The Personalization Paradox: Welfare Effects of Personalized Recommendations in Two-Sided Digital Markets

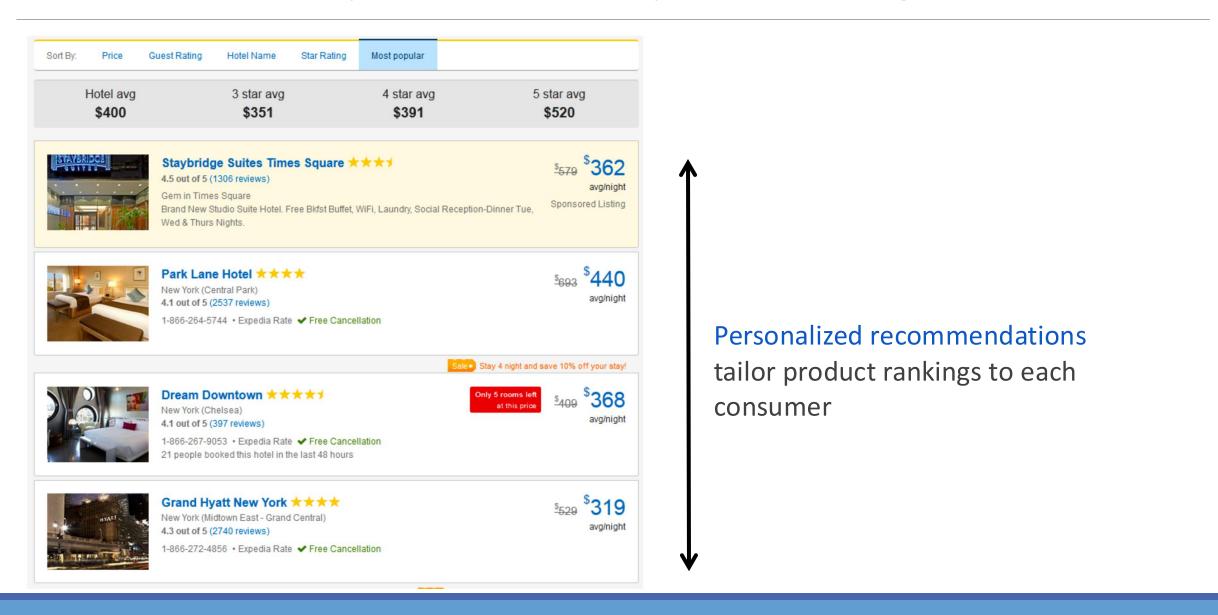
Aaron P. Kaye

MIT Sloan & CSAIL

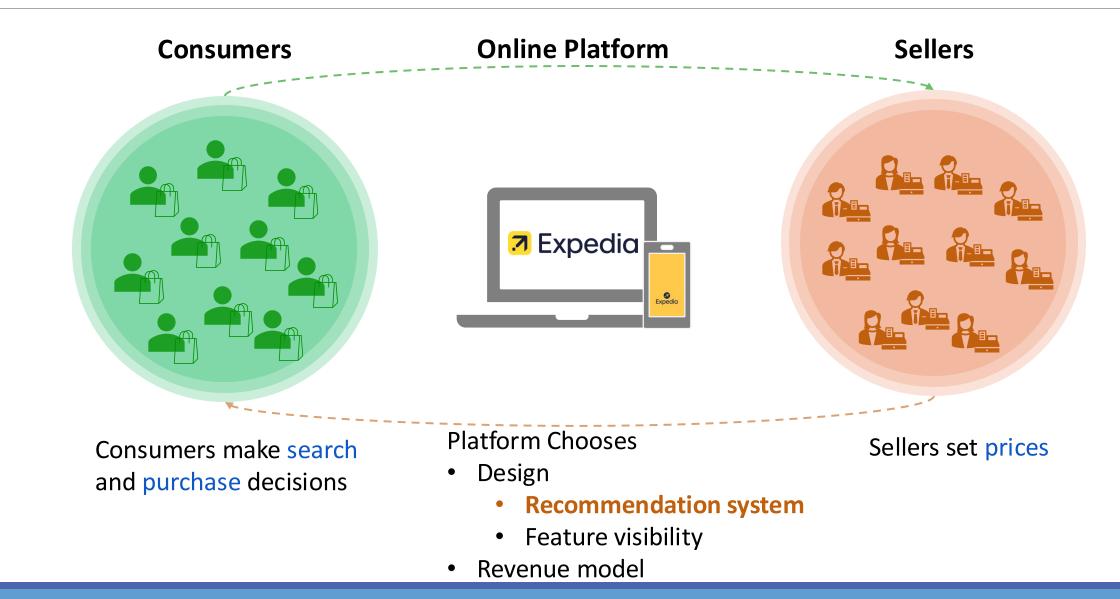
17th Digital Economics Conference, Toulouse School of Economics

January 9, 2025

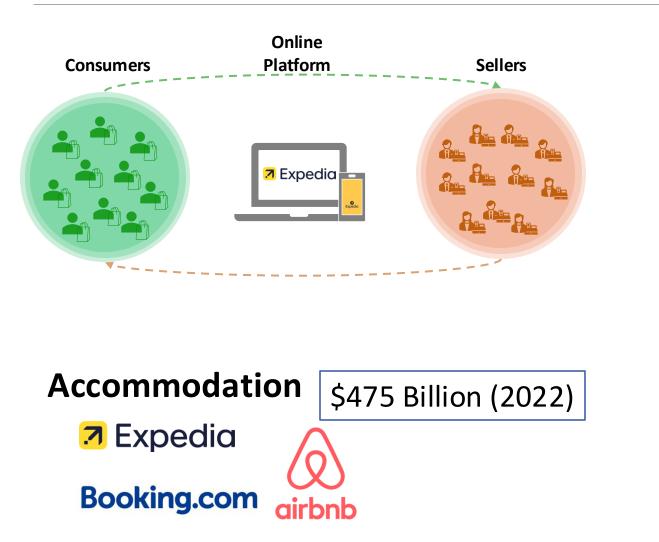
Recommendation systems determine product rankings



What is a Two-Sided Digital Market?

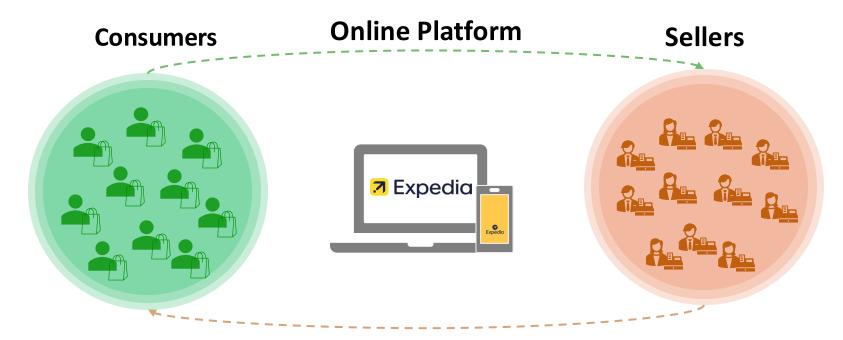


What is a Two-Sided Digital Market?



Introduction

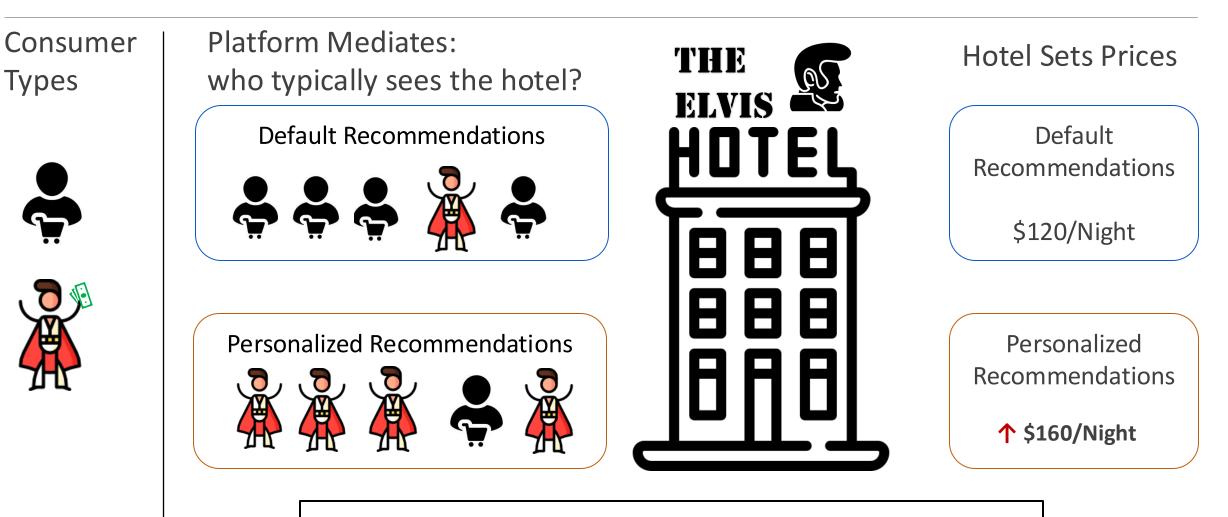
Research Question: What are the welfare effects of personalized recommendations when sellers can adjust prices, and consumers update beliefs?



Example of Personalized Recommendations

- Some research suggests: Personalization $\rightarrow \uparrow$ match quality and \downarrow search effort $\rightarrow \uparrow$ Consumer Welfare
- But what happens to **prices**?

Example: The Elvis Hotel



Welfare Tradeoff: better match but higher prices

More Examples

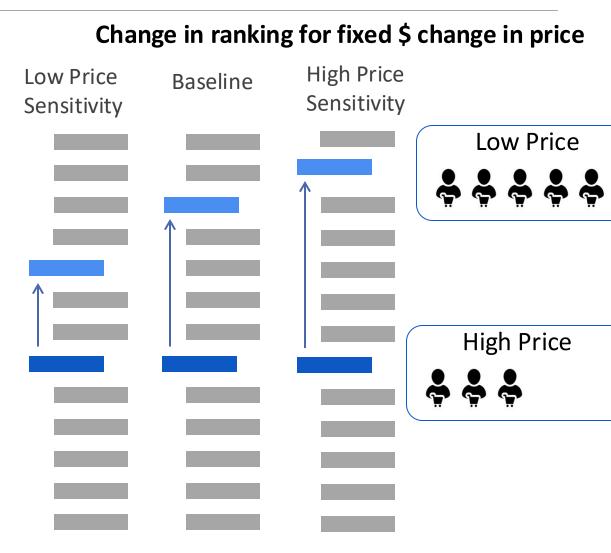
Price Competition for Product Rankings

Product rankings depend on price and features

- Sellers can improve product ranking by lowering price
- Rec system impacts equilibrium prices

Different recommendation systems change relationship between price and ranking

- \uparrow price sensitivity \Longrightarrow \uparrow price competition
- Personalization changes competition for product rankings
 - Changes equilibrium prices, but direction unclear



Back

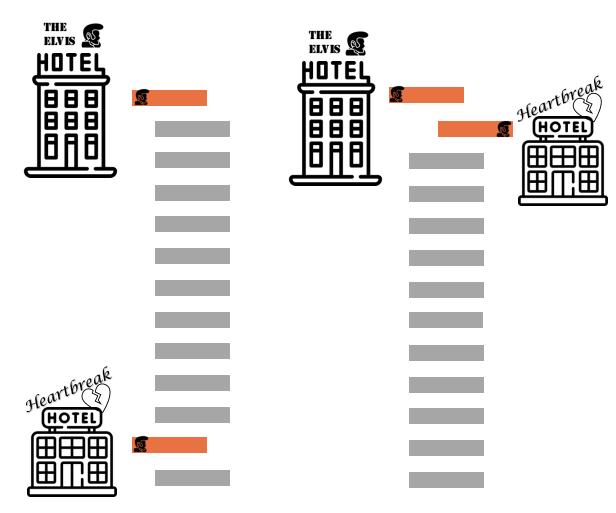
Co-Ranking of Close Substitutes

Demand depends on availability of substitutes

Example: Two Elvis-themed hotels are close substitutes

Recommendation systems can rank close substitutes similarly or spread them out

- Co-ranking substitutes
 - $\circ \uparrow$ seller price competition
 - $\circ \downarrow$ likelihood of a purchase on the platform



Back

This paper

Research Question: What are the welfare effects of personalized recommendations when sellers adjust prices, and consumers update beliefs?

Data: Click-stream data on hotel search and purchases from Expedia Group

What does this paper do?

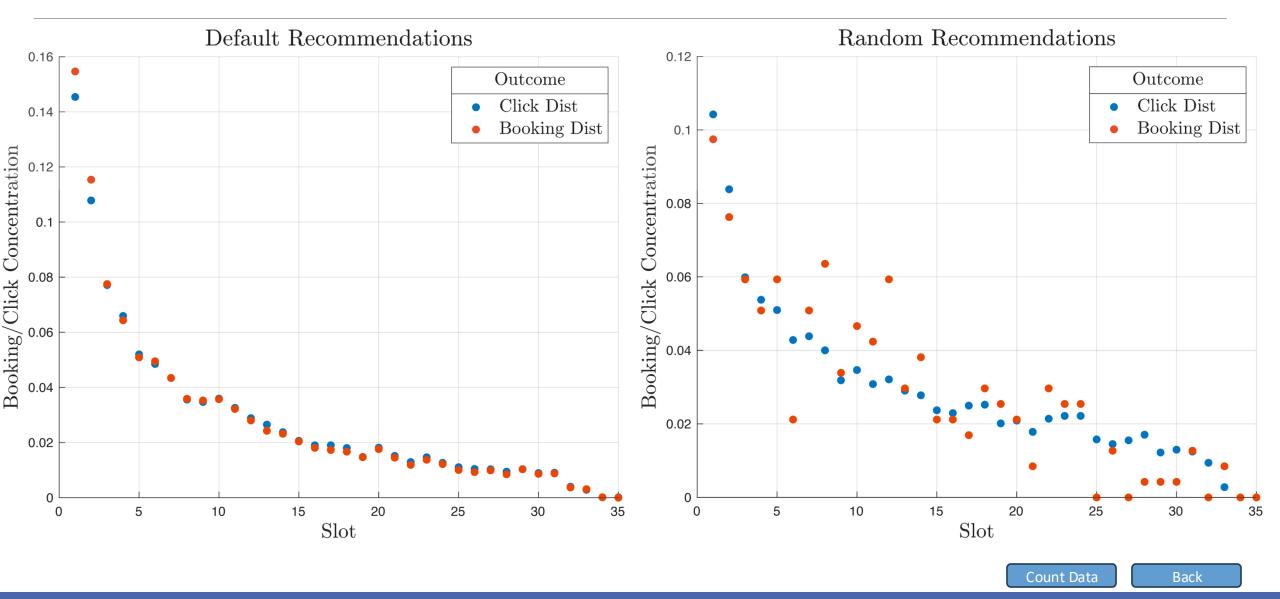
1) Show evidence that both search costs and consumer beliefs drive position effects

2) Develops a structural model of demand, platform recommendations, and hotel pricing behavior

3) Trains increasingly personalized recommendation systems using data from an A/B test (RCT)

4) Uses the structural model to evaluate welfare effects of personalized recommendations
 • Holding prices fixed and allowing prices to change

Slot impacts demand even when recommendations are random



Structural Model Outline

Consumer Individual Demand – Sequential Search

- Slot impacts demand via search cost and beliefs
- Estimated via maximum simulated likelihood
 - Inner-loop solves reservation utilities

Platform – Recommendation Algorithm

- Reverse engineer recommendation system
- Estimated with machine learned ranker and sequential logits

Supply Side – Hotels Choose Prices

- Marginal cost is opportunity cost
- Includes economies of scale and soft-capacity constraints
- BLP type instruments (features of rivals)

	Needed
Í	for welfare

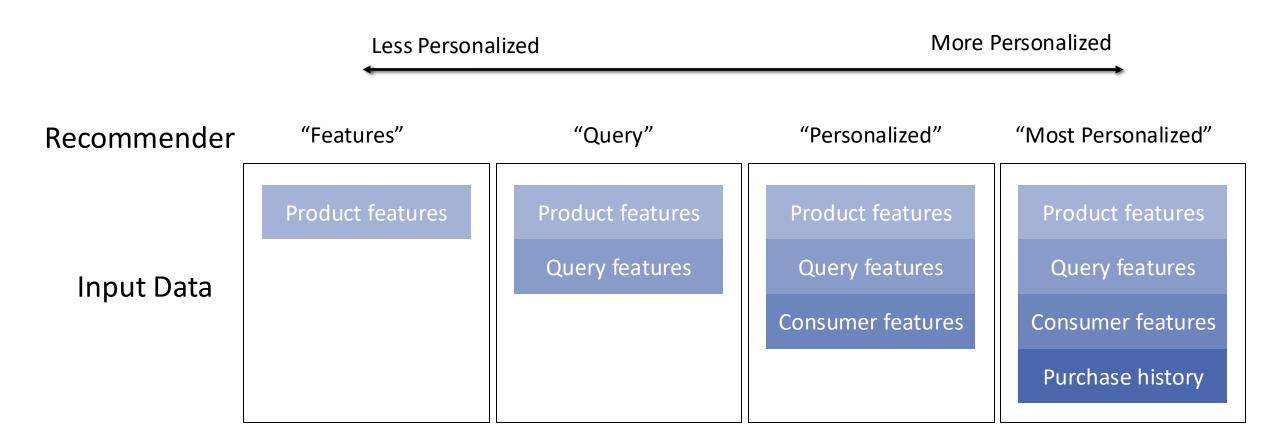
Combine results to get elasticity of demand

Supply

Platform

Demand

Recommendation Systems (Ensemble of LambdaMARTs)



Position Effects: Both search cost and consumer beliefs drive position effects

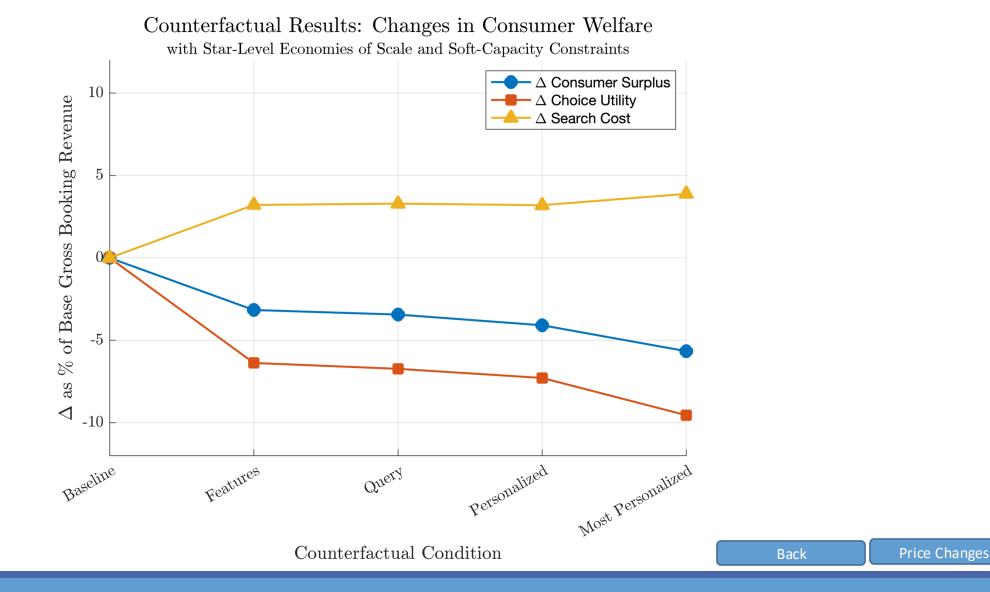
Without price adjustments, personalization improves welfare

- Hotels: minimal change in quantity and profits
- Platform: minimal change in revenue
- Consumers Surplus: ↑ 2.3% of total booking revenue (~\$0.9 Billion gain in 2013)

Primary Results: Welfare loss once sellers update prices

- $^{\circ}$ Hotels: \downarrow 4.5% decrease in quantity and \uparrow 4.9% increase in profits
- Platform: minimal change in revenue
- \circ Consumers Surplus: \downarrow 5% of total booking revenue (~\$2 Billion loss in 2013)
 - 190% of the increase in hotel profit

Personalized recs. With Star-level economies of scale and soft capacity constraints **Welfare Loss**



Personalized recs. With Star-level economies of scale and soft capacity constraints Welfare Loss

Table 5: Counterfactuals with Star-Level Economies of Scale andSoft-Capacity Constraints

Outcomes	Baseline	Features	Query	Personalized	Most Personalized
Quantity	517.6	495.2	494.8	494.2	494.3
Gross Booking Revenue (\$100s)	$1,\!830.09$	$1,\!825.62$	$1,\!829.00$	$1,\!827.90$	$1,\!829.79$
Hotel Profits (\$100s)	974.02	1,020.00	1,021.20	1,021.32	1,022.03
Approx Platform Revenue (\$100s)	183.01	182.56	182.90	182.79	182.98
Consumer Welfare					
Δ Consumer Surplus (\$100s)	0	-27.37	-62.97	-66.19	-92.02
Δ Choice Utility (\$100s)	0	-75.16	-124.19	-118.06	-158.50
Δ Search Cost (\$100s)	0	47.79	61.22	51.88	66.48

Recommendation System

fixed Prices

w/fixed mc

Counterfactual Results Continued

Primary Results

- Welfare loss once sellers update prices.
- Loss increases with level of personalization

Highlights overlooked concern in ecommerce platform research and regulation

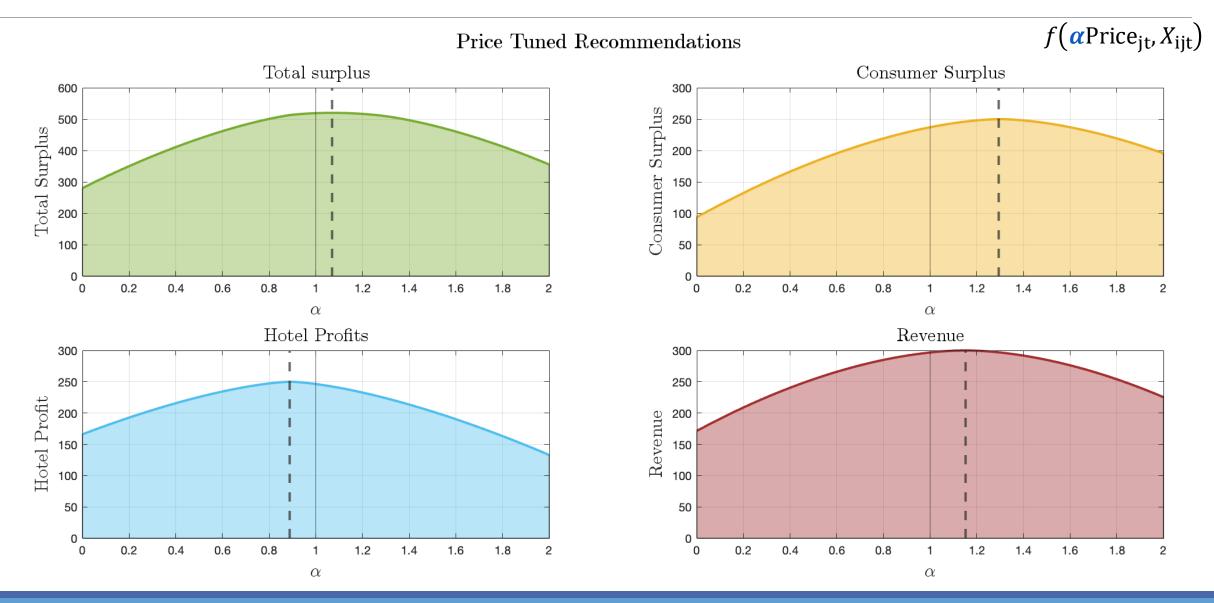
• Better recommendation systems may reduce competition and harm consumer welfare

Are there policy alternatives that are welfare improving?

• Next steps: Increase recommendation systems price sensitivity

• Revise recommendations from $f(\operatorname{Price}_{jt}, X_{ijt})$ with $f(\boldsymbol{\alpha} \operatorname{Price}_{jt}, X_{ijt})$

Policy Counterfactual: Price Tuned Recommendations (Next Steps)



Conclusion

Paper Overview

Structural Model	Recommendation Systems	Counterfactuals
Data: Clickstream data from Expedia	Data: A/B test w/ random slots	Baseline: Default recommendation
Demand ModelOptimal sequential search	Common RecommendationsProduct features	Increasingly personalized recs
Estimated via maximum		Ignoring price updates
simulated likelihood	Query Adjusted + Query features (ex nights,	Consumer welfare gain
Platform Model	children)	With price updates
 Reverse engineer recommendation system 	Personalize on Observables	Consumer welfare loss

Supply Model

- Hotels choose price ٠
- Marginal cost is opportunity cost • of inventory availability
- Economies of scale and soft-• capacity constraints

+ consumer observables (consumer country)

Personalized on Past Purchases

+ past transactions, tracked data

Without capacity constraints

Smaller welfare loss •

Next Steps

Price transparency Price transparency w/ personalized "Price tuned" personalization

Contributions

Feature emphasis Ellison and Ellison (2009), Gardete and Antill (2020), Blake, Moshary, Sweeney, and Tadelis (2021), Abaluck, Compiani, and Zhang (2022)

 Introduces search model where consumers learn about match quality and hidden product features

Self-preferencing Lee and Musolff (2021), Lam (2021), Teng (2022), Farronato, Fradkin, and MacKay (2023), Reimers and Waldfogel (2023)

• "Model of a model" machine learning approach to reverse engineer recommendation systems

Position effects, personalization, recommendations, and platform design Dinerstein, Einav, Levin and Sundaresan (2018), Ursu (2018), Compiani, Lewis, Peng and Wang (2021), Agrawal, Athey, Kanodia, and Palikot (2022), Donnelly, Kanodia, Morozov (2023), Moerhing (2023)

- Provides evidence that position effects depend on search cost and consumer beliefs
- Evaluates an industry standard approach to personalizing recommendations
- Structural model that endogenizes seller pricing behavior

Conclusion

Personalization Paradox: ↑ Personalization of recommendations ⇒ ↓ Consumer Welfare
• Improve welfare by steering consumers to products that match their tastes
• Worsen welfare since sellers increase prices to profit from less price sensitive demand

Highlights the importance of considering how prices change with platform design policies
Develops structural model suitable for such counterfactuals

Next Step

• Price tuned recommendation systems

The Personalization Paradox: Welfare Effects of Personalized Recommendations in Two-Sided Digital Markets

Aaron P. Kaye

MIT Sloan & CSAIL

17th Digital Economics Conference, Toulouse School of Economics

January 9, 2025

Appendices

AARON KAYE | APKAYE@MIT.EDU | TSE 17TH DIGITAL ECON CONFERENCE

Structural Model

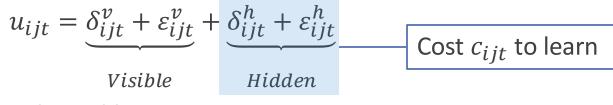
DEMAND

PLATFORM RECOMMENDATIONS (EXPEDIA)

SUPPLY (HOTELS)

Demand Model

Indirect per-night utility function



δ^{v/h}_{ijt}: utility from consumer and product observables
 ε^{v/h}_{ijt}: match quality

Search cost: Must pay c_{ijt} to learn hidden utility δ^h_{ijt} and ε^h_{ijt}

 $\circ c_{ijt}$ depends on slot

Demand: Search and purchase decisions depend on c_{ijt} , δ^{ν}_{ijt} , ε^{ν}_{ijt} , δ^{h}_{ijt} , ε^{h}_{ijt} and **beliefs** about δ^{h}_{ijt} , ε^{h}_{ijt}

Platform Design

- Recommendation system orders items into slots, based in part on δ_{ijt}^{ν} and δ_{ijt}^{h} , which determines c_{ijt}
- Personalizing recommendations changes c_{ijt} and the relationship between slot , $\delta^{
 u}_{ijt}$ and δ^{h}_{ijt}
- \circ Drip pricing shifts a portion of utility from δ^{v}_{ijt} to δ^{h}_{ijt}

Benchmarks

Error Structure

Search Cost

Utility

Demand Model: Model Details

_	
Param	Included Elements
ρ_i	 Per-night transaction price
Visible Features $\delta_{ijt}^v(x_{ijt}^v)$	 Indicators for star rating 1-5 Brand-star indicators for star rating 2-5 Property review score (Spline) Market-Time of Stay Effects Missing value indicator(s) No star rating, no review score Consumer segment groups Time ahead of of stay Time of search Search on weekends Number of nights
Hidden	Hidden Price
Features	 Location desirability score 1 (Spline)
$\delta^{\boldsymbol{h}}_{ijt}(\mathbf{x}^{\boldsymbol{h}}_{\mathbf{ijt}})$	 Location desirability score 2 (Spline)

Param	Included Elements			
2	• Determines how much of match			
λ	quality is learned from search			
	Inside option			
Random Coefficients	Star-ratings			
coenteients	• Price			
	Search Cost			
Correlated Random Coefficients	 Price – Search Cost 			
	Slot Ranking			
Consumer Info	Star Rating			
Ω_{it}	Promotions			
16	• Covariance with \mathbf{x}_{ijt}^h			
Consumer	Headline price			
Price Info	Mean hidden price rate			

Demand Estimation Details (Maximum Simulated Likelihood)

Construct joint likelihood of search and purchase decisions combining

- 1. Sequential search rules Weitzman (1979)
- 2. Logit-smoothing Train (2002, 2009)

Sample selection adjustments

- \circ Selection on clicks \rightarrow condition likelihoods on at least one click
- \circ Selection on purchases \longrightarrow sample weights

Test structural assumptions on position effects

Details

Details

- Repeat demand estimation estimation under alternative structural assumptions
 - Position effects depend on search cost and beliefs (primary specification)
 - Position effects depend on only on search cost (benchmark specification)

Demand Estimation: Utility, Search Cost, and Reservation Utility

Per-night utility:

$$u_{ijt}^{[s]} = \delta_{ijt}^{v[s]} + \delta_{ijt}^{h[s]} + \lambda \varepsilon_{ijt}^{v[s]} + \varepsilon_{ijt}^{h[s]}(\lambda)$$

Search Cost:

$$c_{ijt}^{[s]} = \log\left(1 + \exp\left(\kappa_i^{[s]} + \sum_{k \in K} \tau_k \left(\log\left(slot_{ijt}^{appear}\right) - \gamma_k\right)_+\right)\right)$$

Reservation Utility:

$$r_{ijt}^{[s]} = \delta_{ijt}^{\nu[s]} + \lambda \varepsilon_{ijt}^{\nu[s]} + E \left[\delta_{ijt}^{h[s]} | \Omega_{it} \right] + \zeta_{ijt}^{[s]}$$

Reservation utility setup

- $\circ\,$ Information set, Ω_{it} includes star-rating, base price, slot rank, and promotions
- $E\left[\delta_{ijt}^{h[s]}|\Omega_{it}\right]$ solved by getting $E[x_{ijt}^{h}|\Omega_{it}]$ before estimation Details
- $\zeta_{ijt}^{[s]} = V\left(c_{ijt}^{[s]}, \rho_i^{[s]}, \beta_i^{h[s]} | \Omega_{it}, \theta\right)$ solved in inner loop with grid interpolation Details

Price Details

Sequential Search

How does Price Impact Demand?

Utility:

 Ω_i : {*Star Rating*, *Price*, *slot*^{*rank*}, *Promotion*}

• Directly through preference for price

$$u_{ijt} = \alpha_i - e^{\rho_i^{[s]}} \underbrace{\left(p_{jt}^{base} + p_{jt}^{h}\right)}_{transaction \, price} \underbrace{+\beta_i^{\nu} x_j^{\nu} + \beta_i^{h} x_j^{h}}_{features} + \underbrace{\delta_{it}}_{segment \, FE} + \underbrace{\lambda \varepsilon_{ijt}^{\nu[s]} + \varepsilon_{ijt}^{h[s]}(\lambda)}_{match \, quality \, \sim EV1}$$

Search Cost:

• Indirectly through slot (slot is a function of price)

$$c_{ijt}^{[s]} = \log\left(1 + \exp\left(\kappa_i^{[s]} + \sum_{k \in K} \tau_k \left(\log\left(slot_{ijt}^{appear}\right) - \gamma_k\right)_+\right)\right)$$

Reservation Utility:

- Directly through expected price
- Indirectly through expected utility of hidden features (via slot and expected price)
- Indirectly through state variables of value function, $\zeta_{ijt}^{[s]}$ (conditional distribution of hidden utility, and search cost)

$$r_{ijt}^{[s]} = \underbrace{\alpha_i^{[s]} - e^{\rho_i^{[s]}} p_{jt}^{base} + \beta_i^{\nu[s]} x_j^{\nu} + \delta_{it} + \lambda \varepsilon_{ijt}^{\nu[s]}}_{ijt} - \underbrace{e^{\rho_i^{[s]}} E[p_{jt}^h |\Omega_i]}_{ijt} + \beta_i^{h[s]} E[x_j^h |\Omega_i]}_{ijt} + \underbrace{\zeta_{ijt}^{[s]} \left(c_{ijt}^{[s]}, \rho_i^{[s]}, x_i^{nights}, E[p_{jt}^h |\Omega_i], slot_{ijt}^{rank}\right)}_{ijt}$$

Consumer Choice Model Identification

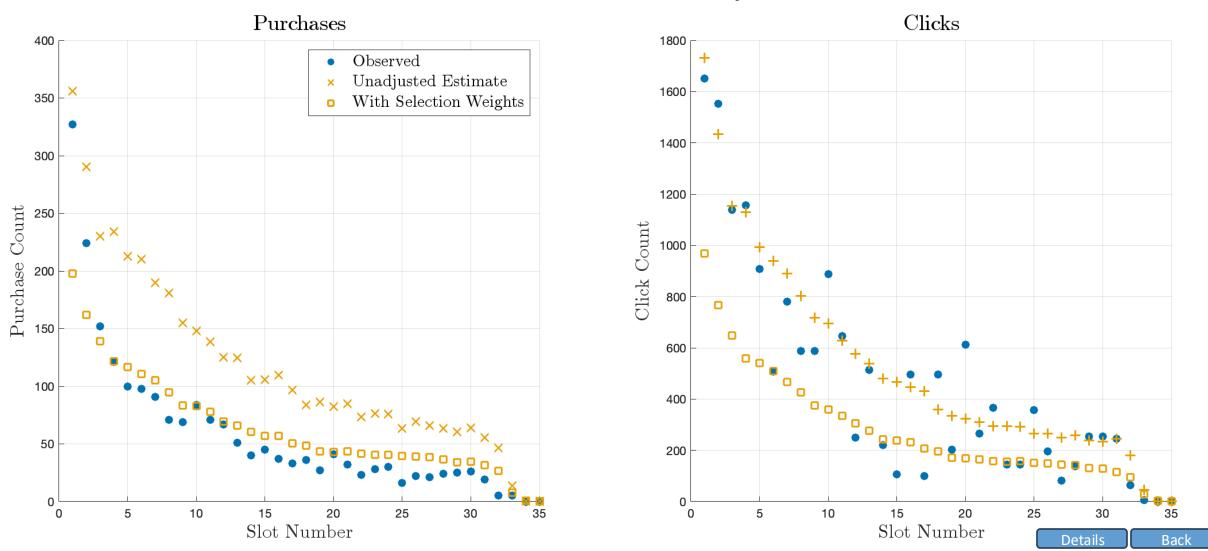
 Table 7.1: Informal Identification of Demand Parameters

	Sequential Search Conditions				Notable Variation		
Parameters	Order	Continuation	Stopping	Choice	Nights	Diversion	Displacement
Utility Parameters							
Consumer Segments: δ_{it}		\checkmark	\checkmark	\checkmark^{\dagger}	\checkmark	\checkmark	\checkmark
Time Effects: $\xi_{it}^{month}, \xi_{it}^{day}$		\checkmark	\checkmark	\checkmark^{\dagger}	\checkmark	\checkmark	\checkmark
Mean: ρ, β^v, β^h	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Heterogeneous: Σ_u	√*	√*	✓*	✓*	\checkmark	\checkmark	\checkmark
Visible Error Scale: λ	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark
Search Cost Parameters							
Mean: κ, τ_k	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark
Heterogeneous: Σ_{κ}	√*	√ *	√*		\checkmark	\checkmark	\checkmark

Note: Checkmarks with an asterisk (\checkmark^*) indicate parameters that are identified by repeated decisions within consumer (e.g., clicks and purchase). Checkmarks with a dagger (\checkmark^\dagger) indicate parameters that are identified by selecting an inside good versus the outside option, but not from the choice of one inside good over another. "Nights" refers to length of stay. "Diversion" refers to substitution patters from variation in product features and availability. "Displacement" refers the variation in positions caused by advertisements/opaque offers.

Demand Results

Observed and Predicted Outcomes by Slot



AARON KAYE | APKAYE@MIT.EDU | TSE 17TH DIGITAL ECON CONFERENCE

Demand Estimates

 Table 7.2: Demand Parameter Estimates

Jtility Parameters	
Variable	(1)
Outside option	1.90
Price (\$100s) ρ	-1.76
Match quality split λ	0.28
Visible Features	
$3 \mathrm{star}$	0.30
4 star	0.54
5 star	0.48
Non-star	0.31
2 star brand	-0.16
$3 \mathrm{star} \mathrm{brand}$	-0.28
4 star brand	0.03
5 star brand	0.29
Prop. review score	
Spline 1: score $1-3$	-0.51
Spline 2: score 3–5	0.04
Mi. dummy	-1.40
Hidden Features	
Location score 1	
Spline 1	0.52
Spline 2	-0.51
Spline 3	0.05
Spline 4	2.61
Location score 2	
Spline 1	0.27
Spline 2	1.50
Spline 3	0.37
Mi. dummy	1.64
estimation Details	
Observations	2,262
Weighted obs.	$13,\!444$
Halton draws	400
Smoothing term ω	0.2
Grid points	1,692
Log likelihood	-85,028

Search Cost Parameters	
Variable	(1)
Constant	-1.10
Log Slot Appear	
Spline 1	0.11
Spline 2	0.21
Spline 3	0.37
Spline 4	0.08
Random Coefficients	
Parameter	(1
$\sigma_{\rm price}^2$	0.72
$\sigma_{\text{inside option}}^2$	0.09
$\sigma_{1\ \&\ 2\ star}^{2}$	0.08
	0.00
σ_4^2 star	0.01
$\sigma_3^2 \operatorname{star}$ $\sigma_4^2 \operatorname{star}$ $\sigma_5^2 \operatorname{star}$	0.00
$\sigma_{\rm search\ cost}^2$	0.27
$\sigma^2_{\rm price-search\ cost}$	-0.44
Additional Controls	
Day of week	\checkmark
Month	\checkmark
Time before stay	\checkmark
Length of stay	\checkmark
Search time	\checkmark
Search on weekends	\checkmark

Notes: Likelihood is the logit-smoothed likelihood for joint search and purchase decisions. Splines are linear B-spline. Variance of random coefficients estimated using Cholesky decomposition.

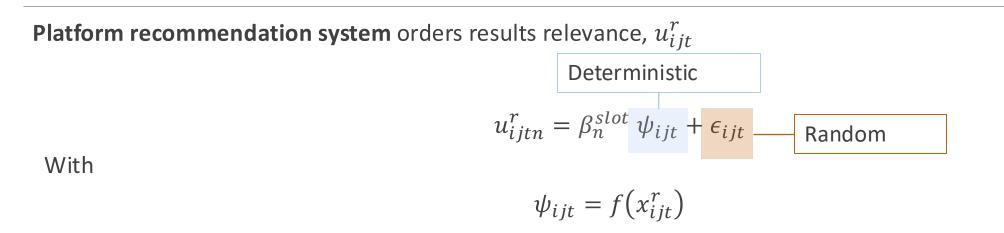
Structural Model

DEMAND

PLATFORM RECOMMENDATIONS (EXPEDIA)

SUPPLY (HOTELS)

Model: Platform Two Step "Model of the Model" Approach



 $\cdot x_{iit}^r$ includes price, product features, consumer observables, and query specific information

• The underlying recommendation systems can be quite complicated

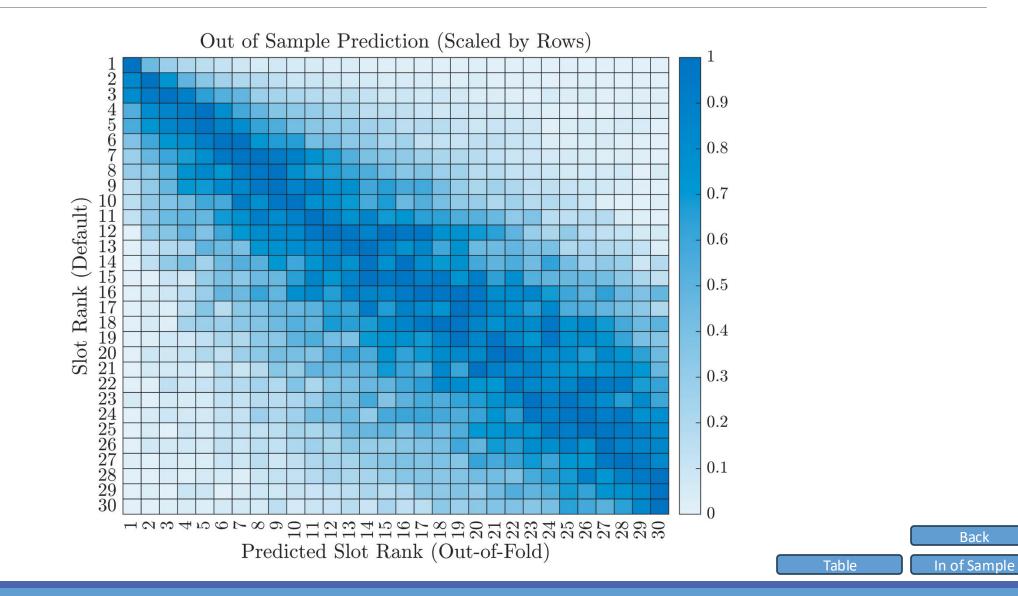
Estimation:

- Approximate $f(x_{ijt}^r)$ using LambdaMART, a machine learned ranker Burges (2010)
- $\circ\,$ Create out-of-fold predictions of $\hat{\psi}_{ijt}$
- \circ Normalize $\widehat{\psi}_{ijt}$
- \circ Fit sequential logit on $\hat{\psi}_{ijt}$ to estimate β_n^{slot} for each slot

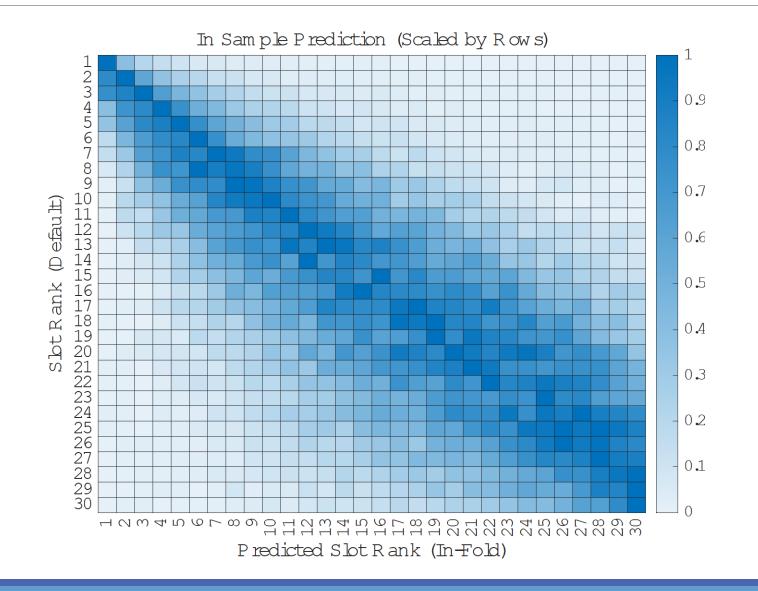
Details

Estimation Steps

Platform Results – Out of Sample Fit



Platform Results – In Sample Fit



Out of Sample

Measure	Model	NDCG Loss	Conc Loss
1	Random Benchmark	0.175	0.506
2	LambdaMART (NDCG): Full	0.060	0.276
3	LambdaMART (NDCG): Fold 1	0.061	0.277
4	LambdaMART (NDCG): Fold 2	0.061	0.277
5	LambdaMART (NDCG): Fold 3	0.061	0.276
6	LambdaMART (NDCG): Fold 4	0.061	0.277
7	LambdaMART (NDCG): Fold 5	0.061	0.278
8	LambdaMART (NDCG): Fold 6	0.061	0.276
9	LambdaMART (NDCG): Fold 7	0.060	0.277
10	LambdaMART (NDCG): Fold 8	0.061	0.277
11	LambdaMART (NDCG): Ens	0.059	0.272

AARON KAYE | APKAYE@MIT.EDU | TSE 17TH DIGITAL ECON CONFERENCE

Platform Model Sequential Logit Results

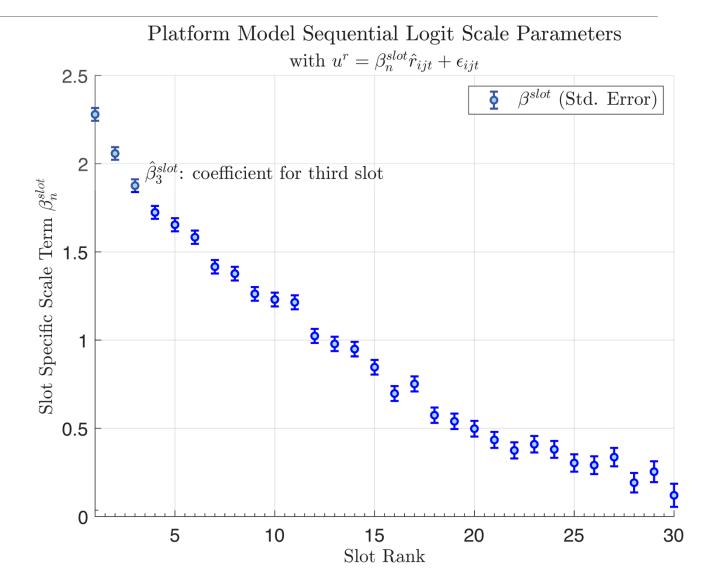
Estimate β_n^{slot} for each slot:

$$u_{ijt}^r = \beta_n^{slot} \hat{\psi}_{ijt} + \epsilon_{ijt}$$

• β_n^{slot} governs how deterministic each slot assignment is in relevance score (ψ_{ijt}).

Takeaway

Position on the page is more deterministic higher on the page.



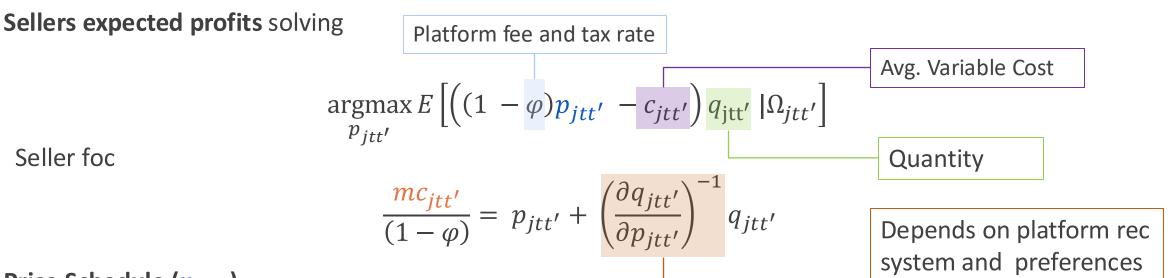
Structural Model

DEMAND

PLATFORM RECOMMENDATIONS (EXPEDIA)

SUPPLY (HOTELS)

Model: Supply Side



Price Schedule ($p_{jtt'}$)

• $p_{jtt'}$ is price for room-night *j*, staying period *t*, and searching period *t'*

Marginal Cost (*mc_{itt}*')

- Opportunity cost of the unit available to sell the next period
- Can include additional expected profits conditional on purchase (room service, dining, gambling)

Sellers know $(\Omega_{jtt'})$

• Own costs, elasticity of demand, competing product features and availability

Supply Side Estimation: Three Stage Least Squares

Hotels face economies of scale and capacity constraints

Known from data or platform/demand model

$$\frac{mc_{base} + \frac{\partial c(q)}{\partial q}q(\theta, p)}{(1 - \varphi)} = p + \left(\frac{\partial q}{\partial p}\right)^{-1}q(\theta, p)$$

Not separable

First stage: IV for q_{jt}

$$q_{jtt'} = \alpha_1 x_{jtt'} + \alpha_2 z_{jtt'} + \varepsilon_{jtt'}$$

• $x_{jtt'}$: product features, market-subperiod effects

• *z_{jt}*: product features and availability of other products in same market, own-star rating interactions.

Second Stage: IV for q_{jt}^2

$$q_{jtt'}^2 = \alpha_3 \left(\hat{q}_{jtt'}^{step \, 1} \right)^2 + \epsilon_{jtt'}$$

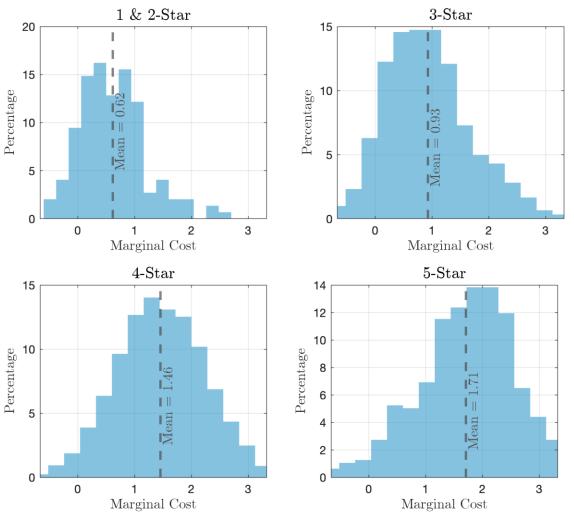
Third Stage

$$mc_{jtt'} = \beta x_{jtt'} + \gamma_1 \hat{q}_{jtt'}^{step \, 1} + \gamma_2 \widehat{q_{jtt'}^2}^{step \, 2} + \omega_{jtt'}$$

Estimates

Distribution of Marginal Costs by Star-Rating

 Table 7.5:
 Supply Side IV Regression Analysis Results



	Pooled		Star Ratin	g Specific		
Variable	All Ratings	Two-Star Three-Star		Four-Star	Five-Star	
Intercept	-0.307	0.527	1.022***	1.484***	3.685***	
-	(0.503)	(0.614)	(0.124)	(0.114)	(0.134)	
$\hat{q}_j^{(1)}$	-0.198***	-0.091	-0.036	-0.091	-1.287***	
	(0.037)	(0.072)	(0.094) (0.092)		(0.149)	
$\hat{q^2}_{j}^{(2)}$	0.033***	-0.016	0.033* 0.026**		0.199***	
1)	(0.008)	(0.012)	(0.032)	(0.028)	(0.051)	
$\operatorname{Two}/\operatorname{Three-Star}$	0.577***	_	_	_	/	
Contraction Contraction	(0.088)					
Four-Star	1.010^{***}	_	200			
	(0.086)					
Five-Star	2.688^{***}	-	-	-	—	
	(0.111)					
Additional Controls						
Product Features	\checkmark	\checkmark				
Location Desirability	\checkmark		\checkmark	1		
Month-Weekend-Subgroup	\checkmark	\checkmark				
Observations	3492	3492				
Degrees of Freedom	3437	3429				
RMSE	0.783	0.761				
R^2	0.638	0.660				
Adjusted R^2	0.632	0.654				
First-stage F-statistic	103		10	3		

Note: Marginal cost in \$100 per room-night.

Each series is truncated at its respective 5th and 95th percentile.

Personalized Recommendation Systems Training for Counterfactuals

Recommendation Systems

Train ranking systems using data from Expedia's RCT

- Data from RCT were displayed in random order
- Relevance scores: Booking = 5, Click = 1, Impression = 0
- Model training approach based on winning entry
 - Ensemble of LambdaMARTs with NDCG Loss (170 models)

Use increasing levels of personalization

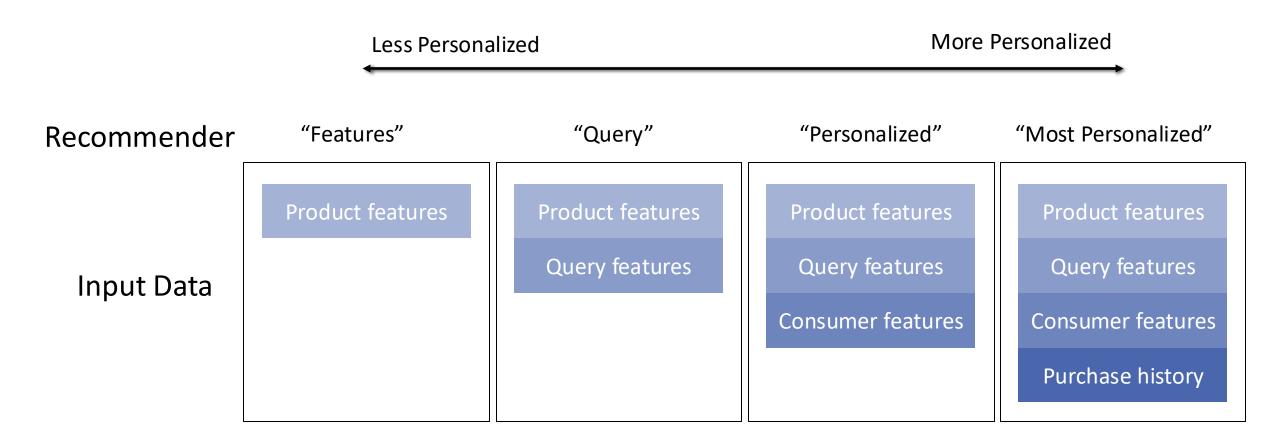
- Common Recommendations: Product features, competitive info
- Query Adjusted: + query features (ex nights, children)
- Personalize: + consumer observables (ex: consumer country)
- Most Personalized: + past transactions, tracked navigation data

Evaluate out of sample performance

• Out of sample fit should improve with personalization

Details

Recommendation Systems (Ensemble of LambdaMARTs)



Recommendation System Performance

Out of sample performance improves with level of personalization

Measure	Model	NDCG Loss	Conc Loss	MAP	MRR
1	Random Benchmark	0.673	0.480	0.850	0.846
6	LambdaMART (Ensemble): Base Info	0.544	0.302	0.699	0.692
7	LambdaMART (Ensemble): with Query Info	0.540	0.301	0.695	0.686
8	LambdaMART (Ensemble): Personalized Basic	0.537	0.299	0.692	0.681
9	LambdaMART (Ensemble): Personalized Full	0.533	0.300	0.686	0.676

 Table 2: Comparison of Model Results

Counterfactuals

Simulatior

AARON KAYE | APKAYE@MIT.EDU | TSE 17TH DIGITAL ECON CONFERENCE

Baseline

• Subperiod uniform pricing (month, weekend-weekday, time before stay)

Use increasing levels of personalization

- Common Recommendations: Product features, competitive info
- Query Adjusted: + query features (ex nights, children)
- Personalize: + consumer observables (ex consumer country)
- Personalized Plus: + past transactions, tracked navigation data