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Abstract

This study examines how exporters make export decisions when faced with

production and demand shocks. Using a unique dataset of French wine shipments

from 2001 to 2020 across 134 Protected Denomination of Origin (PDO) regions,

and daily weather data from Météo-France, we employ gravity estimations to show

that extreme weather affects both trade intensive and extensive margins, while

favorable weather boosts them. A heterogeneity analysis reveals that exports

to core markets are less sensitive than peripheral markets to extreme weather,

indicating market prioritization by exporters. Our theoretical analysis explains how

climate-induced production shock volatility shapes export behavior, leading firms

to reallocate resources to most attractive markets and streamline their destination

markets portfolios by exiting less favorable ones.
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Key-words: Climate Change, Cost shocks, Demand shocks, Gravity model,

Heterogeneous Firms.
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1 Introduction

Climate-induced volatility poses significant challenges for firms, particularly through

weather shocks such as rising temperatures, altered precipitation patterns, and extreme

weather events. These changes can disrupt supply chains, increase resource scarcity,

and heighten exposure to natural disasters, necessitating adaptive strategies. Increasing

evidence highlights the economic impacts of such shocks, including effects on incomes and

economic growth (e.g. Dell et al., 2009, 2012), as well as alterations in trade patterns (e.g.

Jones and Olken, 2010; Costinot et al., 2016; Dallmann, 2019). This study investigates,

both empirically and theoretically, how exporters when confronted to the uncertainties

brought about by climate-induced volatility make export decisions.

Previous studies highlight that the agricultural sector is the most sensitive to weather

variations (Jones and Olken, 2010; Dell et al., 2014; Costinot et al., 2016; Zappala, 2024).

Wine is an ideal sector to study the impact of weather on international trade. Like all

agricultural goods, wine production is highly sensitive to weather conditions (Ashenfelter

and Storchmann, 2016). However, wine stands out among agricultural products due to the

significant impact of weather on its quality, encapsulated in the concept of vintage, where

each year’s quality varies due to weather conditions (Van Leeuwen and Darriet, 2016; Jones

et al., 2005; Lecocq and Visser, 2006; Ashenfelter, 2008; Ashenfelter and Storchmann,

2010). These dual channels of quantity and quality directly influence wine prices and,

consequently, the dynamics of international wine trade. Furthermore, the wine trade can

be influenced by strategic decisions made by exporters in response to weather disruptions.

In France, wineries produce a diverse range of wines, which are particularly differentiated

by quality and geographical production areas, making them likely to be sorted by quality

(Crozet et al., 2012; Emlinger and Lamani, 2020). These quality discrepancies among

exported products, driven by heterogeneous weather variations, may lead to both quantity

and price discrimination strategies (Bastos and Silva, 2010; Martin, 2012; Fontaine et al.,

2020). Exporting countries of high-end products, such as France with its fine wines, can

adjust their selling prices based on the geographical distance or the attractiveness of the

importing market (Manova and Zhang, 2012). Studying the impact of weather on French

wine exports is therefore a pertinent choice for exploring the influence of weather on

international trade.

Our empirical investigation relies on an original dataset provided by the French

Federation of Wine and Spirits Exporters (Fédération des Exportateurs de Vins et

Spiritueux de France, FEVS). It allows us to have access to the universe of wine shipments

of France between 2001 and 2020. It comprises 134 Protected Denomination of Origin

(PDO) from the different wine regions (e.g. Bordeaux, Burgundy, Rhone Valley, etc.)

exported to 49 countries during the studied period.1 We combine this dataset with

1In the rest of the paper, we will refer to PDO as appellations.

2



meteorological data collected by the French national weather agency, which covers 11

weather stations located in France. We estimate a series of gravity models to explore the

relationships between demand uncertainty, weather shocks and margins of trade, wine

prices and perceived wine quality.

Our empirical findings can be summarized as follows. Favorable weather conditions

significantly augment exported volumes and the perceived quality of French wines, whereas

extreme weather events notably impact both trade margins, wine prices, and perceived wine

quality.2 Additionally, our results offer evidence of the presence of quantity discrimination

following significant weather shocks; French wine exporters demonstrate a preference for

maintaining exports to core markets while reducing exports to other markets. This finding

sharply contrasts with observations regarding demand uncertainty. Specifically, excessive

volatility in wine consumption in destination countries compared to France negatively

affects wine exports in core markets, corroborating previous findings by De Sousa et al.

(2020). Finally, we illuminate disparities in price behavior among French wine exporters

following an extreme weather shock. Notably, export prices towards core markets are more

affected than those towards peripheral markets.

We then propose a theoretical explanation of the mechanisms that may underlie these

observations. To this end, we consider monopolistic competition between firms in the spirit

of Melitz (2003) and Chaney (2008) and develop a theory where firms possess an early and

specific prior on their future total productivity and have to invest into marketing effort

to reach consumers on markets of interest, before learning their actual productivity as a

production shock occurs afterwards. More precisely, risk averse managers have to select

the destination markets through some endogenous fixed cost of marketing like in Arkolakis

(2010), before actually knowing their precise production possibilities. The premise is that

firm owners are unable to diversify their risk and to hedge risks through financial markets,

so that idiosyncratic production and demand risks matter for decisions. This is consistent

with Esposito (2022) and De Sousa et al. (2020) who study how risk averse managers react

to demand shocks.3

In the present model, we build on Esposito (2022) to include idiosyncratic production

shocks as well as demand shocks. The presence of production shocks allows to take

account the effects of weather uncertainty on production possibilities as well as quality

outcomes. Furthermore, the effect of climate change on wine production could be well

represented through an increase in the volatility of this shock. We show that firms are then

subject to hybrid or composite shocks that mix demand and production shocks. Even if

demand shocks are uncorrelated as we assume, the presence of production shocks ensures

some correlation between composite shocks and makes the different problems of choosing

2The perceived quality of various appellations in different importing markets is inferred using the
approach developed by Khandelwal et al. (2013).

3Juvenal and Santos Monteiro (2023) on the contrary assume complete markets to study how aggregate
risks impacts the trade equilibrium.
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destinations and quantities intertwined. Overall, the volatility of the production shock

commands the correlation between composite shocks on profits made on each destination

markets.

The model indicates that production risk and demand risk exert opposing effects on

trade through their respective impacts on marketing strategies. Specifically, increased

volatility in production risk, driven by climate change, prompts firms to focus their

marketing efforts on more attractive destination markets. The attractiveness of these

markets is rigorously defined by factors such as access costs, national income, and other

relevant characteristics. Conversely, heightened demand volatility incentivizes firms to

diversify their marketing efforts, distributing them more evenly across various destination

countries.

We also derive the gravity equation corresponding to the modeling and show how

uncertainty on demand and production cost shock influences bilateral exports. More

precisely, the impact of increased production volatility on firm’s level investment decisions

and aggregate export value at the industry’s level can be decomposed into a scale, a

redeployment and a selection effect. Firstly, because an increased production volatility

makes the world riskier by increasing the correlation between profits made on each market,

it reduces the interest of diversification and this leads all firms to reduce their investment

level on all markets (scale effect). This also contributes to decrease aggregate export values.

Secondly, the redeployment of investments within the portfolio of destination markets has

effects on sales on each market that depend on the composition of the optimal portfolio.

More precisely, a firm tends to increase (decrease) its investments to reach consumers in

a given market if this market is more (less) attractive than the average in its portfolio,

the average being understood as weighted by the relative risk of demand. Overall, the

impact of the redeployment effect on aggregate export value remains largely an empirical

question.

Last, the selection effect reflects the fact when the volatility of production increases

then a greater productivity is required to include a given market in one’s portfolio, so the

number of exporters to that market decreases. This also contributes to lower exports in

value terms. Overall, the theoretical findings are consistent with the empirical results.

Related literature. Our paper contributes to several strands of the literature. First,

it contributes to the literature on the impact of climate change on trade flows. Most

analyses in this field are empirical, focusing either on the impact of temperatures or

precipitation on export flows at the country level (Jones and Olken, 2010; Dallmann,

2019; Mart́ınez-Mart́ınez et al., 2023) and at the city level (Li et al., 2015), or on specific

natural disasters (Gassebner et al., 2010; Volpe Martincus and Blyde, 2013; Friedt, 2021;

Boehm et al., 2019; Freund et al., 2022). The literature has demonstrated that natural

disasters affect trade directly through human casualties and the destruction of human
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capital (Gassebner et al., 2010) and indirectly through the destruction of transportation

infrastructure (Gassebner et al., 2010; Volpe Martincus and Blyde, 2013) and through

disruptions in Global Value Chains (GVCs) (Boehm et al., 2019; Freund et al., 2022).

Nevertheless, there is a limited knowledge concerning the manner in which exporters

respond to natural disasters when selecting destination markets and the means by which

they differentiate between markets in accordance with their relative attractiveness. The

question of destination market selection is of great importance for exporters, as it affects

the sustainability and expansion of their operations. The choice of destination markets

directly influences a number of key factors, including market access, pricing, distribution

channels, and overall competitiveness. This paper addresses this gap both empirically and

theoretically.

Second, we add to a literature (De Sousa et al., 2020; Esposito, 2022), considering

risk averse exporters facing demand risks and where financial markets are absent so

that international trade can be viewed as a tool of diversification.4 Here, we introduce

production risks that impact quantity and quality in addition to demand uncertainty and

show how production volatility changes impact the diversification strategy of heterogeneous

firms. Given our assumption of independent demand risks, the production risk is the only

source of correlation across profits made on destination markets.

Third, this paper is also related to the determinants of trade literature. While it is

common to assume that exporters make independent entry decisions for each destination

market (e.g. Melitz, 2003; Chaney, 2008), here market entry depends on the portfolio

composition and thus the diversification strategy of the firm. This difficult problem is

related to the class of combinatorial discrete choice problems as defined by Arkolakis et al.

(2023).5 In this paper, we actually solve a relaxed problem where the ex ante decision in

terms of marketing investment is continuous and where the specification (mean-variance

preferences, production risk as the only source of correlation) made it possible to solve

the model explicitly, without the need to use the squeezing and branching procedures

proposed by Arkolakis et al. (2023).

Last, the impact of climate on wine has been extensively studied in agricultural

literature, with economists analyzing its effects on expert ratings and prices (Ashenfelter

et al., 2009). However, climate has not been considered as a determinant of international

wine trade. This study addresses this gap by incorporating detailed weather data into

the analysis, making a triple contribution to wine economics literature. First, the study

enhances the performance of gravity models by including weather as a significant export

determinant. Previously, weather was an omitted variable, only indirectly considered

4It has long been recognized that the incompleteness of financial markets has an impact on international
trade under production uncertainty (Pomery, 1980; Newbery and Stiglitz, 1984; Helpman and Razin, 2014;
Kucheryavyy, 2014).

5See also e.g. Antràs et al. (2017), Antràs and De Gortari (2020) and Huppertz (2024) for related
studies.
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through time fixed effects, which did not capture its nuanced impacts. Including weather

data significantly improves our understanding of export determinants, previously obscured

as “dark trade costs” (Bargain et al., 2023). Second, the theoretical and econometric

models reveal strategic aspects of exporters, particularly in quantity exported, adding to

the existing literature on quality sorting and export strategies for products like Champagne

(Crozet et al., 2012). This novel insight highlights weather’s dual impact on exports through

quantity and quality, emphasizing the need to account for weather-related strategies to

avoid biases in traditional export flow analyses. Finally, the econometric model’s detailed

incorporation of weather factors serves as a foundation for future research. It addresses the

limitations of previous studies (on experts’ ratings) that considered weather only generally,

such as temperature and rain. With publicly available databases, this study provides a

guide for economists aiming to deepen the weather-quality-price link.

The rest of the paper is organised as follows. Section 2 presents the data, the

empirical methodology and the identification strategy used in this paper. Section 3

displays estimation results. Section 4 presents the theoretical model, while section 5

concludes.

2 Data and empirical strategy

2.1 Data

Trade data. We exploit an original dataset provided by the French Federation of Wine

and Spirits Exporters (Fédération des Exportateurs de Vins et Spiritueux de France,

FEVS) on shipments of French bottled wines between 2001 and 2020. We focus on bottled

wine of 134 appellations exported to 49 countries6. These importing markets represent

more than 90% of French wine imports over the period. Furthermore, the largest part of

wine trade with these countries concern bottled wine, which accounts for 90% of total

imports. The database includes a wide variety of wines across the different producing

regions and terroirs, while distinguishing between the colour of the wines. Consequently,

there exists not only a lot of variation in export destination across the different wine

appellations, but also a great diversity in terms of quality and prices of exported wines.

Among the 49 importing countries retained in this analysis7, five represents 51% of

the value of French exports in 20208. This subsample of importing countries, namely

the U.S., the U.K., Germany, Japan and China represents the “Core” markets, as they

have a strategic importance for French wine exporters. Among this subsample, four

countries are “historical” markets, and one represents the “new dynamic market”, namely

6We restrict our analysis to importing countries that exhibit strictly positive wine consumption, as
such consumption is necessary to accurately compute demand volatility.

7See Table A1.
8They also represent 55% of the volume of French exports in 2020.
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China9. The other subsample is composed of the rest of importers, which seem to be

less important from a strategic point of view for French wine exporters. We call this

subsample “Peripheral” markets. Note that among the seventh main importing countries,

Belgium and Hong Kong play an important role. Nevertheless, these two economies are

considered as re-export platforms and that is why, at first, we do not consider them in the

“Core” market subsample. Figure A1 in the Appendix displays the total amount of export

volumes (a) and values (b) going to “Core ” markets and “Peripheral” countries. We

can remark that since 2008, there exists an increasing gap between volumes exported to

core and peripheral markets. This is mainly due to the rise of Chinese imports of French

wines. Figure A1 also seems to illustrate a strategy of quantity-based discrimination

between markets. The available quantities are directed towards core markets, particularly

China, at the expense of peripheral markets. The year 1998 is particularly indicative of

this trend. Export volumes to peripheral countries were markedly low, while exports to

core markets remained robust. This trend was particularly evident following the poor

harvest of 1997, which was precipitated by adverse weather conditions. The observed

export patterns imply a strategic prioritization of key markets when available quantities

are constrained. However, an analysis of export values reveals a more nuanced picture.

Both core and peripheral markets experienced a notable increase in the value of imports.

This suggests that, beyond mere quantity discrimination, there may also be mechanisms

of price discrimination and/or quality sorting at play across different markets.

Appellation data vs. firm-level data. It is important to note that the specificity of

the French wine industry does not allow for the acquisition of firm-level data. In France,

wineries rarely export wine themselves but instead rely on intermediaries (Crozet et al.,

2012; Bargain et al., 2023); the only exception being Champagne10. However, for the

purpose of this study, Champagne data would not have been useful either. The unique

characteristic of French ‘Maison de Champagne’ is that they purchase grapes from different

vineyards after the harvest. Thus, linking weather conditions to different exporting firms

would have posed a significant challenge.

Weather indicators. Meteorological data were gathered from 11 weather stations

operated by MétéoFrance, the French national weather agency, each associated with

a specific wine-producing region11. The use of a single station per region is justified

based on the analysis conducted by Lecocq and Visser (2006), which demonstrated

that employing one weather station per region, rather than multiple stations scattered

9Exported volumes and values to China has begun to strongly increase after 2007. Indeed, in 2007,
China only represents 1% of French wine exports in volume, while it accounts for 12%, ten years later.

10Firm-level exports of Champagne have been used in Crozet et al. (2012).
11These regions include Bordeaux, Burgundy, Champagne, Loire Valley, Rhône Valley, Alsace, Provence,

Languedoc, Beaujolais, Cahors, and Roussillon.
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throughout the region, did not significantly affect the results in studying the relationship

between weather and wine prices, and by extension, quality and quantity produced. The

database encompasses daily data from 1995 to 2020, including minimum and maximum

temperatures, and cumulative precipitations12.

We delineate two distinct categories of indicators based on empirical literature. First,

we use standard indicators such as Growing Degree Days (GDD) and Cumulative Rainfall

between January and August (PADP) (Roberts et al., 2013; Cardebat et al., 2014; Keane

and Neal, 2020). Within these indicators, we differentiate between those that may linearly

affect wine exports, such as GDD, anticipated to positively impact trade, quality, and prices,

and those demonstrating a non-linear relationship. Specifically, the association between

wine trade, prices, quality, and rainfall could exhibit an inverted U-shaped relationship.

While rainfall is crucial for grape growth, excessive precipitation can adversely affect both

the quantity produced and the quality of exported wines, thereby influencing exported

volumes. The effect on prices is more nuanced as it hinges on the relative impact of

GDD on quality (where an increase leads to a price increase) and quantity (where an

increase leads to a price decrease, particularly for lower-quality wines). Consequently, in

our empirical analysis, we consider both the level of PADP and the squared-level of PADP

as explanatory variables (Jones et al., 2005).

Second, we derive an extreme weather indicator to capture conditions that are expected

to at least partially impact overall production, thereby modifying the composition of

export flows (Jones et al., 2005; Roberts et al., 2013; Keane and Neal, 2020). We use the

Killing Degree Days (KDD) indicator to measure extreme weather conditions. Similar

to the Growing Degree Days (GDD) indicator, KDD takes a base temperature of 35◦C

for grapevines (Hochberg et al., 2014; Pagay and Collins, 2017), at which conditions are

extreme and negatively affect crop yields13. Figures A2 and A3 depicts the dynamics of

the extreme weather indicator over time for main French wine regions. Initially, we observe

heterogeneity between wine regions, with some experiencing fewer extreme temperature

events than others. Particularly, Bordeaux and Beaujolais appear to be more susceptible

to extreme temperatures compared to Burgundy, Champagne, and the Rhône Valley. The

Beaujolais region stands out as the most affected by harmful temperatures. Additionally,

we identify three major weather shocks recorded in French regions between 1995 and 2020.

Notably, the calculation of the indicator for 2003 accurately reflects the occurrence of

heatwaves, indicative of the significant drought experienced in France during that year.

12It is worth noting that additional years are included compared to the export data, as the three
preceding years of weather indicators will be utilized in gravity models to account for the time lag between
wine production, harvest, and exports to various destinations.

13The presentation of all calculated indicators with their formulas is provided in Table A3 in the
Appendix.
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Wine consumption. In addition to trade and weather data, we incorporate information

on wine consumption in destination countries sourced from the International Organisation

of Vine and Wine (OIV). This data enables us to directly measure the consumption

expenditure variable R of each destination country, in contrast to De Sousa et al. (2020),

who inferred it using production and trade data.

2.2 Identification strategy

Our objective is to discern the causal impact of demand uncertainty and production

shocks on wine exporters. This presents a challenge, as reverse causality stemming from

trade to demand uncertainty may arise. To tackle this issue, we adopt the identification

approach developed in De Sousa et al. (2020). Consequently, our dependent variables

(export volumes, probability of exporting, unit values, and perceived quality) are measured

at the appellation level, while the central moments of the consumption expenditure

distribution are computed at the importing country level. It is, thus, reasonable to

assume that shipments of a particular appellation do not affect the total wine consumption

expenditure distribution. To identify production uncertainty, we use weather variables as

described in Section 2.1, which are entirely exogenous and allow us to estimate a causal

effect.

To empirically evaluate the impact of both demand uncertainty and production shocks

on intensive and extensive margins of trade, export unit values and wine quality, we use a

theory-consistent estimation of the gravity model of trade (Anderson and van Wincoop,

2003). Therefore, we estimate structural gravity models at the appellation level, as

described in Equation 1:

yjkrt = µ1lnEt(Rjt) + µ2Higher ∗ ln (Vt(Rjt)− Vt(RFt)) + µ2Lower ∗ ln (|Vt(Rjt − Vt(RFt)|)

+ St(Rjt) + β1Ln(GDDrt−3) +
3∑

h=2

ζhLn(KDDrt−h + 1) +
3∑

h=2

ωhLn(PADPrt−h)

+
3∑

h=2

γhLn(PADPrt−h)
2 + β0 + λj + λt + λk + ϵkrjt

(1)

The subscripts k, r, j and t denote appellation, region, destination country and year,

respectively. We consider as dependent variables (ykrjt): (i) the volume of exports (in

logarithm) of appellation k, located in region r, to destination country j, in year t; (ii)

a dummy variable that equals one if appellation k, located in region r is exported to

destination j in year t (strictly positive trade flows) and 0 otherwise; (iii) the unit-value

(in logarithm) of exports of appellation k, located in region r, to destination country j, in

year t. Unit-values are defined as the ratio between exports value and export volumes; (iv)

the quality (in logarithm) of exports of appellation k, located in region r, perceived in
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destination country j, in year t. The quality level of each appellation on each importing

market is inferred using the method developed by Khandelwal et al. (2013)14

In Equation 1, Et(Rjt) represents the expected value of wine consumption expenditure in

year t, computed as the mean of wine consumption expenditure R over the previous 5 years.

This allows us to capture the market size effect on trade. Higher ∗ ln (Vt(Rjt)− Vt(RFt))

represents the excess volatility of consumption expenditure in the destination market

compared to the French market F . To compute volatility, we follow De Sousa et al.

(2020) and calculate the yearly growth rates of wine consumption over rolling 6-year

periods. Then, volatility is simply the standard deviation of these yearly growth rates15.

Lower ∗ ln (|Vt(Rjt − Vt(RFt)|) is computed in a similar way but represents the lower

volatility of the destination market compared to the French market. St(Rjt) represents

the third moment of the consumption expenditure distribution and is measured as the

unbiased skewness.

GDDrt−3 represents the growing degree days of region r in year t − 3, KDDrt−h

represents the killing degree days of region r in year t− h16, and PADPrt−h, represents

accumulated rainfall during January to August of region r in year t. It is important to note

that as we only have one exporting country, importer fixed effects (λj) capture not only all

bilateral trade costs such as bilateral distance, or tariffs but also control for multilateral

resistance terms as suggested in Head and Mayer (2014). We also introduce appellation

fixed effects in order to control for long-term characteristics of each appellation (Bargain

et al., 2023) and year fixed effects to capture year heterogeneity.

Our analysis retain the two and third lags of all weather variables. Indeed, most of

bottled wine exports in year t are composed of grape wines harvested two or three years

before. Note that in Table E4 in the Appendix, we also consider the first lag of weather

variables to control for the export of “Primeur” wines that are directly sold after the

harvest, as robustness check. As explained in Section 2.1, we also include a quadratic term

for the rainfall measure, as non-linear effects are expected. It is also important to notice

that we only include the third lag of the GDD variable. Indeed, the correlation between

second and third lags of this variable is strong and significant (0.842)17, which can biased

our results due to multicolinearity issues. Nevertheless, in Table E4 in the Appendix, we

test the sensitivity of our results to the inclusion of first and second lags of the GDD

variable.

Quality estimation. Measuring quality is challenging, as product quality cannot be

observed accurately. In this paper, we rely on the method proposed by Khandelwal et al.

14See Appendix B for details about the method.
15As a robustness check, we also use a 5-year rolling period.
16To account for the possibility of the KDD indicator taking a value of zero, we add a constant of one

to its logarithm.
17See correlation matrix in Table A5
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(2013) to infer quality. Justification and description of the method is provided in Appendix

B.

The definition and sources of all variables are detailed in Table A2, while Table A4

provides the summary statistics.

3 Empirical evidence

This section presents our estimations of the intensive (export volumes) and extensive

(probability of exporting) margins, export prices (unit values) and perceived quality.

3.1 Intensive margin of trade

Table 1 presents estimation results for the intensive margin. All estimations are

conducted on 134 appellations exported to 49 countries during the 2001-2020 period. The

standard errors are clustered at the destination-appellation level. Column (1) reports

the estimation of Equation 1, columns (2) and (4) present estimation results including

region-year fixed effects to control for all weather shocks on exports, while columns (3)

and (5) display estimation results including destination-year fixed effects to control for all

demand shocks and more rigorously for the multilateral resistance and reduce the omitted

variable bias.

Demand factors. The results of columns (1) and (2) confirm the significant positive

impact of the first moment of wine consumption expenditure distribution on export volumes.

They also indicate that excess volatility of wine consumption in the destination country

compared to France negatively affects wine exports to this economy. Thus, when the

risk in the destination market is higher than that in the domestic market, wine exporters

appear to react by reallocating exports to other markets. This confirms the previous

findings of De Sousa et al. (2020) within a specific sector. Conversely, when the volatility of

consumption expenditure is lower in a destination country than in France, exporters tend

to favor exports to this specific economy. Nevertheless, the impact of the third moment

(skewness) is not significant in our specifications.

Weather factors. Columns (1) and (3) underscore that weather conditions are pivotal

factors driving wine trade. Indeed, we observe that favorable weather conditions, reflected

by higher Growing Degree Days (GDD), lead to an increase in the volume of wine exported.

Specifically, a 1% increase in GDD results in a 0.27% increase in exported volumes three

years later. Additionally, the estimation results reveal evidence of the non-linear effect of

rainfall on exported volumes. While moderate rainfall is beneficial for grapes, excessive

rainfall can lead to downy mildew, a common grapevine disease that affects wine quality

and crop yields, thereby impacting both the volume and prices of exported wines (Chevet
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Table 1: Demand uncertainty, weather shocks and the intensive margin

Dependent variable: Export volumes: ln(yjkrt)

(1) (2) (3) (4) (5)

Ln Cons. Expenditurejt−1 0.278*** 0.281*** 0.284***
(0.0356) (0.0344) (0.0345)

Higher ∗ Ln Exp. V olatilityjt -0.0131** -0.0131**
(0.00521) (0.00514)

Lower ∗ Exp. V olatilityjt 0.0296*** 0.0295*** 0.0280***
(0.00616) (0.00606) (0.00601)

Cons.Expenditure Skewnessjt 0.00600 0.00608 0.00637
(0.00489) (0.00484) (0.00483)

Ln(GDDrt−3) 0.272** 0.309*** 0.312***
(0.110) (0.104) (0.104)

Ln(KDDrt−2) -0.0368*** -0.0395***
(0.00582) (0.00537)

Ln(KDDrt−3) -0.0464*** -0.0482***
(0.00477) (0.00450)

Ln(PADPrt−2) 0.542 0.529 0.518
(0.406) (0.397) (0.397)

(Ln(PADPrt−2))
2

-0.0380 -0.0375 -0.0366
(0.0339) (0.0331) (0.0331)

Ln(PADPrt−3) 0.634* 0.724* 0.720*
(0.378) (0.376) (0.375)

(Ln(PADPrt−3))
2

-0.0524 -0.0608* -0.0605*
(0.0319) (0.0316) (0.0316)

NoCore ∗Higher ∗ Ln Exp. V olatilityjt -0.00910*
(0.00535)

Core ∗Higher ∗ Ln Exp. V olatilityjt -0.0338***
(0.00748)

NoCore ∗ Ln(KDDrt−2) -0.0459***
(0.00620)

Core ∗ Ln(KDDrt−2) 0.00209
(0.0181)

NoCore ∗ Ln(KDDrt−3) -0.0551***
(0.00540)

Core ∗ Ln(KDDrt−3) -0.00409
(0.0166)

Observations 76,634 76,634 76,634 76,634 76,634
R-squared 0.742 0.745 0.759 0.746 0.759
Country FE YES YES NO YES NO
Year FE YES NO NO NO NO
Appellation FE YES YES YES YES YES
Region-Year FE NO YES NO YES NO
Country-Year FE NO NO YES NO YES

Note: Dependent variable is the logarithm of exported volumes.

Robust standard errors, clustered at destination-appellation level, in parentheses.

Regressions include a constant which is not reported in the Table.

Significance levels: *** p < 0.01, ** p < 0.05, * p < 0.1.

et al., 2011). Finally, our findings highlight that extreme weather events have a significant

impact on exported volumes. Specifically, we find that the second and third lags of the

variable KDD significantly decrease the volume of exports. Thus, a 1% increase in KDD
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leads to a decrease of 0.037% in the volume exported two years later. The magnitude of

the effects is slightly higher for the third lag of KDD.

Core vs. peripheral markets. In column (4), we investigate whether the negative

impact of excess volatility in consumption expenditure on export volumes varies regarding

market potential, as in De Sousa et al. (2020). In column (5), we explore the heterogeneous

impact of extreme weather conditions on exports regarding the importing markets. To

examine these phenomena, we create a dummy variable capturing the core importing

markets, representing the main importing countries of French wines in 202018. Initially,

we exclude Belgium and Hong Kong from core markets as they are considered re-export

platforms19. We then interact this dummy variable with the variable capturing excess

volatility in the destination market (column 4) and with the two lags of the KDD variable

(column 5).

First, in column (4), we observe that the impact of excess volatility in consumption

expenditure is more pronounced for core markets than for peripheral ones. Higher

expenditure uncertainty tends to attenuate the positive impact of market potential. Thus,

the greater the market potential in a destination market, the higher the exports, and

consequently, the higher the risk at the margin. This corroborates the findings of De Sousa

et al. (2020). Second, the results in column (5) provide evidence that extreme weather

variations have no significant consequences on the volume exported to core markets, while

exerting a strong deterring impact on peripheral markets. Specifically, the coefficient

associated with the interaction between the two lags of the KDD variable and the

dummy capturing core markets is not statistically significant. This suggests that French

wine exporters differentiate between core and peripheral markets after extreme weather

conditions and choose to maintain their volumes constant towards core markets, while

accepting a significant decrease in their exported volumes towards peripheral economies.

This implies that French wine exporters prefer to focus their strategy on core markets

after weather events, as they assume that competition is fiercer in these markets and that

it is easier to lose market shares there than in peripheral ones.

3.2 Extensive margin of trade

We define the extensive margin as the probability that appellation k from region r

is exported to destination j in year t. Then, we analyze the impact of demand and

weather risks on the likelihood that a given appellation is exported to a given destination

country employing a linear probability model (LPM). This modeling approach circumvents

18The following five importing countries are considered here: China, Germany, Japan, the United
Kingdom, and the United States.

19In Table E11 in the Appendix, we test the sensitivity of our results to the inclusion of these two
countries in core markets.
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the incidental parameter concern inherent in probit or logit models when incorporating

fixed effects. Additionally, the coefficients derived from the LPM offer straightforward

interpretability.

Table 2 presents the summary of estimation results. Mean consumption expenditure

significantly increases the likelihood of exporting an appellation into destination j, as

indicated in columns (1), (2), and (4). As for the intensive margin, the skewness of the

change in consumption expenditure is not significant.

Lower volatility in the destination market compared to France markedly enhances the

probability of exporting an appellation. Confirming our previous conclusions, we find

that excess volatility significantly decrease the likelihood of exporting. The impact of

weather on the extensive margin appears to differ from that on the intensive margin in

terms of both the signs and significance of the estimated coefficients. Estimation results

provided in columns (1), (3), and (5) of Table 2 reveal that favorable weather conditions,

reflected by an increasing Growing Degree Days (GDD), have a non-significant impact on

the probability of exporting a given appellation to a given market. These results contrast

with those for the intensive margin. Extreme weather conditions significantly deteriorate

the probability of exporting, three years later. However, the impact in core markets is

more pronounced than in peripheral ones.20

In Table E1, we define the extensive margin as the number of appellations exported by a

given region to a specific destination in a particular year. Given that our dependent variable

is a count variable, we employ the Pseudo-Poisson maximum likelihood (PPML) estimator

(Santos Silva and Tenreyro, 2006). The results indicate that excess demand volatility

significantly decreases the number of appellations exported, with a more pronounced effect

on core markets, corroborating the findings of De Sousa et al. (2020). Additionally, our

results show that extreme weather events significantly reduce the number of appellations

exported, with a stronger impact on peripheral markets, thus confirming our previous

findings on the intensive margin.

3.3 Export prices

The estimations pertaining to export prices are summarized in Table 3. The results

concerning the first and third moments of wine consumption expenditure align with those

presented in De Sousa et al. (2020). However, our analysis does not reveal evidence

indicating that higher consumption volatility in the destination market affects export

prices. Given that both volumes and values are similarly affected, no significant effects

are discerned for unit values. Consequently, the impact of excess volatility predominantly

20One possible explanation could be the heightened competition in core markets. Consumers in these
countries exhibit greater sensitivity to quality variation, as documented by San Mart́ın et al. (2008) for U.S.
consumers regarding Argentinean wines. Consequently, as wine quality is impacted by extreme weather
conditions (see Table 4), it becomes more challenging for wine exporters to introduce new appellations to
these markets.
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Table 2: Demand uncertainty, weather shocks and the extensive margin

Dependent variable: Probability of exporting: Prob(yjkrt = 1)

(1) (2) (3) (4) (5)

Ln Cons. Expenditurejt−1 0.0467*** 0.0470*** 0.0470***
(0.00811) (0.00800) (0.00800)

Higher ∗ Ln Exp. V olatilityjt -0.00293** -0.00295**
(0.00137) (0.00134)

Lower ∗ Ln Exp. V olatilityjt 0.00212 0.00207 0.00208
(0.00154) (0.00150) (0.00151)

Cons. Expenditure Skewnessjt -0.000871 -0.000876 -0.000878
(0.00122) (0.00119) (0.00119)

Ln(GDDrt−3) 0.0142 0.0135 0.0134
(0.0259) (0.0256) (0.0256)

Ln(KDDrt−2) -2.59e-05 5.33e-06
(0.00139) (0.00138)

Ln(KDDrt−3) -0.00247** -0.00242**
(0.00119) (0.00118)

Ln(PADPrt−2) -0.150* -0.154* -0.153*
(0.0873) (0.0864) (0.0863)

(Ln(PADPrt−2))
2

0.0112 0.0115 0.0115
(0.00732) (0.00725) (0.00725)

Ln(PADPrt−3) -0.245*** -0.245*** -0.245***
(0.0837) (0.0827) (0.0827)

(Ln(PADPrt−3))
2

0.0192*** 0.0192*** 0.0192***
(0.00712) (0.00703) (0.00703)

NoCore ∗Higher ∗ Ln Exp. V olatilityjt -0.00297**
(0.00136)

Core ∗Higher ∗ Ln Exp. V olatilityjt -0.00283
(0.00200)

NoCore ∗ Ln(KDDrt−2) 0.000328
(0.00144)

Core ∗ Ln(KDDrt−2) -0.00267
(0.00353)

NoCore ∗ Ln(KDDrt−3) -0.00147
(0.00123)

Core ∗ Ln(KDDrt−3) -0.0102***
(0.00340)

Observations 121,870 121,870 121,870 121,870 121,870
R-squared 0.502 0.512 0.513 0.512 0.513
Country FE YES YES NO YES NO
Year FE YES NO NO NO NO
Appellation FE YES YES YES YES YES
Region-Year FE NO YES NO YES NO
Country-Year FE NO NO YES NO YES

Note: Dependent variable is the probability of exporting.

Robust standard errors, clustered at destination-appellation level, in parentheses.

Regressions include a constant which is not reported in the Table.

Significance levels: *** p < 0.01, ** p < 0.05, * p < 0.1.

manifests through both intensive and extensive margins, rather than through fluctuations

in export prices within the destination market.

Regarding the influence of weather shocks, our findings parallel those observed for the
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Table 3: Demand uncertainty, weather shocks and export prices

Dependent variable: Export prices: Ln(pjkrt)

(1) (2) (3) (4) (5)

Ln Cons. Expenditurejt−1 -0.0256* -0.0260* -0.0261*
(0.0137) (0.0134) (0.0134)

Higher ∗ Ln Exp. V olatilityjt 0.00268 0.00233
(0.00193) (0.00188)

Lower ∗ Ln Exp. V olatilityjt -0.000214 -0.000359 -0.000462
(0.00203) (0.00198) (0.00199)

Cons. Expenditure Skewnessjt -0.00314* -0.00318* -0.00316*
(0.00185) (0.00182) (0.00182)

Ln(GDDrt−3) 0.0521 0.0409 0.0400
(0.0355) (0.0346) (0.0346)

Ln(KDDrt−2) -0.00464** -0.00492**
(0.00217) (0.00211)

Ln(KDDrt−3) -0.0110*** -0.0104***
(0.00198) (0.00195)

Ln(PADPrt−2) 0.238 0.298** 0.301**
(0.151) (0.148) (0.148)

(Ln(PADPrt−2))
2

-0.0175 -0.0229* -0.0232*
(0.0127) (0.0124) (0.0124)

Ln(PADPrt−3) 0.795*** 0.756*** 0.756***
(0.147) (0.142) (0.142)

(Ln(PADPrt−3))
2

-0.0674*** -0.0640*** -0.0640***
(0.0124) (0.0120) (0.0120)

NoCore ∗Higher ∗ Ln Exp. V olatilityjt 0.00259
(0.00193)

Core ∗Higher ∗ Ln Exp. V olatilityjt 0.000970
(0.00245)

NoCore ∗ Ln(KDDrt−2) -0.00269
(0.00232)

Core ∗ Ln(KDDrt−2) -0.0192***
(0.00450)

NoCore ∗ Ln(KDDrt−3) -0.00903***
(0.00215)

Core ∗ Ln(KDDrt−3) -0.0192***
(0.00431)

Observations 76,390 76,390 76,634 76,390 76,634
R-squared 0.717 0.722 0.729 0.722 0.729
Country FE YES YES NO YES NO
Year FE YES NO NO NO NO
Appellation FE YES YES YES YES YES
Region-Year FE NO YES NO YES NO
Country-Year FE NO NO YES NO YES

Note: Dependent variable is the logarithm of unit values.

Robust standard errors, clustered at destination-appellation level, in parentheses.

Regressions include a constant which is not reported in the Table.

Significance levels: *** p < 0.01, ** p < 0.05, * p < 0.1.

intensive margin. We observe a non-linear relationship between rainfall and export prices,

and that extreme weather events exert a substantial downward pressure on export prices.

For instance, a 1% increase in KDD leads to a subsequent decrease of 0.05% in wine
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prices after two years. Notably, extreme weather conditions exhibit a more pronounced

effect on wine prices in core markets compared to peripheral markets, as evidenced by the

negative and significant interaction term between the core market indicator and lagged

values of KDD. This observation may appear counter-intuitive, given that quantities

exported to core markets remain stable following extreme weather variations (see Table 1).

Two potential explanations can elucidate this finding. First, the phenomenon may be

attributed to quality perception within these countries. As consumers in core markets

possess a higher capacity to discern between wine qualities, the adverse impact of extreme

weather conditions on quality tends to depress their demand for French wines to a greater

extent, consequently leading to more pronounced price decreases in these core markets.

Secondly, this pattern may also be influenced by the pricing-to-market (PTM) behavior

of French wine exporters. Under this framework, exporters may absorb a portion of the

weather shock by reducing their markups to maintain competitiveness on core markets.

The results presented in Table 4 on perceived quality seems to corroborate that pricing

behavior accounts for the observed price differentials between core and peripheral markets

following an extreme weather shock.

3.4 Perceived quality

It is pertinent to underscore that we estimate Equation 1 without incorporating demand

variables for perceived quality. Notably, in the methodology advanced by Khandelwal et al.

(2013), quality is derived from an equation (referred to as Equation B1) that encompasses

importer-year fixed effects, thereby directly capturing demand components21. Table 4

reports estimation results for the impact of weather shocks on perceived quality.

Results highlight that weather conditions are key factors driving wine quality. Indeed,

we find that good weather conditions reflected by a higher GDD allows increasing the

quality of wine exported, while rainfalls displays a U-shaped relationship with perceived

quality on the destination market. As for export prices, quantities and the extensive margin,

extreme weather conditions significantly deteriorates wine quality on the export market.

Our results also provide evidence that the negative impact of extreme weather variations

on perceived quality in core and peripheral countries are not significantly different.

3.5 Robustness checks

This section examines the robustness of the aforementioned results. Initially, sensitivity

tests were conducted concerning the findings pertaining to demand uncertainty. Specifically,

two tests were undertaken: (i) Estimations excluding skewness, and (ii) estimations

employing alternative measures for expenditure moments based on log differences. The

results, presented in Tables E2 and E3 in the Appendix, confirm the robustness of our

21For further explanations, see Appendix B.
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Table 4: Weather shocks and inferred quality

Dependent variable: Inferred quality: λ̂jkrt

(1) (2)

Ln(GDDrt−3) 0.128*** 0.128***
(0.0470) (0.0470)

Ln(KDDrt−2) -0.0160***
(0.00264)

Ln(KDDrt−3) -0.0250***
(0.00239)

Ln(PADPrt−2) 0.505*** 0.506***
(0.185) (0.185)

(Ln(PADPrt−2))
2

-0.0380** -0.0381**
(0.0155) (0.0155)

Ln(PADPrt−3) 1.126*** 1.125***
(0.176) (0.176)

(Ln(PADPrt−3))
2

-0.0952*** -0.0951***
(0.0148) (0.0148)

NoCore ∗ Ln(KDDrt−2) -0.0148***
(0.00293)

Core ∗ Ln(KDDrt−2) -0.0235***
(0.00594)

NoCore ∗ Ln(KDDrt−3) -0.0251***
(0.00265)

Core ∗ Ln(KDDrt−3) -0.0250***
(0.00549)

Observations 76,634 76,634
R-squared 0.006 0.006
Appellation FE YES YES
Country-Year FE YES YES

Note: Dependent variable is the inferred quality using the method of Khandelwal et al. (2013).

Robust standard errors, clustered at destination-appellation level, in parentheses.

Regressions include a constant which is not reported in the Table.

Significance levels: *** p < 0.01, ** p < 0.05, * p < 0.1.

primary conclusions regarding the influence of excess volatility on both intensive and

extensive margins.

Subsequently, robustness tests were conducted regarding weather shocks. First, the

first lag of all weather variables was included. Given that certain wines, considered as

“Primeur” wines, are directly exported after harvest, the first lag of weather variables

may impact trade margins, prices, and quality of these wines22. Second, further lags of

weather variables were considered. Third, we control for Vapor Pressure Deficit (VPD) in

estimations. VPD, calculated as the disparity between the saturation level of water the air

can hold and its current water content (Roberts et al., 2013)23, can also be influential in

22However, it is primarily the entry-level wines that are exported immediately after harvest. These wines,
characterized by rapid bottling without extended maturation, are predominantly targeted at the French
mass-market retail sector. According to insights from industry experts and findings from Cardebat and
Figuet (2019), only entry-level wines are marketed one year post-harvest, while mid-range and high-end
wines are primarily marketed two and three years post-harvest (See Table C1 in the Appendix).

23Refer to Tables A2 and A3 for the definition and computation details of the VPD measure.
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evaluating the impact of weather fluctuations on trade flows24. Fourth, sensitivity analyses

were conducted to assess the impact of altering the threshold for computing the KDD

(34◦C and 36◦C as alternatives to 35◦C) and employing an alternative method for its

computation developed by Schlenker and Roberts (2009)25.

Tables E4 and E5 validate our prior findings and offer further evidence that weather

conditions, particularly extreme variations, exert an influence on trade flows, both in the

short term (one year after) and in the medium term (four years after). The estimation

outcomes presented in Table E6 reveal an ambiguous effect of Vapor Pressure Deficit (VPD)

on trade flows. Nonetheless, VPD demonstrates a positive and statistically significant

impact on wine prices and quality. Crucially, these findings do not alter our previous

conclusions regarding the influence of rainfall, temperature, and extreme variations. Finally,

Tables E7, E8 and E9 confirm that retaining a different threshold of extreme temperatures

or an alternative method to compute the KDD do not alter our results.

Lastly, specific sensitivity tests were conducted by (i) estimating effects using the value

of exports rather than volumes, (ii) adjusting the scope of the core market variable to

include re-export platform countries such as Belgium and Hong Kong, and (iii) using an

alternative value for the elasticity of substitution in the computation of inferred quality26.

Table E10 demonstrates that substituting export values for volumes does not affect our

findings, while Table E11 indicates that our results remain robust even with the inclusion of

re-export platforms to core markets. Finally, Table E12 reveals that altering the elasticity

of substitution does not alter our primary results.

4 A theoretical analysis

This section presents the principal assumptions and notations of the model, as outlined

in Section 4.1, and establishes a preliminary analysis of the optimal decisions of each firm

in terms of marketing investments and prices, as detailed in Section 4.2. Subsequently, we

present the optimal investment rule for a given portfolio as a function of the demand and

production risks’ characteristics, and furthermore determine the optimal portfolio as a

function of productivity (Section 4.3). Finally, in Section 4.4, we derive the implications

of climate-induced volatility on the trade equilibrium.

24Its impact on yields is mixed. As argued by Roberts et al. (2013), higher VPD may entail greater
water requirements, potentially affecting yields, particularly when soil moisture is insufficient. Conversely,
under adequate soil moisture conditions, higher VPD may lead to reduced cloud cover and consequently
improved yields.

25See Appendix D for a detailed description of the methodology.
26We adopt σ = 3.085 as per Emlinger and Lamani (2020). This value corresponds to the elasticity

estimate associated with spirits produced by distilling grape wine or marc, as provided by Kee et al.
(2008).
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4.1 Assumptions and notations

Preferences and demand risk. Let us consider N countries that produce and trade

wines and where an origin country is indexed by i and a destination country by j. Let us

also denote N = {1, ..., N} as the index set of all countries. In each country j, there is a

mass L̃j of (immobile) workers and Mj of winery owners who derive utility from consuming

a continuum of differentiated varieties, indexed by ω. Thus the total mass of consumers is

Lj = L̃j +Mj. Preferences for an agent indexed by ι, whether it is a worker or a winery

owner, for the differentiated good are given by a CES function:

uj =

(∑
i

∫
ω∈Ωij

α
1
σ
j (ω) [ηi(ω)qij(ω, ι)]

σ−1
σ dω

) σ
σ−1

.

where Ωij is the set of varieties from origin country i available on market j and qij(ω, ι) is

the quantity of variety ω consumed by agent ι. Moreover, αj is a firm-specific and exogenous

demand shock in market j, whereas ηi is a firm-specific and exogenous production shock

whose natural interpretation is in terms of the quality of the wine.27 A high quality

wine could thus be represented here by a high value of ηi. Furthermore, the elasticity of

substitution σ > 1 measures the intensity of horizontal differentiation in the destination

market. The budget constraint is∑
i

∫
ω∈Ωij

pij(ω)qij(ω, ι)dω ≤ yj(ι)

where pij is the price and yj is the income (and expenditure) of the agent ι. Workers earn

the same non stochastic wage wj by working inelastically for the winery owners. Winery

owners get their income from the profits they obtain on the markets.

The demand risk αj can be interpreted as a shock to tastes or to regulation, and

is independent from the quality shock ηi. Denoting α(ω) as the vector of shocks on all

markets, we assume like Esposito (2022) that demand shocks are drawn independently

across varieties from a multivariate distribution characterized by a vector of means α and

a variance-covariance matrix.

Assumption 1. The vector α(ω) is i.i.d. accross ω with α denoting the vector of means

and where the variance-covariance matrix is assumed to be diagonal.

To focus on production risk as the source of correlation between market outcomes, we

assume like De Sousa et al. (2020) and unlike Esposito (2022) that the variance-covariance

matrix is diagonal in that Cov(αj, αk) = 0 for all j ̸= k. We denote thus σ2
α the vector of

variances. The distribution of the quality shock ηi(ω) will precised later.

27More precisely, ηi could be interpreted as a function mapping quality into a quantity equivalent as in
Crozet et al. (2012).
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Supply side and production risk. As is usual in the literature (Melitz (2003)), labor

is the only factor of production and is inelastically supplied in a competitive market in each

country. Entrepreneurs are the only owners and managers of their winery and produce a

unique variety using labor, with a productivity φ drawn from a distribution Gi(φ) on the

set Φi =
[
φ
i
,∞
)
in origin country i. Importantly, φ is drawn independently from other

firms and demand shocks and also from production shocks. Since each firm with a type φ

produces a unique variety ω, we identify a variety with φ. Simultaneously with the quality

shock ηi(φ), another exogenous and firm-specific production shock occurs, after marketing

and distribution investments in destination markets and before production, affecting the

marginal cost of production. Let us denote it by θi(φ) and its distribution will also be

specified later.28

Assumption 2. The quality shock ηi(φ) and the cost shock θi(φ) are drawn independently

from other firms, from productivity and from demand shocks.

Denoting πi(φ) =
∑

j πij(φ) the net profit of a firm that produces in country i, the

winery owner maximises its indirect utility in real income:

maxVi = E
(
πi(φ)

Pi

)
− γ

2
V
(
πi(φ)

Pi

)
which follows a mean-variance specification and where γ is the degree of risk aversion.29

Pi denotes the Dixit-Stiglitz price index and its expression is given below. The assumption

of risk averse managers appears recently in the international trade literature (Esposito

(2022), De Sousa et al. (2020), Juvenal and Santos Monteiro (2023)). There is empirical

evidence that managers are risk averse and care about demand and production shocks.

This is particularly important for wineries where the cash-flow volatility can be a source

of financial distress and where owner’s wealth is highly tied to the value of the winery,

exposing them to firm-specific risks that are difficult to diversify.

As in Esposito (2022), production takes place in two stages. Once productivity is

known, but before demand and production shocks are known, firms choose destination

markets and invest into marketing and distribution activities like in Arkolakis (2010).

These decisions make it possible to reach a certain proportion of consumers in each market,

depending on the efforts made. These decisions are assumed to be irreversible and can no

longer be changed once the demand and production shocks have been drawn. Firms can

only adjust the quantity produced or, equivalently, the price to adapt to the particular

conditions of production and demand on the destination markets. This modeling is a

short-cut for a more complex dynamic model of investments over time (see Alessandria

28A possible interpretation of the cost shock is that it is related to the quality shock. A larger quality
shock would then be the source of a larger marginal cost like in Crozet et al. (2012).

29As in Esposito (2022), De Sousa et al. (2020) or Ingersoll (1987), the mean-variance specification can
be derived from a second-order Taylor approximation of the expectation of a CARA utility in real income.
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et al. (2021) for an excellent discussion of these issues). As it will be clear below, the

model is tractable enough to study how a larger volatility in the production shock, due

to e.g. climate change, influences equilibrium decisions of winery owners with respect to

their marketing and distribution activities.

Let us denote nij(φ) ∈ (0, 1) the marketing effort on market j. It denotes the fraction

of consumers that can be reached on market j through some costly ads. If nij(φ) = 0 then

market j is not served by the firm. Assuming that ads are sent independently accross firms

and destinations and denoting Yj as the income devoted in market j to consumption (which

originates from the wages of workers and the profits of winery owners), the aggregate

demand qij(φ) for a given variety φ depends negatively on its price pij and positively on

nij:

qij(φ) = αj(φ)η
σ−1
i (φ)p−σ

ij (φ)Ajnij(φ) (2)

as well as on destination market characteristics summarized by Aj = P σ−1
j Yj where Pj is

the Dixit-Stiglitz price index given by:

Pj =

(∑
i

Mi

∫ ∞

0

nij(φ)E
[
αj(φ)η

σ−1
i (φ)p1−σ

ij (φ)
]
dGi(φ)

) 1
1−σ

, (3)

which measures the intensity of competition on market j.

Each firm may produce only one variety under constant return to scale, using labor.

The expenditures in terms of labor from the origin country needed to produce qij(φ) is:

wilij(φ) = θi(φ)
wiτij
φ

qij(φ) (4)

where lij is the quantity of labor, τij ≥ 1 is the variable trade cost, wi is the price of labor

that prevails in country i and θi a production shock. There is also an endogenous trade

and marketing cost that writes:

fij(φ) = wjfjLjnij(φ) ≥ 0 (5)

where wj is the labor price that prevails in the destination country and fj > 0 is a

parameter. This fixed cost is proportional to the effort nij put to reach consumers in the

destination country. Recall that the total mass of consumers in the destination country is

Lj = L̃j +Mj. Furthermore, the aggregate income Yj in (2) is the sum of labor wages for

workers and the sum of profits in the destination country:

Yj = wjL̃j +Πj.

The timing of decisions is as follows. Productivity is drawn according to Gi(φ). The

winery owner first decides how much marketing effort nij ∈ (0, 1) to deploy on each

destination market. Then, each winery owner learns its production and demand shocks
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and decides whether to stay on each destination market and, if he stays, he chooses the

price of the variety.

Formally, the first stage problem consists of choosing nij to maximize:

max
{nij}

∑
j

E
(
πij(φ)

Pi

)
− γ

2

∑
j

∑
k

Cov
(
πij(φ)

Pi

;
πik(φ)

Pi

)
(6)

s.t. 0 ≤ nij ≤ 1

where πij(φ) is the net profit obtained from the destination market j:

πij(φ) = pij(φ)qij(φ)− θi(φ)
wiτij
φ

qij(φ)− fij, (7)

with qij(φ) given by (2) and fij given by (5). The second stage is to choose pij(φ) that

maximizes (7) given nij determined as a solution of maximization problem (6).

Contrary to Esposito (2022), the destination-variety specific shocks on demand are

not correlated between countries (Assumption 1). As we will explain in the following

analysis, in the absence of production shocks, this would lead winery owners to seek

maximum diversification by investing in all profitable markets in expectation, the set of

these profitable markets in expectation depending on the productivity of each of them.

The problem of choosing nij on market j is then separable from choosing nik on some other

market k. However, in the more realistic situation where production shocks occur, we

will see that the presence of origin-variety specific production shocks is sufficient to make

all the risk-averse manager’s export decisions interdependent, both in terms of extensive

margin (where to export?) and intensive margin (how much to invest in marketing?).

Trade equilibrium. Before exploring the equilibrium with more details in the next

section, let us now close the model by adding the equations that help to determine the

general equilibrium in terms of the price index Pi, the national income Yi and the wage

rate wi for any country i. Aggregate sales from origin country i to destination country j

are:

Xij = Mi

∫ ∞

0

E [pij(φ)qij(φ)] dGi(φ)

and it also represents the total expenditures in country j made on varieties from origin

country i. As in Chaney (2008), the mass of firms is fixed and thus there are profits at

the equilibrium in the economy given by:

Πi = Mi

∑
j

∫ ∞

0

E [πij(φ)] dGi(φ). (8)

The current account has to be balanced so that the total expenditures in each country

has to be equal to the labor income plus business profits:∑
k

Xki = Yi = wiL̃i +Πi. (9)
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Finally, the labor market clears and thus the labor supply in origin country i must

equal the amount of labor used in domestic production and in marketing (paid by foreign

firms employing home workers). Using (4) and (5) yields:

Mi

∑
j

∫ ∞

0

E [lij(φ)] dGi(φ) +
∑
j

Mj

∫ ∞

0

fiLinji(φ)dGj(φ) = L̃i. (10)

The trade equilibrium is characterized by a vector of wages {wi}, a vector of price

indexes {Pi}, and national income {Yi} that solve the system of equations (3), (9) and

(10) where pij(φ) maximizes (7) and nij(φ) is the solution of maximization problem (6).

4.2 Preliminary analysis

In the rest of the paper, we take a partial equilibrium perspective by taking the price

indexes, the national incomes and the wage rates in both countries as fixed. We will also

concentrate on the equilibrium outcomes at one particular origin country, say i, as we can

deduce straightforwardly the equilibrium outcomes in any other country.

Once demand and production shocks are drawn, it is straightforward to show that the

optimal price for any producer is given by:

pij =
σ

σ − 1
θi(φ)

wiτij
φ

,

that is a constant mark-up over marginal cost, thanks to the CES assumption. This allows

to rewrite the profit given by (7) as follows:

πij(φ) = αj(φ)βi(φ)nij

(
τij
φ

)1−σ
Aj

δi
− fij. (11)

where δi is a rescaling of the wage wi :

δi =
1

σ

(
σ

σ − 1
wi

)σ−1

,

and where we denote

βi(φ) =

(
θi(φ)

ηi(φ)

)1−σ

as the production shock that results from the quality and cost shocks (also appropriately

rescaled using σ). Hence, a high quality can compensate at least partially a large marginal

cost from the profit viewpoint. Let us denote the mean of βi by β̄i and its variance

by V(βi). This change of variable reveals that profit (11) is a function of an hybrid or

composite shock denoted εij(φ) ≡ αj(φ)βi(φ), made of demand and production shocks

that are independent. The hybrid shock εij is distributed with law such that vector of

means is ε̄i = (ε̄i1, ..., ε̄ij, ..., ε̄iN) and a matrix of variance covariance Σi with element

Σi,jk = Cov (εij, εik). Note that given our independence assumptions, we have:

ε̄ij = ᾱjβ̄i,
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and

Cov (εij, εik) = Cov (αjβi, αkβi) = Eβ2
i αjαk − EβiαjEβiαk

= ᾱjᾱkV(βi),

and finally

V(εij) = Eβ2
i α

2
j −

(
β̄iᾱj

)2
=
(
V(βi) + β̄2

i

)
V(αj) + V(βi)ᾱ

2
j .

From (11), we get (dropping the dependence on φ for simplicity):

E
(
πij(φ)

Pi

)
= ε̄ijnijrij −

fij
Pi

(12)

where we denote rij as the variable profit on market j gross of shocks and per unit of

marketing effort nij :

rij =

(
τij
φ

)1−σ
Aj

δiPi

.

Also the term in covariance yields:

Cov
(
πij(φ)

Pi

;
πik(φ)

Pi

)
= nijrijnikrikCov (εij, εik) .

Let us posit the Lagrangean corresponding to the problem (6):

L =
∑
j

E
(
πij(φ)

Pi

)
− γ

2

∑
j

∑
k

Cov
(
πij(φ)

Pi

;
πik(φ)

Pi

)
−
∑
j

ν̄ij(nij − 1) +
∑
j

νijnij

=
∑
j

(
ε̄ijnijrij −

nijwjfjLj

Pi

)
− γ

2

∑
j

∑
k

nijrijnikrikCov (εij, εik)−
∑
j

ν̄ij(nij − 1) +
∑
j

νijnij

where ν̄ij and νij are the multipliers corresponding to the constraints on marketing efforts.

The first-order condition writes:

∂L
∂nij

= ε̄ijrij −
wjfjLj

Pi

− γ
∑
k

rijnikrikCov (εij, εik)− ν̄ij + νij = 0, (13)

and the system of FOCs can be rewritten in matrix terms:

ni =
1

γ
Σ−1

i µ̃i (14)

where ni is the vector of nij, µ̃i is the vector with element µ̃ij = µij − ν̄ij + νij where

µij = ε̄ijrij − wjfjLj

Pi
represents the expected real return per unit of nij , and Σi is a N ×N

matrix of profits covariance with element Σi,jk = rijrikCov (εij, εik) and assumed to be

non-singular, i.e. detΣi > 0. Hence, as shown by Esposito (2022) (Proposition 1), it is

optimal to invest in marketing efforts such that the fraction of consumers to be reached

on each market is proportional to the inverse of the covariance matrix of real returns,

times the vector of expected real returns. Intuitively, risk aversion with γ > 0 makes
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the maximization problems with respect to all nij interelated. If γ = 0 then problems

are separable like in traditional trade models, and it is optimal to choose nij = 1 for

all destination markets that are profitable in expectation. The assumption that Σi is

non-singular is a necessary and sufficient condition to have uniqueness of the optimal

solution.30

The first-order condition (14) describes the optimal investment rule in a similar way as

is it done for a classic problem of mean-variance portfolio selection in financial economics

(see e.g. Constantinides and Malliaris (1995) and Ingersoll (1987)). The constraints on

nij are equivalent to what is often imposed in portfolio theory to avoid an unrealistic

solution with extreme “short” or “long” positions (see e.g. Jin et al. (2016)). At this level

of generality and taking into account the added complexity brought by the constraints

on nij, it is clear that there is no analytical solution, except in some special cases. In the

context of demand risks only, Esposito (2022) considers two symmetric countries under

autarky and under free trade in which case a closed form solution is available.

However, in our context with demand and production risks, the particular structure of

correlation we assume makes it possible to characterize the equilibrium for an arbitrary

number of asymmetric countries and under costly trade. This is particularly useful to

assess the impact of climate change, through changes in the relative volatility of the

production shock, on marketing efforts in all relevant destination markets, as we now

show.31

4.3 Costly trade between asymmetric countries

At this step of the analysis, it is convenient to normalize all shocks by their means.

For this, let us denote ε̃ij = εij/ε̄ij with Eε̃ij = 1. We obtain the following result.

Lemma 1. Denote SCVβi
≡ V(βi)/β̄

2
i as the Squared Coefficient of Variation of production

shock βi and SCVαi
≡ V(αi)/ᾱ

2
j as the Squared Coefficient of Variation of demand shock

αj.
32

(i) The covariance between normalized shocks affecting profits made on destination countries

j and k (j ̸= k), from origin country i is given by:

Cov (ε̃ij, ε̃ik) = SCVβi
. (15)

30As shown by Esposito (2022), the objective is concave and the linear constraints form a convex set.
Hence, the solution described by (14) is a global maximum.

31In Appendix F, we also explore an alternative timing where production takes place before demand
shocks are realized but after production shocks are realized. We show the analysis pursued in the paper is
not substantially modified.

32The squared coefficient of variation is the ratio between the variance and the square of mean and it
represents the variance of the random variable normalized by its mean or equivalently its relative volatility.
The increase in relative volatility may come from a reduction in the mean and/or an increase in the
variance.
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(ii) The variance of the normalized shock affecting profit made on destination country j

from origin country i is given by:

V(ε̃ij) = (1 + SCVβi
)SCVαj

+ SCVβi
. (16)

Proof. Part (i): We have Cov (ε̃ij, ε̃ik) = Cov
(

εij
ε̄ij
, εik
ε̄ik

)
=

ᾱj ᾱkV(βi)

ᾱj ᾱkβ̄
2
i

= V(βi)

β̄2
i
. Also part (ii)

follows from V(ε̃ij) = V(εij)
ε̄2ij

=
(V(βi)+β̄2

i )V(αj)+V(βi)ᾱ
2
j

ᾱ2
j β̄

2
i

=
(
1 + V(βi)

β̄2
i

)
V(αj)

ᾱ2
j

+ V(βi)

β̄2
i
.

Hence, according to (15), the covariance between normalized shocks, affecting profits

from two destination countries j and k, is determined only by the production shock from

the origin country i. More precisely, an increase in the relative volatility of the production

shock in origin country i (i.e. an increase in SCVβi
) raises the covariance of composite

shocks affecting profits from two destination countries j and k. Moreover, (16) indicates

that the variance of the normalized shock ε̃ij is an increasing function of both relative

volatilities SCVβi
and SCVαj

.

Using these notations, the system of necessary and sufficient first-order conditions (13)

can be rewritten as follows, for all i and j:

ε̄ijrij −
wjfjLj

Pi

− γε̄ijrij
∑
k

nikε̄ikrikCov (ε̃ij, ε̃ik)− ν̄ij + νij = 0 (17)

The system of equations given by (17) can actually be broken into two parts. First, like

Esposito (2022), let us concentrate the analysis on settings where it is never profitable to

reach all consumers on a given destination market. Intuitively, any firm must be sufficiently

risk averse to find optimal not to reach all consumers in each market so that nij < 1 or

equivalently ν̄ij = 0 for any j.33 Moreover, denote S ⊆ N as a possible choice in terms of

the set of destination countries and conditionally on the portfolio S let us now characterize

the optimal choices in terms of marketing effort with 1 > nij > 0 for all j ∈ S.
Clearly, for a given origin country i, the system of first-order conditions given by (17)

reduces to, for all j ∈ S:

ε̄ijrij

(
1− γ

∑
k∈S

nikε̄ikrikCov (ε̃ij, ε̃ik)

)
=

wjfjLj

Pi

(18)

and for all j /∈ S,

ε̄ijrij

(
1− γ

∑
k∈S

nikε̄ikrikCov (ε̃ij, ε̃ik)

)
− wjfjLj

Pi

+ νij = 0. (19)

Equation (18) suggests that a correction due to risk aversion must be made when

assessing the expected marginal return of nij to be equated with its marginal cost for an

interior solution. Furthermore, note that because j /∈ S, the covariance term in (19) is

33Like Esposito (2022), we will provide a lower bound on γ to ensure this. Under risk neutrality (γ = 0),
it is optimal for a given firm to choose nij = 1 for all destination markets that are profitable.
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Cov (ε̃ij, ε̃ik) = SCVβi
for all k ∈ S and for all j /∈ S. It follows that the system given

by (18) can be solved independently from (19) to obtain the equilibrium value of nij for

all j ∈ S. And then (19) can be used to obtain the multiplier νij for all j /∈ S. Clearly,
assuming independent demand shocks and introducing a correlation between hybrid shocks

only through the common production shock allows to break down the system (17) so that

the system (18) is autonomous.

In the rest of this section, we discuss first the investment rule for a given portfolio S
composed of destination markets. Then we characterize the optimal portfolio for each

productivity φ, before determining its value for the firm.

Optimal investment rule in marketing effort. To pursue further, let us denote

Σ̃i as the variance-covariance matrix based on (15) and (16). Let us also denote Σ̃−1
i its

inverse with generic term Σ̃−1
i,jk at the intersect of line j and column k. Solving the system

(18) yields, for all j ∈ S:

nij =
1

γε̄ijrij

∑
k∈S

Σ̃−1
i,jk

ε̄ikrik

(
ε̄ikrik −

wkfkLk

Pi

)
. (20)

To interpret the optimality condition (20) for nij, let us introduce some additional

notations.

Definition 1. Consider a set of destination markets S with |S| ≥ 2. The diversification

index of destination country j ∈ S from the perspective of origin country i is denoted Dij

and is given by:

Dij =
∑
k∈S

Σ̃−1
i,jk. (21)

The term Σ̃−1
i,jk measures the contribution of destination market k to the diversification

index Dij and its relative weight is denoted ωi,jk given by,

ωi,jk =
Σ̃−1

i,jk

Dij

with
∑
k∈S

ωi,jk = 1. (22)

As will be clear below, the diversification index Dij is an inverse measure of the overall

riskiness of destination country j from the perspective of origin country i34. Moreover,

because all decisions about all markets are intertwined due to risk aversion, the term

Σ̃−1
i,jk measures the contribution of destination market k to the diversification index Dij.

Importantly, the weight ωi,jk can be positive or negative in which case market k contributes

respectively positively or negatively to Dij.

34Our definition of the diversification index is consistent with that of Esposito (2022). Indeed, he defines
the diversification index as the sum of terms in the appropriate line of the inverse covariance matrix, each
term being multiplied by the corresponding expected demand shock. Our definition is similar albeit we
work with shocks normalized by their means.
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Definition 2. Consider a set of destination markets S with |S| ≥ 2. The relative

profitability index of destination country j ∈ S from the perspective of origin country i for

a firm with productivity φ is denoted Cij(φ) and is given by:

Cij(φ) =
∑
k∈S

ωi,jk

(
ε̄ikrik(φ)− wkfkLk/Pi

ε̄ikrik(φ)

)
. (23)

The term between brackets in (23) is a profitability ratio that divides the net expected

profit by the gross expected profit and it measures in relative terms how much is left once

the fixed cost of marketing are paid.35 Hence, expression (23) represents the weighted sum

of (expected) profitability ratios accross destination countries, and where the weight is the

relative contribution ωi,jk of each market to the diversification index Dij.

The above definitions allow to rewrite the optimality condition (20) for nij as follows.

Proposition 1. Consider a set of destination markets S with |S| ≥ 2. A firm with

productivity φ in origin country i that finds optimal to reach an interior solution for nij

in some countries, i.e. 0 < nij < 1 for all j ∈ S, invests according to the following rule:

nij(φ) =
Dij

γε̄ijrij(φ)
Cij(φ). (24)

Expression (24) reveals that both a larger diversification index Dij and a larger relative

profitability index Cij stimulate marketing investment on market j. Moreover, taking

a partial equilibrium perspective (i.e. assuming that price indexes, national incomes

and wage rates are fixed), we see that a change in the squared coefficient of variation of

idiosyncratic production shocks in the origin country impacts the marketing choice nij

through two channels. First, a change in SCVβi
impacts directly the diversification index

Dij , and second it also impacts the weights ωi,jk used to compute the relative profitability

index Cij. Third, there is the possibility of corner solutions for some markets so that a

third channel also appears through changes in the multipliers νij for all j /∈ S.36

Importantly, our analysis departs here from Esposito (2022) in the following way.

Esposito (2022) focuses his analysis on the role of the diversification index and shows that

a sufficient condition for nij to grow with Dij is that the variance-covariance matrix of

demand shocks has at least a negative correlation. He subsequently suggests that Dij is a

sufficient statistic to measure the impact of shocks on the equilibrium. In our context with

uncorrelated demand shocks and production shocks, all covariances are necessarily positive

because the common underlying production shock makes all composite shocks positively

correlated. Furthermore, we are interested in how a change in the (relative) volatility of

the production shock affects equilibrium and clearly from the discussion above, not only

35On a given market, say k, the expected real gross profit is ε̄ikriknik and the expected real net profit is
ε̄ikriknik−wkfkLknik/Pi. The ratio of the latter over the former measures the rate of expected profitability
on market k.

36And in the general case for ν̄ij .
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Dij is impacted but also the relative contributions ωi,jk of each market to Dij. Because

Esposito (2022) focuses on the particular case of free trade with symmetric countries, it

appears that the (expected) profitability ratio is uniform across markets so that Cij no
longer depends on either volatility, but only on expected values of demand and production

shocks.37

By contrast, in our analysis, we are interested in costly trade with potentially asymmetric

countries and this makes a huge difference as Dij is no longer a sufficient statistics to

measure the impact of volatility on the trade equilibrium. To pursue further the analysis,

it is crucial to understand how demand and production shocks impact the diversification

index Dij as well as the relative contributions ωi,jk of each market to Dij. This is the

purpose of the following Proposition.

Proposition 2. For a given portfolio S ⊆ N and such that |S| ≥ 2, the diversification

index Dij is given by:

Dij =
1

SCVαj

1

1 + SCVβi

(
1 +

∑
k∈S

1
SCVαk

) . (25)

The weights system used to form the weighted sum of profitability ratios Cij(φ) is:

ωi,jk =

 − SCVβi

SCVαk(1+SCVβi)
< 0 for k ̸= j

1 +
SCVβi

1+SCVβi

∑
l∈S,l ̸=j

1
SCVαl

> 1 for k = j

where SCVβi
is the squared coefficient of variation of the production shock in origin country

i and SCVαj
is the squared coefficient of variation of the demand shock in destination

country j.

Proof. See Appendix G.

To complete Propositions 1 and 2, in the situation where |S| = 1, it is straightforward

to establish from (18) that the optimal marketing effort for the unique destination market

j is then given by:

nij(φ) =
1/V(ε̃ij)
γε̄ijrij(φ)

(
1− wjfjLj/Pi

ε̄ijrij(φ)

)
.

Everything happens as if Dij = 1/V(ε̃ij), ωi,jk = 0 for k ̸= j and ωi,jj = 1. As expected, a

larger variance of the hybrid shock or a reduced profitability ratio reduces the incentives

to invest on market j.

When the firm with productivity φ considers at least two destination markets (|S| ≥ 2)

then Proposition 2 indicates that both the diversification index Dij and the weights ωi,jk

only depends on relative volatilities of production and demand shocks. To interpret this

result, it is convenient to consider first the limit case where wine production is not random.

37Indeed, under free trade with symmetric countries, domestic sales and exports are identical as well as
the corresponding marketing efforts, for a firm that is sufficiently productive.
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When SCVβi
= 0, then Propositions 1 and 2 together indicate that Dij = 1/SCVαj

,

ωi,jk = 0 for k ̸= j and ωi,jj = 1, which in turn yields Cij(φ) = 1 − wjfjLj/Pi

ε̄ijrij(φ)
and the

optimal nij(φ) only depends on market j′s characteristics:

nij(φ) =
1/SCVαj

γε̄ijrij(φ)

(
1− wjfjLj/Pi

ε̄ijrij(φ)

)
.

Not surprisingly, in the absence of uncertainty with respect to production which implies

the absence of correlation between shocks ε̃ij , the problems of choosing how much to invest

in terms of marketing effort on each market are separable.

It is worth noting that this separability result also holds approximately when, for a

given relative volatility of production SCVβi
> 0, the demand is highly volatile everywhere.

To see this, let us interpret ∑
k∈S

1

SCVαk

≡ I(S)

as an index of demand riskiness of the portfolio S. If demand is highly volatile everywhere,

then the index I(S) is close to zero and consequently, Dij ≈ 1
SCVαj

1
1+SCVβi

. It also follows

that ωi,jk ≈ 0 for k ̸= j and ωi,jj ≈ 1, so that Cij(φ) ≈ 1− wjfjLj/Pi

ε̄ijrij(φ)
. Hence, the problem

of choosing nij almost depends only market j′s characteristics.

Now, let us investigate how the relative volatility of production and demand impacts

the diversification index Dij. First of all, a raise in Dij increases ceteris paribus the

incentives to invest to reach consumers on market j. In other words, the higher the interest

in market j in terms of diversification, the higher incentives to invest there. Proposition 2

suggests that a raise in the relative volatility of βi reduces Dij, while on the contrary, a

raise in the relative volatility of demand shock in any destination market except j increases

Dij. As shown by (25), the same effect holds for SCVαj
but there is also a direct effect

in the opposite direction whereby Dij decreases as the relative volatility of demand on

market j increases. In total, we have:38

∂Dij

∂SCVαj

=
Dij

SCVαj

(SCVβi
Dij − 1) < 0. (26)

To sum up, first, a larger relative volatility for production makes the world riskier

and thereby tends to reduce the incentives to invest everywhere. Second, a larger relative

volatility for demand on a given market tends to reduce the incentives to invest there, but

tends to increase the incentives to invest elsewhere. Comparing market j and market k in

the same portfolio, the ratio of their diversification indexes reflects their respective relative

volatility of demand shocks:
Dij

Dik

=
SCVαk

SCVαj

,

38To see that (26) holds, let us compute SCVβiDij =
SCVβi

SCVαj

1

1+SCVβi

(
1+

∑
k

1
SCVαk

) and it is immediate

to see that
SCVβi

SCVαj
< 1+SCVβi

(
1 +

∑
k

1
SCVαk

)
holds because 0 < 1+SCVβi

(
1 +

∑
k ̸=j

1
SCVαk

)
. Hence

SCVβi
Dij < 1 and (26) holds.
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and consequently, when demand is more volatile on market j relative to market k then

the diversification index of market j is lower than the diversification index of market k.

Furthermore, note that increasing the size of the portfolio by adding a new country to

S implies that the index of demand riskiness I(S) =
∑

k∈S
1

SCVαk
raises and consequently

the diversification index Dij for all markets in the portfolio decreases. More generally,

suppose that market j belongs to portfolios S and S ′ with |S ′| > |S| then

Dij(S ′)−Dij(S) =
1

SCVαj

SCVβi

[
I(S)− I(S ′)

]
[1 + SCVβi

(1 + I(S))]
[
1 + SCVβi

(1 + I(S ′))
] < 0.

Not surprisingly, increasing the size of the portfolio reduces the interest of each country

in terms of diversification, which we refer to as the dilution of the diversification effect

on investment in the following. However, this dilution effect only appears because of the

production risk that makes profits across markets correlated. In the absence of production

risk (SCVβi
= 0), then the diversification index of market j only depends on the relative

volatility of its demand, and not on the composition of the portfolio considered.

Finally, let us investigate how the relative volatility of production and demand impact

the relative contribution of each market in the portfolio S to the diversification index Dij.

Proposition 2 shows that ωi,jk < 0 for all k ̸= j. Intuitively, any increase in profitability

on a destination market k other than j will reduce Cij(φ) and therefore the incentive to

invest in j. And this negative effect is all the stronger when demand on market k is not

very volatile and production in i is very volatile. By mirroring effect, ωi,jj is larger than

unity and an increase in j’s profitability increases the interest in investing in j, especially

when production in origin country i is volatile and demands on other markets are not

very volatile. In other words, a raise in the relative volatility of production implies more

polarization between market j and other markets when evaluating Cij(φ). Also, comparing

ωi,jk and ωi,kj, we get:
ωi,kj

ωi,jk

=
SCVαk

SCVαj

.

Hence, when demand is more volatile on market j relative to market k, ωi,kj/ωi,jk < 1 and

hence Cij(φ) is more sensitive to any changes in the profitability ratio on market k than

Cik(φ) is to any changes in the profitability ratio on market j.

Moreover, note that adding a new country to S implies that ωi,jj is increasing for all j.

In other words, increasing the size of the portfolio implies that investing in j relies more

on the profitability of market j, due to the increased polarization between market j and

the other markets when evaluating Cij(φ). But this effect is small if the new country has

a highly volatile demand.

Characterizing the optimal portfolio for a given productivity. In this section,

we determine the equilibrium outcome for domestic firms according to their productivity

φ. First, for the clarity of exposition, we concentrate on equilibria where all firms find
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optimal not to reach all consumers on any market, so that ν̄ij = 0 for i, j. As suggested

above, we will check that this situation occurs when firms are sufficiently risk averse, i.e.

γ is sufficiently large. Second, a given set S of destination countries is said admissible to a

firm with productivity φ if and only if the two following conditions are met:

nij(φ) > 0 for all j ∈ S (27)

νij(φ) > 0 for all j /∈ S. (28)

These two conditions simply state that the firm φ if considering S should find optimal

to exert some positive marketing effort in all chosen destination countries and should

refrain from doing so elsewhere. For a given S, one would like to characterize the set of

productivities Di(S) that would consider S as admissible. Intuitively, for φ to belong to

Di(S), it must be that φ is large enough for the firm to be able to invest into marketing

even in the least attractive market in S and at the same time φ has to be low enough for

the firm not to be tempted considering the most attractive market outside of S. In the

following analysis, we will confirm this intuition while making precise our definition of

market attractiveness. Once Di(S) is defined, one can consider the problem of firm with

productivity φ choosing the best set S in order to maximize its indirect utility of real

income, while taking into account that S has to be admissible to the firm with productivity

φ, i.e.,

max
S

Vi ≡ Vi(φ,S) s.t. φ ∈ Di(S).

To characterize Di(S), let us first define our notion of market attractiveness.

Definition 3. The attractiveness index of the destination market j from the perspective

of the origin market i is defined as follows:

Γij =
wjfjLj

τ 1−σ
ij ε̄ijAj

.

The destination market j is said to be less attractive than market k from the perspective

of origin country i if and only if Γij > Γik. Observe that the attractiveness index Γij

raises in all components of the marginal cost of the marketing effort nij, i.e. the wage

rate in j, the fixed cost fj and the size of the economy Lj. In addition, Γij raises in the

variable trade cost τij. By contrast, a larger expected shock ε̄ij or a larger demand shifter

Aj increase the attractiveness of the destination market j. Hence, Γij gathers parameters

of fixed and variable trade costs as well as some characteristics of the demand in the

destination market. The attractiveness index Γij is linked to the minimum productivity

required to obtain a positive real profit in expectations on the market j : E
(

πij(φ)

Pi

)
≥ 0 if

and only if φ ≥ (δiΓij)
1

σ−1 .39

39This can be established directly from (12) by rearranging.
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Second, consider condition (27). Using the above definition of market attractiveness,

one can obtain an alternative expression of the optimal marketing effort nij(φ) given by

Proposition 1 which allows to identify a cutoff productivity φ̂ij below which it is not

optimal to invest in market j.

Lemma 2. Given the set of destination markets S, the optimal marketing effort nij(φ) is

nij(φ) =
Dij

γε̄ijrij(φ)

(
1−

(
φ̂ij

φ

)σ−1
)

and is positive if and only if φ ≥ φ̂ij where

φ̂ij =

(
δi
∑
k∈S

ωi,jkΓik

) 1
σ−1

.

In addition, nij(φ) < 1 provided γ > γ = supj∈S
Dij

4ε̄ijrij(φ̂ij)
.

Proof. See Appendix H

It follows that as long as φ is larger than maxj∈S φ̂ij all marketing efforts nij(φ) for all

j ∈ S are positive. Moreover, note that

(φ̂ij)
σ−1 = δi

∑
k∈S

ωi,jkΓik = δi

[
Γij +

SCVβi

1 + SCVβi

∑
k∈S

Γij − Γik

SCVαk

]
(29)

which implies that φ̂ij is strictly increasing in δi and Γij and strictly decreasing in Γik

SCVαk
for

all k ̸= j. Hence, the cutoff productivity for market j intuitively raises when wage in origin

country raises and when market j becomes less attractive. In addition, φ̂ij decreases when

other markets in S are less attractive. However, if a market k faces very volatile demand,

the effect of a change in its attractiveness index Γik on φ̂ij will be small. Overall, observe

that the country j ∈ S which is associated to the largest cutoff φ̂ij is characterized by

the largest attractiveness index Γij. Note that the impact of the portfolio S on the cutoff

φ̂ij needed to be active on market j disappears when the source of correlation between

markets vanishes, i.e. when SCVβi
= 0. Indeed, in that case, φ̂ij = δiΓij and is solely

determined by Γij. And when SCVβi
> 0, φ̂ij > δiΓij if and only if

∑
k∈S

Γij−Γik

SCVαk
> 0 or

equivalently,

Γij > Γ̄i(S) ≡
∑
k∈S

1/SCVαk∑
l∈S

1
SCVαl

Γik.

This reflect the fact that if market j is less attractive than on average in the portfolio S,
then the cut-off productivity on market j is higher than it would be in the absence of

production volatility.

Now, consider condition (28) on νij(φ) for any j /∈ S. Similarly to the above analysis,

we derive a cutoff productivity φ∗
ij such that νij(φ) > 0 for any φ < φ∗

ij.
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Lemma 3. It is never optimal to invest on market j /∈ S if and only if φ < φ∗
ij where

(
φ∗
ij

)σ−1
= δi

[
Γij +

SCVβi

1 + SCVβi

∑
k∈S

Γij − Γik

SCVαk

]
. (30)

Proof. See Appendix I.

Note that by comparing (30) and (29), the cutoff types φ̂ij and φ∗
ij share the same

expression in function of the indexes of attractiveness, the only difference is that in the

former j ∈ S while in the latter j /∈ S. Hence, φ∗
ij is also increasing in Γij and thus the

lowest value of φ∗
ij corresponds to the market with the lowest attractiveness index not in

S. It follows that as long as φ is lower than minj /∈S φ
∗
ij then all the multipliers νij(φ) are

strictly positive and the firm with productivity φ will never consider investing in a market

that does not belong to S.
From Lemmas 2 and 3, one can summarize the range Di(S) of φ that makes S ⊂ N

admissible as φ ∈ Φi and

max
j∈S

φ̂ij ≤ φ ≤ min
j /∈S

φ∗
ij.

and for S = N the condition defining Di(N ) is simply maxj∈N φ̂ij ≤ φ. This set, if non

empty, defines the range of productivities φ consistent with S that allows to consider

the indirect utility Vi(φ,S). Actually, for S ⊂ N , Di(S) is non empty if and only if

maxj∈S Γij < minj /∈S Γij. Hence, an admissible portfolio of size l necessarily contains the l

most attractive markets. It follows that, without loss of generality, we can reindex markets

from 1 to N according to their degree of attractiveness from the perspective of the origin

country i, so that Γi1 corresponds to the most attractive market and ΓiN to the least

attractive market. A firm with productivity φ has only one admissible and thus optimal

portfolio whose size is determined by the domain that contains φ. We can thus denote

the unique optimal portfolio of firm φ by S(φ) and its value by V ∗
i (φ) = Vi(φ,S(φ)).

When S(φ) is composed of the l most attractive markets, for any l = 1...N , let us denote

φil = maxj∈S(φ) φ̂ij and φi,l+1 = minj /∈S(φ) φ
∗
ij, with the convention that φi,N+1 = ∞.

Using (29) and (30), we can sum up our result in the following Proposition.

Proposition 3. The unique optimal portfolio S(φ) for a firm with productivity φ is the

set of the l most attractive markets when φil ≤ φ ≤ φi,l+1 where for all l = 1, ..., N − 1,

(φil)
σ−1 = δi

[
Γil +

SCVβi

1 + SCVβi

l∑
k=1

Γil − Γik

SCVαk

]

and φi,N+1 = ∞.

The value of the optimal portfolio. Let us compute the value V ∗
i (φ) of the optimal

portfolio S(φ) from the viewpoint of a firm with productivity φ in origin country i. Its

expression is given in the following Proposition.
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Proposition 4. At the equilibrium, a firm with productivity φ and from origin country i

(i) either does not produce when φ ≤ φi1 and gets V ∗
i (φ) = 0,

(ii) or produces and sells in the l most attractive markets when φil ≤ φ ≤ φi,l+1 and gets

V ∗
i (φ) =

1

2γ

l∑
j=1

Dij

(
1−

(
φ̂ij

φ

)σ−1
)(

1− δiΓij

φσ−1

)
> 0

where

(φ̂ij)
σ−1 = δi

[
Γij +

SCVβi

1 + SCVβi

l∑
k=1

Γij − Γik

SCVαk

]
.

Proof. See Appendix J.

As indicated by Proposition 4, the value brought by a given market to the firm depends

on its interest in terms of diversification measured through Dij , on its attractiveness index

Γij as well as the cutoff φ̂ij which partly determines how much to invest there (see Lemma

2). While the attractiveness index Γij depends only market j’s characteristics, both Dij

and φ̂ij depends in general on the optimal portfolio composition, and this reminds us

that the problems of how much to invest on each market are not separable, except in two

specific cases that we now review.

• All markets have the same attractiveness index, i.e. Γij = Γi for all j ∈ N . Then

from Proposition 4, we deduce that φij = φ̂ij = (δiΓi)
1

σ−1 for all j. Hence, for

φ ≥ (δiΓi)
1

σ−1

V ∗
i (φ) =

1

2γ

(
1− δiΓi

φσ−1

)2 N∑
j=1

Dij.

Hence, for the firms that are sufficiently productive, i.e. φ ≥ (δiΓi)
1

σ−1 , we have that

S(φ) = N .40 Intuitively, as all markets share the same attractiveness index, the only

factor that differentiate them is the relative volatility of their demand. But as all

demand shocks are independent, if a firm is sufficiently productive, it is thus optimal

to diversify as much as possible by investing on all markets. The problems of how

much to invest on each market are separable and a higher demand volatility on a

market translates into less investment.

• When there is no production shock (SCVβi
= 0), then Dij = 1/SCVαj

and

Proposition 4, we deduce once again that φij = φ̂ij = (δiΓij)
1

σ−1 for all j and

hence, for φ ≥ (δiΓij)
1

σ−1

V ∗
i (φ) =

1

2γ

∑
j∈S(φ)

1

SCVαj

(
1− δiΓij

φσ−1

)2

.

40And when φ < (δiΓi)
1

σ−1 , then S(φ) = ∅.
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The firm φ chooses a portfolio with the l most attractive markets when φil ≤ φ ≤
φi,l+1. As in the previous case, the problems of how much to invest on each market are

separable and a higher demand volatility on a market translates into less investment.

Finally, note that the investment problems remain intertwined even if the relative

volatility of demand shocks is the same everywhere, i.e. SCVαj
= SCVα for all j ∈ N .

Indeed, in that context, the diversification index is uniform across markets in the portfolio

because Dij only depends on S through its cardinal |S|:

Dij = Di(|S|) =
1

SCVα

1

1 + SCVβi

(
1 + |S|

SCVα

) .
Nevertheless, the value brought by a given market still depends on the composition of the

portfolio through the cutoff φ̂ij.

4.4 The impact of climate change

This last section is devoted to examine the impacts of climate change, interpreted as a

raise in production shock volatility, on the (partial) equilibrium. Let us start with the

impacts at the firm’s level, before looking at the consequences for the industry.

Implications for the firm’s decisions. Consider a firm with productivity φ that

belongs to [φil, φi,l+1] and its optimal portfolio S. On the intensive margin, two channels

convey the impacts of an increase in the volatility of βi measured by V(βi). First, the

diversification index Dij decreases whatever j, which means that there are incentives to

invest less in every market in the portfolio ceteris paribus. Moreover, from (25) we get

that:
∂ lnDij

∂ lnSCVβi

= − SCVβi
(1 + I(S))

1 + SCVβi
(1 + I(S))

(31)

and hence the elasticity of Dij w.r.t SCVβi
is constant whatever j. In other words, the lower

the diversification index or, equivalently, the riskier the demand, the less Dij decreases as

a result of increased production volatility. To sum up, the effect of climate change on the

diversification index is leading the firm to reduce its marketing investments, as the world

is riskier due to increased correlation between profit risks. We refer to this as the scale

effect of climate change on investment decisions.

Second, Cij(φ), the weighted sum of profitability ratios, changes as the productivity

cut-off φ̂ij changes. More precisely, we see from (29) that φ̂ij increasing in the volatility of

β if and only if
∑

k∈S
Γij−Γik

SCVαk
> 0 or equivalently when

Γij > Γ̄i(S) ≡
l∑

k=

1/SCVαk

I(S)
Γik.
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Γ̄i(S) denotes a weighted average of attractiveness indexes in the portfolio S where each

attractiveness index Γik is weighted by its relative demand riskiness
1/SCVαk

I(S) . When

market j is less attractive than average, the productivity threshold φ̂ij increases with the

volatility of the production shock, while when market j is more attractive than average,

φ̂ij decreases. All other things being equal, climate change leads the firm to increase its

marketing investments in the most attractive markets in its portfolio and reduce them

elsewhere. We refer to this as the redeployment effect of climate change on investment

decisions.

Finally, on the extensive margin, clearly both φil and φi,l+1 increase with the volatility

of the production shock. It is therefore possible that the firm considered is no longer

productive enough to choose the optimal portfolio S with l markets, and must therefore

abandon the least attractive market to concentrate on the more attractive ones.41 We

refer to this as the selection effect of climate change on investment decisions. Overall, the

impact on the value V ∗
i (φ) of the optimal portfolio results from the confrontation of the

scale, redeployment and selection effects described above.

Implications for export value and number of exporters at the industry’s level.

Let us now characterize how climate change impacts the aggregate export value Xij

from origin country i to destination country j, and also the number of exporting firms

Mij. Starting with the latter, and using Proposition 3, we know that all firms with a

productivity larger than φij will invest in market j in varying degrees, to reach consumers

there. Therefore, the number of exporting firms from i to j is given by

Mij = Mi

N∑
l=j

∫ φi,l+1

φil

dGi(φ) = Mi (1−Gi(φij))

where the cutoff φij is given by:

(φij)
σ−1 = δi

[
Γij +

SCVβi

1 + SCVβi

j∑
k=1

Γij − Γik

SCVαk

]
. (32)

Without ambiguity, φij is increasing in SCVβi
and hence we get the result that climate

change by raising the volatility of production decreases the number of exporting firms.

Another interesting result is that the probability of exporting, i.e. 1−Gi(φij), depends on

the attractiveness indexes as well as the demand riskiness of all more attractive markets

than market j, as indicated by (32).

Concerning the aggregate export value between i and j, we have, by virtue of the Law

of Large Numbers:

Xij = Mi

∫ ∞

0

E [pij(φ)qij(φ)] dGi(φ) = Mi

N∑
l=j

∫ φi,l+1

φil

E [pij(φ)qij(φ)] dGi(φ) (33)

41This happens when φ is lower than the resulting threshold φil following the change in production
volatility.
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where

E [pij(φ)qij(φ)] = Pi
Dij(φ)

γ

(
1−

(
φ̂ij

φ

)σ−1
)

with

Dij(φ) =
1

SCVαj

1

1 + SCVβi
(1 + I (S(φ)))

I (S(φ)) =
l∑

k=1

1

SCVαk

φ̂ij =

(
δi

[
Γij +

SCVβi

1 + SCVβi

l∑
k=1

Γij − Γik

SCVαk

]) 1
σ−1

Hence, (33) rewrites as follows:

Xij =
MiPi

γ

N∑
l=j

Dij

∫ φi,l+1

φil

(
1−

(
φ̂ij

φ

)σ−1
)
dGi(φ) (34)

Not surprisingly given the discussion in the previous section, (34) allows to decompose

the impact of increased production volatility on Xij into a scale, a redeployment and a

selection effect. Firstly, because an increased production volatility makes the world riskier

by increasing the correlation between profits made on each market, it reduces the interest

of diversification, i.e. Dij decreases, and this leads all firms exporting to j to reduce their

investment level there. As shown by (31), the scale effect is more pronounced when the

demand riskiness I (S(φ)) of the portfolio is larger, that is for firms with bigger portfolios

and thus larger productivity. Overall, the scale effect contributes to decrease Xij following

an increase in production volatility.

Secondly, the redeployment of investments within the portfolio has effects on sales on

market j that depend on the composition of the portfolio. More precisely, a firm tends to

increase (decrease) its investments to reach consumers in j if this market is more (less)

attractive than the average in its portfolio, the average being understood as weighted by

the relative risk of demand. Overall, the impact of the redeployment effect on Xij remains

largely an empirical question.

Lastly, the selection effect reflects the fact that the bounds φil and φi,l+1 are increasing

in the production volatility. In other words, a greater productivity is required to include

market j in one’s portfolio, so the number of exporters decreases. This contributes to

lower exports in value terms.

5 Conclusion

This paper has examined how firms, confronted with production and demand shocks,

navigate marketing investments and export decisions in response to climate-induced
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volatility, thereby impacting global trade dynamics. While climate change poses multifaceted

risks to firms, disrupting production processes across various industries, the wine industry

is particularly susceptible. Temperature fluctuations can alter grape cultivation, and

changes in precipitation can lead to water stress and increased pest susceptibility. As

our empirical analysis demonstrates, wineries must adapt to these climate disruptions by

strategically selecting export markets amidst yield uncertainty.

The theoretical analysis provided in this paper elucidate how the volatility of climate

shocks, impacting production and quality, influences exports. Firms may reduce marketing

investments to reach consumers while reallocating resources to the most attractive markets.

Additionally, some firms may find it optimal to streamline their portfolio by exiting less

favorable markets. In the analysis, we define precisely what are the attractivity index, the

diversification index and the relative profitability index which are key to understand how

risk averse entrepreneurs make export decisions. A natural extension of the present work

would be to consider that market penetration decisions and investments are made over

time, as in Alessandria et al. (2021), rather than in a static framework as in this paper,

but this is left for further research.
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Appendix

A Description of variables and descriptive statistics

Table A1: Sample of importing countries

Argentina Greece Norway
Australia Hong-Kong Philippines
Austria Ireland Poland
Belgium Israel Portugal
Brazil Italy Germany
Cambodia Ivory Coast Russia
Cameroon Japan Singapore
Canada Lebanon South Africa
Chile Luxembourg South Korea
China Malaysia Spain
Colombia Malta Sweden
Cyprus Mauritius Switzerland
Czech Republic Mexico Thailand
Denmark Morocco Vietnam
Netherlands United Kingdom Finland
New Zealand United States Gabon
Nigeria

Figure A1: Export volumes and value to core and peripheral markets

(a) Export volumes (b) Export value
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Table A2: Definition of variables

Name Definition Source

Mean consumption
expenditure

Mean of wine consumption expenditure R over the
previous 5 years

De Sousa et al. (2020) and OIV data

Excess of wine
consumption
expenditure
volatility

Positive difference between destination country
volatility computed as the standard deviation
of yearly growth rates of wine consumption
expenditure over 6-year rolling periods and French
market volatility

De Sousa et al. (2020) and OIV data

Lower wine
consumption
expenditure
volatility

Negative difference between destination country
volatility computed as the standard deviation
of yearly growth rates of wine consumption
expenditure over 6-year rolling periods and French
market volatility

De Sousa et al. (2020) and OIV data

Wine consumption
expenditure
skewness

Unbiased skewness of the wine consumption
expenditure in the destination country

De Sousa et al. (2020) and OIV

Growing degree
days (GDD)

Total growing degree days from January to August
with base temperature of 10 ◦C

Keane and Neal (2020)

Killing degree days
(KDD)

Total killing degree days from January to August,
base temperature of 35 ◦C

Keane and Neal (2020)

Cumulated rainfall
(P57)

Total daily precipitation from May to July Cardebat et al. (2014)

Cumulated rainfall
(P89)

Total daily precipitation in August and September Cardebat et al. (2014)

Cumulated rainfall
(PADP)

Total daily precipitation from January to August
(full growing season)

Fraga and Santos (2017)

Vapour pressure
deficit (VPD)

Difference between how much water the air can
hold when it is saturated and how much water it
currently holds from January to August

Roberts et al. (2013)
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Figure A2: Dynamics of KDD (extreme weather indicator)
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Figure A3: Dynamics of KDD for other regions
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Table A3: Calculus formulas of weather indicators

Variables name Descriptions Sources

GDD/KDD
∑D

d=1DDC , with: Keane and Neal (2020)

DDC =


0 if C > TMax

Tavg − C if C < TMin

((Tavg−C)cos−1(S)+(TMax−TMin)sin
(S)
2 )

π−1 otherwise

P57
∑30July

i=1May dailyPi,57 Cardebat et al. (2014)

P89
∑30Sep

i=1Aug dailyPi,89 Cardebat et al. (2014)

PADP
∑30Aug

i=1Jan dailyPi,18 Fraga and Santos (2017)

VPD
∑D

d=1 dailyV PDD, with: Roberts et al. (2013)

V PDD = 0.6107(e
17.269TMax
237.3TMax − e

17.269TMin
237.3TMin )
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Table A4: Summary statistics

Variable Obs. Mean Std. Dev. Min Max

Ln V olume Exports 76,634 7.015 2.497 0 15.273
Ln Export Prices 76,634 -2.850 0.8550 -6.508 3.045
Perceived Quality 76,634 -4.38e-12 0.5580 -4.287 5.533
Ln Cons. Expenditure (Lag) 121,870 6.693 2.089 1.335 10.386
Higher ∗ Ln Exp. V olatility 121,870 -2.422 1.649 -9.721 0
Lower ∗ Ln Exp. V olatility 121,870 -0.790 1.771 -7.572 0
Cons. Expenditure Skewness 121,870 0.080 1.026 -2.224 2.208
GDD (third lag) 121,870 7.091 0.210 6.705 7.517
KDD (Second lag) 121,870 0.686 1.265 0 5.285
KDD (Third lag) 121,870 0.692 1.276 0 5.285
Precipitations (Second lag) 121,870 6.032 0.340 4.603 6.624
Squared precipitations (Second lag) 121,870 36.493 4.014 21.189 43.884
Precipitations (Third lag) 121,870 6.018 0.342 4.603 6.624
Squared precipitations (Third lag) 121,870 36.338 4.027 21.189 43.883
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Table A5: Correlation matrix

Cons. Expjt−1 High ∗ Exp. V oljt Low ∗ Exp. V oljt Cons.Exp. Skewjt Ln(GDDrt−1) Ln(GDDrt−3) Ln(GDDrt−3) Ln(KDDrt−1)

Cons. Expjt−1 1.0000
High ∗ Exp. V oljt -0.1726 1.0000
Low ∗ Exp. V oljt -0.2702 -0.6549 1.0000
Cons.Exp. Skewjt -0.0465 0.0868 -0.0289 1.0000
Ln(GDDrt−1) 0.0046 0.0635 -0.0814 0.0033 1.0000
Ln(GDDrt−2) 0.0045 0.0441 -0.0573 0.0024 0.8224 1.0000
Ln(GDDrt−3) 0.0013 0.0203 -0.0303 0.0015 0.8458 0.8424 1.0000
Ln(KDDrt−1) 0.0078 0.0439 -0.0664 0.0104 0.2011 0.0373 0.0722 1.0000
Ln(KDDrt−2) 0.0068 0.0075 -0.0368 -0.0334 -0.0202 0.2399 -0.0053 0.0622
Ln(KDDrt−3) 0.0038 0.0347 -0.0727 -0.0234 0.0207 -0.0213 0.2270 0.0062
Ln(PDAPrt−1) 0.0022 0.0010 -0.0087 0.0041 -0.3506 -0.2581 -0.3736 -0.1245
Ln(PDAPrt−2) 0.0016 0.0205 -0.0331 0.0081 -0.3047 -0.3468 -0.2446 0.0900
Ln(PDAPrt−3) -0.0009 0.0322 -0.0259 0.0101 -0.2507 -0.3273 -0.4011 0.2551

(Ln(PDAPrt−1))
2 0.0022 0.0013 -0.0099 0.0041 -0.3425 -0.2469 -0.3633 -0.1315

(Ln(PDAPrt−2))
2 0.0015 0.0211 -0.0339 0.0077 -0.2970 -0.3398 -0.2348 0.0890

(Ln(PDAPrt−3))
2 -0.0011 0.0328 -0.0265 0.0102 -0.2393 -0.3197 -0.3942 0.2609

Ln(KDDrt−2) Ln(KDDrt−3) Ln(PDAPrt−1) Ln(PDAPrt−2) Ln(PDAPrt−) (Ln(PDAPrt−1))
2 (Ln(PDAPrt−2))

2 (Ln(PDAPrt−3))
2

Ln(KDDrt−2) 1.0000
Ln(KDDrt−3) 0.0701 1.0000
Ln(PDAPrt−1) 0.2316 0.0224 1.0000
Ln(PDAPrt−2) -0.1157 0.2520 0.3922 1.0000
Ln(PDAPrt−3) 0.0406 -0.0923 0.4662 0.4759 1.0000

(Ln(PDAPrt−1))
2 0.2372 0.0282 0.9989 0.3887 0.4607 1.0000

(Ln(PDAPrt−2))
2 -0.1209 0.2567 0.3852 0.9990 0.4689 0.3825 1.0000

(Ln(PDAPrt−3))
2 0.0397 -0.0975 0.4614 0.4696 0.9990 0.4563 0.4634 1.0000
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B Description of Khandelwal et al. (2013) method to infer quality

The literature has developed several methods in order to infer wine quality. First,

a vast majority of research papers uses export unit values to evaluate product quality

(Hummels and Skiba, 2004; Martin, 2012). However, this method is unsatisfactory, as

export unit values may vary for other reasons than quality, such as firms’ market power,

differences in production costs, or differences in exchange rates (Hallak and Schott, 2011).

The second method, widely used for the evaluation of wine quality, lies on the use of ratings

from experts or guidebooks. For instance, Crozet et al. (2012) rely on Juhlin quality

rating to evaluate French Champagne quality, while Chen and Juvenal (2016), Chen and

Juvenal (2018) and Chen and Juvenal (2022) focus on the Wine Spectator magazine in

order to infer quality of Argentinean wines. Bargain et al. (2023) use the scores from

Robert Parker attributed to French regions and subregions each year as broad proxies for

local quality. However, these ratings do not cover all wine appellations and only include 18

regions or subregions over the period 1998-202042. As we are interested in a measure that

is importing-country specific, we cannot follow this method. Consequently, we rely on the

third method developed by Khandelwal et al. (2013) that relies on the extrapolation of

quality based on the estimation of an empirical demand function. This allows to estimate

the perceived quality of French wines and assess if consumers in destination markets

distinguish French wine appellations. This method has been implemented, for instance, in

Emlinger and Lamani (2020) to infer Cognac quality.

Following the methodology of Khandelwal et al. (2013), the quality of appellation k,

exported by France to destination country j at time t is estimated as the residual of the

following OLS regression:

ln Qjkt + σ ln pjkt = νk + νjt + ϵjkt (B1)

Qjkt is the volume of appellation k exported to destination country j at time t, pjkt is the

price of the appellation k in market j at time t, νk represents appellation fixed effects that

capture price and quantity differences between appellations, νjt represents time-varying

destination country fixed effects that capture both the price index and the income level of

the destination country and ϵjkt is the error term. Note that σ represents the elasticity of

substitution, with σ > 1.

Thus, the inferred quality of exported wines is given by λ̂jkt =
ϵ̂jkt
σ−1

. Following previous

empirical studies such as Manova and Yu (2017), we set the value of σ to 5. As a result,

we obtain an importer-appellation-year specific quality measure.

42See https://www.robertparker.com/resources/vintage-chart. for more details on vintage scores
from the Parker rating.
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C Timing of marketing wines

Table C1: Timing of marketing of wines according to RENFORT group data

T+1 T+2 T+3

Entry-level 75% 20% 5%
Mid-range 0 35-40% 60-65%
High-end 0 10-15% 80-85%
We extend our gratitude to Franck Lecalier, CEO of the
RENFORT group (a leading French wine bottling company)
for providing valuable statistics on marketing timing by range
level.
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D Description of the methodology of Schlenker and Roberts
(2009)

Schlenker and Roberts (2009) measure heat exposure in degree days by quantifying

the accumulation of heat above a specified temperature threshold. This agronomic unit is

determined by implementing a sinusoidal function to capture daily temperature exposure

above the specified threshold C (Snyder, 1985). The degree days are thereby calculated

for each region r and each day d of the growing season t by applying the following formula:

DDr,d,t,C =


0 if C ≥ TMax

Tavg − C if C ≤ TMin

((Tavg−C)S+(TMax−TMin)sin
(S)
2

)

π
otherwise

where TMin and TMax are respectively the minimum and maximum temperature for each

region r and day d of the growing season t, Tavg =
TMax+TMin

2
and S = cos−1(2C−TMax−TMin

TMax−TMin
).

Once the degree days are obtained, we can determine the Growing Degree Days (GDD),

the total accumulation of heat above the specified threshold C until reaching the bound of

harmful temperature for crop development, whose accumulation of heat from it corresponds

to Killing Degree Days (KDD). In our study, the base temperature enabling vine growth

is 10◦C, while the threshold separating GDD and KDD indicators is 35◦C. This leads us

to compute daily GDD and KDD using these formulas:

GDDr,d,t = DDr,d,t,10 −DDr,d,t,35 (D1)

KDDr,d,t = DDr,d,t,35 (D2)

Then, we aggregate the indicators to annual values by summing the daily values of the

growing season from January 1st to August 31st to obtain GDDr,t and KDDr,t.
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E Robustness checks

Table E1: Demand uncertainty, weather shocks and the number of appellations

Dependent variable: Number of appellations: njrt

(1) (2) (3) (4) (5)

Ln Cons. Expenditurejt−1 0.107*** 0.107*** 0.0318***
(0.0269) (0.0225) (0.00761)

Higher ∗ Ln Exp. V olatilityjt -0.00691** -0.00691***
(0.00330) (0.00233)

Lower ∗ Ln Exp. V olatilityjt 0.00179 0.00179 -0.0364***
(0.00382) (0.00254) (0.00630)

Cons.ExpenditureSkwenessjt 0.00390 0.00390* 0.00872*
(0.00317) (0.00227) (0.00509)

Ln(GDDrt−3) -0.212 -0.212 -0.212
(0.151) (0.151) (0.151)

Ln(KDDrt−2) -0.0767*** -0.0767***
(0.0128) (0.0128)

Ln(KDDrt−3) -0.0560*** -0.0560***
(0.0117) (0.0117)

Ln(PDAPrt−2) 2.656*** 2.656*** 2.656***
(0.557) (0.549) (0.549)

(Ln(PADAPrt−2))
2 -0.211*** -0.211*** -0.211***

(0.0492) (0.0486) (0.0486)
Ln(PDAPrt−3) 3.645*** 3.645*** 3.646***

(0.538) (0.532) (0.532)

(Ln(PADAPrt−3))
2 -0.295*** -0.295*** -0.295***

(0.0479) (0.0474) (0.0474)
NoCore ∗Higher ∗ Ln Exp. V olatilityjt -0.0288***

(0.00586)
Core ∗Higher ∗ Ln Exp. V olatilityjt -0.0596***

(0.00974)
NoCore ∗ Ln(KDDrt−2) -0.0760***

(0.0139)
Core ∗ Ln(KDDrt−2) -0.0814*

(0.0440)
NoCore ∗ Ln(KDDrt−3) -0.0548***

(0.0130)
Core ∗ Ln(KDDrt−3) -0.0640

(0.0437)

Observations 10,417 10,417 10,417 10,417 10,417
Country FE YES YES NO YES NO
Year FE YES NO NO NO NO
Region-Year FE NO YES NO YES NO
Country-Year FE NO NO YES NO YES

Robust standard errors, clustered at country-region level, in parentheses.
Regressions include a constant which is not reported in the Table.
Significance levels: *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table E2: Results without including the skewness of wine consumption expenditure

Dependent variable: Export volumes: Ln(yjkrt) Probability of exporting: Prob(yjkrt = 1) Export prices: Ln(pjkrt)

(1) (2) (3) (4) (5) (6)

Ln Cons. Expenditurejt−1 0.280*** 0.283*** 0.0472*** 0.0472*** -0.0283** -0.0283**
(0.0343) (0.0344) (0.00798) (0.00798) (0.0133) (0.0133)

Higher ∗ Ln Exp. V olatilityjt -0.0128** -0.00300** 0.00215
(0.00514) (0.00134) (0.00188)

Lower ∗ Ln Exp. V olatilityjt 0.0295*** 0.0280*** 0.00206 0.00207 -0.000385 -0.000492
(0.00606) (0.00601) (0.00150) (0.00151) (0.00198) (0.00199)

NoCore ∗Higher ∗ Ln Exp. V olatilityjt -0.00879 -0.00302** 0.00242
(0.00535) (0.00135) (0.00193)

Core ∗Higher ∗ Ln Exp. V olatilityjt -0.0333*** -0.00291 0.000725
(0.00748) (0.00199) (0.00244)

Observations 76,634 76,634 121,870 121,870 76,390 76,390
R-squared 0.745 0.746 0.512 0.512 0.722 0.722
Country FE YES YES YES YES YES YES
Appellation FE YES YES YES YES YES YES
Region-Year FE YES YES YES YES YES YES

Robust standard errors, clustered at destination-appellation level, in parentheses.

Regressions include a constant which is not reported in the Table.

Significance levels: *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table E3: Results using log differences to compute expenditure moments

Dependent variable: Export volumes: Ln(yjkrt) Probability of exporting: Prob(yjkrt = 1) Export prices: Ln(pjkrt)

(1) (2) (3) (4) (5) (6)

Ln Cons. Expenditurejt−1 0.275*** 0.280*** 0.0467*** 0.0468*** -0.0260* -0.0260*
(0.0343) (0.0344) (0.00799) (0.00800) (0.0135) (0.0135)

Higher ∗ Ln Exp. V olatilityjt -0.0164*** -0.00340*** 0.00263
(0.00496) (0.00130) (0.00187)

Lower ∗ Ln Exp. V olatilityjt 0.0202*** 0.0188*** 0.000953 0.000934 -0.00130 -0.00133
(0.00574) (0.00570) (0.00144) (0.00145) (0.00188) (0.00189)

Cons.ExpenditureSkwenessjt 0.00194 0.00235 -0.000595 -0.000589 -0.00253 -0.00252
(0.00483) (0.00482) (0.00119) (0.00119) (0.00181) (0.00181)

NoCore ∗Higher ∗ Ln Exp. V olatilityjt -0.0113** -0.00335** 0.00271
(0.00516) (0.00132) (0.00193)

Core ∗Higher ∗ Ln Exp. V olatilityjt -0.0412*** -0.00373* 0.00222
(0.00737) (0.00191) (0.00241)

Observations 76,634 76,634 121,870 121,870 76,390 76,390
R-squared 0.745 0.745 0.512 0.512 0.722 0.722
Country FE YES YES YES YES YES YES
Appellation FE YES YES YES YES YES YES
Region-Year FE YES YES YES YES YES YES

Robust standard errors, clustered at destination-appellation level, in parentheses.

Regressions include a constant which is not reported in the Table.

Significance levels: *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table E4: Results including the first lags of weather variables

Dependent variable: Export volumes: Ln(yjkrt) Probability of exporting: Prob(yjkrt = 1) Export prices: Ln(pjkrt) Inferred quality: λ̂jkrt

(1) (2) (3) (4) (5) (6) (7) (8)

Ln(GDDrt−1) 0.0953 0.0968 0.0198 0.0198 -0.00652 -0.00674 0.0157 0.0158
(0.0849) (0.0849) (0.0186) (0.0186) (0.0336) (0.0336) (0.0414) (0.0414)

Ln(GDDrt−2) 0.0458 0.0478 -0.0744*** -0.0744*** 0.0582* 0.0576 0.0843* 0.0840*
(0.0815) (0.0815) (0.0181) (0.0181) (0.0353) (0.0353) (0.0434) (0.0434)

Ln(GDDrt−3) 0.317*** 0.318*** 0.0421* 0.0421* 0.0232 0.0228 0.108** 0.108**
(0.0985) (0.0985) (0.0239) (0.0239) (0.0350) (0.0350) (0.0459) (0.0459)

Ln(KDDrt−1) -0.0425*** -0.00282** -0.00572*** -0.0178***
(0.00519) (0.00143) (0.00211) (0.00263)

Ln(KDDrt−2) -0.0377*** 0.000865 -0.00541** -0.0162***
(0.00536) (0.00136) (0.00214) (0.00267)

Ln(KDDrt−3) -0.0550*** -0.00326** -0.0111*** -0.0276***
(0.00490) (0.00133) (0.00206) (0.00255)

Ln(PADPrt−1) 0.624** 0.614* 0.111 0.111 0.0302 0.0330 0.194 0.195
(0.318) (0.318) (0.0694) (0.0694) (0.124) (0.124) (0.155) (0.155)

(Ln(PADPrt−1))
2 -0.0513* -0.0504* -0.00999* -0.0100* -0.00177 -0.00201 -0.0151 -0.0151

(0.0268) (0.0268) (0.00592) (0.00592) (0.0105) (0.0105) (0.0132) (0.0132)
Ln(PADPrt−2) 0.558 0.554 -0.180** -0.180** 0.325** 0.326** 0.545*** 0.547***

(0.374) (0.374) (0.0828) (0.0828) (0.146) (0.146) (0.182) (0.182)

(Ln(PADPrt−2))
2 -0.0434 -0.0431 0.0133* 0.0133* -0.0255** -0.0256** -0.0427*** -0.0427***

(0.0312) (0.0312) (0.00697) (0.00697) (0.0122) (0.0122) (0.0153) (0.0153)
Ln(PADPrt−3) 0.159 0.154 -0.233*** -0.233*** 0.643*** 0.644*** 0.844*** 0.843***

(0.377) (0.377) (0.0834) (0.0834) (0.144) (0.144) (0.178) (0.178)

(Ln(PADPrt−3))
2 -0.0113 -0.0108 0.0184*** 0.0184*** -0.0544*** -0.0544*** -0.0708*** -0.0707***

(0.0317) (0.0317) (0.00707) (0.00708) (0.0122) (0.0122) (0.0150) (0.0150)
NoCore ∗ Ln(KDDrt−1) -0.0479*** -0.00223 -0.00450** -0.0176***

(0.00596) (0.00148) (0.00229) (0.00288)
Core ∗ Ln(KDDrt−1) -0.00709 -0.00769** -0.0138*** -0.0191***

(0.0183) (0.00330) (0.00434) (0.00577)
NoCore ∗ Ln(KDDrt−2) -0.0424*** 0.00102 -0.00356 -0.0150***

(0.00592) (0.00140) (0.00233) (0.00291)
Core ∗ Ln(KDDrt−2) -0.00680 -0.000443 -0.0175*** -0.0235***

(0.0144) (0.00289) (0.00395) (0.00506)
NoCore ∗ Ln(KDDrt−3) -0.0618*** -0.00231* -0.00975*** -0.0276***

(0.00570) (0.00137) (0.00225) (0.00280)
Core ∗ Ln(KDDrt−3) -0.0106 -0.0111*** -0.0199*** -0.0275***

(0.0169) (0.00350) (0.00440) (0.00560)

Observations 76,634 76,634 121,870 121,870 76,634 76,634 76,634 76,634
R-squared 0.759 0.759 0.513 0.513 0.729 0.729 0.006 0.006
Appellation FE YES YES YES YES YES YES YES YES
Country-Year FE YES YES YES YES YES YES YES YES

Robust standard errors, clustered at destination-appellation level, in parentheses.
Regressions include a constant which is not reported in the Table.
Significance levels: *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table E5: Results including the fourth lags of weather variables

Dependent variable: Export volumes: Ln(yjkrt) Probability of exporting: Prob(yjkrt = 1) Export prices: Ln(pjkrt) Inferred quality: λ̂jkrt

(1) (2) (3) (4) (5) (6) (7) (8)

Ln(GDDrt−3) 0.248** 0.251** 0.0142 0.0142 0.0240 0.0231 0.0920* 0.0917*
(0.106) (0.106) (0.0257) (0.0257) (0.0345) (0.0346) (0.0472) (0.0472)

Ln(KDDrt−2) -0.0510*** 4.56e-05 -0.00796*** -0.0227***
(0.00561) (0.00146) (0.00221) (0.00275)

Ln(KDDrt−3) -0.0486*** -0.00239* -0.0101*** -0.0248***
(0.00487) (0.00131) (0.00203) (0.00251)

Ln(KDDrt−4) -0.0629*** 0.000569 -0.0161*** -0.0358***
(0.00563) (0.00154) (0.00224) (0.00278)

Ln(PADPrt−2) 0.524 0.510 -0.153* -0.153* 0.310** 0.314** 0.518*** 0.520***
(0.406) (0.406) (0.0876) (0.0876) (0.149) (0.149) (0.188) (0.188)

(Ln(PADPrt−2))
2 -0.0347 -0.0336 0.0114 0.0114 -0.0233* -0.0236* -0.0378** -0.0379**

(0.0339) (0.0339) (0.00735) (0.00735) (0.0125) (0.0125) (0.0158) (0.0158)
Ln(PADPrt−3) 0.923*** 0.918*** -0.243*** -0.243*** 0.787*** 0.787*** 1.214*** 1.213***

(0.332) (0.332) (0.0752) (0.0752) (0.140) (0.140) (0.170) (0.170)

(Ln(PADPrt−3))
2 -0.0765*** -0.0761*** 0.0190*** 0.0190*** -0.0664*** -0.0664*** -0.102*** -0.102***

(0.0280) (0.0280) (0.00640) (0.00640) (0.0118) (0.0118) (0.0144) (0.0144)
Ln(PADPrt−4) -0.0984 -0.0972 -0.0110 -0.0111 0.0124 0.0129 -0.00908 -0.00821

(0.387) (0.386) (0.0770) (0.0770) (0.138) (0.138) (0.177) (0.177)

(Ln(PADPrt−4))
2 0.00804 0.00794 0.000957 0.000972 -0.000653 -0.000694 0.00119 0.00112

(0.0325) (0.0324) (0.00658) (0.00658) (0.0117) (0.0117) (0.0149) (0.0149)
NoCore ∗ Ln(KDDrt−2) -0.0574*** 0.000327 -0.00580** -0.0216***

(0.00637) (0.00150) (0.00241) (0.00303)
Core ∗ Ln(KDDrt−2) -0.00957 -0.00230 -0.0218*** -0.0297***

(0.0178) (0.00351) (0.00451) (0.00592)
NoCore ∗ Ln(KDDrt−3) -0.0543*** -0.00167 -0.00909*** -0.0249***

(0.00547) (0.00135) (0.00221) (0.00273)
Core ∗ Ln(KDDrt−3) -0.0110 -0.00830*** -0.0172*** -0.0242***

(0.0137) (0.00302) (0.00391) (0.00489)
NoCore ∗ Ln(KDDrt−4) -0.0666*** 0.00169 -0.0147*** -0.0350***

(0.00640) (0.00160) (0.00247) (0.00307)
Core ∗ Ln(KDDrt−4) -0.0384** -0.00853** -0.0251*** -0.0410***

(0.0188) (0.00360) (0.00430) (0.00571)

Observations 76,634 76,634 121,870 121,870 76,634 76,634 76,634 76,634
R-squared 0.759 0.759 0.513 0.513 0.729 0.729 0.008 0.008
Appellation FE YES YES YES YES YES YES YES YES
Country-Year FE YES YES YES YES YES YES YES YES

Robust standard errors, clustered at destination-appellation level, in parentheses.
Regressions include a constant which is not reported in the Table.
Significance levels: *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table E6: Results controlling for Vapour pressure deficit (VPD)

Dependent variable: Export volumes: Ln(yjkrt) Probability of exporting: Prob(yjkrt = 1) Export prices: Ln(pjkrt) Inferred quality: λ̂jkrt

(1) (2) (3) (4) (5) (6) (7) (8)

Ln(GDDrt−3) 0.258*** 0.261*** -0.0120 -0.0120 0.0780** 0.0772** 0.162*** 0.162***
(0.0981) (0.0982) (0.0234) (0.0234) (0.0339) (0.0339) (0.0448) (0.0448)

Ln(KDDrt−2) -0.0358*** 0.00126 -0.00820*** -0.0192***
(0.00547) (0.00138) (0.00215) (0.00269)

Ln(KDDrt−3) -0.0534*** -0.00283** -0.0112*** -0.0274***
(0.00472) (0.00121) (0.00200) (0.00245)

Ln(PADPrt−2) 0.709* 0.698* -0.0945 -0.0945 0.154 0.158 0.370** 0.371**
(0.386) (0.386) (0.0842) (0.0842) (0.149) (0.149) (0.184) (0.184)

(Ln(PADPrt−2))
2 -0.0557* -0.0548* 0.00556 0.00556 -0.00863 -0.00889 -0.0247 -0.0248

(0.0321) (0.0321) (0.00707) (0.00707) (0.0125) (0.0125) (0.0154) (0.0154)
Ln(PADPrt−3) 0.538 0.536 -0.260*** -0.260*** 0.729*** 0.728*** 1.045*** 1.045***

(0.373) (0.373) (0.0823) (0.0823) (0.145) (0.145) (0.177) (0.177)

(Ln(PADPrt−3))
2 -0.0434 -0.0432 0.0203*** 0.0203*** -0.0601*** -0.0601*** -0.0860*** -0.0859***

(0.0314) (0.0314) (0.00700) (0.00700) (0.0123) (0.0123) (0.0150) (0.0150)
Ln(V PDrt−2) -0.490*** -0.490*** -0.148*** -0.148*** 0.323*** 0.323*** 0.281*** 0.281***

(0.121) (0.121) (0.0283) (0.0283) (0.0454) (0.0454) (0.0575) (0.0575)
Ln(V PDrt−3) 0.304** 0.301** -0.0151 -0.0150 0.214*** 0.214*** 0.343*** 0.343***

(0.145) (0.145) (0.0301) (0.0301) (0.0476) (0.0476) (0.0632) (0.0632)
NoCore ∗ Ln(KDDrt−2) -0.0423*** 0.00158 -0.00595** -0.0180***

(0.00630) (0.00143) (0.00235) (0.00297)
Core ∗ Ln(KDDrt−2) 0.00579 -0.00142 -0.0226*** -0.0268***

(0.0181) (0.00354) (0.00453) (0.00597)
NoCore ∗ Ln(KDDrt−3) -0.0602*** -0.00188 -0.00988*** -0.0274***

(0.00558) (0.00126) (0.00219) (0.00270)
Core ∗ Ln(KDDrt−3) -0.00931 -0.0106*** -0.0200*** -0.0274***

(0.0167) (0.00341) (0.00436) (0.00554)

Observations 76,634 76,634 121,870 121,870 76,634 76,634 76,634 76,634
R-squared 0.759 0.759 0.513 0.513 0.729 0.730 0.007 0.007
Appellation FE YES YES YES YES YES YES YES YES
Country-Year FE YES YES YES YES YES YES YES YES

Robust standard errors, clustered at destination-appellation level, in parentheses.
Regressions include a constant which is not reported in the Table.
Significance levels: *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table E7: Results using the threshold 36◦C for the computation of the KDD

Dependent variable: Export volumes: Ln(yjkrt) Probability of exporting: Prob(yjkrt = 1) Export prices: Ln(pjkrt) Inferred quality: λ̂jkrt

(1) (2) (3) (4) (5) (6) (7) (8)

Ln(GDDrt−3) 0.195* 0.197* 0.00949 0.00953 0.0224 0.0218 0.0767* 0.0765*
(0.102) (0.102) (0.0249) (0.0249) (0.0338) (0.0339) (0.0459) (0.0459)

Ln(KDDrt−2) -0.0347*** -0.00134 -0.00569** -0.0158***
(0.00680) (0.00181) (0.00268) (0.00334)

Ln(KDDrt−3) -0.0441*** -0.00370** -0.0176*** -0.0331***
(0.00630) (0.00175) (0.00267) (0.00324)

Ln(PADPrt−2) 0.386 0.380 -0.150* -0.150* 0.275* 0.276* 0.440** 0.441**
(0.394) (0.395) (0.0854) (0.0854) (0.147) (0.147) (0.185) (0.185)

(Ln(PADPrt−2))
2 -0.0265 -0.0260 0.0111 0.0111 -0.0211* -0.0213* -0.0330** -0.0331**

(0.0329) (0.0329) (0.00716) (0.00716) (0.0124) (0.0124) (0.0155) (0.0155)
Ln(PADPrt−3) 0.595 0.597 -0.246*** -0.246*** 0.759*** 0.759*** 1.098*** 1.098***

(0.375) (0.375) (0.0829) (0.0829) (0.142) (0.142) (0.175) (0.175)

(Ln(PADPrt−3))
2 -0.0472 -0.0474 0.0192*** 0.0192*** -0.0642*** -0.0642*** -0.0921*** -0.0921***

(0.0315) (0.0315) (0.00704) (0.00705) (0.0119) (0.0119) (0.0148) (0.0148)
NoCore ∗ Ln(KDDrt−2) -0.0422*** -0.000346 -0.00355 -0.0150***

(0.00793) (0.00191) (0.00295) (0.00372)
Core ∗ Ln(KDDrt−2) 0.0129 -0.00951** -0.0193*** -0.0209***

(0.0231) (0.00466) (0.00602) (0.00793)
NoCore ∗ Ln(KDDrt−3) -0.0541*** -0.00195 -0.0149*** -0.0321***

(0.00743) (0.00184) (0.00300) (0.00365)
Core ∗ Ln(KDDrt−3) 0.0178 -0.0181*** -0.0347*** -0.0389***

(0.0221) (0.00527) (0.00547) (0.00712)
Observations 76,634 76,634 121,870 121,870 76,634 76,634 76,634 76,634
R-squared 0.759 0.759 0.513 0.513 0.729 0.729 0.005 0.005
Appellation FE YES YES YES YES YES YES YES YES
Country-Year FE YES YES YES YES YES YES YES YES

Robust standard errors, clustered at destination-appellation level, in parentheses.
Regressions include a constant which is not reported in the Table.
Significance levels: *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table E8: Results using the threshold 34◦C for the computation of the KDD

Dependent variable: Export volumes: Ln(yjkrt) Probability of exporting: Prob(yjkrt = 1) Export prices: Ln(pjkrt) Inferred quality: λ̂jkrt

(1) (2) (3) (4) (5) (6) (7) (8)

Ln(GDDrt−3) 0.393*** 0.396*** 0.0337 0.0337 0.0114 0.0107 0.112** 0.112**
(0.103) (0.103) (0.0253) (0.0253) (0.0344) (0.0344) (0.0467) (0.0467)

Ln(KDDrt−2) -0.0276*** -0.00186** 0.00277* -0.00342*
(0.00394) (0.000913) (0.00162) (0.00202)

Ln(KDDrt−3) -0.0417*** -0.000987 -1.97e-05 -0.0105***
(0.00393) (0.000914) (0.00157) (0.00192)

Ln(PADPrt−2) 0.470 0.462 -0.141* -0.141 0.248* 0.250* 0.428** 0.428**
(0.398) (0.398) (0.0856) (0.0856) (0.148) (0.148) (0.186) (0.186)

(Ln(PADPrt−2))
2 -0.0326 -0.0319 0.0103 0.0103 -0.0189 -0.0190 -0.0317** -0.0318**

(0.0332) (0.0332) (0.00718) (0.00718) (0.0124) (0.0124) (0.0156) (0.0156)
Ln(PADPrt−3) 0.767** 0.767** -0.259*** -0.259*** 0.707*** 0.707*** 1.075*** 1.076***

(0.374) (0.374) (0.0821) (0.0821) (0.142) (0.142) (0.175) (0.175)

(Ln(PADPrt−3))
2 -0.0627** -0.0627** 0.0203*** 0.0203*** -0.0586*** -0.0587*** -0.0890*** -0.0890***

(0.0314) (0.0314) (0.00695) (0.00695) (0.0120) (0.0120) (0.0148) (0.0148)
NoCore ∗ Ln(KDDrt−2) -0.0340*** -0.00148 0.00423** -0.00321

(0.00477) (0.000974) (0.00181) (0.00228)
Core ∗ Ln(KDDrt−2) 0.0114 -0.00496* -0.00601* -0.00467

(0.0147) (0.00254) (0.00335) (0.00451)
NoCore ∗ Ln(KDDrt−3) -0.0443*** -0.00106 0.000835 -0.0100***

(0.00474) (0.000974) (0.00176) (0.00217)
Core ∗ Ln(KDDrt−3) -0.0262* -0.000385 -0.00526 -0.0131***

(0.0140) (0.00250) (0.00346) (0.00446)
Observations 76,634 76,634 121,870 121,870 76,634 76,634 76,634 76,634
R-squared 0.759 0.759 0.513 0.513 0.729 0.729 0.004 0.004
Appellation FE YES YES YES YES YES YES YES YES
Country-Year FE YES YES YES YES YES YES YES YES

Robust standard errors, clustered at destination-appellation level, in parentheses.
Regressions include a constant which is not reported in the Table.
Significance levels: *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table E9: Results using the method of Schlenker and Roberts (2009) to compute GDD and KDD indicators

Dependent variable: Export volumes: Ln(yjkrt) Probability of exporting: Prob(yjkrt = 1) Export prices: Ln(pjkrt) Inferred quality: λ̂jkrt

(1) (2) (3) (4) (5) (6) (7) (8)

Ln(GDDrt−3) -0.231 -0.231 -0.0753 -0.0753 -0.0392 -0.0391 -0.107 -0.107
(0.199) (0.199) (0.0463) (0.0463) (0.0642) (0.0642) (0.0881) (0.0881)

Ln(KDDrt−2) -0.144*** -0.00198 0.0145** -0.0179**
(0.0165) (0.00410) (0.00609) (0.00775)

Ln(KDDrt−3) -0.153*** -0.0103*** -0.0217*** -0.0654***
(0.0158) (0.00396) (0.00632) (0.00784)

Ln(PADPrt−2) 1.038** 1.034** -0.110 -0.110 0.281* 0.282* 0.611*** 0.612***
(0.415) (0.415) (0.0909) (0.0909) (0.149) (0.149) (0.191) (0.191)

(Ln(PADPrt−2))
2 -0.0819** -0.0816** 0.00790 0.00790 -0.0211* -0.0212* -0.0468*** -0.0469***

(0.0345) (0.0346) (0.00762) (0.00762) (0.0125) (0.0125) (0.0160) (0.0160)
Ln(PADPrt−3) 1.013*** 1.013*** -0.197** -0.197** 0.759*** 0.758*** 1.201*** 1.201***

(0.382) (0.382) (0.0843) (0.0843) (0.143) (0.143) (0.178) (0.178)

(Ln(PADPrt−3))
2 -0.0891*** -0.0891*** 0.0145** 0.0146** -0.0636*** -0.0635*** -0.102*** -0.102***

(0.0323) (0.0323) (0.00720) (0.00720) (0.0121) (0.0121) (0.0151) (0.0151)
NoCore ∗ Ln(KDDrt−2) -0.157*** -0.00104 0.0189*** -0.0156*

(0.0190) (0.00425) (0.00662) (0.00853)
Core ∗ Ln(KDDrt−2) -0.0662 -0.00980 -0.0126 -0.0323*

(0.0548) (0.00996) (0.0126) (0.0172)
NoCore ∗ Ln(KDDrt−3) -0.165*** -0.00738* -0.0183*** -0.0641***

(0.0183) (0.00413) (0.00690) (0.00857)
Core ∗ Ln(KDDrt−3) -0.0816 -0.0346*** -0.0423*** -0.0733***

(0.0536) (0.0105) (0.0123) (0.0168)
Observations 76,634 76,634 121,870 121,870 76,634 76,634 76,634 76,634
R-squared 0.759 0.759 0.513 0.513 0.729 0.729 0.005 0.005
Appellation FE YES YES YES YES YES YES YES YES
Country-Year FE YES YES YES YES YES YES YES YES

Robust standard errors, clustered at destination-appellation level, in parentheses.
Regressions include a constant which is not reported in the Table.
Significance levels: *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table E10: Demand uncertainty, weather shocks and the intensive margin (using export
values)

Dependent variable: Export values: ln(vjkrt)

(1) (2) (3) (4) (5)

Ln Cons. Expenditurejt−1 0.309*** 0.312*** 0.316***
(0.0364) (0.0347) (0.0348)

Higher ∗ Ln Exp. V olatilityjt -0.00970* -0.0100**
(0.00512) (0.00501)

Lower ∗ Ln Exp. V olatilityjt 0.0301*** 0.0300*** 0.0283***
(0.00603) (0.00586) (0.00581)

Cons. Expenditure Skewnessjt 0.00255 0.00260 0.00291
(0.00472) (0.00465) (0.00464)

Ln(GDDrt−3) 0.320*** 0.348*** 0.350***
(0.110) (0.105) (0.105)

Ln(KDDrt−2) -0.0415*** -0.0443***
(0.00571) (0.00525)

Ln(KDDrt−3) -0.0574*** -0.0587***
(0.00467) (0.00439)

Ln(PADPrt−2) 0.779** 0.826** 0.819**
(0.392) (0.384) (0.385)

(Ln(PADPrt−2))
2

-0.0553* -0.0603* -0.0597*
(0.0327) (0.0320) (0.0321)

Ln(PADPrt−3) 1.418*** 1.473*** 1.469***
(0.364) (0.362) (0.361)

(Ln(PADPrt−3))
2

-0.119*** -0.124*** -0.124***
(0.0308) (0.0305) (0.0305)

NoCore ∗Higher ∗ Ln Exp. V olatilityjt -0.00570
(0.00523)

Core ∗Higher ∗ Ln Exp. V olatilityjt -0.0324***
(0.00707)

NoCore ∗ Ln(KDDrt−2) -0.0486***
(0.00605)

Core ∗ Ln(KDDrt−2) -0.0168
(0.0172)

NoCore ∗ Ln(KDDrt−3) -0.0641***
(0.00522)

Core ∗ Ln(KDDrt−3) -0.0235
(0.0156)

Observations 76,663 76,663 76,663 76,663 76,663
R-squared 0.756 0.761 0.773 0.761 0.773
Country FE YES YES NO YES NO
Year FE YES NO NO NO NO
Appellation FE YES YES YES YES YES
Region-Year FE NO YES NO YES NO
Country-Year FE NO NO YES NO YES

Note: Dependent variable is the logarithm of exported volumes.

Robust standard errors, clustered at destination-appellation level, in parentheses.

Regressions include a constant which is not reported in the Table.

Significance levels: *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table E11: Results using an alternative definition of core markets (including re-export platforms)

Dependent variable: Export volumes: Ln(yjkrt) Probability of exporting: Prob(yjkrt = 1) Export prices: Ln(pjkrt) Inferred quality: λ̂jkrt

(1) (2) (3) (4) (5) (6) (7)

Ln Cons. Expenditurejt−1 0.281*** 0.0471*** -0.0252*
(0.0343) (0.00800) (0.0134)

Lower ∗ Ln Exp. V olatilityjt 0.0290*** 0.00209 -0.000521
(0.00603) (0.00151) (0.00198)

Cons.ExpenditureSkewnessjt 0.00628 -0.000883 -0.00312*
(0.00483) (0.00119) (0.00182)

NoCore ∗Higher ∗ Ln Exp. V olatilityjt -0.00875 -0.00306** 0.00397**
(0.00550) (0.00138) (0.00194)

Core ∗Higher ∗ Ln Exp. V olatilityjt -0.0276*** -0.00249 -0.00305
(0.00655) (0.00181) (0.00242)

Ln(GDDrt−3) 0.314*** 0.0130 0.0388 0.127***
(0.104) (0.0256) (0.0346) (0.0470)

Ln(PADPrt−2) 0.518 -0.153* 0.303** 0.508***
(0.397) (0.0863) (0.148) (0.185)

(Ln(PADPrt−2))
2 -0.0366 0.0115 -0.0233* -0.0383**

(0.0331) (0.00724) (0.0124) (0.0155)
Ln(PADPrt−3) 0.725* -0.246*** 0.754*** 1.124***

(0.376) (0.0827) (0.142) (0.176)

(Ln(PADPrt−3))
2 -0.0609* 0.0193*** -0.0639*** -0.0950***

(0.0316) (0.00703) (0.0120) (0.0148)
NoCore ∗ Ln(KDDrt−2) -0.0440*** 0.000523 -0.00191 -0.0134***

(0.00640) (0.00145) (0.00237) (0.00300)
Core ∗ Ln(KDDrt−2) -0.0170 -0.00323 -0.0179*** -0.0157**

(0.0159) (0.00317) (0.00461) (0.00613)
NoCore ∗ Ln(KDDrt−3) -0.0549*** -0.00122 -0.00905*** -0.0250***

(0.00559) (0.00125) (0.00220) (0.00272)
Core ∗ Ln(KDDrt−3) -0.0152 -0.0102*** -0.00796* -3.11e-05

(0.0148) (0.00308) (0.00452) (0.00585)

Observations 76,634 76,634 121,870 121,870 76,390 76,634 76,634
R-squared 0.746 0.759 0.512 0.513 0.722 0.729 0.006
Appellation FE YES YES YES YES YES YES YES
Region-Year FE YES NO YES NO YES NO NO
Country-Year FE NO YES NO YES NO YES YES

Robust standard errors, clustered at destination-appellation level, in parentheses.
Regressions include a constant which is not reported in the Table.
Significance levels: *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table E12: Results for perceived quality using an alternative level of elasticity of
substitution

Dependent variable: Inferred quality: λ̂jkrt

(1) (2)

Ln(GDDrt−3) 0.209*** 0.209***
(0.0659) (0.0659)

Ln(KDDrt−2) -0.0262***
(0.00352)

Ln(KDDrt−3) -0.0385***
(0.00309)

Ln(PADPrt−2) 0.695*** 0.695***
(0.250) (0.250)

(Ln(PADPrt−2))
2 -0.0519** -0.0519**

(0.0209) (0.0209)
Ln(PADPrt−3) 1.466*** 1.465***

(0.235) (0.235)

(Ln(PADPrt−3))
2 -0.124*** -0.124***

(0.0198) (0.0198)
NoCore ∗ Ln(KDDrt−2) -0.0260***

(0.00395)
Core ∗ Ln(KDDrt−2) -0.0274***

(0.00903)
NoCore ∗ Ln(KDDrt−3) -0.0398***

(0.00350)
Core ∗ Ln(KDDrt−3) -0.0303***

(0.00823)

Observations 76,634 76,634
R-squared 0.006 0.006
Appellation FE YES YES
Country-Year FE YES YES

Robust standard errors, clustered at destination-appellation level, in parentheses.

Regressions include a constant which is not reported in the Table.

Significance levels: *** p < 0.01, ** p < 0.05, * p < 0.1.
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F Alternative timing

In this Appendix, we examine an alternative timing where as in De Sousa et al. (2020)

production takes place before demand shocks are realized but after production shocks are

realized. In the context of wine production, this means that once quality and cost shocks

are known at the grapes harvest time, then production takes place while not knowing the

demand conditions that will occur later when the wine is ready for selling. We assume that

the winery owner commits to send the quantity produced to the destination market as

scheduled, but can adjust the price according to the demand conditions. Finally, marketing

investments have still to be decided before all shocks as in the baseline model.

Solving the game using backward induction, at the last stage, the price pij is decided

while the quantity produced is already fixed to q̂ij as well as the set of destination countries

(and their nij). It follows that once demand shock is known, the firm adjusts the price pij

to equalize the quantity produced with the quantity realized:

qij = αjη
σ−1
i nijAjp

−σ
ij = q̂ij (F1)

Before the demand shock is known but after ηi and θi are known, the firm has to produce

to maximize its expected gross profit in each destination:

max
pij

ᾱjη
σ−1
i nijAjp

−σ
ij (pij − θi

wiτij
φ

)

and this yields p̂ij =
σ

σ−1
θi

wiτij
φ

and hence q̂ij = ᾱjη
σ−1
i nijAj p̂

−σ
ij . Hence the price realized

pij is given by (F1) and using the above expression of q̂ij yields:

αjη
σ−1
i nijAjp

−σ
ij = ᾱjη

σ−1
i nijAj p̂

−σ
ij

or equivalently

pij = p̂ij

(
ᾱj

αj

)− 1
σ

pij =
σ

σ − 1
θi
wiτij
φ

(
ᾱj

αj

)− 1
σ

(F2)

where the last line follows from using the above expression of p̂ij. Ex-ante, the profit now

writes:

πij = αjη
σ−1
i nijAjp

−σ
ij (pij − θi

wiτij
φ

)− fij

and using (F2) and rearranging, we get finally:

πij = α̃jβinij

(
τij
φ

)1−σ
Aj

δi
− fij (F3)

where α̃j is an increasing function of αj :

α̃j = ᾱj

(
σ

[(
αj

ᾱj

) 1
σ

− 1

]
+ 1

)
. (F4)
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Comparing the expression of profit in the baseline model given by (11) and expression

(F3), we conclude that, under the alternative timing, the model reaches similar conclusions

provided one replaces the original demand shock αj by its transformation α̃j given by

(F4).
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G Proof of Proposition 2

The proof makes use of a result obtained by Miller (1981) which allows to invert

the sum of two arbitrary non singular square matrices of the same dimension. For the

simplicity of exposition, the proof considers only the case where the set of destination

markets is S = N . The extension of the result to any other set of destination markets

S ⊆ N is straightforward. Consider the variance-covariance matrix Σ̃i given by:

Σ̃i =


ai1 bi ... ... bi
bi ... bi ... ...
... bi aij bi ...
... ... bi ... bi
bi ... ... bi aiN


where in order to simplify the notations, we denote the generic term of the diagonal as

aij ≡ V(ε̃ij) given by (16) and all terms outside the diagonal, that actually share the

same value, as bi ≡ Cov (ε̃ij, ε̃ik) given by (15). Let us decompose Σ̃i into the sum of two

matrices Mi1 and Mi2 as follows:

Σ̃i = Mi1 +Mi2

where

Mi1 =


ai1 − bi 0 ... ... 0

0 ... 0 ... ...
... 0 aij − bi 0 ...
... ... 0 ... 0
0 ... ... 0 aiN − bi

 and Mi2 = bi


1 ... ... ... 1
1 ... ... ... 1
1 ... ... ... 1
1 ... ... ... 1
1 ... ... ... 1

 .

Clearly, Mi2 has rank 1. Moreover, as Mi1 is diagonal, its inverse can be obtained

straightforwardly. The following Lemma indicates how to obtain Σ̃−1
i , using the above

decomposition.

Lemma 4 (Miller (1981)). Let Mi1 and Σ̃i = Mi1 +Mi2 be non singular matrices where

Mi2 has rank 1. Then TrMi2M
−1
i1 ̸= −1 and the inverse of Σ̃i = Mi1 +Mi2 is given by:

Σ̃−1
i = M−1

i1 − 1

1 + TrMi2M
−1
i1

M−1
i1 Mi2M

−1
i1 .

It follows that first M−1
i1 is given by:

M−1
i1 =


1

ai1−bi
0 ... ... 0

0 ... 0 ... ...
... 0 1

aij−bi
0 ...

... ... 0 ... 0
0 ... ... 0 1

aiN−bi

 .
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Moreover, the trace of Mi2M
−1
i1 is given by:

TrMi2M
−1
i1 = biTr


1 ... ... ... 1
1 ... ... ... 1
1 ... ... ... 1
1 ... ... ... 1
1 ... ... ... 1




1
ai1−bi

0 ... ... 0

0 ... 0 ... ...
... 0 1

aij−bi
0 ...

... ... 0 ... 0
0 ... ... 0 1

aiN−bi



= biTr


1

ai1−bi
... 1

aij−bi
... 1

aiN−bi
1

ai1−bi
... 1

aij−bi
... 1

aiN−bi
1

ai1−bi
... 1

aij−bi
... 1

aiN−bi
1

ai1−bi
... 1

aij−bi
... 1

aiN−bi
1

ai1−bi
... 1

aij−bi
... 1

aiN−bi


= bi

∑
j

1

aij − bi
.

Furthermore, we have

Σ̃−1
i = M−1

i1 − 1

1 + TrMi2M
−1
i1

M−1
i1 Mi2M

−1
i1

=


1

ai1−bi
0 ... ... 0

0 ... 0 ... ...
... 0 1

aij−bi
0 ...

... ... 0 ... 0
0 ... ... 0 1

aiN−bi



− bi
1 + bi

∑
j

1
aij−bi


1

ai1−bi
0 ... ... 0

0 ... 0 ... ...
... 0 1

aij−bi
0 ...

... ... 0 ... 0
0 ... ... 0 1

aiN−bi




1
ai1−bi

... 1
aij−bi

... 1
aiN−bi

1
ai1−bi

... 1
aij−bi

... 1
aiN−bi

1
ai1−bi

... 1
aij−bi

... 1
aiN−bi

1
ai1−bi

... 1
aij−bi

... 1
aiN−bi

1
ai1−bi

... 1
aij−bi

... 1
aiN−bi



=


1

ai1−bi
0 ... ... 0

0 ... 0 ... ...
... 0 1

aij−bi
0 ...

... ... 0 ... 0
0 ... ... 0 1

aiN−bi



−ci


1

(ai1−bi)
2 ... 1

(ai1−bi)(aij−bi)
... 1

(ai1−bi)(aiN−bi)

... ... ... ... ...
1

(ai1−bi)(aij−bi)
... 1

(aij−bi)
2 ... 1

(aiN−bi)(aij−bi)

... ... ... ...
1

(ai1−bi)(aiN−bi)
... 1

(aiN−bi)(aij−bi)
... 1

(aiN−bi)
2


where

ci =
bi

1 + bi
∑

j
1

aij−bi
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It follows that Σ̃−1
i is symmetric and given by:

Σ̃−1
i =



1
ai1−bi

(
1− ci

ai1−bi

)
... − ci

(ai1−bi)(aij−bi)
... − ci

(ai1−bi)(aiN−bi)

... ... ... ... ...

− ci
(ai1−bi)(aij−bi)

... 1
aij−bi

(
1− ci

aij−bi

)
... − ci

(aiN−bi)(aij−bi)

... ... ... ...

− ci
(ai1−bi)(aiN−bi)

... − ci
(aiN−bi)(aij−bi)

... 1
aiN−bi

(
1− ci

aiN−bi

)


.

In the particular case where all demand shocks follow the same distribution, that is for

all j, ᾱj = ᾱ and V(αj) = σ2
α , then for all j, aij = V(ε̃ij) =

(
1 + V(βi)

β̄2
i

)
σ2
α

ᾱ2 +
V(βi)

β̄2
i

≡ ai and

thus ci =
bi

1+
Nbi

ai−bi

. In that case, all diagonal terms of Σ̃−1
i are equal to 1

ai−bi

(
1− ci

ai−bi

)
=

1
ai−bi

(
ai+(N−2)bi
ai+(N−1)bi

)
while all off diagonal terms are equal to − ci

(ai−bi)
2 .

The diversification index Dij is the sum of all terms in line j in Σ̃−1
i :

Dij =
∑
k ̸=j

(
− ci
(aik − bi) (aij − bi)

)
+

1

aij − bi

(
1− ci

aij − bi

)

=
1

aij − bi

(
1− ci

∑
k

1

aik − bi

)

=
1

aij − bi

(
1− bi

1 + bi
∑

j
1

aij−bi

∑
k

1

aik − bi

)

=
1

aij − bi

(
1

1 + bi
∑

j
1

aij−bi

)
Dij =

ci
(aij − bi) bi

.

And the weight ωi,jk represents the relative contribution of market k to Dij : for j ̸= k,

ωi,jk =
Σ̃−1

i,jk

Dij

=
− ci

(aik−bi)(aij−bi)

ci
(aij−bi)bi

= − bi
aik − bi

< 0

and for j = k,

ωi,jj =
Σ̃−1

i,jj

Dij

= 1 +
∑
l ̸=j

bi
ail − bi

> 1

Using (16) and (15), we get:

Dij =
1

SCVαj

1

1 + SCVβi

(
1 +

∑
k

1
SCVαk

)
ωi,jk =

 − SCVβi

SCVαk(1+SCVβi)
< 0 for j ̸= k

1 +
SCVβi

1+SCVβi

∑
l ̸=j

1
SCVαl

> 1 for j = k
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H Proof of Lemma 2

From Proposition 1, we have nij(φ) =
Dij

γε̄ijrij(φ)
Cij(φ) with

Cij(φ) =
∑
k∈S

ωi,jk

(
ε̄ikrik(φ)− wkfkLk/Pi

ε̄ikrik(φ)

)
.

Using rij(φ) =
1
σ

(
σ

σ−1

wiτij
φ

)1−σ
Aj

Pi
=

Ajτ
1−σ
ij

δiPi
φσ−1 where δi =

1
σ

(
σ

σ−1
wi

)σ−1
and replacing

in the expression of Cij(φ), we obtain:

Cij(φ) = 1−
∑
k∈S

ωi,jk

 wkfkLk/Pi

ε̄ik
Akτ

1−σ
ik

δiPi
φσ−1

 = 1−
∑
k∈S

ωi,jk

(
δi

Γik

φσ−1

)

where the last expression follows from using Definition 3. Defining φ̂ij =
(
δi
∑

k∈S ωi,jkΓik

) 1
σ−1 ,

it follows that Cij(φ) = 1−
(

φ̂ij

φ

)σ−1

. Hence, Cij(φ) ≥ 0 and thus nij(φ) ≥ 0 if and only if

φ ≥ φ̂ij.

It remains to check that nij(φ) < 1, i.e.

Dij

γε̄ij
Ajτ

1−σ
ij

δiPi

1−
(

φ̂ij

φ

)σ−1

φσ−1
< 1.

Observe that the function
1−

(
φ̂ij
φ

)σ−1

φσ−1 is maximized in φ = 2
1

σ−1 φ̂ij which yields

γ > γ = sup
j∈S

Dij

4ε̄ijrij (φ̂ij)
.
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I Proof of Lemma 3

We have

νij =
wjfjLj

Pi

− ε̄ijrij (1− γHij)

where

Hij =
∑
k∈S

nikε̄ikrikCov (ε̃ij, ε̃ik) .

Let us compute Hij for j /∈ S:

Hij =
∑
k∈S

DikCik
γε̄ikrik

ε̄ikrikCov (ε̃ij, ε̃ik)

=
SCVβi

γ

∑
k∈S

DikCik

as Cov (ε̃ij, ε̃ik) = SCVβi
for all j /∈ S and for all k ∈ S because then k ̸= j. Plugging this

expression of Hij in νij, we get:

νij =
wjfjLj

Pi

− ε̄ijrij

(
1− SCVβi

∑
k∈S

DikCik

)

Using Γij =
wjfjLj

τ1−σ
ij ε̄ijAj

and rij =
Ajτ

1−σ
ij

δiPi
φσ−1 and replacing, we get

νij =
Γijτ

1−σ
ij ε̄ijAj

Pi

− ε̄ij
Ajτ

1−σ
ij

δiPi

φσ−1

(
1− SCVβi

∑
k∈S

DikCik

)

= ε̄ij
τ 1−σ
ij Aj

δiPi

[
δiΓij −

(
φσ−1 − SCVβi

∑
k∈S

Dik

(
φσ−1 − (φ̂ik)

σ−1))]

= ε̄ij
τ 1−σ
ij Aj

δiPi

[
δiΓij −

(
φσ−1

(
1− SCVβi

∑
k∈S

Dik

)
+ SCVβi

∑
k∈S

Dikφ̂
σ−1
ik

)]

Now using φ̂σ−1
ik = δi

∑
l∈S ωi,klΓil then

νij = ε̄ij
τ 1−σ
ij Aj

δiPi

[
δiΓij −

(
φσ−1

(
1− SCVβi

∑
k∈S

Dik

)
+ SCVβi

∑
k∈S

Dikδi
∑
l∈S

ωi,klΓil

)]

= ε̄ij
τ 1−σ
ij Aj

δiPi

(
1− SCVβi

∑
k∈S

Dik

)[
δi
Γij − SCVβi

∑
k∈S Dik

∑
l∈S ωi,klΓil

1− SCVβi

∑
k∈S Dik

− φσ−1

]
.

Note that

1− SCVβi

∑
k∈S

Dik =
1 + SCVβi

1 + SCVβi

(
1 +

∑
k∈S

1
SCVαk

) ∈ (0, 1)

Let us denote (
φ∗
ij

)σ−1
= δi

Γij − SCVβi

∑
k∈S Dik

∑
l∈S ωi,klΓil

1− SCVβi

∑
k∈S Dik
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so that

νij = ε̄ij
τ 1−σ
ij Aj

δiPi

(
1− SCVβi

∑
k∈S

Dik

)[(
φ∗
ij

)σ−1 − φσ−1
]
.

Clearly, νij is a continuous and decreasing function of φ that reaches 0 when φ = φ∗
ij.

Finally, we have

(
φ∗
ij

)σ−1
= δi

Γij − SCVβi

∑
k∈S Dik

∑
l∈S ωi,klΓil

1− SCVβi

∑
k∈S Dik

= δi
Γij − SCVβi

∑
l∈S Γil

∑
k∈S Dikωi,kl

1− SCVβi

∑
k∈S Dik

by inverting the sum signs over k and over l. Note that

∑
k∈S

Dikωi,kl = Dil

(
1 + 1 +

SCVβi

1 + SCVβi

∑
k ̸=l

1

SCVαk

)
−
∑
k ̸=l

Dik
SCVβi

1 + SCVβi

1

SCVαl

= Dil (I1)

using Proposition 4. Hence,

(
φ∗
ij

)σ−1
= δi

Γij − SCVβi

∑
l∈S DilΓil

1− SCVβi

∑
k∈S Dik

= δi
Γij(1− SCVβi

∑
l∈S Dil + SCVβi

∑
l∈S Dil)− SCVβi

∑
l∈S DilΓil

1− SCVβi

∑
k∈S Dik

= δi

[
Γij +

SCVβi

1− SCVβi

∑
k∈S Dik

∑
l∈S

Dil(Γij − Γil)

]

= δi

[
Γij +

SCVβi

1 + SCVβi

∑
l∈S

Γij − Γil

SCVαl

]

where the last line follows from using Dij =
1

SCVαj

1

1+SCVβi

(
1+

∑
k∈S

1
SCVαk

) .
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J Proof of Proposition 4

We can express V ∗
i (φ) =

∑
j∈S(φ) Vij(φ) where,

Vij(φ) = E
(
πij(φ)

Pi

)
− γ

2

∑
k∈S(φ)

Cov
(
πij(φ)

Pi

,
πik(φ)

Pi

)
is the portion of indirect utility of real income made on market j and where S(φ) is

composed of the l most attractive markets, for any l = 1...N . For φ ≤ φi1, S(φ) = ∅ and

thus clearly V ∗
i (φ) = 0. For φ > φi1, dropping the argument for simplicity, we have

Vij =

(
ε̄ijrij −

wjfjLj

Pi

)
nij −

γ

2
ε̄ijrijnij

∑
k∈S(φ)

nikε̄ikrikCov (ε̃ij, ε̃ik)

= nij

[
ε̄ijrij −

wjfjLj

Pi

− γ

2
ε̄ijrijHij

]
(J1)

where Hij for j ∈ S(φ) is given by:

Hij =
∑

k∈S(φ)

nikε̄ikrikCov (ε̃ij, ε̃ik) . (J2)

Using Γij =
wjfjLj

τ1−σ
ij ε̄ijAj

and rij =
Ajτ

1−σ
ij

δiPi
φσ−1, and replacing in (J1), we get:

Vij = nij

[
ε̄ij

Ajτ
1−σ
ij

δiPi

φσ−1
(
1− γ

2
Hij

)
−

τ 1−σ
ij ε̄ijAj

Pi

Γij

]

= ε̄ij
Ajτ

1−σ
ij

δiPi

nij

[
φσ−1

(
1− γ

2
Hij

)
− δiΓij

]
=

1

γ
Dij

[
1−

(
φ̂ij

φ

)σ−1
] [

1− γ

2
Hij −

δiΓij

φσ−1

]
︸ ︷︷ ︸

(1)

(J3)

where the last line follows from using nij(φ) =
Dij

γε̄ijrij(φ)
Cij(φ) and Cij(φ) = 1−

(
φ̂ij

φ

)σ−1

.

In the rest of the proof, we propose to evaluate separately the term (1) in (J3) to obtain

the desired formulation for V ∗
i (φ). First, using nij(φ) =

Dij

γε̄ijrij(φ)
Cij(φ), (J2) becomes:

Hij =
1

γ

∑
k∈S(φ)

DikCikCov (ε̃ij, ε̃ik)

=
1

γ
DijCijV (ε̃ij) +

1

γ

∑
k∈S(φ)
k ̸=j

DikCikCov (ε̃ij, ε̃ik)

Using Lemma 1, we further get:

Hij =
1

γ
DijCij

[
SCVβi

+ (1 + SCVβi
)SCVαj

]
+

1

γ
SCVβi

∑
k∈S(φ)
k ̸=j

DikCik

=
1

γ
DijCij(1 + SCVβi

)SCVαj
+

1

γ
SCVβi

∑
k∈S(φ)

DikCik
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Hence, term (1) in (J3) becomes:

1− γ

2
Hij −

δiΓij

φσ−1
= 1− γ

2

1
γ
DijCij(1 + SCVβi

)SCVαj
+

1

γ
SCVβi

∑
k∈S(φ)

DikCik

− δiΓij

φσ−1

= 1− 1

2
Dij

(
1−

(
φ̂ij

φ

)σ−1
)
(1 + SCVβi

)SCVαj

−1

2
SCVβi

∑
k∈S(φ)

Dik

(
1−

(
φ̂ik

φ

)σ−1
)

− δiΓij

φσ−1

= 1− 1

2
Dij(1 + SCVβi

)SCVαj
− 1

2
SCVβi

∑
k∈S(φ)

Dik︸ ︷︷ ︸
(∗)

+
1

2
Dij

(
φ̂ij

φ

)σ−1

(1 + SCVβi
)SCVαj

+
1

2
SCVβi

∑
k∈S(φ)

Dik

(
φ̂ik

φ

)σ−1

− δiΓij

φσ−1
(J4)

Observe that the first term (*) in (J4) reduces simply to:

1− 1

2
Dij(1 + SCVβi

)SCVαj
− 1

2
SCVβi

∑
k∈S(φ)

Dik =
1

2

Hence, (J4) becomes

1− γ

2
Hij −

δiΓij

φσ−1
=

1

2
+

1

2φσ−1
Dij (φ̂ij)

σ−1 (1 + SCVβi
)SCVαj

+
1

2φσ−1
SCVβi

∑
k∈S(φ)

Dik (φ̂ik)
σ−1 − δiΓij

φσ−1

=
1

2
+

δi
2φσ−1

(Dij(1 + SCVβi
)SCVαj

∑
k∈S(φ)

ωi,jkΓik

+SCVβi

∑
k∈S(φ)

Dik

∑
l∈S(φ)

ωi,klΓil)−
δiΓij

φσ−1
(J5)

By inverting the sum signs, the term between brackets in (J5) can be rewritten as:

Dij(1 + SCVβi
)SCVαj

∑
k∈S(φ)

ωi,jkΓik + SCVβi

∑
l∈S(φ)

Γil

∑
k∈S(φ)

Dikωi,kl

= Dij(1 + SCVβi
)SCVαj

∑
k∈S(φ)

ωi,jkΓik + SCVβi

∑
l∈S(φ)

ΓilDil (J6)

where the last line follows from using (I1). Using Proposition 2 and rearranging, (J6)
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further simplifies into:

(1 + SCVβi
)

1 + SCVβi

(
1 +

∑
k∈S(φ)

1
SCVαk

)
Γij +

SCVβi

1 + SCVβi

∑
k∈S(φ)

Γij − Γik

SCVαk


+

SCVβi

1 + SCVβi

(
1 +

∑
k∈S(φ)

1
SCVαk

) ∑
l∈S(φ)

Γil

SCVαl

= Γij

Hence, (J5) becomes:

1− γ

2
Hij −

δiΓij

φσ−1
=

1

2

(
1− δiΓij

φσ−1

)
.

Using the above result, (J3) becomes:

Vij =
1

2γ
Dij

(
1−

(
φ̂ij

φ

)σ−1
)(

1− δiΓij

φσ−1

)
,

we obtain the desired formulation for V ∗
i (φ) as follows:

V ∗
i (φ) =

∑
j∈S(φ)

Vij =
1

2γ

∑
j∈S(φ)

Dij

(
1−

(
φ̂ij

φ

)σ−1
)(

1− δiΓij

φσ−1

)
.

Observe that for an optimal portfolio with cardinal |S(φ)| = l, then φil = maxj∈S(φ) φ̂ij >

(δiΓij)
1

σ−1 because φ̂ij = δi

[
Γij +

SCVβi

1+SCVβi

∑
k∈S(φ)

Γij−Γik

SCVαk

]
> δiΓij when Γij ≥ Γik for all

k ∈ S(φ). As φ ≥ φil this ensures that V
∗
i (φ) is strictly positive, because φ ≥ φ̂ij for all

j ∈ S(φ) and φil > (δiΓij)
1

σ−1 .
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