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1. Introduction

The rapid automation of financial markets has led to a growing dependence on artificial intelli-

gence (AI), which increasingly supplements or replaces human judgment in speculative trading.

According to a 2018 BarclayHedge poll, 56% of hedge fund respondents reported using artificial

intelligence or machine learning in their investment processes. Since AI algorithms are black

boxes, the behavior of AI-driven trading remains largely opaque and poorly understood within

financial economics. This opacity raises particular concerns among regulators who worry that the

interaction of multiple automated trading systems could potentially amplify market instabilities.

Throughout this paper, the terms “AI speculator,” “AI trader,” and “AI agent” are used interchange-

ably to refer to automated trading systems using artificial intelligence. Understanding the systemic

effect of AI-driven trading requires examining how AI speculators may behave and coordinate

with each other under fundamental uncertainty (uncertainty about the fundamental value of the

economy) and strategic uncertainty (uncertainty about other traders’ strategies), two important

features of financial markets.

My goal in this paper is to study this question. Specifically, I let AI speculators using Q-learning

(a type of Reinforcement Learning) algorithms determine whether to attack or not in a standard

speculative attack game à la Morris and Shin (1998). I show that AI-driven trading may more

effectively coordinate with each other and trigger convergence to a financial crisis equilibrium. I

identify the specific market conditions under which this occurs. Given that transparency - defined

as access to high-quality information about fundamental value - is crucial in preventing financial

crises, I examine which market information environments and transparency policies can effectively

mitigate the probability of AI-driven crises

To benchmark my results, I compare AI speculators’ coordinated attack behavior to both the

Nash equilibrium predictions from the corresponding global game and empirical evidence from

human trading experiments. AI-driven trading may behave similarly to economic agents or human

speculators described in existing economic models such as Morris and Shin (1998), a workhorse
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model for understanding financial crises. In this model, multiple equilibria may exist when there is

common knowledge of the economy’s fundamental value. However, without common knowledge

but with access to private information, economic agents coordinate on a unique threshold Nash

equilibrium. In this equilibrium, agents attack the market only when observing a sufficiently

high noisy signal of the economy’s fundamental value—the attack threshold. Human trading

experiments in the same setting confirm this threshold strategy.

However, AI speculators using Q-learning algorithms are neither economically rational

Bayesian agents nor real humans - they begin with no prior knowledge about their environ-

ment and learn iteratively by experimenting, receiving feedback, and adjusting their behavior

accordingly. Hence, this paper conducts a comparative analysis of AI speculators’ behavior using

Q-learning algorithms against both the predictions of Bayesian learning models and empirical

results from human trading experiments.

In the Nash equilibrium of this speculative attack game, with common knowledge about the

payoff of attacking the market (which is also the fundamental value of the economy), multiple

equilibria may exist—meaning both financial crisis and status quo equilibrium could occur with

equal probability ex-ante. However, experimental evidence from Kim and Palfrey (2023) shows that

under common knowledge conditions, human participants coordinate on the crisis outcome only

12% of the time, not the theoretically predicted 50%. Without common knowledge about the payoff

of attacking the market (the fundamental value of the economy) and with private information (e.g.,

a private noisy signal) about the payoff for each speculator, economic theory predicts that the

multiple equilibrium issue resolves into a unique attack threshold equilibrium. In this equilibrium,

speculators attack when their private signal exceeds the threshold value. Theory predicts that this

attack threshold increases with signal accuracy, implying that the ex-ante probability of financial

crisis rises with information accuracy. However, Szkup and Trevino (2020) finds that while human

speculators do employ threshold strategies experimentally, they use different attack thresholds

than theory predicts, and their attack thresholds do not increase with information accuracy.

Without common knowledge about the payoff of attacking the market (the fundamental value
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of the economy), and with public information (e.g., a public noisy signal) about the payoff for

each speculator, economic theory predicts that common knowledge is restored and multiple

equilibria reemerge—leading to the conclusion that public information destabilizes markets, as

the probability of a financial crisis equilibrium becomes indeterminate. However, Heinemann,

Nagel, and Ockenfels (2004) finds that human speculators under public information contradict

this theory: they consistently coordinate on a unique attack threshold that is lower than under

private information.

The core of my analysis tests whether standard predictions from financial crisis theory and

human experimental results hold when attacks are executed by AI speculators using Q-learning

algorithms. These AI agents begin with no prior knowledge of the environment—including payoff

distributions, other participants’ choices, and the number of speculators—and learn through

repeated interactions. Consequently, AI speculators must play the game repeatedly to learn the

expected profit (Q-value) they can obtain for each action choice at each information state (or

signal state). Thus, for a given parametrization of the speculative attack game, I let AI speculators

simultaneously and independently choose an action, either attack or not attack, following an

algorithm that either picks an action randomly between attack and not attack (“explore”) or picks

the action with the largest Q-value at the moment (“exploit”). This exploration/exploitation choice

is random with a decaying probability of exploration.1 After each AI speculator’s decision is made,

the Q-value of its chosen action is updated by taking a weighted average of two components: the

realized profit from this action and the action’s Q-value prior to the current choice.2

A fundamental characteristic of this iterative process (the Q-learning algorithm) is that AI

speculators learn progressively, through exploration, the expected profit attainable for each action

under different information states. Within any given environment, an AI speculator’s action path

exhibits stochastic properties due to three sources of randomness: first, the stochastic nature of
1Q-learning algorithms typically incorporate a decreasing exploration rate parameter, as exploration becomes

both costlier and less beneficial for learning as agents gain experience over time.
2A new realization of the fundamental value is drawn after each AI speculator’s decision round. Moreover, these

realizations and the information states that AI speculators observe at each decision round are i.i.d. Thus, each episode
of the AI speculators’ decision choice is exactly a repetition of the static speculative attack game.
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information states for each Q learner; second, the stochastic fundamental value of the economy

(which determines the attack action’s payoff); and third, the inherent randomness in AI speculators’

action choices during experimentation. As a result, both the long-run Q-values for actions at

each information state and the AI speculator’s eventual action choices at convergence inherit this

stochastic nature. To account for this randomness, I conduct 1,000 distinct session simulations

for each game parametrization (constituting one experiment) and analyze the average long-run

behavior at convergence across these sessions.

Building on the framework I mentioned, this paper addresses three fundamental questions

about AI trading behavior in speculative financial markets and how they can coordinate with each

other to trigger financial crises. First, I show whether AI speculators are inherently more prone to

triggering market crashes than economically Bayesian agents and human speculators by investi-

gating if AI learning processes make crisis equilibrium outcomes more likely to happen than others.

Second, I analyze how AI speculators process and react to different types of information—from

private information to public information to irrelevant noise—and how this information affects

both their coordination behavior and the likelihood and predictability of choosing the risky action

(attacking) that triggers self-fulfilling financial crises. Third, I provide concrete policy guidance for

regulators, specifically examining how they can design information disclosure policies and market

transparency rules to guide AI behavior toward stability-enhancing outcomes while minimizing

the level of financial instability.

My analysis reveals three key findings about AI speculator behavior in financial markets. First,

I find that AI algorithms may show a stronger tendency to converge on financial crisis equilibrium.

Specifically, I document that AI speculators can endogenously coordinate on crisis equilibrium even

in the absence of any information about the fundamental value of the economy, purely through

their strategic interactions. In contrast, in this same context, economic agents usually cannot

select a unique equilibrium and suffer from multiple equilibria issues, while human speculators in

identical experimental settings rarely achieve such coordination on the crisis equilibrium.

Second, I demonstrate how various forms of information—private, public, and irrelevant
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information—affect AI speculators’ learned attack threshold, and hence their coordination on

the financial crisis equilibrium. A central result shows that under the private information setup,

AI speculators’ learned attack threshold differs from both the economic theory-implied attack

threshold (which is the Nash equilibrium-implied attack threshold) and the human speculators’

learned attack threshold in laboratory experiments.

Comparing AI speculators to economic agents implied by economic theory, I find that under low

information accuracy, AI speculators’ learned attack threshold is well above the Nash equilibrium-

implied attack threshold, meaning AI speculators take too little risk, resulting in a non-profitable

deviation. AI speculators appear to leave money on the table: each AI speculator could obtain a

larger expected profit by unilaterally choosing a lower attack threshold than the one on which

others have eventually settled. I find that under high information accuracy, AI speculators’ learned

attack threshold may be lower than the Nash equilibrium-implied attack threshold, meaning

AI speculators take too much risk, resulting in a profitable deviation. It appears AI speculators

extract too much value: they coordinate on an attack threshold where their expected profit is

actually negative, and each has an incentive to choose a higher attack threshold. Additionally, AI

speculators’ learned attack threshold is increasing in the accuracy of private information, just like

economic agents, but in contrast to human speculators, whose attack threshold is decreasing in

the accuracy of private information.

Especially when comparing AI speculators with human speculators, I find that AI speculators

exhibit a higher probability of taking risky actions (specifically, attacking the market) than human

speculators under low information accuracy environments, where human speculators become

very conservative. This behavioral divergence implies that markets with AI participation face a

higher probability of self-fulfilling crises during periods of high fundamental uncertainty. The

mechanism appears to operate through AI speculators’ overestimation of other traders’ likeli-

hood of taking risky actions when information precision is low. In contrast, human speculators

typically underestimate others’ likelihood of taking risky actions under such conditions. Under

the public information setup, I find that enhancing market transparency through public informa-
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tion creates a trade-off between stabilizing and destabilizing effects for AI speculators. On one

hand, public information may destabilize AI speculators by making their attack behavior more

unpredictable—measured by the standard deviation of AI speculators’ learned attack threshold

across 1,000 session simulation experiments—thereby increasing the unpredictability of AI-driven

crises. On the other hand, public information can stabilize such markets by making AI speculators

learn to coordinate on a rather higher attack threshold, reducing the ex-ante probability of crises,

especially in economic environments characterized by high fundamental uncertainty. Therefore,

regulators face an inherent trade-off between lowering the probability of crises and managing

their unpredictability.

The role of public information differs significantly in markets with only human speculators.

For human speculators, public information acts as a coordination device by aligning their expecta-

tions, making the occurrence of crises more predictable and increasing the ex-ante probability of

crises. Despite these differences, AI speculators, economic agents, and human speculators share

similarities in reacting to a combination of private and public information. I find that they all tend

to respond more strongly to public information than to private information, which aligns with

classical economic intuition mentioned in Morris and Shin (2002).

I then investigate a more fundamental question regarding their rationality by examining their

susceptibility to irrelevant news or sentiment, defined as extrinsic noise unrelated to economic

fundamentals. The results are surprisingly concerning: AI speculators are not sentiment-proof and

may coordinate based on irrelevant news, thereby coordinating on so-called sunspots.3 Specifically,

they may chase noise as useful information to guide their speculative decisions, such as deciding

whether to attack the market.

Finally, to better understand the mechanisms behind these behavioral patterns, I conduct a

comparative statics study examining how key parameters within AI speculators’ behavioral rules

influence their algorithmic behavior, with a particular focus on the learning channel. I demonstrate

that lower learning rates (indicating underreaction to new experiences and information), lower
3In economics, sunspots can also refer to the related concept of extrinsic uncertainty, that is, economic uncertainty

that does not stem from variations in economic fundamentals.
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exploration rate decay (indicating less preference for learned strategies and willingness to explore

new strategies), or less informed AI agents (indicating higher uncertainty about fundamental

values) tend to choose the risky action (attack) with greater likelihood at equilibrium. These

comparative statics make a sharp prediction: if AI training can be conducted infinitely and be

costless, AI speculators can learn to be more risk-seeking and tend to choose the risky action

(attack) with greater likelihood at equilibrium.4

Overall, the behavior of AI speculators using Q-learning algorithms deviates significantly

from that predicted by the Nash equilibrium of this speculative attack game, even after reaching

convergence (which implies reaching stable learning), and also differs from human speculators’

behavior in laboratory experiments. The explanation is straightforward: when ε-greedy Q-learning

is adopted as a decision rule in a game, the Q-value is inherently misspecified. This is because

the Q-value attempts to estimate the payoff from taking action today at the given observed

information state, which also depends on the unobserved actions of opponents at their given

observed information states. More specifically, the Q-value is an empirical sample-weighted

average of past experiences to estimate the expected payoff of choosing an action at a given

observed information state, which can be a biased estimate of the true expected payoff of choosing

an action at a given state of the world at the equilibrium point.

1.1. Contribution to the Literature

This paper advances our understanding of artificial intelligence in financial markets by examining

the systemic effects of interacting AI agents on market stability and coordination. While existing

literature has extensively explored how AI algorithms enhance individual decision-making, the

collective impact of multiple AI systems operating simultaneously remains largely unexplored.

My primary contribution lies in analyzing how algorithmic speculators behave and interact in

environments with strategic complementarities - a crucial consideration for financial stability
4Hence, it explains why right now we still don’t observe too many AI-driven crises since AI training is costly,

both in terms of time and money.
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as AI trading systems increasingly dominate market activity. While recent work has explored

algorithmic trading in specific contexts - such as Colliard, Foucault, and Lovo (2024)’s examination

of Q-learning in algorithmic market making under adverse selection and Dou, Goldstein, and

Ji (2024)’s analysis of Q-learning traders in a Kyle (1985) framework - this paper is the first to

investigate how the collective interaction of AI speculators can generate and influence self-fulfilling

financial crises. The findings have direct implications for systemic risk and market equilibrium

in an era of algorithmic trading. By examining how multiple AI agents collectively handle the

interaction between strategic uncertainty (about other speculators’ actions) and fundamental

uncertainty (about asset payoffs), I provide new insights into whether the emergent properties of

interacting algorithmic trading systems may amplify or dampen the likelihood of coordinated

speculative attacks. This question is particularly relevant given the rising prevalence of AI trading

systems in currency markets and other assets vulnerable to speculative attack pressure.

While previous work has made important contributions to understanding AI applications in

finance - such as Hendershott, Jones, and Menkveld (2011)’s analysis of algorithmic trading’s

impact on market liquidity, Cao et al. (2024)’s evaluation of AI’s forecasting capabilities compared

to human analysts, and Bybee (2023)’s use of generative AI techniques for deriving economic

expectations - these studies examine AI’s impact in relative isolation, without considering AI’s

interactions with each other. This paper extends the literature by examining the systemic market

effects that emerge from the interactions of multiple algorithmic agents. In our framework, AI

algorithms serve dual purposes: learning and forecasting both fundamental economic values and

other agents’ actions. This strategic interaction introduces a higher level of complexity compared

to existing applications of AI in finance and economics, where algorithms typically focus on

single-objective optimization problems in a non-strategic economic environment.

On the theoretical front, this paper advances the global game literature pioneered by Carlsson

and Van Damme (1993), Morris and Shin (1998), and Angeletos (2008a) in two key ways. First, it

demonstrates how canonical results about speculative attacks extend to environments with AI

traders. Second, it provides the first investigation of whether Q-learning algorithms can discover
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and implement the threshold strategies that characterize global game equilibrium - a finding

with implications for understanding how algorithmic trading may affect market stability through

coordination channels. Although a rich literature has explored how AI algorithms can enhance

individual decision-making, the systemic effects of AI interactions in financial markets remain

largely unexplored.

My experimental approach using AI agents offers distinct perspectives over traditional human-

subject experiments in financial market coordination (e.g., Cornand (2006), Szkup and Trevino

(2020), Heinemann and Illing (2002), Kim and Palfrey (2023), and Fehr, Heinemann, and Llorente-

Saguer (2019)). This methodology enables direct comparisons between AI and human speculative

behavior in identical market environments, illuminating systematic differences in their behavioral

patterns. The results reveal distinct variations in how AI and human speculators process and react

to information. A particularly novel contribution lies in the analysis of how information quality

affects speculative attack thresholds in markets with AI traders.

This work connects to the broader literature on artificial intelligence in markets. Calvano et al.

(2020) shows that Q-learning algorithms can facilitate tacit collusion in product markets, while

Raymond (2023) examines how algorithmic prediction affects real estate market outcomes.

The remainder of the paper is organized as follows: Section 2 presents the economic environ-

ment of our AI simulation experiments and the model’s predictions as benchmarks. Section 3

outlines the experimental design and methodology for AI speculator simulations. In Section 4,

I show the experiment results for stateless AI 5 speculators and investigate their inherent algo-

rithmic behavioral bias. In Section 5, I show the experiment results for stateful AI 6 speculators,

examining how information affects algorithmic coordination and crisis equilibrium, comparing

results with human experiments and economic theory predictions. Section 6 conducts comparative

statics analysis of AI agents and examines the underlying economic channels. Section 7 discusses
5A stateless AI is an AI agent that lacks access to prior information, meaning it does not retain or use any data

as a state variable to inform its decisions. Each decision it makes is independent, based solely on the current input
rather than any previous context or memory.

6A stateful AI is an AI agent that retains specific information as a state variable, using it to inform and guide its
decisions.
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policy implications. Section 8 concludes.

2. The Economic Environment: A Model of Coordination and Fi-

nancial Crisis

This section introduces the coordination game employed in our experiments with algorithms,

along with its Nash equilibrium, which serves as a benchmark. I employ the canonical linear model

of coordination games, pioneered by Carlsson and Van Damme (1993) and Morris and Shin (1998b),

which has been widely applied to various financial crises, including currency attacks, bank runs,

and liquidity crises. This model provides the experimental framework for investigating algorithmic

behavior under conditions of payoff (fundamental) and strategic uncertainty in coordination

scenarios.

2.1. Theoretical Framework: A Speculative Attack Game

There are two identical players in the economy, i ∈ {1, 2}, referred to as Alice and Bob. They

simultaneously decide whether to take the action Attack or Not Attack. The action space is defined

as A = {Attack,Not Attack}. The action Not Attack is safe and always yields a payoff of 0. In

contrast, the action Attack is risky and incurs a fixed cost C > 0, which can be interpreted as

either a direct transaction cost or an opportunity cost. Action Attack can succeed or fail. If Attack

succeeds, it generates a payoff of θ – C; if it fails, the payoff is –C. Here, θ ∈ Θ represents the

fundamental value of the economy.

Action Attack may succeed in two ways: first, when both players select action Attack and

the economy’s fundamental value (θ) surpasses a lower threshold, θ > θ 7; second, when the

economy’s fundamental value (θ) surpasses a higher threshold θ ≥ θ̄, in which case Attack is

guaranteed to succeed independent of the other player’s action choice.8 The thresholds θ̄ and θ

7In this case, the fundamental value of the economy is sufficiently high to make action Attack profitable.
8In this case, the fundamental value of the economy is sufficiently high that the success of action Attack does not
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establish the upper and lower dominance regions respectively for the fundamental value. The

payoffs can be expressed in matrix form as follows:

Success Failure

Attack θ – C –C

Not Attack 0 0

We define the Financial Crisis Equilibrium as the outcome where both speculators choose to

attack. The action Attack is risky because the agent either earns a payoff of θ – C (positive only

if the fundamental value θ is sufficiently high) or incurs a loss of –C. In contrast, the action Not

Attack always results in a payoff of zero, making it the safer alternative. In the following sections,

we first derive the theoretical equilibrium, which will serve as a benchmark for evaluating the

outcomes of our AI algorithm simulation experiments.

To provide concrete intuition for the fundamental value θ, consider its interpretation in the

context of a currency peg regime. Suppose θ represents the market pressure on a currency peg.

When θ > θ̄, indicating severe market pressure, the currency peg is sufficiently stressed that a

unilateral speculative attack can trigger a profitable devaluation, guaranteeing success regardless

of the other player’s action. For intermediate values θ ∈ [θ, θ̄], representing moderate market

pressure, the peg exhibits vulnerability but requires coordinated attacks to be successfully broken—

both speculators must choose action Attack to generate positive payoffs. Finally, when θ < θ,

signifying low market pressure, the currency peg demonstrates sufficient resilience to withstand

even coordinated attacks, ensuring that any speculative attack results in losses. This interpretation

provides economic context for our theoretical framework while maintaining consistency with the

model’s formal structure.
depend on the other player’s choice.
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2.2. Coordination Game Benchmark

In a complete information setting, each player has common knowledge of the fundamental value

θ. When θ < θ, a crisis will not occur even if both agents choose to attack, making the dominant

strategy to refrain from attacking and maintain the status quo. Conversely, when θ ≥ θ̄, a single

attack is sufficient to trigger a successful crisis, making attacking the dominant strategy.

The case of primary interest occurs when θ ∈ [θ, θ̄). Within this range, two pure-strategy

equilibria are possible. In one scenario, both agents may choose to attack, leading to the abandon-

ment of the status quo and the emergence of the Crisis Equilibrium. Alternatively, both agents

may refrain from attacking, resulting in the maintenance of the status quo and the prevention of a

crisis.

Both attack and non-attack strategies can potentially form Nash equilibria in this game. The

strategy of attacking yields the maximum payoff for both agents and is Pareto-optimal. In contrast,

choosing not to attack involves lower risk, as each agent can guarantee a payoff of zero. Thus,

the scenario where both agents choose to attack represents the reward-dominant equilibrium,

offering higher potential rewards compared to other equilibria. In contrast, the scenario where

both agents choose not to attack constitutes the risk-dominant equilibrium, minimizing risk by

guaranteeing a higher minimum payoff than other possible outcomes.

Proposition 1. In a complete information setting with fundamental value θ:

(a) If θ < θ, the dominant strategy for both agents is to refrain from attacking, resulting in no crisis.

(b) If θ ≥ θ̄, the dominant strategy for both agents is to attack, as a single attack is sufficient to

trigger a crisis.

(c) For θ ∈ [θ, θ̄), two pure-strategy Nash equilibria exist:

• Crisis Equilibrium: Both agents attack (reward-dominant9)
9A risk-dominant equilibrium is one that minimizes the potential loss a player might face if they fail to coordinate

with the other player(s). This equilibrium is considered safer because it has a higher probability of being chosen when
players are unsure of each other’s choices.
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• StatusQuo: Neither agent attacks (risk-dominant 10)

Corollary 1. The risk-dominant threshold of the fundamental value for the underlying complete

information game is θ = 2C.

Economically, the risk-dominant threshold is the point at which a speculator’s expected payoff

from choosing either attack or not attack is equal, assuming that the other speculator will choose

to attack with probability 1
2 .11 When θ > 2C, choosing to Attack becomes more attractive, making

the Crisis Equilibrium risk-dominant. Conversely, when θ < 2C, choosing Not Attack is safer,

thereby making the Status Quo equilibrium risk-dominant.

2.3. Global Game Benchmark

A global game is a coordination game with private information. All agents share a common prior

for the fundamental value θ, which is assumed to be drawn from a normal distribution with

mean θ0 and variance σ2
θ. Each agent i receives a private signal xi = θ + εi, where xi ∈ Xi and

εi ∼ N(0,σ2
i ) is a noise term that is independently and identically distributed across agents and

independent of θ.

Threshold Strategy and Probability of Financial Crisis. Carlsson and Van Damme (1993) show that

when agents observe a noisy private signal of θ rather than its true value, a unique equilibrium

emerges. This equilibrium is characterized by a symmetric monotone threshold strategy: each agent

i ∈ {1, 2} attacks the status quo if and only if their signal realization xi exceeds a threshold x∗.

Formally, agents choose to attack if xi ≥ x∗ and refrain from attacking if xi < x∗. As discussed in

the literature (Heinemann, Nagel, and Ockenfels 2004; Gandrud and Pepinsky 2015), the probability

of a financial crisis is inversely related to this threshold. A lower threshold increases the likelihood
10A reward-dominant equilibrium refers to the equilibrium that yields the highest payoff for all players if they can

coordinate on it. In other words, if all players choose the strategy associated with the reward-dominant equilibrium,
everyone receives a greater benefit compared to the payoffs of other potential equilibria.

11The belief that the other speculator will attack with probability 1
2 reflects maximum strategic uncertainty regarding

the other’s actions.
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of agents attacking, thereby raising the probability of a financial crisis. Conversely, a higher

threshold decreases the probability of a crisis, as it requires agents to receive stronger signals

before initiating an attack.

Let U (θ, xj ) be the payoff of agent i, given the fundamental θ and the threshold xj of the other

agent. The expected payoff of agent i, conditional on taking an attacking action, is given by:

(1) E
[
U
(
θ, x∗j

)
| xi
]

= E
[
θ · Pr

(
xj > x∗ | θ

)
| xi, θ ∈ [θ, θ̄]

]
+ E
[
θ | xi, θ > θ̄

]
– C

Agent i will choose to attack the status quo if and only if the expected payoff is non-negative,

i.e., E
[
U
(
θ, x∗j

)
| xi
]
≥ 0. To determine the optimal threshold x∗, we identify the signal at

which agent i is indifferent between attacking and not attacking the status quo. This indifference

condition is given by E
[
U
(
θ, x∗j

)
| xi = x∗

]
= 0, assuming the optimal threshold of agent j , x∗j .

A unique, dominance-solvable equilibrium exists where both agents employ threshold strategies

with the cutoff x∗i = x∗j = x∗.

In the symmetric case, where agents receive private signals xi = θ + εi with identical signal

structures (σi = σj = σ) , the equilibrium threshold x∗ is implicitly determined by the following

condition:

(2)
∫ θ̄

θ
θ ·
[
Pr
(
xj ≥ x∗j | xi = x∗, θ

)]
p(θ | xi = x∗)dθ +

∫ ∞

θ̄
θ p(θ | xi = x∗)dθ – C = 0

where p(θ | x∗) is the posterior density of θ given the signal x∗. This equation defines a unique,

symmetric equilibrium where both agents adopt the threshold x∗.

Proposition 2. In a global game with symmetric signal structures, there exists a unique symmetric

equilibrium characterized by a monotone threshold strategy. In this equilibrium:

(a) Each agent attacks the status quo if and only if their private signal xi exceeds a threshold x∗(σ).

(b) As the standard deviation of the noise in the private signal σ approaches zero, the equilibrium

threshold x∗(σ) converges to the risk-dominant equilibrium of the corresponding complete infor-
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mation game.

(c) No other symmetric switching equilibrium exists.

Corollary 2. The equilibrium threshold value x∗(σ) in the global game with continuous private

signals is a strictly decreasing function of σ, where σ represents the standard deviation of the noise in

the private signals.

The comparative statics between thresholds and the noise’s standard deviation can be under-

stood through the following intuition: When the prior mean µθ is high relative to the attack cost

C, players generally set low thresholds, since the risky action (attack) has a higher expected proba-

bility of success. This relationship becomes more pronounced with a higher standard deviation of

noise, as players place greater weight on their prior beliefs rather than their signals. Consequently,

the threshold decreases as the noise’s standard deviation increases.

[Insert Figure 1 about here]

Figure 1 illustrates the relationship between the equilibrium theoretical threshold x∗ and the

standard deviation of the noise σi in the agents’ private signals, using the baseline parameters

(θ0 = 50, σ2
θ = 50, θ = 0, θ̄ = 100, and C = 18). Consistent with the corollary, the figure shows

that x∗(σ) is a strictly decreasing function of σ. The downward-sloping curve indicates that as the

noise in the private signals increases (i.e., as σ becomes larger), the threshold x∗ decreases.

2.4. Discretized Global Game Benchmark

A discretized global game refers to a coordination game where agents receive discretized private

information rather than continuous signals. This section examines a global game with discretized

private information. The Discretized Global Game is important because it provides a theoretical

benchmark for AI algorithms, such as simple Q-learning, which operate in environments with

discretized state variables. Another key motivation for studying the global game in a discrete state

space is to differentiate between two dimensions of information—precision and accuracy—and
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their effects on agents’ coordination decisions. Precision refers to the granularity of the state

space, indicating how finely the information is discretized. Accuracy pertains to the uncertainty, or

variance, in the information. As noted in prior work12, these dimensions influence agent behavior

in distinct ways.

Discretization of the Signal. In this discretized global game model, each player’s private signal xi

is divided into ns equally probable bins. The signal xi is defined as xi = θ+ϵi, where θ ∼ N(θ0,σ2
θ)

and ϵi ∼ N(0,σ2
i ), resulting in xi ∼ N(µx ,σ2

x ) with µx = θ0 and σxi =
√

σ2
θ + σ2

i . To ensure

equal probability mass in each bin, the bin edges are determined using the quantiles of the normal

distribution. Specifically, the k-th bin edge is calculated as:

(3) bin edgei,k = θ0 + σxi ·Φ
–1
(

2k – 1
2ns

)
,

where Φ–1 is the inverse cumulative distribution function of the standard normal distribution,

and k = 1, 2, . . . , ns. Apart from the signal discretization, all other aspects remain similar to the

classical global game. The threshold x∗ is the signal value at which the agent is indifferent between

attacking and not attacking, i.e., when the expected payoff is zero. The expected payoff for agent i

from attacking the status quo is given by:

(4) E[U (θ, x∗j ) | xi] =
θ̄∑

θ=θ
θ · Pr(xj ≥ x∗ | θ, xi) · p(θ | xi) +

∞∑
θ=θ̄

θ · p(θ | xi) – C

The indifference condition requires that the expected payoff from attacking equals zero when the

signal xi = x∗:

(5) E[U (θ, x∗j ) | xi = x∗] = 0.
12For example, Hou (2024) demonstrates that optimal coordination among players is achieved through precise,

though not necessarily accurate, information. A refined type space with high entropy, despite potential errors, is
crucial for improving coordination.
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Proposition 3. In a global game with discretized private signals and a symmetric signal structure

shared by all agents, there exists a unique symmetric threshold strategy that is monotonic in the

private signal. Each agent will attack the status quo if and only if their signal exceeds a threshold x∗.

The threshold x∗ can be determined numerically by solving: E
[
U
(
θ, x∗j

)
| xi = x∗

]
= 0.

Corollary 3. Given the baseline parameters, as the discreteness of the private signal decreases (i.e.,

as information precision increases), characterized by an increase in the number of discrete bins ns,

the equilibrium threshold value x∗ follows a cyclical increasing trend. As ns approaches infinity,

x∗ converges to the equilibrium threshold value of the corresponding global game with continuous

private signals, as described in Proposition 2.

[Insert Figure 2 about here]

Figure 2 illustrates an example under the baseline parameters (θ0 = 50, σ2
θ = 50, θ = 0, θ̄ = 100,

and C = 18), showing the relationship between the equilibrium theoretical threshold x∗ and

information precision, represented by the number of bins ns in the discretized global game. The

blue line with dots represents the equilibrium threshold x∗ as the number of bins ns increases.

Notably, the equilibrium threshold exhibits a cyclical pattern with dampening oscillations around

the red dashed line, which represents the continuous limit of the threshold at 35.31. Initially,

the threshold fluctuates significantly, reflecting the sensitivity of the equilibrium to changes in

information precision when the state space is highly discretized. As the number of bins increases,

these fluctuations gradually decrease in amplitude, and x∗ converges toward the continuous limit.

Thus, as information precision increases, the equilibrium threshold follows a cyclical pattern but

ultimately stabilizes around the threshold of the global game with continuous private signals.

2.5. Testable Hypotheses and Model Implications

The theoretical models—coordination game, global game, and discretized global game bench-

mark—provide several testable hypotheses concerning equilibrium outcomes in coordination

settings and their implications for self-fulfilling financial crises.
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Hypothesis 1 (No Ex-Ante Bias Toward Financial Crisis Equilibrium).

When the fundamental value θ ∈ [θ, θ̄) is common knowledge, two Nash equilibria exist:

(a) Both agents attack (Financial Crisis Equilibrium)

(b) Neither agent attacks (Status Quo)

From an ex-ante perspective, without private information about the opponent, these equilibria are

equally likely to occur.

Hypothesis 2 (Unique Equilibrium in Extreme Fundamental Values).

When the fundamental value θ < θ, the Status Quo Equilibrium occurs with certainty. Conversely,

when the fundamental value θ ≥ θ̄, the Financial Crisis Equilibrium occurs with certainty.

Hypothesis 3 (Information Accuracy and Probability of Financial Crisis).

When the fundamental value is unknown and speculators receive private signals, they coordinate on

a threshold strategy: attack if the signal exceeds a critical value. The probability of a financial crisis is

inversely related to this threshold.

• The threshold increases with information accuracy (measured by the inverse of signal noise

variance).

• As information accuracy approaches infinity, the threshold converges to 2C, the risk-dominant

threshold in the complete information game.

Hypothesis 4 (Information Precision and Probability of Financial Crisis).

When the fundamental value is unknown and speculators have discrete private signals, they coordinate

on a threshold strategy: attack if the signal exceeds a critical value. The probability of a financial

crisis is inversely related to this threshold.

• The threshold exhibits a cyclical increase with information precision, which is inversely related to

signal discreteness.
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• As precision approaches infinity, the threshold converges to the equilibrium value of the corre-

sponding continuous global game.

These hypotheses are economically significant because they capture standard features of

speculative attack models and, more broadly, coordination games applied to financial crises. A key

hypothesis is that the equilibrium threshold for deciding to attack increases with the accuracy of

private information. This implies that as the precision of information rises, speculators are more

likely to coordinate their actions, potentially altering the probability of a crisis.

The hypotheses offer a novel contribution to the literature, as previous studies have primarily

focused on continuous signals rather than discrete ones. To our knowledge, this is the first paper

to investigate how information precision—specifically the discreteness of information—affects

coordination and, by extension, the likelihood of reaching the crisis equilibrium. In the remainder

of this paper, I assume that speculators choose between attacking or not attacking based on

reinforcement learning algorithms, such as Q-learning, to learn the expected payoff of each action,

attack and not attack. Our experiments are designed to test whether these hypotheses accurately

predict the speculative actions taken by AI-driven speculators. In this setup, each agent is pre-

programmed as an AI agent. Specifically, we aim to investigate whether these AI agents coordinate

on the financial crisis equilibrium, the signal threshold at which they do so, the conditions under

which this coordination occurs, and the types of environments that facilitate it.

2.6. Differences Between Modeling Humans as Economic Agents

and AI Agents

In standard economic theory models, speculators are implicitly assumed to be rational Bayesian

agents possessing extensive common knowledge of the speculative attack game’s primitives. For

instance, in coordination games, speculators know the fundamental value, θ, which determines

the payoff after a successful attack, and in (discrete) global game frameworks, they have perfect

knowledge of the fundamental value’s distributional assumptions and others’ private information.
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However, standard theory neither explains the acquisition of this common knowledge nor addresses

behavior in its absence.

This assumption of extensive common knowledge fundamentally distinguishes economic

agents from AI agents acting as speculators. While economic agents are presumed to possess

this comprehensive common knowledge, AI agents—specifically those utilizing reinforcement

learning techniques like Q-learning—learn entirely through experience. The Q-learning process is

iterative: the AI agent selects actions, observes outcomes, and updates value estimates based on

the reward, the difference between observed and expected rewards, and learning rates. Positive

differences increase an action’s estimated value and its likelihood of future selection, whereas

negative differences decrease both.

3. Experiment Design for AI Speculators

This section outlines the experimental design for AI speculators in our simulation experiments.

The design closely follows the setup of human experiments detailed in Szkup and Trevino (2020)

and Heinemann, Nagel, and Ockenfels (2004), allowing for direct comparison between the results

of our AI simulations, human experiments, and economic theory model benchmarks.

3.1. AI Speculators: Q-Learning Algorithm as Experimental Sub-

jects

Q-learning is an iterative process in which each Algorithmic Speculator selects an action and

updates its estimate of the average payoff based on the most recent observed outcome. This helps

the agents establish their strategies for playing the speculative attack coordination game. Each

Algorithmic Speculator has an action set defined as A = {Attack,Not Attack}. The algorithm

operates over a finite number of episodes, Tmin = min {T0, Tc}, where T0 is the predetermined

maximum number of episodes, and Tc is the episode at which convergence is achieved. Each episode
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t ∈ {1, 2, . . . , Tmin} consists of one round, with independent realizations of the fundamental value

(payoff) in each episode.

Knowledge Representation, Information, and State Variables. The knowledge of each algorithm

is represented by a Q-value, denoted as Qi,t(si,t , ai,t), where si,t ∈ S and ai,t ∈ A. This Q value

represents the expected payoffs for each possible action in each possible state of the game.13

The state variable si,t reflects varying levels of information about the fundamental θ, depending

on the information treatment of the experimental setting. In the no information setup, stateless

Q-learners make decisions based solely on the current reward (payoff), with si,t = ∅. In the private

information setup, each stateful Q-learner observes a newly drawn private signal which serves

as their state variable, i.e., si,t = xi,t . In the public information setup, the state variable for each

stateful Q-learner is the public information observed by all agents, represented as si,t = x p,t .

Similarly, in the private sunspot setup, each Q-learner’s state variable is defined by their own

private sunspot, denoted as si,t = mi,t , which represents a private irrelevant pure noise observed

only by the individual learner. In contrast, in the public sunspot setup, the state variable for each

stateful Q-learner is represented by the public sunspot, expressed as si,t = m p,t , which constitutes

a public irrelevant pure noise observed by all AI speculators. These varying state representations

enable the analysis of how different information treatments and types of information influence AI

speculators’ decision-making processes and the outcomes of the speculative attack coordination

game.

Experimentation and Updating Rule. To explore the Q-matrix comprehensively, the algorithm

must try different actions in different states, even those previously considered suboptimal based

on prior knowledge. An ϵ-greedy exploration strategy is implemented, with a time-declining

exploration rate ϵt = e–βt , where β > 0 is the annihilation coefficient. Conditional on the state
13Specifically, Q value is an estimate of the expected payoffs for choosing that action at a given state, Qi,t

(
si,t , ai,t

)
=

E
[
π
(
ai,t , si,t

)]
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variable st , agent i selects its action a∗i,t as follows:

(6) a∗i,t =

 argmaxa∈A Q̂i,t
(
si,t , ai,t

)
, with prob. 1 – εt , (exploitation)

random action ãt , with prob. εt . (exploration)

In the exploitation phase (probability 1 – ϵt ), agent i selects the action that maximizes the Q-value

for the current state. In the exploration phase (probability ϵt), it randomly chooses an action ã

from the set A with uniform probability. As t approaches infinity, the exploration probability ϵt

monotonically decreases to zero, ensuring that the algorithm eventually converges to optimal

behavior. Each Algorithmic Speculator updates its Q-matrix using a standard version of Q-learning,

following the temporal difference update rule:

(7) Q̂i,t+1(si,t , ai,t ) =


(1 – α) · Q̂i,t (si,t , ai,t ) + α · πi,t , if ai,t = a∗i,t

Q̂i,t (si,t , ai,t ), if ai,t ̸= a∗i,t

Here, α is the learning rate, determining how much new information replaces old information.

It governs how the algorithm learns from new actions and received payoffs. In essence, the

Algorithmic Speculator updates the Q-value associated with action ai,t after playing it. This

update is performed by taking a weighted average of two components: the observed payoff (the

instantaneous gain πi,t from choosing ai,t) and the previous value. Meanwhile, the Q-values

associated with other actions remain unchanged.14

Hyperparameters and Learning Process. The Q-learning algorithm relies on two key parame-

ters: the learning rate α and the decay rate β. These parameters control the trade-off between

exploration and exploitation, as well as how the algorithmic speculators update their payoff

estimates. The learning rate α balances past knowledge with new learning, while the decay rate β

determines the speed at which the exploration probability εt decreases over time. The learning
14This approach is known as Asynchronous Greedy Q-learning, where only the Q-value of the action taken in each

period is updated.
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process involves exploring different actions, receiving feedback, updating payoff estimates, and

accumulating observations. As the estimates become more accurate, the algorithm gradually shifts

from exploration to exploitation. This approach acknowledges that experimentation, though po-

tentially costly, is crucial in the early stages when estimates are less reliable. As more information

is gathered, the benefits of experimentation decline, leading to a gradual focus on exploitation.

These elements combine to create a Q-learning algorithm that estimates expected payoffs without

ex-ante knowledge, ultimately selecting actions that maximize estimated payoffs in the speculative

attack coordination game.

Memory. To better simulate a one-shot static speculative attack game, we implement a memory-

less Q-learning algorithm. This means the Algorithmic Speculators do not condition their decision

to attack or not attack on any past history (e.g., previous actions). This design ensures the model

closely mirrors the behavior of agents in a one-shot static speculative attack game.

Convergence. In multi-agent reinforcement learning, the rewards and update rules are typically

influenced by the actions of other players, making each player’s optimization problem inherently

non-stationary. As a result, convergence to stable strategies is not guaranteed during the learning

process. However, once the learning process is complete, convergence can be assessed. To deter-

mine convergence, we implement a practical criterion: each AI speculator’s optimal strategy must

remain unchanged for Nc consecutive episodes within a single session. Specifically, convergence

is considered achieved if, for each player i and each state s, the action ai,t (s) = argmax
[
Qi,t (a, s)

]
remains constant over Nc episodes. Once this stability is observed, we assume the algorithms have

completed learning and reached stable behavior. The session is then terminated, either when this

condition is met or after a predetermined maximum of T0 episodes, whichever comes first.

Stateless Algorithms. Stateless AI algorithms operate without access to signals or information in

the current period, making decisions based solely on immediate rewards. These algorithms do

not rely on historical data or observed variables, and their state variable is an empty set, denoted
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as si,t = ∅. This design is particularly useful for analyzing the inherent behavioral tendencies of

algorithmic speculators in speculative attack coordination games, especially in scenarios where

speculators lack private or public information. By using stateless Q-learning algorithms, we can

investigate a key question: Do stateless AI speculators exhibit a natural tendency to coordinate on

the Crisis Equilibrium? The experimental results that address this question are detailed in Section

4.

Stateful Algorithms. Stateful algorithms receive and utilize signals at each time period to inform

their decisions. The term ”stateful” refers to the fact that these algorithms receive information

treatments as their state variables. In this context, each algorithmic speculator may receive either

private or public information, depending on the assigned information treatment. Specifically,

the state variable representation si,t may include various types of information. This ability to

incorporate and act upon current data distinguishes stateful algorithms from their stateless

counterparts. This distinction is particularly relevant to the theory of global games, as it allows us

to compare the behavior of algorithmic agents in global games with the classical version, where

economic agents coordinate based on a threshold strategy. These comparisons enable us to test

whether the insights from classical global game theory, and their implications for financial crises,

remain valid for algorithmic agents. Moreover, they provide a direct comparison between the

behavior of algorithmic speculators and traditional economic agents.

3.2. Experimental Protocol

Each experiment consists of 1,000 sessions for each set of parameters. In each session, the agents

play against the same opponents until either convergence or a maximum number of episodes is

reached. The protocol for one episode within a session, for a given set of parameters, proceeds

as follows. At time t = 0, each algorithmic speculator i ∈ {1, 2} is assigned an arbitrary initial

Q-matrix Q̂i,0 and an initial state s0. The initial Q value should be high, encouraging Q learners to
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explore both attack and non-attack actions.15 16 The economy then evolves from time t to t + 1

according to the following steps:

Time

Beginning of episode t

Nature draws

the fundamental θt

Observe

state variable si,t

Choose

to Attack or Not

End of episode t

Obtain payoff,

update Q-table

At the start of each episode, a fundamental value θt is randomly drawn from a distribution,

but its exact value is not revealed to the algorithmic speculators. At the beginning of each episode

t, the algorithmic speculators observe their state variables, which vary depending on whether

they are stateless, receiving a private signal, or receiving public information. Each algorithmic

speculator then enters the exploration phase with a probability of εt or the exploitation phase with

a probability of 1 – εt . Based on the phase, the speculator chooses whether to attack or not. At the

end of episode t, each algorithmic speculator i updates its Q-matrix for the specific state-action

pair
(
si,t , x∗i,t

)
based on its experience, following the recursive update rule Q̂i,t+1

(
si,t , x∗i,t

)
.

This protocol defines a single episode within one session for a given set of parameter values. The

experiment incorporates two key types of uncertainty: fundamental and strategic. Fundamental

uncertainty arises because the fundamental value θt is randomly drawn from an independent

and identically distributed (i.i.d.) process in each episode, and its realization remains unknown to

the algorithmic speculators. Strategic uncertainty emerges as the opposing Q-learner adjusts its

actions over time, making the optimization problem non-stationary.

In line with the approaches of Calvano et al. (2020), Dou, Goldstein, and Ji (2024), and Colliard,

Foucault, and Lovo (2024), we run multiple simulations to mitigate uncertainties. The payoffs

received by the algorithmic speculator for any given action are stochastic, being influenced by

both the fundamental value (fundamental uncertainty) and the actions of opponents (strategic

uncertainty). It is important to note that using ε-greedy Q-learning as a decision-making framework

in this setting has limitations. The Q-values estimate the payoff from an action, but these payoffs
15I set the initial Q value to 100, which exceeds the maximum possible payoff in a one-shot game.
16In the case of stateless algorithms, si,0 is an empty set.
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depend on the unobserved actions of opponents. In situations where the opponent’s strategy

profile remains fixed, Q-learning can converge to the optimal response. However, when all agents

are simultaneously learning, convergence is not guaranteed. Although there is no theoretical

assurance that Q-learning agents will reach a stable outcome or learn an optimal policy, post-hoc

empirical verification in our simulations ensures that the results are grounded in a stationary

equilibrium.

3.3. Information Treatment for AI Speculators

A key aspect of our experimental design is how information is integrated into the decision-making

processes of AI speculators. This involves carefully selecting the types of information provided to

the AI agents as state variables, a framework we call information treatment, which plays a crucial

role in shaping their behavior. Our study examines various information treatments, each aligned

with economically meaningful benchmarks outlined in Section 2. Beyond these benchmarks, we

explore informational environments such as public information and sunspots. In this context,

sunspots are extrinsic random variables that do not directly affect economic fundamentals but

introduce extrinsic uncertainty, a form of uncertainty unrelated to changes in the underlying

fundamentals.

To simulate AI speculators in a coordination game, I use stateless AI agents in a complete

information setup. These agents receive no state information, and θ is fixed and constant, enabling

the algorithm to converge toward full knowledge of θ, thus replicating a complete information

environment.

In the (discretized) global game setup, I use stateful AI speculators. In each episode, a new fun-

damental value θt is randomly drawn but remains undisclosed to the AI speculators, maintaining

uncertainty across episodes. Additionally, each AI speculator may receive different information

treatments, observing distinct state variables in each episode.

The first information treatment involves private signals, where each agent receives a private,

noisy signal xi,t about θt , providing imperfect information about the economic fundamentals and
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highlighting individual uncertainty. The second treatment introduces public information, where

both agents observe a common noisy signal x p
t about θt , following the framework of Heinemann,

Nagel, and Ockenfels (2004). Although shared, this signal remains imperfect, offering a common

but incomplete basis for decisions. In the third scenario, agents receive private sunspots—payoff-

irrelevant random variables mi,t—which reflect individual idiosyncratic sentiments unrelated

to the fundamentals, as described by Angeletos (2008b). The fourth treatment involves public

sunspots, where all agents observe the same extrinsic random variable m p
t , representing market-

wide sentiment. Although this shared uncertainty does not directly affect the fundamental value,

it can still influence the agents’ behavior.

[Insert Table 1 about here]

In summary, our simulation experiments include five types of information treatments: no

information with learnable fundamental value, private information, public information, private

sunspots, and public sunspots. These treatments enable us to simulate and examine how different

information environment and extrinsic uncertainties influence the speculating behavior of AI

agents in a coordinative financial markets.

3.4. Parametrization and Numerical Implementations

Discretization and Approximation. Following Dou, Goldstein, and Ji (2024), we discretize the

signal using the equal probability approach. Specifically, we approximate the normal distribution

for the signals using a sufficiently large number of ns grid points. These grid points, denoted

as {s1, · · · , sns} for private signals, are chosen such that each grid point has equal probability.

The probability of each grid point is Pj = 1
ns for private signals.17 This method ensures that the

grid points sj are distributed with equal probabilities across their range, providing an accurate

discretization of the normal distribution for the signals.

17The locations of the grid points are chosen based on: sj = µθ + σθΦ
–1
(

2j –1
2ns

)
for j = 1, · · · , ns , where Φ–1 is

the inverse cumulative density function of a standard normal distribution.
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Initialization. I initialize the Q value optimistically18with values higher than the maximal payoff

an agent can achieve in a given episode. For both actions, Attack and Not Attack, the initial Q

values are set equally, ensuring no action is inherently favored. In the baseline case, we set the

initial Q value to a deterministic value of 100 for both actions in any given state. 19

Baseline Parameters. The economic environment is defined by a set of parametersΘ = {µθ,σθ, θ, θ̄,C,σ}.

For the baseline setup, the fundamental value θ is randomly drawn from a normal distribution

with a mean of µθ = 50 and a standard deviation of σθ = 50. The coordination region is defined

as θ ∈ [0, 100), with lower and upper bounds set at θ = 0 and θ̄ = 100, respectively. The cost of

taking the action ”Attack” is C = 18. For the Q-learning parameters, the initial Q-values for both

actions, ”Attack” and ”Not Attack,” are optimistically set to 100, encouraging early exploration. The

learning rate is set at α = 0.01, while the exploration rate decay parameter is β = 1.0 × 10–5, with

the initial exploration rate starting at 1. The convergence criterion for stabilizing the Q-values

is defined as Nc = 10, 000 episodes. The normal distributions for signals are discretized using

ns grid points. The low learning rate α is chosen to prevent the algorithm from overreacting to

new experiences, ensuring stable and gradual learning, which is critical in environments where

the fundamental value is random. Similarly, the slow decay in the exploration rate β allows the

agent to explore actions over an extended period, preventing it from being prematurely trapped

in suboptimal strategies. If the exploration rate decays too quickly, the agent risks settling on

suboptimal policies too early.
18I assign high Q values to both actions (attack and not attack) to ensure Q learners explore both options.
19In the robustness check section, we also initialize the Q value optimistically with random values following a

uniform distribution between q = 100 and q̄ = 200, ensuring that all values of the initial Q-matrix are above the
maximal payoff an agent can achieve in a given episode.
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4. Algorithmic Behavioral Bias: Do AI Speculators Favor the Crisis

Equilibrium?

This section examines potential algorithmic biases of AI speculators toward the financial crisis

equilibrium. Under Hypothesis 1, with complete information and no private information about

opponents, there should be no bias toward either equilibrium. To test this, we implement stateless

AI speculators by disabling inter-agent communication and withholding information about fun-

damental values and opponent strategies. The speculators’ decisions are driven by Q-matrices

capturing expected payoffs in a reinforcement learning framework. When the fundamental value

θ lies within [θ, θ̄), two pure-strategy Nash equilibria exist: the Crisis Equilibrium (both attack)

and the Status Quo Equilibrium (both refrain). While theory suggests these equilibria should be

equally likely due to their symmetric nature, we investigate whether AI speculators systematically

favor one outcome. Our simulations maintain a fixed fundamental value across episodes, allowing

AI agents to learn it gradually—effectively modeling a coordination game under complete infor-

mation. Upon convergence, the agents behave as if possessing complete information and common

knowledge.

[Insert Figure 3 about here]

Figure 3 shows the proportion of simulations where AI agents converge to the crisis equilibrium.

As the fundamental value θ increases, this proportion rises, exceeding 50% when θ crosses the

risk-dominant threshold of 2C (where 2C = 36 in our baseline case). Beyond this threshold, crisis

coordination approaches almost certainty, while below it, crisis equilibrium rarely emerges. These

findings support Corollary 1, indicating that AI agents behave as if following a risk-dominant

threshold. This contradicts Hypothesis 1’s prediction of equal equilibrium likelihood. In equilibrium,

AI speculators exhibit bias driven by the risk-dominant threshold of the fundamental value . They

increasingly favor attacks at higher θ values and restraint at lower values.20 This aligns with
20For ( θ > 2C ), attacking becomes more favorable, making the crisis equilibrium risk-dominant. Conversely, for (

θ < 2C ), not attacking is safer, favoring the status quo equilibrium.
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findings from the computer science literature, where independent Q-learning algorithms tend to

converge to the risk-dominant equilibrium when facing uncertainty about other agents’ actions,

Albrecht, Christianos, and Schäfer (2024).

Result 1. Within [θ, θ̄), AI speculators show algorithmic bias: they favor the crisis equilibrium when

θ > 2C and the status quo when θ < 2C, rejecting Hypothesis 1’s prediction of equal likelihood.

Result 2. Under baseline parameters, each AI speculator behave as if maintaining a 1
2 belief about

their opponent choosing to attack.

Result 3. Hypothesis 2 is confirmed: AI speculators converge to crisis equilibrium at θ ≥ θ̄ and

status quo at θ < θ.

[Insert Figure 4 about here]

Figures 4-6 validate these findings: status quo equilibrium occurs with certainty when θ <

θ = 0, while crisis equilibrium dominates when θ ≥ θ̄ = 100. Beyond the risk-dominant threshold,

AI speculators predominantly choose to attack, with average realized payoffs increasing with the

fundamental value.

[Insert Figure 5 and 6 about here]

These results exhibit divergences from the human experiment findings in the comparable

coordination game setup detailed in Kim and Palfrey (2023). Specifically, Kim and Palfrey (2023)

demonstrates that human participants can successfully coordinate with each other only around

60% of the time, and conditional on this successful coordination, approximately 20% of the time

both participants coordinate on the risky action.

Result 4. (Endogenous Risk) Even without access to any information regarding the fundamental

value of the economy, stateless AI agents can still endogenously coordinate on the threshold strategy

successfully. In contrast, it is difficult for humans to coordinate on such strategies successfully.
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Figure 7 illustrates Q-value dynamics during a single session under baseline parameters. The

AI speculators rapidly learn that Not Attack yields zero payoff, leading them to consistently

coordinate on Attack—despite its variable profit outcomes—until algorithm convergence.

[Insert Figure 7 about here]

To partially open the blackbox of the stateless AI speculator’s behavior, I investigate how

varying the learning rate (α) and exploration decay rate (β) affects their propensity to choose

action attack, particularly focusing on the proportion of simulations converging to the crisis

equilibrium.

[Insert Figure 8 and 9 about here]

Figure 8 demonstrates that under a high learning rate (α = 0.1), where AI speculators rapidly

adjust strategies based on recent information, the threshold for stateless AI speculators rises to

approximately 40, exceeding the risk-dominant threshold of 36. This indicates that AI speculators’

belief about their opponent choosing to attack falls below 1
2 . Figure 9 reveals that with a high

exploration decay rate (β = 0.1), indicating greater resistance to strategy changes, AI speculators

rarely coordinate on the attack action. This occurs because they quickly learn that choosing not to

attack yields a zero payoff and settle on this strategy, becoming reluctant to explore alternatives.

5. Information, Algorithmic Coordination, and Financial Crisis

This section examines how private information’s accuracy and precision affect AI speculators’

coordination on the crisis equilibrium, thereby influencing financial crises’ likelihood and pre-

dictability. Under the private information treatment, each AI speculator functions as a stateful

agent, observing a private signal xi,t before decision-making. The analysis evaluates whether AI

speculators’ behavior conforms to economic theory, as outlined in Hypotheses 3 and 4, while

benchmarking their performance against human speculators’ findings from Szkup and Trevino

(2020) and Heinemann, Nagel, and Ockenfels (2004).
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5.1. AI Speculators’ Attack Threshold

Building on Szkup and Trevino (2020) and Heinemann, Nagel, and Ockenfels (2004), I analyze

AI speculators’ experimental data using a logistic distribution to identify their attack threshold.

Similar to human agents, AI speculators employ threshold strategies: choosing not to attack

at low signal values and attacking at high signals. Figure 10 demonstrates this behavior in an

experimental session under private information treatment.

[Insert Figure 10 about here]

To evaluate Hypotheses 3 and 4, I conduct 1000 simulation sessions, each featuring two AI

speculators. At equilibrium, I record the final Q-matrix and signal-action choices. Using the pooled

data, I fit a logistic regression with random effects (RE) to represent the attack probability based

on observed signals:

(8) Pr(Attack) = 1
1 + exp (a + bxi)

The mean attack threshold—the signal value where an AI speculator is indifferent between ac-

tions—occurs at –a
b when Pr(Attack) = 1

2 . The threshold’s standard deviation reflects coordination

levels and cross-session variability. Economically, these two measures indicate crisis probability

and predictability, respectively.

5.2. AI Speculators vs. Economic Agents

Tables 2, 3, and 4 compare attack thresholds between the results of AI speculator experiments and

the predictions of economic theory (Bayesian agent) under discretized global game theory with

private information.

[Insert Table 2 and 3 about here]

[Insert Table 4 about here]
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Comparing AI speculators’ behavior with global game theory predictions reveals notable

divergences. Under perfect or high information accuracy, the AI speculator’s attack threshold

is almost always lower than the corresponding theoretical benchmark value implied by the

(discretized) global game. However, as information accuracy decreases, this relationship flips -

under middle or low information accuracy, the AI speculator’s learned attack threshold is almost

always higher than the theoretical benchmark.

This divergence in behavior is particularly pronounced when information accuracy is low. The

AI speculator’s attack threshold differs substantially from theoretical predictions in these cases,

with larger deviations occurring under lower levels of information accuracy.

However, the AI speculator’s behavior does align with theory in one crucial aspect: as infor-

mation accuracy decreases, the attack threshold decreases, raising the ex-ante crisis probability.

This inverse relationship between information accuracy and attack threshold is observed both in

the AI speculator’s learned behavior and in the theoretical global game predictions.

Result 5. Hypothesis 3 is supported. Consistent with economic agents’ behavior, AI speculators’ attack

thresholds decrease with information accuracy, increasing the ex-ante probability of an AI-driven

crisis as information quality deteriorates.

Result 6. Hypothesis 4 is rejected. Unlike economic agents’ behavior, AI speculators’ attack thresholds

follow a non-monotonic pattern with information precision, contradicting global game theory’s cyclical

predictions.

Result 7. AI speculators’ learned attack threshold deviates from the global game theory’s prediction

of economic agents’ attack threshold, indicating they do not play Nash strategies. With high or perfect

information accuracy, they exhibit both profitable and unprofitable deviations. With medium or low

information accuracy, they consistently exhibit unprofitable deviations.
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5.2.1. Economic Interpretation of AI Speculator versus Economic Agent Behavior

There are two results that warrant economic interpretation. The first is that both economic agents’

and AI speculators’ attack thresholds decrease with information accuracy. The intuition behind this

observation is as follows: Attack thresholds are generally low when the mean of the fundamental

value µθ is high relative to the cost of attack C, as this makes the risky action more likely to

succeed in expectation. This effect is stronger when signal precision is low, since players assign

higher weight to their prior beliefs. Thus, with low signal precision, the model implies lower attack

thresholds for our chosen parameters.

The second issue pertains to why AI speculators’ learned attack thresholds deviate from the

global game theory’s predicted attack threshold for economic agents, indicating that they do not

play Nash strategies. The reason for this is that an AI speculator using Q-learning algorithms

learns the attack threshold through experimentation.

In Q-learning, the algorithm estimates the average true payoff of choosing a particular action

given a specific state of the system. For instance, if AI speculator Bob is currently using a threshold

strategy xHb that is above the Nash equilibrium threshold x∗, AI speculator Alice will learn to

choose a lower threshold strategy x∗ if, and only if, the Q-value for attacking at x∗ exceeds the

Q-value for not attacking at x∗. Specifically, Alice will choose to attack if:

QA,t (sA,t = x∗, aA,t = Attack) > QA,t (sA,t = x∗, aA,t = Not Attack)

Although the expected payoff from choosing the Nash threshold (x∗) should be higher than

choosing (xHb ) when the other player’s attack threshold is (xHb ), Alice may still deviate from

attacking at (x∗), due to

QA,t (sA,t = x∗, aA,t = Attack) < QA,t (sA,t = x∗, aA,t = Not Attack)

This happens because the Q-value is updated based on empirical averages of past experiences,
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which can create a self-reinforcing pattern. For example, if Bob does not attack at a random signal

state sB,t , Alice may learn that attacking at sA,t = x∗ is not profitable, since her attack fails. This

unsuccessful attack experience gets incorporated into Alice’s Q-value, reinforcing the belief that

attacking is not a good option.

If Alice accumulates more of these negative experiences, she may conclude that attacking

at sA,t = x∗ is unprofitable. As a result, she may never learn to use the threshold x∗ effectively,

deviating from the optimal strategy predicted by game theory.

Thus, the key difference between a Q-learning AI speculator and an economic agent is that

the Q-learning agent estimates expected payoffs for each action (attack or not attack) based on

empirical experience. The Q-learning agent does not have a higher-order belief or an objective

function that considers strategic interactions beyond the immediate state-action feedback. In

contrast, the economic agent calculates expected payoffs based on a formal objective function and

higher-order beliefs, ultimately leading to the optimal attack threshold. 21

5.3. AI Speculators vs. Human Speculators

Tables 2, 3, and 5 compare attack thresholds between the results of AI speculator experiments and

the results of human speculator experiments in Szkup and Trevino (2020).

[Insert Table 5 about here]

AI and human speculators also exhibit distinct behavioral patterns. A key finding emerges:

holding information precision constant, AI speculators’ attack thresholds increase with rising

information accuracy, which is inversely correlated with the standard deviation of noise in private

information, while human speculators show the opposite pattern.22 The findings from Szkup and
21Hence, for AI speculators to learn the Nash threshold implied by economic theory, they may need to update their

strategies slowly and explore the strategy space extensively.
22This difference is partly due to different experimental designs - AI speculators process discrete random variables,

while humans in Szkup and Trevino (2020) received continuous signals. To mute this effect, I tried to increase the
discreteness and make sure the information that AI speculators can access are as smooth as possible, which tries to
resemble the continuous signal that human speculator can access in the in Szkup and Trevino (2020) experiments.
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Trevino (2020) suggest that sentiments in perceived strategic uncertainty drive human speculators’

responses to changes in information accuracy. In contrast, the AI speculator, being free from such

sentiment effects, responds differently to information accuracy changes.

Another notable difference concerns the predictability of attack thresholds. Across all levels of

information accuracy, the standard error of AI speculators’ attack thresholds remains consistently

lower than that of human speculators, indicating that AI speculators’ attack behavior is more

predictable than human speculators’.

Result 8. (Responses to Information Accuracy) In low information accuracy environments, AI

speculators show a higher likelihood of choosing the risky action of attack, while human speculators

exhibit a lower likelihood of attacking. This contrasting response to changes in information accuracy

suggests fundamental differences in how AI and human agents respond to fundamental uncertainty

in speculative environment.

Result 9. (The Likelihood of Crisis)The likelihood of AI-driven self-fulfilling crisis occurring is

higher than human-driven self-fulfilling crisis under high fundamental value uncertainty. Conversely,

the likelihood of human-driven self-fulfilling crisis occurring is higher than AI-driven self-fulfilling

crisis under low fundamental value uncertainty.

Result 10. (The Predictability of Crises) AI-driven crises are more predictable than human-driven

crises.

5.3.1. Economic Interpretation of AI Speculator versus Human Speculator Be-

havior

Under conditions of varying information accuracy, human and AI speculators demonstrate distinct

behavioral patterns. Szkup and Trevino (2020) shows that human speculators’ reactions to changes

in information accuracy are driven by sentiments about perceived strategic uncertainty. Specifically,

when information accuracy is low (and fundamental value uncertainty is high), humans exhibit

negative sentiments about others taking the risky attack action.
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This contrasts with AI speculators’ behavior: they set lower attack thresholds than humans

when information accuracy is middle or low, resulting in higher crisis probability. However, when

information is perfect or highly accurate, AI speculators maintain higher attack thresholds than

their human counterparts, leading to lower crisis probability.

One possible explanation for these behavioral patterns is that, compared to human speculators,

AI speculators tend to overestimate others’ likelihood of taking the risky action (attack) when

information accuracy is low (high fundamental value uncertainty), and underestimate it when

information accuracy is high (low fundamental value uncertainty).

To verify this over/under-estimation of strategic uncertainty - the belief about others taking

the risky action (attack) - we can examine the weighted average Q value across all signal states.

This weighted average Q value represents the fully ex-ante expected payoff (before observing the

private signal) of choosing to attack, which is a positive function of the belief about others taking

the risky action. Hence, to support this channel, we should expect to observe that the weighted Q

value across all signal states is higher when information accuracy is low (high fundamental value

uncertainty).

[Insert Figure 11 about here]

Figure 11 confirms our hypothesis and partially supports our explanation for the behavioral

patterns of the AI speculators.

5.4. Role of Information Accuracy and Precision

I analyze the relationship between AI speculator’s attack thresholds and information characteristics

through extensive numerical simulation experiments.

[Insert Figure 12, 13, and 14 about here]

Figures 12-14 reveal a non-monotonic relationship between attack thresholds and information ac-

curacy. At high accuracy levels (variance smaller than 1), the threshold rises as accuracy decreases.
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The threshold reaches a peak, then declines at low accuracy levels (variance larger than 1). This

suggests that extremely inaccurate information may increase the likelihood of AI-driven crises.

The existence of an optimal accuracy level—which is usually large but not infinite—maximizes the

attack threshold thereby minimizing crisis probability. Hence, in general it is better for regulators

to promote market transparency by allowing AI speculators to have access to accurate private

information.

[Insert Figure 15 and 16 about here]

Figures 15 and 16 demonstrate that, holding information accuracy constant, attack thresholds

generally exhibit an inverted U-shaped relationship with information precision in most cases.

Specifically, the thresholds first increase before gradually declining. This pattern reveals that there

exists an optimal information precision level, represented as the discreteness, at which the attack

threshold reaches its peak and the likelihood of AI-driven crises is at its lowest.

5.5. Does Public Information Destabilize AI Speculators?

Standard economic theory literature23 suggests that public information may destabilize an econ-

omy by allowing for self-fulfilling beliefs, which can lead to multiple equilibria, thereby potentially

destabilizing markets through reduced predictability. Specifically, in this paper’s setup, any thresh-

old value of the public information can form a symmetric Nash equilibrium, where speculators

coordinate to attack when they observe a public signal exceeding this threshold.

However, existing experimental literature24 presents contrasting findings. Not only is there

no conclusive evidence that public information reduces crisis predictability compared to private

information, but Heinemann, Nagel, and Ockenfels (2004) demonstrated that predictability of crises

(by an outside observer, i.e. analyst) is actually higher with public than with private information.

Hence, the AI speculator case warrants specific examination.
23Such as, Morris and Shin (1998a), Danielsson et al. (2001), Heinemann and Illing (2002), Hellwig (2002a), Metz

(2002), Prati and Sbracia (2002)
24Such as, Heinemann, Nagel, and Ockenfels (2004),
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I assess the destabilizing effects of public information through two perspectives: (1) crisis

predictability and (2) crisis probability. Crisis predictability is measured by the standard deviation

of AI speculator’s threshold strategy, where a smaller standard deviation indicates more consistent

threshold learning by AI speculators across sessions, signifying high crisis predictability. Crisis

probability is determined by the threshold value itself, where a smaller mean threshold value

learned by the AI speculator indicates a high crisis probability.

[Insert Table 6 and 7 about here]

Tables 6 and 7 reveal that public information exhibits destabilizing effects through increased crisis

unpredictability, evidenced by higher standard deviations in AI speculator’s learned threshold

strategy compared to under the private information regime. This result contradicts the human

experiment results in Heinemann, Nagel, and Ockenfels (2004) shown in table 8, which shows

that under the human speculative attack experiment, the predictability of crises (by an outside

observer, i.e. analyst) is actually higher with public than with private information.

[Insert Table 8 about here]

The key channel for these different results is mainly driven by the success of achieving

coordination. In the market with only AI speculators, with public information compared to private

information, they will less successfully coordinate on the same threshold strategy, which can

be shown in their standard deviation of their learned threshold strategy, hence this means AI

speculator’s behavior can be more unpredictable. However, based on the experimental results

from Heinemann, Nagel, and Ockenfels (2004) shown in table 8, in the market with only human

speculators, human speculators are more easily or successfully coordinate with each other under

the public information regime than under the private information regime, due to their regarding

the public information as a focal point, hence their behavior can be more predictable.

Result 11. (Public Information and Crisis Predictability) Consistent with standard economic

theory, public information destabilizes markets with only AI speculators by increasing crisis unpre-

dictability. This occurs due to AI speculators’ reduced ability to coordinate on threshold strategies
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under public information compared to private information regimes. Unlike in markets with only

human speculators, where public information can serve as a coordination device and make behavior

more predictable, public information has the opposite effect with AI speculators.

Figures 12, 13, and 14 illustrate how the impact of public information on AI-driven crisis

probability varies with economic noise levels in the environment. Under high noise environment

(larger than 1 standard deviation), public information leads to higher thresholds, reducing crisis

probability. Conversely, under low noise environment (smaller than 1), thresholds under public

information regime are marginally lower than with private information.

This result shows that for a market with only AI speculators, under the high noise economic

environment, public information regime may help to reduce the AI-driven crisis. However, these

results are slightly different from human experiment in Heinemann, Nagel, and Ockenfels (2004)

shown in table 8, who showed that probability of the crisis is always relatively higher under

public information regime compared to private information regime. Based on the experimental

results from Heinemann, Nagel, and Ockenfels (2004) shown in table 8, in the market with only

human speculators, public information regime may always help to increase the likelihood of the

human-driven crisis.

Result 12. (Public Information and Crisis Probability) In a market with only AI speculators,

public information can stabilize markets and reduce crisis probability only in high-noise economic

environments, but actually increases the crisis probability in low-noise economic environments.

However, in a market with only human speculators, public information always destabilizes markets

and increases the crisis probability.

Result 13. (Trade-off between Crisis Probability and Crisis Predictability) In markets domi-

nated by AI speculators under high-noise conditions, there exists a fundamental trade-off in regulatory

design: interventions that reduce the ex-ante probability of crisis necessarily decrease the predictability

of such crisis events.

This result has important implications for regulations: in a market with high noise, the release
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of public information can be stabilizing and beneficial if the regulator’s target is to reduce the

ex-ante probability of an AI-driven crisis. However, while reducing the overall crisis probability, it

will make each AI speculator’s attack choice more unpredictable, hence making the timing and

nature of any crisis more unpredictable.

5.6. Do AI Speculators Overreact to Public Information Compared

to Private Information?

Morris and Shin (2002) predicts that agents are more likely to overreact to public information

compared to private information when both signals are equally precise. Cornand (2006) confirm

this through experiments with human subjects, showing that individuals tend to overreact to

public information even when they also receive private information. This section investigates

whether AI speculators exhibit similar behavior, overreacting to public information when both

public and private signals are available and equally informative.

Tables 9 and 10 present AI speculators’ reactions to private and public information of equivalent

quality across different precision and accuracy levels. Through logistic regression analysis of

converged learning behavior, I find that at all precision and accuracy levels, we reject the null

hypothesis that the reaction coefficient differential (public minus private information) is non-

negative.

[Insert Table 9 and 10 about here]

Result 14. (Over-reaction to Public Information) AI speculators, similar to human speculators,

tend to react more strongly to public information than to private information.

5.7. Are AI Speculators Immune to Sentiment?

While algorithms are often praised for their immunity to sentiment compared to human traders,

this section empirically tests this assumption by introducing sunspot variables, which are extrinsic
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random noise that can be regarded as irrelevant news totally unrelated to fundamental values,

into the stateful AI speculator model. Following Angeletos (2008a), I distinguish between private

sunspots (idiosyncratic sentiment), where each AI speculator observes their own independent

piece of irrelevant news, and public sunspots (market-wide sentiment), where both AI speculators

observe a common irrelevant news, to represent external uncertainty. Theoretically, Angeletos

(2008a) shows that both private sunspots and public sunspots can serve as coordination devices

that speculators may coordinate on. Experimentally, Fehr, Heinemann, and Llorente-Saguer (2019)

shows that human speculators can easily coordinate on public sunspots but not on uncorrelated

private sunspots. In this section, I experimentally test how private and public sunspots affect AI

speculators’ learning behavior.

[Insert Figure 17 about here]

Figure 17 demonstrates that private sunspot variables prevent AI speculators from learning the

correct threshold strategy. Under high extrinsic random noise (idiosyncratic sentiment volatility),

AI speculators may even adopt a reversed strategy—attacking at low signal values while abstaining

at high ones.

Result 15. (Coordination on Private Sunspot) AI speculators can be affected by idiosyncratic

sentiment. They may coordinate on private sunspots and even adopt a reversed threshold strategy.

[Insert Figure 18 about here]

Figure 18 shows that with public sunspot variables, AI speculators abandon the threshold

strategy entirely, choosing to attack at any signal value.

Result 16. (Coordination on Public Sunspot) AI speculators are susceptible to market-wide

sentiment. When observing the public sunspot, they choose to always attack at any signal value.

In sum, AI speculators fail to distinguish irrelevant noise from meaningful signals, which

disrupts their learning process and prevents them from adopting the correct strategy. These
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results have important implications, as AI speculators can mistake noise for relevant information,

overreacting to irrelevant news and coordinating on it. Mendel and Shleifer (2012) argues that

when speculators chase noise as if it were information, they can amplify shocks and have an

impact on market equilibrium disproportionate to their size in the market. Hence, AI speculators’

noise-chasing behavior can pose a significant threat.

Result 17. (Chasing Noise as Informative Signal) AI speculators fail to distinguish irrelevant

noise from meaningful informative signals.

6. Economic Mechanism

In this section, I examine how key parameters within the AI speculator’s behavioral rules influ-

ence its algorithmic behavior, with particular focus on the learning channel. This analysis can be

regarded as a comparative statics study for AI agents. I analyze the impact of three critical param-

eters on attack action choices: learning rate, exploration rate decay, and information advantage. A

higher learning rate leads the AI speculator to overreact to new experiences, rapidly adjusting

strategies based on recent information. Meanwhile, a higher exploration rate decay indicates

greater stubbornness, with the AI favoring learned behaviors over new strategies. Finally, I inves-

tigate how an information advantage affects both the informed AI speculator’s attack decisions

and its less informed counterpart’s behavior. Furthermore, I investigate potential inter-speculator

influence by examining interactions between two AI speculators with asymmetric parameters.

6.1. Impact of the Fast-Learning AI Speculator

Table 11 and 12 compares AI speculators’ attack thresholds under different symmetric or asymmet-

ric learning rates. Under high learning rates, AI speculators tend to choose higher attack thresholds,

implying lower ex-ante crisis probability. The relationship between attack thresholds and private

information noise varies with learning rates. With a low learning rate (α = 0.01), attack thresholds

decrease as noise increases, indicating greater propensity for speculative attacks in high-noise
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environments. Conversely, with a high learning rate (α = 0.1), attack thresholds increase with

noise, suggesting greater likelihood of speculative attacks in low-noise environments.

[Insert Table 11 an 12 about here]

The table also compares attack thresholds between AI speculators with asymmetric learning rates.

Results show that AI speculators with higher learning rates consistently maintain higher attack

thresholds when trading against those with lower learning rates.

Result 18. AI speculators with higher learning rates tend to adopt higher attack thresholds, thus

reducing their propensity to attack.

6.2. Impact of the Stubborn AI Speculator

Table 13 compares AI speculators’ attack thresholds across different exploration rate decays.

Higher exploration rate decay, indicating greater stubbornness and unwillingness to explore new

strategies, corresponds to higher attack thresholds and thus lower ex-ante crisis probability. When

interacting with a more stubborn AI speculator (higher exploration rate decay), the less stubborn

AI speculator consistently adopts a lower attack threshold than the stubborn one.

[Insert Table 13 about here]

Result 19. AI speculators with higher exploration rate decay adopt higher attack thresholds, indicat-

ing a lower likelihood of attack.

6.3. Impact of the Less Informed AI Speculator

Tables 14 and 15 analyze attack thresholds of two AI speculators, Alice and Bob, under asymmetric

information structures, examining two distinct cases: differences in information accuracy and

precision.

[Insert Table 14 about here]
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Table 14 isolates the impact of information accuracy by holding precision constant. Results

demonstrate that AI speculators with lower information accuracy select lower attack thresholds,

indicating a higher likelihood to attack compared to their better-informed counterparts.

Result 20. AI speculators with inferior information accuracy tend to choose lower attack thresholds,

increasing their likelihood of attack.

[Insert Table 15 about here]

Table 15 examines information precision’s effect by controlling for accuracy. The results show

that AI speculators with lower precision information select lower attack thresholds, exhibiting

greater attack propensity.

Result 21. AI speculators with lower information precision select lower attack thresholds, increasing

their likelihood of attack.

Results 20 and 21 demonstrate that AI speculators with information disadvantages are more

likely to attack than their counter-parties who have information advantages.

7. Policy Implications

Throughout the whole paper, I show that AI speculators’ behavior is sensitive to the market

information environment. Hence, appropriate market information environments and transparency

policies are critical for guiding AI speculators toward stabilizing behavior. This paper’s theoretical

and AI simulation results offer both normative and positive insights for designing potential

regulatory solutions to reduce the risks associated with AI-driven speculation.

First, this paper advocates for maintaining a high transparency information environment,

where each AI speculator can have access to accurate private information, as enhanced accuracy in

private signals can help reduce the ex-ante probability of financial crises driven by AI speculation.

The disclosure of public information, however, presents a key tradeoff. In high-noise economic
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environments, while increased public transparency could decrease the ex-ante probability of AI-

driven crises, it simultaneously increases their unpredictability. This creates a fundamental policy

tension for regulators, who must decide whether to prioritize decreasing the ex-ante probability

of AI-driven crises or reducing their unpredictability.

These algorithms are not immune to sentiment and may falsely interpret pure noise as useful

information, with their behavior potentially influencing each other through complex feedback

loops. The specific characteristics of the AI algorithms employed in the market are therefore

crucial in shaping overall market outcomes. Consequently, regulatory frameworks must carefully

consider the nature of the algorithms used by market participants when designing policies.

8. Conclusion

I examine how interacting AI trading algorithms affect financial stability through the lens of Morris

and Shin’s (1998) speculative attack framework. I demonstrate that AI speculators may coordinate

more effectively on crisis equilibrium than humans or traditional economic agents. This presents

novel regulatory challenges. I find the following regulatory implications: (1) Enhancing market

transparency through accurate private information can effectively reduce the likelihood of AI-

driven crises. (2) Enhancing market transparency through public information disclosure presents

a trade-off: while it reduces the likelihood of AI-driven crises, it increases unpredictability. These

findings suggest that regulators should maintain an appropriate market information environment

to mitigate AI-induced financial instability. I contribute to the literature by analyzing the systemic

implications of AI interactions in financial markets, their market-level equilibrium outcomes,

and providing practical insights for designing regulatory frameworks in an era of increasing AI

participation in financial markets.
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TABLE

Table 1. Information Treatments in the Experimental Design

Information State Variable Fundamental Corresponding Economic Setup
Treatment for AI Agents Value
No Information ∅ θ Coordination Game

Private Information xi,t θt Global Game

Public Information x p
t θt Coordination Game with Public Information

Private Sunspot mi,t θt Coordination Game with Idiosyncratic Sentiment

Public Sunspot m p
t θt Coordination Game with Market Sentiment

Note: This table summarizes the information treatments in the experimental design described in Section 3.3. Our
simulation experiments include five types of information treatments: no information with perfect learnable
fundamental value, private information xi,t , public information x p

t , private sunspots mi,t , and public sunspots m p
t .

The sunspot variable represents extrinsic uncertainty as pure noise.
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Table 2. AI Speculator Alice’s Attack Threshold in the Private Information Treatment

Accuracy of Private Information
Precision (ns) Perfect (σi = 0) High (σi = 1) Middle (σi = 10) Low (σi = 20)

(ns = 10) 30.23 29.77 27.53 27.79
(11.05 ) (10.33 ) (6.04 ) (6.29 )

(ns = 20) 34.05 33.91 32.86 26.14
(4.31 ) (4.11 ) (1.42 ) (1.02 )

(ns = 30) 34.98 34.94 33.27 25.99
(2.55 ) (2.45 ) (1.21 ) (0.92 )

(ns = 40) 35.21 35.36 33.27 26.28
(2.09 ) (1.92 ) (1.07 ) (0.94 )

(ns = 50) 35.47 35.55 33.58 26.41
(1.86 ) (1.64 ) (0.93 ) (0.91 )

(ns = 60) 35.46 35.60 33.79 26.58
(1.71 ) (1.48 ) (0.83 ) (0.84 )

(ns = 70) 35.34 35.66 33.90 26.75
(1.56 ) (1.34 ) (0.82 ) (0.84 )

(ns = 80) 35.19 35.63 34.09 26.79
(1.51 ) (1.21 ) (0.80 ) (0.84 )

(ns = 90) 35.07 35.64 34.13 26.83
(1.35 ) (1.23 ) (0.76 ) (0.82 )

Note: This table presents the attack thresholds for AI speculator Alice under different levels of private information
accuracy and precision. Values in parentheses indicate standard errors, reflecting the predictability of Alice’s learned
behavior.
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Table 3. AI Speculator Bob’s Attack Threshold in the Private Information Treatment

Accuracy of Private Information
Precision (ns) Perfect (σi = 0) High (σi = 1) Middle (σi = 10) Low (σi = 20)

(ns = 10) 30.62 30.03 28.04 28.25
(11.27) (10.60) (5.82) (6.21)

(ns = 20) 34.18 34.05 32.90 26.15
(4.25) (4.11) (1.41) (1.03)

(ns = 30) 35.08 35.04 33.28 26.01
(2.50) (2.43) (1.20) (0.95)

(ns = 40) 35.25 35.39 33.30 26.28
(2.03) (1.94) (1.06) (0.96)

(ns = 50) 35.50 35.58 33.60 26.46
(1.86) (1.68) (0.92) (0.91)

(ns = 60) 35.48 35.62 33.80 26.58
(1.73) (1.48) (0.83) (0.86)

(ns = 70) 35.35 35.68 33.91 26.78
(1.55) (1.33) (0.82) (0.87)

(ns = 80) 35.20 35.64 34.08 26.79
(1.49) (1.19) (0.81) (0.85)

(ns = 90) 35.08 35.65 34.14 26.84
(1.35) (1.22) (0.75) (0.81)

Note: This table presents the attack thresholds for AI speculator Bob under different levels of private information
accuracy and precision. Values in parentheses indicate standard errors, reflecting the predictability of Alice’s learned
behavior.
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Table 4. Attack Thresholds Implied by Economic Theory (Bayesian Agent)

Accuracy of Private Information
Precision (ns) Perfect (σi = 0) High (σi = 1) Middle (σi = 10) Low (σi = 20)

(ns = 10) 37.23 37.22 22.98 21.46
(ns = 20) 37.31 37.30 30.31 21.69
(ns = 30) 37.32 37.32 28.01 16.41
(ns = 40) 37.33 34.06 26.85 17.79
(ns = 50) 34.72 34.72 28.96 18.60
(ns = 60) 35.16 35.16 28.03 19.14
(ns = 70) 35.47 35.47 27.36 19.52
(ns = 80) 35.71 35.70 28.62 17.80
(ns = 90) 35.89 35.88 28.03 18.25
(ns = +∞) 36.00 35.31 28.31 18.73

Note: This table presents the attack thresholds from the discretized global game economic theory model in Section
2.4, reflecting varying levels of precision (ranging from 10 to 90) and accuracy (denoted by σi values of 0, 1, 10, and
20) of private information.

Table 5. Human Speculator’s Attack Threshold from Szkup and Trevino (2020) Experiment

Accuracy of Private Information
Precision (ns) Highest (σi = 0) High (σi = 1) Middle (σi = 10) Low (σi = 20)

Continuous (ns = +∞) 22.11 27.61 40.16 35.79
(7.15) (5.86) (9.13) (9.00)

Note: This table presents the estimated attack thresholds for human speculators based on varying levels of private
information accuracy from the Szkup and Trevino (2020) experiment. Values in parentheses indicate standard errors,
reflecting the predictability of human behavior.
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Table 6. AI Speculator Alice’s Attack Threshold in the Public Information Treatment

Accuracy of Public Information
Precision (ns) High (σi = 1) Middle (σi = 10) Low (σi = 20)

(ns = 10) 29.73 28.88 28.03
(11.01) (11.03) (11.36)

(ns = 20) 33.98 33.73 32.45
(4.15) (4.29) (4.23)

(ns = 30) 35.18 34.71 32.91
(2.48) (2.83) (3.14)

(ns = 40) 35.42 34.86 33.11
(2.09) (2.31) (2.69)

(ns = 50) 35.52 34.84 33.10
(1.85) (1.96) (2.21)

(ns = 60) 35.43 34.95 33.06
(1.69) (1.76) (2.10)

(ns = 70) 35.41 34.84 32.89
(1.50) (1.72) (1.88)

(ns = 80) 35.20 34.60 32.66
(1.40) (1.51) (1.82)

(ns = 90) 34.97 34.32 32.40
(1.39) (1.47) (1.71)

Note: This table presents the attack thresholds for AI speculator Alice under different levels of public information
accuracy and precision. Values in parentheses indicate standard errors, reflecting the predictability of Alice’s learned
behavior.
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Table 7. AI Speculator Bob’s Attack Threshold in the Public Information Treatment

Accuracy of Public Information
Precision (ns) High (σi = 1) Middle (σi = 10) Low (σi = 20)

(ns = 10) 29.82 29.17 28.14
(11.12) (10.75) (11.11)

(ns = 20) 33.98 33.77 32.39
(4.10) (4.28) (4.27)

(ns = 30) 35.14 34.64 32.82
(2.51) (2.85) (3.22)

(ns = 40) 35.40 34.83 33.05
(2.08) (2.36) (2.71)

(ns = 50) 35.51 34.83 33.07
(35.51) (2.04) (2.22)

(ns = 60) 35.43 34.94 33.04
(1.66) (1.76) (2.10)

(ns = 70) 35.41 34.83 32.89
(1.49) (1.74) (1.88)

(ns = 80) 35.20 34.60 32.66
(1.40) (1.52) (1.83)

(ns = 90) 34.97 34.33 32.41
(1.38) (1.48) (1.69)

Note: This table presents the attack thresholds for AI speculator Bob under different levels of public information
accuracy and precision. Values in parentheses indicate standard errors, reflecting the predictability of Alice’s learned
behavior.
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Table 8. Human Speculator’s Attack Threshold from Heinemann, Nagel, and Ockenfels (2004)
Experiment

T=20, Z=100 T=20, Z=60 T=50, Z=100 T=50, Z=60

Private Information 29.73 41.83 55.33 57.04
(8.31) (9.49) (8.45) (9.31)

Public Information 26.71 37.62 52.84 53.20
(4.13) (6.23) (5.29) (5.92)

Note:This table presents the estimated attack thresholds for human speculators from the Heinemann, Nagel, and
Ockenfels (2004) experiment. Values in parentheses indicate standard errors, reflecting the predictability of human
behavior. Z is a parameter to control the easiness of a successful speculative attack: the higher Z , the easier that a
speculative attack can be successful, and the lower Z , the less easier that a speculative attack can be successful. T
represents the opportunity cost of choosing action attack, which corresponds to the C in our setup.
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Table 9. AI Speculator Alice’s Reaction to Private Information and Public Information

Reaction Coefficient to Information
Precision (ns) Accuracy (σi) Private Info. Public Info. Public - Private

10
High (σi = 1) 0.0036 0.0037 1.01 × 10–4

Middle (σi = 10) 0.0026 0.0039 1.26 × 10–3

Low (σi = 20) 0.0079 0.0358 2.79 × 10–2

20
High (σi = 1) 0.0050 0.0050 2.60 × 10–5

Middle (σi = 10) 0.0034 0.0047 1.37 × 10–3

Low (σi = 20) 0.0086 0.0259 1.73 × 10–2

30
High (σi = 1) 0.0043 0.0044 9.71 × 10–6

Middle (σi = 10) 0.0042 0.0056 1.36 × 10–3

Low (σi = 20) 0.0099 0.0228 1.29 × 10–2

40
High (σi = 1) 0.0046 0.0046 1.54 × 10–5

Middle (σi = 10) 0.0048 0.0061 1.23 × 10–3

Low (σi = 20) 0.0107 0.0211 1.04 × 10–2

50
High (σi = 1) 0.0042 0.0042 6.33 × 10–6

Middle (σi = 10) 0.0053 0.0064 1.08 × 10–3

Low (σi = 20) 0.0112 0.0193 8.07 × 10–3

60
High (σi = 1) 0.0045 0.0045 8.40 × 10–6

Middle (σi = 10) 0.0056 0.0065 9.66 × 10–4

Low (σi = 20) 0.0116 0.0179 6.30 × 10–3

70
High (σi = 1) 0.0046 0.0046 1.38 × 10–5

Middle (σi = 10) 0.0059 0.0067 8.10 × 10–4

Low (σi = 20) 0.0117 0.0166 4.89 × 10–3

80
High (σi = 1) 0.0046 0.0046 8.36 × 10–6

Middle (σi = 10) 0.0060 0.0067 7.30 × 10–4

Low (σi = 20) 0.0116 0.0153 3.63 × 10–3

90
High (σi = 1) 0.0046 0.0046 2.39 × 10–6

Middle (σi = 10) 0.0061 0.0067 6.66 × 10–4

Low (σi = 20) 0.0114 0.0140 2.62 × 10–3

Note: The table illustrates AI Speculator Alice’s reactions to private and public information of equal quality at
varying levels of precision (ns) and accuracy (σi). Reactions to information are estimated using simulation
experimental data fitted into a logistic regression given by Pr(Attack) = 1

1+exp(a+b1xi+b2x p) . The Public - Private column
highlights the difference in reactions between public and private information. The Wald test is employed to assess the
significance of the difference between the coefficients for public and private signals. All estimated coefficients are
significant at the 0.1% level.
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Table 10. AI Speculator Bob’s Reaction to Private Information and Public Information

Reaction Coefficient to Information
Precision (ns) Accuracy (σi) Private Info. Public Info. Public - Private

10
High (σi = 1) 0.0036 0.0037 1.01 × 10–4

Middle (σi = 10) 0.0023 0.0038 1.49 × 10–3

Low (σi = 20) 0.0087 0.0429 3.42 × 10–2

20
High (σi = 1) 0.0050 0.0050 2.42 × 10–5

Middle (σi = 10) 0.0033 0.0047 1.42 × 10–3

Low (σi = 20) 0.0086 0.0259 1.69 × 10–2

30
High (σi = 1) 0.0044 0.0044 1.23 × 10–5

Middle (σi = 10) 0.0042 0.0055 1.40 × 10–3

Low (σi = 20) 0.0102 0.0229 1.27 × 10–2

40
High (σi = 1) 0.0046 0.0046 1.60 × 10–5

Middle (σi = 10) 0.0048 0.0060 1.19 × 10–3

Low (σi = 20) 0.0109 0.0211 1.02 × 10–2

50
High (σi = 1) 0.0042 0.0042 1.85 × 10–5

Middle (σi = 10) 0.0052 0.0064 1.14 × 10–3

Low (σi = 20) 0.0113 0.0192 7.85 × 10–3

60
High (σi = 1) 0.0045 0.0045 1.28 × 10–5

Middle (σi = 10) 0.0056 0.0066 9.95 × 10–4

Low (σi = 20) 0.0115 0.0178 6.26 × 10–3

70
High (σi = 1) 0.0046 0.0046 1.11 × 10–5

Middle (σi = 10) 0.0058 0.0067 8.51 × 10–4

Low (σi = 20) 0.0118 0.0166 4.83 × 10–3

80
High (σi = 1) 0.0046 0.0046 9.35 × 10–6

Middle (σi = 10) 0.0060 0.0067 7.45 × 10–4

Low (σi = 20) 0.0117 0.0152 3.50 × 10–3

90
High (σi = 1) 0.0046 0.0046 5.09 × 10–6

Middle (σi = 10) 0.0061 0.0067 6.47 × 10–4

Low (σi = 20) 0.0114 0.0141 2.71 × 10–3

Note:The table illustrates AI Speculator Bob’s reactions to private and public information of equal quality at varying
levels of precision (ns) and accuracy (σi).. Reactions to information are estimated using simulation experimental data
fitted into a logistic regression given by Pr(Attack) = 1

1+exp(a+b1xi+b2x p) . The Public - Private column highlights the
difference in reactions between public and private information. The Wald test is employed to assess the significance
of the difference between the coefficients for public and private signals. All estimated coefficients are significant at
the 0.1% level.
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Table 11. AI Speculator Attack Threshold with Varying Symmetric Learning Rates

Accuracy (σi)

Learning rate (αi) σi = 0 σi = 1 σi = 10 σi = 20
Alice Bob Alice Bob Alice Bob Alice Bob

αA = αB = 0.01
35.07 35.08 35.64 35.65 34.13 34.14 26.83 26.84
(1.35) (1.35) (1.23) (1.22) (0.76) (0.75) (0.82) (0.81)

αA = αB = 0.05
37.17 37.30 37.27 37.37 37.80 37.80 37.18 37.19
(5.53) (5.67) (5.26) (5.36) (2.43) (2.41) (2.30) (2.31)

αA = αB = 0.10
41.25 41.32 41.81 41.85 51.49 51.49 63.22 63.23
(2.95) (2.97) (2.53) (2.51) (2.98) (2.97) (3.81) (3.82)

Note: This table presents the attack thresholds for AI speculators with symmetric learning rates and fixed
information precision (ns = 90) in the Private Information Treatment, providing a comparative statistical analysis. A
higher learning rate indicates that the AI speculator is more prone to overreacting to new experiences, rapidly
adjusting its strategies based on recent information. Values in parentheses denote standard errors, indicating the
predictability of the AI speculator’s learned behavior.

Table 12. AI Speculator Attack Threshold with Varying Asymmetric Learning Rates

Accuracy (σi)

Learning rate (αi) σi = 0 σi = 1 σi = 10 σi = 20
Alice Bob Alice Bob Alice Bob Alice Bob

αA = 0.01, αB = 0.10
36.93 37.78 36.86 37.69 39.23 40.90 35.05 41.24
(9.02) (8.29) (8.66) (8.01) (2.28) (1.84) (1.94) (1.99)

αA = 0.01, αB = 0.05
32.97 33.79 32.76 33.51 29.82 31.68 30.50 31.64
(8.97) (8.47) (8.47) (8.04) (2.46) (2.12) (0.66) (0.87)

Note: This table presents the attack thresholds for AI speculators with asymmetric learning rates and fixed
information precision (ns = 90) in the Private Information Treatment. A higher learning rate indicates that the AI
speculator is more prone to overreacting to new experiences, rapidly adjusting its strategies based on recent
information. Values in parentheses denote standard errors, indicating the predictability of the AI speculator’s learned
behavior.
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Table 13. AI Speculator Attack Threshold with Varying Exploration Rates Decay

Accuracy (σi)

Exploration Rate Decay (βi) σi = 0 σi = 1 σi = 10 σi = 20
Alice Bob Alice Bob Alice Bob Alice Bob

βA = βB = 1 × 10–5 30.23 30.62 29.77 30.03 27.53 28.04 27.79 28.25
(11.05) (11.27) (10.33) (10.60) (6.04) (5.82) (6.29) (6.21)

βA = βB = 5 × 10–5 32.78 32.77 32.64 32.63 29.15 29.18 29.11 29.15
(8.36) (8.38) (8.27) (8.21) (3.29) (3.29) (2.28) (2.25)

βA = 1 × 10–5,βB = 5 × 10–5 33.61 35.41 33.09 35.16 27.75 32.73 25.43 31.63
(12.67) (7.71) (12.84) (7.52) (7.63) (3.49) (5.09) (1.68)

Note: This table shows the attack thresholds for AI speculators at varying exploration rate decay with fixed
information precision (ns = 10) in the Private Information Treatment. A higher exploration rate decay indicates that
the AI speculator is more stubborn, favoring previously learned behaviors over exploring new strategies. Values in
parentheses represent standard errors, reflecting the predictability of the AI speculator’s learned behavior.

Table 14. AI Speculators’ Attack Thresholds Under Asymmetric Private Information Accuracy

Accuracy (σi) Alice Bob

(σA = 1) and (σB = 10) 27.98 27.87
(6.29) (6.43)

(σA = 1) and (σB = 20) 28.58 27.44
(4.26 ) (4.46)

(σA = 10) and (σB = 20) 27.98 27.68
(5.35) (5.26)

Note: This table presents the attack thresholds for AI speculators with asymmetric private information accuracy and
fixed information precision (ns = 10) in the Private Information Treatment. Values in parentheses denote standard
errors, indicating the predictability of the AI speculator’s learned behavior.
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Table 15. AI Speculators’ Attack Thresholds Under Different Private Information Precision

Accuracy (σi)

Precision (ns,i) σi = 0 σi = 1 σi = 10 σi = 20
Alice Bob Alice Bob Alice Bob Alice Bob

ns,A = 10 vs ns,B = 20
29.60 33.57 29.49 33.48 28.50 32.26 25.53 26.84
(7.40) (3.64) (7.44) (3.73) (2.17) (1.53) (1.25) (1.39)

ns,A = 10 vs ns,B = 10
30.23 30.62 29.77 30.03 27.53 28.04 27.79 28.25

(11.05) (11.27) (10.33) (10.60) (6.04) (5.82) (6.29) (6.21)

ns,A = 20 vs ns,B = 20
34.05 34.18 33.91 34.05 32.86 32.90 26.14 26.15
(4.31) (4.25) (4.11) (4.11) (1.42) (1.41) (1.02) (1.03)

Note: This table presents the attack thresholds for AI speculators under different private information precision in the
Private Information Treatment. Values in parentheses denote standard errors, indicating the predictability of the AI
speculator’s learned behavior.
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FIGURE

Figure 1. Equilibrium Threshold x∗ and Standard Deviation of Noise σi, Implied by Global Game
Theory

Note: This figure corresponds to Corollary 2 and illustrates the relationship as predicted by global game theory
between the equilibrium threshold x∗, which is the point at which each speculator decides to initiate a speculative
attack, and the standard deviation of noise σi in the agents’ private information. The baseline parameters are as
follows: the mean fundamental value is θ0 = 50, the variance is σ2

θ = 50, the coordination bounds are θ = 0 and
θ̄ = 100, and the cost of attacking is C = 18.
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Figure 2. Equilibrium Threshold x∗ and Information Precision (ns) with fixed accuracy σi = 1

Note: This figure illustrates Corollary 3, depicting the theoretical relationship between the equilibrium threshold
x∗—the point at which each speculator initiates a speculative attack—and the precision of private information,
represented by the number of bins ns in the private signal, , as predicted by the discretized global game theory. The
information accuracy represented by noise variance is fixed at σi = 1. The baseline parameters include: mean
fundamental value θ0 = 50, variance σ2

θ = 50, coordination bounds θ = 0 and θ̄ = 100, and cost of attacking C = 18.
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Figure 3. Fraction of Sessions with AI Agent Coordination on the Financial Crisis Equilibrium

Note: This figure shows the fraction of sessions where AI agents coordinated on the financial crisis equilibrium by
adopting the speculative attack strategy at convergence, across different fundamental values θ ∈ [20, 60]. For each θ,
1,000 simulation sessions were conducted. The parameters are as follows: the cost of attacking is C = 18; Q-learning is
initialized with optimistic Q-values of 100, a learning rate of α = 0.01, and exploration decay β = 10–5. Convergence
is defined as AI agents’ strategies remaining unchanged for Nc = 100, 000 episodes or after T0 = 3, 000, 000 episodes,
whichever comes first.
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Figure 4. Fraction of Sessions with AI Agent Coordination on the Financial Crisis Equilibrium at
Extreme Values of θ

A. θ ∈ [–40, 0] B. θ ∈ [100, 140]

Note: This figure illustrates the fraction of simulation sessions where AI agents converged on the financial crisis
equilibrium by adopting the speculative attack strategy across fundamental values θ ∈ [–40, 0] and [100, 140]. For
each θ, 1,000 sessions were conducted. Parameters include: attack cost C = 18, Q-learning initialized with optimistic
Q-values of 100, learning rate α = 0.01, and exploration decay β = 10–5. Convergence is defined when strategies
remain unchanged for Nc = 100, 000 episodes or after T0 = 3, 000, 000 episodes, whichever occurs first.
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Figure 5. Average Proportion of Time AI Agents Prefer the Attack Action within a Single Session

Note: This figure shows the average proportion of time AI agents preferred the attack action within a single session
at convergence, under different fundamental values θ ∈ [20, 60]. For each θ, 1,000 simulation sessions were
conducted. The parameters are as follows: the cost of attacking is C = 18; Q-learning is initialized with optimistic
Q-values of 100, a learning rate of α = 0.01, and exploration decay β = 10–5. Convergence is defined as AI agents’
strategies remaining unchanged for Nc = 100, 000 episodes or after T0 = 3, 000, 000 episodes, whichever comes first.
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Figure 6. Average Realized Payoff of AI Agents at Convergence

Note: This figure shows the average realized payoff of AI agents at convergence, across different fundamental values
θ ∈ [20, 60]. For each θ, 1,000 simulation sessions were conducted. The parameters are as follows: the cost of
attacking is C = 18; Q-learning is initialized with optimistic Q-values of 100, a learning rate of α = 0.01, and
exploration decay β = 10–5. Convergence is defined as AI agents’ strategies remaining unchanged for Nc = 100, 000
episodes or after T0 = 3, 000, 000 episodes, whichever comes first.

71



Figure 7. The Dynamics of Q-values of one session for AI agents, with θ = 50

A. Evolution of Q-values for Alice B. Evolution of Difference of Q-Values for Alice

C. Evolution of Q-values for Bob D. Evolution of Difference of Q-Values for Bob

Note: This graph shows the dynamics of the Q-values for each action of the AI agents at convergence, with a
fundamental value of θ = 50. ∆ represents the difference between the Q-value of the Action Attack and the Action
Not Attack. The results are based on 1,000 simulation sessions. Parameters: attack cost C = 18, Q-learning initialized
with optimistic Q-values of 100, learning rate α = 0.01, and exploration decay β = 10–5. Convergence is defined as no
strategy changes for Nc = 100, 000 episodes or after T0 = 3, 000, 000 episodes, whichever comes first.
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Figure 8. Fraction of Sessions with AI Coordination in Financial Crisis Equilibrium (Learning
Rate α = 0.1)

Note: This figure shows the fraction of sessions where AI agents coordinated on the financial crisis equilibrium by
adopting the speculative attack strategy at convergence, across different fundamental values θ ∈ [20, 60]. For each θ,
1,000 simulation sessions were conducted. The parameters are as follows: the cost of attacking is C = 18; Q-learning is
initialized with optimistic Q-values of 100, a learning rate of α = 0.1, and exploration decay β = 10–5. Convergence is
defined as AI agents’ strategies remaining unchanged for Nc = 100, 000 episodes or after T0 = 3, 000, 000 episodes,
whichever comes first.
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Figure 9. Fraction of Sessions with AI Coordination in Financial Crisis Equilibrium (Exploration
Decay Rate β = 0.1)

Note: This figure shows the fraction of sessions where AI agents coordinated on the financial crisis equilibrium by
adopting the speculative attack strategy at convergence, across different fundamental values θ ∈ [20, 60]. For each θ,
1,000 simulation sessions were conducted. The parameters are as follows: the cost of attacking is C = 18; Q-learning is
initialized with optimistic Q-values of 100, a learning rate of α = 0.01, and exploration decay β = 10–1. Convergence
is defined as AI agents’ strategies remaining unchanged for Nc = 100, 000 episodes or after T0 = 3, 000, 000 episodes,
whichever comes first.
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Figure 10. Threshold Strategy of AI Speculators under Private Information Treatment

A. AI Speculator Alice

B. AI Speculator Bob

Note: The graph illustrates an example of the AI speculators employing a threshold strategy under private
information treatment in one experimental session. Key parameters include a noise variance of 1 in the private
information and 100 signal bins for accuracy and precision.
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Figure 11. E
[
U
(
ai,t = Attack

)]
: Weighted Average Q value Across All Signal State Bins

Note: This figure plots the weighted average Q value across all signal state bins under baseline parameters,
comparing high accuracy (blue dots, standard deviation of noise in private information = 1) versus low accuracy (red
dots, standard deviation = 20) scenarios. Results are shown across different information discretization levels, ranging
from 10 to 90. This weighted average Q value represents the fully ex-ante expected payoff (before observing the
private signal) of choosing to attack.
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Figure 12. AI Speculator Attack Threshold and Information Accuracy (Variance) - Part I

A. Fixing Discreteness at ns = 10

B. Fixing Discreteness at ns = 20

C. Fixing Discreteness at ns = 30

Note: This figure compares the AI speculator attack thresholds under private and public information across different
levels of information accuracy (variance, σi) while fixing the discreteness levels at ns = 10, 20, and 30.
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Figure 13. AI Speculator Attack Threshold and Information Accuracy (Variance) - Part II

A. Fixing Discreteness at ns = 40

B. Fixing Discreteness at ns = 50

C. Fixing Discreteness at ns = 60

Note: This figure compares the AI speculator attack thresholds under private and public information across different
levels of information accuracy (variance, σi) while fixing the discreteness levels at ns = 40, 50, and 60.
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Figure 14. AI Speculator Attack Threshold and Information Accuracy (Variance) - Part III

A. Fixing Discreteness at ns = 70

B. Fixing Discreteness at ns = 80

C. Fixing Discreteness at ns = 90

Note: This figure compares the AI speculator attack thresholds under private and public information across different
levels of information accuracy (variance, σi) while fixing the discreteness levels at ns = 70, 80, and 90.
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Figure 15. AI Speculator Attack Threshold and Information Precision — Part I

A. Fixing Accuracy at σi = 0.1

B. Fixing Accuracy at σi = 0.5

C. Fixing Accuracy at σi = 1

Note: This figure compares the AI speculator attack thresholds under private and public information by varying
information precision (ns) while fixing information accuracy at σi = 0, 1, 5, and 10 across four panels.
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Figure 16. AI Speculator Attack Threshold and Information Precision — Part II

A. Fixing Accuracy at σi = 10

B. Fixing Accuracy at σi = 20

C. Fixing Accuracy at σi = 30

Note: This figure continues to compare AI speculator attack thresholds under private and public information by
varying information precision (ns) while fixing information accuracy at σi = 15, 20, 25, and 30 across four panels.
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Figure 17. AI Speculators’ Learned Attack Strategy with Idiosyncratic Sentiment

A. Vol. of Sentiment σi = 51, Discreteness ns = 50

B. Vol. of Sentiment σi = 60, Discreteness ns = 50

C. Vol. of Sentiment σi = 70, Discreteness ns = 50

Note: This figure illustrates the learned attack strategy of AI speculators under varying volumes of idiosyncratic
sentiment (σi) with fixed discreteness (ns = 50). The panels represent sentiment volatility at σi = 51, 60, and 70,
respectively. Action choice 1 means Attack, and action choice 0 means Not Attack.
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Figure 18. AI Speculators’ Learned Attack Strategy with Market Sentiment

A. Vol. of Sentiment σ = 51, Discreteness ns = 50

B. Vol. of Sentiment σ = 60, Discreteness ns = 50

C. Vol. of Sentiment σ = 70, Discreteness ns = 50

Note: This figure shows the learned attack strategy of AI speculators under varying volumes of market sentiment (σ)
with fixed discreteness (ns = 50). The panels depict sentiment volatility at σ = 51, 60, and 70, respectively.
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Appendix A. Proof for Section 2.2

Proof of Proposition 1. For θ < θ, the fundamental value is insufficient for an attack to succeed. If

an agent chooses Attack, they incur a cost C and receive a payoff of –C, whereas choosing Not

Attack yields a payoff of 0. Since –C < 0, Not Attack strictly dominates Attack for both agents,

leading them to refrain from attacking and thereby preventing a crisis.

When θ ≥ θ̄, the fundamental value is high enough that an attack will succeed regardless of

the other agent’s action. In this scenario, choosing Attack results in a payoff of θ – C, which is

positive because θ ≥ θ̄ ensures that θ–C > 0. Conversely, choosing Not Attack yields 0. Therefore,

Attack strictly dominates Not Attack for both agents, resulting in both choosing to attack and

initiating a crisis.

For θ ∈ [θ, θ̄), the success of an attack depends on both agents choosing Attack. The corre-

sponding payoff matrix is:

Bob: Attack Bob: Not Attack

Alice: Attack (θ – C, θ – C) (–C, 0)

Alice: Not Attack (0, –C) (0, 0)

If both agents choose Attack, each receives θ –C ≥ 0. If one agent attacks while the other does

not, the attacker receives –C and the non-attacker receives 0. If neither attacks, both receive 0. In

this setting, neither agent benefits from unilaterally deviating from either equilibrium. Specifically,

in the Crisis Equilibrium (Attack,Attack), deviating to Not Attack reduces an agent’s payoff from

θ – C to 0. In the Status Quo (Not Attack,Not Attack), deviating to Attack reduces an agent’s

payoff from 0 to –C. Thus, both (Attack,Attack) and (Not Attack,Not Attack) are pure-strategy

Nash equilibria for θ ∈ [θ, θ̄).
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Proof of Corollary 1. The risk-dominant equilibrium is determined by comparing the strategies

based on their expected payoffs under uncertainty about the other agent’s action. Let p denote

the probability that an agent believes the other will choose Attack. The expected payoff when

choosing Attack is:

E[Payoff | Attack] = p(θ – C) + (1 – p)(–C).

When choosing Not Attack, the expected payoff is:

E[Payoff | Not Attack] = 0.

To find the indifference point, we set the expected payoffs equal:

p(θ – C) + (1 – p)(–C) = 0.

Simplifying the equation:

p(θ – C) – (1 – p)C = 0 =⇒ pθ – C = 0 =⇒ p = C
θ

.

The risk-dominant threshold occurs when p = 1
2 . Setting p = 1

2 yields:

C
θ

= 1
2 =⇒ θ = 2C.

Therefore, when θ = 2C, both strategies yield the same expected payoff if the other agent is equally

likely to choose Attack or Not Attack. For θ > 2C, choosing Attack becomes more attractive,

making the Crisis Equilibrium risk-dominant. Conversely, for θ < 2C, choosing Not Attack is safer,

rendering the Status Quo equilibrium risk-dominant.
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Appendix B. Proof for Section 2.2

Proof of Proposition 2. In the global game setting with symmetric signal structures, each agent

i ∈ {1, 2} receives a private signal xi = θ + εi, where θ is the fundamental value drawn from

N(θ0,σ2
θ), and εi ∼ N(0,σ2) is independent across agents and from θ. Agents choose between

actions Attack and Not Attack. We aim to prove that there exists a unique symmetric equilibrium

characterized by a monotone threshold strategy: each agent attacks if and only if xi ≥ x∗(σ). First,

we derive the expected payoff for an agent who receives signal xi and contemplates attacking,

given that the other agent uses threshold x∗(σ). The expected payoff from attacking is:

(A1) E
[
U (θ, x∗j ) | xi

]
= E

[
(θ – C) · Psuccess | xi

]
– C,

where Psuccess is the probability that the attack succeeds. The attack succeeds if: 1. The fundamental

is high enough (θ ≥ θ̄), in which case the attack succeeds regardless of the other agent’s action. 2.

Both agents attack (xj ≥ x∗(σ)) and θ > θ. Thus, the probability of success is:

(A2) Psuccess = P
(
θ ≥ θ̄ | xi

)
+ P
(
θ < θ < θ̄ | xi

)
· P
(
xj ≥ x∗(σ) | θ

)
.

Given the normal distributions, the posterior distribution of θ conditional on xi is normal with

mean and variance:

(A3) µθ|xi = E[θ | xi] =
σ2
θ

σ2
θ + σ2xi + σ2

σ2
θ + σ2θ0,

(A4) σ2
θ|x =

(
1
σ2
θ

+ 1
σ2

)–1
=

σ2
θσ

2

σ2
θ + σ2 .
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The probability that the other agent attacks, conditional on θ, is:

(A5) P
(
xj ≥ x∗(σ) | θ

)
= 1 – Φ

(
x∗(σ) – θ

σ

)
,

where Φ(·) is the cumulative distribution function of the standard normal distribution. At the

threshold xi = x∗(σ), the agent is indifferent between attacking and not attacking:

(A6) E
[
U (θ, x∗j ) | xi = x∗(σ)

]
= 0.

Substituting equations (A11) and (A13) into (A10) and integrating over the posterior distribution

θ | xi = x∗(σ), we obtain an implicit equation defining x∗(σ). The expected payoff function

is continuous and strictly decreasing in xi. As xi → –∞, the expected payoff approaches –C,

since Psuccess → 0. As xi → ∞, the expected payoff becomes positive because µθ|xi → ∞ and

Psuccess → 1. By the Intermediate Value Theorem, there exists a unique x∗(σ) satisfying (A10).

Next, we show that as σ → 0, the threshold x∗(σ) converges to the risk-dominant equilibrium

of the complete information game. When σ → 0, the private signals become perfectly informative:

xi → θ. The posterior variance σ2
θ|x → 0, so θ | xi collapses to a point mass at θ = xi. The

indifference condition (A10) simplifies to:

(A7) (θ – C) ·
(
I{θ ≥ θ̄} + I{θ < θ < θ̄} · I{θ ≥ x∗(0)}

)
– C = 0,

where I{·} is the indicator function. Since xj = θ when σ = 0, the probability P
(
xj ≥ x∗(0) | θ

)
becomes I{θ ≥ x∗(0)}. Solving equation (A7) with θ = x∗(0) and θ < x∗(0) < θ̄, we find:

(A8) (x∗(0) – C) – C = 0 =⇒ x∗(0) = 2C.

Thus, the threshold converges to x∗(0) = 2C, the risk-dominant threshold in the complete in-
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formation game. Finally, suppose there exists another symmetric equilibrium with a different

threshold x′ ̸= x∗(σ). However, due to the strict monotonicity of the expected payoff function in xi,

the indifference condition can only be satisfied at a unique value. Therefore, no other symmetric

switching equilibrium exists.
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Proof of Corollary 2. We aim to show that dx∗(σ)
dσ

< 0 under the given baseline parameters.

Consider two identical agents who decide simultaneously whether to Attack or Not Attack. Each

agent receives a private signal

xi = θ + εi,

where θ is the fundamental value drawn from N(θ0,σ2
θ), and εi ∼ N(0,σ2) is an independent

noise term. Agents adopt a threshold strategy: they attack if and only if xi ≥ x∗. An agent with

signal x∗ is indifferent between attacking and not attacking. The expected payoff from attacking

at x∗ is zero:

U (x∗,σ) = E
[
Payoff from attacking | xi = x∗

]
= 0.

The expected payoff is given by

U (x∗,σ) =
∫ ∞

–∞

(
θ · Psuc(θ, x∗) – C

)
f (θ | x∗) dθ,

where The probability that the attack succeeds, given θ and the threshold x∗, is denoted as

Psuc(θ, x∗). The posterior density of θ, conditional on the threshold x∗, is represented as f (θ | x∗).

Finally, C refers to the cost of carrying out the attack. If θ ≥ θ̄, the attack succeeds unconditionally,

regardless of the other agent’s action. In this case, the success probability is Psuc(θ, x∗) = 1. In the

case where θ < θ < θ̄, the attack succeeds only if both agents attack. The probability of success,

conditional on this scenario, is given by

Psuc(θ, x∗) = Pattack(x∗, θ) = 1 – Φ

(
x∗ – θ

σ

)
,

where Φ(·) represents the standard normal cumulative distribution function (CDF). If θ ≤ θ, the

attack fails, and thus Psuc(θ, x∗) = 0. Given x∗, the posterior distribution of θ is normal with mean

µ(x∗) = E[θ | x∗] =
σ2
θ

σ2
θ + σ2x

∗ + σ2

σ2
θ + σ2θ0,
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and variance

τ2 = Var[θ | x∗] =
σ2
θσ

2

σ2
θ + σ2 .

The indifference condition implicitly defines x∗ as a function of σ:

U (x∗,σ) = 0.

We will use the Implicit Function Theorem to find dx∗

dσ
:

dx∗

dσ
= –

∂U
∂σ
∂U
∂x∗

.

Our goal is to compute ∂U
∂x∗

and ∂U
∂σ

and establish their signs. We have

∂U
∂x∗

= ∂

∂x∗

∫ ∞

–∞

(
θ · Psuc(θ, x∗) – C

)
f (θ | x∗) dθ.

Since C is constant, its derivative is zero. Thus,

∂U
∂x∗

=
∫ ∞

–∞

[
θ
∂Psuc(θ, x∗)

∂x∗
f (θ | x∗) + θPsuc(θ, x∗)∂ f (θ | x∗)

∂x∗

]
dθ.

For θ < θ < θ̄:
∂Psuc(θ, x∗)

∂x∗
= –ϕ

(
x∗ – θ

σ

)
1
σ
< 0,

since ϕ(·) > 0. For θ ≤ θ and θ ≥ θ̄, ∂Psuc(θ, x∗)
∂x∗

= 0. Since f (θ | x∗) is the normal PDF with

mean µ(x∗) and variance τ2:

∂ f (θ | x∗)
∂x∗

= f (θ | x∗)θ – µ(x∗)
τ2

∂µ(x∗)
∂x∗

,
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where
∂µ(x∗)
∂x∗

=
σ2
θ

σ2
θ + σ2 > 0.

We analyze the terms separately.

I1 =
∫ ∞

–∞
θ
∂Psuc(θ, x∗)

∂x∗
f (θ | x∗) dθ.

Since ∂Psuc(θ, x∗)
∂x∗

≤ 0, θ > 0, and f (θ | x∗) > 0, it follows that I1 ≤ 0.

I2 =
∫ ∞

–∞
θPsuc(θ, x∗) f (θ | x∗)θ – µ(x∗)

τ2
∂µ(x∗)
∂x∗

dθ.

We need to show that I2 ≤ 0 or that it is sufficiently small compared to I1. Note that

|I2| ≤
∣∣∣∣∂µ(x∗)

∂x∗
1
τ2

∣∣∣∣ ∫ ∞

–∞
|θPsuc(θ, x∗)(θ – µ(x∗))| f (θ | x∗) dθ.

Since θ > 0, Psuc(θ, x∗) ≤ 1, and f (θ | x∗) is a density function, the integral is finite. Moreover,

because (θ – µ(x∗)) is centered around zero (since it’s the deviation from the mean), the positive

and negative contributions in the product θ(θ – µ(x∗)) may not cancel out, but their overall

effect is relatively small compared to I1. The magnitude of I1 is significant because the derivative
∂Psuc(θ, x∗)

∂x∗
is negative and multiplied by θ > 0, resulting in a negative contribution. On the

other hand, I2 involves the term θ(θ – µ(x∗)), which, when integrated over θ, does not produce

a large positive value due to the properties of the normal distribution. Therefore, the negative

contribution from I1 dominates any potential positive contribution from I2, ensuring that

∂U
∂x∗

< 0.

We can note that the expected value of (θ – µ(x∗)) under f (θ | x∗) is zero:

Eθ|x∗[θ – µ(x∗)] = 0.
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Therefore, the term θ(θ – µ(x∗)) in the integral I2 does not contribute significantly to the overall

derivative. Combining the analysis of I1 and I2, we have

∂U
∂x∗

= I1 + I2 < 0.

We have
∂U
∂σ

= ∂

∂σ

∫ ∞

–∞

(
θ · Psuc(θ, x∗) – C

)
f (θ | x∗) dθ.

Since C is constant, its derivative is zero. Thus,

∂U
∂σ

=
∫ ∞

–∞

[
θ
∂Psuc(θ, x∗)

∂σ
f (θ | x∗) + θPsuc(θ, x∗)∂ f (θ | x∗)

∂σ

]
dθ.

For θ < θ < θ̄:
∂Psuc(θ, x∗)

∂σ
= ϕ

(
x∗ – θ

σ

)
x∗ – θ

σ2 .

When θ < x∗, x∗ – θ > 0, so ∂Psuc(θ, x∗)
∂σ

> 0. Since θ > 0 and f (θ | x∗) > 0, the integrand is

positive. When θ > x∗, x∗–θ < 0, so ∂Psuc(θ, x∗)
∂σ

< 0. However, in this region, Psuc(θ, x∗) is close

to 1, and the density f (θ | x∗) decreases rapidly for large θ, making the negative contributions

relatively small. Overall, the positive contributions dominate, making the first term positive. The

derivative ∂ f (θ | x∗)
∂σ

involves changes in the variance τ2, which increases with σ. This leads to
∂ f (θ | x∗)

∂σ
> 0 in the tails of the distribution. Since θ > 0, Psuc(θ, x∗) > 0, and ∂ f (θ | x∗)

∂σ
> 0,

the integrand is positive. Therefore,
∂U
∂σ

> 0.

Using the Implicit Function Theorem:

dx∗

dσ
= –

∂U
∂σ
∂U
∂x∗

.
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Since ∂U
∂σ

> 0 and ∂U
∂x∗

< 0, it follows that

dx∗

dσ
= –
(

positive
negative

)
< 0.

Therefore, x∗(σ) is strictly decreasing in σ.

Numerical Solution Algorithm. To compute the equilibrium threshold x∗(σ) for varying σ, we

initialize the baseline parameters: θ0 = 50, σ2
θ = 50, θ = 0, θ̄ = 100, and C = 18. For each value

of σ, the expected utility of attacking with signal xi, assuming the other agent uses the same

threshold strategy (x∗j = xi), is computed. This utility, E[U (θ, x∗j ) | xi], integrates over the posterior

distribution of θ given xi, accounting for the probability that the other agent attacks and the

resulting payoffs. The posterior distribution of θ given xi follows a normal distribution, and the

probability that the other agent attacks is given by 1 – Φ

(
x∗j –θ
σ

)
, where Φ(·) is the standard

normal cumulative distribution function. We solve for the equilibrium threshold x∗(σ) by finding

the value of xi that satisfies E[U (θ, x∗j ) | xi = x∗(σ)] = 0 using a root-finding method like the

bisection method. Repeating this process for different values of σ yields the equilibrium thresholds

x∗(σ). Plotting x∗(σ) against σ reveals a strictly decreasing relationship: as the noise level σ

increases, agents require a lower threshold to attack, which increases the probability of a financial

crisis. Figure 1 illustrates this behavior, consistent with the corollary.
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Appendix C. Proof for Section 2.4

Proof of Proposition 3. Consider a global game with two agents, i ∈ {1, 2}, each deciding whether

to Attack or Not Attack the status quo. The fundamental value θ of the economy is a random

variable drawn from a normal distribution θ ∼ N(θ0,σ2
θ). Each agent receives a private signal

xi = θ+ϵi, where ϵi ∼ N(0,σ2
i ) is an independent noise term. The overall distribution of the signal

is xi ∼ N(θ0,σ2
xi ), where σ2

xi = σ2
θ + σ2

i . In the discretized global game, the continuous signals xi

are partitioned into ns bins with equal probability mass. The bin edges are determined using the

quantiles of the normal distribution of xi, ensuring that each bin contains an equal fraction 1
ns of

the probability mass. Specifically, the k-th bin edge for agent i is given by:

(A9) bin edgei,k = θ0 + σxi ·Φ
–1
(

2k – 1
2ns

)
, for k = 1, 2, . . . , ns,

where Φ–1 is the inverse cumulative distribution function of the standard normal distribution.

Let si ∈ {1, 2, . . . , ns} denote the bin index corresponding to agent i’s observed signal xi.

Agents adopt strategies based on their signal bins. We define a symmetric monotone threshold

strategy as one where both agents use the same threshold s∗ (or equivalently, signal threshold

x∗), such that agent i chooses to Attack if and only if si ≥ s∗. Our objective is to prove that there

exists a unique symmetric monotone threshold strategy characterized by a threshold x∗, which

can be numerically determined by solving the indifference condition:

(A10) E[U (θ, x∗j ) | xi = x∗] = 0,

where U (θ, x∗j ) is the payoff to agent i from attacking when the fundamental is θ and the other

agent uses threshold x∗j . The expected payoff to agent i from attacking, given signal xi, is:

(A11) E[U (θ, x∗j ) | xi] =
∫ θ̄

θ
(θ–C) ·Pr(xj ≥ x∗ | θ) · p(θ | xi) dθ+

∫ ∞

θ̄
(θ–C) · p(θ | xi) dθ–C,
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where p(θ | xi) is the posterior probability density function of θ given xi, and Pr(xj ≥ x∗ | θ)

is the probability that the other agent’s signal xj exceeds x∗ given θ. Since the signals xi are

discretized into bins, we adjust the calculation to account for the discrete nature of xi and xj . The

expected payoff becomes:

(A12) E[U (θ, x∗j ) | si] =
∑
θ

[
(θ – C) · Psuccess(θ) · p(θ | si)

]
– C,

where p(θ | si) is the posterior probability mass function of θ given signal bin si, and Psuccess(θ)

is the probability that the attack succeeds given θ. An attack by agent i succeeds if either: 1. The

fundamental θ ≥ θ̄, in which case the attack succeeds unconditionally. 2. Both agents attack (i.e.,

sj ≥ s∗) and θ > θ. Therefore, the probability that the attack succeeds given θ is:

(A13) Psuccess(θ) =


1, if θ ≥ θ̄,

Pr(sj ≥ s∗ | θ), if θ < θ < θ̄,

0, if θ ≤ θ.

The probability that the other agent’s signal bin sj is at least s∗ given θ is:

(A14)

Pr(sj ≥ s∗ | θ) =
ns∑

k=s∗
Pr(sj = k | θ) =

ns∑
k=s∗

[
Φ

(
bin edgej ,k – θ

σxj

)
– Φ

(
bin edgej ,k–1 – θ

σxj

)]
,

where Φ(·) is the standard normal cumulative distribution function, and bin edgej ,k are the bin

edges for agent j ’s signal. The posterior probability p(θ | si) is obtained via Bayes’ theorem:

(A15) p(θ | si) = Pr(si | θ) · p(θ)
Pr(si)

,

where Pr(si | θ) is the probability that agent i’s signal falls into bin si given θ, calculated as:

(A16) Pr(si | θ) = Φ

(bin edgei,si – θ

σxi

)
– Φ

(bin edgei,si–1 – θ

σxi

)
.
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The prior probability p(θ) is the probability density function of θ ∼ N(θ0,σ2
θ), and Pr(si) is the

marginal probability of agent i observing bin si, which is 1
ns due to the equal probability binning. At

the threshold si = s∗ (corresponding to signal xi = x∗), the agent is indifferent between attacking

and not attacking. Thus, the indifference condition is:

(A17) E[U (θ, x∗j ) | si = s∗] = 0.

We aim to show that there exists a unique s∗ (or x∗) satisfying the indifference condition (A17).

To do so, we observe that the expected payoff E[U (θ, x∗j ) | si] is strictly increasing in si. This

is because: As si increases, the signal xi increases, leading to a higher posterior mean µθ|si of

θ. A higher posterior mean increases the expected payoff (θ – C) due to the higher expected

fundamental value. The higher xi also increases the probability that the other agent’s signal xj

exceeds x∗, since xj and xi are correlated through θ. At the lowest bin si = 1, the expected payoff

is negative because the agent’s signal is low, indicating a low fundamental θ and low probability of

attack success. At the highest bin si = ns, the expected payoff is positive due to the high expected

fundamental and high probability of attack success. Since the expected payoff transitions from

negative to positive as si increases, and because E[U (θ, x∗j ) | si] is strictly increasing in si, there

must exist a unique threshold s∗ such that E[U (θ, x∗j ) | si = s∗] = 0. Furthermore, since both agents

share a symmetric signal structure, they will both adopt the same threshold strategy characterized

by s∗ (or x∗). Therefore, there exists a unique symmetric monotone threshold strategy in which

each agent chooses to attack if and only if their signal xi exceeds x∗. The threshold x∗ can be

numerically determined by solving the indifference condition (A17), which involves computing

the expected payoff E[U (θ, x∗j ) | si] for each possible si and identifying the si = s∗ where the

expected payoff is zero. This completes the proof of the proposition.
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Proof of Corrollary 3. Consider the global game framework where each agent receives a private

signal xi = θ + εi, with θ ∼ N(θ0,σ2
θ) and εi ∼ N(0,σ2

i ). The continuous private signal is

xi ∼ N(θ0,σ2
x ), where σ2

x = σ2
θ + σ2

i . In the discretized global game, each private signal xi

is partitioned into ns equally probable bins with bin edges bin edgek for k = 1, 2, . . . , ns. The

equilibrium threshold x∗(ns) is the signal value at which an agent is indifferent between attacking

and not attacking.

In the Continuous Global Game: The equilibrium threshold x∗∞ satisfies the indifference

condition:

E[U (θ, x∗) | xi = x∗∞] =
∫ θ̄

θ
θ·Pr(xj ≥ x∗∞ | θ) p(θ | xi = x∗∞) dθ+

∫ ∞

θ̄
θ p(θ | xi = x∗∞) dθ–C = 0

In the Discretized Global Game: The equilibrium threshold x∗(ns) satisfies:

ns∑
k=1

θk · Pr(xj ≥ x∗(ns) | θk) · p(θk | xi = x∗(ns)) +
∑
θk>θ̄

θk · p(θk | xi = x∗(ns)) – C = 0

where θk is the representative value of the k-th bin.

As ns → ∞, the discretization becomes finer, and the discrete distribution of θk converges to

the continuous distribution of θ. Formally, for each θ, there exists a sequence θk(ns) such that:

lim
ns→∞

θk(ns) = θ

and

lim
ns→∞

p(θk(ns) | xi = x∗(ns)) = p(θ | xi = x∗∞)

Consider the discretized sum in the indifference condition:

S(ns) =
ns∑
k=1

θk · Pr(xj ≥ x∗(ns) | θk) · p(θk | xi = x∗(ns))
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As ns increases, this sum can be viewed as a Riemann sum approximating the integral:

∫ θ̄

θ
θ · Pr(xj ≥ x∗∞ | θ) p(θ | xi = x∗∞) dθ

Similarly, the second sum: ∑
θk>θ̄

θk · p(θk | xi = x∗(ns))

approaches: ∫ ∞

θ̄
θ p(θ | xi = x∗∞) dθ

Given that the discretized sums S(ns) and the corresponding probability sums converge to their

continuous counterparts as ns → ∞, the equilibrium condition for the discretized global game:

S(ns) +
∑
θk>θ̄

θk · p(θk | xi = x∗(ns)) – C = 0

approaches the continuous indifference condition:

∫ θ̄

θ
θ · Pr(xj ≥ x∗∞ | θ) p(θ | xi = x∗∞) dθ +

∫ ∞

θ̄
θ p(θ | xi = x∗∞) dθ – C = 0

Given the uniqueness of the equilibrium threshold in both the discretized and continuous settings,

it follows that:

lim
ns→∞

x∗(ns) = x∗∞

Thus, as the number of discrete bins increases, the equilibrium threshold in the discretized global

game converges to that of the continuous global game.

While the convergence limns→∞ x∗(ns) = x∗∞ is established, the cyclical increasing trend of

x∗(ns) as ns increases is observed empirically due to the discrete nature of the bins in our numerical

example. As ns increases, each additional bin refines the approximation of the continuous signal.

The threshold x∗(ns) may alternately increase or decrease with the addition of new bins due to
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discrete jumps in the values of θk . However, as ns becomes large, these fluctuations diminish,

leading x∗(ns) to converge smoothly to x∗∞. This behavior confirms that x∗(ns) exhibits a cyclical

increasing trend and converges to the continuous equilibrium threshold as ns approaches infinity.

To compute:

∆x∗(ns) = x∗(ns + 10) – x∗(ns),

we start by finding the equilibrium thresholds x∗(ns) and x∗(ns + 10), which satisfy the following

conditions:

ns∑
k=1

θk · Pr(xj ≥ x∗(ns) | θk) · p(θk | xi = x∗(ns)) +
∑
θk>θ̄

θk · p(θk | xi = x∗(ns)) – C = 0, (1)

ns+10∑
k=1

θk·Pr(xj ≥ x∗(ns+10) | θk)· p(θk | xi = x∗(ns+10))+
∑
θk>θ̄

θk· p(θk | xi = x∗(ns+10))–C = 0. (2)

For each ns, the bin edges bin edgek are determined as follows:

bin edgek = θ0 + σxΦ
–1
(

2k – 1
2ns

)
, k = 1, 2, . . . , ns,

where Φ–1 is the inverse cumulative distribution function (CDF) of the standard normal distribu-

tion, and σx =
√

σ2
θ + σ2

i . Assuming θk corresponds to the midpoint of the k-th bin, compute the

posterior probabilities using Bayes’ theorem:

p(θk | xi = x∗(ns)) = p(xi = x∗(ns) | θk) · p(θk)∑ns
j =1 p(xi = x∗(ns) | θj ) · p(θj )

.

Assuming symmetric strategies, the probability that the opponent attacks given θk is:

Pr(xj ≥ x∗(ns) | θk) = ns – k + 1
ns

,

for θ ≤ θk ≤ θ̄. For θk > θ̄, Pr(xj ≥ x∗(ns) | θk) = 1, and for θk < θ, Pr(xj ≥ x∗(ns) |

θk) = 0. Given the equilibrium conditions (1) and (2), solve for x∗(ns) and x∗(ns + 10) numerically
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using iterative methods such as the Newton-Raphson algorithm. Once x∗(ns) and x∗(ns + 10) are

determined, compute the difference:

∆x∗(ns) = x∗(ns + 10) – x∗(ns).

Consider the baseline parameters:

θ0 = 50, σ2
θ = 50, θ = 0, θ̄ = 100, C = 18.

For ns = 10:

bin edgek = 50 +
√

60 ·Φ–1
(

2k – 1
20

)
, k = 1, 2, . . . , 10.

Calculate each bin edge using the formula. For instance, the first and last bin edges are:

bin edge1 = 50 +
√

60 ·Φ–1
(

1
20

)
,

bin edge10 = 50 +
√

60 ·Φ–1
(

19
20

)
.

Assign the representative values θk as the midpoints of the bins. For ns = 20:

bin edgek = 50 +
√

60 ·Φ–1
(

2k – 1
40

)
, k = 1, 2, . . . , 20.

Similarly, calculate each bin edge. For example, the first and last bin edges in this case are:

bin edge1 = 50 +
√

60 ·Φ–1
(

1
40

)
,

bin edge20 = 50 +
√

60 ·Φ–1
(

39
40

)
.

Again, assign the representative values θk as the midpoints of the bins. Compute the posterior

probabilities p(θk | xi = x∗(10)) and p(θk | xi = x∗(20)), and the probabilities of attack Pr(xj ≥

x∗(10) | θk) and Pr(xj ≥ x∗(20) | θk). Set up the indifference conditions for ns = 10 and ns = 20,
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and solve numerically to find x∗(10) and x∗(20). Finally, compute ∆x∗(10):

∆x∗(10) = x∗(20) – x∗(10) = 37.22 – 37.30 = –0.08

Using this approach, we solve for x∗(10), x∗(20), . . . , x∗(200). The results are presented in Figure 2.

In conclusion, this process illustrates how the equilibrium threshold x∗(ns) adjusts as the number

of bins ns increases. The results highlight both the convergence towards the continuous game’s

equilibrium and the cyclical trends observed in the discretized setting.
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