A General Solution to the Quasi Linear Screening Problem

G. Carlier, X. Dupuis, J.C. Rochet and J. Thanassoulis Conference in honor of Helmuth Cremer

May 24, 2024

Motivation

Dissatisfaction with policy implications of optimal tax theory. When optimal labor taxation is possible:

- Chamley (1986) and Judd (1985): capital taxes should be zero.
- Diamond-Mirrlees (1971): commodity taxes should be zero
- Atkinson-Stiglitz (1976): consumption taxes should be zero.

At odds with common sense and common practice in many countries.

Motivation (continued)

These results rely on assumption that heterogeneity is only about labor productivities:

- Saez (2002): taxing capital income is optimal when more productive people have a higher propensity to save.
- Mirrlees (1976): very restrictive to assume only one source of adverse selection, assumed only for tractability.
- Need to consider multidimensional adverse selection.

Cremer (2003): "Because of the technical difficulties raised by multidimensional screening models, the specification of tractable taxation models has long been neglected"

Multidimensional Tax Models

Different approaches in the literature:

- Assume special preferences or technology so that multidimensionality can be eliminated: Kleven et al.(2009) on taxation of couples, Chone and Laroque (2010) on labor taxation, Beaudry et al. (2009) on employment subsidies.
- Assume government can only tax **total** income: Rothschild et al. (2013), (2016), Jacquet et al. (2013).
- Compute the gradient of social welfare with respect to the different taxes: allows to analyze impact of tax reforms: Golosov et al. (2014). Not valid when there is **bunching**: very frequent in multidimensional problems.

Multidimensional Extensions 2

- Purely numerical approach: Tarkiainen and Tuomala (1999), (2007), Judd et al (2017) but no guarantee that the algorithms converge.
- Cremer et al. (2001), (2003): 2 × 2 models (two dimensions of heterogeneity and two possible values for each parameter). Also Boadway et al. (2002). Only illustrative: cannot be calibrated to real data.

This paper

- We provide a numerical algorithm that can solve almost any discrete quasi-linear multidimensional screening problem.
- Based on a primal-dual algorithm used in medical imaging (Chambolle Pock 2011).
- Extremely flexible: all types of discrete distributions can be dealt with.
- We illustrate this algorithm by solving:
 - 1. Generic monopolist price discrimination problem.
 - 2. Optimal taxation of labor and savings incomes when individuals differ in two dimensions.

Why are unidimensional screening problems so simple?

- Magic trick: Single Crossing Property (SCP).
- With SCP, individuals are always ranked in the same way.
- Ex: more productive people always get a higher income.
- "Local downward" IC constraints are always binding.
- Informational rents computed by adding incremental utilities from "above".
- Second best allocations maximize "virtual surplus": surplus minus informational rents.
- Simple analytical formula for virtual surplus: smooth function of allocation.

Why are multidimensional screening problems so difficult?

- In multiple dimension (or when SCP does not hold) the ranking of individuals varies with the allocation.
- Non local or "transverse" incentive compatibility can be binding.
- Informational rents are non differentiable functions of allocations.

- No simple expression is available.
- No way to compute virtual surplus analytically.

An Illustration of the Difficulties

Binding constraints, two dimensional monopoly price discrimination problem:

How our algorithm overcomes these difficulties

- Using the characterization of implementable allocations in Rochet (1987), we transform the maximization problem of the principal problem into a maxmin problem involving the Lagrange multipliers of IC constraints.
- We adapt the primal dual algorithm of Chambolle Pock (2009) that was designed for medical imaging problems.
- At each iteration, the algorithm adjusts the allocation (primal) and the Lagrange multipliers (dual).
- Convergence is guaranteed under mild regularity conditions.
- The limit is a local solution (global if the problem is convex).

Application: taxation of savings and labor incomes

- Simple extension of Mirrlees (1971): individuals differ in their initial endowments e and disutilities of working x.
- Consume at two dates t = 1, 2, quasi linear preferences:

$$V_i = u(C_i^1) + C_i^2 = u(e_i - s_i) + Rs_i + (w - x_i)I_i - T(s_i, I_i)$$

 Tax T(s_i, l_i) only depends on observable decisions of agent i : savings s_i and labor supply 0 ≤ l_i ≤ 1.

- *R*: return on savings and *w*: unit wage.
- Both are exogenous and uniform across agents.

Model (continued)

Government maximizes a weighted sum of a Rawlsian objective and utilitarian welfare:

$$W = \alpha \min_{j} V_{j} + (1 - \alpha) \sum_{i} f_{i} V_{i},$$

under the constraint that tax revenue covers public expenditure G

Economic question: should savings be taxed more heavily for employed or unemployed people?

Separable Taxation

- In the one dimensional case (when endowments or labor costs are publicly observable), the optimal tax is separable.
- Total tax = tax on labor income plus tax on savings income.
- Participation in the labor force (*l* > 0) only depends on labor cost *x*.

• It is independent of initial endowment e.

The two dimensional case

- Optimal tax on savings may depend on employment status: T₁(s) for employed, T₀(s) for unemployed.
- Employed individuals choose savings $s_1(e)$ that solve

$$v_1(e) \equiv \max_s u(e-s) + Rs - T_1(s).$$

• Unemployed individuals choose savings $s_0(e)$ that solve

$$v_0(e) \equiv \max_s u(e-s) + Rs - T_0(s).$$

Indirect utility is

$$V(e,x) = \max[v_0(e),v_1(e)+w-x]$$

The solution

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

The solution (continued)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The solution (end)

• Employment decision depends on initial endowments:

$$I = 1 \iff x < w + v_1(e) - v_0(e) = x^*(e).$$

- Critical labor cost x*(e) increases in e
- This implies that marginal tax rate on savings must be higher for unemployed individuals.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

• This is meant to encourage labor force participation.

Conclusion

- This example is only illustrative.
- We do not mean to derive serious policy implications.
- We just want to illustrate the power of our algorithm, which is easy to use and extremely flexible.
- It is publicly available at https://github.com/x-dupuis/screening-algo.
- We hope it will be adopted by the optimal tax community to solve the multidimensional screening problems they find interesting.