(0.037) (0.006) (1.442) (0.02) (0.012)

Temp. & Humidity Controls X X X X X
Unit & Week FE X X X X X
Unit Characteristic by Month FE X X X X X
Scrubber & Enviro. Prog. FE X X X X X

Pre-acquisition Mean - 0.654 39.703 0.158 -
R2 0.808 0.595 0.695 0.243 0.859
# of Observations 1.493M 1.494M 2.612M 0.705M 1.418M
# of Control Units 2311 2311 2311 1383 2026
# of Treated Units 1089 1089 1089 409 977

Note: This table presents the coefficient estimates of δ1 , δ2 , δ3 , and δ4 from estimating Equation (2). Unit
characteristic fixed effects include state, installation year, fuel type, technology type, and unit capacity. Unit
of observation is generator-week. Standard errors are clustered at the plant level. Thenumber of observations
in Column (4) is significantly lower than the rest because the outage & maintenance data begins in 2013.

production. Columns (2) and (3) provide additional insight into the increase in production.
We observe that acquired power plants increase capacity utilization by 1.4 percentage
points and operating hours by 1.68 hours, although the latter is not statistically significant
at the 5% level. Moving toColumn (4), the results point to a reduction in forced outages and
derates of 3-7 percentage points after the acquisition, implying that the acquirers improve
other dimensions of performance beyond efficiency. Finally, we note a 5% decrease in
CO2 intensity, mirroring the results on efficiency gains since CO2 emissions are inversely
proportional to heat input.

4.2 Discussion

Our findings in this section indicate that acquisitions lead to a 5% increase in efficiency,
but only when both subsidiary and parent owners change. Additionally, acquired gen-
erators increase production and utilization, reduce outages, and improve CO2 emission
rates. How significant is the average 5% efficiency gain post-acquisition, and what are
the corresponding cost savings? To answer these questions, it is helpful to compare our
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estimates to average within-generator productivity growth. In the power generation in-
dustry, within-generator productivity growth is modest, at only 0.3% annually.30 Given
this smallwithin-plant productivity growth, the efficiency gains due to ownership changes
is particularly noteworthy.

We also estimate the reduction in CO2 emissions attributable to efficiency gains in
electricity generation due to acquisitions, using the pre-merger CO2 intensity as a baseline.
Aswe detailed in Appendix B.3, three key assumptions underpin our calculation: First, we
assume that the efficiency improvements start following the first acquisition of the unit.
Second, we assume that the units maintain their production profiles post-acquisitions.
Third, we exclude the within-generator intensity reduction that would happen in the
absense of acquisitions. Under these assumptions, we calculate a total cumulative decrease
in CO2 emissions due to acquisitions from January 2000 toMarch 2023 to be approximately
360 million tons. This reduction is comparable to the emissions savings resulting from
substituting 800 TWh of electricity generation from gas-fired power plants with renewable
energy sources.

4.3 What Predicts Efficiency Gains: Heterogeneity Analysis

Our next set of analyses will focus on heterogeneity of efficiency effects. With this exer-
cise, we aim to derive broader lessons from this industry and inform merger policy by
uncovering which merger attributes may predict merger outcomes.

We examine the relationship between efficiency gains and key generator, firm, and
transaction characteristics. For this purpose, we modify Equation (2) by interacting treat-
ment indicators with observables to detect heterogeneity:

log(yit) � δ11{Pre-year1} + δ21{Post-year1} + δ31{Post-year2} + δ41{Post-year3} + δ̄11{Pre-year1} × Zit+ (4)

δ̄21{Post-year1} × Zit + δ̄31{Post-year2} × Zit + δ̄41{Post-year3} × Zit + Xit + µt + αi + εit , (5)

We separately estimate this equation for different generator, firm or transaction charac-
teristics that might be indicative of overall efficiency gains. In particular, we consider plant
capacity, plant age, whether the acquirer is a serial acquirer, acquirer size and whether the
acquisition is a cross-market acquisition. The details of the construction of these variables
are provided in Appendix B.

30See Appendix Figure OA-9, which plots the average year-to-year within-generator productivity growth for
generators not involved in acquisitions. The productivity growth fluctuates around zero, averaging a 0.3%
annual increase over the sample period. Most aggregate productivity growth in the industry comes from
entry and retirements.
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Table 4: Heterogeneity of the Merger Effects on Productivity

Interaction Var. (Z) Capacity
>Median

Age
>Median

Serial
Acquirers

Firm Size
>Median

Cross-Market
Mergers

(1) (2) (3) (4) (5)

Dependent Variable: Log of Efficiency

Pre-acquisition (1 Year) -0.002 -0.002 -0.002 -0.002 -0.002
(0.005) (0.005) (0.005) (0.005) (0.005)

Post-acquisition (1 Year) 0.001 0.016 0.009 0.01 0.014
(0.01) (0.011) (0.008) (0.008) (0.01)

Post-acquisition (2 Years) 0.017 0.037 0.014 0.019 0.048
(0.011) (0.013) (0.01) (0.01) (0.013)

Post-acquisition (3 Years) 0.029 0.054 0.025 0.033 0.068
(0.014) (0.017) (0.013) (0.013) (0.017)

Post-acquisition (1 Year) × Z 0.023 -0.002 0.014 0.012 0.001
(0.011) (0.011) (0.012) (0.012) (0.012)

Post-acquisition (2 Years) × Z 0.035 0.004 0.059 0.05 -0.021
(0.015) (0.016) (0.016) (0.017) (0.015)

Post-acquisition (3 Years) × Z 0.033 -0.011 0.059 0.042 -0.038
(0.018) (0.02) (0.02) (0.02) (0.019)

Temp. & Humidity Controls X X X X X
Unit & Week FE X X X X X
Unit Characteristic by Month FE X X X X X
Scrubber & Enviro. Prog. FE X X X X X

R2 0.763 0.763 0.763 0.763 0.763
# of Observations 1.494M 1.494M 1.494M 1.494M 1.494M
# of Units 2311 2311 2311 2311 2311
# of Acquisitions 1089 1089 1089 1089 1089

Note: This table presents the coefficient estimates of δ̄1 , δ̄2 , δ̄3 , and δ̄4 from estimating Equation (4). Each
column reports results from a different regression by varying the interaction variable, Z. Unit characteristic
fixed effects include state, installation year, fuel type, technology type, and unit capacity. Unit of observation
is generator-week and the dependent variable is the logarithm of the inverse weekly heat rate. Standard
errors are clustered at the plant level. Details about the heterogeneity variables are provided in Appendix
B.4.

Table 4 reports the results. We consider two generator characteristics: capacity and
age. We find that the efficiency increase is 3.3% larger if the generator capacity is higher
than the median of acquired generator capacity. This may reflect the fact that an acquirer
has a higher incentive to enhance efficiency in larger capacity generators plants, as any
improvements in efficiency would yield higher returns. We do not find any significant
effect with respect to generator age, as shown in Column (2). Next, we turn to firm
characteristics. We focus on whether the acquirer is a serial acquirer and the size of the
acquirer (total ownedpre-acquisition fossil fuel capacity). The results reported inColumns
(3-4) indicate that the efficiency improvement is 5% higher when the acquirer firm is large
and is 6.2% higher when the acquirer is a serial acquirer. These results are consistent
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with the interpretation that a firm’s experience in plant operation and acquisition is an
important predictor of post-acquisition efficiency gains.

Finally, in Column (5), we report whether the efficiency effects differ for cross-market
mergers. We define a generator acquisition as a cross-market acquisition if the acquirer
does not own any existing fossil fuel generation capacity in the acquisitionmarket (defined
as a power control area). One might expect different efficiency effects in cross-market
acquisitions due to the absence of market power effects. On one hand, the efficiency
effects of within-market mergers might be smaller because they can still be profitable in
the absence of efficiencies due to increased market power. On the other hand, within-
market merger efficiencies could be higher because the merging parties need to show
efficiencies to get merger approval. Alternatively, there could be within-market synergies
or firm specialization in the acquisition market. We find that cross-market acquisition
leads to efficiency gains that are 3.8% lower than within-market acquisitions. Although
this result does not precisely identify the mechanism behind lower efficiencies in cross-
market mergers, the next section will offer more insights by analyzing within-market
portfolio-level synergies.

The analysis in this section indicates the extent to which efficiency gains correlate with
certain generator, firm, and transaction characteristics. While these findings do not estab-
lish any causal effect, they are still important for antitrust policy. Predicting the efficiency
impacts of mergers ex-ante is especially challenging, asmost merger simulations primarily
focus on forecasting price effects. Therefore, relating efficiency gains to a merger’s specific
attributes offers key information for understanding its potential efficiency effects.

5 Mechanisms

This section investigates the underlying mechanisms of efficiency gains and highlights
two major findings: (i) the majority of efficiency gains stem from increasing productive
efficiency within a generator, and (ii) acquirer firms achieve these efficiency gains through
operational improvements rather than capital investments.

5.1 Mechanisms of Efficiency Improvements

We propose three mechanisms that could explain the estimated efficiency gains: (i) pro-
ductive efficiency, (ii) dynamic efficiency, and (iii) portfolio efficiency. We first explain
these mechanisms and then develop a testable prediction for each of them.

Productive Efficiency. The first mechanism is productive efficiency. Productive efficiency
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Figure 6: Illustration of Efficient Mechanisms
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Note: Each panel shows the illustration of mechanisms of efficiency increase described in Section 5.1.
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arises when the plant’s new owner implements operational processes that reduce produc-
tion costs or invests in new equipment. This mechanism is independent of synergies with
other plants in the same market or changes in ramp frequency; it occurs solely through
increasing the generator’s efficiency. An implication of productive efficiency is a lower
heat rate curve, as illustrated in Figure 6(a). Thus, a prediction of this mechanism is:

Prediction 1: If acquirers improve productive efficiency, the generator’s cost curve shifts
down.

Dynamic Efficiency. The second mechanism relates to dynamic efficiency, which arises
from changes in production allocation over time. As discussed in Section 2.3, a key
aspect of power generation is that efficiency is influenced by both the level of production
and change in production. Generators experiencing significant production shifts face
ramp-up and ramp-down costs, which lower overall efficiency. The stochastic nature of
electricity demand necessitates managing ramp-up and ramp-down costs and requiring
coordination between trading desk personnel, who are responsible for submitting supply
bids, and plant operators, who monitor fuel costs and oversee production. Jha and Leslie
(2019) notes that uncertainty in residual demand or mismanagement in production can
significantly increase costs. Figure 6(b) illustrates the dynamic efficiency effect, showing
more concentrated production, and hence lower ramp-up and ramp-down costs, post-
acquisition. A prediction of this mechanism is:

Prediction 2: If acquirers improve dynamic efficiency, the volatility of generation goes
down.

Portfolio Efficiency. The third mechanism to improve efficiency is portfolio effects.
Electricity markets are complex, with stochastic demand, time-varying transmission con-
straints, and the need to meet demand in real-time. The role of market operators (ISOs) is
to maintain coordination, allocate production to lower-cost generators through real-time
auctions, and aggregate information from generators. However, some inefficiencies could
still be present due to frictions and asymmetric information between market operators
and firms, which might come from firms not having the right tools or incentives to con-
vey its information to the system operator. Therefore, owning multiple power plants with
different production costs could lead to portfolio level efficiencieswith ramp-up and ramp-
down synchronizations and efficient production allocation (Reguant, 2014). This effect is
illustrated in Figure 6(c). As this mechanism only occurs when firms have multiple plants
in the same market, a prediction for portfolio efficiency is:

Prediction 3: The efficiency of the acquirer firm’s existing plants in the acquisition market

28



improves, while in other markets, it remains the same.

5.2 Quantifying Productive Efficiency Using Production Function

We start by testing for productive efficiency using an empirical strategy guided by Predic-
tion 1. In particular, we estimate a production function for generators where we model
efficiency (heat rate) as follows:

yit � fiτ(Qit ,Xit) + εit , (6)

where yit � log(Fuelit/Qit) is log heat rate, and Qit is production of generator i at time t.
The control variables include the ramp defined as the percentage change in production at
time t relative to t − 1, ambient temperature and ambient humidity. Subscript i denotes
generator, t denotes hour, and τ indicates post- or pre-acquisition periods.

As described in Bushnell and Wolfram (2005) this form of production function can be
micro-founded from a Leontieff electricity production function. To see this, assume that
electricity is produced according to the following production function:

Qit � min(g(Fit ,Xit)εit , h(Kit , Lit))ωit , (7)

where Fit , Kit , Lit are fuel, capital and labor inputs, εit is fuel efficiency, Xit are factors that
affect fuel efficiency, and ωit is total factor productivity. This Leontief production function,
under a cost minimization assumption, implies that Qit � g(Fit)εit . Assuming that g(·)
is monotonic in Fit , one can invert it and write Fit as Fit � g−1(Qit)εit . By dividing both
sides by Qit , and taking the logarithm, we obtain the form given in Equation (6).

Importantly, our production function in Equation (6) is indexed by i and τ, where τ
equals 1 in the post-acquisition periods and 0 in the pre-acquisition periods. This means
that we estimate a generator-specific production function separately for the pre- and post-
acqusition periods, so fi0 corresponds to production technology before the acquisition,
and fi1 corresponds to production technology after the acquisition.

It is worth highlighting the advantages of estimating generator-specific production
functions. The production function in Equation (6) captures heterogeneity in production
technology and productivity level across generators with generator-specific and time-
varying production function fiτ. Since productivity differences across generators and over
time are captured by fiτ, εit corresponds to an ex-post shock (or measurement error) to
output that is orthogonal to inputs. Therefore, our specification is robust to the standard
endogeneity concern in production function estimation that more productive firms use
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Figure 7: Estimated Average Cost Curves
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Note: This figure shows estimates of average heat rate curves three years before acquisition and three years
after acquisition. Panel (a) shows this for the acquired generators group, and Panel (b) shows this for the
control group constructed by a matching procedure detailed in Section D.4. The treated group sample is the
same as Column (5) of Table 2. We find the difference to be statistically significant at every production level.
Further details of the estimation procedure is provided in Section B.2.

different input levels, creating correlation between unobserved productivity and inputs,
which is commonly called transmission bias (Marschak and Andrews, 1944). Second,
we allow for a time-varying production function by estimating a separate production
technology in the pre- and post-acquisition periods. This allows for not only the change
in productivity level due to acquisitions, but also in the production technology.

We can estimate this production function flexibly due to the availability of hourly data,
which provides thousands of observations for each generator even in a short window
around acquisitions. This estimation underscores the benefits of a data-rich environment,
contrasting with the traditional production function literature that often has to impose a
functional form at the industry level due to data constraints.

We use a nonparametric local polynomial regression to estimate the functions fi0 and
fi1 for each acquired generator. To estimate fi1, we use three years of post-acquisition data,
while fi0 is estimated using data three years prior to the acquisition. We also construct a
control group by matching acquired generators to those never acquired based on capacity,
age, fuel type, and technology type31. We repeat the same estimation procedure for the
control generators to quantify productivity changes in the absence of acquisitions.

After estimating the heat rate curves both pre- and post-acquisition, we measure the
gains in productive efficiency by calculating the difference between the post-acquisition
and pre-acquisition cost curves for each generator, and then averaging these differences

31The details of how the control units are constructed are given in Appendix B.2
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across all generators. Specifically, we calculate:

∆C(Q) � cpost(Q) − cpre(Q) �
1

Nacq

Nacq∑
i�1

(
fi1(Q , X̄i) − fi0(Q , X̄i)

)
,

where Nacq represents the number of acquired generators and Q ∈ [10, 100] is production
level as a function of capacity. The terms cpre(Q) and cpost(Q) denote the average heat rate
at production level Q before and after acquisition, respectively.32 The control variables are
set to X̄i , which is 0 for ramp and pre-acquisition medians for temperature and humidity,
to isolate the effects of potential changes in these variables post-acquisition. Thus, ∆C(Q),
which is called the average structural function (Blundell and Powell, 2001), gives us the
change in the heat rate curve at each production level, after controlling for generator fixed
effects and control variables.

Figure 7(a) illustrates cpost(Q) and cpre(Q) for the acquired generators, while Figure
7(b) shows these functions for the control generators. A comparison of the pre- and post-
acquisition heat rate curves reveals that the average curve for the treated generators shifts
downward at each production level, whereas it remains largely unchanged for the control
generators.33 The difference between the curves for the treated group is slightly larger at
production levels close to the capacity. We also bootstrapped standard errors for the aver-
age difference between cost curves, which shows the difference is statistically significant at
every production level. These results provide direct evidence that the acquirers improve
the productive efficiency of the acquired plants and that efficiency gains are not due to
only simply changing ramp and production allocation.

Having estimated cost curves, we focus our attention on the total efficiency gain result-
ing from the downward shift in these curves. To quantify this, we integrate the difference
between the post- and pre-acquisition curves as follows:

∆ �
1

Nacq

Nacq∑
i

∫ (
fi1(Q , X̄i) − fi0(Q , X̄i)

)
dFi(Q),

where dFi(Q) denotes the distribution of production of generator i before acquisition. This
calculation yields an efficiency gain of 4.2%, corresponding to roughly 80% of the total
efficiency gain identified in the event study analysis. This indicates that the majority of

32The utilization values start at 10 because very low values of production are rarely observed and give noisy
estimates.

33The small shift in the heat rate curve of control generators is consistent with the within-generator aggregate
efficiency growth documented in Figure OA-9.
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Table 5: Change in Variation of Heat Rate

Dep. Var. CoV of Heat Rate CoV of Utilization Number of Ramps
(1) (2) (3)

Pre-acquisition (1 Year) -0.005 0 0.072
(0.006) (0.004) (0.101)

Post-acquisition (1 Year) -0.019 -0.015 -0.136
(0.008) (0.006) (0.143)

Post-acquisition (2 Years) -0.03 -0.025 -0.234
(0.009) (0.007) (0.155)

Post-acquisition (3 Years) -0.033 -0.029 -0.298
(0.01) (0.007) (0.161)

Temp. & Humidity Controls X X X
Unit & Week FE X X X
Unit Characteristic by Month FE X X X
Scrubber & Enviro. Prog. FE X X X

Pre-acquisition Mean 0.25 0.375 3.915
R2 0.195 0.528 0.449
# of Observations 1.476M 1.476M 1.493M
# of Control Units 2309 2311 2311
# of Treated Units 1089 1089 1089

Note: This table presents coefficient estimates of δ̄1 , δ̄2 , δ̄3 , and δ̄4 from a regression of the standard deviation
of heat rate on treatment dummies using Equation (2). Generator characteristic fixed effects include state,
installation year, fuel type, technology type, and unit capacity.

the efficiency gain is due to increased productive efficiency, resulting from changes made
by the new owners to improve the internal operations of the power plant.

5.3 Quantifying Dynamic and Portfolio Efficiency

We next quantify the role of dynamic efficiency. According to Prediction 2, an increase
in dynamic efficiency would lead to less variability in production and fewer ramps post-
acquisition. To test this hypothesis, we consider three distinct measures of production
variability and estimate Equation (2) for these measures. In particular, we consider the
weekly coefficient of variation (CoV) of heat rate, the CoV of utilization (the distributions
shown in Figure 6(b)), and number of ramps.34 These measures provide a comprehensive
view of how acquisition impacts the production profile of generators.

Table 5 presents the results of our estimation. We observe a significant decrease in all

34We define a ramp as an event where production either increases from below 20% to above 80% of capacity,
or decreases from above 80% to below 20% of capacity, within a span of less than three days.
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measures of production variability following acquisitions. The CoV of heat rate shows
an average decline of 0.033, a large shift given its pre-acquisition mean of 0.25. Similarly,
the CoV of utilization decreases by an average of 0.029. Additionally, there is a notable
decline in the number of ramps, amounting to an approximate 8% reduction relative to pre-
acquisition levels; however, this result is significant only at the 10% level. These findings
lead us to conclude that while improving productive efficiency is the primary method of
achieving efficiency gains, acquirers also manage to lower ramp costs.

It is important to note that less frequent cycling in production can arise from several
sources. One possibility is that it results from increased productive efficiency; a marginal
generator becoming more efficient post-acquisition will be infra-marginal more often and,
therefore, experience less ramping. Another explanation could be a decrease in outages
and forced maintenance. Furthermore, the new owner might change the power plant’s
operation or improve coordination between the bidding desk and power plant. While our
analysis cannot disentangle the role of these sources, it does provide evidence that the
reduction in ramp cost contributes to an overall efficiency increase post-acquisition.

Finally, we test the portfolio efficiency mechanism. Prediction 3 suggests that portfo-
lio efficiency occurs when the acquirer already owns capacity in the acquisition market,
with generators in the same market increasing in efficiency while those in other markets
remain unaffected. To examine this, we estimate Equation (2) twice: first for the acquirer’s
generators in the acquisition market (Figure 8(a)), and second for those outside the acqui-
sition (Figure 8(b)) market. The results indicate that acquirers’ generators do not exhibit
efficiency improvements, regardless of their market location, suggesting a limited scope
for portfolio efficiency improvements.

6 How Do Acquirers Improve Productive Efficiency?
Thus far, our analysis has shown an improvement in efficiency following ownership
changes, mainly due to increased productive efficiency. The next natural question is
how acquirers achieve this efficiency gain. In this section, we investigate this question.

In Section 2.3, we posited two potential ways to improve the productive efficiency
of a power plant. The first is that acquiring firms implement low-cost operational im-
provements in the plants, such as better personnel training and performance monitoring,
more efficient production management and improvements in repairs and maintenance.
These improvements would indicate knowledge transfer from the acquirer to the acquired
generator. The second mechanism involves large-cost capital investments by acquirers to
upgrade existing equipment. If efficiency improvements occur this way, it would sug-
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Figure 8: Impact of Merger on Other Plants

−0.02

−0.01

0.00

0.01

0.02

Pre−Year (1) Post−Year (1) Post−Year (2) Post−Year (3)

 Time

 %
 C

ha
ng

e 
in

 P
ro

du
ct

iv
ity

(a) Same Market

−0.02

−0.01

0.00

0.01

0.02

Pre−Year (1) Post−Year (1) Post−Year (2) Post−Year (3)

 Time

 %
 C

ha
ng

e 
in

 P
ro

du
ct

iv
ity

(b) Different Market

Note: Panel (a) shows coefficient estimates from a regression of log efficiency on δ̄1 , δ̄2 , δ̄3 , and δ̄4 where
existing units of the acquirer in the acquisition market are treated. Panel (b) shows the results from the same
regression, except that existing units of the acquirer outside the acquisition market are treated. Error bars
show 95% confidence intervals. Standard errors are clustered at the plant level.

gest that the previous owner had credit constraints or did not have incentives to make
efficiency-improving capital investments.

Disentangling these two sources is important not only for understanding the nature
of efficiency gains, but also for antitrust policy. Efficiency gains must be merger-specific
to be considered cognizable.35 Efficiencies due to relaxing capital constraints may not
be merger-specific, as they could be achieved without a merger, such as by raising new
capital or through minority ownership. However, knowledge transfer can be considered
merger-specific, since it involves the transfer of organizational knowledgebetweenmerging
entities, a process unlikely to occur outside of a merger.

We aim to disentangle the sources of productive efficiency improvements using ad-
ditional data on manager changes, capital investments, non-fuel inputs and maintenance
schedules. Specifically, we examine whether power plants experience personnel changes
or increase in capital expenditures following acquisition. Personnel changeswould suggest
significant operational changes, whereas changes in capital expenditures would provide
direct evidence for the role of capital investment. By looking at non-fuel inputs and main-
tenance, we also analyze the role of other inputs in efficiency improvements and explore
the possibility of input substitutions.

We start with manager changes and estimate the dynamic difference-in-differences in
Equation (3) to investigate whether acquired plants are more likely to change managers
after acquisitions compared to control plants. The outcome is an indicator variable set to

35The 2010 HMG define cognizable efficiencies as follows: “Cognizable efficiencies are merger-specific effi-
ciencies that have been verified and do not arise from anticompetitive reductions in output or service.”
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Figure 9: Probability of Manager Change
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Note: This figure shows coefficient estimates of a manager change dummy on δ̂s where s ∈ (−36, 36). Error
bars show 95% confidence intervals. The unit of observation is the generator-week. Standard errors are
clustered at the plant level.

1 if the power plant manager is replaced in a given month and 0 otherwise. We include
the same control variables as before.

Results in Figure 9 reveal that the likelihood of manager change jumps after acquisi-
tion, with acquired power plants on average 15% more likely to change managers within
1 month and 30%more likely within two months relative to the control group. The cumu-
lative change reaches 55% within a year of acquisition.36 We also investigate whether the
characteristics of new managers after mergers differ from those of new managers without
mergers. For a subset of managers, we observe the manager’s education degree. We find
that these managers are 5 percentage points more likely to have a master‘s degree and 4
percentage points more likely to have a bachelor‘s degree compared to manager changes
without mergers.37, 38

These results suggest that acquired firms often implement operational changes through
new management. The potential role of management changes in explaining productivity
differences echo important findings in the literature. Macchiavello andMorjaria (2022) find
that foreign acquirers improve the performance of coffeemills in Rwanda by implementing
management changes, and Bloom andVanReenen (2010) show that productivitymeasures
correlate with various management practices.

36The unconditional probability of management change in a given year is only 10%.
37Another important question is whether mergers with manager changes explain the efficiency gain entirely.
For this, we look at whether mergers with manager changes lead to larger efficiency gains than mergers
without any change in management. The results suggest that the effect is 2 percentage points larger, but it
is not statistically significant.

38Another interesting analysis would be to estimate manager fixed effects using the managers that move
between power plants to quantify their productivity. In our manager data, we do not observe many
managers moving between power plants, so we do not have power for such an analysis.
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Table 6: Effects of Mergers on Non-fuel Costs

Dep. Var. Log Capital
Expenditures

Log Nonfuel
Cost

Log Total Number
of Employees

Maintenance
Duration

(1) (2) (3) (4)

Pre-acquisition (1 Year) -0.217 -0.336 -0.22 -0.727
(0.16) (0.402) (0.111) (0.96)

Post-acquisition (1 Year) -0.051 -0.109 -0.322 -2.109
(0.162) (0.207) (0.125) (0.941)

Post-acquisition (2 Years) -0.238 0.096 -0.057 -3.21
(0.169) (0.264) (0.136) (1.095)

Post-acquisition (3 Years) -0.239 -0.304 0.001 -3.18
(0.175) (0.294) (0.156) (1.147)

Temp. & Humidity Controls X X X X
Unit & Week FE X X X X
Unit Characteristic by Month FE X X X X
Scrubber & Enviro. Prog. FE X X X X

Pre-acquisition Mean - - - 5.109
R2 0.896 0.704 0.946 0.123
# of Observations 0.018M 0.018M 0.017M 0.705M
# of Control Units 1472 1643 1553 1383
# of Treated Units 176 203 148 409

Note: This table presents the coefficient estimates from estimating the effects of mergers on non-fuel cost,
number of employees and capital expenditures with annual data. Standard errors are clustered at the plant
level. Note that the capital expenditure information, sourced from FERC Form 1, is available exclusively for
investor-owned utilities from 2008 to 2023.

Next, we examine the changes in capital expenditures and non-fuel inputs after ac-
quisitions, noting that this analysis uses a different and limited dataset. Specifically, we
observe data on capital expenditures, employee numbers, and non-fuel costs for a subset
of plants reporting to FERC only after 2010. This dataset is at the annual frequency, in
contrast to the hourly frequency of previous data. Consequently, while these results offer
valuable insights, they should be interpreted with caution due to these limitations.

The coefficient estimates reported in Table 6 suggest that acquired plants do not in-
crease capital expenditures. The coefficient estimate on capital expenditure is -24%, but
it is not statistically significant due to the small sample size. However, we can still reject
the hypothesis that capital expenditure increases by more than 5% at the 10% significance
level.39 Results on non-fuel inputs are also noisy, but they show evidence against large
increases. These findings, alongside the data on personnel changes, suggest that opera-

39Additional evidence contradicting the capital expenditure hypothesis is the timing of efficiency gains and
operating hours. Significant capital investments often take longer than five months, and they usually
necessitate considerable downtime, which we do not observe.
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tional improvements are the key drivers of productive efficiency and efficiency increases
do not come at the expense of an increase in other input expenditures. This is in line with
Atalay et al. (2014)’s finding that vertical mergers help transfer intangible capital between
merging firms.

In our final analysis, we look at how maintenance duration changes after acquisitions.
We definemaintenance duration as the number of hours a generator is under maintenance
in a given week. Maintenance is also important to analyze because if the new owners
manage the equipment better, we could see less maintenance, due either to less wear on
equipment or due to a singlemaintenance session beingmore effective at addressing issues.
This would also raise production as the generator goes offline less often for maintenance
purposes. The results in Column 4 suggests that maintenance duration goes down after
acquisitions suggesting that excessive maintenance is not the main way of improving
efficiency.

A natural question arising from the findings in this section is why previous owners do
not implement the operational improvements. Given that our study is an industry-level
analysis rather than a firm-level case study, we cannot provide a definitive answer to this
question. Nonetheless, it is important to note that our results align with the substantial
evidence of persistent productivity differences across firms in various industries (Syverson,
2011; Gibbons and Henderson, 2012). We interpret our evidence to suggest that some
firms develop intangible capital over time for more efficient power plant operation, and
this within-organization knowledge is transferable primarily through ownership changes.
Therefore, acquisitions provide a channel for the intangible capital to spread across plants,
which is unlikely to happen through other means.

7 Robustness Checks
In this section, we investigate the robustness of our results to alternative specifications.
The details of these robustness checks are described in Appendix D, and we report the
corresponding results in Appendix E.
Acquisition Sample. In our analysis, we focus only on each generator’s first acquisition.
We take this approach because it is unclear how to correctly estimate the event study with
generators acquired more than once. In a robustness check, we include all acquisitions of
generators within our sample period. The findings, reported in Column (3) of Appendix
Table OA-2, Appendix Table OA-3, and Appendix Figure OA-13, are largely consistent
with our main results.
Estimation Frequency. Our main analysis uses weekly data to estimate the effects of
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acquisitions, as the aggregation reduces noise in the hourly data and is computationally
convenient. To assess the robustness of our findings to this approach, we conduct the same
estimation using daily and hourly data. The results remain consistent across different
frequencies, although there is a slight increase in standard errors.
Staggered Difference-in-Differences. Recent developments in econometrics suggest that
the two-way fixed effects difference-in-differences approachmight produce a weighted av-
erage of all potential combinations of pairwise difference-in-differences estimators, where
the control unit in the pair could be a unit that is treated at a different time (De Chaise-
martin and d’Haultfoeuille, 2020; Callaway and SantAnna, 2021; Goodman-Bacon, 2021).
To tackle this issue, we estimate cohort-specific treatment effects using the Callaway and
SantAnna (2021) method to find similar results, which we report in Appendix Figure
OA-14.
Weighted Estimator In our primary analysis, we estimate the average treatment effects
without accounting for the varying capacity sizes of acquired generators. In a robustness
check, we weight observations by their capacity, which would be a more accurate measure
of total cost savings. The results from this specification suggest slightly higher efficiency
effects, suggesting that the evidence does not primarily come fromsmall units. SeeColumn
4 of Appendix Table OA-2, Appendix Table OA-4, and Appendix Figure OA-16.
Matching EstimatorWematch each acquired generator with similar ones from our pool of
never-acquired control generators. For each generator, we first construct a pool of potential
control units with the same fuel type and technology that operate in a different market
to avoid spillover effects. Then we match these generators based on capacity and age at
the time of the acquisition using a least-squares distance metric between generation units,
with weights inversely proportional to the standard deviation of each variable. We allow
control units to be matched to multiple acquired generators. See the results in Column (5)
of Appendix Table OA-2 and Appendix Figure OA-15.
Net Generation In our primary analysis, we used gross generation when quantifying
generator efficiency because of its availability in high frequency. We also think gross
generation is the relevant variable for understanding the overall efficiency of power plants
since we study how fuel is transformed into electricity, not revenue obtained from net
generation. However, we repeat the analysis using monthly net generation data from EIA
as a robustness check. The effect is broadly similar but slightly lower.
Estimation after 2010 One potential concern in our analysis is the effect of deregulation
which overlaps with our sample period for a few years in the early 2000s. Even though
we exclude ownership changes that correspond to divestitures, as a robustness check,
we repeat our analysis by restricting to acquisitions after 2010. The results, reported in
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Column (1) of Table OA-2, is similar to our baseline result.
Placebo Tests We use two types of events as placebo tests: minority acquisitions and
corporate restructuring. We use these events as placebo tests to test for unobservable
characteristics that could drive both acquisitions and efficiency changes; should these
unobservables exist, they would likely drive minority acquisitions and corporate restruc-
turing. The results, reported in Columns (6) and (7) of Appendix Table OA-2 confirm our
expectation that there is no significant change in power plant efficiency after these events.

8 Conclusion
By reallocating resources between firms, mergers and acquisitions affect a significant
portion of the economy. Despite this importance, there is limited systematic evidence
of their effects on productivity. This study provides detailed empirical analyses of the
efficiency effects of mergers by examining a large sample of power plant mergers and
acquisitions between 2000 and 2023. Our empirical results can be summarized into three
principal findings. First, we find that acquired plants experience on average a 5% efficiency
increase in five to eighteen months after acquisition. Second, these generators produce
more, increase their capacity utilization, decrease their outage frequency and decrease
cycling. Finally,wefind that thenewowners improveproductivity by changingoperational
processes rather than by making costly capital investments.

Our findings take advantage of a large number of acquisitions in the power genera-
tion industry and high-frequency data on productivity and inputs obtained via physical
monitoring systems. Using physical measurements in this homogeneous product setting
allows us to disentangle the productivity effects from other potential merger effects, such
as market power, buyer power, or changes in quality. With high-frequency data, we can
treat mergers as discrete events and compare generator productivity immediately before
and after acquisitions. Finally, by aggregating evidence from a large number of mergers
and acquisitions, we have statistical power to uncover many interesting mechanisms that
could generate efficiency gains.

Our findings have important policy implications, as they can be a direct input to
evaluating the trade-off between market power and efficiency due to mergers. However,
we want to emphasize that our results do not give a conclusive answer to the overall
impact of mergers on consumer harm, as we identified only one factor going into the
welfare analysis. Moreover, our efficiency results are not generalizable to industries where
the production process differs significantly from electricity generation, such as service
industries.
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A Data Appendix
This section provides the details of the data sources used in the paper.

A.1 Unit-Level Data

We use EIA Forms 860 and 923, EPA’s Continuous EmissionsMonitoring Systems (CEMS),
S&P Global, and Velocity Suite to construct a dataset for generator characteristics and
production. The EIA forms and CEMS data sources are public, whereas S&P Global
and Velocity Suite are private data providers for energy markets. The EIA Forms cover
the universe of generators in the US, whereas the CEMS data includes generators with a
capacity above 25 MWh that are subject to a set of environmental regulations. The data
providers S&P Global and Velocity Suite compile unit- and plant-level information from
various resources, including EIA, EPA, FERC, and proprietary. We merge these datasets
based on generator names and plant ids (orispl code). The merged data is a monthly panel
data that include information on plants and generators. These include regulation status,
technology type, installation year, fuel type, coal type, boiler type, boiler model, boiler
manufacturer, capacity, fuel cost, prime mover category, dispatch type, whether a unit is
connected to the grid, internal generator, whether the unit is marginal or infra-marginal,
and whether the unit is able to switch fuel. We provide more details about some of the
variables below.

Generation Most fossil fuel power plants are required, under EPA regulations, to make
continual compliance determinations for environmental regulations. For this purpose,
EPA collects boiler-level hourly production and emissions data (heat input, gross electricity
generation, emissions) from power plants and makes this data publicly available. The
coverage of this data corresponds to roughly 96% of US fossil-powered generation in 2018
(EPA, 2018a). While this data is available starting in 1995, the data quality is poor before
2000. For this reason, we restrict the study period from 2000 to March 2023. With these
restrictions, the final data includes all US fossil fuel generators that comply with the CEMS
program, except those in Alaska and Hawaii. This procedure results in an hourly unit-
level dataset on generation, fuel input, and heat rate between 2000 and March 2023. We
aggregate this data to weekly levels in some of the analyses employed in the paper.

Theheat rate quantity is calculatedbydividing the total heat input by the total electricity
output at the frequency of the analysis (hourly, daily, or weekly). If there are significant
changes in the production within the hour, the heat rate could be very high or very low.
This sometimes generates noise in hourly heat rates, especially at small production levels.
To account for this, we winsorize heat rates above 16 or below 6 MMBtu per MWh. This
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winsorization affects less than 3% of all observations.
We match unit-level generation data from CEMS to unit-level data from the other data

sources mentioned above. While most units are easily matched using the unit name, some
do not match as EPA uses boilers as a unit, whereas EIA uses generator names. For those
cases, we rely on the EPA’s Power Sector Data Crosswalk available on the EPA’s website.40
This crosswalk does not include units that retired before 2020. We manually match those
retired and other unmatched units based on capacity, installation year, and retirement year
information.

Enviromental Programs CEMS provide information on which enviromental programs
units are subject to. These programs include Acid Rain Program (ARP); Cross-State Air
Pollution NOX Annual Program (CSNOX); Cross-State Air Pollution NOX Ozone Season
Group 1 Program (CSOSG1): Cross-State Air Pollution NOX Ozone Season Group 2 Pro-
gram (CSOSG2) Cross-State Air PollutionNOXOzone Season Group 3 Program (CSOSG3)
Cross-State Air Pollution SO2Annual Group 1 Program (CSSO2G1), Cross-State Air Pollu-
tion SO2 Annual Group 2 Program (CSSO2G2), Mercury and Air Toxics Standard (MATS),
New Hampshire NOX Program (NHNOX), NSPS Greenhouse Gas Rule (subpart TTTT,
NSPS4T), Regional Greenhouse Gas Initiative (RGGI), SIP Call NOX Budget Trading Pro-
gram (SIPNOX/NBP), Texas SO2 Trading Program (TXSO2).

EnviromentalControlEquipments CEMSprovidesdataonenvironmental control equip-
ment used in boilers for SO2, NOx and particulate matter (PM) reduction. This includes
the installation date and type of each equipment. A generator may use multiple pieces of
equipment for a particular pollutant. From this dataset, we create control variables that
indicate whether a unit has at least one scrubber for each particle type.

Capacity Estimation EPA data does not provide capacity data. We infer yearly capacity
from generation using the following algorithm. For each year, we keep generators that op-
erate cumulatively for more than two weeks each year. Then, we obtain the annual hourly
generation distribution and use the 99.5th percentile of the generation as the capacity for
the unit every year. This algorithm yields generator capacity that is stable over time for
most units. If a unit generates less than two weeks over the course of a year, this algorithm
does not yield any capacity estimates. For those units, we backfill capacity information
from previous years. To check the accuracy of this algorithm, we run it for the units that
have a perfect match in the EPA and EIA, for which we have the true capacity information.
We find that capacity generated from the EPA data aligns with those provided by the EIA.

40https://www.epa.gov/airmarkets/power-sector-data-crosswalk.
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A.2 Plant-Level Data

We use EIA Forms 860 and 923 and Velocity Suite to construct data for plant-level charac-
teristics. From these data sources, we obtain information on location, ISO, FERC region,
regulation status, and other important plant-level information. We also obtain data on
non-fuel input from Velocity Suite, such as capital expenditures, number of personnel,
and non-fuel costs. Velocity Suite compiles this data from the annual FERC Form 1, a
comprehensive financial and operating report submitted for Electric Rate regulation and
financial audits. This form is only mandatory for investor-owned utilities, so the coverage
for these variables is lower than the coverage of other variables.

A.3 Personnel Data

Each power plant subject to at least one EPA programmust submit a representative contact
to the EPA. This representative information is essential for the EPA, as potential problems
like leakage need to be addressed quickly, and responsible parties should be accountable.
This data includes the representative’s name, start and end date, and contact information
and is available through EPA’s Envirofacts Data Service API.41 We use this data on plant
representatives from theEPAbetween 2000 and2020 to construct personnel data. However,
this database does not include some key information, such as job titles. To obtain this
information, wematched representative names to their LinkedIn profiles and found about
70% of representatives on LinkedIn. The match rate improves over time, reaching 80–90%
in later years. We obtain a history of job titles, employment, and education from LinkedIn
profiles. The job title suggests that about 70–80% of submitted representatives are plant
managers and the rest are engineers or regulatory compliancemanagers. Considering that
most of these representatives are plant managers, we treat the representative personnel as
the plant manager in this study.

This procedure results in monthly plant-level panel data on plant managers. In this
data, we know the manager’s start and end date of employment and education history if
it is successfully matched to LinkedIn profiles.

A.4 Divestiture Data

After the 1990s, significant deregulation reshaped the power generation industry. To
differentiate betweenmergers and deregulation-driven divestitures, we compiled a dataset
focusing on divestiture-related acquisitions after the year 2000. This dataset was formed
by amalgamating various resources, with a primary focus on post-deregulation divestiture

41https://www.epa.gov/enviro/envirofacts-data-service-api
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activities.
Our initial step involved utilizing the divested plants fromCicala (2022) andAbito et al.

(2023), which provided a detailed account of deregulation from 2000 to 2012, integrating
data from the EIA and other resources. For data prior to September 2002, similar to
Cicala (2022) and Abito et al. (2023) we primarily relied on the EIA Electric PowerMonthly
reports, which featured a specific section highlighting divestiture cases, titled “Electric
Utility Plants Sold/Transferred and Reclassified as Non-utility Plants.” This section was
crucial in identifying the divestiture events and the corresponding acquisition dates. Post-
2002, we merged several datasets. This included tracking changes in the EIA’s regulation
status, S&P Global’s regulation status, and Velocity Suite’s data regarding the regulatory
status of the plant owners.

The next step in our methodology was to identify the exact month of divestiture post-
2002 accurately. For this, we analyzed changes in ownership data, specifically looking at
‘Owner’ and ‘Ultimate Owner’ as per S&P Global, and ‘Owner’ and ‘Holding Company’
according to Velocity Suite data. Our time frame for this analysis was set at a 12-month
window – six months before and after the first observed change post-2002. In instances
of conflicting data between these sources, we gave precedence to S&P Global, owing to its
better alignment with EIA’s pre-2002 data. This results in a total of 615 acquisition events
between 2000 and 2023 that we remove from the acquisition sample.

A.5 Ownership and Acquisition Data

Every acquisition that involves a power plant should be notified to the corresponding
state or federal agency for approval. For this reason, the power generation industry has
comprehensive data on the universe of power plantmergers and acquisitions. To construct
this dataset, we use two separate datasets from S&P Global: ownership and transaction
datasets. We augment this dataset using company press releases and newspapers articles
about these acquititions.

We access data on ownership shares of electricity generators from the S&P Global
Capital IQ database (previously called SNL Financial). This dataset has been previously
used bymany researchers to study electricitymarkets (Davis andHausman, 2016; Jha, 2020;
Borenstein and Bushnell, 2018). We exclude generators categorized as in development,
terminated, announced, or under construction as of August 2023 and focus only fossil
fuel generators. The name of the owning company, their percent share of equity in the
generating unit, and the owner’s ultimate parent company characterize the ownership
information for each generator-share. If a generator’s ownership changes over time due
to a merger or acquisition, a share has an event date, event id (transaction id) and an end
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date. The status of each share is recorded as either “Current" or “Sold". “Current" shares
do not have an end date as it indicates the current ownership while “‘Sold" shares do have
an end date indicating the end of a past ownership. There are also “Pending" ownership
shares, but these represent transactions which have yet to complete as of August, 2023, so
these observations are disregarded.

From the raw generator-share data, we construct a panel that records information
about the companies that own each generating unit for the duration our study period. We
rely on the dates listed with each ownership share to determine when a generating unit
should enter the panel and when ownership changes occur. These data record the set of
companies that own each generating unit, the percent shares attributable to each owner,
and each owner’s respective ultimate parent company. If an ownership group is active for
less than a full month, meaning the event occurs after the first of the month and expires
before the end of that same month, then we exclude the ownership group involved in
this intra-month change from the panel. Intra-month ownership changes account for less
than one percent of the generator-share data. S&P Global backfills any company name
change, so firm name changes are not reflected as ownership change. Moreover, S&P
Global maintains a consistent company identifier for owner throughout the panel, so we
do not need to rely on company names. To summarize, this procedure results in a month-
generator panel data with the following information: the largest three shareholders of the
generator, the parent company of each shareholder, and the percentage of the power plant
owned by each shareholder.

The second dataset is mergers and acquisition data. This dataset provides detailed
information for every transaction, such as buyers, sellers, transaction type (divestitures,
cash deal, LBO), and deal value. This dataset includes a transaction ID and transaction
description. Around 80–85% of transactions include transaction descriptions where one
can see acquired assets, acquisition motives, and other important information. The rest of
the transactions do not have a description. For these transactions, we manually search for
companies involved and classify whether these are true ownership changes. This search
revealed that the majority of transactions with no description are false acquisitions due to
corporate restructuring or name changes. For this reason, we decided to exclude acqui-
sitions with no description and corresponding ownership changes from our sample. For
other transactions, we read the description and found corresponding newspaper articles
and press releases (often listed in S&P Global Capital IQ) to make sure that they are true
ownership changes.

Next, we merged the two datasets using transaction IDs that are available in both
datasets. The merged data gives us a complete picture of ownership changes, including
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new and previous owners and important transaction characteristics.

A.6 Firm Data

Even though the ownership and transaction data provide buyer and seller names and
identifiers, they do not provide information on firms, such as their industry and asset size.
To obtain this information we used another data portal owned by S&P Global called S&P
Capital IQ Pro.42 S&P Capital IQ Pro and S&P Global Capital IQ use the same company
identifier if the firm is classified as a utility. For other firms, we manually searched for
company names in the platforms to create a crosswalk between company identifiers. We
could match all company names except for a few companies that went bankrupt or were
company funds. Using these company identifiers, wemerged S&PCapital IQ Pro database
to our ownership panel and obtained key information about firms such as industry, year
founded, asset size, and various balance sheet information.

A.7 Maintenance and Outage Data

The Generating Availability Data System (GADS), managed by the NERC, is a database
and reporting system that collects and analyzes data on the performance and reliability
of power plants. The data collected helps utilities and other stakeholders in analyzing
performance trends, developing benchmarks for equipment reliability and availability,
and in making informed decisions about plant operations and maintenance. The GADS
database is divided into events, performance, and units datasets containing information
on unit maintenance and disruptions at the hourly level, monthly unit generation, and
time-invariant unit characteristics, respectively. The intersection of these datasets yields a
panel ranging from 2013 to 2021 for 6,914 units that experience any type of event.

A.7.1 GADS Data Description

The primary focus of the GADS database are the events data, which are aggregated at
the event level and describe the duration of disruptions and other issues experienced by
generators. These events can be broadly categorized as outages, which indicate a complete
disruption of production; derates, which are associated with periods of production lower
than expected capacity; non-curtailing, which do not affect the productive capabilities of
units; and inactive, duringwhich units are not producing for some reason other than those
associated with outages. Outages and derates are further categorized as forced, planned,
or maintenance events, depending on the urgency. Forced events must be addressed im-
mediately or near-immediately, whereas planned and maintenance events are disruptions

42https://www.capitaliq.com/
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that have been anticipated over a longer period of time; planned events typically coincide
with planned inspections and are thus scheduled months in advance, whereas mainte-
nance events are less-emergent than forced events, but require attention prior to the next
planned event.

In addition to the events data, the GADS data also includes data describing unit gener-
ation. These data, referred to as the performance data, are aggregated at the monthly level
and report generation in terms of hours, along with descriptive information such as fuel
and unit type. NERC also provides time-invariant unit characteristics in the units dataset;
of particular interest in these data are the unit’s geographic location and name-plate ca-
pacity.

A.7.2 Processing GADS Data

The raw GADS data are combined to construct an events panel unique at the unit-hour
level. The foundation of this panel is the events data, though the performance and units
data supplement the events datawith unit characteristics andproduction information. The
units data provide capacity and geographic information of a unit, and the performance
data provide fuel type information, which is taken as the most recently reported fuel type
for a given unit, as well as monthly production hours. The processing of these data is
minimal; the performance data contain some duplicate observations which are dropped,
but cleaning efforts are otherwise focused on the events data.

Similar to the Performance data, the Events data include some apparent duplicate
observations that contradict the documentation. The data documentation suggest that the
data should be unique at the unit-event level, where an event is described by a combination
of descriptors and date range. These event descriptors include event type, contribution
code, cause code, and amplification code, where contribution code indicates whether an
eventwas the primary cause of disruption, and cause and amplification codes each provide
more detail describing the event (such as a particular part malfunction). Contrary to this
intuition, the raw data include a unique event identifier that seems to distinguish between
events that are otherwise identical on all other variables. For this reason, we assign our
own event identifier based on the combination of descriptors detailed above, and drop
duplicate events based on this definition. This cleaning step drops 1,380 observations,
which accounts for 0.03% of the raw sample.

The raw events data are split into yearly files, and so individual events that span
multiple years must be concatenated manually. The raw data include a flag indicating
whether an observation corresponds to an event that continues into the next year or is a
continuation of an event from a previous year. We concatenate events across years, using
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this flag to distinguish between events that actually span calendar years as opposed to
those events that start (end) on the first (last) date of a given year. It follows that an event
continuing into the next year should match to a corresponding event such that the end
and start dates are the same. For a given pair of adjacent years, we concatenate events
when appropriate, matching them based on the event descriptors described above (i.e.,
unit owner, unit, event type, contribution code, cause code, and amplification code) as well
as coinciding start and end dates. We repeat this exercise once more to account for events
that may span multiple years, matching 75% of events flagged as spanning multiple years.

The Events data also include partially or completely overlapping events that are other-
wise identical; in other words, there are events which are identical across descriptors that
start at the same time but end at different times, and vice versa. These events are always
derating or non-curtailing events, and likely correspond to different periods of work or,
alternatively, different periods of capacity restriction. Given our focus on the timing and
nature of events, and not the extent of work or capacity restrictions, we drop any event
that is completely subsumed by another event that is identical in terms of descriptors. One
important distinction is partially overlapping events, which we keep in the data as distinct
disruptions. This excludes 1424 superfluous events.

In sum, this process drops 0.7% of the raw sample and yields a dataset defined at the
event level, in which a unit can experience multiple concurrent events. Observations are
identified by Unit-Owner-Event Type-Cause-Contribution-Amplification-Start Date com-
binations. From this dataset, we generate a restricted Events dataset that excludes units
that are not located in the contiguous United States or produce for less than 100 hours over
the sample period. Additionally, hydro or nuclear units are excluded from this restricted
set, which accounts for 71.2% of units and 69.3% of reported events in the full Events
dataset.

Taking the cleanedEvents data as input, we construct a balancedhourly events panel for
all units that includes event ID and descriptors for up to five concurrent events. Units may
experience up to 47 events simultaneously in the raw data, but maintaining information
on each of these events is not tractable given computational constraints. Units seldom
experience more than five events simultaneously, account for 0.05% of all unit-hours or
0.09%of unit-hours conditional on at least one observed event, so this restraint hasminimal
impact qualitatively. The raw events data report event duration by the minute, though
this level of precision is unnecessary and intractable. To limit the granularity, start dates
are rounded up and end dates are rounded down to the nearest hour, such that events
generally begin in the first full hour and end in the last full hour of occurrence.
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A.7.3 Matching GADS Units to CEMS Data

The hourly events panel facilitates and granular comparison between GADS event inci-
dence and CEMS production. Additionally, the GADS performance data allows a direct
comparison between GADS production and CEMS production data, albeit at the monthly
level due to the limitations of GADS granularity. As a first step, we attempt to match
units across datasets by correlating monthly production hours; this approached is supple-
mented with an hourly comparison, in which we calculate the probability of production
conditional on events. This process, described in further detail below,matches 3,988GADS
units to CEMS units.
Monthly Algorithm The monthly algorithm attempts to match units across datasets by
correlating monthly production hours. The GADS performance data reports monthly
production in terms of generation hours; to ease comparison,the hourly CEMS production
data are aggregated to the monthly level by calculating the number of hours in a given
month during which a unit produces any output. Units are grouped into "buckets" based
on state and a broad categorization of fuel type, distinguishing between coal, gas, and
other fuels, in order to limit the scope of comparison. Within each bucket, production is
correlated for all unit-pairs across datasets over the months that both units are available
for production. Correlations are calculated with a variety of measures to account for
outlier sensitivity; the key measures include Spearman, Kendall, and Pearson coefficients,
though we run additional correlations for robustness that winsorize the production hour
distributions, and, separately, focus on months where both units are actively producing.
We calculate the average correlation coefficient across measures and produce a scatter
plot for each potential match, which were manually reviewed to determine true matches.
Each potential match was given a score of 1 through 6, based on the following definitions:
definite unit match, definite plant match, probable match, multiple potential matches, no
match, and no need tomatch on account of low production. To supplement the correlation
calculation and distinguish between multiple strong candidates, we also compared unit
characteristics, such as retirement status or capacity. In sum, this algorithmmatched 3,671
(3,469) GADS units to CEMS (Velocity) units.

This process is repeated again on the subset of unmatched GADS units with buckets
defined by state, allowing for some flexibility with fuel type when comparing units across
datasets. For this additional iteration, we restrict attention to unmatched CEMS units as
well as CEMS units that are not matched with utmost confidence; in other words, we
exclude CEMS units matched to GADS units for which we are reasonably certain that the
unit match is precise. This step generated an additional 304 GADS unit matches.
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Hourly Algorithm The hourly algorithm matches units across datasets by calculating
the probability of production, conditional on an observed event. We evaluate matches
based on the rate at which unit production accords with event occurence. To underpin
this logic, we take the monthly matches as given and plot the distribution of production
probabilities conditional on various event types. Focusing in particular on units that
are matched with confidence, these distributions show that units experiencing an outage
event overwhelmingly do not produce; likewise, a unit experiencing an isolated derate
event (i.e., a derating without any concurrent events) is very likely to produce. These
findings squarewith theGADSdocumentation describing each of these events. Intuitively,
a unit that experiences an outage is not able to produce, whereas a unit experiencing a
derating event without any other extenuating circumstances (i.e., simultaneous outage
or reserve shutdown) should operate at reduced capacity. Approximately 66.4% of units
experience an isolated derating event, though 99% of units experience an outage event at
some point; the overwhelming majority of units that experience an isolated derating event
also experience an outage at some point during the sample period.

Given these patterns, we devise scores to rate the extent to which a unit’s production
coincides with expectations, given an outage or isolated derating event. We calculate four
different scores: (i) a derate score, which is the probability of production, conditional on
an isolated derating event, (ii) an outage score, which is the probability of no production,
conditional on any outage, (iii) an average score, which is a simple average of the derate
and outage scores43, (iv) and a composite score: the probability of production conditional
on an isolated derating or the probability of no production conditional on any outage.

These scores are calculated over the intersecting periods of GADS event times and
CEMS production times. As such, we do not calculate conditional probabilities during
times prior to a unit’s entry following a unit’s retirement. This is meant to reduce the
amount of false positives that may arise from an inactive unit perfectly overlapping with
an outage event. However, this approach introduces an additional source of false positives,
in that production and event timesmay overlapminimally and thus achieve an erroneously
high score. To account for this possibility, we also calculate the share of event time during
which a unit is available for production, and scale the average and composite scores by
this share. Doing so minimizes the potential for false positives by scaling down the scores
of matches that barely overlap.

As in the initial monthly algorithm, GADS units are compared to CEMS units based on
the state and broad fuel grouping. To provide additional focus, comparisons are restricted
to those units that operate over similar time periods; this operational overlap is calculated

43If a unit does not experience an outage (derate), then the average score is equal to the derate (outage) score
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as the share of months during which both units produce any amount of output. We only
attempt to match those units whose production shares are within 2.5 percentage points.
Additionally, we exclude CEMS units that never produce electricity.

We calculate the scores discussed above for all unit combinations within these con-
straints. To identify additional matches, we rely on the monthly matches as a benchmark
because these have been manually reviewed and verified. For each score, we calculate
the share of GADS units for which the hourly algorithm and monthly algorithm generate
the same match; the score that yields the highest rate of concurrence across algorithms is
considered the optimal score.

Rates of concurrence tend to vary considerably across fuel types, so we select optimal
scores for each fuel grouping: the optimal score for coal, gas, and other units is composite,
average scaled by overlap, and composite scaled by overlap, respectively. For each unit,
we calculate the difference in optimal scores between the top matches, based on the
assumption that the score of a true match will far exceed the next best option. We plot the
distribution of these differences, breaking them out by fuel grouping, as well as whether
the match concurs with the monthly algorithmmatch. Focusing on the GADS units which
are matched to different CEMS units (i.e., the hourly algorithm does not correctly identify
the unit match given the monthly results), we use this distribution to identify a threshold
above which false positives are very unlikely based on the right tail of the distribution.
We apply this threshold to GADS units that were not matched to any unit in the monthly
algorithm in order to identify additional matches that are unlikely to be false positives.
Taking these additional matches, wemanually review correlationmatrices similar to those
generated in the monthly algorithm to weed out erroneous matches, applying match
scores based on the scheme outlined in the monthly algorithm. This procedure yields an
additional 13 matches to CEMS units.
Match Results This iterative matching process yields 3994 matched GADS units in total;
matches to CEMS (Velocity) units account for 81.1% (70.6%) of GADS units, and matches
make up 92.8% of CEMS capacity. The entire processmatches approximately 90%ofGADS
coal units and 87.5% of GADS gas units to CEMS units, while less than 50% of other units
are matched. Though we were not able to match every GADS unit, these matches account
do account for the vast majority of GADS units As well as the vast majority of CEMS and
Velocity capacity. The bulk of unmatched units fall into the "other" fuel category; likewise,
the capacity of these units tends to be towards the lower extremes or negligible, suggesting
that the most relevant and significant units have been matched.
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B Estimation Details
In this section, we provide the details of various estimation procedures employed in the
main text.

B.1 Estimation of Residual Productivity

This section explains how we estimate the annual residual log-productivity. Our goal is
to account for the observable factors that can affect plant productivity and document that
there is large heterogeneity in residual plant productivity over time and across firms.

We estimate regressionswith a rich set of observables andfixed effects to obtain residual
productivity. In particular, in the first step, we use weekly heat rate data aggregated
from hourly data and regress the logarithm of the inverse heat rate on time-varying
observed plant characteristics and unit-year indicators. These time-varying variables
include week fixed effects, state-month fixed effects, regulation status, total load, the
number of idle hours, the standard deviation of heat rate, and the number of times the
production increases by more than 2% and 5% in that week. By controlling for these
factors, we account for the potential effects of production profiles on efficiency. In the
second step, we take the estimated unit-year fixed effects and regress them on time-
invariant unit characteristics that include capacity, fuel type, boiler manufacturer, and
generator model.44 The second regression accounts for productivity differences that are
explained by observable generator characteristics. We use the estimated residuals from
this second regression and plot them in Figure 2. The time-varying observables in the first-
step regression explain 45% of the variation in weekly heat rate, and the time-invariant
observables explain 42% of the remaining variation in the second step.

B.2 Cost Curve Estimation

Weestimate the generator-specific cost curvesusinghourlydata before andafter themerger
by controlling for productivity level (percent of capacity) and ramp-up and ramp-down.
We define ramp as the absolute change in production compared to the previous hour.

We estimate the cost curves for treated and control groups separately. We use the
sample of acquired generators used to estimate in Equation (3) for the treated group.
Then, we take the production profile of these generators one year preceding the merger
and one year following themerger. We remove generators from the sample if a generator is
inactivemore than 80%of the time, either during the pre-period or post-period. The results

44Generatormodel and characteristics aremissing for about 20% of generators. For those, we include amissing
dummy variable.
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are robust to this restriction, but they are unstable because, for rarely active generators, the
cost curve is noisy. With this sample, we non-parametrically estimate the cost curve using
a local polynomial regression fitting in R. In particular, we use the loess() function in R’s
stats package with the default tuning parameters.

To construct the control group, we match each treated generator to a never-treated
generator. For the matching procedure, we follow what is described in Section D.4 except
that we match each generator to only one rather than three. After constructing the control
sample, we estimate pre- and post-acquisition cost curves as if these control generators are
acquired at the same time as the matched acquired generators.

We estimate the confidence band for the difference between pre- and post-acquisition
cost curves for the treated generators using a bootstrap procedure. We re-sample the
treated generators with replacement and estimate the cost curve for the sample. We repeat
this 200 times and report the 2.5 and 97.5 percentiles of the bootstrap distribution.

B.3 Calculation of Fuel and CO2 Emission Savings

To quantify the efficiency gains from mergers in terms of changes in fuel usage and
CO2 emissions for each unit, our analysis is limited to our main sample, which involves
Subsidiary/Parent Company changes from the first merger. We assume that, after the
merger, generators produce the same amount of electricity as they would have if not
acquired. Additionally, we assume a uniform industry-wide efficiency increase of 0.3%
per year, applied consistently across months and plants.

Using the CEMS dataset, we analyze monthly CO2 emissions at the unit level. We
identify the month of the first merger for each unit and calculate CO2 emission intensity
for every month. Post-merger, we adjust this intensity to account for non-merger related
gains due to the industry-wide efficiency increase. Then, we aggregate the total generation
andCO2 emissions before themerger and compare them to the total generation and implied
CO2 emissions after the merger, to determine CO2 intensity changes. Assuming no change
in production post-merger, we calculate the hypothetical total emissions if the unit had
maintained its pre-merger CO2 emission intensity. The total CO2 emission savings are
then determined by the difference between this hypothetical scenario and the actual post-
merger emissions.

With this set of assumptions, the total cumulative decline in CO2 emissions between
2000 and 2023 is roughly 360 million tons. This corresponds to the emissions reduction
from replacing 800 TWh generation from natural-gas fired plants with renewables, assum-
ing CO2 emissions are roughly 0.4 tons per MWh for gas-fired power plants. . With the
assumption of a 30% utilization rate of wind power plants, this is roughly equal to 13 GW
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capacity investment in wind power plants from 2000 to 2023.

B.4 Heterogeneity Analysis

In this subsection, we describe the constructions of variables used in the heterogeneity
analysis.

• Gas Plant: An indicator variable that equals 1 if the acquired generator is powered
by natural gas and 0 otherwise. Since most of the acquired generators are natural
gas-fired, this variable equals 1 for 90% of transactions.

• Plant Age > Median An indicator variable that equals 1 if the age of the acquired
generator is larger than the median. We consider all the generators in our main
specification to calculate the median age and find the median value.

• UnitCapacity>Median: An indicator variable that equals 1 if the age of the acquired
generator is larger than the median. To calculate the median capacity, we consider
all the generators in our main specification and find the median capacity.

• Acquirer Size > Median: An indicator variable that equals 1 if the total capacity
of the acquirer pre-transaction is larger than the median capacity of firms that have
been involved in a transaction between 2000 and 2023.

• Serial Acquirer: An indicator variable that equals 1 if the total capacity acquired by
the acquirer between 2000 and 2023 is larger than the median of the total capacity
acquired by firms between 2000 and 2023.
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C Additional Tables and Figures

Figure OA-1: A Slide from Investor Presentation About Efficiency Claims

Note: This figure is from a slide deck presented in the conference call of the acquisition of Dynegy by Vistra
Energy in 2018.
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Table OA-1: Largest 25 Acquisitions by Fossil Fuel Power Plant Capacity

Acquirer Target Year Cap. (MWh) # of units

Vistra Energy Corp. Dynegy Inc. 2018 27198 99
NRG Energy, Inc. GenOn Energy, Inc. 2012 26174 139
Volt Parent, Lp Calpine Corporation 2018 22991 127
RRI Energy, Inc. Mirant Corporation 2000 22748 140
Duke Energy Corporation Progress Energy, Inc. 2012 19048 134
Duke Energy Corporation Cinergy Corp. 2006 14923 70
GC Power Acquisition LLC CenterPoint Energy, Inc. 2004 13204 43
NRG Energy, Inc. Texas Genco Inc. 2006 13017 42
Westar Energy, Inc. Great Plains Energy 2018 12237 66
Vistra Corp. TXU Corp. 2007 11116 45
Exelon Corporation Constellation Energy Group 2012 10790 66
PPL Corporation E.ON AG 2010 10035 44
NRG Energy, Inc. Edison Mission Energy 2014 9052 30
FirstEnergy Corp. Allegheny Energy, Inc. 2011 8631 36
NextEra Energy, Inc. Engie SA 2017 8604 39
Dynegy Inc. Duke Energy Corporation 2015 8387 26
Reliant Resources, Inc. Orion Power Holdings, Inc. 2002 8247 85
AES Corporation DPL Inc. 2006 7879 33
Carolina Power & Light Company Florida Progress Corporation 2000 7721 63
Powergen PLC LG&E Energy Corp. 2000 7445 31
ArcLight Capital Partners, LLC Tenaska Energy Inc. 2015 7398 79
Dynegy Inc. Energy Capital Partners LLC 2015 7334 28
MidAmerican Energy Holdings NV Energy, Inc. 2013 7149 52
Astoria Generating Co. EBG Holdings LLC 2007 7143 66
Riverstone Holdings LLC Talen Energy Corporation 2016 6941 12

Note: Largest 25 acquisitions in the fossil fuel power generation industry between 2000 and 2020. The
columns indicate the year the transaction occurred, total production capacity involved in the transaction,
and the total number of units that changed ownership.
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Figure OA-2: Ownership Change Types
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Note: This figure demonstrates different types of acquisitions. Panel (a) is the corporate structure of com-
panies before the acquisition. Panels (b), (c), and (d) show the corporate structure after the acquisition for
partial asset sales, subsidiary acquisitions, and mergers separately.
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Figure OA-3: Case Studies of Heat Rate Improvement

(a) Case Study 1 (b) Case Study 2
Note: These pictures demonstrate some methods that were implemented in power plants to improve heat
rate. Source: Fitzgerald and Gelorme (2015).

Figure OA-4: Change in Market Concentration
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Note: This figure shows the change of national concentration ratios in the overall US fossil fuel power plant
market between 2000 and 2023. For every concentration ratio, we calculate the total fossil fuel capacity of the
largest corresponding number of firms in the US and divide that by the total fossil fuel capacity in the US.
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Figure OA-5: Firms with Largest Capacity Increase,
2010–2023
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Note: This figure shows firms with the largest capacity increase in fossil fuel generation capacity in the US
between 2010 and 2020.

Figure OA-6: Firms with Largest Capacity Decrease,
2010–2023
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Note: This figure shows firms with the largest capacity decrease in fossil fuel generation capacity in the US
between 2010 and 2020.
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Figure OA-7: Change of Percentage of Fossil Fuel Generation Capacity
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Note: Geographical distribution of power plant acquisitions by capacity. Thediamond indicates the regulated
states.

Figure OA-8: The Effect of Manager Change without Mergers on Efficiency
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Note: This figure shows the effects of manager change on efficiency estimated using the specification given
in Equation (3). In particular, we treat a unit if the manager of that unit changes and there is no acquisition
in the three months preceding and following the manager change.
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Figure OA-9: Average Within-Plant Annual Productivity Change
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Note: This figure shows average year-to-year within-plant productivity growth for the plants that were not
involved in an acquisition.
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Figure OA-10: Impact of Merger on Generator Performance
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(b) Capacity Utilization
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(c) Operating Hours
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(d) Forced Outages/Derates
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Note: This figure presents the coefficient estimates of δ̂s where s ∈ (−3, 3) from estimating Equation (2) with
yearly treatment indicators to improve precision. Unit characteristic fixed effects include state, installation
year, fuel type, technology type, and unit capacity. Unit of observation is generator-week. Standard errors
are clustered at the plant level
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Figure OA-11: Change in Variation of Heat Rate (Annually)
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(b) CoV of Utilization
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Note: This figure presents the coefficient estimates of δ̂s where s ∈ (−3, 3) from a regression of the standard
deviation of heat rate on treatment dummies using Equation (2), using yearly treatment indicators to improve
precision. Unit characteristic fixed effects include state, installation year, fuel type, technology type, and unit
capacity.

OA - 24



D Robustness Checks
In this section, we provide the details of the robustness checks we employ in this paper.

D.1 Acquisition Sample

Since our sample covers 20 years of plant production, many generators are acquiredmulti-
ple times. Of the 2,365 units that have been ever acquired, around half of them experienced
multiple ownership changes during the study period. In our main specification, we con-
sidered only the first acquisition of each generator because, with multiple acquisitions, the
post period of the first acquisition overlaps with future acquisitions. For those generators,
it is unclear how to estimate a proper event study. In this section, we investigate the
robustness of our results to this sample restriction by estimating event studies that include
all acquisitions and units acquired only once.

The first robustness check includes all acquisitions except those within 32 months of
each other. We drop these acquisitions because the post- and pre-acquisition periods
overlap. Using this sample, we estimate Equation (2) with the following differences.
First, for each event, we include post-treatment indicator variables 36 months following
the acquisition, and we include pre-treatment indicator variables 36 months before the
acquisition. The treatment variables are set to 0 for 36 months after acquisition and 36
months before the next acquisition. Therefore, we assume that treated plants follow
the same trend as the control group between the two acquisitions. The results from this
estimation procedure are reported inAppendix TableOA-2, TableOA-3, and FigureOA-13.
The estimates are similar to the results from our main specification.

D.2 Data Frequency

We estimated our main specification with weekly data, where efficiency is defined as total
electricity output divided by total heat input that week. We made this choice because
estimation with weekly frequency reduces the computational burden and reduces noise
due to the aggregation of hourly data. In this section, we analyze whether our results are
robust to data frequency by considering hourly and daily data.

Estimation with daily data follows the same steps as the estimation in weekly data.
We aggregate fuel input and electricity output to a daily level and define daily efficiency
as total daily electricity input divided by total daily fuel input. The treatment variables
are monthly indicator variables for each month 36 months before and 36 months after
acquisition. We estimate the same specification as in Equation (2), but include the day of
theweek as an additional control variable. Since thedayof theweek is a strongdeterminant
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of electricity demand, estimation with daily data controls for demand fluctuations more
accurately. The effect of ownership changes on efficiency is similar to what we found with
the weekly data.

In the estimation with hourly data, we use the raw data obtained from CEMS, hourly
electricity output, and fuel input without any processing. We consider the same specifi-
cation as weekly and daily data, but the hour of the day as an additional control. Since
the hour of the day is a strong determinant of electricity demand, the hourly specification
controls for electricity demandmuchmore precisely than daily and hourly data. The effect
of mergers on efficiency is similar to the results with weekly data. However, estimates are
less precise since hourly data is noisier than weekly and daily data.

Overall, these robustness checks suggest that our results are robust to aggregation of
input and output at the weekly levels.

D.3 Staggered Difference-in-Differences

Before estimating the Callaway and SantAnna (2021) method, we do some modification.
Our main specification includes weekly heat rate data, but the treatment coefficients are
included at themonthly level to increase the precision. Since the staggered treatment effect
estimation requires data frequency to be the same as treatment frequency, we aggregate
our data to the monthly level by taking the average of weekly heat rates in a give month.
So the staggered difference-in-differences is estimated at the monthly level. We use the
never-treated group as the control group and control for generator age and capacity in the
cohort specific treatment effect estimation.

To implement the procedure, we use the R package DiDforBigData (Setzler, 2022),
which provides a big-data-friendly andmemory-efficient difference-in-differences estima-
tor for staggered treatment contexts. The results, which are similar to our main set of
estimates, are reported in Appendix Figure OA-14.

D.4 Matching Difference-in-Differences

Our main specification uses standard difference-in-differences estimation estimated with
two-way fixed effects. In this section, we also consider a difference-in-differencesmatching
estimator as a robustness check.

We match each of our acquired units to the three nearest neighbors from the pool of
control units that have never been acquired during our sample period. For each treated
unit, we first find the never-treated active units during the acquisition time with the same
fuel type but in adifferent ISO (to prevent spillovers). This never-treated sample constitutes
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the pool of candidate control units for that unit. Then, we find the nearest neighbor units
with respect to capacity and age using a least-squares metric to calculate the distances
between generation units. The weights in the metric are inversely proportional to the
standard deviation of the corresponding variable. We allow control units to be matched
to multiple acquired plants. Using these nearest neighbors, we calculate the unit-specific
treatment effect as follows:

∆̂Yit � Yit(1) − Ŷit(1), (8)

where Ŷit(1) is the average heat rate of the control units that are matched to i and scaled
such that the average outcome of the control at the time of acquisition is the same as
the outcome of the treated unit. By indexing the levels to a baseline period, we obtain a
unit-specific “difference-in-differences” estimate for any outcome of interest. We take the
average of the unit-specific treatment effects to obtain the final estimates.

To construct the confidence intervals, we employ a bootstrap procedure, where we
resample without replacement the treated generators and follow the same matching pro-
cedure described above. We repeat this procedure 100 times and obtain a distribution
of efficiency gains from the bootstrap samples. To construct the confidence bands, we
take the 2.5 and 97.5 percentiles of the bootstrap distribution to construct the confidence
intervals.

The results from this estimation are reported in Appendix Table OA-2 and Figure
OA-15. We find that results are qualitatively similar to our main specification.

D.5 Observation Weights

In our regressions, we weighted units equally. A natural alternative to this is to weigh
them by generator capacity, whichwould be robust to a potential concern that all efficiency
gains come from small units. Moreover, it would be more informative about the total
production affected by efficiency gains. To investigate this, we estimate Equations (2) and
(3) by weighting units by their capacity in that year. The results from this estimation
are reported in Appendix Table OA-2, Table OA-4, and Figure OA-16. We find that the
efficiency effect is slightly larger whenweweigh units by capacity, which is consistent with
the findings reported in Table 4 that the efficiency effect is larger for larger units. This
finding also indicates that acquisitions of small units do not drive our main results.
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E Robustness Checks Results

Table OA-2: Regression Robustness Results

After
2010

Net
Generation

All
Acquisitions

Weighted
Regressions Matching Minority

(Placebo)
Restructuring
(Placebo)

(1) (2) (3) (4) (5) (6) (7)

Dependent Variable: Log of Efficiency

Pre-acquisition (1 Year) -0.008 -0.003 -0.001 0 -0.002 -0.003 0.016
(0.005) (0.006) (0.004) (0.005) (0.002) (0.005) (0.01)

Post-acquisition (1 Year) -0.003 0.009 0.014 0.021 0.021 -0.001 0
(0.006) (0.007) (0.006) (0.009) (0.004) (0.008) (0.014)

Post-acquisition (2 Years) 0.016 0.025 0.028 0.05 0.035 -0.009 0.009
(0.01) (0.009) (0.008) (0.014) (0.006) (0.01) (0.016)

Post-acquisition (3 Years) 0.031 0.029 0.034 0.053 0.047 -0.009 0.023
(0.014) (0.01) (0.009) (0.017) (0.007) (0.01) (0.017)

Temp. & Humidity Controls X X X X X X X
Unit & Week FE X X X X X X X
Unit Characteristic by Month FE X X X X X X X
Scrubber & Enviro. Prog. FE X X X X X X X

R2 0.769 0.655 0.77 0.86 - 0.615 0.62
# of Observations 1.387M 1.491M 1.769M 1.493M 0.001M 1.568M 1.217M
# of Control Units 2311 2308 2311 2311 - 2311 2311
# of Treated Units 529 1089 1089 1089 - 663 304

Note: This table presents the coefficient estimates of δ̄1 , δ̄2 , δ̄3 , and δ̄4 from estimating Equation (2) with
various robustness checks, discussed generally in Section D. Unit characteristic fixed effects include state,
installation year, fuel type, technology type, and unit capacity. Standard errors are clustered at the plant
level.
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Figure OA-12: Impact of Merger on Productivity (Net Generation)
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Note: This figure presents the coefficient estimates of δ̂s where s ∈ (−36, 36) from Equation (3) along with
standard errors. The dependent variable is the logarithm of the inverse weekly heat rate, calculated using
net generation as opposed to gross generation as discussed in Section 7. Standard errors are clustered at the
plant level.

Figure OA-13: Impact of Merger on Productivity (All Acquisitions)
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Note: This figure presents the coefficient estimates of δ̂s where s ∈ (−36, 36) from Equation (3) along with
standard errors, using all acquisitions. The acquisition sample is described in Section D.1. The dependent
variable is the logarithm of the inverse weekly heat rate. Standard errors are clustered at the plant level.
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Figure OA-14: Impact of Merger on Productivity (Staggered
Difference-in-Differences)
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Note: This figure presents the coefficient estimates of δ̂s where s ∈ (−36, 36) from Equation (3) along with
standard errors, using the method of Callaway and SantAnna (2021) method. The details are provided
in Section D.3. The dependent variable is the logarithm of the inverse weekly heat rate. Standard errors
are clustered at the plant level. This specification does not include unit characteristics time trends due to
computational complexity.

Figure OA-15: Impact of Merger on Productivity (Matching Estimator)

−0.10

−0.05

0.00

0.05

0.10

−36 −30 −24 −18 −12 −6 0 6 12 18 24 30 36

 Months from Merger

 %
 C

ha
ng

e 
in

 P
ro

du
ct

iv
ity

Note: This figure presents the coefficient estimates of δ̂s where s ∈ (−36, 36) from Equation (3) along
with standard errors, using the matching method described in Section D.4. The dependent variable is the
logarithm of the inverse weekly heat rate.
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Figure OA-16: Impact of Merger on Productivity (Weighted By Capacity)
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Note: This figure presents the coefficient estimates of δ̂s where s ∈ (−36, 36) from Equation (3) along with
standard errors, weighting observations by capacity as described in Section D.5. The dependent variable is
the logarithm of the inverse weekly heat rate. Standard errors are clustered at the plant level.
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Table OA-3: Impact of Merger on Productivity All Acquisitions

All M&A All M&A All M&A All M&A
Subsidiary
or Parent
Changes

Only
Parent
Changes

(1) (2) (3) (4) (5) (6)

Dependent Variable: Log of Efficiency

Pre-acquisition (1 Year) 0.001 0 -0.003 -0.003 -0.002 -0.007
(0.003) (0.003) (0.003) (0.003) (0.005) (0.003)

Post-acquisition (1 Year) 0.011 0.016 0.006 0.006 0.015 -0.01
(0.004) (0.005) (0.005) (0.005) (0.007) (0.005)

Post-acquisition (2 Years) 0.019 0.035 0.02 0.02 0.039 -0.002
(0.005) (0.007) (0.007) (0.007) (0.009) (0.007)

Post-acquisition (3 Years) 0.022 0.038 0.02 0.02 0.05 -0.007
(0.006) (0.009) (0.008) (0.008) (0.012) (0.008)

Temp. & Humidity Controls X X X X X X
Unit & Week FE X X X X X X
State by Month X X X X X
Unit Characteristic by Month FE X X X X
Scrubber & Enviro. Prog. FE X X X

R2 0.713 0.725 0.752 0.753 0.763 0.764
# of Observations 2.335M 1.838M 1.838M 1.838M 1.494M 1.575M
# of Control Units 2311 2311 2311 2311 2311 2311
# of Treated Units 2048 2046 2046 2046 1089 1142

Note: This table presents the coefficient estimates of δ̄1 , δ̄2 , δ̄3 , and δ̄4 from estimating Equation (2) using all
acquisitions. Unit characteristic fixed effects include installation year, fuel type, technology type, and unit
capacity. The acquisition sample is described in Section D.1. Standard errors are clustered at the plant level.
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Table OA-4: Impact of Merger on Productivity (Weighted Regressions)

All M&A All M&A All M&A All M&A
Subsidiary
or Parent
Changes

Only
Parent
Changes

(1) (2) (3) (4) (5) (6)

Dependent Variable: Log of Efficiency

Pre-acquisition (1 Year) 0.003 0.002 0 0 0 -0.004
(0.003) (0.004) (0.004) (0.004) (0.005) (0.004)

Post-acquisition (1 Year) 0.021 0.018 0.011 0.012 0.018 0.002
(0.005) (0.005) (0.005) (0.005) (0.008) (0.006)

Post-acquisition (2 Years) 0.036 0.036 0.023 0.023 0.051 0.007
(0.007) (0.008) (0.007) (0.007) (0.013) (0.007)

Post-acquisition (3 Years) 0.042 0.04 0.02 0.02 0.053 0.005
(0.009) (0.01) (0.009) (0.009) (0.015) (0.008)

Temp. & Humidity Controls X X X X X X
Unit & Week FE X X X X X X
State by Month X X X X X
Unit Characteristic by Month FE X X X X
Scrubber & Enviro. Prog. FE X X X

R2 0.776 0.806 0.836 0.837 0.859 0.847
# of Observations 1.838M 1.838M 1.838M 1.838M 1.494M 1.575M
# of Control Units 2311 2311 2311 2311 2311 2311
# of Treated Units 2046 2046 2046 2046 1089 1142

Note: This table presents the coefficient estimates of δ̄1 , δ̄2 , δ̄3 , and δ̄4 from estimating Equation (2) by
weighting observations by capacity as described in Section D.5. Unit characteristic fixed effects include
installation year, fuel type, technology type, and unit capacity. Standard errors are clustered at the plant
level.

OA - 33


	Introduction
	Institutional Background and Plant Productivity
	The Power Generation Sector in the US
	Mergers and Acquisitions in the Power Sector
	Electricity Production and Construction of the Efficiency Measure

	Data and Summary Statistics
	Data
	Generator and Acquisition Sample Construction
	Descriptive Statistics on US Power Plant Acquisitions

	Empirical Results
	Effects of Ownership Change on Efficiency
	Discussion
	What Predicts Efficiency Gains: Heterogeneity Analysis

	Mechanisms
	Mechanisms of Efficiency Improvements
	Quantifying Productive Efficiency Using Production Function
	Quantifying Dynamic and Portfolio Efficiency

	How Do Acquirers Improve Productive Efficiency?
	Robustness Checks
	Conclusion
	Data Appendix
	Unit-Level Data
	Plant-Level Data
	Personnel Data
	Divestiture Data
	Ownership and Acquisition Data
	Firm Data
	Maintenance and Outage Data
	GADS Data Description
	Processing GADS Data
	Matching GADS Units to CEMS Data


	Estimation Details
	Estimation of Residual Productivity
	Cost Curve Estimation
	Calculation of Fuel and CO2 Emission Savings
	Heterogeneity Analysis

	Additional Tables and Figures
	Robustness Checks
	Acquisition Sample
	Data Frequency
	Staggered Difference-in-Differences
	Matching Difference-in-Differences
	Observation Weights

	Robustness Checks Results

