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Abstract
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the net fee model expands the tractable scope to allow variable total demand, platform
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lowering prices. Broadly speaking, our results favor policy interventions that assure
the formidability of the competition that dominant platforms face.

Keywords: Platform Competition, Big Tech, Net Fees, Interoperability

JEL Codes: D43, L13, L15, L40

This final working paper version of the article has been accepted for publication in Management Science.

∗We thank Chong-En Bai, Ramón Casadesus-Masanell, Yongmin Chen, Yvonne Chen, Yubo Chen, Jacques
Crémer, Chiara Farronato, Xavier Gabaix, Andrei Hagiu, Baiyun Jing, Bruno Jullien, Keyan Li, Yucheng
Liang, Tesary Lin, Albert Ma, Andy Ma, Michael Manove, Yingyi Qian, Marc Rysman, Manuel Santos, Paul
Seabright, Marius Schwartz, Da Shi, Tim Simcoe, Jean Tirole, Lucy White, Julian Wright and Feng Zhu, as
well as participants at AEA 2023, Bank of Canada, Boston University, the Hong Kong-Mainland Workshop
on Market Power, Luohan Academy, and TSE Online Economics of Platforms seminar for feedback and
encouragement. We thank Pengsheng Lin for excellent research assistance. White thanks the HBS Strategy
Group and the BU Department of Economics for their hospitality during the early stages of this research, and
Wu thanks the NET Institute (www.netinst.org) for financial support.
†Department of Economics, Boston College; mehmet.ekmekci@bc.edu
‡School of Economics and Management and National Institute for Fiscal Studies, Tsinghua University;

awhite@sem.tsinghua.edu.cn
§Department of Economics, Harvard University; lingxuanwu@g.harvard.edu

www.netinst.org


1 Introduction

Large Internet platforms (e.g., Alibaba, Alphabet, Amazon, Apple, Meta, Tencent, X, etc.)

are at the center of many of today’s most important public policy debates. Platforms invite

much criticism, including claims that they are too dominant and should, in some form, have

their power reigned in.1 Some argue that platforms should face more competition, while

others focus on regulation. Behind this debate lies a set of basic economic questions. Can

more competition in platform markets mitigate dominance? If not, what other remedies

might work? One prominent proposal is regulation that would make competing platforms

“interoperable” and thus less proprietary. Does this show promise?

This paper offers a modeling approach that sheds light on these two issues: the effects

of increasing competition and requiring platform interoperability. Our approach, which

we call the net fee model, brings about a high level of flexibility to the technically challenging

topic of platform competition. The basic idea is that platforms compete by setting a kind

of price that we call their “net fee.” In most existing models of platform competition, the

platforms charge each user either only a “membership” fee (e.g., a subscription) or only

“interaction” fees (e.g., charges incurred when transacting with other users). Our approach

is a form of hybrid between these two polar cases, in which platforms charge any given

user both types of fees.

Surprisingly, this hybrid fee structure makes analyzing platform competition more

straightforward than it is under either of the two aforementioned approaches, not more

complicated. In a nutshell, as in a pure membership fee model, our approach assumes

platforms compete with one another by announcing membership fees. The key difference

is as follows: in a pure membership fee model, once these membership fees are announced

and users make joining decisions, no additional money ever passes between users and

platforms. Under our approach, platforms and users anticipate that, after users have

joined a platform, the latter will levy further interaction fees (or subsidies), and they

both incorporate this into their decision-making. We thus label the membership fees that

1For instance, see a trio of recent, high-profile policy reports addressing these issues (Crémer, de Montjoye
and Schweitzer, 2019, Furman et al., 2019, Scott Morton et al., 2019).
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platforms set in our model as net fees – prices that are net of interaction fees – and we

contrast them with the total prices that platforms charge in pure membership fee models.

Crucially, by adopting this approach, we can solve a general discrete-choice model

with network effects that accommodates asymmetries across platforms and variable total

market participation. We provide three main sets of results, pertaining to (i) pricing and

characterization of equilibrium, (ii) the effects of competition, and (iii) the consequences of

interoperability. With regard to the latter two points we particularly focus on how these

forces affect market dominance and total platform demand.

In the first category, we show that net fee competition leads to a straightforward pricing

formula. We further show that this can be compared with numerous familiar pricing

benchmarks, including from standard oligopoly competition and from earlier work on

platform pricing. In line with pricing formulas in the existing literature on platforms, ours

features the same three components – marginal cost, market power and network discount

– while having the benefit of being more broadly applicable.

The second set of results deals with the effects of competition on the level of dominance

enjoyed by one platform in a market. We show that adding more competitors may lead one

platform to become dominant or may enhance the position of an already dominant platform.

Moreover, a potential merger between two small platforms can reduce the dominance of a

large one, and the scope for this to occur grows as network effects become stronger. That

is, in a potential merger, network effects can serve as a substitute for cost synergies. To

see the underlying mechanism behind these results, consider a setting with one dominant

platform and one or more niche platforms. The larger a platform’s user base, the stronger

its incentive is to discount its net fee. As competition increases, niche platforms’ user bases

get divided up, and the discounts they offer shrink. Thus, adding a new platform can lead

to splintering among the niche players, enabling the dominant platform to capture a larger

market share.

The third set of results studies the impact of allowing platforms to be at least partially

interoperable. By this, we mean that, when two platforms are interoperable with one another,

a user who joins either platform can enjoy the network externalities that come from the user

bases of both platforms. Think, for instance, of the way a subscriber to one phone company
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can have conversations with subscribers to other companies. In our model, rather than

being a discrete variable, interoperability can take on any value between 0 and 1.

Here, our findings tilt strongly in favor of interoperability. We first analyze the effect

that interoperability has on a market that is dominated by one platform. We show that

increasing the level of interoperability in the market leads to a reduction in this platform’s

dominance. This occurs because a higher degree of interoperability reduces the disparity

between the network discounts, mentioned above, offered by the dominant platform and its

smaller rival(s), and this disparity is the driving force behind market dominance. Second,

in a symmetric but otherwise quite general setting, we show that greater interoperability

typically leads to lower prices, greater user participation and higher consumer surplus.

In the broad public policy debate regarding platforms, two topics that have received

particular interest are, (i) whether to promote greater competition in markets led by a

dominant platform, and (ii) what the impact could be of requiring interoperability. Our

result that entry may increase an incumbent’s dominance urges caution with respect to

the first. In contrast, our analysis of interoperability offers an encouraging view of such

regulation, suggesting that such proposals should be explored in more detail.

1.1 Related Literature

This paper contributes to the broad literature that has come to be known as “platform

economics.” The earliest works in this area, which formalize the study of network effects

in “one-sided” settings, include Rohlfs (1974), Katz and Shapiro (1985), Farrell and Saloner

(1985). A significant step forward occurred when the concept of “multi-sidedness” was

introduced, incorporating multiple groups of agents with interdependent demand. Pio-

neering works on multi-sided platforms include Caillaud and Jullien (2003), Evans (2003),

Rochet and Tirole (2003, 2006), Rysman (2004), Anderson and Coate (2005), Parker and

Van Alstyne (2005), Armstrong (2006), Hagiu (2006) and Armstrong and Wright (2007). In

the monopoly context, Weyl (2010) provides a general synthesis of the incentives influ-

encing a platform’s pricing.2 Jullien, Pavan and Rysman (2021) offers an excellent, recent

2Also see Veiga, Weyl and White (2017), which further generalizes the Weyl (2010) model to allow for
selection effects as well as network effects.
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survey of the platform literature.

In the existing work on platform competition, the most conventional approach is to

assume what is sometimes called “pure membership” conduct, which, throughout the

paper, we call “total pricing.” As mentioned above, the total pricing and net fee approaches

share the common feature that platforms compete by setting membership fees. Unlike with

net fees, under the total pricing approach, the membership fee is an all-encompassing

measure of the revenue that a platform receives from any given user. The best known

example of total pricing is the Armstrong (2006) “two-sided single-homing” model, a

Hotelling setup which has served as a workhorse in much subsequent literature.

Recently, Tan and Zhou (2021) provides an important generalization of the total pricing

approach, incorporating general demand, an arbitrary number of competing platforms,

and an arbitrary number of sides of the market. At the same time, that work sheds

light on the technical hurdles that are inherent to the total pricing approach. Despite

the expansive nature of Tan and Zhou’s generalization, their analysis is, nevertheless,

constrained to environments with fixed total demand and symmetric platforms playing

symmetric equilibrium. A crucial contribution of our work, therefore, is to provide a

framework that can be readily used to study situations with variable total demand, and,

especially, asymmetries across platforms, which can be both ex ante and/or ex post in nature.

This feature is essential for studying questions of platform dominance.

In the settings where Tan and Zhou (2021) show total pricing is a feasible approach

– i.e., platform symmetry with fixed total demand, we compare the results generated by

that approach with those arising under net fee competition, and we find a high degree

of qualitative similarity. A first such comparison is between pricing formulas, detailed

in Section 2.1. Second, a main result of Tan and Zhou (2021) is the so-called “perverse

pattern,” whereby adding competition may lead the equilibrium price to increase. Like

total pricing, net fee conduct also generates this perverse pattern. Due to the similarity

in this aspect across the two approaches, we omit the analysis of it from the main text

and, instead, include it in Appendix D. Nevertheless, it is worth noting that, since the

net fee approach incorporates variable total demand, the perverse pattern encompasses

not only price increases but also a reduction of consumption. Third, in Section 6.2, when
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analyzing the effect of increasing interoperability on equilibrium prices, we compare the

predictions of the net fee and total pricing approaches. There, we find more contrast, with

the latter offering less optimism. In that section, we explain the logic behind these opposing

predictions.

Another important recent contribution using the total pricing approach is Peitz and

Sato (2024). It develops a technique to analyze asymmetric platforms, making use of the

Logit demand form and logarithmic network effects. Like our paper, it addresses questions

about the effects of competition and interoperability in settings with potentially dominant

platforms. Apart from the difference in its conduct assumption compared to ours, another

point of differentiation is that it focuses on settings with a unique equilibrium in the pricing

stage of the platforms’ oligopoly game. In contrast, our paper pays particular attention to

settings where multiple pricing equilibria may arise and where their presence is the key

force leading to asymmetric outcomes.

In addition to pure membership, the literature has considered several other assumptions

on platforms’ conduct. As mentioned, some models, most notably Rochet and Tirole (2003),

take a pure interaction fee approach, while the Armstrong (2006) “competitive bottlenecks”

model (see Section 7) includes analysis in which platforms charge only interaction fees

on one side of the market and only membership fees on the other side. In addition,

Armstrong (2006) considers the possibility of competition in two-part tariffs with platforms

simultaneously setting both membership fees and interaction fees. In that context, the

paper offers a rather discouraging result whereby any demand profile yielding nonnegative

profits can be supported as an equilibrium. Reisinger (2014) offers an approach to restore

equilibrium uniqueness under two-part tariff competition, drawing on Klemperer and

Meyer (1989)’s introduction of demand uncertainty to restore uniqueness in models of

competition in supply functions. Correia-da Silva et al. (2019) offer a Cournot model of

platform competition.

Our approach is closely related to one developed in an earlier, now inactive working

paper by one of the current authors, White and Weyl (2016), called “insulated equilib-

rium.” Both embed, in an oligopoly framework, Dybvig and Spatt’s (1983) insight regard-

ing monopoly, further developed by Becker (1991) and Weyl (2010), that appropriately
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designed prices can alleviate potential coordination problems for users. Insulated equilib-

rium differs from our approach in that it applies a refinement to select from among multiple

equilibria arising in a higher-dimensional strategy space. Whereas that paper focuses on

the effects of different forms of user heterogeneity, this paper derives novel implications

on the effects of competition and regulation in platform markets. One separate but related

line of research focuses on dynamic platform competition (Cabral, 2011) and explores the

link between dynamic competition and static models of conduct (Cabral, 2019). In con-

sidering potential interoperability between competing platforms, our paper builds on a

stream of literature that includes Crémer, Rey and Tirole (2000) and Malueg and Schwartz

(2006), which we discuss further in Section 6. Another related line of research focuses on

multi-homing. The simplest model of multi-homing is the competitive bottlenecks model

(Anderson and Coate, 2005, Armstrong, 2006, Armstrong and Wright, 2007, Anderson and

Peitz, 2020) to which the net fee approach can be readily applied. An active topic has been

the study of more fine-grained models of user multi-homing, such as by Athey, Calvano

and Gans (2018), Bakos and Halaburda (2020) and Teh et al. (2023).3

On a technical level, our proof of equilibrium existence extends a result of Caplin and

Nalebuff (1991). In order to derive results on uniqueness, we use aggregative game (Selten,

1970) techniques from Anderson, Erkal and Piccinin (2020). Anderson and Peitz (2020)

and Peitz and Sato (2024) also use aggregative game techniques to aid in the analysis of

platforms.

The rest of the paper is organized as follows. Section 2 presents the model and motivates

the net fee approach. Section 3 derives pricing formulas. Section 4 proves existence of

equilibrium and provides a result on uniqueness. Sections 5 and 6 analyze policy questions.

The former focuses on the effects of increasing competition and the latter on interoperability

regulation. These two sections make their key points in a simplified environment, which

Appendices B and C generalize in numerous ways. Section 7 extends the net fee approach

to the competitive bottlenecks setting. Appendix D replicates and extends the Tan and

Zhou perverse pattern under net fee competition. Appendix E collects all the proofs.

3White (2022) discusses some similarities between the economic forces governing multi-homing in Teh
et al. (2023) and interoperability in the current paper.
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2 The Model

Users can each choose to join at most one platform. Their options are indexed by j ∈

J ∪ {0} = {0, 1, ..., J}, where J ≥ 1 is the number of platforms and 0 denotes the outside

option. “Sides of the market” are indexed by s ∈ S = {1, ...,S}, where S ≥ 1. Each side of the

market has a unit mass of users, each user belongs to exactly one side, and each platform

serves all sides.

Users of a side s are identified by a type θs = (θ0
s , θ

1
s , ..., θ

J
s) ∈ RJ+1 which captures their

membership value (standalone taste) for each platform as well as for the outside option. Types

are distributed according to cumulative distribution function (CDF) Fs. We assume that Fs

admits a density fs which is continuously differentiable and strictly positive on RJ+1.

Payoffs from joining platform j may also depend on how many other users join j. Denote

by n j
s the fraction of side-s users that join platform j, and denote by p j

s platform j’s total

side-s price. Users have quasilinear preferences with respect to money, and the payoff to

user θs from joining platform j is

u j
s := θ j

s +
∑
ŝ∈S

γ j
sŝn

j
ŝ − p j

s, (1)

where γ j
sŝ denotes the interaction value with side-ŝ users on the same platform.4 That is, it

measures the marginal externality that a user on side ŝ of platform j contributes to users on

side s of platform j. The payoff from choosing the outside option is u0
s := θ0

s .

Platforms compete by posting membership fees, which we call net fees, t j = (t j
1, ..., t

j
S).

We assume that once a user joins a platform by paying the net fee, all of the utility she

derives on the platform from interacting with other users will be extracted by the platform.

As a result, a net fee t j
s guarantees a user with type θs a payoff from joining platform j of

u j
s = θ j

s − t j
s. (2)

This payoff does not depend on the joining decisions of other users. A net fee t j implies a

4For simplicity, we assume interaction utility to be linear, but this is not essential for our approach. Note
that these are allowed to be negative.
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user who joins platform j pays a total transaction price of

p j
s := t j

s +
∑
ŝ∈S

γ j
sŝn

j
ŝ, (3)

where the first term is the net fee and the second term is the interaction utility generated

by the platform. Appendix A provides a microfoundation in which this interaction utility

is extracted by interaction fees that platforms set explicitly.

Given a profile of net fees ts = (t1
s , ..., t

J
s) charged by platforms, a user on side s with type

θs chooses the j ∈ J ∪ {0} yielding the maximal u j
s. The demand for platform j on side s is

then

n j
s (ts) =

∫
1
{u j

s≥uk
s ,∀k∈J∪{0}} fs(θs)dθs. (4)

Let t ∈ RJ×S denote the vector of all net fees charged by all platforms on all sides, and let

c j
s denote platform j’s marginal cost on side S, which we assume to be constant. Platform j

earns, from side-s users, profits of

π j
s(t) =

(
p j

s − c j
s

)
n j

s(ts) (5)

=

t j
s +

∑
ŝ∈S

γ j
sŝn

j
ŝ (tŝ) − c j

s

 n j
s (ts) , (6)

which can be summed to give total profits of

π j(t) =
∑
s∈S

π j
s(t) (7)

=
∑
s∈S

(t j
s − c j

s)n
j
s(ts) +

∑
s,ŝ∈S

γ j
sŝn

j
s(ts)n

j
ŝ(tŝ). (8)

We write consumer surplus for users on side s as

Vs(ts) :=
∫

max
j∈J∪{0}

{θ j
s − t j

s · 1 j∈J } fs(θs)dθs, (9)
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noting that ∂Vs

∂t j
s

= −n j
s. Define total surplus by W(t) :=

∑
j∈J π

j(t) +
∑

s∈SVs(ts).

In the game, platforms simultaneously announce net fees, which determine the demand

and the profits. We focus on pure-strategy Nash equilibria, t = (t1, ..., tJ), where each

platform j ∈ J chooses a vector of net fees, t j, that maximizes π j(·, t− j), where t− j denotes

the vector of net fees announced by platforms other than j.

2.1 Discussion: Competition in Net Fees

In our model, the strategic variable is the net fee, which is a membership fee (or subsidy).

This fee does not encompass all of the money that a platform earns per user. In addition,

users that join a given platform interact with other users, generating interaction utility, all

of which the platform extracts. The microfoundation in Appendix A represents a scenario

in which this occurs endogenously in an extensive-form game.

The key ingredient in this microfoundation is that, after making a decision to join a

platform, users become captive. The platform is then able to set interaction fees at levels

that are just low enough to induce users to be fully active on the platform while still

capturing all of the surplus generated from interaction among users. As an illustrative

example, consider the choice a user makes when deciding which video game console to

purchase. At the time of the joining decision, users have the opportunity to shop around

among different gaming platforms. They do so knowing that, after having joined, they will

be at the mercy of the platform’s fee structure for games. The gaming platforms also know

this, and they compete to get users to sign up. In setting console prices (i.e., membership

fees), platforms take into account their anticipated future stream of revenue from game

purchases, which, in practice, they earn from levying royalties (i.e., interaction fees) on

per-copy-sold basis.

Of course, this is a stylized modeling approach, and in some circumstances it will be

a more useful tool than in others. Broadly speaking, it seems best-suited for analyzing

markets where

• it is feasible for platforms to charge both membership fees and interaction fees;

• platforms can effectively construct a “moat” around users’ activity once they join.
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Such moat construction has been recognized, in the literature, as both an important objective

and challenge for platforms.5 In addition to gaming, other types of platforms that display

these characteristics include software operating systems (and associated app stores), online

food and grocery delivery services, and both traditional and new media platforms that

involve standalone subscription fees, advertisement, and up-charges for access to popular

content creators. Industries in which it is feasible to charge only a membership fee or

only a per-transaction fee would seem to more closely match the total pricing approach

(Armstrong, 2006, Tan and Zhou, 2021) or the pure-interaction fee approach (Rochet and

Tirole, 2003), respectively. An example of the former could be dating platforms, on which

users might object to per-interaction fees for non-economic reasons. An example of the latter

could be certain payment platforms (e.g., Venmo), where, in practice, joining is typically

free for all users. In reality, platforms’ pricing mechanism tend to be both innovative and

complex, and so any of these models involves significant abstraction, but we believe the net

fee approach has a realistic flavor. Moreover, for proponents of the total pricing approach,

it is reassuring that the net fee approach delivers qualitatively similar results while being

usable in a much wider range of environments.

Remarks. We briefly highlight the following properties of the model.

1. Adopting net fee conduct contributes two features to the model that expand the scope

of possible analysis.

A. Net fees lead demand to be fully determined, so there is no problem of equilibrium

multiplicity among users. Thus, for the sake of tying down demand, we invoke no

constraints on the strength of network effects nor must we apply an equilibrium

selection to the continuation game played by users.

B. Under the net fee approach, the standard oligopoly demand system, as determined

by the distribution of membership values, and network effects enter into platform

j’s profit function in a separable way. (See eq. (6).) In other words, given a demand

5See, for instance, Gu and Zhu (2021), analyzing platforms’ efforts to avoid “disintermediation” by users
who join platforms and then seek alternative ways to interact with one another in order to avoid paying
interaction fees.
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system, our game with nonzero γ’s and net fees has an analog involving the same

demand system n j(t), no network effects, differentiated Bertrand competition, and

variable marginal cost c j
−

∑
ŝ∈S γ

j
sŝn

j
ŝ for each platform. This makes first-order

conditions straightforward to express in a general environment. Also, it means

that underlying properties of a given demand system are preserved.6

2. Independently of the conduct assumed in the game, the vector of net fees is the relevant

argument in the demand system we study.7 That is, holding fixed an arbitrary profile

of platform strategies (which might be net fees, total prices, or other, as long as there is

no within-side price discrimination), the demand profile on side S depends precisely

on the values of u j
s that users receive. In this more general case, a net fee t j

s can be

defined as the difference between membership value θ j
s and utility u j

s, which is the

same for all side-s users. Thus, the net fee is the relevant measure for demand and

consumer surplus, as noted in our analysis of symmetric competition in Section 6.2

and Appendix D.

3 Pricing

3.1 Pricing under Net Fee Competition

First, we analyze the net fees that platform j chooses as a best response when the competing

platforms choose t− j. Consider the impact of a marginal effect on j’s profits resulting from

a change in t j
s, holding fixed t− j. This is given by

∂π j(t)

∂t j
s

=
(
p j

s − c j
s

) ∂n j
s(ts)

∂t j
s

+ n j
s(ts)

1 + γ j
ss
∂n j

s(ts)

∂t j
s

 +
∂
(∑

ŝ∈S\{s} π
j
ŝ(t)

)
∂t j

s

. (10)

The first two terms capture ∂π
j
s(t)

∂t j
s

, i.e., the effect of the fee increase on j’s profits arising

directly from side s, by taking the derivative of eq. (6). These contain the usual effects

6For example, net fee conduct can preserve the aggregative property of demand, which Anderson, Erkal
and Piccinin (2020) shows to be useful in analyzing oligopoly.

7This point extends to settings where users have nonlinear interaction values, as in Tan and Zhou (2021).
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that appear under differentiated Bertrand competition without network effects as well as

an additional factor, γ j
ss
∂n j

s(ts)

∂t j
s

, representing the within-side externality that j’s side-s users

exude on one another. The last term captures the impact that changing t j
s has on j’s profits

from the other sides of the market. Plugging in
∂π

j
ŝ(t)

∂t j
s

=
∂n j

s(ts)

∂t j
s
γ j

ŝsn
j
ŝ(tŝ), the right-hand side of

eq. (10) simplifies to p j
s − c j

s +
n j

s(ts)
∂n j

s(ts)

∂t j
s

+
∑
ŝ∈S

γ j
ŝsn

j
ŝ(tŝ)

 ∂n j
s(ts)

∂t j
s

. (11)

The last term, ∂n j
s(ts)

∂t j
s

, is strictly negative, because the density of types is strictly positive

everywhere. Thus, the first-order condition that must hold in any best response implies

that the bracketed term in eq. (11) must equal zero. Hence, we can immediately obtain the

pricing formula of Proposition 1.

Proposition 1. At any equilibrium, the net fee that platform j charges to users on side s satisfies

t j
s = c j

s +
n j

s(ts)

−
∂n j

s(ts)

∂t j
s

−

∑
ŝ∈S

(γ j
sŝ + γ j

ŝs)n
j
ŝ(tŝ). (12)

This proposition says that a platform’s net fee is equal to the sum of (i) its marginal

cost of serving a user, (ii) its standard “one-sided” market power, n j
s(ts)

−
∂n

j
s(ts)

∂t
j
s

, and (iii) a term

we refer to as the network discount. The last term captures the total interaction value that

is generated when an additional side-s user joins platform j. It can be decomposed as

follows. The first component,
∑

ŝ γ
j
sŝn

j
ŝ, equals the additional money that a side-s user pays

the platform, beyond the net fee. The second component,
∑

ŝ γ
j
ŝsn

j
ŝ, measures the marginal

interaction value that an additional side-s user creates for other users across all sides, which

the platform extracts from them. All proofs are collected in Appendix E.
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Example: Logit Demand. A particularly convenient functional form, which we use in

Sections 5 and 6 on policy analysis, involves demand that takes on the Logit form, i.e.,

n j
s(ts) =

e−t j
s

ezs +
∑

k∈J e−tk
s
, (13)

where zs parameterizes the outside option for side-s users.8 Note that this gives ∂n j
s(ts)

∂t j
s

=

−n j
s(1 − n j

s), and so the net fee in Proposition 1 becomes

t j
s = c j

s +
1

1 − n j
s(ts)
−

∑
ŝ∈S

(γ j
sŝ + γ j

ŝs)n
j
ŝ(tŝ). (14)

3.2 Relationship to Benchmarks

The pricing formula in Proposition 1 relates as follows to these notable benchmarks.

1. Compared to the net fee that maximizes total surplus, W(t),

t j
s = c j

s −

∑
ŝ∈S

(γ j
sŝ + γ j

ŝs)n
j
ŝ(tŝ), (15)

it has the additional one-sided market power term.9 The final terms in eqs. (12)

and (15) coincide, because each platform fully internalizes the network effects that are

created by adding a marginal user.10

2. It generalizes the one from standard differentiated Bertrand competition, in discrete

choice models without network effects, where all γ’s are equal to zero.

3. In the special case of two-sided monopoly (J = 1, S = 2), it coincides with the “pure-

membership” pricing formulas of Rochet and Tirole (2006) and Armstrong (2006).11

8Demand as in eq. (13) arises when the membership values of side-s users are drawn independently, with
θ1

s , . . . , θ
J
s ∼ Gumbel(0, 1) and θ0

s ∼ Gumbel(zs, 1).
9Equation (15) can be obtained by noting that the first-order condition for maximization of total surplus,

∂π j(t)
∂t j

s
+

∑
k∈J\{ j}

∂πk(t)
∂t j

s
+ ∂Vs

∂t j
s

= 0, implies that t j
s = c j

s −
∑

ŝ∈S(γ j
sŝ + γ j

ŝs)n
j
ŝ.

10Note that, although these final terms coincide in the two expressions, they take on different values because
the ns

j’s are endogenous. See Tan and Wright (2018) for discussion of this point in the case of monopoly.
11See Rochet and Tirole’s Proposition 1(iii), which encompasses Armstrong’s Section 3 monopoly pricing
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Under S-sided monopoly, it coincides with the formula of Weyl (2010), and under

two-sided oligopoly, it coincides with the formula of White and Weyl (2016), both

specialized to affine, homogeneous-within-side interaction values.

4. Compared to Tan and Zhou’s (2021) symmetric-equilibrium oligopoly pricing for-

mula, our expression relates in the following way. Their paper makes a significant

generalization of Armstrong (2006)’s classic “two-sided single-homing” Hotelling

model.12 In order to derive their formula, they assume that the distribution of mem-

bership values is symmetric across the platforms, marginal costs are identical across

platforms and equal to cs, interaction values are identical across platforms and equal

to γsŝ.13 Furthermore, users have no outside option. For each s ∈ S, let Hs and hs

denote the cumulative distribution function (CDF) and probability density function

(PDF) of θ1
s −max{θ2

s , ..., θ
J
s}.14

At the symmetric equilibrium they study, the pricing formula is

ps = cs +
1 −Hs(0)

hs(0)
−

1
J − 1

∑
ŝ∈S

γŝs. (16)

In our model, under these assumptions, expressing eq. (12) as a total price gives

ps = cs +
1 −Hs(0)

hs(0)
−

1
J

∑
ŝ∈S

γŝs, (17)

whose only difference from eq. (16) is in the denominator of the final term.15

formula. In RT’s notation, their expression pi =
pi

ηi − b j can be rewritten by substituting pi = Ai
−Ci

N j , pi

ηi = Ni

−
∂Ni

∂pi

=

1
N j

Ni

−
∂Ni

∂Ai

and then translated into ours by noticing their generic Ai,Ci correspond to generic p j, c j in our notation.
12See Section 4 of Armstrong (2006).
13They also provide further generalization of allowing network effects to be nonlinear in demand.
14Notice that due to the symmetry of the distribution of membership values, Hs is independent of the

platform.
15In terms of net fees, Tan and Zhou’s formula becomes

ts = cs +
1 −Hs(0)

hs(0)
−

1
J − 1

∑
ŝ∈S

γŝs −
1
J

∑
ŝ∈S

γsŝ,
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4 Equilibrium Existence and Uniqueness

In order to guarantee the existence of equilibrium, we make two assumptions that ensure

both the sufficiency of the first-order conditions for profit maximization and that the profit-

maximizing fees are bounded. We start with the following definition, followed by the

two assumptions. In the following, we denote the marginal density of θ j
s by fs, j

(
θ j

s

)
, the

conditional density of θk
s (conditioned on θ j

s) by fs,k| j(θk
s |θ

j
s), and the conditional CDF of θ0

s

(conditioned on θ j
s) by Fs,0| j

(
θ0

s |θ
j
s

)
.

Definition 1. For each side s, define gs to be the supremum of the conditional density

function of the membership values of any pair of alternatives, i.e.,

gs := sup
j∈J ,k∈{0}∪J\{ j}

sup
θ j,θk

fs,k| j

(
θk

s |θ
j
s

)
. (18)

Assumption A1. ∀s ∈ S, there exists ρs ≥ −
1

J+2 , such that

(a) the joint distribution of side-s users’ membership values, fs (θs), is ρs-concave;

(b)
(
γ j

ss +
∑

ŝ,s

∣∣∣∣∣γ j
sŝ+γ

j
ŝs

2

∣∣∣∣∣) · gs ≤
1
2J

[
1 +

ρs

1+(J+1)ρs

]
,∀ j ∈ J .

Assumption A2. ∀s ∈ S, j ∈ J , we have limt j
s→∞

t j
s ·

∫
∞

−∞
Fs,0| j

(
θ j

s − t j
s|θ

j
s

)
fs, j

(
θ j

s

)
dθ j

s = 0.

Assumption A1 pertains to both the membership value distribution and the magni-

tudes of interaction values. It ensures that each platform’s profit function, π j(t j, t− j), is

quasiconcave in t j, for every t− j. Roughly speaking, part (b) says that, as network effects

grow larger, the degree of concavity that must be imposed in part (a) on the distribution of

membership values becomes more stringent. In the special case without network effects,

i.e., when γ j
sŝ = 0 for all s, ŝ ∈ S, this assumption reduces to Assumption A2 in Caplin and

Nalebuff’s (1991) seminal work on the existence of equilibrium in oligopoly.16

and our eq. (12) specializes to

ts = cs +
1 −Hs(0)

hs(0)
−

1
J

∑
ŝ∈S

γŝs −
1
J

∑
ŝ∈S

γsŝ.

Also note, in particular, that eqs. (16) and (17) share the same limit behavior as the number of platforms grows
large.

16A slight difference in accounting is that Caplin and Nalebuff label the dimensionality of users’ types as
n, whereas we label it as J + 1.
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Assumption A2 ensures that the measure of users who prefer platform j to the outside

option goes to zero sufficiently fast as j’s net fee, t j
s, grows large. It implies that platforms do

not charge arbitrarily high fees, and thus it provides a bound for the set of best responses.

Using standard techniques, including the Brouwer’s fixed point theorem, we obtain the

following result. Note that this assumption requires the existence of an outside option.

Proposition 2. Under Assumptions A1 and A2, there exists a pure-strategy Nash equilibrium.

The following result, dealing with Logit demand, provides an existence condition that

applies even when users do not have an outside option.

Proposition 2’. Assume demand takes the Logit form as specified in eq. (13), and either J ≥ 2

or users have an outside option. If γ j
ss +

∑
ŝ,s

∣∣∣∣∣γ j
sŝ+γ

j
ŝs

2

∣∣∣∣∣ ≤ 3.375,∀ j ∈ J , s ∈ S, then there exists a

pure-strategy Nash equilibrium.

4.1 Uniqueness under Logit

Proposition 3 contains a result on uniqueness of equilibrium in the Logit case.

Proposition 3. Assume demand takes on the Logit form, either J ≥ 2 or users have an outside option,

and the market is one-sided (S = 1). If γ j < 2.610,∀ j ∈ J , there exists a unique pure-strategy Nash

equilibrium.

In order to obtain this result, we make use of two features. The first is that, in a single

market without network effects, when demand is of the Logit form, standard differentiated

Bertrand competition gives rise to profits for each firm that have the aggregative property.

That is, to calculate a given firm’s profits, it is sufficient to know a sum that depends on all

competitors’ prices; it is not necessary to know each of their prices individually. The second

feature we make use of is the one discussed in remark 1B of Section 2. This is the fact that,

in markets with nonzero γ’s, when platforms compete in net fees, the demand system and

the network effects enter into each platform’s profits in a separable manner. Consequently,

in a one-sided platform context, the aforementioned aggregative property is preserved. We
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can thus make use of the technique provided by Anderson, Erkal and Piccinin (2020) to

establish our bound for equilibrium uniqueness.17

Together, Propositions 2’ and 3 establish that the following straightforward configu-

ration holds in one-sided markets with Logit demand. When network effects are not

too strong (γ j
≤ 3.375, ∀ j), equilibrium exists; if they also satisfy a tighter upper bound

(γ j < 2.610, ∀ j), then it is unique. We now turn to the effects of competition, studying both

settings with potential equilibrium multiplicity and with guaranteed uniqueness.

5 Effects of Competition

A much-discussed concern regarding platform industries is the dominance of one firm in

a given market (e.g., Alphabet, Amazon, Meta, etc.). In the context of such discussion,

it is sometimes proposed that such dominance could be alleviated by the entry of more

players into the given market. In this section, we use our model to address two issues

related to such discussion. We first show that, when strong network effects lead to multiple

equilibria, more competition could in fact help tip the market in favor of one dominant

platform. Second, we analyze a potential merger between two small platforms that compete

against a dominant one. We show that, when network effects are weak enough to guarantee

equilibrium uniqueness, these network effects play a substitutable role to that of standard

costs synergies that are typically required to justify such a merger. Both results suggest

that, in platform industries, the best “pro-competitive” policies are not those that merely

increase the number of competitors. To the contrary, they may be those that pit dominant

platforms up against appropriately formidable challengers.

Throughout this section we make several assumptions that ease the exposition of our

results. First, we assume that demand takes on the Logit form, as specified in eq. (13), and

that there is no outside option. We are thus in an environment covered by Propositions 2’

17An idea that at first blush seems tempting is to apply the multi-product technique of Nocke and Schutz
(2018) to establish uniqueness in the case of S ≥ 2. Unfortunately, such an intuition is misguided, because
multi-sidedness in platform competition corresponds to an oligopoly setting with multiple markets, not a
setting, like the one they study, where a given firm can sell multiple products within one market. See Peitz
and Sato (2024) for a recent advancement in the use of aggregative game analysis to study two-sided platform
competition under Logit demand.
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and 3. We further assume that S = 1. Finally, we assume that network effect strength is

common across all platforms, i.e., γ j = γ, ∀ j.

In two appendices, we consider more general environments and provide a set of results

that extend those that are presented below in the main text. In particular, Appendix B deals

with “multi-sidedness.” It shows that any one-sided version of our model is isomorphic

to a class of multi-sided markets. Although the isomorphic class of multi-sided models

features a form of symmetry across the different sides, this form of symmetry is surprisingly

weak, especially in the case of two-sided markets (S = 2), where the isomorphic class

includes models with “indirect network effects” that differ in strength across the two sides.

Appendix C deals with the case of general demand, S sides and J platforms. As usual in

oligopoly models, crisp results are hard to come by without imposing functional forms.

However, this generalization makes the case that the results in the main text do not flow in

some peculiar way from the logit assumption.18

5.1 Competition and Market Dominance

A frequent concern regarding markets with network effects is the idea that they are prone

to “tipping” towards dominance by one, or perhaps a small number, of platforms. Here,

we state this section’s first result on the potential unintended consequences of competition.

Proposition 4 (Competition may increase dominance). Assume platforms are ex ante identical

and γ ∈ (2.71, 3.375]. There exists an equilibrium under triopoly in which a dominant platform’s

market share is greater than the market share of any platform in any duopoly equilibrium.

Note that this result pertains to a region ofγ in which equilibrium existence is guaranteed

but, for an arbitrary number of platforms, equilibrium uniqueness is not. In the lower

region of the assumed interval, duopoly has a unique equilibrium which is symmetric,
18Another form of generalization that we do not address in the aforementioned appendices is heterogeneity

in the interaction values (i.e., the γ’s) across users within a given side of the market. The only approach we are
aware of that can accommodate this in general oligopoly is “insulated equilibrium” due to White and Weyl
(2016). That approach assumes platforms’ strategies are contingent functions and is thus more complex. It is
most useful when the questions at hand relate to the quality distortion most closely identified with Spence
(1975) and further explored in the context of platforms by Chan (2024). The insulated equilibrium approach
is complementary to the net fee approach, as indicated, for example, by the comparison of pricing formulas
given in Section 3.2.
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where each platform has a market share of 1/2. Under triopoly, there is an asymmetric

equilibrium in which the dominant platform’s market share is greater than 1/2. When γ

is in the upper region of the assumed interval, duopoly has an asymmetric equilibrium.

Throughout this interval of γ, starting from duopoly and adding a new platform to the

market can lead the dominant platform to become even more dominant. Figure 1 shows

the largest possible equilibrium market share of any platform under duopoly and triopoly,

with different strengths of network externality γ.

2.7 2.8 2.9 3.0 3.1 3.2 3.3

γ

0.4

0.5

0.6

0.7

Market share

Figure 1: Largest possible equilibrium market share of any platform

The underlying mechanism that allows competition to increase dominance can be un-

derstood, somewhat heuristically, in the following way. Observe that, in the pricing formula

of a generic platform j,

t j =
1

1 − n j − 2γn j,

the network discount, 2γn j, is increasing in j’s market share n j. Under duopoly, denote

by n ≤ 1/2 the initial market share of the (weakly) smaller “incumbent” platform, and

note that, because there is no outside option, the dominant incumbent platform serves the

N = 1 − n remaining users.

Now consider the arrival of an “entrant” into the market, and imagine that the entrant

and the smaller incumbent compete most directly with one another. Specifically, consider

a candidate triopoly equilibrium at which the smaller incumbent and the entrant adopt

the same strategy as one another and each serve n/2 users, while the dominant incumbent
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continues to serve N users. At this candidate equilibrium, the dominant platform does

not face any direct incentive to change its net fee; however, the smaller incumbent and the

entrant each have an incentive to lower their network discount and thus raise their net fee.

As the proof of Proposition 4 shows formally, this incentive for the two smaller firms to raise

their net fee, starting from this candidate equilibrium, implies that an actual equilibrium

exists in which they each serve fewer than n/2 users, and the dominant platform’s demand

grows to a level larger than N.

5.2 Merger Analysis

We now study the effects of a possible merger between two smaller platforms in a triopoly

market that includes a dominant platform. In this analysis, we restrict attention to an

environment in which equilibrium is unique (see Proposition 3), but we allow for the

platforms to be ex ante asymmetric. In particular, we take into account cost synergies (i.e.,

reductions in marginal costs) brought about by the potential merger, which play a central

role in standard merger analysis. We address the question of how the strength of network

effects in a given market influences the amount of cost synergy that is needed in order for

a merger between two smaller platforms to help reduce the large platform’s dominance.

The environment is as follows. In the pre-merger setting, the dominant platform has

some market share of at least 1/2, and the remaining users, who have no outside option, are

equally split between the two non-dominant platforms. The dominant platform’s marginal

cost is assumed to be zero, whereas the smaller platforms have some positive marginal cost,

c > 0. The particular demand profile in question can be supported by some combination

of cost difference, c, and network effect strength, γ.19 In the event of a merger, the two

smaller platforms become one entity, which enjoys both combined network effects and cost

synergies, given by ∆c ∈ (0, c).20 We now state Proposition 5.

19The condition for the large platform to have market share of at least 1/2 is c + γ/2 > 1.36.
20There are different possible ways to model a merger. We take the approach of assuming one of the merged

platforms shuts down, allowing the two user bases to be combined. An alternative assumption, which is also
compatible with the net fee modeling approach, allows the two merged platforms to continue to operate as
separate entities but with a single agent setting both of their prices.
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Proposition 5. Assume γ < 2.610. In a merger between the two non-dominant platforms, the

minimum cost synergy needed to reduce the market share of the dominant platform decreases with

the strength of network effects.

To interpret this proposition, first consider a traditional oligopoly setting without net-

work effects. There, following a merger, if there were no cost synergies, the merged firm

would have an incentive to raise its price compared to the pre-merger level. This decreases

its market share and thus increases the dominance of the non-merging firm. Hence, a sig-

nificant cost synergy would be necessary in order for a merger not to cause the large firm to

become more dominant. In a market with network effects, however, since the merged entity

benefits from a larger user base, post-merger it incorporates a larger network discount into

its pricing. This larger network discount plays a role that can substitute for the one played

by cost synergies. Thus, the stronger the network externality, the smaller the required cost

synergy to prevent the dominant firm from growing.

To conclude this section, we note that Propositions 4 and 5 both depend on essentially

the same underlying mechanism. From a technical perspective, Proposition 4 relies on

network effects being strong enough to generate multiple equilibria in platforms’ oligopoly

game and does not contemplate ex ante exogenous differences across platform. On the

other hand, Proposition 5 relies on exogenous cost differences among platforms without

requiring network effects that are strong enough to generate multiplicity. Both results

highlight the point that network effects can undermine the effectiveness of policies whose

intent is to be pro-competitive. This theme of potential ineffectiveness of competition

policy is also reflected in the symmetric case with variable total demand, which we cover in

Appendix D. There, we show that an increase in the number of platforms can cause net fees

to rise substantially enough to induce market contraction, even taking into account that

entry mechanically provides users with better expected idiosyncratic matches with their

preferred platform. The key force underlying each of these results is that the arrival of more

platforms can interfere with existing competitive pressures by dividing up user bases.
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6 Interoperability

In policy debates on platform governance, it is sometimes argued that regulation, not

more competition, is a better approach to tempering the dominance of large platforms. In

this vein, a particular policy that is sometimes proposed is a requirement that competing

platforms be (at least partially) compatible or “interoperable” with one another.21 The basic

idea is that a user who joins one platform could be able to interact with not just other users

of the same platform but also with users of its competitors.22 This section explores the

effects of such a requirement.

It is already understood in the literature that a tradeoff may arise as platforms’ inter-

operability increases. As Farrell and Klemperer (2007) point out,23 on the one hand, when

network effects are fully proprietary, users can be inefficiently divided up across platforms;

on the other hand, more proprietary network effects may drive platforms to compete more

intensely. In this section, we use an extended version of the net fee model to study two

competitive configurations in which this tradeoff arises and where interesting mechanics

governing this tradeoff emerge.

First, we consider an environment that is completely analogous to the one studied in

Section 5.1. This allows for an apt comparison between the possible impacts on market

dominance of increasing interoperability and increasing competition under asymmetric

equilibrium in the platforms’ oligopoly game. We show that a possible effect of increased

interoperability can indeed be to eliminate such asymmetric equilibria. As in Section 5.1,

the result in the main text considers a logit model with no outside option and S = 1, and

we generalize things in Appendix C.2.

Second, we study a more general demand setup, with J symmetric platforms and an

outside option. There, we reveal the crucial role played by the diversion ratio in governing

the aforementioned efficiency-competition tradeoff. We show that, in settings with an

outside option or more than two platforms, interoperability reduces net fees and improves

21For consistency, we stick to “interoperability,” but we view this term as interchangeable with “compati-
bility,” as it is often used in the literature.

22To fix ideas, contrast the case of Facebook, on which users can be friends only with other Facebook users,
with phone service, where subscribers can call one another, regardless of their respective networks.

23See, especially, Section 3.8.1.
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consumer surplus. In both environments, we find reason for optimism about the effects of

increasing interoperability.

6.1 Interoperability and Market Dominance

The key ingredient we add to the model is the parameter, λ ∈ [0, 1], denoting the degree of

interoperability. For simplicity, we assume that this single parameter captures the level of

interoperability between any two platforms in the market, although a more complicated

configuration would be consistent with our framework. As in Section 5.1, we consider a

duopoly in which the two platforms are ex ante identical, demand takes the Logit form with

no outside option, and S = 1.

When there are J platforms, the expression (updated from eq. (1)) for the gross utility

derived by a user who joins platform j is

u j := θ j + γn j + λ
∑

k∈J\{ j}

γnk
− p j. (19)

The notion of the net fee extends naturally to cover all externalities that the user receives

from joining the platform, i.e.,

p j := t j + γn j + λ
∑

k∈J\{ j}

γ jnk.

In the assumed environment, the equilibrium net fee is then

t j = c +
1

1 − n j − 2γn j
− γλ(1 − n j) + γλn j. (20)

We now state our result on the effect of interoperability in a duopoly that, under the

status quo, features a dominant platform.

Proposition 6 (Interoperability may mitigate dominance). Assume γ > 0. Consider any two

levels of interoperability λ < λ. For any duopoly equilibrium under λ in which the dominant

platform has market share n1 > 1/2, when λ = λ, there is an equilibrium with n1 > n1.
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The logic behind this result is that an increase in interoperability, λ, changes the equi-

librium in a way similar to a decrease in the network externality, γ. To see this, rewrite the

right-hand side of the net fee in eq. (20) as

(c − γλ) +
1

1 − n j − 2γ(1 − λ)n j.

A platform market with marginal cost c, network externality γ, and interoperability λ is

equivalent to a market with marginal cost c̃ := c − γλ, network externality γ̃ := γ(1 − λ),

and no interoperability. Hence, increasing λ is equivalent to decreasing γ, leading to

equilibrium market shares that are closer to one another.

In this current context, we can revisit Figure 1, whose blue line plots the largest market

share of any platform under duopoly. As network externality γ increases, the larger

platform grows even larger. At a given level of externality γ, increasing interoperability λ

lowers the effective externality γ̃, which brings the two market shares closer to each other.

Indeed, once λ goes beyond a certain threshold, there no longer exists any asymmetric

equilibrium. Figure 2 illustrates this, plotting the market share of the largest platform

under duopoly under different levels of interoperability λ, holding fixed γ = 3.375.

0.00 0.05 0.10 0.15 0.20 0.25
λ

0.4

0.5

0.6

0.7

Market share

Figure 2: Largest possible duopoly equilibrium market share, as a function of interoper-
ability

The effect that Proposition 6 highlights is closely related to what Crémer, Rey and

Tirole (2000) refer to as the (diminishing) “quality differentiation effect” that arises from
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increased interoperability. A key differentiating feature of our model, however, is that

market asymmetries may arise endogenously. This endogenous asymmetry is allowed by

the fact that our approach tractably accommodates strong network effects, which gives

rise to straightforward analysis of cases where the market tips towards one of two ex ante

symmetric platforms. In contrast, that paper bounds network effects in order to rule out

tipping and assumes that one platform exogenously has a larger installed base than its

rival.24

6.2 Interoperability in a Broader Environment Under Symmetry

We continue to focus on the case of one-sided platforms and now allow for J competitors

with general demand and an outside option. The question we now address is what the effect

is on net fees of an increase in λ. If net fees were exogenously fixed, it is clear that, as long as

network effects are positive, then users would benefit from an increase in λ. This is because

such a change would simply allow users to enjoy network effects from other platforms as

well as the one they choose to join. However, net fees are endogenous. Moreover, as we

noted when discussing the intuition behind Proposition 4, large, fully proprietary network

effects tend to push net fees down. Thus, a priori, from users’ perspective, an increase in

interoperability brings about a potential tradeoff between expanding the reach of network

effects across platforms and discouraging them from competing intensely.

Proposition 7 gives the expression for equilibrium net fees and provides a result on

this tradeoff. It makes use of notation ϕ j(t) :=
∑

k∈J\{ j}
∂nk(t)
∂t j

−
∂nj(t)
∂t j

∈ [0, 1], denoting platform j’s

diversion ratio. This captures the share of new users that platform j would attract from other

platforms, rather than from the outside option, if it were to decrease its net fee by a small

amount.

24A related point is made by Malueg and Schwartz (2006), which notes that, in a setting with one dominant
platform and multiple smaller platforms, the smaller ones may mutually choose to become interoperable
with one another, even if the dominant platform does not participate in such an arrangement.
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Proposition 7. (a) When λ ∈ [0, 1], at symmetric equilibrium, platforms’ net fee satisfies

t = c +
n j

−
∂n j

∂t j

−

(
2 + λ(J − 1 − ϕ j)

)
γn j. (21)

(b) Stronger interoperability gives rise to a lower net fee, except under no-outside-option duopoly,

where it has no effect. Formally, consider any two levels of interoperability, λ and λ, such that

λ < λ. Under a duopoly with outside option or when J ≥ 3, let t denote a net fee that arises at

symmetric equilibrium when λ = λ. When λ = λ, there is a symmetric equilibrium with t < t.

Under duopoly with no outside option, the same statement is true except that t = t.

Regarding the net fee in part (a), compared to the no-interoperability case, the factor

λ(J − 1 − ϕ j) is new, and it reflects the following tradeoff. When adding a small mass

of additional users, platform j extracts the “off network” interaction utility that they will

derive. Letting N̂ :=
∑

j∈J n j, the new users enjoy a per-interaction benefit of λγ with each

of the J−1
J N̂ users that join other platforms. This is included in the platform’s marginal gain

from adding an additional user, but it must be excluded when calculating the platform’s

net fee. On the other hand, when platform j adds this small mass of new users, a fraction

of these, measured by ϕ j, switch to j from other platforms, rather than from the outside

option. This flow of ϕ j users from other platforms to j eats away at the revenue from “off

network” interaction that j can extract from its existing n j users, at a rate of γ per interaction.

Part (b) regards the relative magnitudes of these two effects. It says that, following a

shift from some λ to a greater λ, the former effect dominates, in terms of its effect on the

equilibrium net fee, except in the case of duopoly with no outside option, when these two

effects balance each other out.

Consider, first, the special case of duopoly with no outside option. Here, there are two

key driving features. First, due to the lack of an outside option, platform j’s diversion ratio

is always equal to one (as in Section 6.1), since any new user must come from the other

platform. Second, in a symmetric duopoly with no outside option, the mass of users on

the other platform, which influences the size of the former effect, is the same as the mass of

users on platform j, which influences the size of the latter effect.
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In order to depart from this special case, it suffices to consider duopoly with an outside

option, so that ϕ < 1. Now, when platform j adds a small mass of users, each of these

interact “off-network” with all users on the other platform, measured by N̂/2. However, of

these new users arriving at platform j, only ϕ jN̂/2 arrived from the competing platform.

Overall, Proposition 7 paints an optimistic picture regarding the effects on users of

interoperability in symmetric settings. Further note that, in this setting, as net fee t decreases

with an increase in interoperability λ, it is straightforward to show that consumer surplus

increases. Under positive network effects, one would typically expect such a change to

also lead to an increase in total surplus, although we do not know this to be generally true,

given the need to compare the magnitude of the last two terms in Equation (21) at different

demand levels.25

It is interesting to briefly compare our findings here to the ones that arise when platforms

compete in total prices. Under that conduct assumption, the most tractable case in which

to analyze the effect of interoperability is one with two platforms and Hotelling demand.26

Let τ denote the standard transportation cost parameter, assume full market coverage,

and note that this is a special case of duopoly with no outside option. As Proposition 7

implies, under net fee competition, equilibrium t does not depend on λ, and it is given by

t = c + τ − γ. By contrast, under competition in total prices, the equilibrium total price, p̂,

which we derive in Appendix E.2, satisfies p̂ = c + τ− (1−λ)γ, which implies a net fee, t̂, of

t̂ = c + τ − 1
2 (3 − λ)γ, which is strictly increasing in λ. Therefore, at least in some settings,

total price competition paints a more negative picture of the effects of interoperability.

The intuition for this difference is as follows. Under total price competition, when

network effects are proprietary, platforms have a particularly strong incentive to intensively

compete with one another to gain users. As interoperability increases and users become

more of a common resource across platforms, this incentive decreases quickly. Under net

fee competition, adding interoperability does less to undermine the level of competition

that prevails in the baseline setting with λ = 0.

25See Tan and Wright (2021) for analysis of this general issue.
26This exercise adds a λ parameter to a one-sided version of Armstrong’s (2006) single-homing model.
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7 Competitive Bottlenecks

Our model, as described most generally in Section 2, assumes that all users join at most

one platform. This section briefly considers “multi-homing.” In particular, we modify

our assumptions on users’ joining patterns to match the canonical two-sided “competitive

bottlenecks” configuration with indirect network effects studied by Anderson and Coate

(2005), Armstrong (2006), Armstrong and Wright (2007), Anderson and Peitz (2020), among

others.

Assume there are two platforms, 1 and 2, and an outside option, and there are two sides

of the market, A and B. For notational convenience, suppose the platforms are symmetric to

one another, but this is not essential to what follows. Let γA denote side-A users’ interaction

value with side-B users and γB denote side-B users’ interaction value with side-A users.

There are no within-side externalities.

Side A is the multi-homing side. Each side-A user makes two separate joining decisions:

join platform 1 if and only ifθ1
A−t1

A = θ1
A+γAn1

B−p1
A ≥ θ

0
A, and the analogous choice regarding

platform 2. Note that, under this configuration, platform j’s demand on side A depends

on its own net fee, t j
A, but not on tk

A, k , j. Denote this side-A demand for platform j by

ñ j
A(tJ

A). Side B is the single-homing side. As in the main model, users on this side join only

their most preferred platform, if any. These users choose the maximal option from the set

{θ0
B, θ

1
B − t1

B, θ
2
B − t2

B}, so each platform’s demand continues to depend on the vector tB.27

Proposition 8 states equilibrium pricing in the net fee model.

Proposition 8. In the competitive bottlenecks model, platform j = 1, 2 charges net fees given by

t j
A = cA +

ñ j
A(t j

A)

−
∂ñ j

A(t j
A)

∂t j
A

− (γA + γB)n j
B(tB), (22)

t j
B = cB +

n j
B(tB)

−
∂n j

B(tB)

∂t j
B

− (γA + γB)̃n j
A(t j

A). (23)

27For concreteness, consider the example in which Side A is comprised of app developers who choose
independently whether to participate on each of two competing software platforms, and side B features
end-users who stick to one platform or the other.
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The following two points stand out about this result. First, note that the side-A net fee in

Equation (22) features a monopoly markup term, whereas the side-B net fee in Equation (23)

features the same differentiated Bertrand markup term as appears in Proposition 1. Thus,

this proposition captures, in a transparent way, the pattern often noted in competitive

bottlenecks literature whereby platforms compete more intensively on the single-homing

side than they do on the multi-homing side.28

Second, in the competitive bottlenecks setting, net fee conduct is, in fact, equivalent to

the conduct assumed in Section 5 of Anderson and Coate (2005). In that section, on the

“advertiser” side, the competing platforms each set the number of advertisers to serve, and

on the “viewer” side, they each set a total price, referred to as a “subscription.” To see why,

in a competitive bottlenecks setting, this conduct is equivalent to net fee conduct, consider

the incentives facing platform j, assuming that the choices of the competing platform, k,

that are being held fixed are k’s side-A demand, ñk
A, and its side-B total price, pk

B. First, since

there is a one-to-one mapping between ñk
A and platform k’s side-A net fee, tk

A, the latter

must also remain fixed. Second, since k’s side-B total price satisfies pk
B = tk

B +γBñk
A, platform

k’s side B net fee, tk
B must also remain fixed. Therefore, these two representations present

platform j with the same set of feasible choices.

Beyond the competitive bottlenecks model, multi-homing is an important topic in plat-

form economics. In particular, a number of works, such as Athey, Calvano and Gans (2018),

Bakos and Halaburda (2020), and Teh et al. (2023) make significant contributions to our

understanding of situations in which some of the same users may interact across different

platforms, potentially multiple times and potentially with the ability to choose, in a fine-

grained way, on which platform to meet. We leave the study of this issue in the context of

net fees to future research.

28Here, however, this tendency is less stark than, for instance, Proposition 3 of Armstrong and Wright (2007),
in which there is no smooth distribution of membership values for side-A users (side-S in their notation),
which leads those users to be left with zero surplus.
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8 Conclusion

In the era of big tech, understanding the way platform markets operate is of great impor-

tance to managerial decision-makers and policymakers. For managers, it is crucial to have

a modeling approach that can help clarify the range of plausible market outcomes without

relying on restrictive assumptions (e.g., on function forms, fixed market demand, firm sym-

metry). This paper delivers such a tool. For policymakers, an issue that is widely perceived

to need further clarification is the relative merit of competition-based versus regulation-

based interventions. This paper uncovers possible effects on market concentration of two

different policy interventions, which could feature prominently in policy evaluation.

The distinguishing feature of our approach is that we assume platforms compete by

setting net fees. Under this approach, as is often assumed, platforms compete by setting

membership fees. However, in contrast to the standard approach in which membership

fees represent platforms’ only revenue stream, in net fee competition, platforms have an

additional revenue stream. This additional revenue comes from the fees they charge users

who interact with one another after joining the platform. Taking this approach brings about

a great degree of analytical tractability to the study of platform competition. In particular, it

opens the door to studying asymmetry among platforms and variable total demand, which

are essential features for analyzing questions surrounding dominant platforms.

Using our modeling approach we address a set of policy questions related to platform

dominance that attract significant debate. We show that increasing competition may have

the unintended consequences of tipping the market towards a dominant platform. We

also show that, in the context of mergers, strong network effects can act as a substitute for

cost synergies. Moreover, we study the effects of interoperability regulation. There, we

show that interoperability tends to mitigate market dominance and lower prices. Within

the policy analysis, our focus has been on identifying the key mechanisms driving these

results. However, we believe that the net fee approach can be useful in addressing further

theoretical and empirical questions in a wide range of platform settings.
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A Microfoundation

Here we provide an example of a microfoundation underpinning the net fee model that we
study throughout the main text. The key idea is that users first make the decision of which
platform to join. Once they have joined any given platform, they make interaction decisions
which generate utility that platforms can extract. Except as noted below, all notation
remains unchanged. In the context of this microfoundation, we assume all interaction
values to be strictly positive. The game has the following stages.

1. Each platform j sets its vector of membership fees, t j = (t j
1, ..., t

j
S).

2. Each user chooses which platform to join or select the outside option. The mass of
users that joins platform j on each side of the market is denoted by n j = (n j

1, ...,n
j
S).

3. Platforms simultaneously set a vector of per-interaction fees facing users on each side
of the market. Denote such a vector facing j’s side s users by w j

s = (w j
s1, ...,w

j
sS). w j

sŝ is
the amount of money a side-s user must pay to interact with each side-ŝ user.

4. Each user who has joined platform j on side s chooses how many (mass of) users to
interact with on each side of platform j. For a generic side-s user of platform j, denote
this choice by q j

s = (q j
s1, ..., q

j
sS), with each q j

sŝ ∈ [0,n j
ŝ].

A side-s user’s payoff from joining platform j is given by

u j
s := θ j

s +
∑
ŝ∈S

(
γ j

sŝ − w j
sŝ

)
q j

sŝ − t j
s,

or u0
s := θ0

s from the outside option. A side-s user who joins platform j and chooses to
interact with q j

sŝ users on side ŝ generates profits for the platform of

t j
s − c j

s +
∑
ŝ∈S

w j
sŝq

j
sŝ.

Consider stages 3 and 4, taking as given arbitrary vectors of membership fees and joining
decisions, where we asssume n j > 0, ∀ j ∈ J . In the unique subgame perfect equilibrium of
the game defined by these vectors, each platform j sets interaction fee w j

sŝ = γ j
sŝ, ∀s, ŝ ∈ S,

and each side-s user who has joined platform j chooses interaction level q j
sŝ = n j

ŝ, ∀ŝ ∈ S.
To justify this claim, first consider why this a subgame perfect equilibrium. Given

w j
sŝ = γ j

sŝ, ∀s, ŝ ∈ S, each user is indifferent among all feasible interaction levels. Thus, our
claim regarding users’ choices in stage 4 can be supported. In stage 3, if some platform
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j chose some w j
sŝ < γ j

sŝ, the same profile of user actions could still be supported in the
continuation game, but this platform’s profits would strictly decrease. If, on the other
hand, some platform j chose some w j

sŝ > γ j
sŝ, then interaction level q j

sŝ = n j
ŝ could not be

supported, as side s users on platform j would find it optimal to choose an interaction level
of 0, which would yield strictly lower profits for platform j because γ j

sŝn
j
ŝ > 0.

Similar reasoning can be used to argue that no other outcome can be part of a subgame
perfect equilibrium in this game. To see this, observe that once the users have made their
platform choices, they are locked in to the platform, and the platform can guarantee a profit
that is arbitrarily close to γ j

sŝn
j
ŝ by charging w j

sŝ arbitrarily close to γ j
sŝ from a side s user’s

interaction with side ŝ users. Moreover, any price w j
sŝ > γ j

sŝ would lead to the consumer
choosing no interaction with side ŝ users, and resulting in no profit from these interactions.
Therefore, the subgame perfect equilibrium we found is unique.

B Multiple Sides Isomorphism

This section provides a result showing that there is an isomorphism between the one-sided
case (S = 1), which Sections 5 and 6 and Appendix D focus on, and a comparable multi-sided
case where sides are symmetric.

In order to establish the result, we clarify the relevant primitives. A game with S sides
and J platforms takes as primitives (i) the CDF Fs(·) of distribution of membership value
θs on each side s, (ii) the marginal cost c j

s for each platform j on each side s, and (iii) the
interaction value γ j

sŝ for each platform j for each ordered pair of interaction (s, ŝ).

Proposition 9. In a market with one side, characterized by membership value distribution F(·), cost
{c j
} j∈J , and externalities {γ j

} j∈J , which satisfy Assumptions A1 and A2, suppose that there exists
an equilibrium {t j

} j∈J . Then in a market with S sides, characterized by membership value CDFs
{Fs(·)}s∈S, cost {c j

s} j∈J ,s∈S, and externalities {γ j
sŝ} j∈J ,s,ŝ∈S, which satisfy Assumptions A1 and A2,

there exists an equilibrium with

t j
s = t j, n j

s = n j, ∀ j ∈ J , s ∈ S, (24)

if the primitives of the S-sided market are comparable to the one-sided market as follows

Fs(·) = F(·), ∀s ∈ S, (25)

c j
s = c j, ∀ j ∈ J , s ∈ S, (26)
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γ j
ss +

∑
ŝ,s

γ j
sŝ + γ j

ŝs

2
= γ j, ∀ j ∈ J , s ∈ S. (27)

We note that this isomorphism result requires that sides are symmetric as defined by
(25-27), but allows for (both ex ante and ex post) asymmetry across firms. An immediate
implication is that, among symmetric firms, if there exists an asymmetric equilibrium in
a one-sided market, there also exists an asymmetric equilibrium in a comparable multi-
sided market. Therefore, analogous results to those presented in Sections 5 and 6 with
S = 1 regarding competition, interoperability and dominance hold in a class of multi-sided
markets with an arbitrary number of sides.

We point out that, while the isomorphism implies that for a given firm j, its net fees
t j
s = t j and market shares n j

s = n j are the same across all sides s, its total prices p j
s can vary

across sides as p j
s = t j +

∑
ŝ γ

j
sŝn

j in which the added term is not symmetric. Once again,
looking at the net fees instead of the total prices can be more informative in this analysis.

Last, we observe that (27) simplifies to, in the case of two-sided market (S = 2),

γ j
11 = γ j

22 = γ j
−
γ j

12 + γ j
21

2
, ∀ j ∈ J . (28)

Assume the demand and marginal cost are symmetric across two sides (F1(·) = F2(·), c j
1 =

c j
2,∀ j). Such a two-sided market features a set of equilibria that exists in a comparable

one-sided market, as long as the own-side externalities (γ j
11, γ

j
22) are the same across two

sides, even when the cross-side externalities (γ j
12, γ

j
21), sometimes called “indirect network

effects,” differ from one another.

C Competition and Interoperability in Multi-sided Markets

under General Demand

C.1 Competition and Dominance

Now we give conditions under which there exists an asymmetric equilibrium with one firm
larger than the others, among J number of ex ante symmetric firms under general demand
functional form.

For side s, denote the CDF of θ1
s − max{θ2

s − τ, θ
3
s , . . . , θ

J
s} as Hs(·; τ, J) and its PDF as

hs(·; τ, J). We denote the inverse of Hs(·; 0, J) as H−1
s (·; J), i.e., Hs(H−1

s (n; J); 0, J) = n,∀n ∈ (0, 1).
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Proposition 10. Under Assumption A1, among J ex ante symmetric firms in a market with S sides
and no outside option, for any n∗ = (n∗s)s∈S ∈ (0, J−1

J )S, there exists an equilibrium with a dominant
firm which occupies a market share of at least 1 − n∗s on each side s and other firms equally splitting
the rest of the market, if (γsŝ)s,ŝ∈S are large enough so that the following inequalities hold,

γsŝ + γŝs ≥ 0, ∀s, ŝ ∈ S, s , ŝ, (29)∑
ŝ∈S

(
1 −

J
J − 1

n∗s

)
(γsŝ + γŝs) ≥ H−1

s (ns; J) +
1 − n∗s

hs(H−1
s (n∗s); 0, J)

−
n∗s

(J − 1)hs(0;−H−1
s (n∗s; J), J)

, ∀s ∈ S.

(30)

This result illustrates how the mechanism in Proposition 4 carries through to an envi-
ronment with general demand. Equilibrium can feature one platform with an arbitrary
level of dominance, so long as the network externality is strong enough.

C.2 Interoperability

Interoperability in a General Environment. In a S-sided market, the utility of a side-s
user who joins platform j is,

u j
s := θ j +

∑
ŝ∈S

γ j
sŝ

n j
ŝ + λsŝ

∑
k∈J\{ j}

nk
ŝ

 − p j
s, (31)

which generalizes eq. (19) to allow for a set of interoperability parameters {λsŝ}. The net fee
accommodates all externalities the user receives, i.e.,

p j
s := t j

s +
∑
ŝ∈S

γ j
sŝ

n j
ŝ + λsŝ

∑
k∈J\{ j}

nk
ŝ

 .
We extend the pricing formula of Proposition 1 to show the equilibrium net fees under

interoperability. It makes use of notation ϕ j
s(t) :=

∑
k∈J\{ j}

∂nk
s (t)

∂t
j
s

−
∂n

j
s(t)

∂t
j
s

∈ [0, 1], denoting platform j’s

diversion ratio on side s, under general demand form. This captures the share of new users
that platform j would attract from other platforms, rather than from the outside option, if
it were to decrease its net fee by a small amount.
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Under Logit demand, the side-s diversion ratio ϕ j equals

ϕ j
s =

∑
k∈J\{ j} nk

s

1 − n j
s

=

∑
k∈J\{ j} e−tk

s

ez +
∑

k∈J\{ j} e−tk
s
, (32)

which is independent of t j
s.

With interoperability, under general demand there exists a pure-strategy Nash equi-

librium under Assumptions A1 and A2, as long as ∂ϕ
j
s

∂t j
s
≤ 0 holds globally, extending our

baseline existence result (Proposition 2). Under Logit demand, this condition ∂ϕ
j
s

∂t j
s
≤ 0 is

trivially met as ϕ j
s is independent of t j

s, and we can dispense with Assumption A2 as before.

Proposition 11 (Pricing formula under interoperability). At any equilibrium, the net fee that
platform j charges to users on side s satisfies

t j
s = c j

s +
n j

s

−
∂n j

s

∂t j
s

−

∑
ŝ∈S

γ j
ŝs(1 − λŝsϕ

j
ŝ) + γ j

sŝ

1 + λsŝ

∑
k∈J\{ j} nk

ŝ

n j
ŝ


 n j

ŝ. (33)

The equilibrium net fee (20) in Section 6 under Logit demand in a one-side market with

no outside option is a special case of (33), with −∂n j
s

∂t j
s

= n j
s(1 − n j

s) and ϕ j = 1.

Interoperability and Dominance.

Proposition 12. Assume no outside option. Consider any two levels of interoperability λ, λ such
that γsŝλsŝ + γŝsλŝs ∈ [0, γsŝλsŝ + γŝsλŝs),∀s, ŝ ∈ S. For any equilibrium under λ among J ex ante
symmetric firms in a market with S sides in which a dominant firm (referred to as firm 1) has market
share n1

= (n1
s )s∈S ∈ (1

J , 1)S and the other firms equally split the rest of the market, when λ = λ,
there is an equilibrium with n1 = (n1

s )s∈S such that n1
s > n1

s ,∀s ∈ S.

This proposition extends to a general environment the insight from Proposition 6 that
interoperability may mitigate dominance.

D Symmetric Competition and Market Contraction

Here we assume that platforms are ex ante identical. Thus, without loss of generality, we
normalize platforms’ common marginal cost c to zero, since the sum of cost and outside
option, c + z, is what matters for equilibrium market shares. Proposition 13 shows that,
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under strong network effects, increasing the number of competing platforms can lead to
market contraction, i.e., lower total participation by users.

Proposition 13 (Market contraction). Assume γ ∈ (2.71, 3.375]. There exists an interval of
outside option z such that total demand is lower at the symmetric equilibrium of the duopoly model
than it is under monopoly.

This proposition resembles and builds on the “perverse pattern” pricing result of Tan
and Zhou (2021). That model assumes fixed total demand, and that result focuses on
possible price increases as the number of competitors goes up. On the one hand, this
result mirrors that one, suggesting that the current paper’s net fee framework gives rise
to results that are qualitatively similar to those of the more standard total pricing conduct.
At the same time, this result extends the Tan and Zhou (2021) perverse pattern result, in
that it incorporates, into the perverse pattern, rationing of consumption by some users, an
aspect which is precluded when one assumes fixed total demand. While we present the
market contraction result in the special case of monopoly to duopoly under Logit demand,
the mechanism applies more broadly, if one analyzes an increase from J platforms to J′

platforms under general demand form.

E Proofs

E.1 Proofs of Equilibrium Existence

We first establish that the pricing formula in Proposition 1 is the best response of each
platform, by showing that each platform’s profit is quasiconcave in t j. Then we prove that
there exists a fixed point to the set of pricing formulas. Thus there exists an equilibrium.
Towards the end, we briefly discuss how the existence condition extends to the case with
interoperability.

E.1.1 General Demand

Lemma 1. Under Assumption A1, given any t− j, we have −∂n j
s

∂t j
s
∈

(
0, J · gs

)
, for any s ∈ S.

Proof of Lemma 1. The demand n j
s is the mass under probability measure fs(θs) of set

A = {θs|θ
j
s − t j

s ≥ max{θ0
s ,max

k, j
θk

s − tk
s}}

= ∩k, j{θs|θ
j
s − t j

s ≥ θ
k
s − tk

s} ∩ {θs|θ
j
s − t j

s ≥ θ
0
s }.

40



We have −∂n j
s

∂t j
s
> 0 since fs has full support. The shrinkage of this set A resulting from a

marginal increase in t j
s satisfies

∂A

∂t j
s

⊂ Ā = ∪k, j{θs|θ
j
s − t j

s = θk
s − tk

s} ∪ {θs|θ
j
s − t j

s = θ0
s },

and thus the slope of demand satisfies

−
∂n j

s

∂t j
s

≤

∫
Ā

fs(θs)dθs

=
∑
k, j

∫
fs,k| j(θ

j
s − t j

s + tk
s |θ

j
s) fs, j(θ

j
s)dθ

j
s +

∫
fs,0| j(θ

j
s − t j

s|θ
j
s) fs, j(θ

j
s)dθ

j
s

≤

∑
k, j

∫
gs fs, j(θ

j
s)dθ

j
s +

∫
gs fs, j(θ

j
s)dθ

j
s

≤ J · gs.

�

Lemma 2. Under Assumption A1, π j(n j, t− j) is concave in n j, given any t− j :=
(
tk
)

k∈J\{ j}
.

Proof of Lemma 2. Suppress t− j for brevity, acknowledging that we are holding t− j fixed.
First, we show the mapping n j(t j) is globally univalent, and thus we can think of platform
j’s optimization problem as choosing n j. Second, we show π j is concave in n j.

First, the Jacobian of n j(t j) is a S × S diagonal matrix with negative diagonals ∂n j
s

∂t j
s
< 0

from Lemma 1. Thus the Jacobian is negative definite and thus globally univalent. (Gale
and Nikaido, 1965).

Second, we have

∂π j

∂n j
s

=

∂π j

∂t j
s

∂n j
s

∂t j
s

=
n j

s

∂n j
s

∂t j
s

+
∑

ŝ

(
γ j

sŝ + γ j
ŝs

)
n j

ŝ + t j
s − c j

s,

and

∂2π j

∂n j
s∂n j

ŝ

=

∂ ∂π
j

∂n
j
s

∂t j
ŝ

∂n j
ŝ

∂t j
ŝ

=

2 −
n j

s
∂2n j

s

∂(t j
s)2(

∂n j
s

∂t j
s

)2

 1
∂n j

s

∂t j
s

· 1s=ŝ +
(
γ j

sŝ + γ j
ŝs

)
.
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For the Hessian
(
∂2π j

∂n j
s∂n j

ŝ

)
s,ŝ∈S

to be globally negative semi-definite, it suffices for it to be a

diagonally dominant matrix with non-positive diagonals, i.e.

∂2π j

∂(n j
s)2

+
∑
ŝ,s

∣∣∣∣∣∣∣ ∂2π j

∂n j
s∂n j

ŝ

∣∣∣∣∣∣∣ ≤ 0, ∀s ∈ S. (34)

The LHS of (34) equals, 2 −
n j

s
∂2n j

s

∂(t j
s)2(

∂n j
s

∂t j
s

)2

 1
∂n j

s

∂t j
s

+ 2γ j
ss +

∑
ŝ,s

∣∣∣γ j
sŝ + γ j

ŝs

∣∣∣ .
Thus the inequality (34) simplifies to

2γ j
ss +

∑
ŝ,s

∣∣∣γ j
sŝ + γ j

ŝs

∣∣∣ ≤
2 −

n j
s
∂2n j

s

∂(t j
s)2(

∂n j
s

∂t j
s

)2

 1

−
∂n j

s

∂t j
s

. (35)

By Theorem 1 in the Appendix of Caplin and Nalebuff (1991), Assumption A1 implies n j
s(t

j
s)

is
(

ρs

1+(J+1)ρs

)
-concave, further implying

−

n j
s
∂2n j

s

∂(t j
s)2(

∂n j
s

∂t j
s

)2 ≥
ρs

1 + (J + 1)ρs
− 1,

and Lemma 1 shows

−
∂n j

s

∂t j
s

∈

(
0, J · gs

)
.

Thus the inequality (35) holds ifγ j
ss +

∑
ŝ,s

∣∣∣∣∣∣∣γ
j
sŝ + γ j

ŝs

2

∣∣∣∣∣∣∣
 · gs ≤

1
2J

(
1 +

ρs

1 + (J + 1)ρs

)
.
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Under Logit demand, the inequality (35) takes the form of

2γ j
ss +

∑
ŝ,s

∣∣∣γ j
sŝ + γ j

ŝs

∣∣∣ ≤ 1

n j
s

(
1 − n j

s

)2 , (36)

the RHS of which is minimized at n j
s = 1

3 to obtain 6.75. This is a weaker bound, as we make
use of the specific demand functional form. �

Proof of Proposition 2. Lemma 2 implies that given any t− j, π j(t j, t− j) is maximized at at
most one t j under Assumption A1, though it could be monotonic in t j

s for some s ∈ S.
The full set of pure-strategy equilibria is thus the set of solutions to the system of pricing
formulas for all J platforms. Now we claim that, with Assumption A2 in addition, there
exists a solution. It suffices to show that it is without loss of generality to restrict best
responses to [L,U]JS, so that we can apply Brouwer’s fixed point theorem.

We can write

π j(t j, t− j) =
∑

s

t j
s +

∑
ŝ

γ j
sŝn

j
ŝ − c j

s

 n j
s

= (t j
s − c j

s)n
j
s +

∑
ŝ

(
γ j

sŝ + γ j
ŝs

)
n j

sn
j
ŝ + g(t j

−s, t
− j),

in which g(t j
−s, t− j) is independent of t j

s. Define

h(t j
s, t

j
−s, t

− j) := π j(t j, t− j) − g(t j
−s, t

− j) =

t j
s − c j

s +
∑

ŝ

(
γ j

sŝ + γ j
ŝs

)
n j

ŝ(t
j
ŝ, t
− j
ŝ )

 n j
s(t

j
s, t
− j
s ).

For the lower bound, let L := min j,s

(
c j

s −
∑

ŝ

∣∣∣γ j
sŝ + γ j

ŝs

∣∣∣)− 1. It follows that h(t j
s, t

j
−s, t− j) < 0

as long as t j
s < L. However, if the platform j sets t j

s = ť j
s := c j

s +
∑

ŝ

∣∣∣γ j
sŝ + γ j

ŝs

∣∣∣ + 1, it ensures
h(t j

s, t
j
−s, t− j) > 0. Formally, we have, for any t j

−s, t− j, if t j
s < L, then

π j(t j
s, t

j
−s, t

− j) < π j(ť j
s, t

j
−s, t

− j),

Thus j would never set t j
s < L. This also implies that it is without loss of generality to

restrict to t j
s such that h(t j

s, t
j
−s, t− j) > 0.

For the upper bound, we notice that when h(t j
s, t

j
−s, t− j) is positive, since n j

s is increasing
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in each competitor’s side-s net fee, it is bounded between

h(t j
s, t

j
−s, t

− j) ≥ hL(t j
s, t

j
−s, t

− j) :=

t j
s − c j

s +
∑

ŝ

(
γ j

sŝ + γ j
ŝs

)
n j

ŝ(t
j
ŝ, t
− j
ŝ )

 n j
s(t

j
s,L),

and

h(t j
s, t

j
−s, t

− j) ≤ h∞(t j
s, t

j
−s, t

− j) :=

t j
s − c j

s +
∑

ŝ

(
γ j

sŝ + γ j
ŝs

)
n j

ŝ(t
j
ŝ, t
− j
ŝ )

 n j
s(t

j
s,∞).

It is guaranteed that at t j
s = ť j

s, the lower bound hL(ť j
s, t

j
−s, t− j) ≥ h := n j

s(ť
j
s,L) > 0. Meanwhile,

the upper bound at any t j
s satisfies h∞(t j

s, t
j
−s, t− j) ≤ h(t j

s) :=
(
t j
s − c j

s +
∑

ŝ

∣∣∣γ j
sŝ + γ j

ŝs

∣∣∣) n j
s(t

j
s,∞).

Under Assumption A2, limt j
s→∞

h(t j
s) = 0, and hence there exists U such that, for any t j

s > U,

we have h(t j
s) < h, implying h(t j

s, t
j
−s, t− j) < h(ť j

s, t
j
−s, t− j). Consequently, we have, for any

t j
−s, t− j, if t j

s > U, then

π j(t j
s, t

j
−s, t

− j) < π j(ť j
s, t

j
−s, t

− j).

Therefore, j would never set t j
s > U, completing our proof. �

E.1.2 Logit Demand

Proof of Proposition 2’. The extension we accommodate here is that there is no outside
option but multiple platforms. We have already shown that the first-order condition is the
best-response function, when inequality (36) holds. Now we show that there is a fixed point
to the system of best response functions, even when there is no outside option (ez = 0).

The system of best response functions is

t j
s = T j

s(t) := c j
s +

1

1 − n j
s

−

∑
ŝ∈S

(
γ j

sŝ + γ j
ŝs

)
n j

ŝ, ∀ j ∈ J , s ∈ S,

with

n j
s(t) =

e−t j
s

ez +
∑

k∈J e−tk
s
.

Use Schaefer’s fixed point theorem recited as follows. Assume that X is a Banach space
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and that T : X→ X is a continuous compact mapping. Moreover assume that the set

∪0≤µ≤1{x ∈ X : x = µT(x)}

is bounded. Then T has a fixed point.
Our T(t) is continuous. And in Euclidean space, a continuous mapping is a compact

mapping. Thus it suffices to show that for our T(t), M := ∪0≤µ≤1{t ∈ RJS : t = µT(t)} is
bounded. Claim that there exists L ≤ 0,U ≥ 0 such that M ⊂ [L,U]JS, which would imply
our existence result.

For the lower bound, as

T j
s(t) =

1

1 − n j
s

−

∑
ŝ

(
γ j

sŝ + γ j
ŝs

)
n j

ŝ + c j
s

≥ −

∑
ŝ

∣∣∣γ j
sŝ + γ j

ŝs

∣∣∣ + c j
s,

letting L := min j,s{0,−
∑

ŝ

∣∣∣γ j
sŝ + γ j

ŝs

∣∣∣ + c j
s}, we have µT j

s(t) ≥ L,∀µ ∈ [0, 1], t ∈ RJS. Thus any t
with t j

s < L will not be in M.
For the upper bound, we study a candidate t that satisfies t = µT(t) for some µ ∈ [0, 1],

and we show that there exists a constant U such that t j
s ≤ U,∀ j, s. From t = µT(t), we have

t j
s = µ

1

1 − n j
s

+ µ

−∑
ŝ

(
γ j

sŝ + γ j
ŝs

)
n j

ŝ + c j
s


≤

1

1 − n j
s

+ c j
s +

∑
ŝ

∣∣∣γ j
sŝ + γ j

ŝs

∣∣∣
=

n j

1 − n j
s

+ 1 + c j
s +

∑
ŝ

∣∣∣γ j
sŝ + γ j

ŝs

∣∣∣
=

e−t j
s

ez +
∑

l, j e−tl
s

+ 1 + c j
s +

∑
ŝ

∣∣∣γ j
sŝ + γ j

ŝs

∣∣∣
=

e−t j
s

ez +
∑

l, j e−tl
s

+ d j
s, (37)

with d j
s := 1 + c j

s +
∑

ŝ

∣∣∣γ j
sŝ + γ j

ŝs

∣∣∣ as a constant. For any side s, pick two generic platforms
indexed by j, k, there are three possible possibilities: 1. Two inequalities t j

s > d j
s, tk

s > dk
s both

hold; 2. only one of them holds; 3. neither holds. We claim that all three cases lead to some
upper bound for t.
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In the first case where t j
s > d j

s, tk
s > dk

s , from inequality (37) we have

t j
s ≤ e−t j

setk
s + d j

s, (38)

tk
s ≤ e−tk

s et j
s + dk

s .

Move the d terms to the LHS and multiply two inequalities. We get

(t j
s − d j

s)(tk
s − dk

s) ≤ 1,

tk
s ≤

1

t j
s − d j

s

+ dk
s .

Plugging this back into inequality (38) gives a new inequality solely dependent on t j
s, d

j
s, dk

s ,

t j
s ≤ e−t j

s exp

 1

t j
s − d j

s

+ dk
s

 + d j
s.

The LHS increases to∞ and the RHS decreases to d j
s as t j

s →∞. Thus there exists a threshold
u1

j,k,s such that t j
s ≤ u1

j,k,s. We set U1 = max j,k,s u1
j,k,s.

In the second case, we let t j
s > d j

s but tk
≤ dk

s . Then from inequality (37) we have

t j
s ≤ e−t j

setk
s + d j

s

≤ e−t j
sedk

s + d j
s.

Once again, we observe that the LHS is increasing to∞ and the RHS is decreasing to d j
s as

t j
s →∞, and hence there exists u2

j,k,s such that t j
s ≤ u2

j,k,s. We set U2 = max j,k,s u2
j,k,s.

In the third case where t j
s ≤ d j

s, tk
s ≤ dk

s , we simply set U3 = max j,s d j
s.

Taking stock, we let U := max{U1,U2,U3
}, which would guarantee that any candidate t

that satisfies t = µT(t) would have t j
s ≤ U,∀ j, s, completing our proof. �

E.1.3 Interoperability

Here we sketch how the existence condition extends to the case with interoperability,
covered in Section 6 and Appendix C.2. We analyze the case with S = 1 under general
demand; the case with an arbitrary S is similar. As before, first, each platform’s best
response is characterized by its first-order condition, under the additional assumption that
∂ϕ j

∂t j ≤ 0 holds globally. Second, there is a fixed point.
In one-sided markets (S = 1), we haveπ j = (t j+γ jn j+γ jµn− j

−c j)n j, with n− j :=
∑

k∈J\{ j} nk.
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The marginal profit is

∂π j

∂n j =
∂π j

∂t j

∂n j

∂t j

=
n j

∂n j

∂t j

+ 2γ jn j + µγ jn− j
− µγ jϕ jn j + t j

− c j,

and

∂2π j

∂(n j)2
=

∂ ∂π
j

∂nj

∂t j

∂n j

∂t j

=

2 −
n j ∂2n j

∂(t j)2(
∂n j

∂t j

)2

 1
∂n j

∂t j

− µγ jn j
∂ϕ j

∂t j

∂n j

∂t j

+ 2γ j(1 − µϕ j).

It is non-positive, if ∂ϕ j

∂t j ≤ 0 holds globally, in addition to Assumptions A1 and A2. (See the
proof of Lemma 2 for bounds on terms unrelated to µ.) Under Logit demand, the diversion
ratio ϕ j is independent of t j as shown in eq. (32), and thus this condition is met.

In terms of a fixed point, the pricing formula under interoperability is, reciting eq. (33),

t j = c j +
n j

−
∂n j

∂t j

−

2 + µ

∑k∈J\{ j} nk

n j − ϕ j

γn j,

= c j +
n j

−
∂n j

∂t j

−

(
2 − µ(1 + ϕ j)

)
γn j
− µγ(1 − n0).

Compared to the no-interoperability case, γn j is now multiplied by 2 − µ(1 + ϕ j) instead of
simply 2. However, since µ, ϕ j are bounded between 0 and 1, it is straightforward to repeat
the proofs of Propositions 2 and 2’ to establish a fixed point.

E.2 Proofs of Other Results in the Main Text

Proof of Proposition 1. It is obtained by setting (11) to zero and plugging in (3). �

Proof of Proposition 3. We use the aggregative games approach from Anderson, Erkal and
Piccinin (2020) to establish uniqueness. We recap their assumptions; A1-A3 ensure existence
and A4 ensures uniqueness. Each platform plays a j

≥ 0 and the aggregate is A =
∑

j a j,
including the outside option if any. And let A− j = A− a j. In the Logit specification, we have
a j = e−t j . The best response (br) function is defined as r j(A− j). As (r j)′ > −1 and A− j + r j(A− j)
strictly increases in A− j implied by A3 shown below, define the inclusive best response (ibr)
as r̃ j(A).

• A1 (competitiveness): π j(A− j + a j, a j) strictly decreases in A− j for a j > 0.
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• A2 (payoffs): (a) π j(A− j + a j, a j) is twice differentiable, and strictly quasi-concave in a j,
with a strictly negative second derivative with respect to a j at an interior maximum.

(b) π j(A, a j) is twice differentiable, and strictly quasi-concave in a j, with a strictly
negative second derivative with respect to a j at an interior maximum.

• A3 (reaction function slope): d2π j

d(a j)2 <
d2π j

da jdA− j .

• A4 (slope condition): (r̃ j)′(A) < r̃ j(A)
A .

Using br r j(A− j) instead of ibr r̃ j(A), A4 is equivalently expressed as29

• A4’ (slope condition): (r j)′(A− j) < r j(A− j)
A− j .

We now proceed to characterize the threshold on γ j that satisfies A3 and A4’, so as to
show equilibrium uniqueness.

Our FOC is

t j
− c j =

1
1 − n j − 2γn j,

− ln r j(A− j) − c j =
r j(A− j) + A− j

A− j − 2γ j r j(A− j)
r j(A− j) + A− j ,

which implies

(r j)′(A− j) =

[
1

(A− j)2 −
2γ j

(r j(A− j)+A− j)2

]
r j(A− j)[

1
(A− j)2 −

2γ j

(r j(A− j)+A− j)2

]
r j(A− j) + 1

A− j

r j(A− j)
A− j .

Simplify the denominator of the first term,[
1

(A− j)2
−

2γ j

(r j(A− j) + A− j)2

]
r j(A− j) +

1
A− j =

r j

(r j + A− j)2

[
(r j + A− j)3

r j(A− j)2
− 2γ j

]
,

=
r j

(r j + A− j)2

[
1

n j(1 − n j)2
− 2γ j

]
.

As 1
n j(1−n j)2 obtains its minimum of 6.75 when n j = 1/3, γ j

≤ 3.375 ensures the denominator is
positive. Since the numerator of the first term is smaller than the denominator, it is ensured
the first term is smaller than 1 and thus A4’ holds.

29Rewrite (r̃ j)′(A) =
(r j)′

1+(r j)′ and r̃ j

A = r j

A− j+r j . We have (r j)′

1+(r j)′ <
r j

A− j+r j if and only if (r j)′ < r j

A− j . the equivalence
of A4 and A4’ holds only when there is a well-defined ibr, which is true when (r j)′(A− j) > −1.
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Our Logit game with generic γ j admits an ibr if (r j)′(A− j) > −1, which is the Lemma 1 in
Anderson, Erkal and Piccinin (2020) implied by their A3. When γ j

≤ 3.375, the denominator
is positive, and thus (ri)′(A− j) ≥ −1 is simplified to[

1
(A− j)2

−
2γ j

(r j + A− j)2

]
(r j + A− j) +

1
r j ≥ 0

1
n j +

1
(1 − n j)2

≥ 2γ j,

the LHS of which obtains its minimum of≈ 5.219 when n j
≈ 0.361. Thus whenγ j . 2.610,∀ j,

our Logit game admits an ibr, which combined with A4’ yields equilibrium uniqueness. �

Proof of Proposition 4. Here we study an asymmetric equilibrium in which there is one
dominant platform, and (J−1) symmetric smaller platforms. We use superscript 1 to denote
the dominant platform and 2 for a generic smaller platform. We define n := (J − 1)n2 as the
total demand of all smaller platforms, with n1 = 1 − n,n2 = n/(J − 1).

The demand of the dominant platform relative to a smaller platform satisfies,

e−t1

e−t2 =
n1

n2 =
1 − n

n
J−1

,

and the pricing formulas are,

t1 = c +
1

1 − n1 − 2γn1 = c +
1
n
− 2γ(1 − n)

t2 = c +
1

1 − n2 − 2γn2 = c +
1

1 − n
J−1

− 2γ
n

J − 1
.

We can combine these three and arrive at a characterization function g(n; J) whose zeros
are equilibria,

g(n; J) = ln n − ln(J − 1) − ln(1 − n) +
1

1 − n
J−1

− 2γ
n

J − 1
−

(1
n
− 2γ(1 − n)

)
.

We notice limn→0 g(n; J) = −∞.
As before, suppose the duopoly has an equilibrium featuring a demand of the smaller

platform n, which solves g(n; 2) = 0. With 3 platforms, if g(n; 3) > 0, then by the intermediate
value theorem, there must exists n′ < n that satisfies g(n′; 3) = 0. As the dominant platform’s
market share is 1− n′, that means, the dominant platform is more dominant under triopoly
than under duopoly. Since g(n; 2) = 0, an equivalent condition to g(n; 3) > 0 is g(n; 3) −
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g(n; 2) > 0, and we have

g(n; 3) − g(n; 2) = − ln 2 +
1

1 − n/2
−

1
1 − n

+ γn.

This shows that, at a given n, the network externality γ has to be relatively strong for the
difference to be larger than zero, very similar to the previous market contraction result.

However, as we restrict attention to ex ante identical platforms, the asymmetric equilib-
rium market outcome is also solely driven by γ. We rewrite g(n; J) = 0 as

γ = f (n, J) :=
1
2

ln n
1−n − ln(J − 1) + J−1

J−1−n −
1
n

n
J−1 − (1 − n)

,

which takes on a U-shape in n when J = 2, 3. In the relevant parameter rangeγ ∈ (2.71, 3.375]
that we are interested in, we can verify that at any n that solves f (n, 2) = γ, we have
f (n, 3) < f (n, 2), suggesting that there exists n′ < n that solves f (n′, 3) = γ. We conclude that
there exists an equilibrium under triopoly in which a dominant platform’s market share is
greater than the market share of any platform in any duopoly equilibrium. �

Proof of Proposition 5. Let 1 denote one of the two symmetric firms with marginal cost c
to be merged, and 2 denote the other firm with zero marginal cost. Before the merger, with
a market share of n/2, firm 1’s FOC is

t1 = c +
1

1 − n
2

− 2γ
n
2
,

and firm 2’s FOC is

t2 =
1
n
− 2γ(1 − n).

Their relative demand satisfies

e−t1

e−t2 =
n/2

1 − n
.

Combining these 3 equations to cancel t1, t2, we arrive at a characterization of the equilib-
rium n in terms of c, γ,

f (n) = c +
1

1 − n
2

− γn −
1
n

+ 2γ(1 − n) + ln
n

2(1 − n)
= 0. (39)
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Notice that limn→0 f (n) = −∞, f (2
3 ) = c > 0, limn→1 f (n) = ∞, Further, when γ < 2.62 which

we assume, f (n) is increasing in n. Thus there is a unique solution n ∈
(
0, 2

3

)
, which is

decreasing in c. When n ∈
(
0, 2

3

)
, f (n) is also increasing in γ, suggesting n is decreasing in

γ. As long as c +
γ
2 >

2
3 + ln 2 ≈ 1.36 so that f

(
1
2

)
> 0, it is guaranteed that n < 1

2 . That is, the
most efficient firm (with zero marginal cost) has a market share that is larger than one half.

After the merger, if the merged identity has a marginal cost of c′ > 0, its equilibrium
market share n′ is characterized by

g(n′) = c′ +
1

1 − n′
− 2γn′ −

1
n′

+ 2γ(1 − n′) + ln
n′

1 − n′
= 0.

Similarly, we observe that g(0) = −∞, g(1
2 ) = c′ > 0, g(1) = ∞. Further, when γ ≤ 3, g(n′) is

increasing in n′. There is a unique solution n′ ∈
(
0, 1

2

)
that is decreasing in both c′ and γ.

Suppose the pre-merger equilibrium features n, i.e. f (n) = 0. We have

g(n) = g(n) − f (n) = −γn +
n

(1 − n)(2 − n)
+ ln 2 + c′ − c.

The post-merger equilibrium entails n′ > n if and only if g(n) < 0, i.e.

∆c := c − c′ >
n

(1 − n)(2 − n)
− γn + ln 2.

Here we see that, given n, a larger γ leads to a smaller threshold of ∆c. �

Proof of Proposition 6. From eq. (20) we have

t j = c +
1

1 − n j − 2γn j
− γλ(1 − n j) + γλn j

= (c − γλ) +
1

1 − n j − 2γ(1 − λ)n j.

We use superscript 1 for the larger platform and 2 for the smaller one. The demand function
gives that

e−t1

e−t2 =
n1

n2 .

Combining these to cancel t1, t2 and plugging in n2 = 1 − n1, we get

ζ(n1;λ) := ln
n1

1 − n1 +
1

1 − n1 −
1
n1 − 2γ(1 − λ)(2n1

− 1) = 0
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Observe that limn1→1 ζ(n1;λ) = ∞,∀λ. Consider two levels of interoperability λ, λ, and
suppose the dominant platform has a market share n1 > 1/2 under λ, i.e. ζ(n1;λ) = 0. At
this n1 under a lower level of interoperability λ, we have

ζ(n1;λ) = ζ(n1;λ) − ζ(n1;λ)

= 4(λ − λ)γn1 < 0.

As limn1→1 ζ(n1;λ) = ∞, by the intermediate value theorem, there exists n1 > n1 that solves
ζ(n1;λ) = 0. That is, when the level of interoperability is lower, there exists an equilibrium
in which the dominant platform has an even larger market share. �

Proof of Proposition 7. Part (a) follows from setting S = 1 and imposing symmetry among
platforms in Equation (33), which is derived in the proof of Proposition 11.

For part (b), note that, in a symmetric equilibrium among symmetric platforms, we have
n−1 = (J − 1)n1 and all platforms charge the same t1. We define

ξ(t;λ) = −t + c +
1

1 − n j − 2γn j
− γλ(J − 1 − ϕ j)n j,

with all platforms charging the same t. Any solution to ξ(t;λ) = 0 is a symmetric equilib-
rium, and conversely any symmetric equilibrium would satisfy ξ = 0.

Suppose there is a symmetric equilibrium with interoperability λ featuring t j = t, and
we are to find a new symmetric equilibrium with higher interoperability λ featuring t j = t.
We can write

ξ(t;λ) = ξ(t;λ) − γ(λ − λ)(J − 1 − ϕ j)n j,

the latter term of which enters negatively unless J = 2 and ϕ j = 1, in which case ξ(t;λ) =

ξ(t;λ),∀t and thus there exists a new equilibrium with t = t.
If, however, J > 2 or ϕ j < 1, then given any λ > λ, we have ξ(t;λ) < ξ(t;λ),∀t. In this

case, ξ(t;λ) < 0, since ξ(t;λ) = 0. To show that there exists t < t satisfying ξ(t;λ) = 0, it
suffices to show that there exists t− such that ξ(t;λ) > 0,∀t < t− and then the intermediate
value theorem establishes the existence of such a t ∈ (t−, t). We can choose any t− such that

t− < c − 2γ − γλ(J − 1),
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which implies, ∀t < t−,

ξ(t;λ) = −t + c +
1

1 − n j − 2γn j
− γλ(J − 1 − ϕ j)n j

>
1

1 − n j + 2γ(1 − n j) + γλϕ jn j

> 0,

completing our proof.
Since we are studying symmetric equilibria with a fixed number of platforms, total

market participation N̂ = Jn j is inversely related to t, unless there is no outside option, in
which case N̂ is always equal to 1.

�

Derivation of p̂ in Section 6.2. Assume S = 1, γ > 0, and demand takes on the standard
Hotelling form, with two symmetric platforms competing in a fully “covered” market on
the unit interval, with transport cost parameter τ. Competing in total prices, platform 1’s
demand is

n1 =
1
2

+
γ(1 − λ)(n1

− n2) − (p1
− p2)

2τ

=
1
2
−

p1
− p2

2τ − 2γ(1 − λ)
,

and its profit is π1 = (p1
− c)n1.

Solving for symmetric Nash equilibrium in total prices gives

p̂ = c + τ − γ(1 − λ),

which implies that, at the equilibrium in total prices, the net fee equivalent, t̂, is

t̂ = p̂ − γ(n1 + λn2)

= c + τ +
1
2

(3 − λ)γ.

�

Proof of Proposition 8. To obtain this result, note that platform j’s profits are equal to
(t j

A + γAn j
B(t j

B, t
k
B) − cA)̃n j

A(t j
A) + (t j

B + γBñ j
A(t j

A) − cB)n j
B(t j

B, t
k
B), k , j, and maximize with respect

to t j
A and t j

B. �
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E.3 Proofs of Results in the Appendix

Proof of Proposition 9. When Assumptions A1 and A2 hold for any market, a solution
to the FOCs is an equilibrium in the market and vice versa. Thus an equilibrium in a
multi-sided market satisfies, based on Proposition 1,

t j
s = c j

s +
n j

s(ts)

−
∂n j

s(ts)

∂t j
s

−

∑
ŝ∈S

(γ j
sŝ + γ j

ŝs)n
j
ŝ(tŝ),

whereas the demand follows

n j
s (ts) =

∫
1
{u j

s≥uk
s ,∀k∈J∪{0}} fs(θs)dθs =

∫
1
{θ

j
s−t j

s≥θ
k
s−tk

s ,∀k∈J∪{0}} fs(θs)dθs.

Under (25-27), a side-symmetric equilibrium in the S-sided market is characterized by

t j = c j +
n j(t)

−
∂n j(t)
∂t j

− 2γ jn j(t),

and

n j (t) =

∫
1{θ j−t j≥θk−tk,∀k∈J∪{0}} f (θ)dθ.

These are exactly the expressions of pricing formulas and demand function in a comparable
one-sided market. Thus any equilibrium in the one-sided market is a solution to this system,
which is in turn a side-symmetric equilibrium in the S-sided market. It is straight forward
to see that the isomorphism result extends to the case with interoperability too. �

Proof of Proposition 10. We observe the following limits Hs(∞; τ, J) = 1,∀τ, Hs(−∞; τ, J) =

0,∀τ, and Hs(x;−∞, J) = 0,∀x,Hs(x;∞, J) = Hs(x; 0, J − 1) ∈ (0, 1],∀x. The first two are
properties of Hs as a CDF. The third follows from that if one competitor charges a price that
is infinitely lower, then the demand of other firms is zero. The last follows from that one
competitor charging an infinitely high price amounts to it dropping out of the market.

For the inverse H−1
s , since Hs(0; 0, J) = J−1

J holds for a symmetric market share configu-
ration, we have H−1

s ( J−1
J ; J) = 0.

Now we characterize the equilibrium with J firms in which firm 1 has a unique market
share whereas the other (J − 1) firms equally split the rest of the market. Firm 2 signifies a
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generic firm among the other firms.

t1
s =

1 −Hs(τs; 0, J)
hs(τs; 0, J)

− βss(1 −Hs(τs; 0, J)) −
∑
ŝ,s

βsŝ(1 −Hŝ(τŝ; 0, J)),

t2
s =

1 −Hs(0;−τs, J)
hs(0;−τs, J)

− βss(1 −Hs(0;−τs, J)) −
∑
ŝ,s

βsŝ(1 −Hŝ(0;−τŝ, J))

=
Hs(τ; 0, J)

(J − 1)hs(0;−τs, J)
− βss

Hs(τ; 0, J)
J − 1

−

∑
ŝ,s

βsŝ
Hŝ(τ; 0, J)

J − 1
,

where βsŝ = γsŝ + γŝs and we use 1 − Hs(τ; 0, J) + (J − 1)(1 − Hs(0;−τ, J)) = 1 in the last
simplification. We use the inverse function H−1

s and t1
s − t2

s = −τs to cancel t1
s , t2

s , τs,

gs(ns, {nŝ}ŝ,s; J) = H−1
s (ns; J) +

1 − ns

hs(H−1
s (ns; J); 0, J)

− βss(1 − ns) −
∑
ŝ,s

βsŝ(1 − nŝ)

−

 ns

(J − 1)hs(0;−H−1
s (ns; J), J)

− βss
ns

J − 1
−

∑
ŝ,s

βsŝ
nŝ

J − 1


= −

∑
ŝ

(
1 −

J
J − 1

nŝ

)
βsŝ + H−1

s (ns; J) +
1 − ns

hs(H−1
s (ns; J); 0, J)

−
ns

(J − 1)hs(0;−H−1
s (ns; J), J)

.

A solution {ns} to {gs(n; J) = 0} is an equilibrium in which one firm has a market share of 1−ns

while the others equally split ns. We note that ns = J−1
J is always a solution, characterizing

the symmetric equilibrium.
We make two crucial observations on gs:
(i) limns→0+ gs(ns, {nŝ}ŝ,s; J) = ∞. This is because limns→0+ H−1

s (ns; J) = ∞ (since the mem-
bership value distribution has full support), 1−ns

hs(H−1
s (ns;J);0,J)

is always positive, β-related terms

are all finite, and limns→0+
ns

(J−1)hs(0;−H−1
s (ns;J),J)

= limns→0+
1−Hs(0;−H−1

s (ns;J))
hs(0;−H−1

s (ns;J),J)
= 1−Hs(0;0,J−1)

hs(0;0,J−1) is finite too.
(ii) gs(ns, {nŝ}ŝ,s; J) increases in nŝ if βsŝ > 0. As a result, if gs(n∗s, {n∗ŝ}; J) < 0, we have

gs(n∗s, {nŝ}ŝ,s; J) < 0 if nŝ < n∗ŝ for all ŝ , s. By inspecting the formula, it is evident that the
same conclusion holds if βsŝ = 0.

Thus, under inequalities (29, 30), for any side s, we have that limns→0+ gs(ns, {nŝ}ŝ,s; J) =

∞, gs(n∗s, {nŝ}; J) < 0 if nŝ < n∗ŝ for all ŝ , s. The Poincaré–Miranda theorem, which is a
generalization of the intermediate value theorem from the unidimensional case to multidi-
mensional case, implies that there exists a solution n to g = 0 that satisfies ns < n∗s for any
s. �
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Proof of Proposition 11. Denote π j(t j, t− j) as platform j’s profit . We have

π j(t j, t− j) =
∑
s∈S

t j
s +

∑
ŝ∈S

γ j
sŝ

n j
ŝ + λsŝ

∑
k∈J\{ j}

nk
ŝ

 − c j
s

 n j
s,

and thus

∂π j(t j, t− j)

∂t j
s

= (p j
s − c j

s)
∂n j

s

∂t j
s

+ n j
s

1 + γ j
ss(1 − λssϕ

j
s)
∂n j

s

∂t j
s

 +
∑

s∈S\{s}

n j
ŝγ

j
ŝs(1 − λŝsϕ

j
ŝ)
∂n j

s

∂t j
s

in which ϕ j
s(t) :=

∑
k∈J\{ j}

∂nk
s (t)

∂t
j
s

−
∂n

j
s(t)

∂t
j
s

∈ [0, 1], denoting platform j’s diversion ratio on side s. Setting

∂π j(t j,t− j)

∂t j
s

= 0 leads to

t j
s = p j

s −

∑
ŝ∈S

γ j
sŝ

n j
ŝ + λsŝ

∑
k∈J\{ j}

nk
ŝ


= c j

s +
n j

s

−
∂n j

s

∂t j
s

−

∑
ŝ∈S

γ j
ŝs(1 − λŝsϕ

j
ŝ)n

j
ŝ −

∑
ŝ∈S

γ j
sŝ

1 + λsŝ

∑
k∈J\{ j} nk

ŝ

n j
ŝ

 n j
ŝ

= c j
s +

n j
s

−
∂n j

s

∂t j
s

−

∑
ŝ∈S

γ j
ŝs(1 − λŝsϕ

j
ŝ) + γ j

sŝ

1 + λsŝ

∑
k∈J\{ j} nk

ŝ

n j
ŝ


 n j

ŝ.

�

Proof of Proposition 12. When there is no outside option, (33) simplifies to

t j
s = c j

s +
n j

s

−
∂n j

s

∂t j
s

−

∑
ŝ∈S

γ j
ŝs(1 − λŝs) + γ j

sŝ

1 + λsŝ

 1

n j
s

− 1

 n j
ŝ

=

c j
s −

∑
ŝ∈S

γ j
sŝλsŝ

 +
n j

s

−
∂n j

s

∂t j
s

−

∑
ŝ∈S

[
γ j

ŝs(1 − λŝs) + γ j
sŝ(1 − λsŝ)

]
n j

ŝ,

as ϕ j
s = 1 and

∑
k∈J\{ j} nk

ŝ = 1 − n j
s.

Now we characterize the equilibrium with J ex ante symmetric firms in which firm 1 has
a unique market share whereas the other (J − 1) firms equally split the rest of the market.
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Firm 2 signifies a generic firm among the other firms.

t1
s = cs +

1 −Hs(τs; 0, J)
hs(τs; 0, J)

− βss(λ)(1 −Hs(τs; 0, J)) −
∑
ŝ,s

βsŝ(λ)(1 −Hŝ(τŝ; 0, J)),

t2
s = cs +

1 −Hs(0;−τs, J)
hs(0;−τs, J)

− βss(λ)(1 −Hs(0;−τs, J)) −
∑
ŝ,s

βsŝ(λ)(1 −Hŝ(0;−τŝ, J))

=
Hs(τ; 0, J)

(J − 1)hs(0;−τs, J)
− βss(λ)

Hs(τ; 0, J)
J − 1

−

∑
ŝ,s

βsŝ(λ)
Hŝ(τ; 0, J)

J − 1
,

where βsŝ(λ) = γsŝ(1−λsŝ) + γŝs(1−λŝs) and we use 1−Hs(τ; 0, J) + (J − 1)(1−Hs(0;−τ, J)) = 1
in the last simplification. We use the inverse function H−1

s and t1
s − t2

s = −τs to cancel t1
s , t2

s , τs,

gs(ns, {nŝ}ŝ,s;λ, J) = H−1
s (ns; J) +

1 − ns

hs(H−1
s (ns; J); 0, J)

− βss(λ)(1 − ns) −
∑
ŝ,s

βsŝ(λ)(1 − nŝ)

−

 ns

(J − 1)hs(0;−H−1
s (ns; J), J)

− βss(λ)
ns

J − 1
−

∑
ŝ,s

βsŝ(λ)
nŝ

J − 1


= −

∑
ŝ

(
1 −

J
J − 1

nŝ

)
βsŝ(λ) + H−1

s (ns; J) +
1 − ns

hs(H−1
s (ns; J); 0, J)

−
ns

(J − 1)hs(0;−H−1
s (ns; J), J)

.

A solution {ns} to {gs(n;λ, J) = 0} is an equilibrium in which one firm has a market share of
1 − ns while the others equally split ns under interoperability λ.

Suppose that there exists an equilibrium with n under λ, such that ns <
J−1

J ,∀s, i.e.
gs(n;λ, J) = 0. Then we have,

gs(ns, {nŝ}ŝ,s;λ, J) = gs(ns, {nŝ}ŝ,s;λ, J) − gs(n;λ, J) + gs(n;λ, J) − gs(n;λ, J)

= −
∑
ŝ,s

J
J − 1

(nŝ − nŝ) βsŝ(λ) −
∑

ŝ

(
1 −

J
J − 1

nŝ

) (
βsŝ(λ) − βsŝ(λ)

)
= −

∑
ŝ,s

J
J − 1

(nŝ − nŝ) βsŝ(λ) −
∑

ŝ

(
1 −

J
J − 1

nŝ

) (
γsŝ(λsŝ − λsŝ) + γŝs(λŝs − λŝs)

)
This is negative if the following conditions hold: (i) γsŝ(λsŝ − λsŝ) + γŝs(λŝs − λŝs) > 0,∀(s, ŝ),
(ii) nŝ ≤ nŝ,∀ŝ , s, and (iii) βsŝ(λ) ≥ 0,∀(s, ŝ).

We observe that, as in the proof of Proposition 10: (i) limns→0+ gs(ns, {nŝ}ŝ,s;λ, J) = ∞, and
(ii) gs(ns, {nŝ}ŝ,s;λ, J) increases in nŝ if βsŝ(λ) ≥ 0.

Thus, for any side s, we have that limns→0+ gs(ns, {nŝ}ŝ,s;λ, J) = ∞, gs(ns, {nŝ};λ, J) < 0 if
nŝ < nŝ for all ŝ , s. The Poincaré–Miranda theorem implies that there exists a solution n to
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g = 0 that satisfies ns < ns for any s. That is, there exists an equilibrium in which firm 1 is
even more dominant under λ than under λ. �

Proof of Proposition 13. With J platforms, a symmetric equilibrium with total demand N̂
is characterized by the demand function

e−t

ez =
n j

n0 =
N̂/J

1 − N̂
,

together with the pricing formula,

t = c +
1

1 − n j − 2γn j = c +
1

1 − N̂/J
− 2γ

N̂
J
.

Combining these gives a characterization function g(N̂; J) whose zeros are symmetric equi-
libria,

g(N̂; J) = z + c + ln N̂ − ln J − ln(1 − N̂) +
1

1 − N̂/J
− 2γ

N̂
J
.

We notice limN̂→0 g(N̂; J) = −∞.
Suppose the monopoly has a market share of N̂, which solves g(N̂; 1) = 0. With 2

platforms, if g(N̂; 2) > 0, then by the intermediate value theorem, there must exist N̂′ < N̂
that satisfies g(N̂′; 2) = 0. That is, the total demand under duopoly is lower than under
monopoly. Since g(N̂; 1) = 0, an equivalent condition to g(N̂; 2) > 0 is g(N̂; 2) − g(N̂; 1) > 0,
and we have

g(N̂; 2) − g(N̂; 1) = − ln 2 +
1

1 − N̂/2
−

1

1 − N̂
+ γN̂,

which is positive if and only if γ is larger than a threshold,

γ ≥
ln 2

N̂
+

1

(2 − N̂)(1 − N̂)
.

The RHS is convex in N̂. Numerically, we can find that the RHS obtains its minimum of
2.708 when N̂ ≈ 0.470. Thus, for any γ & 2.708, an interval of N̂ that satisfies this inequality
exists. For any N̂ in this interval, the z + c that supports it as a monopoly equilibrium can
be found from g(N̂, 1) = 0. Therefore, there exists an interval of z + c such that total demand
is lower at the symmetric equilibrium of the duopoly model than it is under monopoly. �
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