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Abstract

In the context of testing the specification of a nonlinear parametric regression function, we
adopt a nonparametric minimax approach to determine the maximum rate at which a set of
smooth alternatives can approach the null hypothesis while ensuring that a test can uniformly
detect any alternative in this set with some predetermined power. We show that a smooth
nonparametric test has optimal asymptotic minimax properties for regular alternatives. As
a by-product, we obtain the rate of the smoothing parameter that ensures rate-optimality
of the test. We show that, in contrast, a class of non-smooth tests, which includes Bierens’

(1982) integrated conditional moment test, has suboptimal asymptotic minimax properties.
Keywords: Minimax approach, Specification testing.
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1 Introduction

Specification analysis is a central topic in econometrics. Recent work has focused on specification
tests that are consistent against a large spectrum of nonparametric alternatives. Bierens (1982)
inaugurates this line of research by proposing integrated conditional moment (ICM) tests for
checking the specification of a parametric regression model. His method, which relies on the
empirical process of the residuals from the parametric model, has been further developed by
Andrews (1997), Bierens (1990), Bierens and Ploberger (1997), Delgado (1993), Stinchcombe
and White (1998) and Stute (1997) among others. A competing approach compares parametric
and smooth nonparametric regression estimators, see Fan and Li (1996), Hérdle and Mammen
(1993), Hong and White (1995), Li and Wang (1998) and Zheng (1996) to mention just a few.
Thus there now exists a large range of consistent specification tests for regression models, see
Hart (1997) for a review.

A theme of this literature concerns the power performances of the procedures derived from
either approach. This has been mainly investigated by studying the tests behavior under par-
ticular local alternatives, see e.g. Hart (1997). A familiar approach consists in considering a

sequence of alternatives of the form
E(Y]X) = p(X, ) + rpd(X), (1.1)

where p(X,0p) is a member of the parametric model, d(-) is a specified function and r, goes to
zero as the sample size n tends to infinity. It is generally found that smooth tests have trivial
power against alternatives of the form (1.1) with 7, o n~'/2, while non-smooth tests such as
ICM tests can detect such alternatives, thus suggesting that non-smooth tests are more powerful.
However, a reverse phenomenon can occur when considering different sequences of alternatives.
Specifically, some alternatives that are more distant than n~'/2? from the null hypothesis are
detected by smooth tests but not by their competitors, see e.g. Fan and Li (2000). This shows
that considering alternatives (1.1) is overly restrictive and can be misleading, as also argued by
Horowitz and Spokoiny (2001).

In this paper, we adopt a nonparametric minimax approach, as detailed by Ingster (1993).



Such an approach evaluates the power of a test uniformly over a set of alternatives Hj(p;,) that
lie at a distance p, from the parametric model and that belong to a class of smooth functions
with smoothness index s. The optimal minimax rate p, = py(s) is the fastest rate at which
pn can go to zero while a test can uniformly detects any alternative in Hi(py,). Such a test is
called rate-optimal. Assuming that s is known, Ingster (1993) determines optimal minimax rates
for goodness-of-fit testing of a uniform density and testing for white-noise in the continuous-
time Gaussian model. Considering s as an unknown nuisance parameter, the so-called adaptive
framework, Spokoiny (1996) finds the optimal adaptive minimax rate p¢ in the latter testing
problem. Assuming this rate applies in regression settings, Horowitz and Spokoiny (2001) propose
a specification test which is asymptotically uniformly consistent against alternatives approaching
the parametric model at rate p&.

The main contribution of the present paper is to determine the optimal minimax rates
for specification testing of a parametric nonlinear regression model with a multivariate random
design and heteroscedasticity of unknown form. Following Ingster (1993), we assume that s, the
regularity of the regression function, is known. Our results show that the optimal minimax rate
pn for specification testing in regression models can differ from the optimal rate found in testing
situations considered by Ingster (1993). We also provide a nonparametric smooth test which
has power uniformly against alternatives approaching the null hypothesis at the optimal rate.
This in turn yields the rate at which the smoothing parameter should go to zero to ensure rate-
optimality of the test. Such a result constitutes a first step towards a better understanding of the
smoothing parameter’s effect and the construction of practical procedures for its determination.

The paper is organized as follows. In Section 2, we describe our framework and assumptions.
In Section 3, we establish optimal minimax rates for specification testing in regression models
and provide a testing procedure that is rate-optimal for alternatives that are regular enough. We
also discuss the case of irregular alternatives. We finally illustrate the poor minimax properties of
a class of ICM-type tests. Section 4 gives some concluding remarks in relation with the adaptive
framework of Horowitz and Spokoiny (2001). Proofs of the main results are dealt with in Section

5. Three appendices gather some auxiliary results.



2 Framework and assumptions

Let (X,Y) be a random variable in IR x IR and assume that we have at hand observations on

(X,Y) such that

Assumption I {(X;,Y;),i=1,...,n} is an i.i.d. sample on (X,Y) from IRP x IR. For m(-) =
EY|X =), Em*(X) < my < oo for some my > 0. For e =Y — [E(Y|X), IEe?> > 0 and
Fs* < .

Assumption I allows for heteroscedasticity of unknown form but restricts to regression functions
with bounded fourth moments. In what follows, we acknowledge the dependence of the distrib-
ution of Y given X upon the regression function by denoting probabilities and expectation as
IP,, and IE,, respectively.

We consider a parametric family M of regression functions M = {u(.,0) ; 8 € ©},0 C R
The null hypothesis of interest is

Hy : m()=EpY|X=]eM.

To define the alternative hypothesis, the nonparametric minimax approach requires to focus on
some classes of smooth functions, as explained by Ingster (1993). For s € [0,1), let Cy(L, s) be
the Lipschitz class of maps m(-) from IRP to IR such that

|m($)_m(y) | §L||x_y||s 7L>07 VI,yEIRp,

where || - || is a norm on IRP. For s > 1, let [s] be the greatest integer less than or equal to s,
and let C,(L,s) be the set of functions m(-) almost everywhere differentiable up to order [s],
whose all partial derivatives of order [s] belongs to C,(L,s — [s]). We consider the alternative
hypothesis

Hi(p) + o B(u(X,0) ~m(X))* > p* , m() € CylLs) .

H(p) is the set of regression functions in C,(L, s) at a distance p from the parametric model
to be tested, with Em*(X) < my4 < oo under Assumption I. For the following analysis, the

latter restriction should hold uniformly over the set of considered regression functions m(-).



This assumption plays a role similar to the compactness of the parameter set in parametric
estimation.

In the definition of the alternative hypothesis, the distance between the true regression
function m(-) and the parametric model under consideration is closely related with the notion
of “pseudo true value” for the parameter 6, see White (1981) and Gourieroux, Monfort, and
Trognon (1984). We now describe some assumptions related to this pseudo-true value and the

way it can be estimated.

Assumption M1 i. For each 0 € ©, u(-,0) € Cy(Lm,s), Lym < L, and Ep*(X,0) <
pg < 0. There is an inner point 8y of © such that Eu*(X,60p) < my, for my defined in

Assumption 1.
i. For each m(-) in Cp(L,s), there exists a unique 0* = 0, such that

T (u(X,67) = m(X))* = jnf 5 (u(X,0) — m(X))* .

ii. For any sequence {mpn(.)},~; such that 3 0 in the interior of © with limy,_, | E(u(X,0)—

mn(X))? =0, 05,  converges to 0.

Assumption M1-¢ yields that the model M of interest is a subset of C,(L, s), a condition under
which M1—i; implies that the parameter 0 is identified under Hy. This assumption allows to

define the deviation of the regression function from the null hypothesis as

J(-)

Om () =m(-) = p(-0;,) . (2.2)

Assumption M2 i. For each x, p(x,.) is twice continuously differentiable with respect to
0, with first and second order derivatives pg(-,-) and pgg(+,-) uniformly bounded in x and

0co.

Ou(X,0) du(X,0)
00 o097

1. The matriz IF {

is non-singular for all 0 € ©.

ouf.,0
1i. The set of gradient functions {%, 0 e @} is compact in Cy, the set of continuous

functions from IRP to IR® equipped with the uniform norm.



Assumption M2 is similar to the assumption used by White (1981) to establish the y/n-consistency

of the nonlinear least-squares estimator of %!
Assumption M3 (0, — 6%,) = Op, (1) uniformly with respect to m(-) € Cyp(L,s) with
Fm*(X) < my < 00, i.e.

Vn > 0,3v > 0 : limsup sup P, (\/ﬁﬂgn—O:;H >l/) <n.
N0 m(-)€Cy(Lys) [BmA (X)<ma

Assumption M3 deals with the existence of a y/n-consistent estimator §n of 6;,, uniformly with
respect to m(-) € Cp(L,s). Such a result is not usually shown in the literature. However, uni-
formity is essential for developing our minimax approach. Birgé and Massart (1993) have shown
that Assumption M3 usually holds for approximate nonlinear least-squares estimators.? Con-
sider for instance the simple univariate regression model where u(X,0) = 60X, 6 in [,0]. The
pseudo-true value is then defined as 0, = IE[Xm(X)]/IE(X?). Assumptions M1 and M2 hold
provided X has bounded support and the OLS estimator is such that

n

n -1
O, — 0" = l(l/n) > XZ?] (1/n) Y (m(X;) — 0°X; + &) X; .
=1

i=1

Hence, Assumption M3 holds for 0,, under Assumption I when JEX* < oo, as the empirical mean
of the numerator is centered, with a variance of order O(1/n) uniformly in m(-).

Consider a test ¢, € {0,1} based on a sample of size n, where ¢, = 1 corresponds to rejection
of Hy. The behavior of the test under the null hypothesis is usually characterized by its level

afty) = sup Pp(t, =1)
m(-)€Ho

In our analysis, we focus on tests ¢, with a(t,) < a + o(l) for some o > 0. In Section
3.2, we consider a test #, with asymptotic type-I error o uniformly over Hj, i.e. such that
SUD () Ho |IP,,(t, = 1) — | — 0. In this case, a(t,) < a+ o(1) also holds. In the minimax ap-
proach, the behavior of a test is evaluated uniformly against the alternative Hj(p), i.e. through

the minimax type-II error

B(tn,p) = sup [Py, (t, =0) .
m(-)€H1(p)
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The minimax power against H;(p) is then defined as 1 — SB(t,, p). A test with B(t,,p) = o(1) is
said to be uniformly consistent against Hq(py,).

The definition of the optimal minimax rate for the testing problem relies on two conditions.
First, the optimal minimax rate p, is such that no test has more than trivial minimax power
against Hi(p,), for any p, that goes faster to zero than j,. Second, there exists a test £, that
has a predetermined uniform power against alternatives approaching the null hypothesis at rate

Pn- More formally, we have
Definition 1 The optimal minimaz (testing) rate py, is such that

i. For any test t, with a(t,) < a+o(1), a >0,

B(tn,pn) 21 —a+o(l) whenever p, = o(py) .

ii. There exists a test t, with a(t,) < a+o(1), a > 0, such that for any prescribed bound B
in (0,1 — ) for the minimaz type-II error, there exists a constant k > 0 ensuring

/B(Znaﬁﬁn) = sup IPm(in = 0) <pB+ 0(1) .
m(-)EH1(kpn)

Such a test ty, is called rate-optimal.

As noted by Stone (1982), the minimax estimation rate of a nonparametric regression not
only depends on its smoothness, but also upon the behavior of the density f(.) of X at the
boundary of its support. A similar phenomenon arises in our testing problem. For instance, if
the density of the regressors has unbounded support, it is possible to find some sequences of
functions m(-) in Hy(p), with fixed p, against which any test has trivial power, see Appendix C
for an illustration. Therefore, to avoid technicalities, we limit ourselves to explanatory variables

X whose density is bounded from above and below and has bounded support.?

Assumption D The density f(.) of X has support [0,1]P, with 0 < f < f(z) < F < 400 for

any = in [0,1P, and is continuous on [0, 1]P.



3 Optimal minimax rates for specification testing

As is usually done in this kind of analysis, we proceed in two stages corresponding to the two
conditions of Definition 1. First, we find a testing rate p, below which alternatives in Hy(p,)
cannot be uniformly detected. Second, we exhibit a nonparametric smooth test which has power

uniformly against alternatives of order py,.

3.1 Lower bounds for optimal minimax rates

The next result provides a lower bound p, for the optimal minimax rate corresponding to the

smoothness index s. This result formally justifies that considering local alternatives (1.1) with

1/2 is not appropriate in the nonparametric minimax approach, since such alternatives

1/2

Ty XN

are not in Hi(py), as n~ /% = o(py) for any smoothness index s.

7 if s < p/4. Under Assumptions D, I,
M1-M2, if each ¢; is N'(0,1) conditionally upon X;, for any test t, with a(t,) < «a+ o(1),

2s
Theorem 1 Let p, = n »+% if s > p/4 and p, = n

B(tn,pn) > 1 —a+o(l) whenever pp = o0(pp).

To prove Theorem 1, it is enough to establish that a(t,) + B(tn,pn) > 1+ o(1) for any test
t, with asymptotic level . This is obtained by bounding the latter quantity from below via
a proper choice of Bayesian a priori measures over subsets of Hy and Hi(py). Then, bounding
the errors of the Bayesian likelihood-ratio test yields the result. Theorem 1’s proof also shows
that an uniformly consistent test of Hy against Hq(kpy), k > 0, does not exist. Though, as will
be shown in Section 3.2, there exists a test that has a predetermined minimax power against
Hy(kpn).

The assumption of standard normal errors, which is used to derive Theorem 1, can be
relaxed as soon as regular distributions are considered. A common condition is to assume that
the translation model associated with the errors ¢;’s is locally asymptotically normal (LAN),
that is, the density f;(-) = f(-|X;) of the variables ¢; given X; fulfills
n

= uS, —uI/2+4 op(1) ,

[log fi (ei + L) — log fi(ei)

NG

=1

10



where I > 0 is a constant, and S,, converges in distribution to N(0,I), see Ibragimov and
Has’minskii (1981). This condition also allows for the presence of heteroscedasticity. For instance,
if ; = o(X;)n;, where the n;’s are independent with density f,(-) and are also independent of
the X;’s, the LAN condition holds under standard regularity conditions on f,(:) given 0 <
o < o(-) £ 7 < oo. Under the LAN condition, Theorem 1 carries over at the cost of some
technicalities.* However, the assumption of Gaussian errors is only instrumental in our analysis.
The next subsection shows how optimal minimax rates are determined for a general unknown

error distribution.

3.2 Optimal minimax rates and a rate-optimal test for regular alternatives

To determine optimal minimax testing rates, we now build a specification test. A popular method
in econometrics follows the Lagrange multiplier approach, see Godfrey (1988). This consists in
estimating the model under the null hypothesis in the first place and to use this estimate as
a basis for a test statistic in a second step. Here we first estimate # and use the estimated
parametric residuals (71 =Y, — M(Xiaé\n) to test Hy. For this purpose, we introduce a simple
approximating family of functions, on which the parametric residuals will be regressed. Let

P
Iy, = ] [ksh. (kj +1)h)
j=1
be a bin of [0, 1]P, where the multivariate index k = (k1,...,kp)" € K C IN? satisfies 0 < k; <
K—1forj=0,...,p, K = K, being an integer number and h = 1/K the associated binwidth.
The bins Ii’s define a partition of [0,1]” up to a negligible set and the indicator functions

I(x € Ii) are therefore orthogonal. Then, following Neyman (1937) (see also Hart, 1997), a
smooth test can be proposed by regressing the U;’s on the normalized variables (X; € I1,)/v/Ny
n

for k € K, where Nj, = Z 1I(X; € Ij) is the number of observations of the exogenous variables
i=1
in bin [Ij. If the 7;’s are the corresponding estimated coefficients, a test can be based on

si-2 (4 S0

ke keKx X;€ly,

11



Such a test statistic can also be viewed as an estimator of IE (u(X,6*) — m(X))* based on the

regressogram method. However, this statistic is systematically biased under the null hypothesis,

because it includes the squared estimated residuals (A]Z-Q,i =1,...,n. To remove this systematic
bias, we consider

ES 1 N, >1 ~ o~

o Y eV

and the simple estimator of the variance of T,

H(Ny, > 1)

U?L = (I/Kp) Z N]?

ke

S 0.
{Xi,X; }ELy i)
The test is defined as ¢, = I (v; 1T, > za), where v,, is the positive square-root of v2 and z,
is the quantile of order (1 — «) of the standard normal distribution. Our test is thus a simple
regressogram version of the kernel-based test of Zheng (1996). This allows us to treat the design
density and the conditional heteroscedasticity function as nuisance parameters and then avoids

unnecessary smoothness assumptions on these functions.
Theorem 2 Under Assumptions D, I and MI1-MS3,
i. If K — oo and #W — 00, the test t,, is of asymptotic level o uniformly over Hy, i.e.

sup |1Pm(fn =1) — a| =sup ‘ZPm(v;lTn > Za) — a‘ —0.
HO HO

2s _
ii. Assume s > p/4, let p, =n %5 and K = [py 1/s/)\], A > 0. For any prescribed bound B
in (0,1 — ) for the minimaz type-II error, there exists a constant k > 0 such that

/B(Znaﬁﬁn) = Hs(ufz )IPm (vrjlfn < Za) <B+ 0(1) .
1\KpPn

Theorem 2-i says that £, has asymptotically a type-I error equal to a uniformly over Hy.

Theorem 2-ii shows that for s > p/4, t, has asymptotically minimax power 1 — (3 against

Hy(kpy).5 Note that 8 can be chosen as close to zero as desired by taking x large enough.

12



Theorems 1 and 2 together establish the minimax optimality of the rate p, and the rate-
optimality of the test #,,. This easily follows by checking the conditions of Definition 1. Condition
1 is fulfilled, as the lower bound of Theorem 1 cannot be improved if the conditional distribution
of the ;s is unknown and lies in a set of densities including the normal.® Condition i is fulfilled

because of Theorem 2, which leaves this distribution unspecified.

2s
Corollary 3 Under Assumptions D, I and M1-M3 and if s > p/4, pp, =n" »+% is the optimal

minimaz (testing) rate and t, is rate-optimal when K is chosen as in Theorem 2-ii.

As can be expected, the rate p, becomes slower when the dimension of X increases or when
the smoothness index s decreases. When p = 1, the rate p, is similar to the one obtained for a
test of m(-) = 0 in the continuous-time Gaussian (CTG) model,

Y, (z) = m(z)dz + %dW(:p), zel0,1],

where W (-) is a Standard Brownian motion, see Ingster (1993). This model may be viewed as
an ideal model: many optimality results valid in this context can be extended to the univariate
regression model with homoscedastic Gaussian errors when the smoothness index of m(-) is such
that s > 1/2, thanks to an equivalence statement due to Brown and Low (1996). However,
this equivalence does not hold for s < 1/4 and s = 1/2 as shown by Efromovich and Samarov
(1996) and Brown and Zhang (1998). Moreover, it is not known if such an equivalence extends
to a regression model with a multivariate random design, unknown variance, non-normality or
heteroscedasticity of the regression errors. For instance, the case of small smoothness indices,
i.e., s < p/4, which is not treated in Corollary 3, seems to be specific to the regression model and
is discussed below. Horowitz and Spokoiny (2001), who do not assume that s is known, propose
a test that is uniformly consistent against alternatives approaching the null hypothesis at rate

s/(454P) when s > max(2,p/4), which for p = 1 is the optimal adaptive minimax

pn (Inlnn)
rate for testing m(-) = 0 in the CTG model according to Spokoiny (1996). Thus, the adaptive
approach leads to an unavoidable but small loss in the optimal minimax rate.

Our results give theoretical grounds for the choice of the smoothing parameter in a specifi-

cation testing framework. To understand how the binwidth is chosen to get a rate-optimal test,

13



note that our results imply that

:'ﬂ>

2
> Op,, (Dnh?/? (B'1262(X) = h*)" > Op,, ()nh?/? (kpy — h*)*

vl
for any m(-) € Hi(kp,) with kp, > h and nh?/Inh? — o00.” To bound the asymptotic
minimax type-II error, one must force the lower bound of T, to stay away from zero. Hence the
smallest possible p, has the same rate as h® and the corresponding lower bound for fn is an
@) (nh(p+4s)/ 2). Therefore, for regular alternatives, i.e. for s > p/4, the optimal binwidth h is

such that nh®+t45)/2 has a non-vanishing finite limit, that is,
hocn 7 (3.3)

For the same p and s, the optimal binwidth rate for testing the specification of a nonlinear para-
metric regression model is faster than the optimal binwidth rate for minimax nonparametric
estimation of the regression function in the Ls-norm, which is n~1/(0+25) Bagically, choosing an
optimal testing binwidth leads to balance a variance and a squared bias term, similar to the ones
found in semiparametric estimation of Em?(X). This implies some undersmoothing relative to
optimal estimation of the regression function itself, as is the case in other semiparametric esti-
mation problems, see e.g. Hiardle and Tsybakov (1993) and Powell and Stoker (1996). However,
determining the optimal smoothing parameter in semiparametric estimation or testing contexts

are typically different issues.®

3.3 The case of irregular alternatives

The optimal minimax testing rate generally depends on the relative standing of the smoothness

index s and the dimensionality of the model p. For irregular alternatives, i.e. s < p/4, the lower

bound of Theorem 1 equals n=/4

, and depends neither on the smoothness index nor on the
dimension of X. This contrasts with the result found by Ingster (1993) in the CTG model.
The rate n~Y/* corresponds to a baseline minimax testing rate when the variance function
0?(X) = Var,,[¢|X] is known. Define

n

T =(1/n) Y (02 - o*(Xy) (3.4)

=1
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and observe that 7 estimates IE,[Y — u(X,0%)]2 — Eo2(X) = E[u(X,6*) — m(X)]? with rate
of convergence /n. Therefore, it is easy to show that a test based on JA“T’L has asymptotically
nontrivial minimax power against H; (kn~"/*) for any x > 0.

The case where the variance function 0?(X) is unknown is more difficult to deal with. Even
with homoscedastic errors, estimating o2 is problematic when m(-) is not smooth enough, as it
is difficult to separate the signal m(-) from the noise . It is likely that the minimax testing rate
depends upon s when s < p/4 and o%(-) is unknown. Note that choosing h o< n~'/? in our testing
procedure yields a test that uniformly detects with some predetermined power alternatives in
H,(kn~5/P), for k large enough.'® This implies that the optimal minimax rate is faster than or

equal to n=%/? for irregular alternatives.

3.4 Minimax properties of ICM-type tests

We now study the minimax behavior of some non-smooth tests. Bierens and Ploberger (1997)
have shown that Integrated Conditional Moment (ICM) tests are asymptotically admissible
against specific alternatives of the type (1.1). The nonparametric minimax approach provides
an alternative way of evaluating power properties of such specification tests. Theorem 4 below
shows that ICM-type tests have asymptotically trivial minimax power against alternatives in
Hy(n™ %) for any a > 0.

The ICM test statistic proposed by Bierens (1982), and further developed by Bierens and
Ploberger (1997), is

L= [ #(©dv©).

where v(-) is a measure on a compact set Z and z(¢) = (1/y/n) S0, Usw(X;, €), with real-valued

w(X;,&). Stinchcombe and White (1998) study the more general statistic

o= [ Q@] 0zt

Let t,4 be the test £, = U (1.4 > taq), With a(t,) < a4 o(1). In what follows, C)(co) is the

set of infinitely continuously differentiable functions from IRP to IR.
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Theorem 4 Let w(-,-) be bounded and such that w(-,£) € Cp(00),VE € E. Under Assumptions
I, D, M1-M3, if each ¢; is N'(0,1) conditionally upon X; and f(-) € Cp(c0), then V1 < ¢ < oo,

Btng,on) = sup Py (Ing < tag) >1—a+o(l), whenever p, =0(n"*), Ya > 0.
m(-)EH1(pn)

Our assumptions on w(-,-) are justified by usual choices, such as exp(X'¢) by Bierens (1990)
or (1 +exp(—X'€¢))~! by White (1989). Theorem 4 relies upon a Bayesian approach similar to
the one used in Theorem 1’s proof. We conjecture that similar results can be derived for other
non-smooth tests, because such tests are basically identical to nonparametric smooth tests, with
the major difference that the smoothing parameter is held fixed, see e.g. Eubank and Hart (1993)
or Fan and Li (2000).

4  Conclusion

Our results illustrate the particular features of specification testing of nonlinear regression models
under a multivariate random design. For regular alternatives, the optimal minimax rates, as well
as the optimal smoothing parameter, converge to zero faster than their analogs for estimation of
the nonparametric regression. In particular, the optimal smoothing parameter for specification
testing is derived from a different bias-variance trade-off than the one considered in regression
estimation. For irregular alternatives, the optimal minimax rates can differ from those found in
other testing situations, such as considered by Ingster (1993). We also show that a class of ICM-

/2 have trivial

type tests, in spite of being admissible against alternatives (1.1) with r, o n~
asymptotic minimax power against alternatives at distance n~% from the null hypothesis for any
a > 0. All these results are likely to extend to testing general conditional moment restrictions,
as considered by Delgado, Dominguez and Lavergne (2000).

An important direction for future research is the study of data-driven procedures for choos-
ing the smoothing parameter. Some suggestions can be found in Hart’s (1997) monograph and
the references therein. Our results explain why cross-validation and penalization procedures used

in nonparametric regression estimation would lead to suboptimal tests. The search for adapted

procedures is an important topic of recent work, see Baraud, Huet and Laurent (1999), Guerre

16



and Lavergne (2001), Guerre and Lieberman (2000), Horowitz and Spokoiny (2001), Spokoiny
(1996, 1999). A further step could be to compare the practical performances of the rate-optimal

tests derived from our approach and the adaptive approach.

5 Proofs

5.1 Proof of Theorem 1

Some small alternatives

For [ > 0, let ¢ be any infinitely differentiable function from IR? to IR with support [0,[]? such that

/np(m)da: =0 and /cp4(m)da: <00

Assume that [ is large enough so that ¢ is in Cp((L — Lag)/2, s). For example, for a suitable constant C,

one can choose p(z) = C'[]}]_, (exp (Wl—%)) I(xz €[0,1/2]7) — exp (WM) Iz € [l/2,l]p)).
Let h, = (Apn)'/%, A > 0 and define

14

Ty = [ [ (kshn, 1(k; + 1)hn)

j=1

for k € Kn(l), i.e. k € IN? with 0 < kj < 1/(h,l) — 1. Then I C [0,1]P. Without loss of generality, we
assume that K, (l) = 1/(hyl) is an integer. Let

1 <x—lkhn

or(z) = hg/zap T > , ke Ku(). (5.1)

The functions @ (+)’s are orthogonal with disjoint supports Iy;. Let 69 be the inner point of © defined in
Assumption M1, {By, k € K} be any sequence with |By| = 1 Vk, and

mn () = 1(,00) +0n() , 0n() = Aonh®? > Brpi() . (5.2)
keEK, (1)
Lemma 1 Assume p, — 0. Under Assumptions D, M1, M2, Em%(X) < my and my(.) is in H1(py,)

for X and n large enough.

Proof: i) IEm?(X) < my for n large enough, because FEu*(X,6y) < m4 under Assumption M1 and, since
the ¢y (+) have disjoint supports, /464 (X) < SUP,co,1]» [0n ()] = O(Apy) — 0.
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i) my(-) € Cp(L, s): Under Assumption M1 it is enough to show that d,(-) is in C,(L — L4, s). For any
B € IN' with 3-%_, B; = [s], we have

8[S]6n(x) _ Apn Z B, alsly <a: — lkhn>
8.’1,'11 tee 8$§p h;f] kEK, (1) 8:1"11 T ampp hn

Therefore, for any x and y that do not necessarily belong to the same bin Ij;, we get, using the definition
of () € Cyp((L = Lan)/2,8), hn = (Apa)!/* and [By| = 1,

s—[s]

o116, (x) 918, (y) <(L-Lpa)|z — y”s—[S] ,

Oz ---0xp”  Ox]'---O0xp”

r—y
by,

L — Lap Apn
2
2 hgf]

and 9, () € Cp(L — Ly, s) for any n and A > 0.

iii) m,,(-) is distant from the null model: Let 6,, = 8y, . Then
B2 [mn(X) = p(X,02)]" > B'26(X) — B2 [u(X, 60) — (X, 6)]"

<f/6fl(:r)dm> v -0 (||6n — bol]) » (5.3)

Y%

by Assumptions D and M2, which gives that the gradient du(z,6)/d6 is bounded. Now,
[ @ = a2 [ @) de = Qo1 [ G a)da (5.4)

As 6, converges to 8y by Assumption M1 since E(m,,(X) — u(X,0))* = E5%(X) — 0 as easily seen from
Step i), 0, is then an inner point of ©. Therefore, from Assumption M2 and the Lebesgue dominated
convergence theorem, Assumption M1 yields that

EaU(X: en)

S (X, 0,) = ma ()] = 0.

This leads to
3u(X ) an)

00
A simple Taylor expansion, which holds by Assumption M2, yields

3u(X, an)

E 06

(X, 0n)
06 ’

) . (5.5)

en _ 00 — (Eau(Xa 60) 8:“’(X7 00

50 50T )+o(1)>_ F$,(X)

so that
aﬂ(X > en)

16 81 = 0 | 3, 00) 245,
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oul(.,0
The functions {M f();6¢€ G)} are equicontinuous from Assumptions D and M2 and the Arzela-

06
Ascoli theorem, see Rudin (1991). As ¢(-) has integral zero,
(X, 0n)
s, (x) 22T
0n(X) =25
op(lkhy, + hpu,6y,) ou(lkhy, 6r)
— P _ZRvR T e
= ApnhE kEKE \ Bk/ < 50 flkh, + hyu) 50 f(lkhy) | p(u)du

Apnh? KE(D)o(1) = Appl™Po(1) .

Combining this equality with (5.3)—(5.5) yields, for A and n large enough,
1/2
EY? [mn(X) — (X, 6,)])7 > Apnl ™ ((fl”/ch(x) da:) - 0(1)> > p, .0

Main proof
We shall establish that for any test ¢,

sup Pn(t,=1)+ sup Pp{#,=0) > 1+0(1). (5.6)

m(.)EHo m(.)EH1(pn)

Step 1: Choice of a Bayesian a priori measure. As usual in the Bayesian setup, we consider now the
regression function m(-) as a random variable and introduce some Bayesian a priori probabilities over Hy
and Hi(py). Let 6y be the inner point of © defined in Assumption M1 and denote I the associate Dirac
mass, i.e. p(m(-) = p(-,6p)) = 1. Consider i.i.d. Rademacher By’s independent of the observations, i.e.

P(B, =1) = IP(B, = —1) = 1/2. Let II;,, be the a priori distribution defined on Hj (p,) by (5.2), i.e.

Oy, [ m() = pu(00) + Aonh®/? > beor() | = [[ PBe=0bi), by € {1,-1}.
kEKn (1) kekn(l)

Lemma 1 shows that the support of ITy,, is a subset of Hy(p,) and II,, = Iy + II;,, is an a priori Bayesian
measure over Hy U H;(p,,). This gives the lower bound
Sup Poltn=1)+  sup  Po(te =0) > / Py (ty, = 1)dll(m) + / Pyo(ty = 0)dILip(m) . (5.7)
m(.)EHo m(.)EH1(pn)
The r.h.s. of (5.7) is the Bayes error of the test ¢, which is greater than the error of the optimal Bayesian
test based on the likelihood ratio Z, that we now introduce. Denote by ) and X" the set of observations
on Y and X respectively and let p,, (), X) be the density corresponding to the regression function m(.).

Define the a priori densities associated with the two hypotheses as

po(V, X) Z/pm(ya?f)dﬂo(m) and  p;, (Y, X) :/pm(y,X)de(m).
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The likelihood ratio of the optimal Bayesian test is

" po(V, X) po(V[X)

The optimal Bayesian test rejects Hy if Z,, > 1 and its Bayesian error, see Lehmann (1986), is
1 1
1= [ I 2) = p V)| VY = 1 BB (|2, - 1]
where E) is the expectation under py. Then (5.7) implies that

1
sup Pp(t,=1)+ sup Ppn(t, =0) ZliminflE’{l——Eo [|Zn—1||X]}+o(1) ,
m(.)€Ho m(.)EH: (pn) n—+oo 2

and (5.6) holds if we can show that the limit in the r.h.s. is 1. We first note that 1 — %Eg [1Zn — 1||X]
is positive as a conditional Bayes testing error. Then the Fatou lemma implies that it is enough to
show that Eq [|Z, —1]|] £ 0, which is implied by Eq [(Zn —1)? |X} E 0. But E, [(Zn —1)? |X] =
E, (Z2|X) — 1 as Eo(Z,|X) = 1. Hence, Inequality (5.6) holds if

Eo (7221x) 1. (5.8)

Step 2: Study of the likelihood ratio Z,. On the one hand, the variables €;0 = Y; — u(X;,6p),i=1,...,n,

are standard normal variables under p, and

PoIA) = (2m) /2 exp H 26%0] .

i=1

On the other hand, given the definition of IIy,,

P IV) = o [ {exp [—%Z(Yi—mm»?

i=1

(271')‘”/2 / {exp <—% ZS%O — % Z 62(Xl) + Z&‘lo(sn(Xz)> } dH1n(m)
= po(V|X) / {exp (‘% Z‘SZ(Xz) + ZEiofsn(Xi)) } dIly,(m) .

The definition of the alternatives (5.2) gives

zn:&o(sn(Xi):)\pnhﬁ/z > zn:BkEiOQOk(Xi) and ﬁ:&i(Xﬂ:A%fﬂﬁ > i@i(Xi),
i=1 i=1

kek(l) i=1 kek(l) i=1
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since B =1 and ¢ (.)pw (.) = 0 for k # k'. This yields

Zn = exp (—/\Zpiglhﬁ > Xn:SO%(Xi))

keK(l) i=1

1 n n

<10 5 [exp <>\pnhﬁ/2 Zsm(xi)> b (—Apnh;”/? Zgiw,g(xi)ﬂ |
KEK(1) P —
Therefore,
Z2 = exp | —Np2ht Z Z@%(Xl)
keK (1) i=1
1 n n

X kel;[(,) 1 lexp <2>\pnhﬁ/2 ;siowk(Xi)> +2 +exp <_2>\pnhﬁ/2 ;Eiowk(){i)ﬂ _

Conditionally on X, the variables >, gj00x(X;), k¥ € K, (I), are independent centered Gaussian with
conditional variance given by >, 2 (X;). Using Eexp N (0,0?) = exp(cd?/2), we get

n 1 n
Ey(Z31X) = ] e (—A%ihﬁZg@%(Xﬂ) X5 {exp (”\%ihﬁZ‘P%(Xi)) + 1}
keK(l) i=1 i=1
n
= ][ cosh (AzﬂihfLZ‘{’i(Xi)) ;
kEK(l) i=1

where cosh(z) is the hyperbolic cosine function. By a series expansion, 1 < cosh(z) < exp(x?), and

n 2
1< Eo (Z;]X) < exp [ > (A%ihﬁ Z«pi(&))
i=1

kek(l)

Then (5.8) holds if

> (pihz Z_wi(}@) 50, (5.9)

kek(l)

Consider the expectation of this positive random variable. We have

E{ ) (pihzzsawn” = Y (Bl (X)) + n(n = DE (X))}

ke (1) keK(l)

Now the standard change of variables x = lkh, + uh, and Assumption D yield

Bleb(0] = [ 1,26 (/o) ~ ] fa) de < P2 [ 4 = O, ?)
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and

BIACO] = [ 76 [(a/h) = 1] f(@) do < F [ 62 () du = O(0)

As hy = O(1/Kn(l)) = O(p¥®),

k

p {Z (pihz >k <Xi>> } = [nph +n2pbh] O(1) = [npl, + n2pf*49/] O(1).

We then consider the two following cases:
i. s>p/4:pp,=0(pp)=o0 (nfz’%) = npl = o (n(P=19)/(P+15)) = (1) and n2pFHiD/s = o(1).
ii. s < p/4:p,=0(pn) =0(n"*) = npt =o(1) and n2pPHae/s — (nl4s=P)/45) = o(1).

Equation (5.9) follows and then (5.8). Step 1 shows that (5.6) holds and Theorem 1 is proved. i

5.2 Proof of Theorem 2

For random variables Z and Z', define IE*(Z) = IE,,(Z|X € I},), Var®(Z) = Var,, (Z|X € I.),

I[N > 1] 1
(2,2, = —N > Z:7'; VkeK and (Z,7') = NTE > (2,7,
{Xi,X;YeI i#] ke

Let ProjZ = Z (X € I})IE*Z be the projection of Z onto the space of linear indicators #l(z € I}),

k
k € K. Key properties of this mapping are

FE[ProjZ] = ZP(X cl,)E'Z=EZ and E [Projy. Z] < EZ* .
k
Welet U* =Y — u(X,0%), e =Y —m(X), 0(X) = m(X) — pu(X,0%), e(X) = u(X,an) — p(X,0*) and
Sx = (N, k € K)T. For simplicity, we assume that K = ﬁ;l/s/k is an integer. Finally, C, C;, i =1,...,

denote positive constants that may vary from line to line.

Preliminary results

2
Proposition 5 Let v*(K) = (1/K?) Y, o H(Ny, > 1)N1’§,:1 (EkU*2) . Under Assumptions I, D and

M1-M3, v*(K) is bounded from above and in probability from below uniformly in m(:) € Cp(L,s), and

2

Un

—v}(K) = op,, (1) uniformly in m(-) € Cp(L, s) whenever gy °°-
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Proof of Proposition 5: By Assumption D, fh? < IP(X € I;;) < Fh?. Now, on the one hand,

v (K)

IN

(1/E?) Y (EkU*2)2 < (1/f) Y PIX € I,] (IE’“U*2)2 = (1/f) [E [Proj2.U*?]
kex

ke
(/6 E[U] < (8/f) [EnY* + Enp'(X,05,)] < C.

IN

On the other hand, by Lemma 4, with probability going to one uniformly in k& € K,

V(K)

Y%

(1/2K7) Y (E’“U”)Q > (1/2F) 3" PIX € I (E’“U*Q)Q
ke

keK
(1/2F) By, [Profi-U™] > (1/2F) 2, [U™?] 2 (1/2F) 2, [°] > 0.

v

Let v32 = (1/KP) ¥ (U2, U*2), /Ny.. Then

<a/xn 3 =D @2, 02, - 02,072, . (5.10)
keEK

2 *2
|Un - Uy

But (U2, U2),—(U*2,U*?), = —4(U*?,U*e(X)),+2(U*2,€*(X)),+4(U*e(X), U*e( X)), —4U"e(X), €*(X)),,
+(e?(X),e*(X)),. By Assumptions M1-M3 , |e(X;)| = Op, (1/4/n) uniformly in m(-) and i. Hence the

dominant term in (5.10) is

(N > 1 (N > 1
/) 3 T2 Dy e, | = 0, v a/an) Y T2 D e (e,
k k
kex keK
Now, by Assumptions I and M1,
(N > 1
By |15 3 T8 D @7 e, s
kex k
O(Ng > DNk = 1) g0 e
— 14 * *
= (/K" N, E U E|U|
ke
< (1/6)) P[X € I,]) B*UE*|U*| = (1/£) By, [Projic U**Proji|U*|]
kel

< DB UM B [U?]<C

This shows that v2 — v;? = Op, (1/4/n) uniformly in m(-). Now v}* — v?(K) is centered conditionally

upon Sk. Moreover, by Lemma 4, we have, uniformly in m(-),
* 2 *
E,, [(vn2 — vz(K)) |S;C] = Var,, [vn2|S;c]

_ (1/K™) I§C2H(Nk > 13VJ:;k(Nk —1) {2(1\0@ 9 (EkU*2)2VarkU*2 N (EkU*4)2 B (IEI@U*2)4:|
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S 1/K2p Z g \k ~ ) Nk > 1 |:2Nk (EkU*Q)zEkU*4 + (EkU*4)2:|
kex
< Opnh?)2Y (P(X € Ik)EkU*4) +0p(nh?)™ Y P(X € I) (IE’“U*2) 3" P(X € 1) EX U
ke ke ke
< Op(nk?) 2E? [Proj U] + Op(nh?) ' [E [Proji-U*?] IE [Proj, U**]

< Opnh?) 2E2U* + Op(nh?) ' IBZ U = 0.

Hence v:? — v*2(K) = Op_(nhP)~'/2 uniformly in m(-). |
Let T, = (U*,U*), A= (6(X),e(X)), B={(g,e(X)) and R = (e(X),e(X)). Then

T,=T,—2(A+B)+R. (5.11)

Proposition 6 Under Assumptions D, I, M1—MS3, R and B are both Opm(hp/2) uniformly for m(:) in
Cp(L,s), and A=Op, (VnhP IE/?62(X)) uniformly for m(-) in Cp(L,s).

Proof of Proposition 6: To simplify notations, we consider the case where d = 1. By Assumptions

M1-M3, |e(X;)| = Op,, (1/y/n) uniformly in m(-) and i. Thus

|R| = Op,, (nK**)™2 > " Ny = Op,, (h"?),
kek

uniformly for m(-) in Cp(L, s). Under Assumptions M1 and M2, a standard Taylor expansion yields

e(Xi) = (B = 07) (X)) + 118 — 0" Pa(X) (5.12)

where pi(X;) = pe(X;,6*) depends only on X; and p2(X;) depends on X; and §n . Therefore B =
~ 1 ~
(9n - 9*) By + 6, — 6%|]2 By, where By = (¢, ju1 (X)) and By = (e, u2(X)). Now E(B;) = 0 and

I[N, > 1
% > e (X)) (Xj0)
k { X0, X5, X YL i],i#]'

o) AN > 1] (Ng — 1)? ;
= 2KPZIE[ b N, i }ZO(nh),

1
2 —
E(B}) = 5= /;;c: E
€

ke

using Assumption M2. Similarly,

IE|Bs|

IN

o(1) $ I[Ny > 1] 3 .
E" ;]
VKPR S N (X:,X; YEIL i#]

_ o - "
T VK2 %CJE[”[M > 1] (N — 1)] = O(nh?/?).
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As\/n (§n - 9*) = Op, (1) uniformly in m(-), we obtain B = Op_ (hP/?) uniformly in m(-).

~ ' ~
From (5.12), A = (en - a*) Ay + (18 — 67| As, where A, = (5(X), i (X)) and As = (5(X), us(X)).
Now,

\/gf({lz/z’ Y BNy = D[N > 1] E|5(X)] < O(nh??) E5(X)| < O(nh??) E'/?6°(X).

keK

E|A ] <

Similarly, IE|As| = O(nh?/2)IE/?62(X). Since /n (gn —0*) = Op,, (1) uniformly in m(-), we obtain
A =O0p_ (Vnh?EY*§2(X)) uniformly in m(-). ]
Proposition 7 shows that projections on the set of indicator functions #(z € I;), k € K, can be used to

approximate accurately enough the magnitude of the Lo-norm of m(-).
Proposition 7 Under Assumption D,
E'? [Projzm(X)] > C (E1/2m2(X) - h) :
for any m(-) € C,(L,s) and h small enough, where Cy > 0 depends only upon L, s and f(-).

This result is new for multivariate random designs, but follows from proper modifications of the arguments

used in Ingster (1993, pp. 253 sqq.). A detailed proof is given in Appendix B.

The following Proposition 8 gives some bounds for the unconditional mean and variance of Tj,.

Proposition 8 Under Assumptions D and I, if nh? — oo, then, for any m(-) € Hp,(kpy) with kp, > h®

and n large enough,

2
E,T, > Cynht/? (E1/262(X) — hs) for some Cy > 0,
Var,,(T,) < Env*(K)+ Csnh?E,, §*(X) + CynlE2, §*(X) for some Cs,C4 >0 .

Proof of Proposition 8: Let wy = (U*,U*),. By Lemmas 2 and 3,

1 1 i 2
BTy = s 3 By = o 3" BNy — ) I(Ng > 1)] (JE 6(X))
ke ke
nh?/ Cy

2 2
o :2 ~1 g p/2 1/2 ¢2 _ps
> QﬁE[PrOJK(S(X)] > 5 s (IE 52(X) h) ,

for n large enough, using Proposition 7 and IE'/262(X) — h® > 0 as m(-) € Hy(kpyn) with kp, > h*.

25



Because the wy’s are uncorrelated given Sk by Lemma 2,

1 1
Var,,(Ty,) = S Z E,, [1I(Ny, > 1)Var,, (wx|Sk)] + —2KpVarm
ke

> (N > 1) By, (wi [ Sk )] :

keK

Using Lemmas 2 and 3, Assumption I and P(X € I;) > fh? uniformly in k, we get

3" BN, > )Vary (@ilSk)] < Eno*(K) + 207 Y ENy (E’“(S(X))2 [JE%2 + JEk52(X)]

kek ke
< Env*(K) + Csnh? E [Proji-6(X)] + ConlE? [Proj6*(X)] ,

QKP

ﬁ\/ar (Z H(Nk > I)Em [wk |S’C]>

keK

< QKPZ(IEW 1) Var (N~ )N, > 1))

ng Z (Eka( ))2 (Ek’a(X))2 Cov (N, — 1) I(Ny, > 1), (N — ) II(Np > 1))

< CynlE? [PrOJ,C(S(X)] + Csnh? E® [Projz6(X)] ,
where we use the properties of Proj,. Combining inequalities, as nh?” — oo, we obtain
Var (T,,) < IE,v*(K)+ Csnh?’E [Proji-0(X)] + CenlE® [Projcd(X)]

+ CrnIE* [Proji-6(X)] + Csnh? E* [Proji-6(X)]
E,, v (K) 4+ C3nhPIES*(X) + CynlF? 6*(X) .O

IN

Main proof

Part i. From (5.11), Proposition 6 and as A = 0 under Hy, it suffices to show that Tn/vniw\/(o, 1).
Assume that some ordering (denoted by <) is given for the set K of indexes k. Let Ji,...,J, be any
(random) rearrangement of the indices i = 1,...,n, such that X;, € I iff ZN’Z < J; < ZN,; .

<k <k

Let Fp = Sk, Yy, ¢ ZN[ < J; < ZN‘Z . Under Hy, {Tn,k = p<k wkr/\/QKP,]:n,k}, where wy, =
<k <k B
(U*,U*),, is a zero-mean martingale array. It is then sufficient to show that

v,2 Y By W/ KD Fupa] 1, (5.13)

ke
D [wz /(2K”)1[(‘
ke

v >nvn) |fn,k,1] 2y 0, V>0 (5.14)
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from Corollary 3.1 in Hall and Heyde (1980), see also the remarks following it. Now

1 1 1 2Ny, — 1)
arcr 2 o [WilFuaa] = o7 D B [wilSe] = 577 > T
kel ke ke

(EkU*2)2 = *(K)

from Lemma 2, so that (5.13) follows from Proposition 5. Now (5.14) is implied by
1
—4
Rven

Z Eg [wé|fn,k,1] i) 0.
ke

By Assumption I, straightforward computations lead to

o S By [l Fas] < oy 3 (B) = 01,

kek keK
By Proposition 5, (5.14) follows. i

Part ii. As v2 is bounded from above uniformly in m(-) from Proposition 5, (5.11) and Proposition 6
yields
P, (uglfn < za) < P (Tn <z o+ 2MWJE1/252(X)) +o(1),
for any M > 0 and some z;, > 0, where the o(1) is uniform in m(-). But
P, (Tn < 2+ 2MVnhe /262 (X)) - P, [— (T — B Th) > BTy — 2 — 2MVaR E262(X)|
Var,,, T},
[Ean o oMYA 252 (x)|

<

)

if B, T, — 2!, — 2M~/nhPIE*/?62(X) > 0. It is then sufficient to show that & can be chosen so that
E,T, — 2" — 2MVnh?E/*§*(X) > 0,

Var,, T
. 3, (5.15)
(BT — 21, — 2M Vb /252 (X)) |

IN

uniformly for m(.) in Hy,(kpy,). Proposition 8 gives that for any m(.) in Hy,(kp,) and n large enough

BTy — 2, — 2MV/ah? /282 (X) R TR VR
nhp/2 [E§2 > K K2\P/2 kNP
and this lower bound is increasing in k and positive for x large enough. Proposition 8 also yields
Var,,, T, < Ev?(K) + CanhPES*(X) + CynIE* 62 (X)
(nh?/2E52(X))* ~ n2he F25%(X)
Ev*(K) Cs Cy
- kAN k®np2  nhp’

and this upper bound is bounded because of Proposition 5, and decreasing in . Hence (5.15) can be

made smaller than 8 uniformly for m(.) in H,,(kp,) by taking x large enough. |
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5.3 Proof of Theorem 4

Without loss of generality, we consider the case of testing for a pure noise model, that is M = {0}. Then

2(§) = 20(§) + 21(§) = (1/V/n) Zsiw(Xi,S) +(1/vn) Y m(Xy)w(Xi,€) .

i=1
Consider the a priori ITy,, defined in Theorem 1’s proof, i.e. the measure defined by the random functions

My () = 0n() = )\pnhﬁp Z Brow(+),
k

where Bj,..., Bk, are independent Rademacher variables, h,, = /\pi/s, vk (+) is defined by (5.1), and

further assume that ¢(-) is bounded with r-first zero moments. We have

n

N A2p2 hP
B, 2} (§) = =222 37 3 Blw (X, Ow(X;, Opu(Xi)en(X))]
i,j=1 keK

uniformly in £. Now, uniformly in £ and k&,
lE’[wQ(Xi,f)cpz(Xi)] <F sup w(x,{)/<p2(a:) dz
z€[0,1]P,£€E
and

Flw(X;,&er(Xi)] = hf/2 / w(lkhy, + whp, &) f (lkhy, + uhy)e(u) du = O(hr+p/2) .

Hence, we have uniformly in £
B, 27 (€) = Xp20(1) + X p2mh? +0(1) .

Because 7 can be chosen as large as desired, [E,, 22 (£) = o(1) whenever p, = O(n™?), for any a > 0.
Under the same assumptions, Fyy,, |21 (§)|? = o(1) for any 1 < ¢ < 2 from Hélder inequality, and
Fr,, |71 (§) ]9 = o(1) for any 2 < ¢ < oo from the Khinchin-Kahane inequality, see e.g. de la Pefa and
Giné (1999). Hence,

En,, / 122 (€) 7 d(€) = of1) .

Thus
0 P (hng S ta) > [ P Iy < ) dlinom)
> [p. ([ / |zo<f>|qdu(£>} " u> T, () + o(1)
> IPy(Ing <tuayq)+o(l)=1-a+o0(1) .0
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Footnotes
1. The main difference lies in the compactness of the set of first derivatives.

2. Nonlinear least-squares estimators are adapted to our framework, but one could use estimators
designed for specific purposes, as soon as they satisfy Assumption M3, see for instance Fan and Huang

(2000).

3. As pointed out by Bierens and Ploberger (1997), we can without loss of generality replace X by
¢ (X), where ¢ (+) is a bounded one-to-one smooth mapping.

4. In the above expansion, the remainder term is zero with standard normal errors. Non-normality
or heteroscedasticity induce a remainder term which must be studied via the Fatou Lemma and some

truncation arguments as done in Ibragimov and Has’'minskii (1981) for efficient parametric estimation.

5. This does not mean that our test has trivial power against any alternative in H; (p,) with p, =

o(pn), though it has trivial power against alternatives (1.1) with r, oc n /2,

6. Suprema should then be considered over this set in Definition 1.
7. This follows from Propositions 5, 6 and 8 in Section 5.

8. In the CTG model and alternatives defined through L, norms, Lepski, Nemirovski and Spokoiny
(1999) have shown that the optimal minimax testing rate and the optimal minimax estimation rate

for the L, norm coincide when ¢ is even only.

9. In the case of testing for a pure noise model with homoscedastic errors and regular alternatives,
the specification test proposed by Dette and Munk (1998) is also based on (3.4), with o2 replaced by

a inefficient difference-based estimator.

10. This can be shown by adapting Proposition 8 to the case h o< n~'/?, as formally established in a

previous version of this paper.
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Appendix A: Auxiliary results

Lemma 2 Let w, = (U*,U*),. Under Assumptions I, for any k € K such that Ny > 1,

BolalSc) = (V- 1) (B9()
Var, [wi|Sk] = Q(N]I;fik_l) (EkU,Q)? N 4(Ny, — JI%EN/; -2) (Eké(X))2 E U+
2(Nj, — 1)(2Ny, — 3) 1
-k N L= (Bra(x))

Moreover, the wy’s are uncorrelated given Si.

Proof of Lemma 2: Conditionally upon Sk, the X;’s are independent and identically distributed within
each cell. The expression of the conditional expectation then follows from E*U* = E*§(X). The other

claims are easily checked. |

Lemma 3 Under Assumptions D and I, if nh? — oo, then for n large enough,

(N - DIN, > 1)] > 2P(X € I) ke K,
Var[(Ny — 1) (N > 1)] < 2nP(X € I, Vk e K,
COV[(Nk—].) II(Nk >].),(Nk/ —].) H(Nkf > 1)] < 2nP(X€Ik)P(X€Ikr) Vk;’ék, eX.

Proof of Lemma 3: Note that (N, — 1) I(Ny, > 1) = N, — 1+ II(Ny = 0). As (N}, = 1) is a Bernoulli
random variable, then, by Assumptions D and I, we have for n large enough,

E[(Ny —1)I(Ny >1)] = nPXe€ly)—1+(1—-PX €el)" >
Var[(Ny — 1) (Nt > 1)] < nPP(Xe€l;)[l-P(X € I})]+1/4—2[E(Ny) P(N, =0) <2nlP(X € I};) .

P(X €I}),

NS

The covariance equals
COV(Nk,Nkr) + COV(.Z[(Nk = 0), H(Nkr = 0)) + Cov (Nk, H(Nkr = 0)) + Cov (Nkr, H(Nk = 0)) .
The first item is —IE(Ng)E(Ny/) and the second item is

(1 — ]P(X € Ik) — ]P(X € Ik/))n — (1 — IP(X € Ik))n (1 — ]P(X € Ik/))n .
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They are both negative. Moreover,

COV(Nk, H(Nkr = 0)) = n(l — ]P(X € [kr))n_l IP(X € [k)lP(X € Ikr) < TLIP(X € Ik)lP(X € Ikr) .a

Lemma 4 Under Assumptions D and I, if ﬁw — 00,

P (min (N, > 1) = 1) —1 and max |——
kex

Proof of Lemma 4: As N;, is a binomial random variable, the Bernstein inequality yields

P Ny, ! N, — IENy, tIEN,,
Nz

t2
> <2 ——— ENy,
= Va } . e"p[ 2(1+/3) } ’
for any ¢t > 0, see Shorack and Wellner (1986, p. 440). This yields

EN,

IENk p 3. n

. Ny — IEN
P (N, 1)=0| < PN, =0] < P
> =0 s D=0 < T e[|

as [EN;, > fn/KP? under Assumption D, and — 00. Moreover, for any ¢ > 0,

_n____
KPlog KP

Ny, Ny, — [ENy,
—-1| > <
w20 < T

k Kek

S tIEN;,
- \/ﬁ

P <max

t? n
< p — — n|
max }_QK exp{ 5 }—)0

(1+t/3)pr

Appendix B: Proof of Proposition 7
Step 1. Let s' = [s 4+ 1], assume that K = K, is larger than s’, and define
k(0)=0, k(1)=s", ..., 6([K/s']=1) = (K/s']-1)s", s([K/s']) = K,
where [.] is the integer part. This gives, with ¢ = ¢,, = [K/s'],
s <k(r+1)—k(r)<2s',r=0,....,0—1. (B.1)
Let Q be the set of vectors whose generic element is ¢ with p components in {«(0),...,k(¢£ — 1)}, i.e.
q= (/§(7°17q),...,m(r],,,q))T ,rig=0,...,0=1,5=1,...,p.
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Consider the following subsets of [0, 1], which define a partition up a to negligible set:

Ag(h) = Ay = [][k(rj )R w(rjg + DR) g € Q. (B.2)

=1

Define ||§|3 = [E6%(X). Let Py, 4(.) be the Taylor expansion of order [s] of m(-) around gh. Because m(.)
is in C,(L, s) and by definition of Ay, we get by (B.1) that |m(z) — P, ¢(x)| < Cs ph® for any = in A,
for some constant Cs 1. If Py,(.) is such that Pp,(.) = P 4(.) on Ay, we have

Im = Pl < B | > C2 07 M(X € Ay)| =C2 0>
qeQ

Assume that we have been able to establish that, for some constant Cs ¢,
IProjc Pallz > CofllPalle - (B.3)
Because Proji is contracting, this would give the desired result, as

[Projicmlla > [[Projic Pamlla — [[Proj(m — Pn)lls 2 [[Projic Palla — [lm — Pl

v

Cofll(Pm —m) +mlls = Cs.ph® > Cs fllmlls = (1 4+ Cs 5)Cs L h®
Inequality (B.3) will follow by summation over ¢ € Q of inequalities of the type
E [(Projc P(X))® (X € Aq)] > 02 B [P*(X) (X € A,)] , (B.4)

for any polynomial functions P(.) of degree [s].

Step 2. Let us now give a matrix expression of (B.4). For any 8 = (84,...,8p) € IN’ with Z;’:l B <1sl,
let (%) = §:1 a:JB 7. Every polynomial functions of degree [s] is completely determined by the coefficients
a= (0,3, 2?21 B < [s]) (with a suitable ordering for the index 8 in IN?) such that

P(z) = Z 0 <:n—hqh>(6) ‘

8,y B;<[s]

This gives, for z in A,

: 1 X —gh\?
ProjP(z) = Z Z ag P el )E - I(X € Iy)
IeCAq 3,5 B;<[s] k
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Let vy = Card{I;, C Ay}, v = Card{z;’zl Bj < [s]} and Bg(h) be the v; x vo matrix with typical
element indexed by k and

_ (B) P
1 )]EKthh) II(XEIk)],IkCAq,JZ;ng[s].

P(X € I,

Let I1,(h) = Diag(IP(X € It), I C A,). Because the density f(-) is bounded from below and the I, (h)’s

are diagonal, we have (for the standard ordering for positive symmetric matrices)
II,(h) >> fhPId .
Hence the L.h.s. of (B.4) writes
B[(Projyc P(X))? (X € A,)| = " B] (T, (W) By(h)a > fhPa” B (h)By(h)a

Let Dg4(h) be the square v» matrix with typical element, indexed by § and 3,

X —qgh (B+8")
( a ) (X € A,)

1
FE
h

P(X € A))

P P
D> B <Isl, > B <s].

j=1 j=1
Since the density f(.) is bounded from above, we have for the r.h.s. of (B.4)

E[P*(X)I(X € A,)] < P(X € Ay)a" Dy(h)a < F(2s'h)Pa’ Dy(h)a ,
using (B.1). Therefore, (B.4) holds as soon as, for any a, ¢, and h small enough,
a'Dy(h)a < Cyp a' B (h)By(h)a . (B.5)

Step 3. We can limit ourselves to establish (B.5) for vectors a with norm 1 by homogeneity. This step
works by showing that the matrices D4(h) and B,(h) converge (uniformly with respect to ¢) to some

matrices D, and By, B, being of full rank for any g. Moreover the number of matrices B, and D, ¢ € Q,

will be finite. If the B,’s are of full rank, a possible choice of C ; in (B.5) is
Cs,y = maxsup{a' D,a : aTBqTBqa <1}+1.
7€Q

Let us now determine the limits B,. The entries of B,(h) are

LI [(X _qh>(6) (X € L)

IP(XEIk) h

- - - )

"~ Jioup F(kh + hu) du /Mp(’“ g +u) ) f(kh + hu) du

S T — - ) B "
f(kh) + o(1) /[0,1]”(]c 1T+ ell) du [0,1]p(k q+u)?du,
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uniformly in k, ¢, since f(.) is bounded away from 0 and uniformly continuous on [0, 1]? by Assumption D.
We now check that the number of limits By, ¢ in Q is finite. The definitions (5.3) and (B.2) require that
I;; = kh+h[0,1)? C A, = q+h[0,1)P, which implies that k = (ki1,...,k,) " and ¢ = (k(r1,9),- .-, 6(rpq)) "
are such that k(r;,) < k;j < k(rjq + 1), independently of h . Therefore,

0<kj—k(rjy) <wlrjq+1)—k(rj,) <2s,j=1,...,p. (B.6)
As Z§:1 B; < [s], the number of By, ¢ in Q, is bounded by (2s")[5]" independently of K. It can be
similarly shown that the D, (h)’s converge, uniformly in ¢, to some matrices D, with entries

uB+8) dy ,

/Hfl[Om(m.qH)N(w,q))
which are also in finite number by (B.1) and (B.6).

To finish the proof, we need to check that all the B,’s are of full rank. To this purpose assume that there
exists ¢ in Q and a = (ag , Eg.’:l Bj <[s]) with Bga =0, i.e. for all k such that I, C A,

Z aB/[01] (k—q+u)®Pdu = /k Z agu® du =0 .

—g+[0,1
8,57, i<l S S

This implies that P(z) = Y5 agz!®) of degree [s] is such that,
/ Pudu=0,0<m<s,j=1,...,p, (B.7)
w+[0,1]P

with 7 = (m1,...7m,) " satisfying the conditions in (B.1) and (B.6). We now use an induction argument.
Let P(p) be the proposition: if P(z) of degree [s], = in [0, 1], is such that (B.7) holds, then P(.) = 0.
Note that P(1) holds, because (B.7) and the mean value theorem gives that P(z(r)) = 0 for some z ()
in|m,m+1[, 7 =0,...,s". Then the univariate polynomial function P(.) of degree [s] should have at least
[s] + 1 distinct roots, which is possible only if P(.) = 0. We now show that P(p—1) implies P(p). Assume
that P(x) of degree [s] with @ = (z1,...,2,)" in [0, 1]? is such that (B.7) holds. Define

g = (x2,...,2p) €[0,1]P71, P, (x1) = P(z1,2_1) = P(x) .
Then (B.7) yields for any m; in IN with 0 < m < ¢,
m1+1
/ (/ P(ul,u_l)du1>du_1:0,0§7Tj<s',j:2,...,p.
u,1€71',1+[0,1]1’*1 m
As a consequence, P(p — 1) gives for any z_; in [0, 1]P~1,

m1+1 m1+1
/ P(uy,z_1)du; = / P, _(u)du; =0,0<m <s'.

1 1
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Then P(1) shows that P, ,(.) =0 for any z_; in [0,1]?~!, which implies P(p). O

Appendix C

Proposition 9 Assume p = 1 and M = {0}. Let the c.d.f. of the design be 1 —x~7, x > 1, v > 0. If
25 > 7, there exists a sequence {my(.)}n>1 of functions in Cy(L,s) with EY*m2(X) > p, such that, for

any a-level test t,,, liminf,, o Py, (t, =1) > 1—a.

Proof: Assume s is integer. Consider the I'(s + 2) distribution c.d.f

M /‘t tS+1 exp(—t) dt ,
0

Iw) = (s +1)!

which admits s bounded continuous derivatives over IR. Let m,, (z) = C(z—zy)*I(x—=,), where z,, = n?/7

and C is a constant. Note that m, (z) vanishes if z < z,,. The binomial formula for derivatives yields

m(® (z) = s ®) (g — ﬁx—m k

Since the functions (z — 2,)*I®)(z — x,), k = 0,...,s, are bounded, m(.) is in C;(L,s) for C' small
enough. Moreover,
—+o0
BEm?(X) = szy/ I*(x — ) (x — ) 27 Lz,

and Em?(X) = 4oo if 2s — v > 0, because m?2(z)z~ 7! is equivalent to 277! when z grows. If

sup X; < z,,, we have m,,(X;) =0,i=1,...,n, so that ¥; = oe;, i = 1,...,n. Hence,

P, (r.=0, sup X; <z,) =Py, (1 =0, sup X; <uz,).
1<i<n 1<i<n

This leads to

Py, (tn=1) > Pp (tha=1, sup X; <zp) =Py, (rn=1, sup X; <zp)
1<i<n 1<i<n

> P, (tn=1)—IP(sup X;>z,)>1—-a—nP(X >z,)=1—-a—nn 2.0
1<i<n
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