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Abstract

Extremiles are a least squares alternative to quantiles, determined by probability-weighted
moments rather than tail probabilities. They benefit from several interpretations and closed form
expressions that are equivalent for continuous distributions, and they characterize a distribution
just as quantiles do. Their regression versions similarly define a least squares analog of regression
quantiles. We give a comprehensive overview of the state of the art regarding probabilistic and
statistical properties of unconditional extremiles and their regression counterparts and provide a
comparison between extremiles and other important classes of indicators for the description of
unconditional and conditional distributions on real data examples.

Extremiles and their equivalent formulations Let F be the cumulative distribution function
of a real-valued random variable X. We assume throughout this article that F is continuous. The
quantile function q of X is the left-continuous generalized inverse of X, that is, qτ = F−1(τ) := inf{x ∈
R |F (x) ≥ τ} for τ ∈ (0, 1). We have, for any τ ∈ (1/2, 1),

[F (qτ )]
log(1/2)/ log(τ) = τ log(1/2)/ log(τ) = exp(log(1/2)) = 1/2.

It is then immediate that qτ is exactly the median of a random variable Zτ having cumulative distri-
bution function Kτ ◦ F , where, for any t ∈ [0, 1],

Kτ (t) =

{
1− (1− t)s(τ) if 0 < τ ≤ 1/2,
tr(τ) if 1/2 ≤ τ < 1,

with r(τ) = s(1− τ) = log(1/2)/ log(τ).

The function Kτ is itself a cumulative distribution function with support [0, 1]. It follows that

qτ ∈ argmin
θ∈R

E(|Zτ − θ| − |Zτ |) = argmin
θ∈R

E{Jτ (F (X))(|X − θ| − |X|)},

with the weight-generating function Jτ (·) = K ′
τ (·) on (0, 1). This means that qτ can be viewed as the

minimizer of an asymmetric L1−loss function that is different in nature from the standard proposal
of Koenker and Bassett (1978) and Koenker (2005). The extremile of order τ of X is then defined by
substituting squared deviations in place of absolute deviations.

Definition 1 (Extremile). Let X have a continuous distribution function F . If X has a finite first mo-
ment, the extremile of order τ ∈ (0, 1) is equivalently defined as ξτ = E(Zτ ), where Zτ has cumulative
distribution function Kτ ◦ F , and as

ξτ = argmin
θ∈R

E{Jτ (F (X))(|X − θ|2 − |X|2)}.

In other words

ξτ =
E{XJτ (F (X))}
E{Jτ (F (X))}

.
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The presence of the quantity −|X|2 in the loss function ξτ is a minimizer of makes it well-defined and
finite as soon as |X| has a finite first moment, as can be seen from the triangle inequality; obviously
ξ1/2 = E(X) and τ 7→ ξτ is a continuous increasing function mapping (0, 1) onto the support of X.

We now discuss four additional equivalent definitions of the τth extremile of a continuous distri-
bution, in terms of probability-weighted moments, expected extreme values, Choquet integrals, and
spectral/distortion risk measures. From the definition of extremiles, it can be seen that

ξτ = E{XJτ (F (X))},

since E{Jτ (F (X))} = 1 by continuity of F (of which a consequence is that U = F (X) has a standard
uniform distribution). Consequently

ξτ =

{
s(τ)M1,0,s(τ)−1 for 0 < τ ≤ 1/2,
r(τ)M1,r(τ)−1,0 for 1/2 ≤ τ < 1,

with
Mp,r,s = E{Xp(F (X))r(1− F (X))s}.

The probability-weighted moments Mp,r,s, where p, r, s are nonnegative real numbers, were introduced
by Greenwood et al. (1979). They form the backbone of several extreme value analysis procedures; see
e.g. Beirlant et al. (2004) and de Haan and Ferreira (2006).

In the particular case where τ ≥ 1/2 and r(τ) is an integer, it is easily seen that Zτ has the distribution
of the maximum of r(τ) independent copies of X, and similarly, when τ ≤ 1/2 and s(τ) is an integer,
Zτ has the distribution of s(τ) independent copies of X. In general,

E{max(X1, . . . , X⌊r(τ)⌋)} ≤ ξτ ≤ E{max(X1, . . . , X⌊r(τ)⌋+1)} if
1

2
≤ τ < 1

and

E{min(X1, . . . , X⌊s(τ)⌋+1)} ≤ ξτ ≤ E{min(X1, . . . , X⌊s(τ)⌋)} if 0 < τ ≤ 1

2
,

where ⌊·⌋ denotes the floor function and X1, X2, . . . are i.i.d. observations from X. We also have

Zτ
d
= φτ (X), with

φτ (x) = qK−1
τ (F (x)).

This means that extremiles can be viewed as expected maxima or minima when τ ∈ {1/ k
√
2, 1 −

1/ k
√
2, k = 1, 2, . . .}, and are otherwise bracketed by such expected maxima and minima, with the

bracketing getting narrower as τ ↓ 0 or τ ↑ 1. It follows from this expression of extremiles as expected
extreme values that the extremile function τ 7→ ξτ characterizes probability distributions having a
finite first moment, see Proposition 2(ii) in Daouia et al. (2019).

We finally briefly touch upon the interpretation of extremiles from the point of view of risk measure
theory; an expanded discussion can be found in Daouia et al. (2019). Denote by x⋆ = inf{x ∈
R |F (x) > 0} and x⋆ = sup{x ∈ R |F (x) < 1} the lower and upper endpoints of the support of X,
respectively. Then

ξτ =


−
∫ 0

x⋆

{
1− (1− F (x))s(τ)

}
dx+

∫ x⋆

0

(1− F (x))s(τ) dx for 0 ≤ τ ≤ 1/2,

−
∫ 0

x⋆

(F (x))r(τ) dx+

∫ x⋆

0

{
1− (F (x))r(τ)

}
dx for 1/2 ≤ τ ≤ 1.

This makes an extremile a Choquet integral. Extremiles can also be viewed as weighted integrals of
the quantile function, in the sense that

ξτ =

∫ 1

0

qt dKτ (t) =

∫ 1

0

Jτ (t)qt dt.
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This, in turn, allows one to view extremiles as spectral/distortion risk measures in the sense of Wang
(1996) and Acerbi (2002), and the properties of the function Jτ ensure that extremiles above the mean
induce a coherent (namely, location and positive scale equivariant, monotonic, and subadditive) and
comonotonically additive risk measure in the sense of Artzner et al. (1999) and Bassett et al. (2004).
Since the weight-generating function Jτ (·) is monotonically increasing for τ ≥ 1/2 and decreasing for
τ ≤ 1/2, the extremile ξτ depends by construction on all feasible values of X, putting more weight on
its right tail for τ ≥ 1/2 and more weight on its left tail for τ ≤ 1/2. It follows that ξτ is sensitive to the
magnitude of extreme values of X for any order τ ∈ (0, 1), whereas the τth quantile qτ is determined
solely by the probability level τ and not affected by the behavior of the distribution of X beyond qτ .

Estimation Given a random sample X1, X2, . . . , Xn from the distribution of X, an estimator of
the extremile ξτ is easily obtained from its formulation as a probability-weighted moment ξτ =
E{XJτ (F (X))}, viz.

ξ̂LMτ =
1

n

n∑
i=1

Jτ

(
i

n

)
Xi:n,

where X1:n ≤ X2:n ≤ · · · ≤ Xn:n denotes the ordered version of (X1, . . . , Xn). Alternatively, one may

estimate ξτ by replacing the unknown distribution function F with its empirical version F̂n : x 7→
n−1

∑n
i=1 1{Xi ≤ x} in the weighted integral expression

ξτ =

∫ 1

0

qt dKτ (t) =

∫ 1

0

F−1(t) dKτ (t).

This yields the following L-statistic generated by the measure dKτ :

ξ̂Lτ =

∫ 1

0

q̂t dKτ (t) =

n∑
i=1

{
Kτ

(
i

n

)
−Kτ

(
i− 1

n

)}
Xi:n.

This estimator is another L-statistic, whose asymptotic properties are closely linked to those of ξ̂LMτ

since the finite differences built on the function Kτ in the estimator ξ̂Lτ can be approximated using the
derivative Jτ of Kτ when n is large.

Yet another estimator of ξτ is provided by solving the empirical least squares problem

argmin
θ∈R

n∑
i=1

Jτ

(
i

n

)
|Xi:n − θ|2,

which yields the closed form expression

ξ̂Mτ =

∑n
i=1 Jτ (i/n)Xi:n∑n

i=1 Jτ (i/n)
=

ξ̂LMτ
1
n

∑n
i=1 Jτ (i/n)

.

Since the denominator in the last equality converges to 1 as n → ∞, the L-statistic ξ̂LMτ in the

numerator is nothing but a linearized variant of the M-estimator ξ̂Mτ .

Finally, when s(τ) or r(τ) is a positive integer, the extremile ξτ can be estimated using unbiased
probability-weighted estimators provided by Landwehr et al. (1979): the moments M1,0,s and M1,r,0

are respectively estimated by

M̂1,0,s =
1

n

n−s∑
i=1

 s∏
j=1

n− i+ 1− j

n− j

Xi:n and M̂1,r,0 =
1

n

n∑
i=r+1

 r∏
j=1

i− j

n− j

Xi:n.
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Then the statistic

ξ̂PWM
τ =

{
s(τ)M̂1,0,s(τ)−1 for 0 < τ ≤ 1/2,

r(τ)M̂1,r(τ)−1,0 for 1/2 ≤ τ < 1,

is an unbiased estimator of the extremile ξτ when τ ∈ {1/ k
√
2, 1− 1/ k

√
2, k = 1, 2, . . .}. It can be seen

that the estimators ξ̂Lτ , ξ̂
LM
τ , ξ̂Mτ and ξ̂PWM

τ have the same asymptotic distribution, see Daouia et al.
(2019) for a complete discussion. We state below a theoretical result on the consistency, asymptotic

normality and Berry-Esséen rate of uniform convergence relative to the estimator ξ̂Lτ .

Theorem 1 (Asymptotic theory for the L-statistic ξ̂Lτ ). If the Xi are i.i.d. copies of X, then, for any
τ ∈ (0, 1):

• If E|X|p < ∞ for some p > 1, then limn→∞ ξ̂Lτ = ξτ with probability 1 as n → ∞.

• If E|X|p < ∞ for some p > 2, then
√
n(ξ̂Lτ − ξτ ) → N (0, vτ ) weakly as n → ∞, where

vτ =

∫∫
[0,1]2

(min(s, t)− st)Jτ (s)Jτ (t) dF
−1(s) dF−1(t).

• If E|X|3 < ∞, then

sup
t∈R

∣∣∣∣P( √
n

√
vτ

(
ξ̂Lτ − ξτ

)
≤ t

)
− Φ(t)

∣∣∣∣ = O(1/
√
n)

for any τ ∈ [1− 1/ 3
√
2, 1/ 3

√
2], where Φ stands for the standard normal distribution function.

Real data illustration: Hurricane losses To contrast the estimation of extremiles with the
estimation of other popular quantities for the description of a distribution, we consider a dataset
on inflation-adjusted (to 1981 using the U.S. Residential Construction Index) hurricane losses that
occurred between 1949 and 1980. This sample (x1, . . . , xn), of size n = 35, is also considered in Jones
and Zitikis (2003). We compare the following estimates:

• The empirical quantile q̂τ = x⌈nτ⌉:n, where ⌈·⌉ is the ceiling function.

• The empirical Expected Shortfall

ÊSτ =
1

⌊n(1− τ)⌋

⌊n(1−τ)⌋∑
i=1

xn−i+1:n.

In other words, ÊSτ is the sample mean of the observations above the empirical quantile q̂τ .

• The empirical expectile

êτ = argmin
θ∈R

n∑
i=1

|τ − 1{xi ≤ θ}|(xi − θ)2

which is the sample counterpart of the population expectile

eτ = argmin
θ∈R

E{|τ − 1{X ≤ θ}|(X − θ)2 − |τ − 1{X ≤ 0}|X2}

as defined in Newey and Powell (1987). Expectiles form another class of asymmetric least squares
quantities extending the mean, since e1/2 = E(X).

• The empirical extremile ξ̂Lτ .
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These four estimates are represented in Figure 1 against the level τ ∈ [1/2, 1]. It is apparent that while

q̂τ and ÊSτ are non-smooth step functions, the sample expectile and extremile are smooth functions of
τ due to their least squares nature; in particular, while in the upper tail a small change in τ can trigger
a large jump in the values of the estimated quantile and Expected Shortfall, this is not the case for the
extremile and expectile. Moreover, when comparing the four estimated quantities at the same level τ ,
it can be seen that the Expected Shortfall is substantially larger (and hence, in risk assessment terms,

more conservative) than the sample extremile ξ̂τ , itself larger than the estimated expectile. One may
in fact show that the inequalities eτ < ξτ < ESτ are always true for τ sufficiently close to 1 when the
underlying distribution is heavy-tailed and has a finite variance, see Daouia et al. (2019).
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Figure 1: Hurricane losses data (n = 35) – Empirical Expected Shortfall ÊSτ (orange), expectile êτ
(green), extremile ξ̂Lτ (red) and quantile q̂τ (blue) at level τ ∈ [0.5, 1].

Regression extremiles With appropriate care, extremiles can be adapted to the conditional setting
where a univariate response variable Y ∈ R is recorded alongside a finite-dimensional covariateX ∈ Rp,
so as to understand the influence the variable X has on Y . Recall that an unconditional extremile
ξτ of Y is the mean of the random variable having distribution function Kτ ◦ F , where F is the
unconditional distribution function of Y . A conditional version of the extremile can then be defined
by replacing F by the conditional distribution function y 7→ F (y|x) = P(Y ≤ y|X = x) (this function
is always well-defined by the disintegration theorem for probability measures on Rp+1). This suggests
the following definition.

Definition 2 (Regression extremile). Let Y ∈ R have a conditional continuous distribution function
y 7→ F (y|x) given X = x, where X is a finite-dimensional covariate and x lies in the support of X.
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If Y has a finite first conditional moment, the regression extremile (or conditional extremile) of order
τ ∈ (0, 1) of Y given X = x is defined as

ξτ (x) = argmin
θ∈R

E{Jτ (F (Y |x))(|Y − θ|2 − |Y |2) |X = x}.

Equivalently, ξτ (x) is the mean of Kτ ◦ F (·|x), and equals the expectation E{Y Jτ (F (Y |x)) |X = x}.

Importantly, the location and positive scale equivariance of extremiles entails that, in a location-
scale model of the form Y = m(X) + σ(X)ε, where σ(X) > 0 and ε is independent of X and has
a finite first moment, we have ξτ (X) = m(X) + σ(X)ξτ,ε, for any τ ∈ (0, 1), where ξτ,ε denotes
the τth unconditional extremile of the error term ε. This means that in homoskedastic regression
models, regression extremile curves are parallel to one another, just like regression quantile curves and
regression expectile curves are.

Regression extremiles can be estimated using, for instance, local linear estimation. For a generic
estimator F̂ (·|x) of F (·|x), such as a kernel, spline, or wavelet smoothing estimator, and given a kernel
function (namely, a probability density function) L on Rp and a positive bandwidth sequence (hn),
the local linear check function minimization solves the weighted least squares problem

argmin
(α,β)∈R×Rp

n∑
i=1

Jτ (F̂ (Yi|x))
(
Yi − α− (x−Xi)

⊤β
)2

L

(
x−Xi

hn

)

to get the estimators α̂ = ξ̂LLτ (x) and β̂ of ξτ (x) and its gradient at the point x, respectively. Weighted
least squares theory leads to the explicit solution(

α̂

β̂

)
=

(
X⊤

LLWF̂ ,LXLL

)−1

X⊤
LLWF̂ ,LY .

Here Y is the column vector containing the Yi, 1 ≤ i ≤ n, the matrix XLL is the n × (p + 1) design
matrix of the local linear fitting technique, i.e. whose first column has all its entries equal to 1, and
whose (j + 1)th column is made of the values xj − Xi,j , 1 ≤ i ≤ n, where xj (resp. Xi,j) is the jth
entry of x (resp. Xi), and the diagonal weight matrix WF̂ ,L is

WF̂ ,L = diag

(
Jτ (F̂ (Yi|x))L

(
x−Xi

hn

))
1≤i≤n

.

The asymptotic behavior of F̂ (·|x) is naturally crucial in the analysis of the asymptotic and finite-

sample behavior of α̂ = ξ̂LLτ (x). Corollary 1 in Daouia et al. (2022) shows that, in the case p = 1
of regression upon a one-dimensional covariate, and if certain reasonable regularity conditions on the
distributions of X and Y |X are satisfied, then pointwise in x belonging to the interior of the support
of X, √

nhn

(
ξ̂LLτ (x)− ξτ (x)

)
→ N

(
0,

∫
R L2

fX(x)
Vτ (x)

)
weakly as n → ∞, where fX is the probability density function of X and Vτ (x) = E(J2

τ (F (Y |x)){Y −
ξτ (x)}2 |X = x), as long as the preliminary estimator F̂ (y|x) is n2/5−consistent uniformly in y ∈ R,
hn → 0 is such that nh5

n → 0, and τ ∈ (0, 1 − 1/
√
2] ∪ [1/

√
2, 1). It is interesting to note that the

asymptotic variance Vτ (x) is not merely an adaptation to the conditional setup of the asymptotic
variance of the L-estimator in Theorem 1, which would be

vτ (x) =

∫∫
[0,1]2

(min(s, t)− st)Jτ (s)Jτ (t) dF
−1(s|x) dF−1(t|x).
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To see why, suppose that Y given X is uniformly distributed on [0, ϕ(x)] for some positive function ϕ,
take τ > 1/2 and set r = r(τ) > 1 for the sake of clarity. Then it is a straightforward calculus exercise
to get

vτ (x) = ϕ2(x)

∫∫
[0,1]2

(min(s, t)− st)Jτ (s)Jτ (t) dsdt = ϕ2(x)
r2

(r + 1)2(2r + 1)

since Jτ (s) = rsr−1. To calculate Vτ (x), note that

ξτ (x) =

∫ 1

0

Jτ (t) qt(x) dt = ϕ(x)

∫ 1

0

t Jτ (t) dt = ϕ(x)
r

r + 1
.

Letting U be a uniform random variable on [0, 1], a straightforward calculation then entails

Vτ (x) = E(J2
τ (U) {ϕ(x)U − ξτ (x)}2) = ϕ2(x)

∫ 1

0

J2
τ (t)

(
t− r

r + 1

)2

dt

= ϕ2(x)
r3

(r + 1)2(2r − 1)(2r + 1)
.

Then Vτ (x)/vτ (x) = r/(2r − 1) < 1. This means that the estimator ξ̂LLτ (x) is more efficient than the

regression version of ξ̂Lτ , namely, ∫ 1

0

F̂−1(t|x) dKτ (t).

Guidelines for the automatic choice of bandwidth In the univariate regression setting p = 1,
an optimal choice of the bandwidth parameter h = hξτ can be constructed in terms of the optimal
bandwidth hqτ for regression quantile estimation, whose automatic selection is well-established. Fur-
ther details can be found in the online supplement to Daouia et al. (2022). Since the conditional
extremile ξτ (x) and quantile qτ (x) = F−1(τ |x) are, respectively, the mean and the median of the
distribution function Kτ (F (·|x)), the bandwidths hξτ and hqτ correspond to optimal choices of the
bandwidth parameter for kernel regression mean and median estimation, respectively. Following Yu
and Jones (1998), (

hmean

hmedian

)5

≡
(
hξτ

hqτ

)5

=
4(q′′τ (x))

2σ2
ZX

τ
(x)(fZX

τ
(qτ (x)|x))2

(ξ′′τ (x))
2

,

where q′′τ (x) and ξ′′τ (x) are the second derivatives of x 7→ qτ (x) and x 7→ ξτ (x), respectively, and
σ2
ZX

τ
(x) and fZX

τ
(·|x) stand for the conditional variance and probability density function relative to

the distribution function Kτ (F (·|x)), respectively. A useful rule-of-thumb calculation can then be
carried out as in Yu and Jones (1998) by assuming that the conditional distribution of Y given X = x
is Gaussian with mean µx and variance σ2

x. This yields

fZX
τ
(qτ (x)|x) = σ−1

x Jτ (τ)ϕ(Φ
−1(τ))

and σ2
ZX

τ
(x) = σ2

xVKτ◦Φ := σ2
x

∫ 1

0

(
Φ−1(t)− µKτ◦Φ

)2
Jτ (t) dt,

where ϕ and Φ are the standard normal density and distribution functions, VKτ◦Φ is the variance
corresponding to the distribution function Kτ ◦Φ, and µKτ◦Φ is the mean of this same distribution, or
equivalently the τth extremile of Φ, which is independent of x and readily calculated numerically. If one
further makes the simplifying assumption that q′′t (x) is constant with respect to t, then ξ′′τ (x) = q′′τ (x)
and (

hξτ

hqτ

)5

= 4σ2
ZX

τ
(x)(fZX

τ
(qτ (x)|x))2 = 4VKτ◦Φ{Jτ (τ)ϕ(Φ−1(τ))}2.

This crucially does not depend on σ2
x, and suggests the following bandwidth selection algorithm:
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• Use ready-made methods to select hξ1/2 = hE(Y |x), the optimal choice of bandwidth for regression
mean estimation, e.g. the cross-validation method implemented in the function npregbw of the
R package np developed by Hayfield and Racine (2008);

• Using the automatic method of Yu and Jones (1998), find the optimal bandwidth for smoothing
the τth conditional quantile, that is, hqτ = hξ1/2{τ(1− τ)/(ϕ(Φ−1(τ)))2}1/5;

• Use the selected extremile bandwidth hξτ = hqτ [4VKτ◦Φ{Jτ (τ)ϕ(Φ−1(τ))}2]1/5.

Real data illustration: Triceps skinfold length Consider first data, previously analyzed by Yu
and Jones (1998), on triceps skinfold measurements of 892 girls and women up to age 50, recorded in
three Gambian villages during the dry season of 1989. We compare, for the conditional distribution of
triceps skinfold length:

• Regression quantile estimates calculated using the lprq routine of the R package quantreg

maintained by Koenker (2023), with the optimal bandwidth h = hqτ chosen by the Yu and Jones
(1998) selection method;

• Regression extremile estimates obtained with the bandwidth h = hξτ calculated using the au-
tomatic selection strategy described above, along with 95% pointwise asymptotic confidence
intervals;

• Regression expectile estimates of Yao and Tong (1996), first with h = hqτ and then with h = hξτ ,
in the absence of a selection strategy for h in the problem of local linear conditional expectile
estimation.

All these estimates are represented, for τ ∈ {0.01, 0.03, 0.1, 0.25, 0.5, 0.75, 0.9, 0.97, 0.99}, in the top
panel of Figure 2. The conclusions that can be drawn from the three regression methods broadly
concur in the sense that adulthood appears to be correlated with a much greater variability in triceps
skinfold length compared to childhood. However, expectiles beyond the regression mean exhibit less
evidence of the obvious variation and over-dispersion of triceps skinfold length as age increases, while
noncentral extremiles and quantiles are more spread out, suggesting a better ability of the latter two
notions to model location and sparseness. Finally, extremile regression estimates and their confidence
intervals are smooth in τ and x, which is not the case for quantile regression; moreover, as far as we
are aware, there is no ready-made procedure for the construction of pointwise asymptotic confidence
intervals for conditional quantiles and expectiles based on the limiting distributions of their local linear
estimators. Available devices seem to be mainly based on semiparametric statistics, bootstrap or more
sophisticated techniques such as, for instance, in Sobotka et al. (2013).

Real data illustration: Automobile insurance claims The second dataset consists of n = 1,037
automobile bodily injury claims collected in 2002 by the American Institute for Chartered Property
Casualty Underwriters and the Insurance Institute of America. The scatterplot of the claimants’ losses
versus their ages is shown in Figure 2 (bottom panel), along with the local linear quantile, extremile,
and expectile smoothers (at the 0.75, 0.9, 0.95, 0.97, 0.99, 0.992, 0.993 and 0.994 levels). In this
insurance example, tail regression extremiles appear to be more alert to unexpected high losses than
their expectile counterparts. As in the previous data example, they are smoother as a function of the
covariate value than regression quantiles; moreover, regression extremile curves do not appear to cross,
unlike quantile regression curves, even though crossings are obviously incompatible with the definition
of population regression quantiles.

Discussion The state of the art in extremile regression has so far not considered the case where
(conditional) distributions are discrete. In this setting, the successive formulations of extremiles that
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we have highlighted stop being equivalent: for example, when the distribution of X has an atom,

E{XJτ (F (X))}
E{Jτ (F (X))}

̸= E{XJτ (F (X))} =

∫ 1

0

Jτ (t)qt dt

in general, because F (X) is no longer standard uniform. This raises the natural question of what
would be the “canonical” definition of an extremile.

Extremile estimation theory is currently restricted to independent and identically distributed data
points. The independent data assumption makes it possible to utilize existing powerful results on
L-statistics in order to derive the asymptotic normality of the estimators we have discussed. A natural
question, to be considered in particular from the risk analysis viewpoint in finance and insurance, is
to extend extremile estimation and inferential theory to the setup where the data-generating process
features serial dependence, starting with the mixing conditions of Bradley (2005).

As is the case with quantiles and expectiles, there are several equivalent definitions of extremiles
for continuous univariate distributions, but reasonable extensions to the multivariate setting are much
harder to come by. In this setting and at least for quantile constructions, one needs to balance axiomatic
considerations (Serfling, 2002), interpretability, and computational difficulties. The construction of a
well-behaved notion of multivariate extremile keeping one or several of its intuitive interpretations and
scalable to high dimensions is a difficult problem that constitutes, in our view, an important avenue
of further research.
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Figure 2: (Top) Triceps skinfold data (n = 892) – Smoothed 1%, 3%, 10%, 25%, 50%, 75%, 90%,
97% and 99% quantile (left), extremile (middle) and expectile curves (right) in solid lines, and 95%
pointwise asymptotic confidence intervals for ξ0.01(x), ξ0.1(x), ξ0.5(x), ξ0.9(x), ξ0.99(x) in dashed lines.
(Bottom) Automobile insurance data (n = 1,037) – Smoothed 75%, 90%, 95%, 97%, 99%, 99.2%,
99.3% and 99.4% quantile (left), extremile (middle) and expectile curves (right) in solid lines, and 95%
pointwise asymptotic confidence intervals for ξ0.75(x), ξ0.9(x), ξ0.95(x), ξ0.97(x) and ξ0.99(x) in dashed
lines.
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