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Abstract
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run intuition. Electrification may crowd out renewable investment, or it may lead
to decreased electricity-sector emissions, depending on the time profile of increased
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1 Introduction

Addressing the problem of climate change will require radical transformations of large seg-

ments of the economy. Fundamentally, society needs to reassess what we make and how

we make it across all industries. One key industry, electricity, currently accounts for about

a third of U.S. carbon emissions and for similar proportions throughout the world. Yet,

instead of shrinking the profile of this heavily polluting industry, most plans for a decar-

bonized economy call for dramatically expanding this sector by electrifying everything (e.g.,

transportation, heating, and industrial processes), while at the same time decarbonizing

electricity generation. Technological advances and cost declines in wind and solar energy

have fueled optimism about the potential for decarbonized electricity generation. Nuclear

technology is an alternative zero-carbon energy source, and advances in electricity storage

technologies may hold transformative potential. In addition, advances in electric vehicles,

heat pumps, electrolytic hydrogen feedstocks, and heating technologies (electromagnetic, in-

duction, infrared and ultraviolet) hold promise for electrification of other sectors.1 In short,

the electricity sector of the future may look nothing like the electricity grid of today.

This paper constructs a framework for analyzing a completely transformed electricity

grid with a long-run competitive equilibrium model of electricity consumption, generation,

investment, and storage.2 There are three key distinguishing features of our work. First, in

our model, entry and exit for all technologies respond to the interconnected feedback effects

from carbon policy, technological innovation and electrification, free from the hysteresis of

legacy investments and historical accidents.3 Second, we use the model to derive several

theoretical possibilities, and our calibration allows us to test the degree to which these pos-

sibilities have practical relevance. Third, the model and calibration allow us to calculate the

effects of increasing demand for electricity on emissions for a variety of different electrification

scenarios.

1See IEA (2019) and Hasanbeigi et al. (2021) on technologies for electrification of industrial processes.
2Our model is based on Borenstein (2005) and Borenstein and Holland (2005), which analyzed the

long-run benefits of real-time pricing of electricity. We extend the original model, still assuming real-time
pricing, to include intermittent renewables and storage. See also Ambec and Crampes (2021), Gambardella
et al. (2020), and Holland and Mansur (2008) for studies of the environmental effects of real-time pricing.

3A substantial literature analyzes entry and exit from the existing electricity grid. See for example
Gillingham et al. (2021), Stock and Stuart (2021), Borenstein and Kellogg (2022) and Palmer et al. (2011)
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The long-run theoretical possibilities can differ in surprising ways from their short-run

analogs. In the short run, an increase in electricity consumption due to electrification leads to

a non-negative change in generation from renewables. In the long run, however, electrification

can lead to a decrease in generation from renewables due to a crowding out of renewable

investment. Similarly, in the short run, electrification leads to a non-negative change in

emissions. In the long run, however, electrification can lead to a decrease in emissions if

electricity usage in some periods induces entry of renewables which offset fossil generation

in other periods. In this case, electrification can actually facilitate decarbonization of the

electricity grid. These theoretical possibilities illustrate the importance of our long-run

perspective.

To quantify these long-run effects, we calibrate our model for each of thirteen EIA elec-

tricity regions using observed hourly demand and corresponding hourly solar and wind gen-

eration for each hour of 2019. This calibration is distinguished in both scope and scale. Most

analyses with national scope analyze a limited set of representative time periods (Gillingham

et al. (2021), Palmer et al. (2011), Stock and Stuart (2021)) while analyses with richer

demand and renewable representation focus on a single region or Independent System Op-

erator (ISO) (Gowrisankaran et al. (2016), Elliot (2021), Imelda et al. (2018)). Implicitly,

we use observed data as draws from the complex, empirical joint distribution of shocks to

demand as well as wind and solar availability. This provides realistic approximations of

the underlying variation and correlations between demand and renewable availability for the

entire contiguous U.S.

In addition to wind and solar, our calibration includes nuclear power, two natural gas

powered technologies, and battery storage.4 Generation from hydro power plants is con-

sidered to be exogenously fixed at historical levels. All capital cost estimates are for the

near future, and because these costs are particularly uncertain for renewable technologies,

we consider a range of renewable capital costs. According to our calculations in Section 3,

4Battery storage has been widely studied but is computationally intensive so most studies focus on a
single region. See Karaduman (2020), Butters et al. (2021), Junge et al. (2021), and Shrader et al. (2021).
See Andres-Cerezo and Fabra (2022) for an analysis of storage and market power.
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new coal plants are dominated by natural gas plants. Because there are no fixed inputs in

the long run, we do not analyze any existing plants.5

Electrification will affect renewable capacity, and our theoretical results show that this

may help or hinder decarbonization. To study this relationship, we simulate the effects of

both small and large changes in electricity demand on the long-run equilibrium and emissions.

We define the long-run emissions change (LREC) as the change in emissions normalized by

the change in electricity demand.6 For small demand changes, there are generally three types

of outcomes. First, the demand change may simply increase natural gas capacity so that

the LREC is approximately equal to the natural gas power plant emissions rate. Second,

the demand change may decrease renewable capacity so that the LREC is greater than the

natural gas rate. Third, the demand change may increase renewable capacity so that the

LREC is less than the natural gas rate and may even be zero or negative. These effects vary

across locations and hours; negative LRECs occur mostly when demand changes are in the

daytime hours.

The effects of large changes in electricity demand on emissions also depend on where and

when the electricity is used.7 For transportation, this means the hours the electric vehicles

(EVs) are charged, i.e., the charging profile. We find that, for a profile with mostly nighttime

charging and baseline renewable capital costs, electrifying 100% of car vehicle miles traveled

(VMT) would result in a 23% increase in electricity-sector carbon emissions.8 We also deter-

mine regional-specific charging profiles that are optimized with respect to various objectives

such as minimizing carbon emissions and maximizing social welfare. The carbon minimizing

charging profiles generally feature charging during the day. Remarkably, if renewable capital

5Holland et al. (2020) document the decline in coal-fired generation and Linn and McCormack (2019),
Davis et al. (2021), and Heutel (2011) examine the retirement decisions of coal plants.

6A large literature estimates short-run marginal emissions using either econometrics (Holland and Mansur
(2008); Holland et al. (2016); Graff Zivin et al. (2014); Siler-Evans et al. (2012); Fell and Kaffine (2018))
or grid dispatch models (Raichur et al. (2015)). Holland et al. (2022) shows conditions under which
short-run marginal emissions estimates can be used to analyze emission over a 10-15 year time frame. A
few papers (Hawkes (2014), Gagnon and Cole (2022)) directly study long-run marginal emissions using
dispatch models. We do not use the term “marginal” in our definition because we consider both small and
large changes in electricity demand.

7Many studies analyze the effects of the timing of electrification and efficiency in the short run (see
Boomhower and Davis (2020)).

8Holland et al. (2022) estimate that about half the emissions reduced in the transportation sector from
partial electrification would be offset by increased electricity sector emissions.
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costs are at the low end of the range we consider, the carbon minimizing charging profiles

lead to negative LRECs. In other words, charging EVs with these profiles can completely

decarbonize passenger vehicle transportation and reduce carbon emissions from the electric-

ity sector, because they induce a dramatic entry of renewables. The welfare maximizing

charging profile balances emissions reductions with private surplus losses and reduces total

carbon emissions substantially. These charging profiles generally feature significant charging

during the day as well.

EV charging will depend partially on the location of charging stations. Although we do

not explicitly model the build out of EV charging stations, our results imply that charging

stations that enable EV users to charge easily during the day (e.g., at work and shopping

locations) will generally result in much lower LRECs than charging stations that facilitate

charging at night (e.g., at apartment buildings and on-street parking locations). There

are exceptions to this general rule, however. In some regions, charging during the day

may induce entry of solar which crowds out nuclear investment and generation and hence

raises emissions. This highlights the importance of locational and temporal heterogeneity in

electrification policy and of investment incentives; factors which our framework is uniquely

suited to analyze.

In addition to these results on long run emissions, another major contribution of our

paper is the transparency, tractability, and flexibility of our long run model. As such, it

provides a valuable complement to existing methodologies. Large multi-sectoral models such

as the National Energy Modeling System (NEMS) or the models in the Princeton Net-Zero

America Report can provide a comprehensive basis for policy analysis but allow for limited

theoretical insights (Palmer et al. (2011), Gillingham et al. (2021), Stock and Stuart

(2021), and Gagnon and Cole (2022)). Cost-minimizing grid dispatch models may allow for

complex ramping and transmission constraints, but do not generally analyze welfare effects

(Hawkes (2014), Raichur et al. (2015)). Although it is beyond the scope of this paper,

our model is well suited to study, for example, the effects of decarbonization policy such as

subsidies for renewable generation.9 We expect it will provide new insights into these issues.

9Gowrisankaran et al. (2016) estimate large benefits for solar energy in southeastern Arizona, and Call-
away et al. (2018) estimate displaced emissions by wind and solar generation. Ambec and Crampes (2019)
and Helm and Mier (2019) present theoretical models of investment in intermittent renewables. See also

4



2 The model
sec-model

Consider a long-run model in which electricity consumption, generation, storage, and gen-

eration capacity are all endogenous. Because electricity demand and renewable availability

vary across time, we model a long-run competitive equilibrium with T periods, (e.g., hours)

in which all agents have perfect foresight. In a given period t, electricity consumption by

existing consumers is Qt, and their hourly benefit (gross consumer surplus) is Ut(Qt) where

U ′t > 0 and U ′′t < 0. The demand function, Dt, is the inverse function of U ′t defined by

U ′t(Dt(p)) ≡ p.10 Additionally, let Ēt ≥ 0 be the electricity consumption of an activity that

switches from fossil fuels to electricity. Because we consider a wide variety of such activities,

we assume Ēt is exogenous to avoid taking a stand on the change in consumer surplus when

the activity moves from fossil fuels to electricity.

Electricity can be generated from I different technologies, each of which produces elec-

tricity at a constant operating cost up to some limit based on the installed capacity. Let Ki

be technology i’s capacity, which has capital costs ri per unit. Each technology has an hourly

capacity factor fit ∈ [0,1] so that generation, qit, from technology i in hour t must satisfy

qit ≤ fitKi. The hourly capacity factors are exogenous and allow for intermittent renewable

generation (fit ≤ 1) or dispatchable generation (fit = 1 for all t).11 Let ci be the constant

operating cost for technology i where the technologies are ordered such that ci ≤ ci+1. Each

technology may or may not have external costs, e.g., carbon emissions, associated with its

use. Accordingly, define βi ≥ 0 as the carbon emissions intensity of technology i.

Electricity may be transferred across time using a storage technology, e.g., a rechargeable

battery. Let bt be the net charge added to the battery in hour t where bt < 0 indicates

withdrawals from the battery. The state of the battery, St, depends on net charges to

the battery and evolves according to St = St−1 + bt.12 Battery storage cannot exceed the

Weber and Woerman (2022), Eisenack and Mier (2019), Pommeret and Schubert (2021) and Junge et al.
(2022). Reguant (2019) studies the efficiency and distributional benefits of various renewable promoting
policies in California.

10Implicitly, this assumes real-time pricing of electricity, zero cross-price elasticities, and indifference to
the source of generation.

11Alternatively we might have fit < 1 for dispatchable generation to account for forced outages.
12This assumes that storage is “perfect”, i.e., there are no conversion losses from charging or discharging

the battery and the battery state does not decay over time.
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maximum battery capacity Ks, so the state of the battery must satisfy 0 ≤ St ≤ Ks. The

battery capacity is endogenous in the model and has capital costs rs per unit. Electricity

balance in each hour requires that Qt+Ēt+bt ≤ ∑i qit, i.e., total consumption plus net battery

charge cannot exceed electricity generation from all sources.

To characterize the long-run competitive equilibrium, we use the planner’s problem:

max
Qt,qit,bt,St,Ki,Ks

∑
t

[Ut(Qt) −∑
i

ciqit] −∑
i

riKi − rsKs, (1) eq:planner

subject to all the constraints. This is a straightforward constrained optimization problem,

albeit with a large number of choice variables.13 To characterize the optimum, we use the

pseudo-Hamiltonian, Ht, to write the Lagrangian, L, for (1) as:

L ≡∑
t

Ht −∑
i

riKi − rsKs. (2) eq:ObjL

Here Ht is defined by:

Ht ≡ Ut(Qt)−∑
i

ciqit+pt[∑
i

qit−Qt−Ēt−bt]+∑
i

λit[fitKi−qit]+ϕt[St−1+bt−St]+µt[Ks−St],

where pt, λit, ϕt, and µt are all non-negative shadow values of the relevant constraints.14

The Kuhn-Tucker first-order conditions include

Qt ≥ 0 dL/dQt = U ′t(Qt) − pt ≤ 0 ∀t C.S. (3) eq:FOCQ

qit ≥ 0 dL/dqit = −ci + pt − λit ≤ 0 ∀i, t C.S. (4) eq:FOCq

dL/dbt = −pt + ϕt = 0 ∀t (5) eq:FOCb

St ≥ 0 dL/dSt = ϕt+1 − ϕt − µt ≤ 0 ∀t C.S. (6) eq:FOCS

Ki ≥ 0 dL/dKi =∑
t

λitfit − ri ≤ 0 ∀i C.S. (7) eq:FOCK

Ks ≥ 0 dL/dKs =∑
t

µt − rs ≤ 0 C.S., (8) eq:FOCbarS

13There are (3+ I)T + I +1 choice variables. Hourly periods over a year (8760 hours) and five technologies
imply over 70,000 choice variables.

14Ht is not technically the Hamiltonian of (1) because it treats the adjoint variable differently.
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where C.S. indicates a complementary slackness condition.15 The condition [3] implies that

the marginal benefit equals the shadow value pt if electricity consumption is positive. From

here on pt is called the electricity price.

The following lemmas characterize the optimum. All proofs are in the Appendix. The

first lemma characterizes supply from each technology.

lem:order Lemma 1. If ci > ci′ and qit > 0, then qi′t = fi′tKi′.

This lemma shows that if generation from a given technology is positive, then any technology

with a lower operating cost must be generating at available capacity. The hourly industry

supply curve is then a step function with the step widths determined by the installed capacity

and the hourly capacity factors.

The next lemma provides a formula for calculating the electricity price in hour t condi-

tional on battery usage and the installed capacities.

lem:price Lemma 2. If ∑i fitKi > bt + Ēt, then pt =mini{max{ci, U ′t(∑i′≤i fi′tKi′ − bt − Ēt)}}.

This lemma is illustrated graphically in Figure O.A.1, which shows the electricity price is

determined by the intersection of the demand curve and the step function supply curve.

The third lemma characterizes the optimal battery usage.

lem:battery Lemma 3. If St = 0, then pt ≥ pt+1. If 0 < St <Ks, then pt = pt+1. If St =Ks, then pt ≤ pt+1.

The lemma shows that the electricity price can fall if the battery is empty and the price can

rise if the battery is full. However, if the battery is neither empty nor full, then it could be

used to arbitrage any price differences, and therefore the equilibrium price must be constant.

The last lemma characterizes the relationship between equilibrium prices and equilibrium

capacities.

prop:profit Lemma 4. The first-order conditions imply that ∑t(pt − ci)qit = riKi for each technology i

and ∑t −ptbt = rsKs for the battery.

Optimal capacity investments result in zero profit for each technology. Zero profit is consis-

tent with competitive entry and exit in a long-run equilibrium.

15Additional conditions are the constraints and their complementary slackness conditions.
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The long-run competitive equilibrium, characterized by these lemmas, may not be efficient

because of the external costs from carbon emissions. Accordingly, we define private surplus

as the optimized value of [1] and welfare as the private surplus minus the damages from

pollution plus net government revenue from any carbon tax policy. Note that under a

carbon tax τ the operating cost of fossil generation is ci + βiτ . These definitions enable us

to analyze the long-run welfare effects of electrification.

Long-run effects can differ from their short-run analogs in which capacities are fixed.

The following results illustrate some of the counter intuitive possibilities which can occur in

the long run. The first set of results focus on electrification, which we define as an increase

(typically from zero) ∆Ēt for some t. Except for edge effects at the choke price, an increase

in hour t is equivalent to a horizontal shift in the demand curve Dt by an amount equal to

∆Ēt. The long run emissions change (LREC) from electrification is defined as the increase

in emissions normalized by the increase in electricity consumption:

LREC = ∑i∑t βi∆qit

∑t∆Ēt

.

In the short run, electrification increases emissions if increased electricity is supplied

by a polluting source. At best, the short run effect could be zero if, for example, the

increased electricity is supplied by renewables. In contrast, the following result shows that

electrification can decrease emissions in the long run.

res:Dload Result 1. Electrification can decrease carbon emissions.

Electrification in some period puts upward pressure on the price and induces entry of the

marginal technology for that period. However, once additional capacity enters, it may be used

in other periods. Thus if the marginal technology is clean, its entry may meet the increased

demand and offset emissions in other periods, thereby decreasing emissions. Conversely if the

marginal technology is dirty, carbon emissions will increase, in line with short run intuition.

But, because the additional dirty capacity may be used in other periods, carbon emissions

may increase by more than the emissions rate of the marginal technology.

Figure 1 illustrates the proof. There are two time periods and two generating technolo-

gies: technology 1 is renewable with zero operating costs and technology 2 is fossil with

8



Figure 1: Illustration of Result 1.fig_Res_Dload
Notes: Two periods: h and l, and two technologies: renewable (1, green) and fossil (2, black). Electrification
in period l decreases emissions.

positive operating costs c2. In the initial equilibrium, the low demand period has only re-

newable generation and the high demand period has both renewable and fossil generation.

The equilibrium prices are completely determined by the technologies’ costs.16 Electrifica-

tion increases demand in the low demand period, equilibrium prices are unchanged, and

renewables enter such that pl is unchanged. But because the renewable generation is avail-

able in both periods, the renewable entry leads to exit of fossil capacity. Fossil generation in

the high demand period decreases, and that reduces carbon emissions.

Although Figure 1 shows a case in which electrification leads to additional renewable

capacity, it is possible for the opposite to occur, as stated in the next result.

res:DloadRen Result 2. Electrification can decrease renewable capacity.

Consider electrification that occurs in a period in which a dispatchable technology sets the

price. This induces entry of the dispatchable technology to equilibrate price in that period.

But that extra capacity will be used in other periods, which may crowd out renewables.

Graphical illustrations of this result and all subsequent results are given in the Online Ap-

pendix Figures O.A.2 to O.A.6.

16From Lemma 4, we have pl + ph = r1 (revenue from renewable generation covers renewable capital costs)
and ph = r2 + c2 (revenue from fossil generation covers fossil capital and generation costs).
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In the short run, an increase in demand will increase prices and lower the consumer

surplus of the existing consumers. This may be reversed in the long run.

res:CS Result 3. Electrification can increase consumer surplus for existing consumers.

Electrification in one period will lead to an increase in capacity of the technology on the

margin in that period and possibly a higher price. But this capacity may lower prices in

other hours, and on net the benefits of lower prices may outweigh the costs of the higher

price for existing consumers.

Next consider the effect of a change in the capital costs of renewables.

res:renew Result 4. If the capital cost of renewables decreases, then carbon emissions may increase.

If electrification leads to an increase in emissions, then the emissions increase under high

renewable capital costs may be smaller than the increase in emissions under low capital costs.

Intuition suggests that a decrease in the cost of renewables would increase renewable capacity

and generation and hence reduce emissions. But emissions can increase if the renewable

capacity leads to a decrease in capacity for a low operating cost, zero-emission technology

(such as nuclear) and an increase in the capacity of a polluting technology.

The final two results present counter-intuitive results about storage costs and carbon

taxes. They illustrate the variety of issues for which analytical results can be obtained in

our model.

res:Store Result 5. If storage becomes cheaper, then renewable capacity may decrease.

Although it may seem intuitive that battery storage may result in more renewables, Result 5

shows that this is not necessarily the case.17 If intermittent renewables generate electricity

in high-price periods, then storage will reduce their profitability.18

res:Ctax Result 6. If carbon taxes increase, ∆τ > 0, then emissions decrease, ∑i∑t βi∆qit < 0, but

total electricity consumption may increase i.e., ∑t∆Qt > 0.
17Shrader et al. (2021) find a similar result in which storage is ineffective in reducing emissions.
18Implicitly the storage result assumes that the year is infinitely repeated and is in a steady state. We

capture this in our simulations by starting the year in the hour at which the battery state would be at a
minimum in the steady state with the lowest cost technology.
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Intuitively, carbon taxation increases the costs of polluting technologies. This induces these

technologies to exit, which potentially increases electricity prices during hours in which they

are on the margin. But these higher electricity prices can induce entry of other, cleaner

technologies and drive down electricity prices in hours in which cleaner technologies are on

the margin. Higher electricity prices in some hours and lower electricity prices in other hours

can increase or decrease overall electricity consumption depending on the relative elasticities

of demand.

The model captures the essential features of electricity markets in an analytically tractable

way. In Online Appendix Section O.A.1 we briefly discuss extensions to the model that ac-

count for other aspects of electricity markets such as ramping constraints and upward sloping

supply curves for inputs to renewable generation.

3 Model calibration and solution algorithm

We calibrate our model for a representative year, 2019, based on 8760 observations of hourly

electricity consumption and availability of generation from solar and wind for each of thir-

teen EIA electricity regions (Figure 2).19 Using observed 2019 consumption and renewable

availability provides a realistic approximation of the underlying structural correlations be-

tween electricity consumption and renewable availability both over time and over geographic

locations. We consider each EIA region to be independent to capture geographic variation

in demand and renewable availability.

3.1 Demand calibration

Modeling hourly demand in each electricity region requires assumptions about functional

forms and data on observed prices and quantities. We assume linear demand in each hour

that is independent of demand in other hours. Each hourly demand function is parameterized

19The model could be calibrated using multiple years. We use 2019 because it is the first full year of the
EIA Form 930 (USEIA 2019a) dataset and because 2020 and 2021 were abnormal due to the COVID-19
pandemic.
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by the observed consumption and price and an assumed elasticity of -0.15 at the observed

consumption-price pair.20

Observed hourly electricity consumption is collected from EIA Form 930 (USEIA 2019a)

and is the total of load from all reporting entities within the EIA region for that hour. The

mean observed consumption by season and hour of day is shown in Figure O.A.7 for each

EIA region. Observed hourly prices come from multiple sources. For the regions that are

organized into markets (California, Texas, New England, MidWest, New York, MidAtlantic,

and Central), we use hourly market prices for each ISO from SNL (2019). These prices

are weighted averages of real-time single bus prices or aggregated regional hub prices. For

prices in the regions not in organized markets, we use system lambdas from FERC Form

714 (FERC 2019) as a proxy. The mean hourly price by season and hour of day is shown

in Figure O.A.8, and summary statistics are in Table O.A.1. The observed consumption

and prices show substantial variation across hours, seasons, and regions which we assume is

representative of underlying structural demand conditions.

Figure 2: Map of EIA regions.fig_regions_map_label

20In reality, electricity demand is a complicated relationship between electricity usage across hours and a
large vector of hourly electricity prices. In addition, electricity pricing is subject to a variety of distortions
so that most consumers’ prices are not the hourly social marginal cost. Here we focus on the carbon market
externality and leave analysis of additional distortions to future work.
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3.2 Capital costs, operating costs, and emissions

We consider five generation technologies: solar photovoltaic (PV), wind, nuclear, combined

cycle gas, and combustion turbine (peaker) gas. Baseline operating and capital costs, shown

in Table 1, for the five technologies and for grid-scale battery storage are from USEIA (2021).

Operating cost, ci, is primarily fuel costs for the natural gas technologies. Annual capital

cost, ri, assumes a 30-year cost recovery period and a weighted average cost of capital of 5.4%

and includes fixed operating and maintenance and transmission costs for each technology.

Table 1: Operating Costs, Capital Costs, and Emissions for Different Technologies

table-CapOpCosts

Operating Overnight Annual CO2

Cost Cost Capital Cost Emissions
($/MWh ($/kW) ($/MW)) (mt/MWh)

Solar PV 0 878 83,274 0
Wind (onshore) 0 1,426 132,602 0
Advanced Nuclear 2.38 5,852 528,307 0
Gas Combined Cycle 26.68 871 79,489 0.338
Gas Combustion Turbine 44.13 585 54,741 0.526
Battery Storage 0 205∗ 18,935∗ 0

Notes: Source USEIA (2021) “Table 1b. Estimated unweighted levelized cost of electricity (LCOE) and
levelized cost of storage (LCOS) for new resources entering service in 2026 (2020 dollars per megawatthour)”.
“Operating Cost” is the levelized variable cost from Table 1b. “Overnight Cost” is the levelized capital cost
in Table 1b adjusted for the capacity factor and capital recovery factor assuming a 30-year cost recovery
period and a weighted average cost of capital (WACC) of 5.4%. “Annual Capital Cost” is the sum of the
levelized capital, fixed O&M, and transmission costs from Table 1b adjusted for the capacity factors. All
dollar amounts in the paper are in 2020 dollars.
* Capital cost of battery storage is in MWh.

Solar and wind are both renewable and have zero operating costs and zero emissions

but are intermittent. USEIA (2021) shows that capital costs of renewables have declined

dramatically from 2014 to 2021, and projections to 2050 suggest large future declines for

capital costs of solar and storage. Because of the speculative nature of these distant forecasts,

we consider an alternative specification in which the capital costs of renewables are 25 percent

below those shown in Table 1.

To determine hourly capacity factors for the intermittent renewables, we divide observed

hourly renewable generation reported in the EIA Form 930 (USEIA 2019a) by a measure

of renewable capacity. Renewable capacity is not reported in the EIA 930 and is increasing
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rapidly throughout 2019. We account for this by using the following procedure. For each

region, we aggregate monthly renewable generation from EIA Form 923 (USEIA 2019b) and

monthly renewable capacity from EIA Form 860 (USEIA 2019c) across all plants which are

built after 2010 and which report to both datasets.21 Dividing these gives region-month

capacity factors for wind and solar. We then divide the mean EIA 930 hourly generation

for each region and month by these region-month capacity factors to calculate region-month

capacities appropriate for EIA 930. Dividing EIA 930 hourly generation by the region-month

capacities gives our hourly capacity factors. Figure O.A.9 shows mean hourly capacity factors

by season and hour of day for each region, and summary statistics are in Table O.A.1. The

capacity factors show seasonal and hourly patterns which are consistent with estimates of

renewable availability.

The non-renewable technologies in Table 1 are all dispatchable. Advanced nuclear also

has zero emissions but slightly higher operating costs and much higher capital costs than

renewables. Nuclear may appear to be dominated by renewables based on these costs, but

because of the renewables’ intermittency, an equilibrium may have positive capacities of

both nuclear and renewables. The two natural gas technologies have the highest operating

costs and positive emissions rates. Combined cycle gas plants have lower operating costs and

emissions but higher capital costs than peaker gas plants. Peaker gas plants have the highest

operating costs and emissions rates of any generation technology, but have the lowest capital

costs, so they can potentially recover capital costs by operating only during a few hours of

peak demand.

Carbon emissions are assumed to have a social cost of carbon (SCC) of $100 per metric ton

throughout. In the BAU cases below, we assume the operating costs are as in Table 1. In the

Pigouvian cases, we assume first-best carbon pricing so operating costs are incremented by

the SCC times the emissions rate. Because carbon taxes and natural gas prices both increase

the operating cost of generation from gas, our carbon tax simulations can be reinterpreted

as sensitivity of our results to the price of natural gas.22

21The EIA 930 is missing hourly solar generation for New York and hourly wind generation for Carolinas,
Florida, SouthEast, and Tennessee. We use estimates of available renewable resources to construct capacity
factors for these regions and technologies. See Online Appendix O.A.3 for details.

22For combined cycle gas technology, a $10 increase in the carbon tax corresponds to a $0.53 per MMBTU
increase in natural gas prices.
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We do not consider coal technologies. Even ignoring environmental costs, coal technolo-

gies are dominated by our combined cycle gas technology at all levels of utilization. In

fact, the long run average cost of coal is double that for combined cycle gas. Online Ap-

pendix O.A.2 details how costs would have to change to make coal viable in our model.

Generation from hydro is considered to be exogenously fixed at 2019 levels.

Battery storage is assumed to have no operating cost (no losses) and can store electricity

indefinitely. Note that the capital cost depends on the storage capacity of the battery which

is measured in MWh.

3.3 Solution algorithm

Because the demand curves are linear, the benefit functions Ut(Qt) are quadratic. Thus the

planner’s problem in (1) is a quadratic program, and we solve it directly using a publicly

available algorithm described in Stellato et al. (2020).23 This quadratic programming algo-

rithm allows the objective function to be positive semidefinite, a feature that is necessary

for our problem.

4 Electrification Results

The effects of electrification depend on the underlying demand and supply parameters as

well as public policy. Modeling the thirteen EIA regions illustrates the effects of renewable

availability and its correlation with electricity demand. To capture the effects of innovation

on renewable costs, we analyze renewable capital costs that are either High Cost, i.e., given

by Table 1, or Low Cost, i.e., are 25% lower than in Table 1. To capture the effects of

different policy environments, we analyze business as usual (BAU) cases with no carbon tax

and Pigouvian cases with a carbon tax equal to the social cost of carbon of $100. This results

in a two-by-two classification structure allowing for differing carbon policy and capital costs

of renewables.

Before analyzing electrification, we first present the long-run equilibrium without electri-

fication where ∆Ēt = 0 for each t. Figure 3 summarizes annual generation, carbon emissions,

23The algorithm can be downloaded from https://osqp.org/.

15

https://osqp.org/


Figure 3: Model Results: No Electrificationfig_baseline
Notes: High Cost cases have renewable capital costs from Table 1 and Low Cost cases are 25% lower. BAU
cases have carbon tax equal to zero and Pigouvian cases have carbon tax equal to the social cost of carbon
($100). Percentages above the rectangles show the share of potential renewable generation that is curtailed.

long run average cost of electricity generation, and battery statistics. In BAU High Cost, the

vast majority of the generation comes from combined cycle natural gas, and CO2 emissions

are 1,104 million metric tons (mmt) per year, which is 30% lower than actual 2019 CO2

emissions.24 This difference arises because there is no modeled coal generation and because

modeled electricity consumption is slightly lower than actual.25 Imposing the first-best car-

bon tax (Pigouvian High Cost) reduces emissions dramatically to 221 mmt, and results in

significant diversity in generation technology including a small amount of nuclear and large

amounts of wind and solar. The other cases in Figure 3 show the effect of a 25% reduction in

capital costs of renewable generation with and without a carbon tax. The cheaper renewables

result in higher levels of renewable generation and lower carbon emissions (895 mmt without

the carbon tax and 160 mmt with the carbon tax). Comparing the Pigouvian cases, we see

that cheaper renewables drive out nuclear generation. Result 4 shows this could potentially

increase emissions, however, here we find that emissions decrease. Similarly, Result 6 shows

that a carbon tax could increase electricity consumption, but here electricity consumption

(generation) is lower in the Pigouvian cases than in the BAU cases.26

24Actual 2019 CO2 emissions were 1604 mmt (Holland et al. (2022)). We use metric tons (mt) throughout.
25Modeled electricity generation has a lower percentage of renewable generation: 4% compared to the 2019

actual share of 9%. Our baseline does not include existing renewable subsidies and portfolio standards.
26Result 6 does occur using iso-elastic demand curves rather than linear.
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The battery statistics in Figure 3 include Battery Use (sum of charges added to battery

in TWh) and Daily Potential (battery use if battery is fully charged and discharged once a

day). By either measure battery storage plays a small role. Batteries are most important in

Pigouvian Low Cost. However, even in this case they account for a relatively small share of

electricity generation. Moreover, Battery Use approximately equals Daily Potential which

indicates that batteries are used approximately once per day and are not used for longer term

storage. Because batteries are costly to build, they must be used frequently to cover capital

costs. In particular, our results show it is cheaper to curtail up to 6% of renewable generation

than to build battery capacity to store the available electricity. Generation from peaker gas

plants occurs in the BAU cases, but it only accounts for about 3 TWh of generation, so it is

not visible in Figure 3.

By increasing electricity demand, electrification may increase prices in some hours and

induce capacity expansion in the long run. The additional capacity may directly affect

emissions and can potentially lower prices and increase electricity consumption in other

hours. To analyze these complex interactions, we first model small-scale electrification and

then model large scale electric vehicle (EV) adoption.

4.1 Small-scale electrification

To analyze small-scale electrification, we begin with simply hourly scenario in which elec-

trification increases consumption of electricity in a single hour of the day in each day of

the year. In particular, for a given hour of the day h, the increase in consumption is equal

to one percent of observed average hourly consumption in that region, i.e., if Q̄ is average

consumption, ∆Ēt = 0.01Q̄ for every t such that t modulo 24 is h. The effects of this change

in consumption on generation and emissions will in general not be isolated to the given

hour. For example, an increase in consumption at noon could lead to the entry of solar,

which would also generate electricity in other hours besides noon and perhaps crowd out gas

generation. So we calculate changes in generation and emissions over all hours of the year.

The results for electrification in each hour of the day are shown in Figure 4. In BAU

High Cost, Figure 4 (a), there are seven regions in which electrification in any hour of the
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(a) BAU High Cost (b) Pigouvian High Cost

(c) BAU Low Cost (d) Pigouvian Low Cost

Figure 4: Change in generation by technology and regionfig_LRME_Decomp
Notes: Vertical axis is the change in generation of each technology (MWh/MWh) across all hours from a
one percent increase in consumption in only hour h each day of the year.

day simply leads to a 1:1 increase in generation from combined cycle natural gas.27 The

other six regions show an interplay between natural gas and solar generation. Electrification

in the evening leads to a more than 1:1 increase in natural gas combined cycle generation

which is offset by a reduction in solar generation. This may seem counter intuitive at first,

because electrification in, say, hour 24 obviously does not directly affect generation from

solar in that hour. But it does increase the entry of combined cycle natural gas, and that

extra capacity can generate electricity in other hours, which displaces solar in those hours.

27The seven regions are Carolinas, MidAtlantic, MidWest, New England, New York, Tennessee, and
California.
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In this case, the sum of the effects over all hours due to electrification in hour 24 yields an

increase in natural gas generation and a decrease in solar generation. For other hours of the

day, the effects vary from a mixed response by solar and natural gas; to a 1:1 response from

solar; to a more than 1:1 response from solar which is offset by a reduction in natural gas

generation. As we will see, these responses may result in dramatically different emissions

effects of electrification.

Figures 4 (b)-(d) show an even richer set of responses to electrification. In Pigouvian High

Cost, a significant share of generation is nuclear in regions with limited renewable availability,

and Figure 4 (b) shows nuclear generation responds to electrification in the long run. For

example, in Florida, electrification in hour 18 results in a more than 1:1 increase in solar

and natural gas generation, which is offset by a decrease in nuclear generation. Conversely,

electrification in hour 9 results in a more than 1:1 increase in nuclear generation offset by

a reduction primarily in natural gas. Four other regions also show quite large responses by

nuclear generation. In regions with good renewable availability (e.g., Central) electrification

results in approximately a 1:1 response from solar during the day and wind during the night.

With cheaper renewables, Figures 4 (c) & (d) show that electrification during the after-

noon results in a 1:1 or more increase in solar generation in all regions except New England.

Responses to electrification in other hours may involve changes to solar, wind, and natural

gas. In Figure 4 (d), for every region except Florida electrification during the day results in

about a 1:1 increase in solar while electrification at night results in about a 1:1 increase in

wind with solar offset if the wind increase is more than 1:1. However in some regions, natural

gas is also responding, e.g., New York. Without carbon pricing, Figure 4 (c), much more

of the response is from natural gas. In fact, in all regions except Central electrification at

night results in a 1:1 or more than 1:1 response from natural gas with offsetting reductions

in solar generation.

The changes in generation are useful to illustrate the mechanisms at work in our long run

model. But ultimately we are interested in emissions. Figure 5 aggregates the changes in

generation to give the long run emission change (LREC) due to electrification in hour h. In

BAU High Cost in seven regions natural gas responds 1:1, so the LREC is equal to 0.34 mt

per MWh for each hour which is the emissions rate of combined cycle natural gas (Figure 5
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(a) BAU (b) Pigouvian

Figure 5: LREC from electrification in each hourfig_LRME
Notes: Vertical axis is the LREC (mt/MWh) across all hours from a one percent shock to demand in only
hour h each day of the year.

(a) solid line). In the other six regions, the LRECs can be greater or less than 0.34 and can

even be negative. For example, in Florida in the evening, the LREC exceeds 0.34 due to

the more than 1:1 increase in natural gas generation offset by a decline in solar. Conversely,

during the afternoon solar generation may respond so that the LREC is less than 0.34, and

may even be negative if solar responds more than 1:1. The negative effect is consistent with

Result 1 showing that electrification can decrease emissions.

With lower cost renewables, Figure 5 (a) dashed line, the effect during the afternoon is

more likely to be below 0.34, e.g., in Carolinas. Thus, cheaper renewables can decrease the

emissions from electrification. However, in the evenings, the cheaper renewables actually

increase the emissions from electrification in some region, e.g., Carolinas. This is consistent

with Result 1 showing that the emissions effect of electrification can be higher with lower

cost renewables.

Figure 5 (b) shows the LRECs from electrification under a Pigouvian carbon tax. In

general, the LRECs are lower and are close to zero across all hours in some regions, e.g.,

Central, MidAtlantic, MidWest, Northwest, and Texas. However, in some regions for some

hours, the LRECs may exceed 0.34, e.g., California in the early morning, or can be negative.

When electrification affects nuclear power, e.g., Florida, the LRECs can be large and positive
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or large and negative. This implies that the emissions from electrification may be highly

sensitive to the timing of electrification.

The results in Figure 5 illustrate the range of environmental effects from electrification

in a given hour. However, they may be of limited use for policy analysis because most

electrification uses electricity more than one hour per day. Aggregating these effects across

hours may not be reliable because additional generation capacity can be used in many

hours.28

To analyze more realistic electrification scenarios, we consider electrification profiles

which increase electricity use in more than just one hour. For example, green hydrogen

production or other industrial processes may run essentially continuously, which we model

with a Flat profile in which each hour of the year receives the increase in consumption,

i.e., ∆Ēt = 0.01Q̄ for every t. Similarly, we define six other electrification profiles: Day-

time, Nighttime, Summer, Winter, Summer Day, Winter Night, to illustrate electrification

at different times or seasons, for example, from lighting, air conditioning, or space heating.

Figure 6 shows the LREC per MWh for each of these electrification profiles for the

thirteen regions. Two reference levels are zero and 0.34 mt per MWh, which is the emissions

rate of natural gas. Four points are worthy of note. First, there is substantial heterogeneity

in the LRECs: ranging from above 0.6 to less than -0.2. The heterogeneity narrows with

carbon pricing and cheaper renewables but remains substantial. Second, LRECs tend to be

lower in Daytime (compared to Nighttime), Summer (compared to Winter), and Summer

Day (compared to Winter Night). This effect holds because these are the times when solar

generation responds more to electrification. This pattern indicates that the LRECs for air

conditioning, for example, are less than for space heating. However, this pattern does not

hold with Pigouvian High Cost, likely because nuclear is responding in this scenario, and its

effects can be substantial. Third, LRECs are generally lower with carbon taxes, but are not

substantially lower with cheaper renewables. This perhaps arises because cheaper renewables

do not necessarily reduce emissions of electrification, so their effects may be smaller when

28If prices don’t change, taking a linear combination of the individual hourly LRECs is equal to the
LREC for a more complicated use profile, but this will not work in general. Similarly, a small increase in
electrification does not necessarily have the same LREC as a large increase.
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Figure 6: LREC for various electrification profilesfig_all_seasons
Notes: Vertical axis is the LREC (mt/MWh) across all hours for a change in demand (equal to one percent
of observed consumption in a region) during hours specified by the use profile. “Flat”: the change in demand
occurs in all hours. “Daytime”: the change occurs from 8am to 6pm. “Nighttime”: the change occurs from
7pm to 7am. “Summer”: the change occurs from May to October. “Winter”: the change from November
to April. “Summer Day”: the change occurs from May to October from 8pm to 6pm. “Winter Night”: the
change occurs from November to April from 7pm to 7am.

aggregated across an electrification profile. Finally, negative LRECs are possible, particularly

with the summer profile, but occur in only a minority of regions.

4.2 EV adoption

Large-scale electrification, such as EV adoption, requires substantial increases in electricity

usage across multiple hours. We analyze the effects of replacing the entire light duty vehicle

fleet with electric vehicles by first assuming electricity use of 0.25 kWh per mile at 68 degrees

Fahrenheit and adjusting for locational differences in temperature. This gives a county-level

electricity usage per mile, which we then multiply by the county-level vehicle miles traveled
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(VMT) and aggregate up to the EIA region to obtain annual EV electricity demand for each

region.29

The EV owner may have flexibility over the hours they use electricity to charge the EV’s

battery. This flexibility may have different implications for emissions and may be influenced

by a mixture of consumer preferences, market behavior, and public policy that determine

where charging stations are located (e.g., in apartment complexes or shopping malls). We

define five charging profiles which determine the charging hours. The EPRI profile charges

mostly at night (see Figure O.A.11) and is largely consistent with recent work that estimates

actual charging behavior in California (Burlig et al. (2021)). The Flat profile distributes

charging evenly across all hours. In the Carbon Min profile, charging is optimally distributed

across hours such that the total emissions of carbon are minimized. Two other optimized

profiles, the Charge Cost Min and Welfare Max profiles, minimize the cost of charging the

vehicles and maximize welfare as defined in Section 2. To determine the three optimized

profiles, we use an inner and outer optimization procedure. Given a candidate profile, the

inner optimization solves the planner’s problem (1) as described above to determine the

long-run equilibrium when vehicles are charged according to the candidate profile. The

outer optimization then searches over the space of feasible profiles to find the profile that

optimizes the appropriate objective (carbon emissions, welfare, or charging costs).30

Figure 7 summarizes the generation, emissions, and battery statistics for Baseline without

EVs as well as 100% EV adoption under the various charging profiles.31 Consider first the

BAU High Cost case. Under the EPRI charging profile, using EVs for 100% of light-duty

VMT increases carbon emissions from electricity by 255 mmt annually. However, the current

light duty gasoline powered vehicle fleet emits approximately 1040 mmt of carbon emissions

annually and these emissions are completely eliminated under 100% EV adoption. So EV

adoption substantially reduces carbon emissions from transportation. Also note that EV

adoption reduces long-run renewable generation, which is an illustration of Result 2. The

29We use miles traveled from the US EPA Moves model for year 2011 light duty vehicles (obtained from
Holland et al. (2016)).

30A feasible profile is an element in the 24-dimensional unit simplex with an additional restriction that the
maximum value for any hour is 0.4. The precision of this procedure is described in Online Appendix O.A.4.

31As before, there is a small amount of peaker gas generation in the BAU cases that is not visible in the
figure.
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Figure 7: Effects of 100% EV adoption for Different Charging Profilesfig_EV_generation
Notes: The “Flat” charging profile has equal charging in all hours; the “EPRI” profile assume most charging
at night; the “Carbon Min” profile minimizes carbon emissions; the “Charge Cost Min” profile minimizes
the cost of EV charging; the “Welfare Max” profile maximizes welfare.

results are similar for the Flat and Charge Cost Min profiles. However with the Carbon

Min profile, EV adoption only increases electricity sector emissions by 35 mmt because it

increases long-run renewable generation. It also leads to a rather dramatic increase in battery

storage. The carbon minimizing charging profile concentrates charging in a few hours, which

greatly increases prices during those hours. This in turn increases arbitrage opportunities for

the batteries. In this case, Battery Use exceeds Daily Potential indicating that the battery

storage is charged and discharged more than once per day on average. The Welfare Max

profile, which considers all benefits and costs, does not induce as much solar generation, has

slightly higher carbon emissions, and lower battery storage.
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These patterns generally hold in the other cases in Figure 7. One important difference,

however, is that there is a negative change in emissions when moving from baseline to 100%

EV adoption under the Carbon Min profile. For example, in the BAU Low Cost case, the

Carbon Minimizing profile leads to emissions that are 132 mmt lower than baseline. This

striking result shows that it is possible to completely electrify vehicle transportation while

also reducing electricity-sector carbon emissions.32

(a) BAU High Cost (b) Pigouvian High Cost

(c) BAU Low Cost (d) Pigouvian Low Cost

Figure 8: Optimal EV charging profiles for each regionfig_opt_charge_cluster
Notes: Vertical axis is the percent of time charging occurs in the given hour. “Welfare Max” maximizes
welfare; “Carbon Min” minimizes carbon emissions; “Cost Min” minimizes the cost of charging EVs.

The comparisons across the profiles suggest a tension between the environmental effects

and the cost and convenience of charging. Figure 8 shows the optimized charging profiles

32Gagnon and Cole (2022) and Powell et al. (2022) also find that charging during the day can reduce
carbon emissions.
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for each region. In the BAU High Cost, the Cost Min profile spreads charging across many

hours or charges primarily at night. This is similar to the EPRI or Flat profiles but contrasts

with the Carbon Min and Welfare Max profiles. The Carbon Min profiles generally charge in

the midday hours. Charging at these times increases solar capacity which provides emissions

free generation both in the hours during which the cars are charged as well as other hours

when the sun is shining. For example, in Tennessee, the Cost Min profile charges primarily

at night, but the Carbon Min and Welfare Max profiles charge primarily during the day with

the Carbon Min profile charging primarily in a few hours. This difference across profiles still

holds with cheaper renewables (BAU Low Cost), but in the Pigouvian cases the difference

is reduced. In fact, for the Pigouvian Low Cost case, the Cost Min and Welfare Max

charging profiles align almost exactly for most regions, although the Carbon Min profile still

concentrates charging in fewer hours. Thus carbon pricing aligns the private incentives (Cost

Min) with the social incentive (Welfare Max) for most regions.33

We conclude the analysis of EV adoption by providing disaggregated information about

emissions. The LRECs across regions and charging profiles are shown in Figure 9. For the

BAU High Cost, the LREC for the Flat profile is approximately 0.34 mt per MWh for all

regions, which is the emissions rate of combined cycle natural gas. The EPRI profile has

higher LRECs across most regions. The Carbon Min and Welfare Max have much lower

LRECs, including negative LRECs across most (but not all) regions. With cheaper renew-

ables (BAU Low Cost), the LRECs vary substantially across regions and across charging

profiles. For example, the EPRI profile in Florida results in an LREC of 0.5, whereas the

Carbon Min profile in the Mid West results in an LREC of -0.4. With carbon pricing, the

differences across regions and across charging profiles are much smaller. In particular, the

differences between Welfare Max and Charge Cost Min are much smaller, and the LREC are

close to zero for most regions.

33Intuitively, with carbon pricing, the shadow cost of a unit of charging in a given period is the price in
that period which suggests that welfare is maximized by charging in low price periods. Similarly, charging
costs are minimized by charging during periods with low prices.
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Figure 9: LREC for various EV Charging Profilesfig_carboncompare
Notes: Vertical axis is the LREC (mt/MWh) across all hours for a change in demand from the various
profiles. The “Flat” profile has equal charging in all hours; the “EPRI” profile assume most charging at
night; the “Carbon Min” profile minimizes carbon emissions; the “Welfare Max’ profile maximizes welfare;
the “Charge Cost Min” profile minimizes the cost of EV charging.

5 Conclusion

Electrification will require completely transforming the electricity grid, and our long-run

model can provide guidance to the end goal of policy for the electricity sector. By ignoring

legacy investments and transition costs, we construct a simple and transparent framework

for understanding the long-run effects of electrification. By capturing crucial aspects of the

electricity industry such as time-varying demand, renewable intermittency, costly storage,

and generation capacity, this framework can provide novel and realistic policy assessments.

Our theoretical model demonstrates that several surprising long-run effects are feasible

with regards to electrification. Expected electricity demand growth (for example, due to
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greater EV penetration) could potentially decrease total emissions in the electricity sector.

Using simulations from our calibrated model, we show that this is feasible if EV charging is

done in a way that minimizes emissions. Depending on the region, this generally involves EV

charging in the daytime. Adoption of charging stations in shopping centers and workplaces

may facilitate this. Current charging patterns are mostly in the evening, and this leads

to greater use of fossil fuels and a crowding out of renewables in the long run. There are

important regional exceptions, however, to this general rule, which illustrate the complicated

long run interactions between electrification and other policies such as a carbon taxes.

Negative emissions are a tantalizing prospect, however this may not be optimal when

considering the overall welfare gains from EV adoption. To calculate these gains, one would

need to supplement the welfare measure in this paper with additional consideration of the

consumer surplus from EVs and consumer preferences for charging times along with a detailed

analysis of welfare from existing light-duty vehicles (consumer surplus from gas vehicles,

operating costs, capital costs, and externalities from driving gasoline vehicles).

Although it is known that the environmental effects of electric vehicle adoption depend

on the timing of charging (Holland et al. (2022)), our results, taken in conjunction with this

previous literature, show that these effects also depend on the time horizon of the analysis.

In the short run, the emissions-minimizing time to charge is when renewables are curtailed or

when coal is less likely to be on the margin. In the long run, charging only during times with

high renewable capacity factors induces entry and may result in negative emissions from the

grid. Cases in which the LREC differ significantly from their short run counterparts create

an interesting dilemma for those who want to reduce the carbon footprint of their electricity

consumption. Choosing to consume electricity in hours with low short run marginal emissions

may be counter productive in the long run. Accounting for both the short run and long run

in a unified model of the transition to electric vehicles would be an interesting direction for

future research.

Our modeling framework has several important caveats. Many of our parameter cali-

brations are uncertain. We assume no market power in the long run although electricity

market participants may have some pricing power. Similarly, we ignore learning by doing,

scale economies, and additional market failures such as learning spillovers and information
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asymmetries. Additionally, legacy technologies and transition costs may play a role in the

feasibility of grid investments. More detailed demand calibrations and modeling of trans-

mission congestion are important possible extensions of our work. Finally, actual solar and

wind generation data for several missing regions would allow better capacity factor estimates.

Given these caveats, our theoretical and calibration results provide important insights into

electrification in the long run.
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Appendix: Proofs

Proof of Lemma 1: Suppose qi′t < fi′tKi′ . The FOC for λi′t implies that λi′t = 0 so (4)

then implies that pt ≤ ci′ . But qit > 0 implies from (4) that pt = ci +λit ≥ ci, which contradicts

the assumption ci > ci′ . ∎

Proof of Lemma 2 : For notational simplicity, assume the technologies have unique costs.

Because Lemma 1 implies a unique ordering of the technologies, let ρit ≡ U ′(∑i′≤i fi′tKi′ −bt−

Ēt) be the marginal benefit if all technologies with operating cost less than or equal to ci

generate at capacity and if net battery charging is bt. Falling marginal benefit implies that

34

https://www.eia.gov/electricity/gridmonitor/dashboard/electric_overview/US48/US48
https://www.eia.gov/electricity/gridmonitor/dashboard/electric_overview/US48/US48
https://www.eia.gov/electricity/data/eia923/
https://www.eia.gov/electricity/data/eia923/
https://www.eia.gov/electricity/data/eia860/
https://www.eia.gov/outlooks/aeo/pdf/electricity_generation.pdf
https://www.eia.gov/outlooks/aeo/pdf/electricity_generation.pdf


ρit > ρ(i+1)t for all i. Moreover, it is easy to show that technology i operates at capacity in

period t if ρit > ci.

Let technology ι be the highest cost technology with qιt > 0 in period t. It is easy to see

that ριt < cι+1 (otherwise technology ι + 1 would be utilized) and that ρ(ι−1)t > cι (otherwise

technology ι would not be utilitized).

For technology ι, we know that the electricity price is pt = cι if cι > ριt and pt = ριt

if ριt > cι. This implies that pt = max{cι, ριt}. Now for technology i < ι, generation is at

capacity so max{ci, ρit} = ρit. Alternatively, for technology i > ι, generation is zero, which

is less than capacity, so max{ci, ρit} = ci. Combining implies that mini{max{ci, ρit}} =

min{ρ1t, ρ2t, ..., ρ(ι−1)t, pt, c(ι+1), c(ι+2), ..., cI} = pt.∎

Proof of Lemma 3: First note that ϕt = pt from (5) . If St = 0, then µt = 0 by the FOC for

µt, so (6) implies that pt+1−pt = ϕt+1−ϕt ≤ 0. If 0 < St <Ks, then µt = 0 and the inequality in

(6) binds so pt+1−pt = 0. If St =Ks, then µt ≥ 0 and 0 = pt+1−pt−µt ≤ pt+1−pt, so pt+1 ≥ pt. ∎

Proof of Lemma 4 : From (4), we have that pt − ci ≤ λit. Because λit ≥ 0 we have

λit ≥ max{pt − ci,0}. Proof by contradiction34 shows that λit = max{pt − ci,0}. Substitution

in (7) and multiplying by Ki implies that

0 =∑
t

max{pt − ci,0}fitKi − riKi

=∑
t

(pt − ci)qit − riKi.

where the last equality follows because qit = 0 if pt < ci, qit = fitKi if pt > ci and qit ∈ [0, fitKi]

if pt = ci.35

For the battery, to derive the condition from (8) we must evaluate ∑t µt. Lemma 3

allows us to identify a charging cycle, C: the time period over which the price falls while the

battery is empty, then the price is flat while the battery charges, then the price increases

34Suppose λit > max{pt − ci,0}. Then λit > 0 which implies that qit = fitKi > 0 which implies λit = pt − ci
which is a contradiction.

35For each of these three cases: first, pt < ci implies max{pt−ci,0}fit = 0 = (pt−ci)qit; second pt = ci implies
max{pt − ci,0}fit = 0 = (pt − ci)qit; and third pt > ci implies max{pt − ci,0}fit = (pt − ci)fit = (pt − ci)qit/Ki.
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while the battery is full, and finally the price is flat while the battery discharges completely.

For this charging cycle C, let p be the lower price while the battery is charging, and let p̄

be the higher price while the battery discharges. To evaluate ∑t∈C µt, first note that µt = 0

if St < Ks and µt = pt+1 − pt if St = Ks. In the charging cycle, µt = 0 except when the price

is rising. During this time, the sequence of µt will be pt1 − p, pt2 − pt1 , pt3 − pt2 , ..., p̄ − ptn ,

which implies that ∑t∈C µt = p̄ − p. To evaluate ∑t∈C −ptbt over the cycle C, first note that

bt is zero while the price is falling. Then while the price is flat and the battery is charging,

bt > 0 and ∑−ptbt = −pKs. While the price is rising bt = 0 so ∑−ptbt = 0. Finally while the

price is flat and the batter is discharging, bt < 0 and ∑−ptbt = p̄Ks. Thus for the charging

cycle C, ∑t∈C −ptbt = (p̄ − p)Ks. But this implies ∑t∈C −ptbt = Ks∑t∈C µt. Summing over all

charging cycles and using (8) establishes that ∑t −ptbt = rsKs. ∎

Proof of Result 1: Consider a two period model with two technologies. Let h and l indicate

the high and low demand periods, and Dh(p) ≥ Dl(p) for each p. Technology 1 (renewable)

has c1 = β1 = 0, and technology 2 has c2 > 0 and β2 > 0. All capacity factors equal one.

Assume that r1 < r2 + 2c2. This ensures that pl < c2 so q2l = 0. The equilibrium then has

capacities given by K1 =Dl(pl) and K1 +K2 =Dh(ph), and prices (from Lemma 4) given by

pl + ph = r1 and ph = c2 + r2. Note that pl and ph are determined by ri and ci so they are not

affected by increments to demand. Emissions are only in period h and equal β2K2.

Now consider an increment ∆Ēh > 0 to demand in period h. Since prices are unaffected,

K1 is also unaffected, so ∆K2 = ∆Ēh > 0. But this implies that emissions increase, i.e.,

β2∆K2 > 0.

However, consider a demand increment ∆Ēl > 0 in period l. Since pl is unaffected,

∆K1 =∆Ēl. But because ph is also unaffected, we have ∆K2 = −∆Ēl < 0, which implies that

emissions decrease, i.e., β2∆K2 < 0.∎

Proof of Result 2: Consider the same model as in the proof of Result 1 except assume

f1l = 0 (Technology 1 is intermittent) and assume that c2 + r2 > r1 > c2. This ensures that ph
and pl are both greater than c2. The equilibrium has capacities given by Dl(pl) = K2 and

Dh(ph) =K1 +K2, and equilibrium prices (from Lemma 4) are ph = r1 and pl + ph = 2c2 + r2.

Note again that prices are not affected by increments to demand.
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Now consider a demand increment ∆Ēl > 0 in period l. To keep pl constant, we have

∆K2 = ∆Ēl. But because K1 +K2 must stay constant to keep ph constant, we have ∆K1 =

−∆K2 < 0 and renewable capacity, K1, decreases. ∎.

Proof of Result 3: Consider a two period model with a single dispatchable technology and

c1 = 0 but r1 > 0. Assume the demand curves are linear with common slope s. Suppose that,

in the initial equilibrium, we have Dl(pl) =K1 and Dh(ph) =K1 and prices (from Lemma 4)

satisfy pl + ph = r1. Consumer surplus to existing consumers is CSi = Ui(K1) − piK1 for

i ∈ {l, h}.

Now consider a demand increment ∆Ēh > 0 in period h. It is easy to see that 0 <

∆K1 < ∆Ēh and that ∆ph = −∆pl ≡ ∆p > 0 where ∆p is determined such that K1 + s∆p =

K1−s∆p+∆Ēh. Now consider ∆CSl+∆CSh. Begin with period l. In period l the price falls,

so the consumer surplus gain is the trapezoid with height ∆p and bases K1 and K1 + s∆p.

So ∆CSl = K1∆p + 0.5s(∆p)2. In period h the price rises, so the consumer surplus loss is

the trapezoid with height ∆p and bases K1 and K1 − s∆p. So −∆CSh =K1∆p − 0.5s(∆p)2.

Thus ∆CSl +∆CSh = s(∆p)2 > 0. ∎

Proof of Result 4 : Proving that cheaper renewables decrease carbon emissions is straight-

forward. Here we prove that ∆∑i∑t βiqit can be positive. Consider a model with two time

periods, h and l, and three technologies. Technology 1 (intermittent renewable) is available

only in period l, i.e., has capacity factors f1l = 1 and f1h = 0, and Technology 2 (nuclear)

and Technology 3 (fossil) are dispatchable with 0 = c1 < c2 < c3 and 0 = β1 = β2 < β3. With

two periods, only two technologies can have positive capacities.

With high cost renewables, i.e., high r1, generation is only from nuclear and fossil and

equilibrium prices are ph + pl = 2c2 + r2 and ph = c3 + r3, with r1 > pl so renewables do not

enter. In this case, carbon emissions are β3(Dh(ph) −K2). If renewable capital costs are

lower, such that r1 < pl, then renewables enter until r1 = p′l < pl. Because ph = c3 + r3, it

is unchanged. But then there is no nuclear capacity because ph + p′l < ph + pl = 2c2 + r2.

Because the renewable capacity is only available in period l, fossil capacity is higher and

carbon emissions are β3Dh(ph) so the lower renewable costs have higher carbon emissions.

Now let there be a small increase in demand ∆Ē in both periods. Consider first the high

cost renewable case r1 > pl. Prices in the two periods must stay the same, so capacity must

37



increase. In period l only nuclear is generating and so we have ∆K2 =∆Ē. In period h both

nuclear and fossil are generating so we have ∆K2 +∆K3 =∆Ē which implies ∆K3 = 0. Thus

emissions do not increase.

In the low cost renewable case, once again prices must stay the same so capacity must

increase. In period l only renewables are generating so we have ∆K1 =∆Ē. In period h only

fossil is generating, so we have ∆K3 = ∆Ē. Thus emissions increase by β3∆K3 > 0. Thus

the emissions increase is larger with low cost renewables. ∎

Proof of Result 5: To show that renewable capacity can increase or decrease if rs decreases,

consider the exact same model as in the proof of Result 2. Assume at first that storage is

expensive, such that rs > ph − pl. Then storage is not profitable, and no storage is built. If

storage is less expensive, then Lemma 4 implies storage enters until rs = p′h − p′l. This drives

down the high price and drives up the low price. Since p′h < ph = r1, there is no renewable

capacity, additional fossil capacity enters, and carbon emissions increase.

Proof of Result 6 : The first statement follows directly from the increase in costs of any

polluting technology. Consider the exact same model as in the proof of Result 1 except

now there is a carbon tax in place. It is easy to verify that both technologies are used in

period h and the equilibrium prices are pl + ph = r1 and ph = c2 + β2τ + r2 if pl < c2 + β2τ .

Now consider ∆τ > 0. Clearly ∆ph = β2∆τ > 0 and ∆pl = −∆ph < 0 which implies that

∆(Dh(ph) +Dl(pl)) ≈ D′h∆ph +D′l∆pl = β2∆τ(D′h −D′l) which can be positive or negative.

For example, if the demand is period l is very elastic, then (D′h − D′l) > 0. In this case,

the increase in demand in period l exceeds the decrease in demand in period h so total

consumption increases.∎
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For Online Publication: Appendix

O.A.1 Model extensions
mode-extend

Fossil fuel technologies differ in their ability to quickly respond to increases or decreases

in the demand for their electricity. In our simulation, we consider two gas technologies:

combined cycle and peaker. Peaker plants can respond quicker than combined cycle plants

so we consider ramping constraints on the latter. Denoting this technology by j, we add the

following constraint to the planner’s problem:

qj,t ≤ qj,t−1 + κKi.

The ramping constraint is fixed as a percentage of capacity. Generation can’t increase by

more than this amount from one hour to the next.

In our baseline model, the capital costs of renewable capacity are constant with respect

to the amount of capacity. In practice, renewable capital costs may increase as capacity

increases due to increasing costs of materials for construction and/or decreasing suitability

of sites for locating the solar panels or wind turbines. Let the cost per unit of capacity is

given by

ri + ηiKi.

Here the value for capital costs ri used in our baseline model corresponds to the initial capital

costs when desired capacity is zero. Increases in desired capacity linearly increases capital

costs per unit of capacity. Thus capital costs riKi in the planner’s problem is replaced with

(ri + ηiKi)Ki.

O.A.2 Consideration of generation from coal
appendix-coal

Using the same EIA data source as for the other technologies, the capital cost of new coal

generation is $374,608 per MW and the operating cost is $22.48 per MWh. As discussed in

the main text, coal is dominated by natural gas at our baseline cost values for all technologies.
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To see the degree to which cost values have to change before coal becomes a viable generation

technology, we consider a sensitivity analysis in which we increase the ratio of operating cost

of gas generation to operating cost of coal generation or decrease the ratio of capital cost of

coal generation to capital cost of gas generation. The results are shown in Figure O.A.10.

Keeping the capital cost ratio at baseline, the operating cost ratio of gas to coal would have

to increase to 2.85 (a factor of 2.4 from baseline of 1.19) before any coal generation is used

at all in the long run equilibrium. Keeping the operating cost ratio at baseline, the capital

cost ratio of coal to gas would have to decrease to 1.41 (a seventy percent decrease from

baseline of 4.71) before any coal generation is used at all. In our baseline, the vast majority

of generation is from natural gas. In the event that gas costs increase significantly from

baseline and coal capital costs decrease significantly from baseline, much of this generation

would switch from gas to coal.

O.A.3 Renewable capacity factors for missing regions
sec:RenCapFac

EIA Form 930 (USEIA 2019a) is missing hourly solar generation for New York and hourly

wind generation for Carolinas, Florida, SouthEast, and Tennessee. We estimate the missing

capacity factors as follows. For New York solar, we use the NREL National Solar Radia-

tion Database (NSRDB, NREL (2021)) which provides half hour values for Direct Normal

Irradiance (DNI) in watts per square meter. We use Boston (ISONE) and Philadelphia

(PJM/MIDA) as comparisons to generate capacity factors for New York (NYISO). First we

collapse the DNI data by hourly average and market. We then regress capacity factor on DNI

for ISONE and PJM/MIDA for daylight hours. Using these regression results, we predict

capacity factors for NYISO and bound these predictions between 0 and 1 (set to zero if DNI

is zero).

For the wind capacity factors in Carolinas, Florida, SouthEast, and Tennessee, we collect

data on wind speed from NREL for year 2014 (NREL (2014)) by site and by hour for wind

potential at 80 meters. For every county centroid in the U.S., we find the NREL site closest

to the centroid, giving one observation per county per hour. Then we convert wind speed into
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an estimated capacity factor by county by hour (ECFH).36 Next we collapse to an annual

average by county, de-mean by state, and create deciles of the residual for each county.

EPA’s EGRID data (EPA (2014)) indicates which counties actually have wind turbines.

We calculate what share of counties with wind turbines that are in each decile. In other

words, we determine the probability of building a turbine in each decile (PBTEC). Now

using the ECFH, we take the weighted average across a region using PBTEC. This gives us

capacity factors at the region hourly level, which we call RECFH. The last step is to compare

the predicted capacity factors in the regions for which we have actual capacity factor data for

2019. We calculate the average difference between the 2019 data and the 2014 predictions,

by month and hour. Then we add this “bias” back onto the RECFH in regions for which we

do not have actual 2019 capacity factor data. Finally these predictions are bounded by zero

and one.

O.A.4 Details of the procedure to determine optimized

charge profiles
sec:nestmax

In theory, the optimized charge profiles can be found by solving the planner’s problem (1)

for a given charging profile, computing the appropriate objective (welfare, carbon emissions,

or cost of charging electric vehicles) from this solution, and then using an outer numerical

optimization algorithm to vary the charging profile until a minimum (maximum for welfare)

of the objective is found. In practice, there are two complications.

The first complication is that the outer loop may get stuck in a local minimum and the

particular local minimum found may be influenced by both the starting value for the charging

profile as well as the convergence tolerances used in the optimization algorithms. To address

this issue, we find the (possibly local) minima for three separate sets of starting values and

convergence tolerances for each of the 156 parameter cases (13 regions × 2 carbon tax cases

× 2 renewable capital cost cases × 3 objectives). This gives us a total of 456 candidate

charge profiles. We then do a post-processing step in which we take consider, for each of the

36See equation (23) in Dioyke, C, 2019, “A new approximate capacity factor method for matching wind
turbines to a site: case study of Humber region, UK”, International Journal of Energy and Environmental
Engineering, https://doi.org/10.1007/s40095-019-00320-5.
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156 parameter cases, all of the 456 candidate charge profiles and see which one leads to the

minimum objective for that case.

The second complication is that the OSQP algorithm we use to solve the planner’s prob-

lem (1) can occasionally take a long time to converge. This is not much of an issue if we just

want to solve the problem for a few different parameters, but becomes troublesome when we

imbed the planner’s problem in a outer optimization problem that seeks the optimized charge

profiles and therefore may solve the planner’s problem hundreds or thousands of times. To

address this issue, we consider an approximation procedure to find the 456 candidate charge

profiles. In particular, we define a modified planner’s problem in which the added EV elec-

tricity consumption becomes a choice variable rather than an exogenous value Ēt. To keep

the actual EV consumption close to the exogenous value we specify an “utility” function for

EV electricity consumption as

Vt(Et) = κ(Et − Ēt)2,

where κ is a large number. The resulting planner’s problem is still a quadratic programming

problem and almost always converges quickly. After finding the candidate profiles, we use

the original planner’s problem (1) with exogenous Ēt’s to do the post-processing step.

Online Appendix Tables
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Table O.A.1: Summary statistics of hourly capacity factors and observed demand conditions
table-SumStats

Capacity Factors Observed Observed
Region Solar Wind Demand Price
West
California 0.27 (0.33) 0.27 (0.19) 30,187 ( 6,149) 35.24 (26.21)

East
Carolinas 0.21 (0.28) 0.27 (0.16) 25,460 ( 5,442) 25.83 ( 7.35)
Central 0.24 (0.31) 0.43 (0.20) 30,839 ( 5,278) 22.56 (32.08)
Florida 0.23 (0.29) 0.19 (0.09) 27,552 ( 7,239) 19.55 ( 4.53)
Mid Atlantic 0.19 (0.26) 0.33 (0.22) 91,362 (15,759) 25.47 (20.29)
Mid West 0.18 (0.24) 0.35 (0.19) 80,791 (12,090) 24.85 (17.21)
New England 0.16 (0.24) 0.30 (0.21) 13,503 ( 2,428) 30.85 (20.29)
New York 0.18 (0.23) 0.31 (0.25) 17,789 ( 3,198) 25.15 (15.16)
North West 0.27 (0.33) 0.31 (0.15) 39,982 ( 5,526) 21.13 (21.72)
South East 0.23 (0.30) 0.23 (0.14) 27,762 ( 5,992) 20.39 ( 2.39)
South West 0.29 (0.32) 0.38 (0.21) 11,923 ( 3,406) 27.48 ( 5.18)
Tennessee 0.21 (0.30) 0.27 (0.18) 18,192 ( 3,740) 22.13 ( 8.41)

Texas
Texas 0.24 (0.31) 0.40 (0.21) 43,798 ( 9,769) 29.69 (70.63)

Notes: Unweighted mean over 8760 hours with standard deviation in parenthesis. Observed demand in
MWh, price in $ per MWh. Prices are truncated at $1000 and $10 per MWh.

Table O.A.2: Long Run Marginal Emissions for Flat (24/7) Electricity Use

table-LRME-flat

Region BAU Pigouvian
High Cost Low Cost High Cost Low Cost

California 0.338 0.241 0.192 0.112
Carolinas 0.338 0.338 0.006 0.090
Central 0.338 0.118 0.061 0.049
Florida 0.338 0.331 0.001 0.217

Mid Atlantic 0.338 0.338 0.128 0.096
Mid West 0.338 0.338 0.107 0.081

New England 0.338 0.338 0.024 0.119
New York 0.338 0.338 0.153 0.119
North West 0.338 0.248 0.085 0.059
South East 0.338 0.336 0.001 0.118
South West 0.337 0.179 0.075 0.054
Tennessee 0.338 0.338 0.003 0.102
Texas 0.326 0.143 0.067 0.051

Notes: All hours have additional electricity demand equal to one percent of average demand. Units are
metric tons per MWh of additional electricity demand.
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Table O.A.3: Long Run Marginal Emissions for Daytime Electricity use (8am to 6pm inclu-
sive)

table-LRME-day

Region BAU Pigouvian
High Cost Low Cost High Cost Low Cost

California 0.316 0.075 0.076 0.059
Carolinas 0.332 0.135 0.010 0.040
Central 0.179 0.056 0.034 0.031
Florida 0.106 0.091 -0.083 0.086

Mid Atlantic 0.340 0.152 0.059 0.039
Mid West 0.343 0.179 0.049 0.042

New England 0.337 0.337 0.083 0.066
New York 0.339 0.145 0.046 0.033
North West 0.120 0.084 0.053 0.037
South East 0.128 0.100 -0.079 0.043
South West 0.068 0.025 0.006 0.010
Tennessee 0.338 0.142 0.019 0.049
Texas 0.133 0.023 0.029 0.024

Notes: All hours from 8am to 6pm have additional electricity demand equal to one percent of average
demand. Units are metric tons per MWh of additional electricity demand.

Table O.A.4: Long Run Marginal Emissions for Nighttime Electricity use (7pm to 7am
inclusive)

table-LRME-night

Region BAU Pigouvian
High Cost Low Cost High Cost Low Cost

California 0.352 0.365 0.276 0.151
Carolinas 0.343 0.490 0.033 0.131
Central 0.449 0.165 0.080 0.061
Florida 0.520 0.499 0.150 0.318

Mid Atlantic 0.337 0.499 0.182 0.140
Mid West 0.334 0.434 0.146 0.107

New England 0.340 0.340 -0.009 0.162
New York 0.339 0.510 0.239 0.185
North West 0.494 0.360 0.109 0.079
South East 0.508 0.516 0.093 0.178
South West 0.526 0.303 0.123 0.085
Tennessee 0.338 0.485 0.016 0.143
Texas 0.450 0.237 0.091 0.069

Notes: All hours from 7pm to 7am have additional electricity demand equal to one percent of average
demand. Units are metric tons per MWh of additional electricity demand.
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Table O.A.5: Long Run Marginal Emissions for Summer Electricity use (May to October)

table-LRME-summer

Region BAU Pigouvian
High Cost Low Cost High Cost Low Cost

California 0.322 0.223 0.022 0.018
Carolinas 0.320 0.210 0.176 0.089
Central 0.180 0.104 0.038 0.025
Florida 0.296 0.241 0.243 0.176

Mid Atlantic 0.332 0.233 0.163 0.113
Mid West 0.332 0.260 0.112 0.088

New England 0.313 0.313 -0.047 0.133
New York 0.315 0.232 0.138 0.109
North West 0.174 0.154 -0.016 -0.022
South East 0.271 0.231 0.232 0.145
South West 0.196 0.196 0.089 0.061
Tennessee 0.327 0.211 0.098 0.089
Texas 0.255 0.170 0.065 0.032

Notes: All hours from May to October have additional electricity demand equal to one percent of average
demand. Units are metric tons per MWh of additional electricity demand.

Table O.A.6: Long Run Marginal Emissions for Winter Electricity use (November to April)

table-LRME-winter

Region BAU Pigouvian
High Cost Low Cost High Cost Low Cost

California 0.354 0.264 0.360 0.206
Carolinas 0.356 0.469 -0.164 0.093
Central 0.499 0.135 0.084 0.075
Florida 0.381 0.429 -0.240 0.261

Mid Atlantic 0.344 0.447 0.093 0.080
Mid West 0.344 0.419 0.103 0.081

New England 0.364 0.364 0.096 0.106
New York 0.361 0.445 0.171 0.132
North West 0.503 0.343 0.188 0.144
South East 0.408 0.446 -0.218 0.094
South West 0.486 0.161 0.066 0.050
Tennessee 0.349 0.469 -0.083 0.115
Texas 0.400 0.111 0.070 0.070

Notes: All hours from November to April have additional electricity demand equal to one percent of average
demand. Units are metric tons per MWh of additional electricity demand.
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Table O.A.7: Long Run Marginal Emissions for Summer Day Electricity use (May to October
8am to 6pm)

table-LRME-summerday

Region BAU Pigouvian
High Cost Low Cost High Cost Low Cost

California 0.291 0.055 -0.053 -0.037
Carolinas 0.311 -0.097 0.247 0.032
Central -0.033 0.051 0.012 0.009
Florida -0.074 -0.100 0.395 0.060

Mid Atlantic 0.338 -0.027 0.086 0.042
Mid West 0.337 -0.077 0.041 0.024

New England 0.305 0.305 0.034 0.072
New York 0.310 -0.021 0.032 0.022
North West -0.073 -0.011 -0.023 -0.010
South East -0.088 -0.151 0.434 0.049
South West -0.247 0.149 0.008 0.000
Tennessee 0.328 -0.083 0.159 0.029
Texas -0.070 0.198 0.019 0.007

Notes: All hours from May to October from 8pm to 6pm have additional electricity demand equal to one
percent of average demand. Units are metric tons per MWh of additional electricity demand.

Table O.A.8: Long Run Marginal Emissions for Winter Night Electricity use (November to
April 7pm to 7am)

table-LRME-winternight

Region BAU Pigouvian
High Cost Low Cost High Cost Low Cost

California 0.363 0.401 0.477 0.245
Carolinas 0.359 0.554 -0.102 0.129
Central 0.577 0.196 0.105 0.088
Florida 0.458 0.527 0.041 0.370

Mid Atlantic 0.345 0.556 0.145 0.115
Mid West 0.340 0.414 0.136 0.093

New England 0.362 0.362 0.087 0.143
New York 0.358 0.588 0.258 0.197
North West 0.671 0.468 0.231 0.191
South East 0.464 0.525 0.057 0.131
South West 0.571 0.377 0.109 0.068
Tennessee 0.349 0.558 -0.037 0.148
Texas 0.443 0.313 0.093 0.091

Notes: All hours from November to April from 7pm to 7am have additional electricity demand equal to one
percent of average demand. Units are metric tons per MWh of additional electricity demand.
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Figure O.A.1: Illustrative supply and demand with market clearing price pt.Graph
Notes: To illustrate Lemma 2, this figure assumes no storage and three technologies with capacity factors
equal to one and no electrification. The electricity price is determined by the intersection of the smooth
demand curve U ′t and the step function supply curve. For this example, the equation for pt from the lemma
is

pt =min{max{c1, U
′

t(K1)},max{c2, U
′

t(K1 +K2)},max{c3, U
′

t(K1 +K2 +K3)}

which is the minimum of three max expressions. The solid and unfilled circles indicate the values to be
compared inside each of the max expressions, with the solid circles indicating the resulting maximum values.
Thus pt =min{U ′t(K1), U

′

t(K1 +K2), c3}, i.e., the minimum over the solid circles. In the figure, the demand
curve intersects the supply curve at the vertical portion corresponding to the total capacity of the first two
technologies, i.e. pt = U

′

t(K1 +K2).
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Figure O.A.2: Illustration of Result 2.fig_Res_DloadRen
Notes: Two periods: h and l, and two technologies: intermittent renewable (1, yellow) and dispatchable fossil
(2, black). Renewable produces only in period h. Equilibrium prices are given by ph = r1 and pl+ph = 2c2+r2.
Demand growth in period l increases gas capacity and decreases renewables, which is Result 2.

Figure O.A.3: Illustration of Result 3.fig_Res_CS
Notes: Two periods: h and l, and one technology with prices given by pl + ph = 2c1 + r1. Demand growth in
period h increases ph which decreases consumer surplus to the existing consumers by the orange trapezoid.
Because ∆ph = −∆pl, the existing consumers gain the green consumer surplus in period l. The gain (green
trapezoid) exceeds the loss (orange trapezoid), thus demand growth increases consumer surplus for existing
consumers, which is Result 3.
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Figure O.A.4: Illustration of Result 4.fig_Res_renew
Notes: Two periods: h and l, and three technologies: intermittent renewable (1, green), nuclear (2, orange)
and fossil (3, black). Renewable produces only in period l. High renewable cost has supply S from nuclear
and fossil in both periods with prices pl + ph = 2cs + r2 and ph = c3 + r3 and pl < r1. Low renewable cost has
dashed supply S′ with prices p′l = r1 < pl and p′h = ph. Low renewable cost drives out nuclear capacity, which
increases capacity of fossil and increases emissions, which is Result 4.

Figure O.A.5: Illustration of Result 5.fig_Store
Notes: Two periods: h and l, and two technologies: intermittent renewable (1, yellow) and fossil (2, black).
Renewable produces only in period h. Initially, rs is large enough that there is no storage. The equilibrium
has supply S and implies prices given by ph = r1 and pl + ph = 2c2 + r2. Cheaper storage narrows the price
gap which drives down ph and causes renewables to exit resulting in supply S′ entirely from fossil. Battery
charge/discharge is indicated by heavy, horizontal line. Thus cheaper storage drives out renewables, which
is Result 5.
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Figure O.A.6: Illustration of Result 6.fig_Res_Ctax
Notes: Two periods: h and l, and two technologies: renewable (1, green) and gas (2, black). Without carbon
tax, supply is S, and prices are pl + ph = r1 and ph = c2 + r2. With a carbon tax T , supply is S′, and prices
are p′l + p

′

h = r1 and p′h = c2 + β2T + r2. Carbon tax increases gas cost and reduces emissions. Whether the
carbon tax increases or decreases electricity use depends on the relative slopes of Dl and Dh.

Figure O.A.7: Mean hourly observed demand by season and hour of day for each
EIA region.fig_refdemMulti
Notes: Demand in thousands of MWh.
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Figure O.A.8: Mean hourly observed price by season and hour of day for each
EIA region.fig_refpriceMulti

Figure O.A.9: Mean hourly capacity factors by season and hour of day for each
EIA region.fig_cfMulti
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Figure O.A.10: Coal generation sensitivity analysis.fig-pixel_plot_coal
Notes: Grey scale indicates the ratio of coal generation to total generation. Baseline operating cost ratio is
1.19 and baseline capital cost ratio is 4.71, as indicated by the blue dot.

Figure O.A.11: EPRI charging profile.fig_epri
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