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This document contains supplementary material for the article titled “Log-Free Diver-
gence and Covariance matrix for Compositional Data I: The Affine/Barycentric
Approach.” Tt provides additional simulations in Section 1, and code snippets together
with explanations regarding numerical computations in Section 2.

1 Supplementary simulations

1.1 Anisotropic Generalised Barycentric Gaussian distributions
with a = 1, oco.

For illustration and comparison purposes, we present in Figures 1 and 2 a sample of
density plots of the weighted barycentric Gaussian distributions (see Definition 6),
based on the W-weighted barycentric a-divergence, for a = 1,00 and varying shape
W and location [m]; parameters.
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Fig. 1 Generalised Weighted Barycentric Gaussian distributions with @ = 1-divergence. Left column:

centered distribution with [m]y = [1
m = (0.7,0.1,0.2). (wo1,wo2,wi2) =
o=2.

(

1

1]+. Right column: a non-centered distribution with

0.8,0.1,0.1) (up), (wo1,woz2,wi2) = (0.1,0.8,0.1) (down).
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Fig. 2 Generalised Weighted Barycentric Gaussian distributions with a = oo-divergence. Left
column: centered distribution with [m]+ = [1: 1 : 1]4+. Right column: a non-centered distribution
with m = (0.7,0.1,0.2). (wo1,wo2, wi2) = (0.8,0.1,0.1) (up), (wo1,wo2,wi2) = (0.1,0.8,0.1) (down).
o =2

1.2 Anisotropic Generalised Hilbert-Gaussian distributions

For illustration purposes, we present in Figure 3 density plots of the weighted Hilbert
Gaussian distributions, based on the (square of) the W—weighted Hilbert Projective
metric, defined in Remark 3.
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Fig. 3 Generalised Weighted Hilbert-Gaussian distributions based on the W-weighted Hilbert
projective metric. [m]4+ = [1:1: 1]+, (wo1,wo2,w12) = (0.8,0.1,0.1) (upper left), [m]y =[1:1: 1]+,
(wo1,wo2,w12) = (0.1,0.8,0.1) (upper right), m = (0.7,0.1,0.2), (wo1,woz2,wi2) = (0.4,0.5,0.1)
(lower left), [m]+ = [1:1: 1]+, (wo1,woz2,wi2) = (0.4,0.5,0.1) (lower right). o = 100. o = 2.

2 Code snippets

Most of the simulations of the article were conducted in Mathematica(Wolfram Research
(2023)), due to its ease at programming mathematical formulas. Following a suggestion
of the referee, we provide below some discussion on the implementation of the main
functions, together with the corresponding code fragments in Mathematica, and/or in
R (R Core Team (2023)) language. These should suffice for readers looking to translate
the provided code snippets into Python or their preferred language.
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2.1 Computation of the a-barycentric divergence

The double sum ;. in the formula (9) of the barycentric divergence da([X]+,[y+)
(Definition 1) can easily (but inefficiently) be computed using two “for .. next” (nested)
loops (omitted). A more efficient version, given in Listing 1 below for the R language,
can be obtained by vectorization.

## compute alpha barycentric divergence
H####### compute determinantal part using vectorized sum
compute_intermediatesum_vectorized <- function(x, y, alpha) {
indices <- combn(length(x), 2) # Toutes les paires (i, j) avec
i< j
terms <- abs(x[indices[1, 1] * yl[indices[2, 1] - x[indices[2,
]1 * yl[indices[1, ]]) “alpha
sum(terms)
}
## compute alpha barycentric divergence
alphabarycentricdivergence <- function(x, y, alpha) {
(compute_intermediatesum_vectorized(x,y,alpha) ~(1/alpha))/(sum(
x)* sum(y))
}

Listing 1 a—Barycentric divergence using vectorized sums, in R Language

Eventually, a third, more elegant, version can be obtained by realizing that the
elements in the double sums are the 2 X 2 minors of the matrix [x y] made by binding
the x and y column vectors. This gives, e.g. in a high-level language as Mathematica,
the one line code, given in Listing 2.

divergencel[a_, b_, alpha_] :=
Norm[Flatten[Minors [{a, b}, 2]], alphal/(Norm[a, 1] Norm[b, 1])

Listing 2 a—Barycentric divergence, via minors, in Mathematica Language

These minors corresponds to the components of the exterior product x Ay, which
itself can be described as the anti-symmetrization x ® y — y ® x of the tensor product
X ®y = x'y, see Remark 2 and the details given in the follow-up/companion paper
Faugeras (2024). This gives a fourth way to compute the barycentric divergence using
the outer/tensor product of vectors. One then extracts the (strict upper) triangular part
of the matrix representation of x A y. The code in Mathematica, using the command
TensorWedge][.], which implements the exterior product A is given in Listing 3, and a
slightly longer code in R, using the tensor/outer product command outer(.), is given
in Listing 4.

closure[x_] := Normalize[x, Norml[#, 1] &]
codadivergencewedge[a_, b_, alpha_] :=
Norm[Flatten[UpperTriangularize [TensorWedge [closure[a]l, closurel
bl1l, 111, alphal

Listing 3 a—Barycentric divergence, via wedge product, in Mathematica Language
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##secondversion

alphabarycentricdivergence2 <- function(x, y, alpha) {
#normalize x and y
xclosed<-x/sum(x)
yclosed<-y/sum(y)

#compute |x_iy_j-x_jy_il~\alpha et put the result as an
antisymmetric matrix
plucker<- abs(outer (xclosed,yclosed,"*")-outer(yclosed,xclosed,
"x")) ~alpha
# Extract elements over the diagonal
upper_triangle <- plucker [upper.tri(plucker)]
(sum (upper_triangle)) ~(1/alpha)
}
}

Listing 4 a—Barycentric divergence using outer products, in R Language

2.2 Barycentric covariance and variance

We give in Listing 5 an R implementation of the barycentric covariance matrix
Cov([x]+, [¥]+), Definition 8, equation (17).

#barycentric covariance of 2 matrices
# compute the matrix of pseudo scalar product of 2 pairs of
vectors
pseudocov<-function(x,y,mx,my){
(outer (x,mx,"*")-outer (mx,x,"*"))*x(outer (y,my,"*")-outer (my,y,"
*")) 3
# barycentric covariance of two matrices
barycentric_cov<-function(X,Y){
#Normalise each matrix (closure)
X_normalized <- sweep(X, 1, rowSums(X), FUN="/")
Y_normalized <- sweep(Y, 1, rowSums(X), FUN="/")

# compute vector of column means

mx <- colMeans(X_normalized)

my <- colMeans(Y_normalized)

#note the vectors of means are already in the simplex

n<-nrow (X) ;
d<-ncol(X);
result<-matrix(data = O,nrow = d,ncol=d)
for (i in 1:mn) {
result<-result+pseudocov(X_normalized[i,],Y_normalized[i,] ,mx
,my)
}

return(result/n)



Listing 5 Barycentric covariance matrix using outer products, in R Language
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