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MITIGATING MORAL HAZARD THROUGH ALGORITHMS

1 Introduction

Increasingly, we are coming to understand that financial technologies, which have been
widely used in asset management, can remarkably reshape market participants and inter-
actions (e.g., Cookson et al., 2021; Capponi et al., 2022; Hong et al., 2024). Be it played
by banks or fintech platforms, institutions newly feature an intermediary that connects
various investors and portfolio managers (e.g. mutual funds, private equity funds, in-
surance funds), aggregating a great market scale.1 This expands financial inclusion by
providing easy and cheap access to numerous investment advisories and opportunities.
However, the concentration of investors implies a high potential of visibility on the plat-
form. Limited-liability managers are then incentivized to increase risk-taking for standout
performance, enhancing the exposure and sales (Hong et al., 2024). Their combination
can be dangerous: numerous non-professional investors are overexposed to market risk,
generating systemic risks to the market.

This paper analyzes why and how recommendation algorithm designs can address the
above challenge. As platforms benefit from a large user base, they have the incentive to re-
strict the fund managers’ risk-chasing and protect user welfare. There are three difficulties.
First, non-professional investors typically have limited awareness of their heterogeneous
levels of risk aversion (Capponi et al., 2022). This requires personalized intervention with
private signals. Second, the platform cannot change the contracts between investors and
managers, thus fails to directly mitigate the agency problem. Third, managers are always
able to hide their allocation details.2 Therefore, over risk-taking is always represented as a
moral hazard.

We build a tractable model to show that in this context, all three difficulties can be
simultaneously addressed by a recommendation algorithm. In the baseline, we consider
a two-period economy where a continuum of non-professional investors contract with a
fund manager through a platform. Investors have heterogeneous risk aversion and do
not know their types. The risk-neutral manager designs a portfolio and keeps the frac-
tion of risky-asset allocation as private information. The platform takes advantage of data,
thus observing investors’ risk aversion levels. The algorithm is a predetermined publicly
known process that delivers personalized recommendation signals according to individ-

1These platforms typically allow access to both self-directed investing in funds and advisory services, such
as Merrill Guided Investing owned by Bank of America, Citibank’s Citi Personal Wealth Management, and
Wells Fargo’s Intuitive Investor etc. Emerging fintech platforms including Yieldstreet, iCapital Network, etc.
The phenomenon is worldwide: in the UK, about 50% of retail mutual fund flows are channeled through
investment platforms (Cookson et al., 2021); in China, Ant Group has covered almost the entire universe of
mutual funds. See Appendix B for institutional background.

2We focus on active investment, where disclosure in practice is always delayed and not fully transparent.
Also, as discussed later, the noisy signals from historical performance prevent the platform from correctly
inferring the allocation.
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ual risk aversion and the fund’s historical performance. After observing the period-one
portfolio return, the algorithm executes automatically. Investors update their beliefs about
the risk aversion levels conditional on the recommendation status, and decide whether to
invest in the fund, i.e., contract with the manager, to maximize the expected period-two
payoff accounting for the delegation fee. Correspondingly, the manager designs the fund
to maximize the expected total delegation earnings.

In practice, the delegation fee is commonly written in a simple contract, including a
fixed management fee and a performance fee with limit liability. Then it is easy to ex-
pect that without an algorithm, the manager would optimally fully allocate in risky assets.
However, with an algorithm, the manager knows that the realized return offers a noisy sig-
nal about the allocation choice, and the algorithm might punish the suspected over-risky
performance by reducing recommendation probabilities. As a result, the manager opti-
mally chooses a lower risk allocation under the algorithm. Specifically, we show that the
platform is able to force the manager’s equilibrium risk allocation to any targeted level,
and further choose the equilibrium that optimizes the aggregate expected investor pay-
off. Proverbially speaking, the platform effectively controls the market participants and
interactions by leveraging “the algorithm’s hand.”

In the above mechanism, a key question is: how can algorithms change the risk al-
location of the manager? First, we emphasize that the critical role of algorithms is not
limited to the transmission of information. Algorithms also provide commitment power.
Through predetermined recommendation plan for all possible portfolio performance, al-
gorithms provide punishment over excessive risk taking. This breaks the monotonicity of
the manager’s expected payoff with respect to the risk level of their fund.

Performance uncertainty has a subtle effect on algorithm implementation, as different
realized returns can have various degrees of informativeness. To illustrate our key intu-
ition, consider an over-risky portfolio with an overlapping return range with the target
portfolio. In this case, algorithms cannot distinguish the manager’s risk choice with full
confidence when they observe a realized return that falls within the overlap. To counter
such uncertainty, algorithms tend to be conservative in their recommendations on such
overlap. Algorithms compensate otherwise, i.e., increase the probability of recommen-
dation when observing informative signals from the non-overlapping return range of the
target portfolio. Put differently, the manager has the incentive to hide behind noisy signals,
while the algorithm rewards informative disclosure. Due to this trade-off, some investors
receive recommendations that are not the first best, update their beliefs incorrectly, and
suffer a welfare loss. Therefore, the compensation is effectively an information rent paid
by investors. We further discuss its inference from the perspective of inequality: investors
with high risk aversion levels are still first affected. They are sacrificed as the small for the
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greater good of the investors as a whole.3

We then analyze the relationship between contracts and algorithms. Whereas the con-
tract designs incentive mechanisms between parties under a typically asymmetric infor-
mation structure, the design of a recommendation algorithm reshapes the structure of in-
formation and participating parties. Here, recommended investors update their beliefs
about risk aversion levels, and those not recommended may even not enter the market.4

The contract affects the difficulty and effectiveness of implementing a recommendation
algorithm. In particular, a higher fixed management fee aligns with the algorithm’s goal.
Under a sufficiently high management fee, the algorithm is able to optimize the expected
aggregate investor payoff with zero information rent. Note that the management fee is also
paid by the investors. As a result, we show that the aggregate effect generates an inverted
U-shaped expected investor payoff with respect to the management fee. This sheds light
on a jointly optimal design of algorithms and contracts.

Methodologically, we develop an approach for solving general algorithm design prob-
lems under continuously distributed returns, which is challenging despite the relatively
well-understood intuitions. As illustrated, a high return is not always favored, but is more
likely a sign of over risk taking. This forces us away from assuming monotonicity of the
objective algorithm, thus invalidates a set of common approaches in mechanism design.
In addition, the optimization works on function spaces, and few assumptions are made on
the return distribution, which both add mathematical complexity.

Our approach consists of three main steps. First, in light of Ichihashi and Smolin (2023),
we show that the possible optimal algorithm belongs to a specific family of functions fea-
turing a simple threshold. Next, we consider three function spaces, provide corresponding
sufficient conditions, and prove the existence of solutions to the general algorithm design
problem, respectively. Finally, we use variational methods to derive the necessary condi-
tions for the optimal algorithm, which restricts the interior solution to a unique analytical
form. By pinning down any applicable return distribution, one can obtain a single algo-
rithm through the necessary conditions and validate its satisfaction of the manager’s in-
centive constraint, ultimately obtaining the optimal algorithm. We raise an example with a
normally distributed risk return. Interestingly, the resulting algorithm exhibits an elegant
quadratic shape. This approach provides a mathematical foundation for future research
on a broad category of algorithm design problems.

3The underlying reason is that investors hold the same fund and cannot reallocate risk between them-
selves. If we consider multiple funds, then the algorithm can be designed to recommend different funds to
heterogeneous investors, partially mitigating inequality issues.

4We assume in the baseline that investors are initially unaware of the fund, since in practice, there are
too many funds to notice. For example, there are 7,222 mutual funds in the US in 2023 (referred to Statista
Research Department), and 10,742 in China in 2024 (referred to Asset Management Association of China). We
relax this assumption in the extended discussion, where all the core implications remain.
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We extend to other relevant scenarios of delegated investment, thereby re-showing the
unique roles of the algorithm. In a primordial case without platforms and algorithms, non-
professional investors know neither the historical performance nor the risk aversion levels.
They directly meet the manager and make decisions based on their beliefs about their own
risk aversion levels, say, the population average level. The moral hazard is obviously
serious: the “blind” investors have no information to infer the manager’s choice. Step
further, we allow the investors’ access to the historical performance, e.g., investment on a
traditional fund distribution platform, which only provides information about the fund,
but do not make personalized services. The manager may be self-motivated to reduce risk
exposure, since investors have more or less beliefs about their risk aversion. However, the
effect on moral hazard is minimal, and investors may obtain ex-post negative payoffs.

Whereas the former comparisons emphasize the crucial personalized information, we
further come to investment experts (or investment with advisory) to see that the algo-
rithm has functionality beyond processing information. Investors now observe both the
historical return and their personal characteristics. They fairly never get themselves over-
exposed to risk and always obtain non-negative expected payoffs. However, the historical
signals are not always informative, and the manager still has incentive to hide. The pop-
ulation cannot generate punishment, so let alone the compensation–each investor always
refuses to invest with ex-post inefficiency and agree to invest with efficiency, generating
no commitment power. Compared to our baseline with algorithms, the equilibrium yields
a fund with higher risk exposure and a narrower inclusion. This lack of coordination, in
a sense, exhibits “a curse of shrewdness,” and contrasts the crucial role of algorithms in
providing commitment power.

We further discuss the relationship and interactions between recommendation algo-
rithms and fund ratings (e.g., Morningstar). They are typically motivated from the op-
posite sides of the platform: fund ratings compare and classify multiple funds, whereas
algorithms target heterogeneous investors. They interact in the context of information
structure, providing investors public and private signals, respectively. We analyze the
implementation of algorithm with the co-existence of fund ratings, and notice the coun-
terintuitive implication: the expected aggregate investor payoff generated by the optimal
algorithm is reduced. This is because additional information makes the algorithm less
determinative in investors’ decision-making, results in a limited commitment power, and
drives the possible equilibrium allocations in favor of the manager. The mechanism design
combining fund ratings and recommendation algorithms calls for further exploration.

Related literature. Our paper contributes to the growing literature on the impact of fi-
nancial technologies on the asset management industry. Financial markets have become
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highly institutionalized (Buffa et al., 2022). Asset management platforms aggregate in-
vestment and expand adoption by introducing various technologies, such as easy access
to the centralized information flow of fund rankings (e.g., Huang et al., 2020; Evans and
Sun, 2021; Ben-David et al., 2022; Huang et al., 2022; Hong et al., 2024), and robo-advisors
that offer personalized portfolio designs (e.g., D’Acunto et al., 2019; Loos et al., 2020; Cap-
poni et al., 2022). We start from the perspective that platforms have become intermediaries
(e.g., Stoughton et al., 2011; Cookson et al., 2021), connecting a large population of re-
tail investors with delegated investment agencies. In particular, we focus on the novel
usage of personalized recommendation algorithms on these platforms, which are endoge-
nous and influence the behavior of platform participants. According to Capponi et al.
(2022), while investors often misjudge their risk aversion, robo-advisors can identify and
communicate accurate preferences through interactive adjustments. We extend this idea
by linking the algorithm’s risk aversion identification ability with its effectiveness in co-
ordinating the manager with the investors. Meanwhile, empirical evidence documents
that new technologies generate new impacts on participants’ behavior: the integration of
daily consumption and investment activities has increased investors’ risk-taking behav-
ior (Hong et al., 2020), and the centralized information flow amplifies the influence of
attention-induced trading (e.g., Kaniel and Parham, 2017; Barber et al., 2022), thereby in-
centivizing fund managers’ risk chasing for greater visibility (Hong et al., 2024). Our theo-
retical framework provides insights into how fintech platforms can leverage technology to
mitigate this two-sided over risk-taking phenomenon and guide proper trading behavior.

We also closely relate to the literature on asset management contracts by demonstrating
that recommendation systems can effectively address the agency problem of/given simple
contracts. The inevitable agency problems of simple linear and limited-liability contracts
have been frequently highlighted in the literature (e.g., Innes, 1990; Palomino and Prat,
2003), in particular, generating risk-taking incentives (Stoughton, 1993; Lee et al., 2019).5

Li and Tiwari (2009) solves an option-type bonus fee with an appropriate benchmark to
overcome the moral hazard in risk choices, whilst a practical challenge is that, as empha-
sized by D’Acunto and Rossi (2021), there is a preference for offering simpler contracts
to minimize the risk of operational errors by non-professional households. Be it costly or
not to implement a relatively complex contract, the realistic context of intermediary asset
management suggests that platforms are unable to adjust the contracts between investors
and delegated managers. We show that, by influencing the information structure, the auto-
mated and personalized recommendation algorithm can successfully address moral haz-

5Existing literature widely studies asset management contracts in many respects, e.g., He and Xiong (2013);
Parlour and Rajan (2020) consider contracts that incentivize manager’s efforts; Buffa et al. (2022) consider
avoiding unskilled managers and impacts on market efficiency. Here we focus on the context of guarding
against risk-taking.

5



FENG, HE AND WEI

ard of risk allocations inherent in simple contracts. This insight of using technology to
refine contracts resonates with Cong and He (2019), which discusses how blockchain can
expand the range of variables that can be written into contracts, thus finding a niche in
finance for the function of blockchain and smart contracts. From a wider point of view of
finance theories, the optimal algorithm design explores a novel interaction between con-
tract and information design, whereas the combination mainly lies in corporate finance
(e.g., Azarmsa and Cong, 2020; Szydlowski, 2021; Luo, 2021).

The critical role of recommendation algorithms enriches the literature on using com-
mitment mechanisms to empower buyers in a transaction. In a bilateral trade, Roesler and
Szentes (2017) suggests that buyers can influence sellers’ pricing strategies by acquiring
incomplete information. Ravid et al. (2022) further refines the strategic interaction out-
comes when buyers lack commitment power. Ichihashi and Smolin (2023) shows the rec-
ommendation algorithm can protect the total consumer surplus from personalized price
discrimination. Xu and Yang (2023) consider the potential drawback of algorithms prior-
itizing consumers when agency problems arise from both sides. In contrast to bilateral
trade, we study the moral hazard problem in purchasing financial services, which remark-
ably features noisy signals and uncertain payoffs.6 We detail the underlying mechanism
of the algorithm in processing information with different qualities. Information with low
qualities becomes crucial for balancing investor payoff and the manager’s incentive. This
echoes the empirical evidence of ambiguity aversion in mutual fund investment (Li et al.,
2017), and speaks Szalay (2005)’s theory implication, excluding compromising choices in-
creases incentives for information acquisition, from another tale: the algorithm incentives
allocation disclosure by reducing unsure recommendations.

Regarding the role of information transmission, the recommendation algorithm adds
to the large literature on information gatekeepers (Baye and Morgan, 2001). Many studies
show the various motives and roles of platforms that strategically modify search results
(e.g., Armstrong and Zhou, 2011; Hagiu and Jullien, 2011; Inderst and Ottaviani, 2012;
De Corniere and Taylor, 2019; Zhou, 2020; Teh and Wright, 2022). Recent contributions of
Bergemann and Bonatti (2024) emphasize that the consumer-seller platform takes advan-
tage of consumer data to increase its bargaining power with sellers. We share a similar
spirit with distinct features that the algorithm also utilizes noisy information from man-
agers, and ultimately targets the elimination of moral hazard.

6There are researches studying commitment in mutual fund investment from other perspectives, e.g.,
Huang et al. (2020) focuses on shaping the market reputation in repeated games.
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2 The Model

Consider a two-period economy where users (non-professional investors) contract with a
fund manager through a platform. The higher risk aversion of investors and manager’s
limited liability induce moral hazard, driving investors potentially over-exposed to mar-
ket risk. The platform targets a large user base and therefore attempts to protect investor
welfare. Despite inability to modify contracts between investors and the manager, the plat-
form engages in their matching process by designing fund recommendation algorithms.

2.1 Setup

Fund manager. The risk-neutral fund manager designs a portfolio consisting of a risky
asset and a risk-free asset, generating returns Rpt “ R f ` xpRt ´ R f q, t P t1, 2u, where the
risk-free return R f is normalized to zero without loss of generality. The risky return Rt

is independently and identically distributed in the two periods. Denote Rt „ G, where
G is with a strictly positive density g over its support rR, Rs. ErRts, VarrRts ă 8. The
portfolio allocation is determined confidentially, thus the share of risky asset x P r0, 1s is
the manager’s private information. To the same reason, the platform and investors can
only observe the realized historical portfolio return rp1 other than the realized risky return
r1, even though the platform knows the distribution G.7

The manager sells the fund on the platform at t “ 1 to maximize their expected ter-
minal utility. In particular, the financial payoff comes from the limited-liability delegated
asset management contract, ϕprq “ maxtαr, 0u ` β, where the first term refers to a perfor-
mance fee proportional to terminal wealth, α ě 0, and β ě 0 is a fixed management fee.
The manager may also be incentivized by personal benefits, e.g., becoming an attention-
grabbing star with high performance, which also imposes asymmetric effects of the fund’s
gains and losses on the manager’s utility.8 For simplicity, we assume a similar form to the
performance fee. The manager’s expected terminal utility reads

EruMpRp2qs “ q

»

—

–

ErϕpRp2qs
loooomoooon

financial payoff

` γErmaxtRp2, 0us
looooooooomooooooooon

personal benefit

fi

ffi

fl

,

7We focus on active funds where managers design specific portfolios to outperform the market and attract
investors. The risky asset in our model de facto corresponds to a weighted combination of investible assets
determined by the manager. In reality, the disclosure of fund positions is limited and lagging, leaving little
certainty about x. We allow the platform to have knowledge about G, representing its outside advantage in
processing market information, while investors may only obtain partial information, e.g., ErRts, VarrRts.

8This is similar to the private benefits received by entrepreneurs when they succeed in financing (e.g.,
Szydlowski, 2021).
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where q is the total sale. The asymmetric revenue structure leads to agency problems: the
manager would prefer to fully allocate in risky assets if neglecting the impact on sales. This
is inevitable under a limited liability contract. As highlighted by Palomino and Prat (2003),
it prevents investors from selling returns to the manager in exchange for their expected
value.

Investors. A unit continuum of investors have heterogeneous risk aversion. They are
indexed by their type a, where an a-type investor has $1 for investment, decides whether
to invest in the fund at t “ 1 based on the expected quadratic utility over the terminal
return:9

EruIpRp2qs “ ErRp2 ´ ϕpRp2qs ´
1
2

aE
“

pRp2 ´ ϕpRp2qq2‰ ,

where a higher a captures a higher degree of risk aversion.10 The distribution F of type
a over the population has a strictly positive density f over its support ra, as, 0 ă a ă a.
The key building block is that the investors are non-professional: they do not know their
type a, and are not capable to search for a proper portfolio on their own. Instead, they
decide whether to invest in the fund only after receiving its recommendation signal from
the platform.

Platform and algorithm. Different with traditional mutual fund sales and ratings, the
platform can leverage data and technologies to assess any investor’s risk aversion and
the fund’s historical performance, and have an algorithm send personalized recommendation
signals. Specifically, an algorithm is a function m : ra, as ˆ rR, Rs Ñ r0, 1s. For any pair
of a and rp1, the algorithm recommends each a-type investor the fund with probability
mpa, rp1q.11 The algorithm is publicly known to investors and the manager. In particular,
the manager knows that the portfolio design would affect recommendation probabilities
through historical performance, and further the total sales q.

Timeline. Formally, the timeline is as follows:

9Since a group of investors with the same risk aversion and endowments are identical in every respect, an
a-type wealthy investor can be represented as a group of a-type investors with $1 for investment. This allows
wealth heterogeneity to be included through the distribution of a, whereas the $1 endowment essentially
assumes the total wealth for investment to be one, and is therefore without loss of generality.

10The expected utility also implies that the utility of not investing in funds is zero and is unaffected by risk
aversion.

11Our framework allows for extension to multiple fund manager scenarios and competition. Regardless
of whether a fund manager designs a differentiated portfolio, the platform can determine their competition
structure via the algorithm, e.g., by recommending to separated groups or embedding additional ranking
rules. This is beyond our prime interest.
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1. Fintech platform designs an algorithm m, publicly known.
2. Nature draws investors’ type a.
3. Manager designs a fund which generates a historical return Rp1.
4. Platform privately observes each investor’s risk aversion a. With probability mpa, Rp1q,

a-type investors observe the recommendation and Rp1, then decide whether to contract
with the recommended manager.

5. If contracted, investors and the manager earn Rp2 ´ ϕpRp2q and ϕpRp2q, respectively.

2.2 Platform’s Optimization and Solution Concept

We aim to study whether and how the recommendation algorithm mitigates moral hazard
under simple contracts and enhances social welfare. The solution concept is a subgame
perfect equilibrium, and in this paper all integrals should be understood in the Lebesgue
sense.

The platform’s problem is to solve an investor-optimal algorithm, which attains greater
investors’ total expected payoff than any other recommendation algorithm. This simplifies
the problem as well as comes from the following two considerations. Regarding regula-
tion, robo-advisors are considered fiduciaries under the Investment Advisers Act of 1940,
which obligates them to act in the client’s best interest (Capponi et al., 2022). As for in-
centives, Xu and Yang (2023) emphasizes that platforms, driven by the goal of maximizing
future revenue, become "consumer-minded" since their market success relies on past con-
sumer satisfaction. In practice, for example, BangNiTou, China’s robo-advisor service,
collects fixed fees from investors, not managers, and is therefore naturally accountable
to investors.12 As for investor-optimal algorithm, the optimization problem generates an
outcome px, mq, i.e.,13

max
m:ra,asˆrR,RsÑr0,1s,

xPr0,1s

ż R

R

ż R

R

ż a

a

„

pxr2 ´ ϕpxr2qq ´
1
2

a pxr2 ´ ϕpxr2qq
2
ȷ

mpa, xr1qdFpaqdGpr2qdGpr1q

(1)

subject to the following constraints

x P arg max
x1

#

ż R

R

ż R

R

ż a

a
ϕpx1r2qmpa, x1r1qdFpaqdGpr2qdGpr1q

+

, (2)

12BangNiTou, developed by Ant Financial and Vanguard Group, adopts a "buyer’s agent" model, customiz-
ing financial planning based on the investor’s risk assessment and a pool of mutual funds. The service fee
for "BangNiTou" is calculated as approximately 0.0014% of total daily assets (equivalent to 0.5% annualized)
and is charged quarterly. Fees related to fund transactions are charged according to the pricing rules of the
respective fund products.

13Note that the risk-free rate is normalized to zero, then rpt “ xrt, t “ 1, 2.
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ż R

R

ż R

R

ż a

a
ϕpxr2qmpa, xr1qdFpaqdGpr2qdGpr1q ě 0, (3)

ż R

R
pxr2 ´ ϕpxr2qq ´

1
2

şa
a ampa, xr1qdFpaq
şa

a mpa, xr1qdFpaq
pxr2 ´ ϕpxr2qq

2 dGpr2q ě 0, @r1 P supppR1q. (4)

Eq. (2) is the manager’s incentive-compatible constraint, i.e., the equilibrium allocation
x maximizes the manager’s expected financial payoff with the corresponding recommen-
dation algorithm. Eq. (3) is the manager’s IR constraint. It is naturally satisfied, because
the algorithm design merely alters recommended probabilities, incorporating the specified
limited liability contract ϕp¨q. Eq. (4) is the investors’ IR constraint. For investors who re-
ceive recommendations, they form posterior beliefs about their risk aversion based on the
publicly known algorithm. Given the observed historical return rp1, their expected utility
of investing in the recommended fund is given by

ż R

R

ż a

a
pxr2 ´ ϕpxr2qq ´

1
2

a pxr2 ´ ϕpxr2qq
2 dFpa|recommended, xr1qdGpr2q

“

ż R

R
pxr2 ´ ϕpxr2qq ´

1
2

Era|recommended, xr1s pxr2 ´ ϕpxr2qq
2 dGpr2q,

which obtains the R.H.S. of (4). An investor satisfying the IR constraint would prefer to
contract if being recommended and updating their beliefs about their risk aversion. Put
differently, this constraint binds the total sales influenced by the algorithm.

Note that Eq. (4) is equivalent to requiring the integral interior of the optimization
problem (1) to be non-negative, that is

ż R

R

ż a

a

„

pxr2 ´ ϕpxr2qq ´
1
2

a pxr2 ´ ϕpxr2qq
2
ȷ

mpa, xr1qdFpaqdGpr2q ě 0.

Under the IR condition (4), there is no distinction between algorithmic recommendations
and investor investments in the expression.

For convenience, we define the following notations:

µ` :“
ż R

0
r2gpr2qdr2, A :“ pα ` γqµ`,

k1pxq :“
ż R

R
pxr2 ´ ϕpxr2qqdGpr2q, k2pxq :“

ż R

R
pxr2 ´ ϕpxr2qq2dGpr2q.

We make the following reasonable assumptions in solving the model:
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Assumption 1.

1. The investor’s utility uIprq is increasing and concave: 1 ´ ar ą 0 for all a P ra, as and all
r P rR, Rs.

2. The contract does not prevent trading: ErRt ´ ϕpRtqs “ ErRts ´ αµ` ´ β ą 0.

Assumption 1.2 ensures that the contract costs do not become so high that the maxi-
mum expected return of the portfolio falls below that of a risk-free asset. Under Assump-
tion 1, we have @a P ra, as,

dEruIpxRtqs

dx

ˇ

ˇ

ˇ

ˇ

x“0
ą 0, and

d2EruIpxRtqs

pdxq2 ă 0.

3 Preliminary Analysis

Before rigorously analyzing the existence and implications of the optimal algorithm, this
section uncovers its necessary properties: the optimal algorithm comes from a family of
functions that features a simple threshold and requires a penalty for abnormal returns.

3.1 Threshold Algorithm

We note a special set of algorithms in light of Ichihashi and Smolin (2023)’s seminal work.
Precisely, denote an algorithm m as a threshold algorithm if there exists a threshold function
â : rR, Rs Ñ ra, as such that mpa, rp1q “ 1pa ă âprp1qq. That is, a threshold algorithm rec-
ommends the fund with probability 1 (0) if the risk aversion is below (over) the threshold
determined by historical returns.

Lemma 1. For any feasible algorithm m, there exists a threshold algorithm m̂, under which the
manager’s expected payoff remains the same, whereas investors yield a (weakly) greater aggregated
expected payoff than cases under m.

According to Lemma 1, suppose there exists an optimal algorithm m˚, we can always
find a corresponding threshold algorithm m̂˚ that ensures both the investor’s IR condition
and the manager’s IC and IR condition are satisfied, while also ensuring that the investor’s
expected utility does not decrease. It suggests that we can find the investor-optimal algo-
rithm in a set of threshold algorithms. The logic is simple: the manager views contracted
investors as identical, leaving room for the algorithm to “select” proper investors to satisfy
the manager’s incentive constraint. In particular, for any given risky portfolio, investors
with lower risk aversion always have higher expected utilities. Therefore, any selected

11
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(recommended) investor should have lower risk aversion than any unrecommended one,
otherwise the total welfare can be increased by exchanging their recommendation states.
As a result, Lemma 1 suggests the optimal algorithm (if exists) essentially determines the
recommendation amount, and delivers to investors in order of their risk aversion.

Then we can represent the platform’s problem (1) in terms of the fraction q of recom-
mended investors determined by the threshold â. Because the probability density function
of a is strictly positive, q increases strictly with â over ra, as, ranging from 0 to 1. Let
q :“

şâ
a 1dFpaq “ Fpâq, where â is affected by the realized historical return rp1 “ xr1.14 With

qpxr1q : rR, Rs Ñ r0, 1s and âpxr1q “ F´1pqpxr1qq, the equilibrium can be represented as
px, qq, and the platform’s problem is rewritten as

max
q:rR,RsÑr0,1s,

xPr0,1s

ż R

R
k1pxqqpxr1q ´

1
2

˜

ż F´1pqpxr1qq

a
adFpaq

¸

k2pxqdGpr1q (5)

subject to

x P arg max
x1

#

pAx1 ` βq

ż R

R
qpx1r1qdGpr1q

+

and (6)

k1pxqqpxr1q ´
1
2

ż F´1pqpxr1qq

a
adFpaqk2pxq ě 0, @r1 P supppR1q. (7)

Intuitively, the algorithm penalizes aggressive investment by linking the total sale to
the historical portfolio return. This has the potential to correct the incentive issue from
contracts: when a fund manager over-allocates in risky assets, they obtain a greater ex-
pected payoff from contracted (equivalently, recommended) investors due to limited lia-
bility. However, this would also generate an abnormal historical return relative to a proper
exposure to risk, driving algorithms to reduce the fraction of recommended investors.

We further equivalently represent the IR constraint in a simpler form. Multiply the
both sides of (7) with qpxr1q and focus on the left side. The derivative w.r.t. qpxr1q is
rk1pxq ´ 1{2F´1pqpxr1qqk2pxqs and is strictly decreasing with qpxr1q. Also note (7) takes the
equal sign when qpxr1q “ 0. Then we can define qpxq as

qpxq :“ sup

#

q P r0, 1s

ˇ

ˇ

ˇ
k1pxqq ´

1
2

ż F´1pqq

a
adFpaqk2pxq ě 0

+

,

and the IR constraint is equivalent to

qpxr1q ď qpxq, @r1 P rR, Rs.

14Recall that R f is normalized to zero, and r1 is not separately observed.
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Briefly, investors would not buy if the platform over-delivers signals.

3.2 High Historical Returns Are Not Always Favored

The primary principal-agent problem here is the manager’s tendency to overinvest in risky
assets driven by their expected utility, which increases monotonically with x. Then the al-
gorithm is designed to change such monotonicity and concavity by influencing qp¨q. To do
so, qp¨q should somehow sacrifice its monotonicity and relate to the risk-return distribu-
tion. The following proposition describes this observation.

Proposition 1. If qp¨q characterized by an algorithm is weakly increasing with r P rR, Rs, then it
induces x˚ “ 1 in equilibrium.

Intuitively, if qp¨q weakly increases with r, then the algorithm provides the same incen-
tives as contracts ϕp¨q to the manager. As a result, the manager fully invests in risky assets
to maximize the expected return–the algorithm fails to bind the manager’s over-exposure
to risk, although it could still prevent investors from entering the market who have nega-
tive expected utility under x “ 1.

An important corollary is: the platform should reduce recommendations when histor-
ical returns are abnormally high, rather than viewing them as outstanding projects. In
practice, high ranking based on high returns generates a huge incentive for fund man-
agers, pushing them to be more risk-chasing (Hong et al., 2024). Algorithms contribute to
mitigating this principal-agent problem. Importantly, compared to ranking systems, the
algorithm allows for the integration of bilateral data from fund managers and investors,
with personalized recommendations conveying private signals. In other words, the rank-
ing system serves as a comparison metric of funds, while the algorithm focuses on eval-
uating a fund’s suitability for a particular investor, and therefore enables a more direct
penalty for risk-chasing. Since qp¨q can uniquely characterize a threshold algorithm, we
will also refer to qp¨q as the algorithm in the following sections.

More generally, the algorithm punishes abnormal returns that should be (almost) im-
possible under an equilibrium allocation. Therefore, we can further characterize a feasible
form of the optimal algorithm, detailed in the proposition below.

Proposition 2. For any equilibrium px˚, q˚q, q̂ constitutes a cutoff algorithm in an equilibrium
px˚, q̂q, generating the same expected payoffs of the investors and manager as px˚, q˚q, where

q̂pr; xq :“

$

&

%

qprq, r P supppxRtq;

0, otherwise.
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Intuitively, q̂ implements a greater penalty than q˚ once the realized return exceeds
supppx˚Rtq, as these abnormalities imply the manager’s deviation from the incentive com-
patibility. On the other hand, q̂ imposes no additional penalty in equilibrium x˚. This en-
sures that px˚, q̂q still satisfies the IC constraint without changing the equilibrium investor
utility at x˚. In other words, the difference between q and q̂ does not affect the reach and
any quantitative nature of the equilibrium.

In what follows, we focus on the existence of the equilibrium px, qq and analyze the
implications of the optimal algorithm featuring the form q̂ without loss of generality.

4 Analysis under Discrete Return

This section develops the main intuitions with a discrete risk return. Section 5 considers
the general case with continuous risk return. Here, we assume a follows a uniform distri-
bution, and supppRtq “ tR, 0, Ru, reflecting the period-2 states “down”, “flat”, and “up”,
with probabilities ppRq, pp0q, and ppRq, respectively.

Given the discrete distribution, the optimization problem (5) can be transformed into
solving the allocation x˚ and three points q̂px˚Rtq according to Proposition 2. As a result,
the existence of the investor-optimal algorithm can be guaranteed by convex optimization
on a compact set. In addition to the ease of solution, the discrete distribution also helps us
to elaborate on the insights of the extension in Section 6.

4.1 Moral Hazard Mitigation and Information Rent

Moral hazard arises from the manager’s advantage in hiding the allocation x, whereas
the historical performance serves as information to infer x. In this three-point case, the
platform correctly obtains x once the realized return r1 ‰ 0, as it knows r1 P tR, Ru and
also observes rp1 “ xr1. Therefore, with probability 1 ´ pp0q, the platform clearly knows x
and delivers recommendations to the population accordingly. However, a “flat” realized
price would blur all possible allocations. Therefore, the key to mitigate moral hazard is
to introduce a penalty under the uninformative flat case: the platform is expected to con-
servatively narrow the recommendation delivery to protect investor welfare. Then how to
generate enough expected sales to achieve an ex-ante incentive compatibility of the man-
ager? As compensation, the platform slightly expands its recommendations when it has
information on x, even including investors with insufficient risk tolerance. This brings in
welfare losses more or less, which is essentially an information rent paid to the manager.

To show the trade-off between cases of an algorithm, one could imagine the “ideal”
(social planner’s) ex-post recommendation, where all the investors with non-negative ex-
pected utilities under allocation x are recommended. It can also be understood as the
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first-best recommendation strategy assuming away the manager’s incentive compatibility
condition, i.e., qFBpxq “ k1pxq{pk2pxq{2q. Proposition 3 rationalizes the above intuitions.

Assumption 2. The manager is disinclined to invest all capital in risk-free assets: pA ` βqpp0q ą

β.

Proposition 3. Under Assumption 2, consider any equilibrium px˚, q̂˚q where q̂˚ characterizes a
cutoff algorithm defined in Proposition 2 and it satisfies maxrtq̂˚prqu ą 0. Denote

x :“ pp0q ´ p1 ´ pp0qqβ{A.

If x˚ ě x, q̂˚px˚Rq “ q̂˚p0q “ q̂˚px˚Rq “ qFBpx˚q. Otherwise, mintq̂˚px˚Rq, q̂˚px˚Rqu ě

qFBpx˚q ě q̂˚p0q. When qFBpx˚q P p0, 1q, the inequalities hold strictly.

Proposition 3 highlights a crucial threshold of the exposure to risk x. When an al-
gorithm targets an allocation x beyond this threshold, it mitigates moral hazard without
paying any information rent, acting as a de facto social planner. Economically, x ě x is
equivalently represented as

Ax ` β ě pp0q pA ` βq ,

where the left side is the manager’s expected payoff of good behavior from one deal, i.e.,
allocate x risky assets that align with the platform’s target. The right side the opportunity
cost of being good, i.e., the maximum expected payoff of deviating towards over risk-
taking: if so, the manager would alternatively choose a full allocation in risky assets, and
have a probability pp0q to survive and get recommended.15 Thus x ě x guarantees the
incentive compatibility without additional rent.

Otherwise, the platform needs extra efforts to push the incentive constraint: by pe-
nalizing the flat case and subsidizing other cases in terms of recommendation counts. In
general, when the algorithm aims to reach a lower x, the manager is more inclined to in-
centive incompatibility and requires more compensation. The more information rent to
pay further diverges the ex-post cases with different realized returns.

In sum, despite potential rents, the algorithm successfully enables the platform to
“choose” a proper equilibrium allocation x, thus protecting the aggregate investor welfare.
It also speaks the importance of an algorithm’s commitment power, i.e., preemptively set
recommendation probabilities based on varying realized performance with ex-post errors.

15Note that according to the definition of q̂pr; xq, for any allocation x1 ą x, the fund would not be recom-
mended if r1 P tR, Ru. pp0qpAx1 ` βq increases in x1, therefore the manager would choose x1 “ 1 once deviate.
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Therefore, moral hazard mitigation relies on transparent algorithms and commitment to
enforcement.

Figure 1 visualizes the optimal algorithm q̂˚ and optimal allocation x˚. Panel (a) shows
the optimal algorithm q̂˚ that achieves an investor-optimal equilibrium x˚, as illustrated
in Panel (b). The primary observation is that the algorithm punishes the manager by de-
livering no recommendation at all the realized returns that are impossible under x˚. The
algorithm also punishes the flat-price case, but leaving a non-zero recommendation, as
it still has a probability to be obtained from x˚. In addition, the gaps compared to the
first-best demonstrate how the algorithm pays the information rent to the fund manager,
thereby ensuring incentive compatibility.

Panel (b) illustrates the expected aggregate investor utility, which draws an inverted U-
shaped curve, while for the no-algorithm case, the only equilibrium is x “ 1 and investors
receive non-positive expect utility. Put differently, the U-shape curve already speaks the
power of algorithm–it enables the platform to choose any allocation as an aimed equilib-
rium, and optimizing investors’ utility despite potential rent to pay. In other words, the
intervention of algorithms removes the manager’s full control over the allocation. Fur-
thermore, the U shape owes to that the algorithm makes recommendations by Lemma 1 in
an order according to risk aversion, whilst for each recommended investor, the expected
utility goes up and then down as risk exposure increases and exceeds their risk tolerance.
Especially, the downward interval implies the manager’s increasing risk-chasing gradually
generates more harm to investors. In addition, Panel (b) also shows the underperformance
of the algorithm relative to the ideal case when x ă x, due to the required information rent
and corresponding ex-post errors.

4.2 Algorithm Implementation and Inequality

Who actually pays the information rent? In this economy, the platform transfers the rent
to investors. As Figure 1 Panel (c) shows, the ideal ex-ante recommendation qFB is natu-
rally determined by x and irrelevant to historical performance. However, the algorithm’s
recommendation varies in different period-1 states. When the fund exhibits a flat state,
the algorithm makes an insufficient recommendation scale relative to qFB. That is, some
investors who were objectively eligible to invest are not recommended, resulting in fore-
gone welfare gains, as depicted by Area B. In contrast, when the risky asset generates a
non-flat state, the algorithm recommends an additional population with negative expected
payoffs, as depicted by Area A.16

16Note that these investors voluntarily follow the recommendation guaranteed by the IR constraint: they
obtain non-negative expected payoffs based on their subjective posterior risk aversion conditional on being
recommended.
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(a) q̂˚ and qFB for optimal allocation x˚ (b) Upx, q̂˚q for different x

(c) q̂˚ for different x

Figure 1: Optimal Algorithm q̂˚p¨q and Allocation x˚

Notes: Figure 1 illustrates an example of the optimal algorithm q̂˚ and optimal allocation x˚. Panel (a)
compares the optimal algorithm q̂˚ and qFB given x˚. Compared with the First-best, the algorithm suffers
from under-recommendation when Rp1 “ 0 and over-recommendation when Rp1 P tx˚R, x˚Ru. Outside
supppx˚R1q, the algorithm sets the recommendation probability to 0 as Proposition 2. Panel (b) shows ex-
pected utility of investors under optimal incentive-compatible and first-best algorithms, given different x.
Panel (c) shows the optimal incentive-compatible and first-best algorithms given different x. Area A and B
represent the over-recommended and under-recommended investor populations respectively which results in
the welfare gap in Panel (b). Parameters are chosen as follows: α “ 0.01, β “ 0.003, γ “ 0.2, a „ Ur0.15, 0.5s,
and the support of Rt is t´3, 0, 2u with corresponding probabilities 0.1, 0.7, and 0.2, respectively.

That is, in any case, there are always individuals who become “sacrificed” to the al-
gorithm. In particular, according to the definition of the threshold algorithm, detailed in
Lemma 1, the sacrificed investors lie between the ideal and true thresholds, especially the
lower risk-tolerant ones than the unaffected and recommended ones. A low risk tolerance
may correspond to tight budget constraints or less expertise. Therefore, inequality could
deepen when the platform counters the fund manager with an algorithm.

Should it be that the algorithm inevitably has potentials to victimize the marginal users,
even if they are supposedly optimal? We emphasize this to be sure, as long as the algo-
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rithm intends to eliminate moral hazard.17 First, the platform’s bargaining power comes
from its user base as a whole, whereas any individual is atomic that has minimal influ-
ence to the manager’s allocation choices. Therefore, its leverage in negotiations should
stem from the user base. Second, the platform mitigates moral hazard by rewarding the
manager’s disclosure on x (although passive). The exact approach is to expand the recom-
mendation scale, which may result in collective over-investment (relative to the collective
risk aversion). Third, the recommendation does not redistribute risk exposure, therefore
the collective over-investment manifests some individuals’ over-investment. The lower
aimed x requires more costly implementation and ultimately exceeds its contribution to
welfare protection. As a result, one can again expect x˚ to be larger than the optimal risk
exposure under the same recommendation probability under equilibrium.

Proposition 4. For any case where the equilibrium allocation exceeds zero under the optimal algo-
rithm, i.e., x˚ ą 0,

ÿ

rPsupptRtu

pprqq̂˚px˚rq ď qFBpx˚q “ mintk1px˚q{pk2px˚q{2q, 1u and

x˚ ě sup

$

&

%

arg max
x1

#

k1px1q
ÿ

rPsupptRtu

pprqq̂˚px˚rq ´
1
2

ÿ

rPsupptRtu

˜

ż F´1pq̂˚px˚rqq

a
adFpaq

¸

k2px1q

+

,

.

-

.

In particular, when x˚ P p0, xq, the inequality signs hold strictly.

Proposition 4 uncovers the deviations of expected participation and risky asset alloca-
tion relative to the social planner’s solution without the incentive-compatible constraint.
The reason is that algorithmic designs must account for information rent costs as outlined
in Proposition 3. To offset the monotonicity of the manager’s utility with respect to risk
exposure through total sales, the expected number of recommended investors must be
lowered. To ensure the manager is incentive compatible, the algorithm concedes in risk
exposure x˚.

4.3 Interaction with Contract

Proposition 3 also implies the interplay between the algorithm and contract. The underly-
ing logic arises from the manager’s payoff structure: it hinges on the likelihood of being
recommended and the expected returns once recommendation. The algorithm determines

17If the algorithm were not designed to influence the manager, it would be easy in practice to prevent any
investor from a welfare loss, e.g., by adopting an extremely conservative recommendation and focusing on
x ě x.
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the former, while the contract determines the latter. Then the variation in contract design
affects the manager’s compromise on the algorithm when making allocation decisions.

In precise, the performance fee rate α and fixed management fee β jointly affect the
threshold x. A greater α decreases x, resulting in a narrower range for the algorithm to
achieve zero information rent, because it increases the incentive of higher returns, making
the penalty from reduced recommendation less important. This is intuitive, as the perfor-
mance fee with limited liability constitutes the origin of the principal-agent problem.

Consider the fixed management fee, β. Proposition 3 illustrates that a larger β allows
the algorithm to achieve zero information rent at a broader range of equilibrium allocation
x. Because the management fee is independent of the portfolio performance, but solely
depends on successful contract. This therefore becomes an incentive to align with the
objectives of the platform’s algorithmic design, and to avoid penalty in recommendation
scales.

Figure 2 presents a comparative static analysis on β. As Panel (a) and (b) show, when
the management fee is low, the equilibrium allocation under optimal algorithm, x˚, is
higher than x˚

FB, and the expected recommendation scale is lower.As β increases, x˚
FB re-

mains relatively stable, while x˚ decreases to align with x˚
FB, and the under-recommendation

at the flat-price scenario is resolved. It implies that the moral hazard gradually diminishes,
as the manager is more like to align with the algorithm and earn the remarkable man-
agement fee. In particular, the social planner’s solution can be achieved by the optimal
algorithm when β is sufficiently high,18 i.e., x˚ ą x as outlined in Proposition 3.

To further analyze the investor welfare affected by the management fee, we decompose
the expected aggregate ex-ante investor utility,

EruIpx, q̂˚pxqqs “ k1pxqqFBpxq ´
1
2

k2pxq

ż F´1pqFBpxqq

a
adFpaq

loooooooooooooooooooooooooomoooooooooooooooooooooooooon

First-best utility,
Upx,qFBq

´

ˇ

ˇ

ˇ

ˇ

ˇ

k1pxq∆qpxq ´
1
2

k2pxq∆apxq

ˇ

ˇ

ˇ

ˇ

ˇ

looooooooooooooooomooooooooooooooooon

Utility Loss from Moral Hazard,
Upx,qFBq´Upx,q˚q

,

where first term is the first-best payoff under x, and the second term represents the utility
loss (e.g., over- and under-recommendation) to make x incentive-compatible. The loss in
reflected as the deviations relative to the social planner’s solution, including the expected
recommend probability, ∆qpxq, and the expected collective risk aversion ∆apxq of recom-

18The threshold of a sufficiently-high β is (about) 0.0035 under the parameter choice of Figure 2.
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(a) x˚
FB and x˚ for different β (b) qFBpx˚q and q̂˚p0q for different β

(c) Decomposition of Utility (d) Investor Utility and Social Welfare

Figure 2: Comparative static analysis: management fee β in contract

Notes: Figure 2 illustrates the a comparative static analysis of the algorithm q̂˚, allocation x˚ and investor util-
ity with respect to the management fee β. By comparing with the First Best, as β rises, moral hazard diminishes
and the algorithm q̂˚ and allocation x˚ move closer to the First Best (see Panels (a) and (b)). Considering that
an increase in β directly leads to a loss in investor utility, the investor’s utility initially increases with β but
later declines (see Panels (c)). Parameters are chosen as follows: α “ 0.02, γ “ 0, a „ Ur0.5, 1s, and the support
of Rt is t´1, 0, 1u with corresponding probabilities 0.1, 0.7, and 0.2, respectively.

mended investors,

∆qpxq “ ´pp0qpqFBpxq ´ q̂˚p0qq
looooooooooooomooooooooooooon

Under-recommendation

`
ÿ

rPtR,Ru

pprqpq̂˚pxrq ´ qFBpxqq

looooooooooooooooomooooooooooooooooon

Over-recommendation

,

∆apxq “ ´pp0q

ż F´1pqFBpxqq

F´1pq̂˚p0qq

adFpaq

looooooooooooooomooooooooooooooon

Under-recommendation

`
ÿ

rPtR,Ru

pprq

ż F´1pq̂˚pxrqq

F´1pqFBpxqq

adFpaq

loooooooooooooooooomoooooooooooooooooon

Over-recommendation

.

The impact of the management fee β on investor welfare is twofold: a higher β enables
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the algorithm to better influence the manager’s decisions, reducing the information rent
to pay. On the other hand, it directly reduces investor wealth as a fixed charge. With
the above decomposition, the former impact is reflected solely in the deviation from the
first-best solution, i.e., Upx˚, qFBq ´ Upx˚, q̂˚q, while the latter also enters Upx˚, qFBq.

As Figure 2 (c) shows, when β is relatively low, the advantage of increasing β is evident
(although not fully offset the direct charge as Upx˚, qFBq appears a decreasing trend), and
the welfare gradually converges to the first-best case. When the optimal algorithm reaches
the targeted equilibrium without information rent, the higher β only imposes costs, mak-
ing Upx˚, qFBq decreases linearly in β.

Combined these two forces, the investor utility exhibits an inverted U-shaped curve,
as shown in Panel (d). This non-monotonicity suggests a space for a jointly optimal design
of the algorithm and contract. Additionally, since β represents a mere transfer payment from
investors to fund managers, the reduction in wealth effect is not accounted in the total so-
cial welfare calculation. As shown in Panel (d), the social welfare (the aggregate expected
utility of investors and managers) increases due to the mitigation of the principal-agent
problem.

5 Analysis under Continuous Distribution

In the previous section, uncertainty arises from the three possible future states. It simpli-
fies the algorithm’s knowledge of the manager’s allocation into two cases: fully certain
and fully unknown. In a more realistic continuous setting, each portfolio has a probabil-
ity (albeit different) of yielding any specific historical returns. Therefore, (i) any historical
return fails to fully infer the allocation, and (ii), even a zero return can be partly informa-
tive. Then the algorithm is expected to have strictly positive recommendation amounts on
a continuous support, where at each point the recommendation decision accounts for the
actions under all the possible allocations.

In this section, we characterize the implications when supppRtq “ rR, Rs. The pre-
determined algorithm infers the manager’s choices based on realized historical returns
with varying confidence, and enforces different recommendations accordingly. Then one
can imagine that the previous implications still hold: the algorithm implements punish-
ment, i.e., delivers conservative recommendation, when receiving less-informative and/or
dangerous signals, and potentially pays an information rent. Ultimately, it optimally
guides the manager to be incentive-compatible on lower risk exposures, mitigating moral
hazard.
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5.1 Existence of Optimal Algorithm

In a continuous setting, the existence of the optimal algorithm is paramountly not trivial
because of the lack of the typical monotonicity. Mathematically, Proposition 1 implies
that Helly’s selection theorem, commonly used in the literature on mechanism or contract
design, cannot be directly applied. For a rigorous definition of the existence problem, we
constrain qp¨q to the intersection of L8ppR, Rqq and function space Q. Then the optimization
problem (5) can be generalized as

sup
px,qqPDXr0,1sˆQ

Opx, qq,

D :“
␣

px, qq : q P L8
``

R, R
˘˘

, 0 ď q p¨q ď qpxq and px, qq satisfies (6)
(

,

qpxq :“ sup

#

q P r0, 1s

ˇ

ˇ

ˇ
k1pxqq ´

1
2

ż F´1pqq

a
adFpaqk2pxq ě 0

+

,

where qpxq represents the maximum possible fraction q under allocation x.19 That is,
qpxr1q ď qpxq, @r1 P rR, Rs. It can be proved that qpxq is continuous with respect to x.20

A reasonable choice of the function space Q ensures a certain sequential compactness
of the feasible set and thus avoids difficulties that arise from not being able to constrain
qp¨q to be monotonic. For example, constraining qp¨q to a Lipschitz function space with the
same constant L, mathematically guarantees the continuity of the objective function and
thus the compactness of the feasible set. More generally, the specific choice of Q and the
existence of model solutions are shown by the following theorem.

Theorem 1. Assume that F is supported on ra, as with continuous density function f ą 0, where
´8 ă a ă a ă `8. Assume also G has continuous density function g ą 0 on

“

R, R
‰

. Suppose
q̄ p¨q is continuous. Let L ą 0 be a constant. If one of the following three conditions applies,

1. Q “

!

q P Cb
``

R, R
˘˘

: 0 ď q p¨q ď 1 and supx‰y
|qpxq´qpyq|

|x´y|
ď L

)

;

2. Q “

!

q P W1,p
``

R, R
˘˘

: 1 ă p ă 8, 0 ď q p¨q ď 1 and }Dq}p ď L
)

;

3. Q “
␣

q P BV
``

R, R
˘˘

: 0 ď q p¨q ď 1, q p0q “ 0 and }Dq}TV ď L
(

.21

Then there exists px˚, q˚q P D X r0, 1s ˆ Q such that O px˚, q˚q “ sup
px,qqPDXr0,1sˆQ O px, qq.

19Note that the historical performance affects fraction of recommended investors qpxr1q, whereas the man-
ager determines the allocation x before the realization of R1.

20The continuity is essential to demonstrate that a solution exists for the designer’s optimization problem.
21Under condition 3. we always identify q P Q with its version such that q p0q “ 0. This is possible since the

total variation defined as (8) is invariant under changes on sets of measure zero.
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Remark 1. The notations and the basic concept of the proof are outlined as follows. Those
not engaged in detailed mathematical analysis may choose to omit this Remark. Let Ω Ă R

be an open set.
In the Theorem, } ¨ }p;Ω denotes the Lp pΩq norm with respect to Lebesgue measure, and

}Du}TV;Ω denotes the total variation of the L1 pΩq function u : Ω Ñ R, i.e.,

}Du}TV;Ω :“ sup
"
ż

Ω
uφ1 : φ P C1

c pΩq , |φ p¨q| ď 1
*

. (8)

We omit the subscript Ω when the domain is clear (or not important) from the context.
Then the space BV (Bounded Variation) is defined as

␣

u P L1 pΩq : }Du}TV ă 8
(

. Equipped
with the norm } ¨ }BV :“ } ¨ }1 ` } ¨ }TV , the space BV is Banach. It can be shown that (8) coin-
cides in a subtle sense with the more elementary definition of total variation for functions
of one real variable on an interval pa, bq, ´8 ă a ă b ă `8, i.e.,

}Du}TV :“ sup
P

ÿ

i

|u pxiq ´ u pxi´1q |,

where the supremum runs over the set of all finite partitions of pa, bq. The coincidence is
not quite obvious, for a proof, see for example Theorem 3.27 of Ambrosio et al. (2000).

By Du, we mean the distributional derivative of a L1
loc function u. The spaces W1,p, 1 ď

p ď 8 are the Sobolev spaces of Lp functions with Lp first order distributional derivative.
It can be shown that the space of Lipschitz continuous functions on bounded interval is
just W1,8 pΩq. On the other hand, for function u of one real variable, u P W1,p, 1 ă p ă 8

implies u has a version u1 “ u a.e. such that u1 P C0,1´ 1
p . The Hölder class C0,α consists of

continuous functions such that supx‰yt|u pxq ´ u pyq |{|x ´ y|αu ă 8. Obviously, the space
of Lipschitz functions is C0,1. In this sense, the condition 1. and the condition 2. are similar
and together they handle the W1,p, 1 ă p ď 8 cases. For fundamental properties of the
Sobolev spaces, we refer to Adams and Fournier (2003).

To prove Theorem 1, we adopt the direct method in the calculus of variations. To
be more specific, we are going to show that under suitable topology the feasible set D X

r0, 1s ˆQ is sequentially compact and the objective function is at least upper semi-continuous.
For the Lipschitz case, the desired compactness is guaranteed by Arzelà-Ascoli theorem.
When the index p ă 8, W1,p spaces are reflexive and thus we rely on Banach-Alaoglu-
Bourbaki theorem (and Rellich-Kondrachov compactness theorem). The space BV, as an
generalization of W1,1, allows for discontinuous components. In the spirit of Poposition
2, allowing discontinuity might be noteworthy. We will utilize an analogue of Rellich-
Kondrachov compactness theorem in space BV.
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The intuition for the constraint L in the space Q is that, the derivatives of Qp¨q is not
allowed to drastic changes. It implies a large algorithmic design cost. This is similar to the
cost on a certain energy functional, like

şR
R |q1pxr1q|2dGpr1q in some physics problems.

Simultaneously solving for x˚ and q˚p¨q presents certain challenges. To illustrate the
solution, we divide the optimization problem into two stages. Firstly, we fix x P r0, 1s and
find the solution q˚pxq for the following optimization problem (9) and thereby identifying
the characteristics of the optimal algorithm.

sup
qPQXDx

Opq; xq (9)

where Dx :“
!

q P L8
``

R, R
˘˘

ˇ

ˇ

ˇ
0 ď q ď qpxq and px, qq satisfies (6)

)

.22 Secondly, we pin
down the solution px˚, q˚px˚qq and the investor’s utility, which allows us to comprehend
the comprehensive impact of the algorithm on the principal-agent problem.

Here we observe the (partial) convexity of the objective function O p¨, ¨q. Since it is
useful hereafter, we call it a lemma:

Lemma 2. Suppose F is supported on ra, as with continuous density function f ą 0, where ´8 ă

a ă a ă `8. Then, for any x P p0, 1s, the objective function O px, qq is strictly concave with
respect to q.

By Lemma 2, q˚pxq is well-defined as demonstrated in the following proposition.

Proposition 5. Given x P r0, 1s, there exists a unique function q˚pxq optimizing (9).

5.2 Solving the Optimal Recommendation

We attempt to solve the optimal algorithm. The incentive constraint (6) can be rather com-
plex for further analytical derivation. Here we alternatively propose a local incentive con-
straint (the first-order condition of (6) w.r.t. x) for potential solutions, and verify its satis-
faction of the original condition. The alternative constraint reads:

pα ` γq

ż R

0
r2dGpr2q

ż R

R
qpxr1qdGpr1q

looooooooooooooooooooooomooooooooooooooooooooooon

Marginal expected payoff

`

”

β ` pα ` γqx
ż R

0
r2dGpr2q

ı

ż R

R
q1pxr1qr1dGpr1q

looooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooon

Marginal algorithmic penalty

“ 0,

(10)

22Since Dx includes qp¨q ” 0 for all x, Dx is not empty.
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where
şRr

Rr
q1pxr1qr1dGpr1q is well-defined according to Lebesgue’s dominated convergence

theorem. Denote (10) in a general form with functional I,

ż R

R
Ipr1, q, q1qdr1 “ 0.

We make two reasonable assumptions for sake of the solving process.

Assumption 3. Given x, for any q P Q,

BI
By

pr1, q, q1q ´
d

dr1

ˆ

BI
Bz

pr1, q, q1q

˙

“ A ´ pAx ` βqpr1g1pr1q ` gpr1qq

is not equal to zero a.e. in rR, Rs.

Assumption 4. Given x, let q˚ P Dx X Q be the unique solution of the objective function. Fix
any element q1 P Q, Dq2 P Q with

şR
R

BI
By pr1, q˚, q˚1

qpq1 ´ q˚q ` BI
Bz pr1, q˚, q˚1

qpq1
1 ´ q˚1

qdr1
şR

R
BI
By pr1, q˚, q˚1qpq2 ´ q˚q ` BI

Bz pr1, q˚, q˚1qpq1
2 ´ q˚1qdr1

ă 0.

Assumption 3 is simply satisfied when pr1g1pr1q ` gpr1qq is not constant.23 Assumption
4 effectively assumes there exists an interior solution q˚, i.e., given x, Dr1 such that q˚pxr1q P

p0, qpxqq, whilst the corner cases t0, qpxqu can be easily analyzed separately. With these two
assumptions, we obtain a variational inequality as a necessary condition for the solution
q˚ of the optimization problem (9) given x.

Theorem 2. Given x P p0, 1q, let q˚ P Dx X Q be the unique solution of the objective function.
Under Assumption 3 and 4, there exists a real number λ s.t. @q1 P Q,

0 ě

ż R

R

`

q1pxr1q ´ q˚pxr1q
˘

„

k1pxq ´
1
2

k2pxqF´1pq˚pxr1qq ` λ
β

x
` λpA `

β

x
qr1

g1pr1q

gpr1q

ȷ

dGpr1q

`
`

q1pxr1q ´ q˚pxr1q
˘

λpA `
β

x
qr1gpr1q

ˇ

ˇ

ˇ

R

R
. (11)

Now we show how this necessary condition restricts the potential q˚ to a specific
formula. Consider that the set U :“ tr1 P pR, Rq | 0 ă q˚pxr1q ă qpxqu is open, and

23Appendix Example 1 discusses the counter case where r1g1pr1q ` gpr1q “ C, i.e., gpr1q “ C ` C1{|r1|. In
particular, when G follows a uniform distribution, the algorithm always automatically achieves the first-best
equilibrium with zero information rent.
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C :“ tr1 P rR, Rs | q˚pxr1q “ 0 or q˚pxr1q “ qpxqu is (relatively) closed. Fix any text func-
tion v P C8

c pUq. Then if |δ| is sufficiently small, 0 ď q1 :“ q˚ ` δv ď qpxq, q1 P Q. Thus (11)
implies24

ż

U
δvpxr1q

„

k1pxq ´
1
2

k2pxqF´1pq˚q

ȷ

dGpr1q ´ λ

ż

U
Aδvpxr1q ` pAx ` βqr1δv1pxr1qdGpr1q ď 0.

This inequality is valid for both δ and ´δ. Therefore, the above inequality must have the
equal sign. Because v has compact support in U, v is vanished near BU. By the integration
by parts, we obtain

0 “

ż

U
vpxr1q

„

k1pxq ´
1
2

k2pxqF´1pq˚pxr1qq ` λ
β

x
` λpA `

β

x
qr1

g1pr1q

gpr1q

ȷ

dGpr1q

is valid for all v P C8
c pUq. Therefore,

0 “ k1pxqgpr1q ´
1
2

k2pxqF´1pq˚pxr1qqgpr1q ` λ
β

x
gpr1q ` λpA `

β

x
qr1g1pr1q in U. (12)

Notably, when U “ pR, Rq, we can also fix any text function v P C8
c pUq, where U is the

closure of U. Then if |δ| is sufficiently small, 0 ď q1 :“ q˚ ` δv ď qpxq and so q1 P Q thus
satisfies (11). Similarly, the inequality must have the equal sign. Together with (12), we
obtain

0 “ λδpAx ` βq

”

pRgpRq{xqvpxRq ´ pRgpRq{xqvpxRq

ı

. (13)

Consider v such that 0 “ vpxRq ă vpxRq, there must be λ “ 0.
So far, we draw the conclusion from Theorem 2 that Dλ P R, s.t.25

q˚pxr1q “ F

˜

k1pxq ´ λ
“

β{x ` pA ` β{xqr1g1pr1q{gpr1q
‰

k2pxq{2

¸

. (14)

In particular, if U “ pR, Rq,

q˚pxr1q “ F
ˆ

k1pxq

k2pxq{2

˙

. (15)

5.3 Non-monotonic Algorithm

We pin down the return distribution for further analysis. Let the risk aversion of investors
follow a uniform distinction, a „ Ur0.15, 0.5s, and the distribution of risk returns Rt be a

24Note that since v P C8
c pUq, vpxRq “ vpxRq “ 0.

25The expression q˚ “ Fpa˚q in (14) and (15) implicitly assumes a˚ P pa, aq, while the other cases are
relatively trivial, corresponding to the algorithm that never/always recommends to each investor.
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truncated normal distribution supported on r´3, 2s, with µ “ 0.5 and σ “ 1.5.26 In precise,
the probability density function of Rt reads

gpr; µ, σ, R, Rq “
1

σ
?

2π

exp
`

´ 1
2 ppr ´ µq{σq2

˘

Φp
R´µ

σ q ´ Φp
R´µ

σ q

,

where Φp¨q is the cumulative CDF of the standard normal distribution.
Figure 3 visualizes the optimal algorithm q˚ solved from (14) that ensures the equi-

librium x “ 0.4.27 Panel (a) shows how the algorithm delivers recommendations over
realized returns. First, the algorithm only delivers recommendation in a narrower support
of observed returns, since highly abnormal returns are less likely to be the portfolio return
with risk exposure x ď 0.4. Second, the algorithm reduces recommendation when the his-
torical return is higher. This aligns with the crucial intuition in Section 3.2: a high historical
return may not be a good sign, as it may result from over-exposed to risk. Mechanically,
the downward slope in Panel (a) reflects the increasing possibility of a too-large allocation,
thereby aggregating more punishment. In addition, information rent is paid in this sce-
nario. For example, when the recommendation amount goes beyond the first-best, qFBpxq,
there exists investors who are recommended and receive negative expected payoff.28

Recall the solving process. Theorem 2 only provides a necessary condition by alterna-
tively satisfying the local incentive constraint–we need to verify that the IC constraint is
satisfied. As Panel (b) shows, the algorithm successfully breaks the monotonicity of man-
ager utility: the manager maximizes the expected payoff under the optimal algorithm,
therefore is incentive compatible at x “ 0.4, validating q˚pxq to be an equilibrium al-
gorithm. In particular, the manager’s utility function becomes concave due to the non-
monotonic algorithm. This means the algorithm effectively transfers the investors’ risk-
aversion to the risk-neutral manager.

Investor-optimal algorithm and information rent. Then we consider the equilibrium
allocation and algorithm that maximize the aggregate expected investor payoff, where the
interesting question is, similar to Section 4.2, does such optimum require an information

26We use a truncated normal distribution for technically satisfying Assumption 1. Essentially, it could fully
capture the intuitions of the risk return normally distributed over p´8, `8q: as we show, the algorithm would
choose not to recommend if an extremely abnormal return was observed. It is somehow equivalent to presume
the plausible returns to be distributed over a finite interval.

27Note that x “ 0.4 may be not the optimal x˚ that maximizes the aggregate expected investor utility. Es-
sentially, any allocation can be achieved in equilibrium by designing a corresponding algorithm with potential
information rent.

28The return interval with q˚ ď qFBpxq may also contain information rent, which is rather complex to
decompose from the punishment, i.e., the recommendation amount may be lower if only accounting for the
punishments of multiple possible allocations. While in the discrete case, the decomposition is clear since the
allocation is correctly inferred.
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(a) Optimal algorithm given x “ 0.4 (b) Manager’s Utility under q˚ for different x

Figure 3: Optimal algorithm given x “ 0.4 and Manager’s expected payoff

Notes: Figure 3 illustrates illustrates how the algorithm incentivizes the fund manager to choose x “ 0.4
rather than x “ 1 in the continuous case. Panel (a) depicts that the optimal algorithm is non-monotonic over
supppxRtq (with zero probability outside the support). Within the non-zero region, the algorithm is essentially
quadratic, recommending with a probability higher than the first-best when returns are moderate, and lower
than the first-best when returns are extreme. Under the influence of this non-monotonic algorithm, panel (b)
shows that the manager’s utility function is no longer linear in x (based on the assumption of risk neutrality),
but instead becomes a concave, non-monotonic function, reaching its maximum at x “ 0.4. The parameters of
contract and the manager’s personal benefit are given as α “ β “ 0.01 and γ “ 0.2. a „ Ur0.15, 0.5s. The risk
return follows a truncated normal distribution supported on r´3, 2s, µ “ 0.5 and σ “ 1.5.

rent? Note that whenever the algorithm does not induce x˚ “ 1, the effectiveness and
operation of the algorithm rely on the distribution of returns, in terms of the multiplier λ

and the elasticity of probability density functions, pB{Bpln r1qq lnpgpr1qq.
First, when λ “ 0, the elasticity does not matter, and the algorithm is simply a bang-

bang form. The following Corollary draws implications, no information rent, and the nec-
essary condition to achieve this scenario.

Corollary 1. When the investor-optimal equilibrium yields a zero Lagrange multiplier, i.e., λ˚ “ 0,
investors pay no information rent. In particular, The sufficient and necessary condition of λ˚ “ 0
is that, x˚ satisfies

x˚ P arg max
x1Prx˚,1s

!

px1A ` βqrGpx˚R{x1q ´ Gpx˚R{x1qs

)

and

x˚ P arg max
x1

#

k1px1qF
ˆ

k1px1q

k2px1q{2

˙

´
1
2

˜

ż k1px1q{pk2px1q{2q

0
adFpaq

¸

k2px1q

+

.
(16)

Second, when λ ‰ 0, the information rent has to be paid, and the elasticity of the den-
sity function directly determines the shape of the algorithm. Similar to contract and infor-
mation design, algorithm design contributes to investor surplus improvement through the
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commitment power that may lead to ex-post inefficiencies.

Proposition 6. If λ˚ ‰ 0, there exists r, r1 P rR, Rs such that

ErR2 ´ ϕpR2q|x˚s ´
1
2

â˚prqErpR2 ´ ϕpR2qq2|x˚s ă 0, and

ErR2 ´ ϕpR2q|x˚s ´
1
2

â˚pr1qErpR2 ´ ϕpR2qq2|x˚s ą 0,

where â˚prq “ F´1pq˚prqq.

Similar to the discrete distribution case, Proposition 6 indicates that when λ˚ ‰ 0,
there exist recommend investors who receive negative expected payoff and also unrecom-
mended investors who could have positive expected payoff from investment. In addition,
as discussed in Section 4.3, the contract and the algorithm interact with each other.

6 Extended Discussion

6.1 Alternative Information Structure and Algorithm Functionality

In the baseline model, the roles of the recommendation algorithm are twofold. (i) It pro-
cesses two information, fund historical returns and investors’ risk aversions. (ii) By algo-
rithmic automation, it provides a commitment power which ensures execution even real-
izes cases with ex-post inefficiency. To further understand the economic meaning of using
an algorithm, we separately mute the above functionalities by considering alternative in-
formation structures and timeline, as shown in Figure 4, then analyze what the equilibrium
would be. For tractability, we follow the discrete setting in Section 4. We analyze each case
respectively, and end up with a visualization of their comparison in Figure 5.

Blind investment. In a primordial case, non-professional investors do not adopt a plat-
form, but meet the fund manager by chance. They do not know about the historical returns
R1 and their risk aversion a as Timeline 2 describes. They set up a belief about their risk
aversions, say a population average risk aversion, and decide the investment choices.

Proposition 7. Given the contract ϕp¨q, x “ 1 is a dominant strategy of the fund manager.

1. If k1p1q ´ 1{2Erask2p1q ě 0, there exists an equilibrium where all investors invest in the
fund and the manager chooses x˚ “ 1.

2. If k1p1q ´ 1{2Erask2p1q ă 0, there exists an equilibrium where no investor invest in the fund
and the manager chooses x˚ “ 1.
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Platform
designs m

Nature
draws a

Manager chooses x

Nature
draws R

Platform observes a
and xR, then makes
a recommendation
m pa, xRq

Investor decides to in-
vest or not based on
m pa, xRq. If they are
recommended, they ob-
serves xR

R2 realizes

(a) Timeline 1: Baseline Model with Platform and Algorithm

Nature
draws a

Manager
chooses x

Investor observe neither R1
nor a

Fund invested or not

R2 realizes

(b) Timeline 2: Model without Information about R1 and a

Nature
draws a

Manager
chooses x

Investor observe R1
without a

Fund invested or not

R2 realizes

(c) Timeline 3: Model without Information about a

Nature
draws a

Manager
chooses x

Investor observe R1
and a

Fund invested or not

R2 realizes

(d) Timeline 4: Model with Information about R1 and a

Figure 4: Alternative Timelines

When the investor has no information, Proposition 7 describes that, given a realistic
simple contract, the trade can only be made under x “ 1 according to the manager’s
risk-neutral preferences, regardless of the distribution of the investor’s own risk aversion.
Therefore, there is no risk sharing at this point. Managers chase on risks, and investors
inappropriately take the risk.

Investment on fund distribution platforms. We consider a scenario (captured by Time-
line 3) where investors see the fund on a distribution platform which provides the histor-
ical return R1. This setup is equivalent to assuming that the platform simply aggregates
the historical returns of the fund, corresponding to the context of Hong et al. (2024). Also,
they make decisions based on their belief, the population average risk aversion. Denote
the strategy of investors by qI : rR, Rs Ñ r0, 1s.

Proposition 8. Suppose the contract ϕp¨q is given and the investors can observe the realization of
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historical return R1.

1. If k1p1q ´ 1{2Erask2p1q ě 0, there exists an equilibrium where all investors invest in the
fund and the manager chooses x˚ “ 1.

2. If k1p1q ´ 1{2Erask2p1q ă 0, there is no equilibrium where the expected payoff of investors
is strictly positive, but exists an equilibrium pxI , q˚p¨qq,

q˚prq “

$

’

’

’

&

’

’

’

%

0, r P rR, xI Rq Y pxI R, 0q Y p0, xI Rq Y pxI R, Rq;

1, r P rxI R, xI Rs Y rxI R, xI Rs;

qp0q, r “ 0,

where

xI “ maxtx P r0, 1s : k1pxq ´ 1{2Erask2pxq ě 0u,

xI “ mintx P r0, 1s : k1pxq ´ 1{2Erask2pxq ě 0u,

qp0q P

„

0, min
"

pAxI ` βqp1 ´ pp0qq

Ap1 ´ xIqpp0q
, 1
*ȷ

and the expected payoff of investors is zero.

Compared to classic principal-agent problems, the platform empowers investors to
form decisions in response to historical returns, which allows fund managers to credi-
bly deliver (noisy at r “ 0) signals about x, thus facilitating trading. Therefore, compared
to blind investment, the platform can make the equilibrium with investment always exist.

Compared to the baseline model in Figure 1, it is not enough to increase the investor’s
expected return by allowing investors to observe historical returns. Because the fund man-
ager takes actions first and is unable to adjust x later, the investor could always choose to
buy once they infers an x (when the historical return is non-zero) that generates a positive
expected return.29 Anticipating this, the fund manager will always increase x to xI , where
the investor’s expected return is 0. The underlying reason is that any atomic investor does
not have the bargaining power on x, and also cannot commit to invest when a proper x is
observed.

To further see the power of commitment, we can further suppose the support of risky
returns is tR, Ru, i.e., investors always correctly learn x. Then we have the following im-
plication.

Corollary 2. Suppose supppRtq “ tR, Ru and k1p1q ´ 1{2Erask2p1q ă 0, there is no equilibrium

29When the distribution of risky returns is continuous, the investors have a noisy signal about x.
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with strictly positive investor expected payoff, even though there is no information asymmetry.

In addition, when the realized return is zero, investors cannot recognize x, similar to the
baseline. This leads to conservative investments by investors to avoid the fund manager’s
deviation. Thus there is still a no-trade efficiency loss due to the non-informative signal
r “ 0.

Additional information about the fund. Continue with the previous case. A natural idea
for the platform is to provide information about the fund in addition to an observation of
the historical return, e.g., a series of historical returns, Sharpe ratios, etc. These cases can
be directly analyzed within our continuous framework–the additional information solely
contributes to the conditional probabilities. Align with practice, these achievements can
increase the confidence of inferring the allocation. However, they still fail to replace the al-
gorithm, as the algorithm also processes information about investors’ risk aversion. There-
fore, there is no fundamental change if just allowing for additional information about the
fund.

Investment experts. Then does algorithm only serve as informing investors about their
risk aversion? We consider the case (captured by Timeline 4) when the investors are ex-
perts: they observe the historical return R1 and know the risk aversion a. Then their invest-
ment choice is determined by two information, somehow similar to the algorithm, denoted
as mI : ra, as ˆ rR, Rs Ñ r0, 1s. For any a, denote the minimum and maximum of tx P r0, 1s :
k1pxq ´ 1{2ak2pxq ě 0u as xIpaq and xIpaq, respectively, and âpxq “ k1pxq{pk2pxq{2q. Propo-
sition 9 analytically solves the equilibrium allocation and the corresponding investment
choice.

Proposition 9. For any equilibrium px˚, m˚q (if exists), x˚ satisfies that for any x P r0, 1s,

px˚ A ` βq

«

pp0q

ż âpx˚q

a
1dFpaq ` ppRq

ż âpx˚q

a
1dFpaq ` ppRq

ż âpx˚q

a
1dFpaq

ff

ě pxA ` βq

«

pp0q

ż âpx˚q

a
1dFpaq ` ppRq

ż âpxq

a
1dFpaq ` ppRq

ż âpxq

a
1dFpaq

ff

. (17)

For a ă âpx˚q,

m˚
I pr, aq “

$

&

%

0, if r P rR, xIpaqRq Y pxIpaqR, 0q Y p0, xIpaqRq Y pxIpaqR, Rq,

1, if r P rxIpaqR, xIpaqRs Y rxIpaqR, xIpaqRs Y t0u;
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For a ą âpx˚q,

m˚
I pr, aq “

$

&

%

0, if r P rR, xIpaqRq Y pxIpaqR, 0q Y p0, xIpaqRq Y pxIpaqR, Rq Y t0u,

1, if r P rxIpaqR, xIpaqRs Y rxIpaqR, xIpaqRs;

For a “ âpx˚q,

m˚
I pr, aq “

$

&

%

0, if r P rR, xIpaqRq Y pxIpaqR, 0q Y p0, xIpaqRq Y pxIpaqR, Rq,

1, if r P pxIpaqR, xIpaqRq Y pxIpaqR, xIpaqRq;

and m˚
I pr, aq can be arbitrarily assigned in r0, 1s when r P txIpaqR, xIpaqR, xIpaqR, xIpaqR, 0u.

Compared to Proposition 8, the additional information about a allows investors to al-
ways realize non-negative expected payoff, resulting in a strictly positive aggregate in-
vestor expected utility. The manager no longer uses Eras in deciding x, but considers the
entire distribution F. Therefore, when the historical return is informative, the manager
does suffer a punishment of risk chasing, as high-risk-aversion investors would exit. On
the other hand, investors with sufficiently low risk aversion always invest, even with-
out any information about x. Therefore, investors cannot generate enough punishment
when the historical return is not informative, making the resulting equilibrium allocation
x˚ higher than in the baseline case.

The deeper intuition is: each investor refuses to invest with ex-post inefficiency, gen-
erating no commitment power. Then no one pays for the information rent. In particular,
the always-investors would not limit themselves just to force the manager to reduce risk-
taking, which expands inclusion and may increase the aggregate expected payoff. This
lack of coordination, in a sense, exhibits a curse of shrewdness.

So far, we have seen the algorithm serves not only an information delivery mechanism,
but also a source of commitment power. Even with experts, the algorithm can add noise to
their risk aversion observations by a threshold function, thus realizing that fewer investors
would like to invest when the historical return is less informative, thus alleviating fund
managers’ incentives to raise x.

Figure 5 fixes the distribution of risk aversion and the risk return, and compares the
distribution of investor welfare under the above settings. The blind investment, as shown
in the red dashed line, always results in a full risk taking, and the manager takes away
all the investor welfare. Investors on a fund distribution platform, shown by the green
solid line, may be over-exposed to risk without the protection of algorithm. The experts in
purple never fall into a negative expected payoff. However, only the investors with low
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risk aversion enters the investment and obtain positive expected payoff (shown in area
A), and the population fails to achieve a fairly low x.30 Ultimately, the blue line shows
the baseline with algorithm: by leveraging the whole user base, the algorithm generates
a commitment power, achieving an investor-optimal equilibrium x˚ “ 0.515. The piece-
wise near a “ 3 reflects the information rent, whereas the resulting aggregate expected
payoff (roughly corresponding to area B) is greater than any other case with significantly
expanded financial inclusion than the expert case.

Figure 5: Expected payoff under different risk aversion a and information structures.

Notes: Figure 5 illustrates the distribution of investors’ expected utility in equilibrium under four different
information structures (ranked by risk aversion a). The blue solid line corresponds to the baseline model, the
red dashed line represents the case where the investor has no information (Proposition 7), the green solid line
corresponds to the case where the investor can observe R1 (Proposition 8), and the pink dashed line represents
the case where the investor can accurately observe both R1 and a (Proposition 9). It can be seen that by
allowing the investor to access coarse information about their own a, the overall welfare of investors improves,
as the Area A is larger than B. Parameters are chosen as follows: α “ 0.1, β “ 0.0015, γ “ 0.5, a „ Ur1, 5s, and
the support of Rt is t´0.2, 0, 0.2u with corresponding probabilities 0.1, 0.7, and 0.2, respectively.

The above discussion highlights the function of algorithm: it gathers historical infor-
mation, provides noisy signals about risk aversion, and importantly, coordinates investor
behavior to generate commitment power, thus maximizing aggregate investor welfare. Re-
visit its unique role relative to (interacted with) contracts. Given simple contracts that con-

30In this scenario, the resulting equilibrium allocation x “ 1, while it is possible to reach an equilibrium
with x ă 1.
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sider only future performance without historical records, the algorithm affects the business
by collecting information and deciding signal delivery, effectively enabling functionalities
of a series of complex contracts (including both historical and future conditions), and fur-
ther determining the valid contract parties.

6.2 Recommendation Algorithms and Fund Ratings

In practice, asset management and investment advisory are significantly influenced by
fund ratings (e.g., Morningstar rating), which are also a mainstream focus in existing lit-
erature (e.g., Evans and Sun, 2021; Ben-David et al., 2022; Huang et al., 2020). In practice,
recommendation algorithms and fund ratings are not mutually exclusive, as the platform
can even publish ratings and deliver personalized recommendation simultaneously. This
section discusses the interaction between the algorithms and ratings, and emphasizes the
distinctive features of algorithms from two aspects: financial inclusion and personalized
information.

Fund ratings are mainly motivated by understanding differences and comparisons be-
tween funds: for an investor, which funds are proper to invest? On the other hand, the
starting point of recommendation algorithms is the investor heterogeneity: given a fund,
who are proper to invest in it? This logic is particularly tractable for connecting mechanism
design with financial inclusion. In this context, they share similar functionalities in pro-
cessing the fund’s historical information and for classification.31 The fey difference is that
the ratings are publicly known,32 while the algorithm delivers private signals according to
investors’ characteristics, e.g., risk aversion.

To analyze algorithms with the existence of fund ratings, we relax our baseline assump-
tion that investors only know the existence of a fund once they receive a signal. Now, with
the existence of publicly known ratings, investors always know the fund and thus can in-
vest even without recommendation.33 The platform’s problem (still along with the discrete
setting) can be reformulated as follows: x P r0, 1s,

max
q:rR,RsÑr0,1s

k1pxqqpxr1q ´
1
2

˜

ż F´1pqpxr1qq

a
adFpaq

¸

k2pxqdGpr1q

31When inferring an extremely high allocation x, the algorithm effectively classifies it as “high-risk” and
thus reduces recommendation.

32With a rating system, investors get to know a list of funds, at least the top funds. This suggests the crucial
influence of ratings: they generate investors’ attention to top funds, leading to risk chasing to hit the ranking
(Hong et al., 2024).

33In the present work, we do not model multiple funds, as the competition across funds is beyond our focus.
After including two or more funds as mentioned in the setup, our framework allows for fully examining the
interaction between algorithms and fund ratings, though it significantly adds technical complexity.
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subject to the IC and IR constraints

x P arg max
x1

!

pAx1 ` βq
“

qpx1RqppRq ` qp0qpp0q ` qpx1RqppRq
‰

)

,

k1pxq ´
1
2

şF´1pqpxr1qq

a adFpaq

qpxr1q
k2pxq ě 0, @r1 P supppR1q, (18)

k1pxq ´
1
2

şa
F´1pqpxr1qq

adFpaq

1 ´ qpxr1q
k2pxq ď 0, @r1 P supppR1q. (19)

The additional IR constraint (19) implies that investors only follows the algorithm’s
recommendation to reject the investment action when the posterior expectation is high
enough. In particular, as investors are able to know the fund and its performance via public
information, the IR constraint (19) rules out cases where they still invest in the fund given
no recommendation received. Otherwise, the algorithm cannot remain its commitment
power.

Similar to processing the baseline IR constraint, we multiply the both sides of (19) with
p1 ´ qpxr1qq, and consider the left side. Its derivative w.r.t. qpxr1q is

´k1pxq `
1
2

F´1pqpxr1qqk2pxq,

and is strictly increasing with qpxr1q. Also note the equal sign holds when qpxr1q “ 1. Then
we can define qpxq as

qpxq :“ inf

#

q P r0, 1s

ˇ

ˇ

ˇ
k1pxqp1 ´ qq ´

1
2

ż a

F´1pqq

adFpaqk2pxq ď 0

+

.

Then the IR constraint (19) is equivalent to qpxr1q ě qpxq for any r1 P rR, Rs. Proposition 10
indicates how the two IR constraints bind and interact with the equilibrium allocation x.

Proposition 10. Suppose k1pxq ´ 1{2ak2pxq ě 0.

1. If k1pxq ´ 1
2

şa
a adFpaqk2pxq ă 0, qpxq “ 0 and qpxq P p0, 1q.

2. If k1pxq ´ 1
2

şa
a adFpaqk2pxq ą 0, qpxq P p0, 1q and qpxq “ 1.

Proposition 10 highlights the importance of the population average risk aversion, or the
average belief. (i) when x is too large for the population average risk aversion, investors
would not invest when receiving no recommendations, while the baseline IR constraint
binds: if the signals were over-delivered, investors would not buy; (ii) importantly, the
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new binding scenario is that when x is below the population average risk tolerance, the
lower limit binds, i.e., investors may be inclined to invest even without a recommendation.

Figure 6 visualizes this case in comparison with the baseline, exactly corresponds to
the second scenario in Proposition 10. First, the algorithm still significantly forces the
equilibrium allocation away from x “ 1, and the investor-optimal x˚ roughly equals to
0.3. However, this is not from a convex optimization, but bound by the new IR constraint:
when the algorithm aims at a low risk exposure x ă 0.3, it needs to pay a remarkable
information rent to the manager. Then it has to be too conservative such that q˚p0q ă qpxq.
Then the investors ignore the fact of not being recommended, and still invest. As a result,
the algorithm fails to reach an equilibrium at x.

(a) Upx, q̂q for different x (b) q˚ for different x

Figure 6: Investor’s Payoff and q̂˚p¨q with constraint qpxr1q ě qpxq

Notes: Figure 6 illustrates the optimal algorithm and utility for different x, when investors can observe all
funds (i.e., the rating indicating whether to recommend purchasing). Compared to Figure 1, both the in-
vestor’s utility and the algorithm are blank in the region below 0.3. This is because no incentive-compatible
algorithm exists in this range—investors would invest even without a recommendation, causing fund man-
agers to deviate. In this case, the optimal algorithm locks x˚ at a higher level, leading to a lower expected
utility for investors compared to Figure 1. The parameter choices are the same as Figure 1.

Compared to the baseline in Figure 1, the expected aggregate investor payoff decreases.
This suggests a counter-intuitive implication: how could additional public information
harm social welfare? Because the algorithm recommendation is relatively less determina-
tive for investors who hold alternative information. Then the lack in driving the user base
results in a limited commitment power, and tilts the possible equilibrium allocations in fa-
vor of the manager. This finding aligns with Hong et al. (2024)’s empirical findings, where
increased exposure in rating media is associated with increased exposure to risk. Whereas
the platform can determine the adoption of fund ratings and recommendation algorithms,
the interacted mechanism design suggests an interesting topic for further exploration.
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7 Conclusion

We develop a model of recommendation algorithm design in delegated investment. The
intermediate platform serves investors who are unaware of their risk aversion levels and
aims to mitigate fund managers’ moral hazard in over risk-taking, particularly in the cases
where the contracts are given. We show that predetermined automatic algorithms can
successfully mitigate the principal-agent problem inherent in linear and limited-liability
contracts. The core intuition is: the algorithm reshapes the information transmission and
further affects the buyer party’s entrance, which effectively generates commitment power.
More specifically, the optimal algorithm is non-monotonic w.r.t. the fund’s historical per-
formance, thereby distorting the manager’s utility function w.r.t. risk allocation. The
manager has the incentive to hide behind noisy signals. Therefore, the algorithm reduces
recommendation under ambiguous information and potentially compensates informative
signals. This generates an information rent paid by investors that facilitates trading and
achieves Pareto improvement. In addition, we provide an approach to general algorithm
design problems, discuss inequality issues in algorithm implementation, interaction with
contract design, and comparisons with various scenarios of delegated investment.

For instance, this paper focuses on the risk incentives, yet the framework can be ex-
tended to designing algorithms for solving other principal-agent problems, e.g., managers’
efforts and information acquisition (He and Xiong, 2013; Huang et al., 2020; Buffa et al.,
2022). Our analysis also inspires future explorations on many topics, e.g., optimal joint
design with contracts, competition with multiple funds, and information design with both
public fund ratings and personalized recommendations.

Furthermore, the powerful algorithm necessitates attention to its regulation and mis-
sion. The algorithm’s commitment power relies heavily on transparency, while as Sun
(2024) points out, in reality, algorithms may not be fully transparent. Moreover, if the plat-
form tiles to the manager’s fund side (e.g., commissions) rather than the user base, the
algorithm may create a new principal-agent relationship that is detrimental to investor
surplus. This suggests the importance of privacy protection, especially when the platform
can know much more about users than the users themselves. In all, our paper uncovers a
tip of the algorithm’s power in fighting with moral hazard in the context of digital finance.
For following research and applications, there is an old saying:

Whoever fights monsters should see to it that in the process he does
not become a monster.

Aphorism 146, Beyond Good and Evil, Friedrich W. Nietzsche
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Appendices

A Derivation of Results

A.1 Proof of Lemma 1

The proof is following Ichihashi and Smolin (2023). Take any algorithm m in an equi-
librium. For any fund with historical rp1, let qmprp1q :“

şa
a mpa, rp1qdFpaq denote the ex-

pected number of investors with recommendation under rp1. Define a new algorithm m̂ as
m̂pa, rp1q ” 1pa ă F´1pqmprp1qqq. At each rp1, algorithm m̂ recommends the fund with the
same expected number of investors as m:

ż a

a
1pa ă F´1pqmprp1qqqdFpaq “ FpF´1pqmprp1qqq “ qmprp1q.

As a result, the fund manager earns the same profit under m and m̂, both are

ER1rqmpxR1qs

”

ER2rϕpxR2qs ` γER2rmaxtxR2, 0us

ı

.

Because the expected value of risk aversion a conditional on recommendation is lower
under m̂ than under m and BER2ruIpxR2 ´ ϕpxR2qq; xs{Ba ă 0, an investor who follows the
recommendations of m would also follow those of m̂, and the expected payoff for investors
is higher under m̂ than under rp1.
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A.2 Proof of Proposition 2

(i) According to the definition of q̂, for any function Jp¨q, given x˚, ER1rJpq̂px˚R1qqs “

ER1rJpqpx˚R1qqs. Therefore, the expected payoffs of the investors and the manager are
unchanged. Thus the investor’s IR constraint still holds. (ii) Consider the IC condition.
Since q̂ induces potential additional penalties when x1 ‰ x˚ (when x1 ă x, the penalty
would not trigger),

pAx1 ` βq

ż R

R
q̂px1r1qdGpr1q ď pAx1 ` βq

ż R

R
q˚px1r1qdGpr1q.

Further by the incentive compatibility under equilibrium px˚, q˚q and no extra penalty of
q̂ at x˚, we obtain

pAx1 ` βq

ż R

R
q˚px1r1qdGpr1q ď pAx˚ ` βq

ż R

R
q˚px˚r1qdGpr1q “ pAx˚ ` βq

ż R

R
q̂px˚r1qdGpr1q.

Therefore, px˚, q̂q also satisfies the IC condition.

A.3 Proof of Proposition 3

Under this x P r0, 1s, the designer’s problem can be rewritten by

max
q:rR,RsÑr0,1s

k1pxqqpxr1q ´
1
2

˜

ż F´1pqpxr1qq

a
adFpaq

¸

k2pxqdGpr1q

subject to the IC and IR constraint

x P arg max
x1

!

pAx1 ` βq
“

qpx1RqppRq ` qp0qpp0q ` qpx1RqppRq
‰

)

, (A1)

qpxq ď qpxq. (A2)

Since x takes continuous values on [0,1], all values of q on rR, Rs need to be determined.
We can show that for any px, qpxqq satisfying the IC constraint (A1), there exists q̂pxq defined
by (A3), such that px, q̂pxqq satisfies the same IC constraint, and the investor’s payoff under
px, q̂pxqq is the same as that under px, qpxqq.

q̂pr; xq :“

$

&

%

qprq , if r P txR, 0, xRu

0 , otherwise
. (A3)

As a result, if there exists a solution q˚pxq, then it can be found in the set tq̂pxqu.
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Under q̂, the objective function is

max
qpxRq,qpxRq,qp0q

k1pxq
“

q̂pxRqppRq ` q̂p0qpp0q ` q̂pxRqppRq
‰

´
1
2

k2pxq

«˜

ż F´1pq̂pxRqq

a
adFpaq

¸

q̂pxRq `

˜

ż F´1pq̂p0qq

a
adFpaq

¸

q̂p0q `

˜

ż F´1pq̂pxRqq

a
adFpaq

¸

q̂pxRq

ff

.

Without the IC constraint, for any x, the optimal algorithm should recommend all in-
vestors whose payoff is non-negative under x. Then we have qFBpxq “ k1pxq{pk2pxq{2q as
the first-best algorithm without the IC constraint and x˚

FB satisfies

x˚
FB “ sup

#

arg max
x1

#

k1px1qF
ˆ

k1px1q

k2px1q{2

˙

´
1
2

˜

ż k1px1q{pk2px1q{2q

a
adFpaq

¸

k2px1q

++

. (A4)

In the following, we call the equilibrium characterized by px˚
FB, qFBpx˚

FBqq is the First-Best
Equilibrium.

With the assumption pA ` βqpp0q ą β, under q̂, the IC constraint (A1) is equivalent to

pAx ` βq
“

q̂pxRqppRq ` q̂p0qpp0q ` q̂pxRqppRq
‰

ě max
x1

pAx1 ` βqq̂p0qpp0q “ pA ` βqq̂p0qpp0q.

The modification on the left side of the IC constraint arises from the scenario where the
distribution of risky returns is represented by a three-point discrete model. In this model,
the manager’s deviation from x to x1 remains undetectable only when the historic return
equals zero. When the historic return on the risky asset r1 is strictly positive or negative,
a clear inequality xr1 ‰ x1r1 is established. Consequently, given the algorithm, the proba-
bility of being recommended is given by q̂p0q and the manager will deviate toward x1 “ 1
only to ensure that the expected return is maximized when he is recommended. As a re-
sult, the incentive compatibility constraint needs only to ensure that the fund manager
does not prefer x1 “ 1. The case of continuous distributions is more complicated because
small deviations in the manager’s actions are not easily detected by the algorithm.

Given x, by Kuhn-Tucker conditions, we have the following Lagrangian:

Lpq̂pxRq, q̂p0q, q̂pxRqq

“ k1pxq
“

q̂pxRqppRq ` q̂p0qpp0q ` q̂pxRqppRq
‰

´
1
2

k2pxq

«˜

ż F´1pq̂pxRqq

a
adFpaq

¸

ppRq `

˜

ż F´1pq̂p0qq

a
adFpaq

¸

pp0q `

˜

ż F´1pq̂pxRqq

a
adFpaq

¸

ppRq

ff

` λ
”

pAx ` βq
“

q̂pxRqppRq ` q̂p0qpp0q ` q̂pxRqppRq
‰

´ pA ` βqq̂p0qpp0q

ı
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` ηR,1q̂pxRq ` ηR,2pqpxq ´ q̂pxRqq ` ηR,1q̂pxRq ` ηR,2pqpxq ´ q̂pxRqq ` η0,1q̂p0q ` η0,2pqpxq ´ q̂p0qq,
(A5)

where λ ě 0 and ηr,1 ě 0 are the multipliers from IC and IR constraints, and ηr,2 ě 0 is the
multiplier from the definition of q.

According to the first-order condition of the Lagrangian, we have

F´1pq̂pxRqq “
k1pxq ` λpAx ` βq ` pηR,1 ´ ηR,2q{ppRq

k2pxq{2
,

F´1pq̂pxRqq “
k1pxq ` λpAx ` βq ` pηR,1 ´ ηR,2q{ppRq

k2pxq{2
,

F´1pq̂p0qq “
k1pxq ` λApx ´ 1q ` pη0,1 ´ η0,2q{pp0q

k2pxq{2
.

Plug q̂˚px˚Rq “ q̂˚p0q “ q̂˚px˚Rq “ qFBpx˚q into the IC constraint (recalling that a
follows an uniform distribution),

pAx˚ ` βqr1 ´ pp0qs rqFBpx˚q ´ as ` Apx˚ ´ 1qpp0q rqFBpx˚q ´ as ě 0

ñ rpAx˚ ` βqp1 ´ pp0qq ` Apx˚ ´ 1qpp0qs rqFBpx˚q ´ as ě 0.

Since maxrtq˚prqu ą 0, the equilibrium x˚ must unsure that the expected utility of the least
risk-averse investor is non-negative, implying that qFBpx˚q ě a. Then if

0 ď pAx˚ ` βqp1 ´ pp0qq ` Apx˚ ´ 1qpp0q

ñ x˚ ě
App0q ´ p1 ´ pp0qqβ

A
:“ x, (A6)

the IC constraint is satisfied. Additionally, since for a given x˚, qFBpx˚q maximizes the
objective function and qFBpx˚q ď qpx˚q, then if x˚ ě x, q̂˚px˚Rq “ q̂˚p0q “ q̂˚px˚Rq “

qFBpx˚q satisfies all constraints and maximizes the objective function, making it a solution.
If x˚ ă x, (A6) does not hold. Therefore, λ ą 0, which further implies mintq̂˚px˚Rq, q̂˚px˚Rqu ď

qFBpx˚q ď q̂˚p0q.

A.4 Proof of Proposition 4

We primarily discuss the proof of the interior solution.
First, when x˚ ě x or λ˚ “ 0, the equation holds.
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Secondly, when x˚ ă x and λ˚ ą 0, we have

ÿ

rPsupptRtu

pprqq̂˚px˚rq “
k1px˚q

k2p2q{2
` p1 ´ pp0qq

λpAx ` βq

k2px˚q{2
` pp0q

λApx ´ 1q

k2pxq{2

“
k1px˚q

k2p2q{2
`

λpAx˚ ` β ´ pp0qpA ` βqq

k2px˚q{2
.

Given λ ą 0 and x˚ ă x, the second term is strictly negative, as a result we have

qE :“
ÿ

rPsupptRtu

pprqq̂˚px˚rq ă
k1px˚q

k2p2q{2
. (A7)

Given q̂˚p¨q, the FOC of the Lagrangian (A5) with respect to x is

k1
1px˚qqEpx˚q ´

1
2

k1
2px˚q

»

–pp0q

ż F´1pq̂˚p0qq

a
adFpaq `

ÿ

rPtR,Ru

pprq

ż F´1pq̂˚pxrqq

Fa
adFpaq

fi

fl` λAqE “ 0

ñk1
1px˚qqEpx˚q ´

1
2

k1
2px˚q

»

–pp0q

ż F´1pq̂˚p0qq

a
adFpaq `

ÿ

rPtR,Ru

pprq

ż F´1pq̂˚pxrqq

Fa
adFpaq

fi

fl ă 0.

The second line is because λ ą 0 and qE ą 0. When

x̃ :“ sup

$

&

%

arg max
x1

#

k1px1q
ÿ

rPsupptRtu

pprqq̂˚px˚rq ´
1
2

ÿ

rPsupptRtu

˜

ż F´1pq̂˚px˚rqq

a
adFpaq

¸

k2px1q

+

,

.

-

,

we have

k1
1px̃qqEpx˚q ´

1
2

k1
2px̃q

»

–pp0q

ż F´1pq̂˚p0qq

a
adFpaq `

ÿ

rPtR,Ru

pprq

ż F´1pq̂˚pxrqq

Fa
adFpaq

fi

fl ă 0.

A.5 Proof of Theorem 1

part 1 First consider the existence of the maximum point under condition 1.

Step 1: r0, 1s ˆ Q is compact.
A L-Lipschitz function u defined on an open interval pa, bq can be uniquely extended

to a L-Lipschitz function on ra, bs. To see this, take a sequence txnu8
n“1, xn P pa, bq such

that limnÑ8 xn Ñ b. By Lipschitzness of u, tu pxnqu8
n“1 is a Cauchy sequence, and thus

limnÑ8 u pxnq exists. The uniqueness of this limit among all such sequences then follows
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again from the Lipschitzness of u, i.e., limxÑb u pxq exists. Further, we have

|u px0q ´ u pbq | “ lim
nÑ8

|u px0q ´ u pxnq | ď lim
nÑ8

L|x0 ´ xn| “ L|x0 ´ x|

for all x0 P pa, bq. The a side and the upper bound of |u paq ´ u pbq | is similar to the above.
Consider Q1 “

!

q P Cb
`“

R, R
‰˘

: 0 ď q p¨q ď 1 and supx‰y
|qpxq´qpyq|

|x´y|
ď L

)

. For all ε ą 0,

choose δ “ ε{L. Then for all q P Q1, x, y P
“

R, R
‰

and |x ´ y| ă δ imply |q pxq ´ q pyq | ă ε,
i.e., Q1 is uniformly equicontinuous. Since Q1 is also uniformly bounded by definition, by
Arzelà-Ascoli theorem, Q1 is precompact in C

`“

R, R
‰˘

. By the unique extension, we can
identify Q with Q1, so Q is also precompact in Cb

``

R, R
˘˘

. Let tqnu8
n“1 be a sequence in Q

and qn Ñ q under the sup norm. For all x, y P
`

R, R
˘

, we have

|q pxq ´ q pyq | “ lim
nÑ8

|qn pxq ´ qn pyq | ď L|x ´ y|,

i.e., Q is closed and therefore compact. Then, r0, 1s ˆ Q which is the Cartesian product of
two compact spaces is compact.
Step 2: The feasible set D X pr0, 1s ˆ Qq is non-empty and compact.

By Step 1, we only need to verify that D X pr0, 1s ˆ Qq is non-empty and closed. Note
that px, 0q P D for all x P r0, 1s, which implies D X pr0, 1s ˆ Qq ‰ H. To verify closedness,
let tpxn, qnqu8

n“1 be a sequence in D X pr0, 1s ˆ Qq such that pxn, qnq Ñ px, qq for q P Q. By
definition, for all x1 P r0, 1s and each n P t1, 2, . . .u, we have

pAxn ` βq

ż R

R
qn pxnr1q dG pr1q ě

`

Ax1 ` β
˘

ż R

R
qn

`

x1r1
˘

dG pr1q . (A8)

Since |qn p¨q | ď 1 and qn Ñ q uniformly, by dominated convergence theorem,

ż R

R
qn

`

x1r1
˘

dG pr1q Ñ

ż R

R
q
`

x1r1
˘

dG pr1q , @x1 P r0, 1s .
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On the other hand,
ˇ

ˇ

ˇ

ˇ

ˇ

ż R

R
qn pxnr1q dG pr1q ´

ż R

R
q pxr1q dG pr1q

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ż R

R
|qn pxnr1q ´ q pxr1q| dG pr1q

ď

ż R

R
p|qn pxnr1q ´ qn pxr1q| ` |qn pxr1q ´ q pxr1q|q dG pr1q

ď

ż R

R

¨

˝L |xn ´ x| r1 ` sup
yPpR,Rq

|qn pyq ´ q pyq|

˛

‚dG pr1q Ñ 0.

(A9)

The convergence of the right hand side of the last inequality follows again from the domi-
nated convergence theorem. Therefore, as n Ñ 8, the left hand side of (A8) converges and
we get

pAx ` βq

ż R

R
q pxr1q dG pr1q ě

`

Ax1 ` β
˘

ż R

R
q
`

x1r1
˘

dG pr1q .

By the continuity of q̄ p¨q, we also have q p¨q “ limnÑ8 qn p¨q ď limnÑ8 q̄ pxnq “ q̄ pxq. Since
a closed subset of a compact set is compact, D X pr0, 1s ˆ Qq is compact.
Step 3: The objective function O : D X pr0, 1s ˆ Qq Ñ R is continuous with respect to px, qq.

By (A9) and the continuity of k1 pxq and k2 pxq, we only need to consider the term

ż R

R

ż F´1pqpxr1qq

a
a dFpaqdGpr1q.

Let tpxn, qnqu8
n“1 be a convergent sequence in D X pr0, 1s ˆ Qq to px, qq. Note that

ˇ

ˇ

ˇ

ˇ

ˇ

ż F´1pqnpxnr1qq

a
a f paq da ´

ż F´1pqpxr1qq

a
a f paq da

ˇ

ˇ

ˇ

ˇ

ˇ

ď K
ˇ

ˇ

ˇ
F´1pqnpxnr1qq ´ F´1pqpxr1qq

ˇ

ˇ

ˇ

for some constant K. Since F is strictly increasing and continuous, F´1 is strictly increasing
and continuous too. Similar to (A9), the right hand side of the above inequality converges
to 0 as n Ñ 8. Then by dominated convergence theorem, we have

ż R

R

˜

ż F´1pqnpxnr1qq

a
a f paq da

¸

dG pr1q Ñ

ż R

R

˜

ż F´1pqpxr1qq

a
a f paq da

¸

dG pr1q .

Here we use the obvious fact that
ˇ

ˇ

ˇ

şF´1pqnpxnr1qq

a a f paq da
ˇ

ˇ

ˇ
ď E ras ă 8.
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Now we get that the objective function Op¨, ¨q is continuous and the feasible set D X

pr0, 1s ˆ Qq is compact. By Weierstrass theorem (on extreme value), we know that there
exist px˚, q˚q P D X pr0, 1s ˆ Qq such that Opx˚, q˚q “ sup

px,qqPDXpr0,1sˆQq
Opx, qq.

part 2 Generalizing the condition 1. to the condition 2. will not result in much change.
Step 1: r0, 1s ˆ Q is compact in the weak topology.

Recall that the condition 2. says that

Q “

!

q P W1,p ``R, R
˘˘

: 1 ă p ă 8, 0 ď q p¨q ď 1 and }Dq}p ď L
)

.

For all q P Q, }q}1,p “ }q}p ` }Dq}p ď
`

|R| ` |R|
˘

` L, i.e., Q is a bounded in norm. By
Banach-Alaoglu-Bourbaki theorem and the fact that W1,p

``

R, R
˘˘

is reflective for 1 ă p ă

8 (see for example Theorem 3.6 of Adams and Fournier (2003)), we only need to verify
that Q is closed in weak topology. Note that Q is convex, by Mazur lemma, the closedness
of Q in weak topology is equivalent to its closedness in strong topology, i.e., under the
} ¨ }1,p norm. Let tqnu8

n“1 be a sequence in Q such that }qn ´ q}1,p Ñ 0 as n Ñ 8. Since
} ¨ }1,p dominates } ¨ }p, we have 0 ď q p¨q ď 1 a.e. with respect to Lebesgue measure. We
also have that for all ε ą 0, }Dq}p ď }Dqn}p ` }Dqn ´ Dq}p ď }Dqn}p ` }qn ´ q}1,p ď L ` ε,
when n pεq is chosen large enough. By the arbitrariness of ε, }Dq} ď L, i.e., q P Q. Since
the strong and weak topology is the same on R, r0, 1s ˆQ is compact in the weak topology
(dual of product is isometric isomorphic to the product of the duals).
Step 2: The feasible set D X pr0, 1s ˆ Qq is non-empty and weakly sequentially compact.

Since 0 P W1,p, we already know that D X pr0, 1s ˆ Qq is non-empty in the Step 2 of
part 1. We only need to verify that D X pr0, 1s ˆ Qq is weakly sequentially compact. Let
tpxn, qnqu8

n“1 be a sequence in D X pr0, 1s ˆ Qq. By definition, tpxn, qnqu8
n“1 is bounded.

By a version of Rellich-Kondrachov theorem (see for example Thereom 6.3 of Adams and
Fournier (2003)), the embedding W1,p ãÑ C0,1´ 1

p ´ϵ is compact, for all 1 ă p ă 8 and for all
0 ă ϵ ă 1 ´ 1

p . Hereafter, we always identify q P W1,p
``

R, R
˘˘

with its C0,1´ 1
p
`“

R, R
‰˘

version. This identification is possible due to Morrey inequality and the regularity of
the boundary of

`

R, R
˘

, see for example Theorem 5 in subsection 5.8.4 of Evans (2010).
To be more specific34, we show that tR, Ru is a C1 (and thus Lipschitz) boundary. Con-
sider

␣

B pR, ρq , B
`

R, ρ
˘(

, where B px0, rq means the open ball centered at x0 with radius
r, and we may take ρ “ 1

4

`

|R| ` |R|
˘

. Let R0 “ t0u, then f1 ” R, f2 ” R are C1 func-
tions on R0. Obviously,

`

R, R
˘

X B pR, ρq “ tr P B pR, ρq : r ą f1u and
`

R, R
˘

X B
`

R, ρ
˘

“
␣

r P B
`

R, ρ
˘

: r ă f2
(

, i.e., tR, Ru is the C1 boundary of
`

R, R
˘

.

Now, by the compact embedding W1,p ãÑ C0,1´ 1
p ´ϵ and the discussion in the next step,

34Although the boundary of
`

R, R
˘

is simply tR, Ru. Verifying the smooth boundary conditions can be quite
confusing. For this reason, we belabor it a little bit here.

49



FENG, HE AND WEI

we can modify (A9) to

ˇ

ˇ

ˇ

ˇ

ˇ

ż R

R
qn pxnr1q dG pr1q ´

ż R

R
q pxr1q dG pr1q

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ż R

R
p|qn pxnr1q ´ qn pxr1q| ` |qn pxr1q ´ q pxr1q|q dG pr1q

ď

ż R

R

¨

˝L1 p|xnr1 ´ xr1|q
1´ 1

p ´ϵ
` sup

yPpR,Rq

|qn pyq ´ q pyq|

˛

‚dG pr1q Ñ 0,

(A10)

where L1 is a constant, and q is a weak limit of tpxn, qnqu8
n“1, extracting a subsequence

if necessary. The existence of q P Q is guaranteed by Eberlein–Ŝmulian theorem. The
continuity of q̄ pxq again guarantees that q p¨q ď q̄ pxq.
Step 3: The objective function O : D X pr0, 1s ˆ Qq Ñ R is weakly sequentially continuous, i.e.,
pxn, qnq á px, qq implies that O pxn, qnq Ñ O px, qq.

Let tpxn, qnqu8
n“1 be a sequence in D X pr0, 1s ˆ Qq such that pxn, qnq á px, qq (weakly

converges to px, qq). By the discussions in the Step 2 of part 2, tqnu converges in C0,1´ 1
p ´ϵ to

some q1 up to extraction of a subsequence. q and q1 must coincide, otherwise
ş

1tq ą q1u f “:

L1 p f q ‰ 0 or
ş

1tq ă q1u f “: L2 p f q ‰ 0. L1 and L2 are continuous linear functionals on
C0,1´ 1

p ´ϵ, but limkÑ8 L1 pqnk q “ L1 pq1q ‰ L1 pqq or limkÑ8 L2 pqnk q “ L2 pq1q ‰ L2 pqq, a
contradiction. Therefore q “ q1, i.e., qn Ñ q in C0,1´ 1

p ´ϵ. Now by (A10) and a discussions
similiar to Step 3 of part 1, we can get the weak sequentially continuity of the objective
function O.

Taking a maximizing sequence tpxn, qnqu8
n“1 of the optimization problem, by Step 2 of

part 2, we can extract a weakly convergent subsequence tpxnk , qnk qu8
k“1. By Step 3 of part 2,

we have

O px, qq “ lim
kÑ8

O pxnk , qnk q “ sup
px1,q1qPDXpr0,1sˆQq

O
`

x1, q1
˘

.

part 3 The functions of bounded variation on
`

R, R
˘

may not be continuous, since mono-
tonic functions are all of bounded variations. The main difficulty here is that we do not
directly have continuity arguments like (A9) or (A10).
Step 1: Reestimating the difference.

Let tpxn, qnqu8
n“1 be a convergent sequence in r0, 1s ˆ Q, where qn converges in the L1

sense to q. From Step 2 and Step 3 of both part 1 and part 2 we know it is crucial to estimate
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the integration of |qn pxnr1q ´ q pxr1q | on
`

R, R
˘

. Note that we also have

ż R

R
|qn pxnr1q ´ q pxr1q |dG pr1q ď

ż R

R
|qn pxnr1q ´ q pxnr1q |dG pr1q

looooooooooooooooooomooooooooooooooooooon

∆1,n

`

ż R

R
|q pxnr1q ´ q pxr1q |dG pr1q

loooooooooooooooooomoooooooooooooooooon

∆2,n

.

For the ∆1,n term, suppose xn ‰ 0, then

ż R

R
|qn pxnr1q ´ q pxnr1q |dG pr1q “

1
xn

ż xnR

xnR
|qn pyq ´ q pyq |g

ˆ

y
xn

˙

dy ď
M
xn

}qn ´ q}1,

for a constant M. Therefore, for limnÑ8 xn ‰ 0, ∆1,n Ñ 0 as n Ñ 8. Note that without
loss of generality, we can assume limnÑ8 xn ‰ 0, since if β ě 0, O p0, qq ď 0 and achieve its
maximum value when q ” 0. For the ∆2,n term, consider the Cc

``

R, R
˘˘

approximation of
L1

``

R, R
˘˘

functions. Since Cc is dense in L1, such kind of approximation is possible. For
all ε ą 0, there exists p p¨q such that |p ´ q| ă ε, so we have

∆2,n ď

ż R

R
p|p pxnr1q ´ q pxnr1q | ` |p pxr1q ´ q pxr1q | ` |p pxnr1q ´ p pxr1q |q dG pr1q

ď M1ε ` M2 ppq |xn ´ x|,

where M1 and M2 pqq are some constants, M1 only depends on G and x. By the arbitrarness
of ε, we see ∆2,n Ñ 0 as n Ñ 8.
Step 2: Sequentially compactness and sequentially continuity in a weak sense.

We first state a fundamental semi-continuity of the total variation. Let Ω Ă Rn be
an open set and t fiu

8
i“1 a sequence in BV pΩq that converges in L1

loc pΩq to a function f ,
then }D f }TV ď lim infiÑ8 }D fi}TV (see for example Theorem 1.9 in Giusti (1984)). Let
tpxn, qnqu8

n“1 be a sequence in D X pr0, 1s ˆ Qq such that limnÑ8 pxn, qnq “ px, qq, where qn

converges in the L1 sense to q P L1. By the semi-continuity of }D ¨ }TV , we have }Dq}TV ď

lim infnÑ8 }Dqn}TV and thus }Dq}TV ď L. Since }qn ´ q}1 Ñ 0, we also have that 0 ď q ď 1,
i.e., q P Q.

By the above discussion and Step 1 of part 3, we only need to find a convergent sub-
sequence tpxnk , qnk qu8

k“1 of a maximizing sequence tpxn, qnqu8
n“1 in D X pr0, 1s ˆ Qq (recall

the proof idea in part 2 ), where qnk converges to some q in the L1 sense. Fortunately, there
is a Rellich-Kondrachov type theorem for the space BV (see for example Theorem 1.19 of
Giusti (1984)). The theorem states that a set of functions uniformly bounded in } ¨ }BV is
precompact in L1. Since }qn ´ q}1 Ñ 0, qn ď q̄ pxnq, xn Ñ x and the continuity of q̄ p¨q

implies q p¨q ď q̄ pxq a.e., the proof is finished.
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A.6 Proof of Lemma 2

Consider the auxiliary function function

I pq; xq :“ k1 pxq q ´
k2 pxq

2

ż F´1pqq

a
adF paq , q P r0, 1s .

By direct calculation, we have

dI2 pq; xq

dx2 “ ´
k2 pxq

2 f pF´1 pqqq
ă 0, @q P r0, 1s . (A11)

The objective function O px, qq can be rewritten as O px, qq “ E rI pq pxr1q ; xqs. By (A11),
I p¨; xq is strictly concave for all x P r0, 1s, so for q1, q2 such that q1 prq ‰ q2 prq on a set of
positive Lebesgue measure, we have

O px, λq1 ` p1 ´ λq q2q “ E rI pλq1 pxr1q ` p1 ´ λq q2 pxr1qqs

ą E rλI pq1 pxr1qq ` p1 ´ λq q2 pxr1qs , @x P p0, 1s , @λ P p0, 1q ,

since by assumption g ą 0.

A.7 Proof of Proposition 5

Step 1: The existence of a maximizer.
The continuity of the objective function Opq; xq, and the compactness and closeness of

Q are shown by the proof of Theorem 1. Therefore, we need to show Dx X Q is compact.
Let tqnunPN be a sequence in Dx X Q such that qn Ñ q. By definition, we have

lim
nÑ8

A
ż R

R
qnpxr1qdGpr1q ` pAx ` βq

ż R

R
q1

npxr1qr1dGpr1q “ 0

ñ A
ż R

R
qpxr1qdGpr1q ` pAx ` βq

ż R

R
q1pxr1qr1dGpr1q “ 0.

Since Q is compact and Dx X Q is closed, then Dx X Q is compact.
Step 2: The uniqueness of the maximizer. Denote the integrand of objective function Opq; xq

by uIpqpxr1qq. The second derivative of uIpqpxr1qq with respect to qpxr1q is

´

„

1
2

1
f pF´1pqpxr1qqq

k2pxq

ȷ

gpr1q ă 0, since f p¨q and gp¨q ą 0.

Therefore uIpqpxr1qq is a strictly concave function with respect to qpxr1q. For all q1, q2 P
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Dx X Q, q1pxr1q ‰ q2pxr1q for some xr1, we have

uIrλq1pxr1q ` p1 ´ λqq2pxr1qs ą λuIrqpxr1qs ` p1 ´ λquIrq2pxr1qs

for some xr1, where λ P p0, 1q. It implies that

ż R

R
uIrλq1pxr1q ` p1 ´ λqq2pxr1qsdGpr1q ą

ż R

R
λuIrqpxr1qs ` p1 ´ λquIrq2pxr1qsdGpr1q

ñ

ż R

R
uIrpλq1 ` p1 ´ λqq2qpxr1qsdGpr1q ą λ

ż R

R
uIrqpxr1qsdGpr1q ` p1 ´ λq

ż R

R
uIrq2pxr1qsdGpr1q.

Here we use Dx X Q is a convex set. It implies that Opq; xq is strictly convex with respect
to q and the maximizer is unique.

A.8 Proof of Theorem 2

The proof is mainly following Theorem 2 in Evans (2010, p491).
Let q˚ P Dx X Q be the unique solution of the objective function. Fix any element

q1 P Q. Choose then any function q2 P Q with

şR
R

BI
By pr1, q˚, q˚1

qpq1 ´ q˚q ` BI
Bz pr1, q˚, q˚1

qpq1
1 ´ q˚1

qdr1
şR

R
BI
By pr1, q˚, q˚1qpq2 ´ q˚q ` BI

Bz pr1, q˚, q˚1qpq1
2 ´ q˚1qdr1

ă 0

ô

şR
R

”

BI
By pr1, q˚, q˚1

q ´ d
dr1

`

BI
Bz pr1, q˚, q˚1

q
˘

ı

pq1 ´ q˚qdr1 ` pAx ` βqr1pq1 ´ q˚q|R
R

şR
R

”

BI
By pr1, q˚, q˚1q ´ d

dr1

`

BI
Bz pr1, q˚, q˚1q

˘

ı

pq2 ´ q˚qdr1 ` pAx ` βqr1pq2 ´ q˚q|R
R

ă 0

and

ż R

R

„

BI
By

pr1, q˚, q˚1
q ´

d
dr1

ˆ

BI
Bz

pr1, q˚, q˚1
q

˙ȷ

pq2 ´ q˚qdr1 ` pAx ` βqr1pq2 ´ q˚q|R
R ‰ 0.

(A12)

(A12) is possible because of Assumption 3. Then for each 0 ď τ ď 1 and 0 ď δ ď 1,

q̃ :“ q˚ ` τpq2 ´ q˚q ` δrq1 ´ pq˚ ` τpq2 ´ q˚qqs P Q

ô p1 ´ δqp1 ´ τqq˚ ` p1 ´ δqτq2 ` δq1 P Q
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since Q is convex. Now write

ipτ, δq :“
ż R

R
Ipr1, p1 ´ δqp1 ´ τqq˚ ` p1 ´ δqτq2 ` δq1, p1 ´ δqp1 ´ τqq˚1

` p1 ´ δqτq1
2 ` δq1

1qdr1.

Clearly,

ip0, 0q “

ż R

R
Ipr1, q˚, q˚1

qdr1 “ 0.

In addition, i is C1 and

Bi
Bτ

pτ, δq “ p1 ´ δq

ż R

R

BI
By

pr1, q̃, q̃1qpq2 ´ q˚q `
BI
Bz

pr1, q̃, q̃1qpq1
2 ´ q˚1

qdr1, (A13)

Bi
Bδ

pτ, δq “

ż R

R

BI
By

pr1, q̃, q̃1qrq1 ´ pq˚ ` τpq2 ´ q˚qqs

`
BI
Bz

pr1, q̃, q̃1qrq1
1 ´ pq˚1

` τpq1
2 ´ q˚1

qqsdr1. (A14)

Consequently (A12) implies that

Bi
Bτ

p0, 0q ‰ 0.

According to the Implicit Function Theorem, there exists a C1 function ϕ : R Ñ R such that
ϕp0q “ 0 and

ipϕpδq, δq “ 0 (A15)

for all sufficiently small δ. Differentiating, we discover that

Bi
Bτ

pϕpδq, δqϕ1pδq `
Bi
Bδ

pϕpδq, δq “ 0,

whence (A13) and (A14) yield

ϕ1p0q “ ´

Bi
Bδ pϕp0q, 0q

Bi
Bτ pϕp0q, 0q

“ ´

şR
R

BI
By pr1, q˚, q˚1

qpq1 ´ q˚q ` BI
Bz pr1, q˚, q˚1

qpq1
1 ´ q˚1

qdr1

p1 ´ δq
şR

R
BI
By pr1, q˚, q˚1qpq2 ´ q˚q ` BI

Bz pr1, q˚, q˚1qpq1
2 ´ q˚1qdr1

.

(A16)

Under Assumption 4, we have ϕ1p0q ą 0. By ϕp0q “ 0, ϕ1p0q ą 0 implies that 0 ď ϕpδq ď

1 for sufficiently small positive δ, say 0 ď δ ď δ0.
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Now set

q̃pδq :“ ϕpδqpq2 ´ q˚q ` δrq1 ´ pq˚ ` ϕpδqpq2 ´ q˚qqs

and write

opδq :“ Opq˚ ` q̃pδq; xq

“

ż R

R
k1pxqpq˚ ` q̃pδqqpxr1q ´

1
2

k2pxq

˜

ż F´1ppq˚`q̃pδqqpxr1qq

a
adFpaq

¸

dGpr1q.

Since (A15), we see that q˚ ` q̃pδq P Dx X Q.
By q˚ maximizes Opq; xq, we have op0q ě opδq for all 0 ď δ ď 1. Hence

0 ě o1p0q “

ż R

R
k1pxq

“

ϕ1p0qpq2 ´ q˚q ` q1 ´ q˚
‰

´
1
2

k2pxqF´1pq˚q
“

ϕ1p0qpq2 ´ q˚q ` q1 ´ q˚
‰

dGpr1q.

(A17)

Define

λ :“

şR
R k1pxqpq2 ´ q˚q ´ 1

2 k2pxqF´1pq˚qpq2 ´ q˚qdGpr1q

p1 ´ δq
şR

R
BI
By pr1, q˚, q˚1qpq2 ´ q˚q ` BI

Bz pr1, q˚, q˚1qpq1
2 ´ q˚1qdr1

, (A18)

then we see that

ϕ1p0q

ż R

R
k1pxqpq2 ´ q˚q ´

1
2

k2pxqF´1pq˚qpq2 ´ q˚qdGpr1q

“ ´λ

ż R

R

BI
By

pr1, q˚, q˚1
qpq1 ´ q˚q `

BI
Bz

pr1, q˚, q˚1
qpq1

1 ´ q˚1
qdr1

and plugging this into (A17), we have

0 ě

ż R

R

`

q1 ´ q˚
˘

„

k1pxq ´
1
2

k2pxqF´1pq˚q

ȷ

dGpr1q

´ λ

ż R

R

BI
By

pr1, q˚, q˚1
qpq1 ´ q˚q `

BI
Bz

pr1, q˚, q˚1
qpq1

1 ´ q˚1
qdr1

“

ż R

R

`

q1 ´ q˚
˘

„

k1pxq ´
1
2

k2pxqF´1pq˚q

ȷ

dGpr1q ´ λ

ż R

R
Apq1 ´ q˚q ` pAx ` βqr1pq1

1 ´ q˚1
qdGpr1q

“

ż R

R

`

q1 ´ q˚
˘

„

k1pxq ´
1
2

k2pxqF´1pq˚q

ȷ

dGpr1q ´ λ
“

Agpr1q ´ pAx ` βqpgpr1q ` r1g1pr1qq{x
‰

dr1
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` λpAx ` βqr1gpr1q{xrq1pxr1q ´ q˚pxr1qs

ˇ

ˇ

ˇ

R

R

“

ż R

R

`

q1 ´ q˚
˘

„

k1pxq ´
1
2

k2pxqF´1pq˚q ` λβ{x ` λpA ` β{xqr1g1pr1q{gpr1q

ȷ

dGpr1q

` λpAx ` βqr1gpr1q{x rq1pxr1q ´ q˚pxr1qs

ˇ

ˇ

ˇ

R

R
.

Example 1. Consider that the risk return Rt follows a uniform distribution UrR, Rs, indi-
cating that r1g1pr1q ` gpr1q is constant and thus the Euler-Lagrange approach under As-
sumption 3 is not appropriate. Let qp¨q simply takes a bang-bang form:

qpr; x, q̂q “

$

&

%

q̂, R P rxR, xRs;

0, otherwise ,

where x P r0, 1s. Under the bang-bang probability qpr; x˚, q̂q, the incentive constraint (6) is

x P arg max
x1

#

px1A ` βq

ż mintx˚,x1uR

mintx˚,x1uR
q̂dGpr{x1q

+

ñx P arg max
x1

#

px1A ` βqq̂
„

Gpmintx˚, x1uR{x1q ´ Gpmintx˚, x1uR{x1q

ȷ

+

.

Note that

arg max
x1ďx˚

px1 A ` βqq̂
„

Gpx1R{x1q ´ Gpx1R{x1q

ȷ

“ x˚;

arg max
x1ěx˚

px1 A ` βqq̂
„

Gpx˚R{x1q ´ Gpx˚R{x1q

ȷ

“ arg max
x1ěx˚

x˚pA ` β{x1qq̂ “ x˚,

implying that x˚ is always incentive compatible without information rent. This result
reflects the fact that algorithms do influence managers’ decisions and rectify contractual
flaws. In particular, when returns are uniformly distributed, this algorithm achieves ex-
actly the first best equilibrium.

A.9 Proof of Proposition 6

Given x˚ and λ ‰ 0, we have

ErR2 ´ ϕpR2q|x˚s ´
1
2

F´1
ˆ

k1px˚q

k2px˚q{2

˙

ErpR2 ´ ϕpR2qq2|x˚s “ 0.
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Plug λ ‰ 0 into (14), there exists r, r1 P rR, Rs such that

â˚prq “ F´1pq˚prqq ą F´1
ˆ

k1px˚q

k2px˚q{2

˙

ą â˚pr1q “ F´1pq˚pr1qq.

Then we obtain

ErR2 ´ ϕpR2q|x˚s ´
1
2

â˚prqErpR2 ´ ϕpR2qq2|x˚s ă 0 ă ErR2 ´ ϕpR2q|x˚s ´
1
2

â˚pr1qErpR2 ´ ϕpR2qq2|x˚s.

A.10 Proof of Proposition 7

Obviously, x “ 1 is a dominant strategy of the fund manager. Given x “ 1 and the ex-
pected level of risk aversion is Eras, if the expected utility of investment is non-negative,
k1p1q ´ 1{2Erask2p1q ě 0, investors could choose to invest and all agents do not deviate.
Conversely, if the expected utility of investment is negative, that is k1p1q ´ 1{2Erask2p1q ă

0, the investors do not invest, and all agents do not deviate.

A.11 Proof of Proposition 8

If k1p1q ´ 1{2Erask2p1q ě 0, then investors should always invest in the fund given x “ 1.
Given qIp¨q ” 1, the manager prefer x “ 1.

If k1p1q ´ 1{2Erask2p1q ă 0, we define the minimum and maximum of tx P r0, 1s :
k1pxq ´ 1{2Erask2pxq ě 0u as xI and xI P p0, 1q, respectively. Here we use the fact that
k1pxq ´ 1{2Erask2pxq is concave and strictly continuous with respect to x. Since k1p0q ´

1{2Erask2p0q ă 0, we have xI ą 0. Consider the strategy of the investors. When the his-
torical return is non-zero, investors can know the fund manager’s choice of x. As a result,
consider the subgames, given r P pxI R, xI Rq Y pxI R, xI Rq, investors always should invest
in the fund, that is qIprq “ 1. Similarly, given r P rR, xI Rq Y pxI R, 0q Y p0, xI Rq Y pxI R, Rq,
investors should not invest in the fund, that is qIprq “ 0. As for r P txI R, xI R, xI R, xI Ru,
investors are indifferent to qIprq “ qr P r0, 1s, because

qr rk1pxq ´ 1{2Erask2pxqs “ qr ˆ 0 “ 0, @qr P r0, 1s.

The investor cannot recognize x when the return is 0, so qIp0q depends on the equilibrium
we consider.

Given k1p1q ´ 1{2Erask2p1q ă 0, we suppose there exists an equilibrium px˚, q˚
I p¨qq

where the investors invest in the fund with some strictly positive probability, which im-
plies x˚ P rxI , xIs. Given the above response of investors, we know that the manager

57



FENG, HE AND WEI

prefers suprxI , xIq “ xI to any x P r0, xIq. This is because,

pxA ` βqrqIp0qpp0q ` qIpxRqppRq ` qIpxRqppRqs

“ pxA ` βqrqIp0qpp0q ` ppRq ` ppRqs

ď sup
xPpxI ,xIq

pxA ` βqrqIp0qpp0q ` ppRq ` ppRqs, for all x P pxI , xIq,

and

pxA ` βqrqIp0qpp0q ` qIpxRqppRq ` qIpxRqppRqs

“ pxA ` βqqIp0qpp0q

ď sup
xPpxI ,xIq

pxA ` βqrqIp0qpp0q ` ppRq ` ppRqs, for all x P p0, xIq,

If x˚ P r0, xIq, the manager can always deviate from x˚ to choose the larger x1 P px˚, xIq.
Therefore, if there exists such an equilibrium characterized by px˚, q˚

I q, x˚ “ suppxI , xIq “

xI , otherwise the manager always deviate x˚. This also means that the expected payoff of
investors must be 0 according to the definition of xI . Then the first necessary condition of
the equilibrium is that q˚pxI Rq and q˚pxI Rq need to satisfy

pAxI ` βqrqIp0qpp0q ` qIpxI RqppRq ` qIpxI RqppRqs

ě sup
xPrxI ,xIq

tAx ` βqrqIp0qpp0q ` ppRq ` ppRqsu “ pAxI ` βqqIp0qpp0q

ñ qIpxI Rq “ qIpxI Rq “ 1,

where the last line is because, if qIpxI Rq ă 1 or qIpxI Rq ă 1, there always exists x1 P pxI , xIq

such that

pAxI ` βqrqIp0qpp0q ` qIpxI RqppRq ` qIpxI RqppRqs

ă pAx1 ` βqrqIp0qpp0q ` ppRq ` ppRqs “ pAx1 ` βqqIp0qpp0q.

At the same time, the second necessary condition is that, qIp0q need to satisfy

pAxI ` βqrqIp0qpp0q ` qIpxI RqppRq ` qIpxI RqppRqs

“ pAxI ` βqrqIp0qpp0q ` ppRq ` ppRqs

ě sup
xPpxI ,1s

pAx1 ` βqrqIp0qpp0q ` qIpx1RqppRq ` qIpx1RqppRqs

“ pA ` βqqIp0qpp0q

ô pAxI ` βqrqIp0qpp0q ` ppRq ` ppRqs ě pA ` βqqIp0qpp0q
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ô qp0q ď
pAxI ` βqp1 ´ pp0qq

Ap1 ´ xIqpp0q
.

The second line uses qIpxI Rq “ qIpxI Rq “ 1 in the equilibrium. The forth line uses
qIpx1Rq “ qIpx1Rq “ 0 for all x1 P pxI , 1s.

In addition, we can see that pxI , q˚
I p¨qq is a PBE, where

q˚
I prq “

$

’

’

’

&

’

’

’

%

0 , if r P rR, xI Rq Y pxI R, 0q Y p0, xI Rq Y pxI R, Rq

1 , if r P rxI R, xI Rs Y rxI R, xI Rs

qp0q , if r “ 0

and

qp0q P

„

0, min
"

pAxI ` βqp1 ´ pp0qq

Ap1 ´ xIqpp0q
, 1
*ȷ

.

A.12 Proof of Proposition 9

Consider the subgames with given historical r, for any a, if r P pxIpaqR, xIpaqRq Y pxIpaqR, xIpaqRq,
investors with a always should invest in the fund, that is mpr, aq “ 1. Similarly, given
r P rR, xIpaqRq Y pxIpaqR, 0q Y p0, xIpaqRq Y pxIpaqR, Rq, investors should not invest in the
fund, that is mpr, aq “ 0. As for r P txIpaqR, xIpaqR, xIpaqR, xIpaqRu, investors are indiffer-
ent to mpr, aq “ mr,a P r0, 1s.

Note that k1pxq ´ 1{2ak2pxq is strictly decreasing with respect to a. Then we know that,
when xIpaq P p0, 1q and xIpaq P p0, 1q, xIpaq strictly decreases with a and xIpaq strictly
increases with a. It implies that if mpRx, aq “ 1 for some a, then mpRx, a1q “ 1 for all a1 ď a.

Define âpxq as supta P ra, as : mpxR, aq “ 1u “ k1pxq{pk2pxq{2q.
Then, the expected payoff of the manager is

pxA ` βq

«

pp0q

ż a

a
mpa, 0qdFpaq ` ppRq

ż a

a
mpa, xRqdFpaq ` ppRq

ż a

a
mpa, xRqdFpaq

ff

“ pxA ` βq

«

pp0q

ż a

a
mpa, 0qdFpaq ` ppRq

ż âpxq

a
1dFpaq ` ppRq

ż âpxq

a
1dFpaq

`ppRq

ż a

âpxq

0dFpaq ` ppRq

ż a

âpxq

0dFpaq

ff

“ pxA ` βq

«

pp0q

ż a

a
mpa, 0qdFpaq ` ppRq

ż âpxq

a
1dFpaq ` ppRq

ż âpxq

a
1dFpaq

ff

.

In the second line, we use the fact that the value of mpâ, xRq and mpâ, xRq does not influence
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the value of the integral.
Then we suppose there exists an equilibrium px˚, m˚

I q. Different with Proposition 8, on
the equilibrium path, investors observing a ă âpx˚q invest in the fund even if the historical
return is 0, that is mpa, 0q “ 1. Meanwhile, on the equilibrium path, investors observing
a ą âpx˚q do not invest in the fund if the historical return is 0, that is mpa, 0q “ 0. Given
the above response of investors, one of the necessary conditions of equilibrium px˚, m˚

I q is
that the manager prefers x˚ to any x P r0, x˚q

px˚ A ` βq

«

pp0q

ż âpx˚q

a
1dFpaq ` ppRq

ż âpx˚q

a
1dFpaq ` ppRq

ż âpx˚q

a
1dFpaq

ff

ě pxA ` βq

«

pp0q

ż âpx˚q

a
1dFpaq ` ppRq

ż âpxq

a
1dFpaq ` ppRq

ż âpxq

a
1dFpaq

ff

.

If the manager chooses a lower x, it can increase the probability of being invested in at
positive and negative returns, but the probability of being invested in at the zero return
remains unchanged, and the expected return on being invested in decreases.

Another necessary condition of equilibrium px˚, m˚
I q is that the manager prefers x˚ to

any x P px˚, 1s

px˚ A ` βq

«

pp0q

ż âpx˚q

a
1dFpaq ` ppRq

ż âpx˚q

a
1dFpaq ` ppRq

ż âpx˚q

a
1dFpaq

ff

ě pxA ` βq

«

pp0q

ż âpx˚q

a
1dFpaq ` ppRq

ż âpxq

a
1dFpaq ` ppRq

ż âpxq

a
1dFpaq

ff

.

Again, here we use the fact that the value of mpâ, 0q does not influence the value of the
integral.

A.13 Proof of Proposition 10

Recall that qpxq and qpxq are defined as below:

qpxq “ sup

#

q P r0, 1s

ˇ

ˇ

ˇ
k1pxqq ´

1
2

ż F´1pqq

a
adFpaqk2pxq ě 0

+

,

qpxq “ inf

#

q P r0, 1s

ˇ

ˇ

ˇ
k1pxqp1 ´ qq ´

1
2

ż a

F´1pqq

adFpaqk2pxq ď 0

+

.
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Given x, suppose k1pxq ´ 1
2 ak2pxq ą 0. We can observe that

k1pxq ˆ 0 ´
1
2

ż F´1p0q

a
adFpaqk2pxq “ 0, (A19)

k1pxq ˆ p1 ´ 1q ´
1
2

ż a

F´1p1q

adFpaqk2pxq “ 0, (A20)

dk1pxqq ´ 1
2

şF´1pqq

a adFpaqk2pxq

dq

ˇ

ˇ

ˇ

q“0
“ k1pxq ´

1
2

F´1pqqk2pxq

ˇ

ˇ

ˇ

q“0

“ k1pxq ´
1
2

ak2pxq ą 0, (A21)

dk1pxqp1 ´ qq ´ 1
2

şa
F´1pqq

adFpaqk2pxq

dq

ˇ

ˇ

ˇ

q“0
“ ´

„

k1pxq ´
1
2

F´1pqqk2pxq

ȷ

ˇ

ˇ

ˇ

q“0

“ ´

„

k1pxq ´
1
2

ak2pxq

ȷ

ă 0, (A22)

d2k1pxqq ´ 1
2

şF´1pqq

a adFpaqk2pxq

dq2 “ ´
1

2 f pqq
ă 0, (A23)

d2k1pxqp1 ´ qq ´ 1
2

şa
F´1pqq

adFpaqk2pxq

dq2 “
1

2 f pqq
k2pxq ą 0. (A24)

Combining k1pxq ´ 1
2

şF´1p1q

a adFpaqk2pxq “ k1pxq ´ 1
2

şa
a adFpaqk2pxq ă 0, (A19), (A21)

and (A23), we have qpxq P p0, 1q. Combining k1pxqp1 ´ 0q ´ 1
2

şa
F´1p0q

adFpaqk2pxq “ k1pxq ´

1
2

şa
a adFpaqk2pxq ă 0, (A20), (A22) and (A24), we have qpxq “ 0.

Similarly, given k1pxq ´ 1
2

şa
a adFpaqk2pxq ą 0, by (A19) - (A24), we have qpxq P p0, 1q and

qpxq “ 1.

B Institutional Background

This appendix provides examples of intermediaries in delegated asset management in
practice, especially featuring personalized advisories and/or recommendation signals.

Fintech platforms, as somehow new entrants in the asset management business, are the
closest corresponding to our baseline settings. They highlight their goals of maximizing
and protecting users’ investment affairs. They put more effort in increasing their tech-
nologies and designs for better personalized services. For example, Yieldstreet, founded
in New York in 2015, has grown up to a large business scale with more than 450,000 users
and $3.9 billion invested value up to September 2024.35 It connects retail investors with al-
ternative investments managed by different fund managers and makes personalized rec-

35According to https://www.yieldstreet.com/about/ Date of visit: Sep 09, 2024.
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ommendations based on user profiles and investment goals. In particular, as Figure B1
shows, it works in three main steps. First, they explore investment opportunities, high-
lighting their advantages in knowing more opportunities (even including real estate, art,
legal finance) and providing easy access. Second, they invest with confidence, especially
according to users’ risk tolerance and the projects’ past performance. Third, they track the
earnings and especially visualize asset allocations.

Commercial banks have a long tradition of providing asset management services. Some
businesses have been split into specialized companies or platforms. In this era of digital
finance, easy access and low cost in on-line / in-app usage, as well as personalized ser-
vices, are commonly highlighted. For example, Merrill Guided Investing (under Bank of
America), as shown in Figure B2 provides both automated investing and guided advisory
services. The platform integrates human advisors with digital tools, allowing investors to
choose from curated portfolios managed by fund managers. Merrill Lynch fund managers
and other partner funds can promote their strategies on the platform, and users receive
recommendations based on their goals.

Similarly, Wells Fargo Intuitive Investor combines robo-advisory services with access
to financial advisors and a marketplace for managed funds. Fund managers can promote
their funds within the platform, and users receive investment recommendations based on
their profiles and risk tolerance, as Figure B3 shows.

China has allowed platforms to distribute mutual funds since 2012. Technology com-
panies, independent of fund families, banks, and brokers, are allowed to issue mutual
funds through fintech platforms. One of the largest platforms, Ant Financial, is a typical
example of a platform that assesses investors’ risk tolerance and investment objectives and
then recommends corresponding funds.

Ant’s ecosystem comprises five major components: online consumption, mobile pay-
ment, investment, consumer credit, and healthcare insurance (for a detailed introduction,
see Hong et al. (2020)). The all-in-one ecosystem enables it to conduct analysis of investor
preferences, as shown in Figure B4. In the app interface, one can see mutual fund recom-
mendation pages, as depicted in Figure B5.

Furthermore, Ant Financial has partnered with Vanguard Group to develop a fund
investment advisory service called “BangNiTou”. The system evaluates an individual’s
daily consumption, financial habits, and other data to create a personalized investment
strategy based on different risk assessment results. This includes determining the invest-
ment objectives, how to allocate assets, and the expected investment returns. Following
the risk assessment and investment goals, BangNiTou works by recommending a portfolio
selected from 6,000 mutual funds (see Figure B6). In 2021, assets under BangNiTou sits at
¥6.9 billion (about $1 billion) (Bloomberg, 2021).
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Figure B1: Delegated Investment service of Yieldstreet

Source: https://www.yieldstreet.com/how-it-works/. Date of visit: Sep 09, 2024.

63

https://www.yieldstreet.com/how-it-works/


FENG, HE AND WEI

Figure B2: Personalized investment matching service of Merrill Guided Investing

Source: https://www.merrilledge.com/offers/retirement-mgi. Date of visit: Sep 09, 2024.

Figure B3: Intuitive Investor’s Personalized investment based on risk tolerance

Source: https://www.wellsfargoadvisors.com/services/intuitive-investor.htm. Date of visit: Sep 09,
2024.
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Figure B4: Analysis of Risk Tolerance and Investment Object in Ant Financial

(a) Recommended Funds (b) Detail of A Recommended Fund

Figure B5: Recommendation service of Ant Group Co. Ltd.
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(a) Recommended Strategy (b) Detail of the Strategy

Figure B6: Robo-advisory service of BangNiTou
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