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Recommendation systems determine product rankings

Sort By: Price Guest Rating Hotel Name Star Rating Most popular
Hotel avg 3 star avg 4 star avg 5 star avg
$400 $351 $391 $520
Staybridge Suites Times Square s $
4.5 out of 5 (1306 reviews) 578 362 A

avg/night
Gem in Times Square

Brand New Studio Suite Hotel. Free Bkfst Buffet, WiFi, Laundry, Social Reception-Dinner Tue,
Wed & Thurs Nights.

Sponsored Listing

Park Lane Hotel : $
New York (Central Park) 440
avg/night

4.1 out of 5 (2537 reviews)
1-866-264-5744 « Expedia Rate « Free Cancellation

Personalized recommendations

SR ol o Y% tailor product rankings to each
Dream Downtown Only 5 rooms left [N $
) e oo 368 consumer

New York (Chelsea)
4.1 out of 5 (397 reviews)

1-866-267-9053 « Expedia Rate « Free Cancellation
21 people booked this hotel in the last 48 hours

s price

avg/night

Grand Hyatt New York $

y ss20 319
New York (Midtown East - Grand Central)
4.3 out of 5 (2740 reviews)

1-866-272-4856 « Expedia Rate « Free Cancellation

avg/night
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What is a Two-Sided Digital Market?

Consumers Online Platform Sellers
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Consumers make search Platform Chooses Sellers set prices

and purchase decisions * Design
« Recommendation system

* Feature visibility
 Revenue model
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What is a Two-Sided Digital Market?

Online Restaurant and Grocery
Consumers Platform Sellers 0 . P
S instacart ;go

x
x

m Postmates

S g DOORDASH

Event Tickets
m ticketmaster
Accommodation | <475 gillion (2022)

A Expedia Retail

Booking.com i1 amagon.00m®

60% of units sold from third parties
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Introduction

Research Question: What are the welfare effects of personalized recommendations when sellers
can adjust prices, and consumers update beliefs?

Consumers Online Platform Sellers
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Example of Personalized Recommendations
o Some research suggests: Personalization —*match quality and |, search effort — *Consumer Welfare

o But what happens to prices?
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Example: The Elvis Hotel

Consumer
Types

®
&

d

Platform Mediates:
who typically sees the hotel?

Default Recommendations

\
Personalized Recommendations
92, .9, ?
RER &
S -

THE @

ELVIS =<

OTE

Hotel Sets Prices

g Default
Recommendations

$120/Night

N )

Personalized
Recommendations

1 $160/Night

Welfare Tradeoff: better match but higher prices

More Examples
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Price Competition for Product Rankings

Product rankings depend on price and features Change in ranking for fixed $ change in price
o Sellers can improve product ranking by LowPrice  Baseline ~High Price
lowering price Sensitivity >ensitivity
: T : [ [ I Low Price
Rec system impacts equilibrium prices s  — c o o o o
s - | (PPPEE
s | —
Diffe.rent r.ecommendati.on systems c.hange C o —
relationship between price and ranking T — 7 o
o T price sensitivity = T price competition I | I High Price
o Personalization changes competition for - - - Lo
product rankings e — _-—rTry
o Changes equilibrium prices, but direction — — —
unclear — I —
I @ .
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Co-Ranking of Close Substitutes

Demand depends on availability of substitutes

THE -
ELVIS o8 THE

ELVIS g

OTE
sk
Example: Two Elvis-themed hotels are close W— s WM%@)
: [ s (HOTEL
substitutes
E— e (BHEEB
— ik
_ E— [
Recommendation systems can rank close — —
substitutes similarly or spread them out — —
o Co-ranking substitutes — —
o T seller price competition 3 S e
o bRy —
o | likelihood of a purchase on the platform Wmﬁ ey o
BEOH| Sww—— E—
=N —— —
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This paper

Research Question: What are the welfare effects of personalized recommendations when sellers
adjust prices, and consumers update beliefs?

Data: Click-stream data on hotel search and purchases from Expedia Group

What does this paper do?

1) Show evidence that both search costs and consumer beliefs drive position effects
2) Develops a structural model of demand, platform recommendations, and hotel pricing behavior
3) Trains increasingly personalized recommendation systems using data from an A/B test (RCT)

4) Uses the structural model to evaluate welfare effects of personalized recommendations
> Holding prices fixed and allowing prices to change
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Slot impacts demand even when recommendations are random

Default Recommendations Random Recommendations
0.16 - 0.12
° Outcome Outcome
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Structural Model Outline

Consumer Individual Demand - Sequential Search |
> Slot impacts demand via search cost and beliefs | Needed

o Estimated via maximum simulated likelihood for welfare
> Inner-loop solves reservation utilities

Combine results to get
elasticity of demand

Platform — Recommendation Algorithm
o Reverse engineer recommendation system

o Estimated with machine learned ranker and sequential logits

Supply Side — Hotels Choose Prices
o Marginal cost is opportunity cost
° Includes economies of scale and soft-capacity constraints
o BLP type instruments (features of rivals)

Supply
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Recommendation Systems (Ensemble of LambdaMARTSs)

Less Personalized More Personalized
- >
Recommender “Features” “Query” “Personalized” “Most Personalized”

Product features Product features

Product features Product features

Query features

Query features

Query features

Input Data

Consumer features Consumer features

Purchase history
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Results

Position Effects: Both search cost and consumer beliefs drive position effects

Without price adjustments, personalization improves welfare
o Hotels: minimal change in quantity and profits

o Platform: minimal change in revenue
o Consumers Surplus: 1 2.3% of total booking revenue (~$0.9 Billion gain in 2013)

Primary Results: Welfare loss once sellers update prices
o Hotels: {, 4.5% decrease in quantity and T 4.9% increase in profits

o Platform: minimal change in revenue
o Consumers Surplus: |, 5% of total booking revenue (~S2 Billion loss in 2013)

o 190% of the increase in hotel profit

13
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Personalized recs. With Star-level economies of scale and soft capacity constraints
Welfare Loss

Counterfactual Results: Changes in Consumer Welfare
with Star-Level Economies of Scale and Soft-Capacity Constraints

10 L —@— A Consumer Surplus
—— A Choice Utility
—{— A Search Cost
5L

—ah— .——/‘

/

A as % of Base Gross Booking Revenue

/

%,
)
%

5,
2,
%
2
[&)
o)
%
%

AARON KAYE | APKAYE@MIT.EDU | TSE 17TH DIGITAL ECON CONFERENCE 14



Personalized recs. With Star-level economies of scale and soft capacity constraints
Welfare Loss

Table 5: Counterfactuals with Star-Level Economies of Scale and
Soft-Capacity Constraints

Recommendation System

. . Most

Outcomes Baseline Features Query Personalized Personalized
Quantity 517.6 495.2 494.8 494.2 494.3
Gross Booking Revenue ($100s) 1,830.09 1,825.62 1,829.00 1,827.90 1,829.79
Hotel Profits ($100s) 974.02 1,020.00 1,021.20 1,021.32 1,022.03
Approx Platform Revenue ($100s) 183.01 182.56 182.90 182.79 182.98
Consumer Welfare

A Consumer Surplus ($100s) 0 -27.37 -62.97 -66.19 -92.02
A Choice Utility ($100s) 0 -75.16 -124.19 -118.06 -158.50
A Search Cost ($100s) 0 47.79 61.22 51.88 66.48
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Counterfactual Results Continued

Primary Results
o Welfare loss once sellers update prices.

o Loss increases with level of personalization

Highlights overlooked concern in ecommerce platform research and regulation
o Better recommendation systems may reduce competition and harm consumer welfare

Are there policy alternatives that are welfare improving?
o Next steps: Increase recommendation systems price sensitivity

o Revise recommendations from f(Price]-t, Xi]-t) with f(aPricejt, Xijt)
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Policy Counterfactual: Price Tuned Recommendations (Next Steps)

Total Surplus

Hotel Profit
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Conclusion




Paper Overview

Structural Model B

Data: Clickstream data from Expedia

Demand Model
e Optimal sequential search

e Estimated via maximum
simulated likelihood

Platform Model

* Reverse engineer
recommendation system

Supply Model
* Hotels choose price

* Marginal cost is opportunity cost
of inventory availability

* Economies of scale and soft-
capacity constraints

Recommendation Systems _

Data: A/B test w/ random slots

Common Recommendations
* Product features

Query Adjusted

+ Query features (ex nights,
children)

Personalize on Observables

+ consumer observables (consumer
country)

Personalized on Past Purchases
+ past transactions, tracked data

Counterfactuals B

Baseline: Default recommendations
Increasingly personalized recs

Ignoring price updates
* Consumer welfare gain

With price updates
e Consumer welfare loss

Without capacity constraints
* Smaller welfare loss

Next Steps

Price transparency

Price transparency w/ personalized
“Price tuned” personalization
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Contributions

Feature emphasis Ellison and Ellison (2009), Gardete and Antill (2020), Blake, Moshary, Sweeney, and Tadelis (2021), Abaluck,
Compiani, and Zhang (2022)

° Introduces search model where consumers learn about match quality and hidden product
features

Self-preferencing Lee and Musolff (2021), Lam (2021), Teng (2022), Farronato, Fradkin, and MacKay (2023), Reimers and
Waldfogel (2023)

° “Model of a model” machine learning approach to reverse engineer recommendation systems

Position effects, personalization, recommendations, and platform design pinerstein, Einav, Levin and

Sundaresan (2018) ,Ursu (2018), Compiani, Lewis, Peng and Wang (2021), Agrawal, Athey, Kanodia, and Palikot (2022), Donnelly,
Kanodia, Morozov (2023), Moerhing (2023)

o Provides evidence that position effects depend on search cost and consumer beliefs
o Evaluates an industry standard approach to personalizing recommendations
o Structural model that endogenizes seller pricing behavior
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Conclusion

Personalization Paradox: T Personalization of recommendations = | Consumer Welfare
o Improve welfare by steering consumers to products that match their tastes

o Worsen welfare since sellers increase prices to profit from less price sensitive demand

Highlights the importance of considering how prices change with platform design policies
o Develops structural model suitable for such counterfactuals

Next Step
° Price tuned recommendation systems
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Appendices
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Structural Model
DEMAND

PLATFORM RECOMMENDATIONS (EXPEDIA)

SUPPLY (HOTELS)
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Demand Mode|

Indirect per-night utility function

h
Ujjt = L]t+gl]t+5l]t+€ijt

Cost ¢;j; to learn

Visible Hidden
o SU/t utility from consumer and product observables
o efj/th: match quality

Search cost: Must pay ¢;; to learn hidden utility 6l]t and el-hjt

° ¢ij+ depends on slot

Demand: Search and purchase decisions depend on c;j, 87, £j¢) 51]0 jt and beliefs about (Sl]t, l’}t

Platform Design
> Recommendation system orders items into slots, based in part on &;j, and 5l]t, which determines c¢; j;

> Personalizing recommendations changes c;;; and the relationship between slot, §;;; and 61],5

> Drip pricing shifts a portion of utility from §;7; to 51]1:
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Demand Model: Model Details

Param Included Elements

Pi

Per-night transaction price

Visible
Features
5lpjt (x};'t)

Indicators for star rating 1-5

Brand-star indicators for star rating 2-5

Property review score (Spline)
Market-Time of Stay Effects
Missing value indicator(s)

o No star rating, no review score
Consumer segment groups

o Time ahead of of stay

o Time of search

o Search on weekends

o Number of nights

Hidden
Features

5ihjt (X{lit) °

Hidden Price
Location desirability score 1 (Spline)
Location desirability score 2 (Spline)

Param Included Elements

A

Determines how much of match
quality is learned from search

Random
Coefficients

Inside option
Star-ratings
Price

Search Cost

Correlated
Random
Coefficients

Price — Search Cost

e Slot Ranking
Consumer Info e Star Rating
m e Promotions
e Covariance with x{’,-t
Consumer e Headline price
Price Info e Mean hidden price rate
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Demand Estimation Details (Maximum Simulated Likelihood)

Construct joint likelihood of search and purchase decisions combining
1. Sequential search rules weitzman (1979)
2. Logit-smoothing Train (2002, 2009)

Sample selection adjustments
o Selection on clicks — condition likelihoods on at least one click

o Selection on purchases — sample weights

Test structural assumptions on position effects
o Repeat demand estimation estimation under alternative structural assumptions

o Position effects depend on search cost and beliefs (primary specification)
o Position effects depend on only on search cost (benchmark specification)
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Demand Estimation: Utility, Search Cost, and Reservation Utility

Per-night utility:

ugl alj[t] + Slj[t] + }‘gl][t L]t (’1)
Search Cost:
[ | _ =log| 1+ ex + T 10 Slotappear) )
l]t g p k g l]t y
keK

Reservation Utility:

Gg-t] = 55[:] + Ae Z[ts +E [53[:]'0“] + (Ut

Reservation utility setup
o |Information set, ();; includes star-rating, base price, slot rank, and promotions

[53555] |-Qit] solved by getting E[Xg-tlﬂit] before estimation

° CL[JSE = V( l[fﬂ, ,Ol[ ],,3 | Q¢ ) solved in inner loop with grid interpolation

Price Details Sequential Search
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How does Price Impact Demand?

Utility: Q;:{Star Rating, Price, slot”™"*, Promotion}
o Directly through preference for price
_ ase v U[S h[S]
Ujjt = a; — (p] + p]t) +,8 + ,8 él.? + Aeut Eijt (/1)
transaction price features time, match quality ~EV1

segment FE

Search Cost:
o Indirectly through slot (slot is a function of price)

l[]Sg log(l + exp( + zrk log Slotgfpear) Vi )+>>

keK

Reservation Utility:
o Directly through expected price

o Indirectly through expected utility of hidden features (via slot and expected price)

° Indirectly through state variables of value function, (ljt (conditional distribution of hidden utility, and search cost)

[s] h[s] [s] ( [s] _[sl ht
e = o — e e+ BN + 8+ Aeyy! — P IE[pf 1] + B EL 0]+ g (i pi” M Bl 0] stor)

Known Pre—search Expected Hidden Utility Reservation Value Func.
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Consumer Choice Model Identification

Table 7.1: Informal Identification of Demand Parameters

Sequential Search Conditions Notable Variation

Parameters Order Continuation Stopping Choice Nights Diversion Displacement
Utility Parameters

Consumer Segments: &;; v v vl v v v

Time Effects: gmonth ¢y v v /1 v v v

Mean: p, B¢, BP v v v v v v v

Heterogeneous: X, v v'* v v v v v

Visible Error Scale: A v v v v v v
Search Cost Parameters

Mean: &, 7 v v v v v v

Heterogeneous: X, v Ve v v v v

Note: Checkmarks with an asterisk (v'*) indicate parameters that are identified by repeated decisions within consumer
(e.g., clicks and purchase). Checkmarks with a dagger (v') indicate parameters that are identified by selecting an
inside good versus the outside option, but not from the choice of one inside good over another. “Nights” refers to length
of stay. “Diversion” refers to substitution patters from variation in product features and availability. “Displacement”
refers the variation in positions caused by advertisements/opaque offers.
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Demand Results

Purchase Count
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Demand Estimates

Table 7.2: Demand Parameter Estimates

Utility Parameters

Variable (1)
Outside option 1.90
Price ($100s) p -1.76
Match quality split A 0.28
Visible Features
3 star 0.30
4 star 0.54
5 star 0.48
Non-star 0.31
2 star brand -0.16
3 star brand -0.28
4 star brand 0.03
5 star brand 0.29
Prop. review score
Spline 1: score 1-3 -0.51
Spline 2: score 3-5 0.04
Mi. dummy -1.40

Hidden Features
Location score 1

Spline 1 0.52
Spline 2 -0.51
Spline 3 0.05
Spline 4 2.61
Location score 2
Spline 1 0.27
Spline 2 1.50
Spline 3 0.37
Mi. dummy 1.64

Estimation Details

Observations 2,262
Weighted obs. 13,444
Halton draws 400
Smoothing term w 0.2
Grid points 1,692
Log likelihood -85,028

Search Cost Parameters

Variable (1)
Constant -1.10
Log Slot Appear
Spline 1 0.11
Spline 2 0.21
Spline 3 0.37
Spline 4 0.08

Random Coefficients

Parameter (1)
O-Qrice 0.729
Oinside option 0.095
01 & 2 star 0.080
O—g star 0.009
‘72 star 0.015
O—g star 0.000
O—SQEaI'Ch cost 0.279
price-search cost -0.444
Additional Controls
Day of week v
Month v
Time before stay v
Length of stay v
Search time v
Search on weekends v

Notes: Likelihood is the logit-smoothed
likelihood for joint search and purchase de-
cisions. Splines are linear B-spline. Vari-
ance of random coefficients estimated using
Cholesky decomposition.
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Structural Model

DEMAND

PLATFORM RECOMMENDATIONS (EXPEDIA)

SUPPLY (HOTELS)
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Model: Platform Two Step “Model of the Model” Approach

Platform recommendation system orders results relevance, u{jt

Deterministic

r — pslot
Uijtn = Pn l/)ijt T €ijt — Random

With
Wije = f(x];)

o xirjt includes price, product features, consumer observables, and query specific information
o The underlying recommendation systems can be quite complicated

Estimation:
o Approximate f(x{jt)using LambdaMART, a machine learned ranker Burges (2010)
o Create out-of-fold predictions of gBijt
> Normalize lljijt

> Fit sequential logit on 1; ; to estimate B3t for each slot
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Platform Results — Out of Sample Fit

efault)

Slot Rank
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Platform Results — In Sample Fit

Tnh Sam ple Prediction (Scaled by R ow s)

0.9
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R e el ey e
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Platform Results — Out of Sample Fit

Measure Model NDCG Loss Conc Loss
1 Random Benchmark 0.175 0.506
2 LambdaMART (NDCG): Full 0.060 0.276
3 LambdaMART (NDCG): Fold 1 0.061 0.277
4 LambdaMART (NDCG): Fold 2 0.061 0.277
5 LambdaMART (NDCG): Fold 3 0.061 0.276
6 LambdaMART (NDCG): Fold 4 0.061 0.277
7 LambdaMART (NDCG): Fold 5 0.061 0.278
8 LambdaMART (NDCG): Fold 6 0.061 0.276
9 LambdaMART (NDCG): Fold 7 0.060 0.277
10 LambdaMART (NDCG): Fold 8 0.061 0.277
11 LambdaMART (NDCG): Ens 0.059 0.272
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Platform Model Sequential Logit Results

Estimate ,BSZOt for each slot: Platform Model Sequential Logit Scale Parameters
n . with v = ﬁff()t'f‘?;jt + €t
25
L $ Bt (Std. Error)
slot,7,
l]t :Bn l/)l]t + El]t 5
. 2r 5 3l0t: coefficient for third slot
RS
stot governs how deterministic each slot z 5
a55|gnment is in relevance score (¢ ;). S5l 2 .
r : s
A 23
Takeaway °§ 1r 355
: L 7z :
Position on the page is more deterministic 2 5 2
. w2
higher on the page. 0.5 23 5 ;
323 3
23 3
K
0 C v v 00 | TR T A T A W I T N T S R S N | R T T S T B | I T TR T T B R [ T T TR T S N |
5 10 15 20 25 30
Slot Rank

AARON KAYE | APKAYE@MIT.EDU | TSE 17TH DIGITAL ECON CONFERENCE 39




Structural Model

DEMAND

PLATFORM RECOMMENDATIONS (EXPEDIA)

SUPPLY (HOTELS)
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Model: Supply Side

Sellers expected profits solving Platform fee and tax rate

argmax £ [((1 - QU)Pjtt’ - lett’) ditt! |'tht’]

Pjte! ‘

Avg. Variable Cost

Seller foc

-1
MG (aq_) -
(1-9) e Opjte! e

Quantity

Depends on platform rec
system and preferences

Price Schedule (p;;’) |
° pjt¢' Is price for room-night j, staying period t, and searching period t’

Marginal Cost (1m.¢;.;)
o Opportunity cost of the unit available to sell the next period

o Can include additional expected profits conditional on purchase (room service, dining, gambling)

Sellers know (Q;,)
o Own costs, elasticity of demand, competing product features and availability
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Supply Side Estimation: Three Stage Least Squares

Hotels face economies of scale and capacity constraints

o Known from data or platform/demand model| Not separable
MCpgse T a(q) q(6,p) 9, -
. =p+ <—q> q(6,p)
(1 -9) Jp

First stage: IV for q;
Qjte’ = A1 Xjey! + AaZjpe! + Eje!
° Xjt¢r: product features, market-subperiod effects
° Zjt: product features and availability of other products in same market, own-star rating interactions.

Second Stage: IV for g%,

2
2 _ ~Step 1
Ajee' = A3 (qjtt’ ) t e

Third Stage

tep 2
. ~Step 1 — 5
Mmceiey = Bxjrer + V1CI]tt + qujtt' T Wjgy!
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Note: Marginal cost in $100 per room-night.
Each series is truncated at its respective 5th and 95th percentile.
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Table 7.5: Supply Side IV Regression Analysis Results

‘ Pooled Star Rating Specific

Variable ‘ All Ratings Two-Star Three-Star Four-Star Five-Star

Intercept -0.307 0.527 1.022x%% 1:484%% 36854
(0.503) (0.614) (0.124) (0.114) (0.134)

cj§1) -0.198%** -0.091 -0.036 -0.091 -1.287***
(0.037) (0.072) (0.094) (0.092) (0.149)

A (2

q2§~ ) 6.033r* -0.016 0.033* 0.026** 0.199***
(0.008) (0.012) (0.032) (0.028) (0.051)

Two/Three-Star 0577 = - = —
(0.088)

Four-Star 1.010%** - - - -
(0.086)

Five-Star 2.688*** - - - -
(0.111)

Additional Controls

Product Features v v

Location Desirability v v

Month—Weekend—Subgroup v v

Observations 3492 3492

Degrees of Freedom 3437 3429

RMSE 0.783 0.761

R? 0.638 0.660

Adjusted R? 0.632 0.654

First-stage F-statistic 103 103




Personalized Recommendation
Systems Training for Counterfactuals




Recommendation Systems

Train ranking systems using data from Expedia’s RCT
o Data from RCT were displayed in random order

o Relevance scores: Booking =5, Click = 1, Impression =0
o Model training approach based on winning entry
o Ensemble of LambdaMARTs with NDCG Loss (170 models)

Use increasing levels of personalization
o Common Recommendations: Product features, competitive info

o Query Adjusted: + query features (ex nights, children)
o Personalize: + consumer observables (ex: consumer country)
o Most Personalized: + past transactions, tracked navigation data

Evaluate out of sample performance
o Qut of sample fit should improve with personalization
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Recommendation Systems (Ensemble of LambdaMARTSs)

Less Personalized More Personalized
- >
Recommender “Features” “Query” “Personalized” “Most Personalized”

Product features Product features

Product features Product features

Query features

Query features

Query features

Input Data

Consumer features Consumer features

Purchase history
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Recommendation System Performance

Out of sample performance improves with level of personalization

Measure Model NDCG Loss Conc Loss MAP MRR
1 Random Benchmark 0.673 0.480 0.850 0.846
6 LambdaMART (Ensemble): Base Info 0.544 0.302 0.699  0.692
7 LambdaMART (Ensemble): with Query Info 0.540 0.301 0.695  0.686
8 LambdaMART (Ensemble): Personalized Basic 0.537 0.299 0.692  0.681
9 LambdaMART (Ensemble): Personalized Full 0.533 0.300 0.686  0.676

Table 2: Comparison of Model Results
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Counterfactuals
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Counterfactual Setup

Counterfactual Timing

Platform updates Sellers update Consumers update
recommendations prices beliefs

Baseline
o Subperiod uniform pricing (month, weekend-weekday, time before stay)

Use increasing levels of personalization
o Common Recommendations: Product features, competitive info

o Query Adjusted: + query features (ex nights, children)
o Personalize: + consumer observables (ex consumer country)
o Personalized Plus: + past transactions, tracked navigation data
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