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Introduction

• The standard OT model assumes that effort is unobservable and then
uses time endowment minus effort as “leisure”.

• This procedure does not differentiate between different types of leisure
(or, equivalently, treat different types of leisure as perfect substitutes).

•We revisit the OT problem in a setting where different types of leisure
are imperfect substitutes.

• In particular, we consider two different types of leisure: "traditional"
leisure, i.e. leisure time outside the workplace, and "goofing at work".

•We consider both the case when the only available policy instrument
is a nonlinear income tax and the case when it is possible to levy a
nonlinear tax that jointly depends on income and time spent at work.
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•With respect to the assumptions on individual preferences, we con-
sider both the case when agents’preferences are homogeneous and the
case when agents’preferences are heterogeneous due to a heterogene-
ity in the taste for goofing off (to capture what Firouz has labelled a
"Helmuth’s effect").
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•We highlight that:

—formula-wise, the expression for optimal marginal income tax rates
is not affected by the possibility to condition the tax liability also
on time spent at the workplace;

—however, simulations show that marginal income tax rates are sub-
stantially higher (and the average tax profile more progressive) when
the tax liability is allowed to depend also on time spent at the work-
place;

—the push-up effect on marginal income tax rates is magnified when
the Helmuth’s effect is at work;

—welfare gains are substantial.
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Preliminaries

• Time endowment, H, is spent on work effort e, goofing off at work, g,
and leisure at home, l:

e + g + l = H

• g and l “produce”a good called “leisure”and denoted by d.

• d is produced according to production function:

d = Ψ (g, l;w) ,

where w denotes the productivity/skills equal to “wage”.

• Preferences are additively separable in consumption, c, and d:

u = ρ (c) +z (d) = ρ (c) +z (Ψ (g, l;w)) .
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•We also assume that

z (Ψ (g, l;w)) = a (w)ϕ (g) + ψ (l)

so that
u = ρ (c) + a (w)ϕ (g) + ψ (l)

with

a (w) > 0, a′ (w) ≤ 0

ρ′ (·) > 0, ϕ′ (·) > 0, ψ′ (·) > 0,

ρ′′ (·) < 0, ϕ′′ (·) < 0, ψ′′ (·) < 0.

• Neither e nor g are publicly observable. Their sum, time spent at work,
is. Denote time spent at work by L, we have

L = e + g.

• Income is equal to I = we and is observable.
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• Substituting L− e for g, H − L for l, and I/w for e, we have:

v

(
c,
I

w
, L

)
≡ ρ (c) + a (w)ϕ

(
L− I

w

)
+ ψ (H − L) .

• Observe that:

—the separability property between (c, g, l) does not extend to (c, I,L).
In particular, MRScI is not independent of L; nor is MRScL inde-
pendent of I;

—for a given value of I, and thus e, choosing L is tantamount to the
individual deciding as how he wants to divide his remaining time,
H − e, between leisure at home and goofing off at work;

—vL can take both positive as well as negative. Suppose L is close to
I/w which means g is small. We would expect that vL > 0. On the
other hand, if L is close to H, l is small and vL < 0.
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•We have⇒
vc = ρ′ (c) > 0,

vI = −a (w)

w
ϕ′
(
L− I

w

)
< 0,

vL = a (w)ϕ′
(
L− I

w

)
− ψ′ (H − L) .

• ⇒
vcc = ρ′′ (c) < 0,

vII =
a (w)

w2
ϕ′′
(
L− I

w

)
< 0,

vLL = a (w)ϕ′′
(
L− I

w

)
+ ψ′′ (H − L) < 0,

vcI = vcL = 0,

vIL = −a (w)

w
ϕ′′
(
L− I

w

)
> 0.
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Geometrical representation
(c, I) space

• Indifference curves in (c, I) space (conditional on the values of L and
w):

v(c, I ;Lw) = ρ (c) + a (w)ϕ

(
L− I

w

)
+ ψ (H − L) = v∗

• The MRS between c and I, for a given value L and w, is defined as

MRScI (c, I ;Lw) = −vI
vc

=
a (w)

wρ′ (c)
ϕ′
(
L− I

w

)
> 0.

• ⇒
∂MRScI

∂I
= −a (w)

w2
ϕ′′ (L− I/w)

ρ′ (c)
> 0.

⇒ positively-sloping and convex.

8



9



•MRScI (c, I, L;w) as L increases,

∂

∂L

(
−vI
vc

)
=

a (w)

wρ′ (c)
ϕ′′
(
L− I

w

)
< 0,

where
∂

∂L
v (c, I, L;w) = a (w)ϕ′

(
L− I

w

)
− ψ′ (H − L) Q 0.
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Geometrical representation
(c, L) space

• Indifference curves in (c, L) space (conditional on the values of I and
w):

v (c, L; I, w) = ρ (c) + a (w)ϕ

(
L− I

w

)
+ ψ (H − L) = v∗

• TheMRS between c and L, for a given value of I and w, is defined as

MRScL (c, L; I, w) = −vL
vc

= −
a (w)ϕ′

(
L− I

w

)
− ψ′ (H − L)

ρ′ (c)
Q 0,

which is negative for small values of L turning positive as L increases.

• ⇒
∂MRScL
∂L

= −
a (w)ϕ′′

(
L− I

w

)
+ ψ′′ (H − L)

ρ′ (c)
> 0

U -shaped.
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•MRScL (c, L, I ;w) as I increases⇒

∂MRScL
∂I

=
a (w)ϕ′′

(
L− I

w

)
wρ′ (c)

< 0

and
∂

∂I
v(c, L, I ;w) = −a (w)

w
ϕ′
(
L− I

w

)
< 0.
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Laissez-faire

• Max

v (c, I, L, w) ≡ ρ (c) + a (w)ϕ

(
L− I

w

)
+ ψ (H − L) ,

st c = I.

• FOC yields the laissez-faire solution

a (w)ϕ′
(
L− I

w

)
= wρ′ (c) ,

a (w)ϕ′
(
L− I

w

)
= ψ′ (H − L) ,

c = I.

• The second equation tells us that at the laissez-faire solution, the in-
dividual equalizes the marginal utilities of g and l.
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Income monotonicity in laissez-faire

• Totally differentiating the LF solutionwrtw setting dI/dw = dc/dw ⇒

dI

dw
=
dc

dw
=

c
w2
− ρ′

ψ′′ −
ϕ′

a(w)ϕ′′

[
a(w)
w − a

′ (w)
]

1
w + wρ′′

ψ′′ + wρ′′
a(w)ϕ′′

;

with a′ (w) ≤ 0, we have income monotonicity in the LF.
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• For dL/dw we have that

dL

dw
=
ρ′ + w dc

dwρ
′′

−ψ′′ = − 1

ψ′′

 ρ′ + cρ′′ + wa′(w)
a(w)

ρ′′

ϕ′′wϕ
′

1 +
(

1
a(w)ϕ′′ + 1

ψ′′

)
w2ρ′′

 ,
which is of ambiguous sign (unless utility is assumed to be linear in
consumption).

• Similarly,
de

dw
=

d

dw

( c
w

)
=
−c
w2

+
1

w

dc

dw

= − 1

w

(cρ′′ + ρ′)
(

1
a(w)ϕ′′ + 1

ψ′′

)
− a′(w)ϕ′

a(w)ϕ′′

1
w +

(
1

a(w)ϕ′′ + 1
ψ′′

)
wρ′′

 ,
which is again of ambiguous sign (except for QL preferences).
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Mechanism designer problem with two-types

• The mechanism designer offers two bundles
(
ch, Lh, Ih

)
and

(
c`, L`, I`

)
to the h-type and the `-type which are found as the solution to

Γ = v

(
ch,

Ih

wh
, Lh;wh

)
+ δv

(
c`,

I`

w`
, L`;w`

)
+λ

[
v

(
ch,

Ih

wh
, Lh;wh

)
− v

(
c`,

I`

wh
, L`;wh

)]
+µ
[
πh
(
Ih − ch

)
+ π`

(
I` − c`

)
−R

]
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• FOCS are:

vhc = µπh/ (1 + λ) , (1)

vhI = −µπh/ (1 + λ) , (2)

vhL = 0, (3)

δv`c = λvh`c + µπ`, (4)

δv`I = λvh`I − µπ`, (5)

δv`L = λvh`L . (6)

This system of equation, plus the incentive compatibility and resource
constraints, determine the optimal values of the two bundles

(
ch, Ih, Lh

)
and

(
c`, I`, L`

)
that needs to be implemented by a tax system.
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The tax system

• Marginal tax rates: To determine the marginal tax rates, with respect
to income and labor supply, consider the problem of an individual fac-
ing the income tax function T = T (I, L). The individual w maximizes
v (c, I, L;w) subject to c = I − T (I, L).

• The Lagrangian associated with this problem is

Ω = v (c, I, L;w) + η [I − T (I, L)− c] .

• From the focs one gets:
∂T (I, L)

∂I
= 1 +

vI
vc
, (7)

∂T (I, L)

∂L
=
vL
vc
. (8)
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MTRs for the h-type

• Standard no-distortion-at-the-top result:
∂T
(
Ih, Lh

)
∂Ih

= 1 +
vhI
vhc

= 0,

∂T
(
Ih, Lh

)
∂Lh

=
vhL
vhc

= 0.

• It follows from vhL/v
h
c = 0 that, at the optimum, the following relation-

ships hold for our specification of preferences

a
(
wh
)
ϕ′
(
gh
)
− ψ′

(
lh
)

= 0.
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MTRs for the `-type

• One gets:
∂T
(
I`, L`

)
∂I`

= 1 +
v`I
v`c

=
λvh`c
µπ`

(
vh`I
vh`c
− v`I
v`c

)
=
λvh`c
µπ`

(
MRS`Ic −MRSh`Ic

)
,

∂T
(
I`, L`

)
∂L`

=
v`L
v`c

=
λvh`c
µπ`

(
vh`L
vh`c
− v`L
v`c

)
=
λvh`c
µπ`

(
MRSh`Lc −MRS`Lc

)
.
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•Marginal income tax. We have

MRS`Ic −MRSh`Ic ≡
vh`I
vh`c
− v`I
v`c

=

a(w`)
w`

ϕ′
(
L` − I`

w`

)
− a(wh)

wh
ϕ′
(
L` − I`

wh

)
ρ′ (c`)

> 0,

where the sign follows from concavity of ϕ (·) and a′ (w) ≤ 0.

• Consequently,
∂T
(
I`, L`

)
∂I`

> 0;

that is, income should be taxed at the margin and distorted downward
consistent with the traditional result.
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•Marginal tax on L. Turning next to the marginal tax on L, we have

MRSh`Lc −MRS`Lc ≡
vh`L
vh`c
− v`L
v`c

=

a
(
wh
)
ϕ′
(
L` − I`

wh

)
− ψ′

(
H − L`

)
ρ′ (c`)

−
a
(
w`
)
ϕ′
(
L` − I`

w`

)
− ψ′

(
H − L`

)
ρ′ (c`)

=

a
(
wh
)
ϕ′
(
L` − I`

wh

)
− a

(
w`
)
ϕ′
(
L` − I`

w`

)
ρ′ (c`)

< 0,

where again the sign follows from concavity of ϕ (·) and a′ (w) ≤ 0.
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• ⇒
∂T
(
I`, L`

)
∂L`

< 0;

that is, L should be subsidized and distorted upwards.

• Given income, L determines the division of the remaining time between
leisure at home and goofing off at work. Increasing L` increases the
goofing off time. Since gh` > g`, this is more detrimental (or provides
a smaller benefit) for a mimicker than for a low-skilled agent.
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Continuum case

• w is continuously distributed over the interval [w,w] with distribution
F (w) and density f (w).

• Let w̃ denote reported w, and define

V (w) ≡ v (c (w) , I (w) , L (w) ;w) = max
w̃

v (c (w̃) , I (w̃) , L (w̃) ;w) ,

where v (c (w) , I (w) , L (w) ;w) = ρ (c (w)) +a (w)ϕ
(
L (w)− I(w)

w

)
+

ψ (H − L (w)).

• From the envelope theorem

V̇ (w) =
dV (w)

dw
= vw (c (w) , I (w) , L (w) ;w) .
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Government problem

• Define problem P as

max
V (w),c(w),I(w),L(w)

w∫
w

Γ [V (w)] f (w) dw, (9)

s.t. V̇ (w) = vw (c (w) , I (w) , L (w) ;w) , (10)

V (w) = v (c (w) , I (w) , L (w) ;w) , (11)
w∫

w

[I (w)− c (w)] f (w) dw ≥ R. (12)
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• TI and TL are of opposite signs and the tax formulas can be expressed
as

TI
1− TI

= A (w)×B (w)× C (w)× ρ′ (c) (13)

TL = D (w)×B (w)× C (w) , (14)

where

A (w) ≡ 1− I (w)

w

ϕ′′

ϕ′
− wa′ (w)

a (w)
;

B (w) ≡ 1

1− F (w)

w∫
w

[
1

ρ′ (c)
− Γ′

µ

]
dF ; C (w) ≡ 1− F (w)

wf (w)
;

D (w) ≡ wa′ (w)ϕ′ + a (w)
I (w)

w
ϕ′′ =

[
wa′ (w)

a (w)
+
I (w)

w

ϕ′′

ϕ′

]
a (w)ϕ′.
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• Furthermore, from (13)-(14) it follows that
TL

(1− TI)w
= [1− A (w)]×B (w)× C (w)× ρ′ (c) ,

TL/w

TI
=

1− A (w)

A (w)
=

1

w

vwL
vwI

,

TI +
TL
w

= B (w)× C (w)× ρ′ (c) ,

where:

• TL
(1−TI)w

= 1 − ψ′(l)
a(w)ϕ′ provides a measure of the wedge between l and g

(since we have that TL
(1−TI)w

= 1− ψ′(l)
a(w)ϕ′);

• TI + TL/w provides a measure of the wedge between l and c (since we
have that TI + TL/w = 1− ψ′(l)

wρ′(c)).
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• The tax rule for marginal income tax rates remains formally the same
irrespective of whether the tax liability can be conditioned on both I
and L or only on I. However, one would expect higher marginal
income tax rates to arise when T (I, L). This is driven by the fact
that: i) L is subsidized under a tax system T (I, L), and ii) for given I,
c and w,MRScI is declining in L, i.e. an increase in L has a flattening
effect on the shape of the indifference curves in the (I, c)-space.

• Comparing the formulas with those obtained for the case when prefer-
ences are homogeneous, i.e. a′ (w) = 0, one would expect marginal
income tax rates to be higher under preference heterogene-
ity. In the case of the formula for TL the comparison is less clearcut.
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Numerical simulations
• Same wage data as Mankiw et al. (2009) and Bastani (2015).

• For the "traditional" case where l and g are treated as perfect substi-
tutes, we use the utility function U = 1.7 ln c− l−1.

• For the case where l and g are imperfect substitutes, we consider the
following cases:

—case a): U = 2.5 ln c−
[
4
5l
1/2 + 1

5g
1/2
]−2
, implying that the elasticity

of substitution between l and g is constant and equal to 2. In this
case, under an income tax, the ratio l/g does not vary with I.

—case b): U = 1.785 ln c− l−0.9
0.9 − 0.285g−0.2. In this case, also under

an income tax, the ratio l/g varies with I.

—case c): U = 1.785 ln c− l−0.9
0.9 − a (w) 0.285g−0.2, with a (w) > 0 and

a′ (w) ≤ 0 (Helmuth’s effect).
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