Platform Competition with Net Fees

Mehmet Ekmekci	Alexander White	Lingxuan Wu
BC	Tsinghua SEM	Harvard

TSE Digital Economics Conference January 10, 2025 • Toulouse

Motivation

Public debate about "big tech" grew significantly over the last decade Common pattern of debate:

- "Break up Facebook" (Hughes 2019 NYT op ed now US v. Google)
 "Do we really want two Facebooks?"
- "Instead, foster potential competitors"
 - "Can they actually gain traction?"
- "Instead, regulate Facebook"
 - $\circ~$ "Do we really think regulation will improve things?"

Motivation

Public debate about "big tech" grew significantly over the last decade Common pattern of debate:

- "Break up Facebook" (Hughes 2019 NYT op ed now US v. Google)
 "Do we really want two Facebooks?"
- "Instead, foster potential competitors"
 - "Can they actually gain traction?"
- "Instead, regulate Facebook"
 - o "Do we really think regulation will improve things?"

Questions for the economics of platforms to help address:

- What level of market concentration is optimal?
- Can competition policy interventions help?
- What are the likely effects of regulation?

This paper

- Can competition or regulation alleviate dominance of a single platform?
 - Offer a tractable model of platform competition, allowing for
 - Asymmetries
 - Outside option
- Preview of results
 - More competition may increase a single platform's dominance
 - Interoperability regulation can reduce its dominance

The model with one side

There are *J* platforms and an outside option.

Each user joins one platforms or choose the outside option

 $j \in \mathcal{J} \cup \{0\} = \{0, 1, \dots, J\}$

<u>Users</u>

Each user has a vector of *membership values* θ

 $\theta \in (\theta^0, \theta^1, \dots, \theta^J) \in \mathbb{R}^{J+1}$

Joining platform *j* gives user θ utility

 $u^j \coloneqq \theta^j + \gamma^j n^j - p^j$

 γ^{j} interaction value on platform *j* with n^{j} users

 p^{j} total price paid to platform j

<u>Net Fees</u>

Platforms compete by posting *net fees,* $t^j \in \mathbb{R}$

$$p^j \coloneqq t^j + \gamma^j n^j$$

Net fee t^j guarantees user θ a payoff from joining j of $u^j = \theta^j - t^j$

Timing

- 1. Platforms simultaneously post net fees
- 2. Demand is realized based on users' discrete choice problem

Demand and Profits

Demand for platform *j*

$$n^{j}(t) = \int \mathbb{1}_{\left\{u^{j} \ge u^{k}, \forall k \in \mathcal{J} \cup \{0\}\right\}} f(\theta) \mathrm{d}\theta$$

Profits earned by platform *j*

 $\pi^{j}(t) = \left(t^{j} + \gamma^{j}n^{j}(t) - c^{j}\right)n^{j}(t)$

Best-responses and pricing

FOC: $\frac{\partial \pi^{j}(t)}{\partial t^{j}} = 0$ implies the following pricing formula.

$$t^{j} = c^{j} + \frac{n^{j}(t)}{-\frac{\partial n^{j}(t)}{\partial t^{j}}} - 2\gamma^{j}n^{j}$$

Pure strategy Nash equilibrium: net fee profile where each firm maximizes their profits given others' net fees.

<u>Analysis</u>

- 1) Competition and dominance
- 2) Interoperabillity and dominance

Why focus on dominance?

- Public debate around dominance
- Unmodeled implications of dominance

<u>Analysis</u>

Assumptions:

• Demand is logit:
$$n^{j}(t) = \frac{e^{-t^{j}}}{e^{z} + \sum_{k \in \mathcal{J}} e^{-t^{k}}}$$

- Platforms are ex ante identical
- Normalize marginal cost, c = 0

Competition may increase dominance

Proposition

Assume no outside option and $\gamma \in (2.71,3.375]$. There exists an equilibrium under triopoly in which a dominant platform's market share is greater than the market share of any platform in any duopoly equilibrium.

Heuristic Intuition

- Iterative process with market shares (0.5,0.25,0.25)
- The smaller firms have lower externality discounts.
 - Net fees go up, market shares go down.
- Dominant firm has a higher market share.
 - Externality discount increases, net fee goes down, market share further goes up...

Merger Analysis

- Assume weak enough network effects => equilibrium unique
- Status quo has 3 platforms
- Pre-merger:
 - Dominant platform has zero cost, demand > $\frac{1}{2}$
 - Both non-dominant platforms have *c* > 0, split remaining demand
- Potential merger between small platforms would bring cost synergy Δ*c* ∈ (0, *c*) for the combined firm

Proposition

Assume $\gamma < 2.61$. In a merger between the two non-dominant platforms, the minimum cost synergy needed to reduce the market share of the dominant platform decreases with the strength of network effects.

Interoperability

- Adding competition may backfire.
- Some argue that regulation is a better alternative.
 - ✓ A particularly popular idea is mandated "interoperability".
 - ✓ Allow users across platforms to interact.

Interoperability

New parameter $\lambda \in [0,1]$: Degree of interoperability across platforms

Utility derived by a user who joins platform j is:

$$u^{j} \coloneqq \theta^{j} + \gamma n^{j} + \lambda \sum_{k \in J \setminus \{j\}} \gamma n^{k} - p^{j}$$

Each platform chooses net fee t^j :

$$t^{j} \coloneqq p^{j} - \gamma n^{j} - \lambda \sum_{k \in J \setminus \{j\}} \gamma n^{k}$$

Best-responses and pricing

FOC: $\frac{\partial \pi^{j}(t)}{\partial t^{j}} = 0$ implies the following pricing formula.

$$t^{j} = c^{j} + \frac{n^{j}(t)}{-\frac{\partial n^{j}(t)}{\partial t^{j}}} - (2 + \lambda \xi^{j}) \gamma^{j} n^{j}$$

where $\xi^{j} = \frac{\sum_{k \in J \setminus \{j\}} n^{k}}{n^{j}} - \phi^{j}$

- Externality discount can increase or decrease with higher interoperability.
- Depends on the market share.
 - For large firms $\xi^j < 0$. Higher λ leads to smaller externality discount.
 - For small firms $\xi^j > 0$. Higher λ leads to bigger externality discount.

Interoperability decreases dominance

Proposition

Assume no outside option. Consider any two levels of interoperability $\underline{\lambda} < \overline{\lambda}$. For any duopoly equilibrium under $\overline{\lambda}$ in which the dominant platform has market share $\overline{n}^1 > 1/2$, when $\lambda = \underline{\lambda}$, there is an equilibrium in which $\underline{n}^1 > \overline{n}^4$.

Interoperability decreases dominance

Additional Results

- General existence of equilibrium
- Multiple sides
- General demand
- Multihoming in Competitive Bottlenecks model

Literature and benchmarks

- Much literature on single-sided networks and multi-sided platforms
 - ✓ Rohlfs (1974), Katz-Shapiro (1985), Farrell-Saloner (1985)
 - ✓ Rochet-Tirole (2003), Caillaud-Jullien (2003), Rysman (2004),
 Anderson-Coate (2004), Parker-Van Alstyne (2005), Hagiu (2006),
 White and Weyl (2016)...
- Workhorse model of platform competition:

Armstrong (RAND 2006)

• Recent contribution extending this approach:

Tan-Zhou (REStud 2020)

Final remarks

- This talk has presented a model of platform competition in *net fees*
- Advantages of this model include tractability and flexibility, particularly in:
 - Allowing for platforms asymmetries
 - Accommodating demand form that includes an outside option
- Two results from the model:
 - Increasing competition may increase dominance
 - Increasing interoperability may alleviate dominance