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Incentive Compatibility and Belief Restrictions
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We study a framework for robust mechanism design that can accommodate

various degrees of robustness with respect to agents’ beliefs, and which in-

cludes both the belief-free and Bayesian settings as special cases. For general

belief restrictions, we characterize the set of incentive compatible direct mech-

anisms in general environments with interdependent values. The necessary

conditions that we identify, based on a first-order approach, provide a unified

view of several known results, as well as novel ones, including a robust version

of the revenue equivalence theorem that holds under a notion of generalized

independence that also applies to non-Bayesian settings. Our main characteri-

zations inform the design of belief-based terms, in pursuit of various objectives

in mechanism design, including attaining incentive compatibility in environ-

ments that violate standard single-crossing and monotonicity conditions. We

discuss several implications of these results. For instance, we show that, under
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weak conditions on the belief restrictions, any allocation rule can be imple-

mented, but full rent extraction need not follow. Information rents are gener-

ally possible, and they decrease monotonically as the robustness requirements

are weakened.

KEYWORDS. Moment Conditions, Robust Mechanism Design, Incen-

tive Compatibility, Interdependent Values, Belief Restrictions.

JEL CLASSIFICATION. D62, D82, D83.

1. INTRODUCTION

Mechanism design has been one of the most successful areas within economic

theory. It has deepened our understanding of incentives under private infor-

mation, providing several theoretical and methodological advances on the way.

More broadly, it has had a dramatic impact on the design and understanding

of real world mechanisms and institutions. Yet, the classical approach also fea-

tures some important limitations, particularly due to the strong assumptions on

agents’ beliefs that are implicit in standard models, and the key role that they

play in several results. The ‘Full Surplus Extraction’ results of Crémer and McLean

(1985, 1988) and McAfee and Reny (1992) are notorious examples of findings that

“[...] cast doubt on the value of the current mechanism design paradigm as a

model of institutional design” (McAfee and Reny (1992), p.400). But several other

results, both in game theory and mechanism design, have contributed to mo-

tivating Wilson (1987)’s famous call for a “[...] repeated weakening of common

knowledge assumptions [...]” in the theory.

A large literature has studied the implications of different relaxations of com-

mon knowledge assumptions, and various models of robust mechanism design

have been explored. The belief-free approach, spurred by Bergemann and Mor-

ris (2005, 2009a,b), has been especially influential. In essence, it requires mecha-

nisms to ‘perform well’, regarldess of the agents’ beliefs about each other. But this

approach, which voids beliefs of any role, is perhaps too extreme or at least some-

times unnecessarily demanding: in many settings, it may be the case that the de-

signer does possess some information about agents’ beliefs, albeit not necessarily

https://www.econometricsociety.org/


Submitted to Unknown Journal 3

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

to the extent that is entailed by the standard Bayesian paradigm. Accounting for

this possibility, and providing a systematic analysis of the implications of various

degrees of robustness about agents’ beliefs, is key to fulfill the ultimate objective

of the Wilson doctrine, “[...] to conduct useful analyses of practical problems [...]”

(Wilson, 1987).

In this paper we study a framework that can accommodate various degrees

of robustness with respect to agents’ beliefs. This is modeled by means of be-

lief restrictions, B = ((Bθi)θi∈Θi
)i∈I , where each type θi ∈ Θi of an agent is en-

dowed with a set of beliefs about others’ types, Bθi ⊆ ∆(Θ−i), that the designer

regards as possible. This way, we accommodate as special cases both the classi-

cal Bayesian framework (where all such sets are singletons), and the belief-free

setting (where Bθi =∆(Θ−i) for all i and θi ∈Θi). Crucially, we also accommodate

the intermediate cases where the designer can rely on some, but not full, infor-

mation about agents’ beliefs. Intuitively, the smaller the beliefs sets, the more the

designer knows (or is willing to assume) about agents’ beliefs. 1 Within these set-

tings, and for general environments with quasilinear utilities, we characterize the

set of B-incentive compatible (B-IC) direct mechanisms: that is, the set of trans-

fers and allocation rules in which truthful revelation is a mutual best-response,

for all types and for all beliefs in the belief restrictions. We then discuss several

implications of these results.

We start our analysis with the introduction of the canonical transfers. These are

the transfers which are pinned down by the first-order conditions that are neces-

sary for truthful revelation to be an ex-post equilibrium of the direct mechanism.

1The belief restrictions framework was first introduced in Ollár and Penta (2017), to study how

beliefs can be used to attain full implementation, taking incentive compatibility as given (see Ollár

and Penta (2022, 2023) for some special cases). Here, in contrast, we tackle the more fundamental

question of how beliefs can be used for the very establishment of incentive compatibility, including

when single-crossing or monotonicity conditions fail. A related exercise is pursued by Carvajal and

Ely (2013), albeit in a standard Bayesian setting. Related approaches to beliefs instead include Jehiel

et al. (2012), He and Li (2022), Lopomo et al. (2021, 2022), Gagnon-Bartsch et al. (2021) and Gagnon-

Bartsch and Rosato (2023). The related literature is discussed in Section 6.

https://www.econometricsociety.org/
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Thus, they only depend on the ex-post payoffs (and, hence, on agents’ prefer-

ences and the allocation rule). Under standard single-crossing conditions, the

ex-post payoff functions induced by these transfers are concave at each truth-

ful profile if and only if the allocation rule is increasing, in which case truthful

revelation is an ex-post equilibrium, and incentive compatibility is attained in

a belief-free sense (ex-post incentive compatibility, ep-IC). But if either single-

crossing or monotonicity fail, then the second-order conditions are not met, and

ep-IC is not possible. In those cases, suitable modifications of the transfers may

restore incentive compatibility, but only by relying on information about beliefs.

Whether this is possible, or how, it depends on the information that is available

to the designer.

For any B = ((Bθi)θi∈Θi
)i∈I , suppose that a B-IC transfer scheme can be ob-

tained via an additive modification of the canonical transfers. Since, by con-

struction, the canonical transfers ensure that truthful revelation satisfies the

first-order conditions (F.O.C.) in the ex-post sense, so they do for all beliefs in

B. Hence, if an additive modification of the canonical transfers yields a B-IC

transfer scheme, then it must be that the added term also satisfies the F.O.C.,

for all beliefs in the belief sets. Theorem 1, in Section 3, shows that this intu-

ition is general: for any belief-restrictions B, any B-IC transfer can be written

as ti(m) = t∗i (m) + βi(m), where (letting m ∈ M = Θ denote a generic message

profile in the direct mechanism) t∗i :M → R denotes the canonical transfers, and

βi :M → R is a belief-based term that satisfies Ebθi

[
∂βi
∂mi

(θi, θ−i)
]
= 0 for all θi and

bθi ∈Bθi .

The bite of the latter condition depends on the richness of the belief sets. It

has several direct implications, which provide both a unified view on known re-

sults, as well as novel ones. One of the new results is a robust version of the rev-

enue equivalence theorem, which we obtain under a notion of generalized inde-

pendence that also applies to non-Bayesian settings (Corollary 3). Specifically, if

for each agent i, the intersection
⋂

θi∈Θi
Bθi is non-empty, then B-IC is possible

if and only if it is attained by the canonical transfers, and equilibrium expected

payments and payoffs are all pinned down, up to a contstant. Note that this con-

dition on the belief-restrictions admits as special cases all belief restrictions in

https://www.econometricsociety.org/
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which the belief sets of the agents are constant in their types, which in turn in-

clude as special cases both the belief-free case, and Bayesian settings with inde-

pendent types.

Theorem 2 in Section 4 shows that, in order to guarantee that the second-order

conditions are satisfied, besides the condition in Theorem 1, the belief-based

terms must also satisfy the following: Ebθi

[
∂2βi
∂2mi

(θi, θ−i)
]
≤ −Ebθi

[
∂2U∗

i
∂2mi

(θi, θ−i)
]

for all θi and any bθi ∈ Bθi (where U∗
i (·) denotes the payoff function induced by

the canonical transfers). A slight strengthening of this condition is also sufficient

(Theorem 2). Theorem 3 instead provides a tight characterization that highlights

the role of belief-based terms in overcoming failures of standard single-crossing

and monotonicity conditions.

These results formalize a general design principle. The main idea is to focus on

the design of belief-based terms that satisfy suitable conditions, to be added to

the canonical transfers, in order to pursue specific objectives. These may include

extra desiderata, beyond incentive compatibility, in settings that satisfy standard

single-crossing and monotonicity conditions.2 But also more fundamental inter-

ventions, such as remedying the convexity of the payoff function when single-

crossing and monotonicity conditions fail. More broadly, these results identify

the scope of B-IC in a general class of settings.

For instance, the ‘robust revenue equivalence’ result that we discussed earlier

implies that, under generalized independence, there is no scope for improving

over the canonical transfers’ ability to achieve incentive compatibility, via the de-

sign of belief-based terms. Outside of these cases, however, Proposition 1 shows

that a weak responsive moment condition suffices to make any allocation rule

2Classic examples of ‘extra desiderata’ include budget balance (d’Aspremont and Gérard-Varet,

1979) or surplus extraction (Crémer and McLean, 1985, 1988 ; McAfee and Reny, 1992). More re-

cently, other properties have been pursued, such as supermodularity (Mathevet, 2010 ; Mathevet and

Taneva, 2013), contractiveness (Healy and Mathevet, 2012) or uniqueness (Ollár and Penta, 2017, 2022,

2023). Pursuing uniqueness via ‘simple’ mechanisms (as opposed to the classical approach to full im-

plementation (e.g., Maskin, 1999; Palfrey and Srivastava, 1989; Jackson, 1991, etc.) has been the fo-

cus of a growing literature on ‘unique implementation’ (cf., Ollár and Penta, 2017, 2022, 2023, 2024b;

Winter, 2004; Bernstein and Winter, 2012; Halac et al., 2021, 2022).

https://www.econometricsociety.org/
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d : Θ → X incentive compatible, in any environment, via the suitable design of

a belief-based term. Loosely speaking, this condition requires that the designer

knows how agents’ expectations of a moment of the opponents’ types moves,

conditional on their own type, and that this is described by a function that is

nowhere constant. This condition is violated under generalized independence,

but it is very permissive otherwise, thereby showing that minimal knowledge

about agents’ beliefs may go a long way in terms of expanding the possibility of

implementation.

The ‘any d goes’ result of Proposition 1, which arises discontinuously as gen-

eralized independence is lifted, is somewhat reminiscent of the Crémer and

McLean (1985, 1988) and McAfee and Reny (1992) results on full surplus extration

(FSE), which also arise discontinuously in Bayesian environments, when mini-

mal degrees of correlation are introduced. Importantly, however, FSE does not

generally ensue in our setup. If the belief-restrictions are not Bayesian, even if

any d can be implemented under the responsive moment condition, there may

still be bounds to the surplus that can be extracted (Propositions 3 and 4). In-

formation rents generally remain, and their size depends on the joint properties

of the allocation rule, agents’ preferences, and the belief restrictions. Moreover,

information rents shrink as the belief sets get finer, and the designer relies on

more information about agents’ beliefs (Proposition 5). At the extreme, if B is a

Bayesian setting with correlated types, then FSE obtains. In fact, under a novel

‘full rank’ condition, we provide the following ‘anything goes’ result (Proposition

2): in a Bayesian setting that satisfies ‘full rank’, for any (d, t), there exist transfers t′

that are both incentive compatible and that attain the same expected payments

as t. This in turn implies an exact FSE result for settings with a continuum of

types.3

3Crémer and McLean (1985, 1988) first studied FSE with finite types. McAfee and Reny (1992) ex-

tended the result to a continuum of types and to general mechanism design problems. Their con-

dition does not always ensure exact FSE, but it characterizes almost FSE, in the sense that for any

ϵ > 0, there is a mechanism in which agents’ surplus in the truthful equilibrium is less than ϵ. Our

condition, in contrast, ensures exact FSE. It is stronger than McAfee and Reny’s, but closer in spirit to

Crémer and McLean (1985, 1988)’s full rank condition.

https://www.econometricsociety.org/
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Jointly, Propositions 1-5 show that the ultimate source of FSE results is not the

comovement between types and beliefs per se, but rather the information that,

in standard Bayesian settings, the designer has about agents’ beliefs. This obser-

vation highlights an important feature of our framework. Specifically, since their

very inception, FSE results have famously been received as disturbing.4 In re-

sponse, mechanism design has largely shied away from studying environments

with correlated or non-exclusive information. But the pervasiveness and eco-

nomic relevance of these settings can hardly be underplayed:

“[...] we should stress that in our opinion the independence assumption should be

used only with great caution [...]. It does enable the derivation of results that on the

surface look more ‘realistic’ (there is no full extraction of the surplus). However, the

derivation of these results rely on a very ‘unrealistic’ assumption. Furthermore, [...]

a small deviation from this assumption can induce fundamentally different results.”

(Crémer and McLean (1988, p.1255)).

Our results show that the belief-restrictions framework is capable of expressing

a meaningful notion of non-exclusive information that is useful for implemen-

tation, but without incurring into the pitfalls of FSE. This framework may thus

favor mechanism design’s reappropriation of environments with non-exclusive

information, in which distilling intuitive and reliable economic intuition has long

appeared elusive, within the prevailing paradigm.

In Section 5 we discuss further methodological considerations. Theorem 4, in

particular, provides a characterization of the equilibrium payoffs that clarifies the

connection between standard envelope formulae and the belief-based terms at

the center of our analysis, and to compare the relative merits of the envelope

approach and of the first-order approach that we pursued in this paper. Section 6

discusses the related literature. Section 7 concludes.

4The quote from McAfee and Reny (1992) at the beginning of this introduction echos analogous re-

marks by Crémer and McLean (1988, p.1254): “Economic intuition and informal evidence (we know of

no way to test such a proposition) suggest that this result is counterfactual, and several explanations

can be suggested.” The influential critique of Neeman (2004) may also be ascribed to this view.

https://www.econometricsociety.org/
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2. FRAMEWORK

Payoff Environments. The payoff environment represents agents’ information

about everyone’s preferences over the set of feasible allocations, and an alloca-

tion rule that maps agents’ information to the space of allocations, and which

represents the designer’s objective. Formally, let I = {1, ..., n} denote the (finite)

set of agents, X ⊆Rm the set of allocations. For each i ∈ I , we let Θi denote the set

of player i’s payoff types, with typical element θi, assumed private information.

We adopt the standard notation for type profiles, and let θ ∈Θ :=×i∈IΘi, and for

each i, we let θ−i ∈ Θ−i := ×j ̸=iΘj . For each i, the valuation function is denoted

vi :X ×Θ→ R. Note that we allow vi to depend on the entire profile of types, so

as to allow the case of interdependent values. For each i, we let ti ∈R denote the

monetary transfer to agent i, and assume that i’s utility for each (x, t) ∈X × Rn,

given type profile θ ∈ Θ, is equal to ui(x, t, , θ) = vi (x, θ) + ti. The model can thus

accommodate both private and interdependent values, as well as general exter-

nalities in consumption, including the cases of pure private goods and public

goods. An allocation rule is a function d : Θ→X , which assigns, to each type pro-

file, the allocation that the designer wishes to implement. We maintain through-

out the following assumptions:

ASSUMPTION 1 (Payoff Environment). E = ((Θi, vi)i∈I , d) is such that ∀i ∈ I :

(i) Θi := [θi, θi]⊂R
(ii) vi is twice continuously differentiable.

(iii) d is piecewise differentiable.5

Note that these assumptions require that d is only piecewise differentiable in

types, and hence the model also accommodates discontinuous allocation rules,

which are common for instance in auctions, bilateral trade and assignement

5We say that f : S → R is piecewise differentiable on a closed and convex set S ⊂ Rn if there

exist a collection (Sk)k=1,...,K of pairwise disjoint convex sets such that ∪K
k=1Sk = S, and contin-

uously differentiable functions gk : Sk → R, k = 1 . . .K , such that f =
∑K

k=1 fk where, for each

k = 1, ...,K, fk(x) = 1[x∈Sk]
· gk(x).

https://www.econometricsociety.org/
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problems. The main substantial restriction is the one-dimensionality of the pay-

off types.6

Belief Restrictions. We model the maintained assumptions on agents’ beliefs

via the belief-restrictions we first introduced in Ollár and Penta (2017). We let

∆(Θ−i) denote the set of probability measures over Θ−i, which represent beliefs

about the opponents’ types.Belief restrictions consist of a collection of sets of

possible beliefs, for each type of each agent, over the set of type profiles of the

other agents. Formally, a belief restriction is a collection B = ((Bθi)θi∈Θi
)i∈I , such

that, Bθi ⊆∆(Θ−i) is non-empty for each i and θi. Belief restrictions can be used

to accommodate varying degrees of robustness. For instance:

(i) the belief-free settings of the early literature on robust mechanism design

(e.g., Bergemann and Morris (2005, 2009a,b), Penta (2015), etc.) are obtained by

letting Bθi =∆(Θ−i) for all i and θi ∈Θi, and denoted by BBF = ((BBF
θi

)θi∈Θi
)i∈I ;

(ii) standard Bayesian settings correspond to the special case in which belief

restrictions are commonly known and each belief set is a singleton for every type:

B⋄
θi
= {b⋄θi} for all i and θi ∈Θi. In this case, each player’s payoff type uniquely pins

down the infinite belief hierarchy, as in the interim formulation in a standard

Harsanyi type space. Further, in the special case of a common prior type space,

there exists p ∈∆(Θ) s.t., for each i and θi, p(·|θi) = b⋄θi ∈∆(Θ−i). If, furthermore,

such a common prior is independent across agents, then we also have b⋄θi = b⋄
θ′i

for

all θi, θ′i ∈Θi and for all i ∈ I .

(iii) intermediate notions of robustness obtain whenever Bθi ⊂ ∆(Θ−i) for

some θi. Some special cases have been considered, for instance, by Ollár and

Penta (2017) and Ollár and Penta (2023), respectively to model situations in which

agents commonly know some moments of the distributions of the opponents’

types (common knowledge of moment conditions), or that agents commonly be-

lieve that the opponents’ types are identically distributed (common belief in iden-

ticality). The latter belief restrictions, which we denote as Bid = ((Bid
θi
)θi∈Θi

)i∈I ,

6It is well known that incentive compatibility is significantly more problematic outside of this do-

main, as multidimensionality of types severaly limits its possibility (Jehiel and Moldovanu (2001) and

Jehiel et al. (2006)). We extend our approach to the multidimensional case in Ollár and Penta (2024a).

https://www.econometricsociety.org/
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are defined for settings with a common set of types (i.e. Θj =Θk for all j, k ∈ I) as

follows:Bid
θi
= {bθi ∈∆(Θ−i) : margΘj

bθi =margΘk
bθi for all j, k ̸= i} for all i and θi.

These are just examples of some special cases, but the framework is much more

general. We also stress that since the focus here is on partial implementation and

incentive compatibility, the results in this paper do not require the belief restric-

tions to be common knowledge among the agents. Hence, they are just restric-

tions on the first-order beliefs.

Given belief restrictions B = ((Bθi)θi∈Θi
)i∈I and B′ = ((B′

θi
)θi∈Θi

)i∈I , we write

B ⊆ B′ to denote that Bθi ⊆ B′
θi

for all i ∈ I and all θi ∈ Θi. If B ⊆ B′, then B im-

poses stronger restrictions than B′, in that the designer can rule out more beliefs

in the former than in the latter. In this sense, the belief-free model BBF is minimal

in the information that the designer has, as any model B is such that B ⊆ BBF .

At the opposite extreme, any Bayesian setting B⋄ is maximal, as no distinct be-

lief restriction B is such that B ⊆ B⋄. Belief restrictions Bid are an example of an

intermediate robustness requirement, B⋄ ⊆Bid ⊆BBF .

Mechanisms. A mechanism is a tuple M= ((Mi)i, g), where Mi denotes the set

of messages of player i, and g : M → X × Rn is the outcome function, that as-

signs to each profile of messages, m ∈ M := ×i∈IMi, an allocation and a profile

of payments, g(m) = (x, t) ∈ X × Rn. We consider direct mechanisms, in which

agents report their type (i.e., Mi = Θi for all i) and the allocation is chosen ac-

cording to d (i.e. g(m) = (d(m), t(m))). A direct mechanism therefore is completely

pinned down by the transfer scheme t = (ti)i∈I , where for each i ∈ I , ti : M → R
specifies the transfer to agent i for all profile of reports m ∈M ≡ Θ. Notice that,

by definition, each ti is bounded.

Each (direct) mechanism (d, t) induces a game with incomplete informa-

tion, with ex-post payoff functions U t
i (m; θ) = vi(d(m), θ) + ti(m), which are

bounded functions under the maintained assumptions. We adopt the follow-

ing notation: For any θi ∈ Θi, b ∈ ∆(Θ−i) and mi ∈ Mi, we let EbU t
i (mi; θi) :=∫

Θ−i
U t
i (mi, θ−i; θi, θ−i)db, and for any f : Θ → R, θi ∈ Θi and b ∈ Bθi , we let

Eb[f (θi, θ−i)] :=
∫
Θ−i

f (θi, θ−i)db.

https://www.econometricsociety.org/
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Incentive Compatibility. Incentive compatibility requires that truthtelling is a

mutual best response for the agents, for all beliefs that are consistent with the

belief restrictions B.

DEFINITION 1. A direct mechanism (d, t) is B-incentive compatible (B-IC) if for

all i ∈ I , θi ∈Θi, mi ∈Mi, EbU t
i (mi; θi)≤ EbU t

i (θi; θi) for all b ∈ Bθi .

When d is clear from the context, we say that the transfer scheme t is B-IC.

Note that in a Bayesian environment,B-IC is equivalent to interim (or Bayesian)

incentive compatibility (IIC). At the opposite extreme, in belief-free settings it is

equivalet to ex-post incentive compatibility (ep-IC). For intermediate belief re-

strictions, i.e. such that there exists at least some type θi of some agent i for which

Bθi is a strict subset of ∆(Θ−i), but not a singleton, then B-IC is weaker than ep-

IC (since truthful revelation need not be optimal for all beliefs about Θ−i) but

it is stronger than IIC (in that it requires truthful revelation to be optimal for all

beliefs in Bθi , not just for one). More generally:

REMARK 1. If B ⊆ B′, and (d, t) is B′-IC, then it is also B-IC.

2.1 Leading Example and Preview of Results

EXAMPLE 1 (IIC without Monotonicity (Interdependent Values)). Two agents,

with sets of types Θi = [0,1] and valuation functions vi (x, θ) = (θi + γθj)x, for each

i and j ̸= i, where x ≥ 0 denotes the quantity of a public good, and γ is a pa-

rameter of preference interdependence. These preferences satisfy the following

Single-Crossing Conditions:

(ep-SCC:) for all i and (x, θ),
∂2vi
∂x∂θi

(x, θ)> 0 (1)

Agents’ types are such that θi = θ0 + ηi, where θ0 is a (unobserved) common

value component, uniformly distributed over [0,1/2], and ηi is an idiosyncratic

component, also uniformly distributed over [0,1/2], independently from θ0 and

ηj . Agents only observe θi. Clearly, this is a standard Bayesian setting (hence,

https://www.econometricsociety.org/
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Bθi = {bθi} for each θi ∈ Θi), and given the distributional assumptions, the fol-

lowing conditional expectations hold for all θi ∈ Θi and i: Ebθi (θj) = E (θj |θi) =
θi/2 + 1/4.

With cost of production c(x) = x2/2, the efficient allocation is d∗ (θ) = (1 + γ) (θ1+

θ2). As it is well-known, under the single-crossing condition above, an alloca-

tion rule is implementable if and only if it is increasing in agents’ types, which

is clearly not the case for the efficient allocation rule, if γ = −2. In fact, let us

consider the generalized VCG transfers in this setting, and the ex-post payoff

functions they induce:

tV CG
i (m) =− (1 + γ)

(
1

2
m2

i + γmimj + γm2
j

)
,

UV CG
i (m,θ) = (1 + γ)(mi +mj)(θi + γθj)− (1 + γ)

(
1

2
m2

i + γmimj + γm2
j

)
It is easy to check that while truthful revelation satisfies the first-order condi-

tions of the ex-post payoff function, it violates the second order conditions: with

γ = −2, ∂2UV CG
i (θ, θ)/∂2mi = −(1 + γ) > 0. Thus, due to the combination of the

ep-SCC and of the decreasing allocation rule, if the opponents report truthfully,

the payoff function induced by the VCG transfers is globally convex, and hence

truthful revelation is a local minimum. Ex-post incentive compatibility therefore

is impossible in this setting. Furthermore, the VCG transfers are not IIC either:

with these transfers, truthful revelation fails the second-order conditions also

from the viewpoint of the interim payoffs.

We illustrate next how the VCG transfers may be modified to solve this prob-

lem, using information about agents’ beliefs. For example, consider the following

modified transfers,

tmod
i (m) = tV CG

i (m) + (1 + γ)
(
m2

i +mi − 4mimj

)
, (2)

which induce the following payoff functions:

Umod
i (m; θ) =UV CG

i (m; θ) + (1 + γ)
(
m2

i +mi − 4mimj

)
=

=(1 + γ)

(
((θi + γθj)− (mi + γmj)) (mi +mj) +

3

2
m2

i +mi − 3mimj

)
.

https://www.econometricsociety.org/
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Taking the first order conditions from the interim payoff function, and evalu-

ating it at the truthful profile, we obtain:

∂Ebθi [Umod
i (θ; θ)]

∂mi
=Ebθi

(
(1 + γ) (2θi + 1− 4θj)

)
=(1 + γ)

(
2θi + 1− 4Ebθi (θj |θi)

)
= 0.

Hence, truthful revelation does satisfy the first-order conditions, particularly

thanks to the simplification in the last equality, which used the property we high-

lighted above, that Ebθi (θj) = E (θj |θi) = θi/2 + 1/4 for all θi. To check the second

order conditions, since γ = −2, we have ∂2Umod
i

∂2mi
(m; θ) = −1 < 0. Truthful revela-

tion therefore is a best response to the opponents’ truthful strategy, and hence

these modified transfers are IIC. □

Note that the transfers in (2) can be written as tmod
i (m) = tV CG

i (m) + βi(m),

where βi : M → R is a belief-based term that satisfies Ebθi

[
∂βi
∂mi

(θi, θ−i)
]
= 0 for

all θi and bθi ∈ Bθi . Theorem 1 in Section 3 shows that this holds in general: for

any belief-restrictions B, any B-IC transfers must be of this form, provided that

tV CG is replaced with a suitable generalization of the VCG mechanism, which we

call canonical transfers. Section 3.2 discusses several implications of this result,

including a robust version of the revenue equivalence theorem, which we obtain

under a notion of generalized independence that also applies to non-Bayesian

settings (i.e., the Bθi are not all singletons).

The above, however, are not the only IIC transfers in this setting. For instance,

if some t= tV CG+ β is incentive compatible, then truthful revelation satisfies the

first-order conditions also for the transfers tV CG + αβ, for any α ∈ Rn. Incentive

compatibility, however, may hold for some α but fail for others.

EXAMPLE 1 (continued): In the setting of Ex. 1, consider transfers of the form

tmod,α
i (m) = tV CG

i (m) + αi(1 + γ)(m2
i +mi − 4mimj). With these transfers, truthful

revelation satisfies the second-order conditions if and only if (1 + γ)(2αi − 1)< 0.

Hence, despite the allocation being decreasing when γ <−1, IIC is possible here

for any γ ∈R. □

https://www.econometricsociety.org/
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Extending this logic, Theorem 2 in Section 4 implies that, in order to guaran-

tee that the second-order conditions are satisfied, besides the necessary condi-

tion above the belief-based terms should also be such that Eb
[
∂2UV CG

i
∂2mi

(θi, θ−i)
]
<

−Eb
[
∂2βi
∂2mi

(θi, θ−i)
]

for all θi and b ∈Bθi ⊆∆(Θ−i). Theorem 2 generalizes this in-

sight beyond efficient allocation rules, provided that the VCG transfers are re-

placed by their suitable generalization. Theorem 3 provides a characterization

that highlights the role of belief-based terms in overcoming failures of standard

single-crossing and monotonicity conditions. Theorem 4 in Section 5 character-

izes the equilibrium payoffs, vis-à-vis standard envelope formulae.

We used Ex. 1 to illustrate the basic logic of our first-order approach, within a

standard Bayesian environment and with standard single-crossing conditions. As

we discuss in Section 4.3, a lot more can be achieved in this setting. Proposition 2,

for instance, implies that, within the context of this example, any allocation rule

could be implemented, and inducing any expected payments, including those

that extract the full surplus. Outside of Bayesian settings, however, even if weak

conditions on beliefs suffice to obtain very permissive implementation results

(Proposition 1), informational rents generally remain (Propositions 3 and 4), and

they get larger as the robustness requirements get stronger (Proposition 5).

3. GENERALIZED INCENTIVE COMPATIBILITY: NECESSITY

In this section we derive necessary conditions for B-IC transfers. We first intro-

duce the canonical transfers, t∗ = (t∗i (·))i∈I , which are defined as follows: for each

i and m,

t∗i (m) =−vi (d (m) ,m) +

∫ mi

θi

∂vi
∂θi

(d (si,m−i) , si,m−i)dsi. (3)

https://www.econometricsociety.org/
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These transfers are pinned down by the necessary conditions for ep-IC, up to

an additive term that is constant in own report.7 This characterization of the ep-

IC transfers can be obtained both by inverting the envelope formula for the ex-

post payoff function (Milgrom and Segal, 2002), or directly from the first-order

approach, which derives the (necessary) local incentive constraints for ep-IC

from the first-order conditions of the ex-post payoff function. In this section we

provide an analogous result for B-IC transfers based on a first-order approach.

An envelope formulation is discussed in Section 5.2.

3.1 A first-order approach

The main result in this section derives necessary conditions for B-IC transfers, for

general belief restrictions. In our result, we provide a generalization of the clas-

sical first-order approach that identifies necessary conditions for local incentive

compatibility constraints (cf. Rogerson (1985); Jewitt (1988)). Compared to the

classical results, the main difference is that, instead of focusing on the ex-post

payoff function, we take an interim perspective and consider the expected payoff

function of every type θi, for all beliefs in the set Bθi .

THEOREM 1 (B-IC Transfers (Necessity)). Under the maintained assumptions, if t

is piecewise differentiable and (d, t) is B-IC, then for all i, and for all m ∈M ≡Θ,

ti (m) = t∗i (m) + βi (m) , (4)

where βi : M → R is piecewise differentiable and such that, for all θi and for all

beliefs b ∈ Bθi that have a piecewise differentiable pdf, at all points of differentia-

bility,

7The ‘canonical transfers’, and the associated canonical direct mechanism (d, t∗), should not be

confused with the ‘canonical mechanism’, which traditionally refers to Maskin’s (non-direct) mecha-

nism for full implementation. Special instances of the canonical direct mechanism have appeared

throughout the literature on partial implementation, e.g. in the auction mechanisms of Myerson

(1981), Dasgupta and Maskin (2000), and Segal (2003), the pivot mechanisms of Milgrom (2004) and

Jehiel and Lamy (2018), the public goods mechanisms of Green and Laffont (1977) and Laffont and

Maskin (1980), and the one-dimensional results of Jehiel and Moldovanu (2001)).

https://www.econometricsociety.org/
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∂Eb [βi (mi, θ−i)]

∂mi

∣∣∣∣
mi=θi

= 0. (5)

The result in Equation (4) shows that, in order to design a B-IC transfer scheme,

it is without loss to restrict attention to additive modifications of the canoni-

cal transfers, provided that the added terms satisfy the expectation condition in

Equation (5). We refer to the functions βi :M →R that satisfy Equation (5) as the

belief-based terms that are consistent with B (or simply belief-based terms, when

B is clear from the context).

3.2 Some Direct Implications of Theorem 1

Theorem 1 implies that identifying the set of belief-based terms is crucial to un-

derstand the limits of incentive compatibility. For some belief-restrictions, iden-

tifying this set, or some of its key properties, is relatively straightforward and de-

livers immediately interesting insights on the incentive compatible transfers. We

discuss a few cases:

3.2.1 Belief-Free Settings In belief-free settings, BBF , the condition in (5) is re-

quired to hold for all beliefs about Θ−i, including degenerate ones, which is only

possible if βi is constant in mi. Hence, a transfer scheme is BBF -IC (that is, ep-IC)

only if it coincides with the canonical transfers, up to a function that is constant

in agents’ own reports. Thus, when all beliefs are allowed, there are no non-trivial

belief-based terms. In this sense, the classical result discussed above obtains as a

special case of Theorem 1:

COROLLARY 1. If t is BBF -IC, then, ∀i, βi (m) := ti(m)− t∗i (m) is constant in mi.

3.2.2 Bayesian Settings In a Bayesian setting, B⋄, for any agent i and for any

function Gi : M → R that is Lebesgue-integrable with respect to mi, the term

fi (θi) := Eb⋄θiGi (θi, θ−i) is uniquely pinned down by the collection (b⋄θi)θi∈Θi
of

agent i’s beliefs. Hence, letting

βi (m) :=

∫ mi

θi

Gi (s,m−i)ds−
∫ mi

θi

fi (s)ds,

https://www.econometricsociety.org/
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we obtain a belief-based term, since βi thus defined satisfies the condition in eq.

(5).

In this sense, Bayesian settings are maximal in the set of belief-based terms

they admit, since they can be generated starting from any arbitrary Gi :M → R.

This is in stark contrast with the belief-free case, which as seen admits no non-

trivial belief-based terms, and hence essentially no incentive compatible trans-

fers other than the canonical ones. Here, the richness of belief-based terms gives

rise to a multitude of IIC transfers, which may be used to attain different objec-

tives beyond incentive compatibility. Some of this richness has been exploited

by the literature, for instance to pursue budget balance, surplus extraction, su-

permodularity, contractiveness, or uniqueness (see references in footnote 2). By

identifying the key condition on the belief-based terms, Theorem 1 unifies these

results and lays the ground to a systematic understanding of the possibilities, and

particularly the limits, of IIC.

3.2.3 Independent Types In Bayesian settings with independent types, the belief

sets not only are all singletons, but also contain the same distribution for all types

of a player: for each i, B⋄
θi
= {b⋄i } for all θi ∈ Θi. Then, the condition in eq. (5)

implies that, for any belief-based term, its expected value at the truthful profile

is constant in the agent’s own type. This is stated formally in point 1 of the next

Corollary. In turn, it also implies the following two points:

COROLLARY 2. Let B⋄ be a Bayesian environment with independent types, and let

b⋄i ∈∆(Θ−i) denote agent i’s beliefs, regardless of his type. Then:

(i) If t is B⋄-IC, then for each i, there exists κi ∈ R s.t. Eb⋄i [βi (mi, θ−i)] = κi for all

mi.

(ii) If t is B⋄-IC, then for each i, there is a κi ∈ R such that, Eb⋄i ti (θi, θ−i) =

Eb⋄i [t∗i (θi, θ−i)] + κi for all θi ∈Θi.

(iii) (d, t) is B⋄-IC for some t if and only if (d, t∗) is B⋄-IC.

Point (ii) is Myerson’s (1981) revenue equivalence, here stated for general en-

vironments with interdependent values and independently distributed types.

Point (iii) says that an allocation rule is partially implementable, in the sense

https://www.econometricsociety.org/
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of interim (or Bayes-Nash) equilibrium, if and only if it is implemented by the

canonical transfers. Intuitively, since all types of an agent share the same beliefs,

beliefs are not helpful to screen types, beyond what can be achieved based on the

ex-post payoffs. Note that this is not to say that IIC is as demanding as ep-IC: for

instance, if single-crossing conditions hold in the interim sense, but not ex-post,

then it may be that t∗ is IIC, but not ep-IC. Nonetheless, to verify whether some

transfers are IIC, it suffices to check whether IIC holds for such transfers: if t∗ is

not IIC, then no belief-dependent term could recover incentive compatibility.

3.2.4 Generalized Independence The logic above points to another interesting

implication of Theorem 1, which suggests introducing the following notion of

generalized independence for non-Bayesian settings:

DEFINITION 2. B satisfies generalized independence if, for each i ∈ I ,
⋂

θi∈Θi
Bθi ̸=

∅.

This condition is weaker than requiring that the belief sets are constant across

types (i.e., ∀i ∈ I Bθi = B
θ
′
i

for all θ, θ
′
i ∈ Θi), which in turn holds in any of the

following special cases: (i) belief-free settings; (ii) Bayesian models with indepen-

dent types; (iii) the Bid-restrictions, for common belief in identicality. With this,

we obtain the following:

COROLLARY 3. Let B satisfy generalized indepence, and let pi ∈ ∩θi∈Θi
Bθi . Then:

(i) For any belief-based term βi :M → R, ∃κi ∈ R s.t. Epi [βi (mi, θ−i)] = κi for all

mi.

(ii) If (d, t) is B-IC, then for each i, there is a κi ∈ R such that, Epiti (θi, θ−i) =

Epi [t∗i (θi, θ−i)] + κi for all θi ∈Θi.

(iii) (d, t) is B-IC for some t if and only if (d, t∗) is B-IC.

The discussion that follows Corollary 2 therefore applies to any belief-restrictions

that satisfy generalized independence. Point (ii), in particular, extends revenue

https://www.econometricsociety.org/
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equivalence to such non-Bayesian settings as well. All these results follow directly

from Theorem 1.8

4. GENERALIZED INCENTIVE COMPATIBILITY: A DESIGN PRINCIPLE

By design, the transfers that satisfy the conditions in Theorem 1 are such that

truthful-revelation satisfies the first-order conditions of the interim payoff func-

tions, for all beliefs consistent with the belief restrictions for every type. In this

sense, these restrictions only reflect local requirements of incentive compatibil-

ity. But just like the canonical transfers may fail to be incentive compatible, so

may the transfers that satisfy the conditions in Theorem 1. This may be either be-

cause truth-telling is a local minimum (e.g., if the payoff function is locally con-

vex) or if it is a local but not a global maximum (which may be the case if the pay-

off function is not globally concave). Fully understanding incentive compatibil-

ity therefore requires exploring what conditions ensure that the payoff function

has the right curvature. This is typically what single-crossing and monotonicity

conditions do.

In this Section we discuss how the belief-based terms can be used to induce the

concavity of the payoff function that is needed to ensure incentive compatibility.

In Section 4.1 we first consider the special case of environments with differen-

tiable allocation rules, where Theorem 1 readily delivers tractable necessary and

sufficient conditions (Theorem 2). Then, in Section 4.2 we relax the differentia-

bility assumption, and provide a general characterization of the B-IC transfers

that sheds further light on the role that the belief-based terms have in relation

with standard single-crossing and monotonicity conditions (Theorem 3).

8This Corollary is related to some of the results in Lopomo et al. (2021), who showed that under

standard ep-SCC and Monotonicity assumptions, a “full dimensionality” condition on the overlap of

the belief sets implies that there is no gap between the possibility of ep-IC and B-IC. As we explain

in Section 5.1.3, and also using the characterization in Theorem 3, such an equivalence of B-IC and

ep-IC follows from Corollary 3 and Theorem 3 under standard ep-SCC and Monotonicity conditions,

but not necessarily otherwise.
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4.1 B-IC in the differentiable case: a second-order approach

First we consider the special case in which all functions are differentiable. In

these settings, Theorem 1 readily delivers the following simple conditions for B-

IC:

THEOREM 2 (Conditions under Differentiability). Assume that vi, ti, d are all twice

differentiable, and for each i, let βi := ti − t∗i .

[Necessity:] Transfers t = (ti)i∈I are B-IC only if, for all i and θi ∈ Θi, for all b ∈
Bθi :

(i) Eb[∂iβi (θi, θ−i)] = 0 and

(ii) there exists an open neighborhood of θi, Nθi , s.t. for all mi ∈Nθi :

Eb[∂2iiU
∗
i (mi, θ−i; θi, θ−i)]≤−Eb[∂2iiβi (mi, θ−i)]. (6)

[Sufficiency:]: Transfers t= (ti)i∈I are B-IC if, for all i and θi ∈Θi, for all b ∈Bθi ,

Condition (i) holds and Inequality (6) holds for all mi ∈Mi.

Condition (i) states the necessary condition from Theorem 1, for the differen-

tiable case; Condition (ii) states the nessecary second order condition instead, it

relates the curvature of the payoff function of the canonical direct mechanism to

the belief-based term.

EXAMPLE 1 (redux): In terms of the decomposition from Theorem 1, the belief-

based terms in the transfers in eq. (2) are such that βi(m) = (1 + γ)(m2
i + mi −

4mimj), with first- and second-order derivatives, respectively, ∂iβi(m) = (1 +

γ)(2mi + 1 − 4mj) and ∂2iiβi(m) = (1 + γ)2. The expected payoffs of the canon-

ical transfers instead are such that, for all beliefs consistent with the belief-

restrictions, ∂2iiE
bθi [U∗

i (m; θ)] =−(1 + γ). Hence, βi satisfies Condition (i) of The-

orem 2, since it holds in that setting that Ebθi [2θi + 1 − 4θj ] = 0. Moreover, since

with γ =−2 the VCG transfers induce convex payoffs, the left-hand side of Con-

dition (ii) is larger than 0, but βi is concave enough that Condition (ii) holds, so

that Ebθi [Umod
i ] overall is indeed concave in mi for all θi and bθi ∈Bθi . □

https://www.econometricsociety.org/
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Theorem 2 distills a general design principle. To see this, note that the canoni-

cal transfers are ep-IC if the term on the left-hand side of (6) is less than zero, i.e.

if U∗
i is itself concave. When this is not the case, the belief-based term can be used

to relax this constraint: if belief-based terms exist that satisfy Condition (i), and

that are sufficiently concave so as to make (6) hold for all mi, then B-IC can be at-

tained. The general idea therefore is to identify sufficiently concave belief-based

terms, subject to Condition (i) being satisfied. This is useful both to recover in-

centive compatibility when the canonical transfers do not achieve it, but also to

identify the limits of B-IC. We illustrate these points with the next example, that

exhibits a perhaps starker violation of standard SCM conditions than Ex. 1.

EXAMPLE 2 (Opposing Interests and Belief Restrictions). A government is decid-

ing on the quantity x of spending in pollution reduction activities. For simplicity,

society consists of two agents, and the government’s desired level of expendi-

ture is d (θ) =K (θ1 + θ2), where K > 0, and θi ∈ [0,1] denotes the productivity of

agent i, which is their private information. Agents work in different sectors, with

opposing preferences over pollution reduction, as a function of their productiv-

ity: their valuation functions are v1 (θ, x) = θ1x and v2 (θ, x) = −θ2x, respectively.

Clearly, the government’s policy is not efficient in this case. This may be due to

political or institutional considerations, which may lead the government to favor

a particular agenda, despite the opposite preferences of certain social groups.

The belief restrictions are such that Bθi = {b ∈∆(Θj) : Eb(θj) = θi/2} , for each

θi and i. In words, the designer knows that both agents’ expect the opponent’s

type, on average, to be half of their own. But beyond this, the actual distributions

that describe their beliefs are not known to the designer.

The canonical transfers (eq. (3)) in this problem are such that:

t∗1 (m) =−m1K (m1 +m2) +K

∫ m1

0
(s+m2)ds=−K

1

2
m2

1,

and t∗2 (m) = +m2K (m1 +m2)−K

∫ m2

0
(m1 + s)ds=K

1

2
m2

2,
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which induce the following payoff functions:

U∗
1 (m,θ) = θ1K (m1 +m2)−K

1

2
m2

1,

U∗
2 (m,θ) =−θ2K (m1 +m2) +K

1

2
m2

2.

Due to the agents’ opposing interests, standard single crossing and monotonicity

conditions fail in this setting, and it can be checked that the optimal strategies in

(d, t∗) have agent 2 always report extremal messages, either 0 or 1. The canonical

transfers therefore are neither ep-IC nor B-IC. The reason is that while truthful

revelation satisfies the F.O.C. for both agents, since the allocation rule moves with

θ2 in the opposite direction of 2’s marginal utility for x, U∗
2 is convex in m2 and

hence the S.O.C. fail for agent 2.

To characterize the set of B-IC transfers, first we identify the set of belief-based

terms that satisfy the necessary condition in part 1 of Theorem 2. (We maini-

tain in this example that the lowest type of each agent always pays 0.) In this

setting, it can be shown that βi : M → R satisfies such condition if and only if

∂iβi (mi,mj) = (mi − 2mj)Hi (mi) where Hi is a real function on Mi ≡Θi. (It is easy

to see that for such βi function, ∂iEbβi (θi) = 0. The only-if part is less straightfor-

ward, and we leave it to the Appendix.) Hence, belief-based terms in this setting

must necessarily take the following form:

βi(m) =

∫ mi

0
(s− 2mj)Hi(s)ds

Notice that, since for each θi and b ∈ Bθi we have Eb[θj ] = θi/2 the following sim-

plification occurs for all such beliefs:

∂2iiEb[βi (θ1, θ2)] =Hi(θi) +
(
θi − 2Eb[θj |θi]

)
H ′

i(θi) =Hi(θi)

Given this, for agent 1 part 2 of Theorem 2 holds if and only if, for all beliefs

consistent with the belief-restrictions, −K + ∂211Eb[β1 (θ1, θ2)] ≤ 0. Exploiting the

condition above, this simplifies to H1(θ1) ≤K for all θ1. Similarly, for agent 2 we

obtain H2 (θ2) ≤ −K for all θ2. Hence, a transfer scheme is B-IC if and only if it
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takes the form

t1 (m1,m2) =−1

2
m2

1 +

∫ m1

0
(s− 2m2)H1 (s)ds, and

t2 (m1,m2) =
1

2
m2

2 +

∫ m2

0
(s− 2m1)H2 (s)ds,

subject to the restriction on the Hi functions above. Exploiting again the fact that,

for each θi and b ∈ Bθi , Eb[θj ] = θi/2, the expected transfers at the truth-telling

profile are:

Eb[t1 (θ) |θ1] =−1

2
θ21 +

∫ θ1

0
(s− θ1)H1 (s)ds, and

Eb[t2 (θ) |θ2] =
1

2
θ22 +

∫ θ2

0
(s− θ2)H2 (s)ds,

from which we can see that they are minimized by setting each Hi(θi) at the cor-

responding upper bound, that is H1 ≡K and H2 ≡ −K . The resulting transfers,

tCmin
1 (m1,m2) =

m2
1
2 (K−1)−2Km2m1, and tCmin

2 (m1,m2) =
m2

2
2 (1−K)+2Km1m2,

therefore attain the lowest expected transfers to each agent pointwise, for each

type realization θ ∈Θ and regardless of agents’ true beliefs within Bθi . □

4.2 B-IC transfers in the general case: A Full Characterization

We provide next a characterization of the B-IC transfers in general environments,

that highlights the role that belief-based terms may play in overcoming failures

of standard single-crossing and monotonicity conditions, as it was the case in the

previous example.

THEOREM 3 (B-IC: Characterization). Under the maintained assumptions of The-

orem 1, for each i, let βi := t∗i − ti. Then, (d, t) is B-IC if and only if for all i, θi, b ∈Bθi

and mi:

Eb

[∫ θi
mi

(
∂vi
∂θi

(d (s, θ−i) , s, θ−i)− ∂vi
∂θi

(d (mi, θ−i) , s, θ−i)
)
ds

]
≥ Eb

[
βi (mi, θ−i)−βi (θ)

]
.
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To understand this result, let us first consider the belief-free case, where B-IC

coincides with ep-IC. First, as this condition must hold for all beliefs, it must also

hold in the ex-post sense, and hence we can just focus on the terms inside the

square brackets. Second, as discussed, in belief-free settings the necessary con-

dition in Theorem 1 implies that the belief-based terms are constant in own mes-

sage, and hence the right-hand side of the conditions in Theorem 3 are equal to

zero. Thus, for belief-free settings, the following holds:

COROLLARY 4 (ep-IC and ep-SCM). Under the maintained assumptions of Theo-

rem 1, , (d, t∗) is ep-IC if and only if for all θi, θ′i and for all θ−i:9

[
∂vi
∂θi

(
d
(
θ′i, θ−i

)
, θi, θ−i

)
− ∂vi

∂θi
(d (θi, θ−i) , θi, θ−i)

]
· (θ′i − θi)≥ 0.

This condition entails joint restrictions on the single-crossing properties of the

valuation functions, and on the monotonicity of the allocation rule. To see this,

consider for instance the special case where (vi)i∈I and d are all everywhere dif-

ferentiable, and suppose that the valuation functions also satisfy the ep-SCC in

eq. (1). Then, the condition in Corollary 4 holds if and only if ∂d
∂θi

(θ) ≥ 0 for all

θ ∈ Θ and i ∈ I . That is, with ep-SCC, an allocation rule is ex-post partially im-

plementable if and only if it is increasing. Conversely, if the allocation rule is de-

creasing in all types (i.e., ∂d
∂θi

(θ) ≤ 0 for all θ ∈ Θ and i ∈ I), then (d, t∗) is ep-IC

if and only if the condition in eq. (1) holds with the reversed inequality, which

is exactly what is needed for the conditions in this Corollary to hold. For these

reasons, we refer to this condition as ex-post Single-Crossing and Monotonicity

(ep-SCM).

Analogously, in a Bayesian setting with independent types, the same logic im-

plies that IIC is possible if and only if a suitable interim-SCM condition is satis-

fied:

9This Corollary generalizes known results on single-crossing and monotonicity conditions to our

setting, which allows for not-everywhere differentiable allocation rules.
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COROLLARY 5 (IIC with Independent Types). Let B⋄ be a Bayesian environment

with independent types, and let b⋄i ∈ ∆(Θ−i) denote agent i’s beliefs, regardless of

his type. Then, under the maintained assumptions of Theorem 1, an IIC transfer

scheme exists if and only if for all i, and for almost all pairs of θi, θ′i,

Eb⋄i

[
∂vi
∂θi

(
d
(
θ′i, θ−i

)
, θi, θ−i

)
− ∂vi

∂θi
(d (θi, θ−i) , θi, θ−i)

]
· (θ′i − θi)≥ 0.

Corollaries 4 and 5 provide single-crossing and monotonicity conditions that

are ‘standard’ in the sense that overall they prescribe agents’ marginal valuations

and allocations to increase with each agent’s type (either in the ex-post sense, or

‘in expectation’ with respect to b⋄). Compared to these, the condition in Theo-

rem 3 is more relaxed in the sense that, if the belief restrictions admit non-trivial

belief-based terms, then they may be used to ‘fill’ what the environment lacks in

terms of the SCM conditions on the left-hand side, by relaxing the constraints on

the right-hand sides of the inequality.

The belief-based terms can thus be seen as additional tools to shape agents’

incentives, when standard SCM conditions are not met. The extent to which this

is possible depends on the flexibility of the belief-based terms that are available

to the designer, depending on the belief-restrictions. As we discussed, these are

minimal in settings in which the belief sets do not vary with the type (as in belief-

free settings, or in Bayesian settings with independent types, etc.), but they get

larger in other cases, and more so as the belief sets get smaller.

4.3 Comovement of Types and Incentive Compatibility

The condition in Theorem 3 entails a certain discontinuity between settings that

satisfy generalized independence (Def. 2), and those that do not. In the former, the

only available belief-based terms are constant in mi (cf. Corollary 3.1), and hence

they cannot be used to make up for failures of the SCM conditions, since the

right-hand side of the condition in Theorem 3 is zero. But as soon as beliefs vary

with agents’ types, the possibility of using belief-based terms to recover incentive

compatibility suddenly expands.

https://www.econometricsociety.org/


26 Submitted to Unknown Journal

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

EXAMPLE 3 (Comovement of types and belief-based terms). Consider the setting

of Ex. 2, and replace the belief restrictions with the following, (more general) for-

mulation: Bθi = {b ∈∆(Θj) : Eb (θj) = γ θi
2 + (1− γ)12}, where γ ∈ [0,1] is a fixed pa-

rameter, known to the designer, that captures the degree of comovement between

agents’ beliefs and their types: for γ = 1 we obtain the baseline model from Ex. 2;

for γ = 0 instead the belief restrictions satisfy generalized independence. Since the

payoff environment is the same as in Ex. 2, ep-IC is still impossible. In fact, the

canonical transfers in this setting are not B-IC either, for any γ, and Corollary 3

and Theorem 3 jointly imply that no transfers are B-IC when γ = 0. Next, consider

the following transfers:

tmod
2 (m) = t∗2 (m)−A

(
γm2

2/2 + (1− γ)m2

2
−m1m2

)
. (7)

Under these belief restrictions, truthful revelation satisfies the first-order con-

ditions, and ∂2Umod
2 (m;θ)
∂2m2

=K −Aγ/2 . Hence, m2 = θ2 is optimal for agent 2 when-

ever A > 2K/γ, and hence B-IC is possible for any γ ∈ (0,1]: an arbitrarily small

level of comovement is enough to recover incentive compatibility via the design

of a suitable belief-based term. □.

The insight from this example is very general, and goes beyond private values.

It extends to a large class of belief restrictions, regardless of the valuation func-

tions and of the allocation rule. The following property of the belief restrictions

is key:

DEFINITION 3. We say that B admits a responsive moment condition if for each i

there exist Li : Θ−i →R and fi : Θi →R s.t. for all θi and b ∈Bθi , EbLi (θ−i) = fi (θi)

where fi is cont. diff. and f ′i is bounded away from 0.

If, furthermore, B is such that, for each i and θi, Bθi consists of all the beliefs bi ∈
∆(Θ−i) such that EbiLi (θ−i) = fi (θi), then we say that B is maximal with respect to

the moment condition (Li, fi)i∈I .

In words, B admits a moment condition if, for every i, there exists a function

of the opponents’ types whose expectation given θi is known to the designer (i.e.,

https://www.econometricsociety.org/
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for each θi, it is the same for all beliefs in Bθi). If such expectations are strictly

monotonic in θi, then we say that the moment condition is responsive. Moment

conditions can be seen as pieces of information that the designer may have about

agents’ beliefs. In belief-free settings, for instance, only trivial moment condi-

tions (where all Li and fi are constant) satisfy the restrictions above, and hence

the designer has effectively no information about beliefs. At the oppositve ex-

treme, in a Bayesian setting, for any Li there is a fi such that Eb⋄iLi (θ−i) = fi (θi)

(albeit with f ′i = 0 if types are independent, not necessarily otherwise). More

broadly, the stricter the belief restrictions, the larger the set of admissible mo-

ment conditions, and hence the more information the designer has about agents’

beliefs. The case when B is maximal with respect to some (Li, fi)i∈I represents

the idea that the specific moment condition is essentially the only information

about beliefs that the designer can (or is willing to) rely on.

PROPOSITION 1. Fix v, and let the belief restrictions admit a responsive moment

condition. Then, for any d, there exist transfers t such that (d, t) is B-IC.

Proof: For each agent i, let ti := t∗i −Ai

(∫mi fi (s)ds−Li (m−i)mi

)
. By the smooth-

ness and implied boundedness assumptions on v and d, the left-hand side of the

inequality in Theorem 3 is bounded, and hence there exists Ai large (resp., small)

enough if fi is increasing (resp., decreasing) such that the inequality in Theorem

3 holds for βi(m) =−Ai

(∫mi fi (s)ds−Li (m−i)mi

)
. ■

Hence, as long as the belief restrictions admit a responsive moment condition,

then any allocation rule can be made B-IC by some t. (In Ex.3, Li(θ−i) = θj , and

fi(θi) =
γθi+(1−γ)

2 , which satisfies the condition of the proposition if and only if

γ > 0.)

The discontinuity we illustrated with Ex.3 is reminiscent of another well-

known discontinuity in the literature, between Bayesian settings with indepen-

dent and correlated types, namely Crémer and McLean (1985, 1988) and McAfee

and Reny (1992) full-surplus extraction (FSE) results.10 We provide next a novel

10In Bayesian settings, the result in Proposition 1 can be strengthened: under suitable restrictions,

the results in McAfee and Reny (1992) imply that not only any allocation rule is implementable, but
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version of FSE, that highlights more clearly how the difference between Bayesian

and non-Bayesian settings affects the design of the mechanism.11 Our result is

based on the following conditions:

DEFINITION 4. Let B⋄ be a Bayesian setting (i.e., B⋄
θi
= {b⋄θi} for each i and θi).

(i) We say that B⋄ is differentiable if for each i, and for any differentiable G : Θ→
R, the function fi : Θi →R, defined as fi(θi) = Eb⋄θi [G (θi, θ−i)], is differentiable.

(ii) We say thatB⋄ satisfies the full rank condition if, for each i, it holds that for any

differentiable gi : Θi → R, there exists a Borel-measurable function κi : Θ−i →
R such that

∫
Θ−i

κi (θ−i)db
⋄
θi
= gi (θi) for all θi.

The next proposition shows that, in Bayesian settings that satisfy these condi-

tions, the result in Proposition 1 can be strengthened in the sense that not only

any allocation rule can be made IIC, but also the transfers can be chosen so as to

match any target for the equilibrium expected payments:

PROPOSITION 2. Fix v, and let B⋄ be a differentiable Bayesian setting that satisfies

the full rank condition. Then, for any d and for any differentiable t, there exist

transfers t′ such that: (i) (d, t′) is IIC; and (ii) for each i and θi, Eb⋄θi [t′i(θi, θ−i)] =

Eb⋄θi [ti(θi, θ−i)].

Proof: First note that if B⋄ is differentiable and satisfies the full rank condition,

then there exist functions (Li, fi)i∈I that satisfy the condition of Prop. 1. Then, for

each i, consider t̂i := t∗i −Ai

(∫mi fi (s)ds−Li (m−i)mi

)
. From the proof of Prop.

1, (d, t̂) is IIC for Ai large (small) enough if fi is increasing (decreasing). Next,

let gi : Θi → R be defined as gi(θi) :=
∫
Θ−i

[ti(θi, s)− t̂i(θi, s)]db
⋄
θi

and note that, by

construction and Def. 4, gi is differentiable in θi. Using the full rank condition, let

that this can be done so that agents’ surplus is almost fully extracted (cf. footnote 3). Chen and Xiong

(2013) further showed that this form of FSE holds generically in the space of Bayesian models. More

recent results are provided by Hu et al. (2021) and Lopomo et al. (2022), who consider alternative

approaches to FSE.
11In contrast with the papers in the previous footnote, the sufficient condition we provide for exact

FSE next is stronger than McAfee and Reny (1992)’s, but closer in spirit to Crémer and McLean (1988)

full rank condition.
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κi : Θ−i → R be s.t.
∫
Θ−i

κi(θ−i)db
⋄
θi
= gi(θi) for each θi. Then, letting t′i be defined

as t′i(θi, θ−i) := t̂i(θi, θ−i)+κi(θ−i), the direct mechanism (d, t′) is both IIC and such

that Eb⋄θi [t′i(θi, θ−i)] = Eb⋄θi [ti(θi, θ−i)]. ■

The ‘anything goes’ result in this proposition stems from the joint combination

of the ‘comovement’ of beliefs and payoff-types and of the environment being

Bayesian: In a non-Bayesian setting, such as that in Ex. 3, arbitrary interim pay-

ment functions are generally not possible, due to the limited information about

agents’ beliefs. The next proposition formalizes this insight: if the designer’s in-

formation about agents’ beliefs is limited, albeit still rich enough so as to make

any allocation rule implementable, there are restrictions on the incentive com-

patible transfers.

PROPOSITION 3. Consider a differentiable (v, d) and a B that is maximal with re-

spect to a responsive moment condition (Li, fi)i∈I . Then, if (ti)i∈I is a B-IC transfer

scheme, for each i there exist a function Hi :Mi →R such that ti can be decomposed

as follows:

ti (m) = t∗i (m) +

∫ mi

θi

(Li (m−i)− fi (s))Hi (s) ds+ τi (m−i) .

Moreover, there exists a continuous lower bound Ki : Θi → R such that, for any

B-IC transfer scheme, Eb
[∫ θi

θi
(Li (θ−i)− fi (s))Hi (s) ds

]
≥Ki (θi) for all θi and b ∈

Bθi .

For the next proposition, we say that a function g : Θ→R is Li-linearly separa-

ble if it can be written in the form g (θ) = δ1 (θi)Li (θ−i) + δ2 (θi). Additionally, we

say that a mechanism (d, t) is B-individually rational (B-IR) if, for each i and θi,

EbU t
i (θi; θi)≥ 0 for all b ∈ Bθi .

12 Finally, we say that a mechanism extracts the full

surplus if the individual rationality constraints hold with equality for all i, θi, and

b ∈Bθi

12Recall that, for any b ∈ ∆(Θ−i), we defined EbU t
i (mi;θi) :=

∫
Θ−i

U t
i (mi, θ−i;θi, θ−i)db. Also, in

this section we set the outside option to 0 for simplicity, but the extension to type-dependent outside

options is easy.
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PROPOSITION 4. Consider a differentiable (v, d) and let B be maximal with re-

spect to a responsive moment condition (Li, fi)i∈I . Unless for all i, ∂vi
∂θi

(d (θ) , θ) is

Li-linearly separable, no transfers t can extract the full surplus.

The two results together draw a line between the ‘any d goes’ result for general

belief restrictions (Prop. 1), and the ‘anything goes’ result for Bayesian settings

(Prop. 2): while, in the latter, any interim payment functions are achievable, the

extra robustness requirement in non-Bayesian settings does restrict the possible

payments. The next example illustrates the results of Propositions 1-4 and some

of the restrictions on the interim payments:

EXAMPLE 3 (continued): Consider again the setting of Ex. 3, with belief restri-

tions Bθi = {b ∈∆(Θj) : Eb[θj ] = γ θi
2 + (1− γ)12}. For simplicity, let us consider the

case where γ ∈ [0,1/2]. As we already discussed, the conditions of Prop. 1 hold,

and B-IC is attained by the transfers in eq. (7), as long as A > 2K/γ and for any

γ > 0.

0.20.2 0.40.4 0.60.6 0.80.8 11

-0.8-0.8

-0.6-0.6

-0.4-0.4

-0.2-0.2

0.20.2

0.40.4

0.60.6

00

partial impl.

0.20.2 0.40.4 0.60.6 0.80.8 11

-0.8-0.8

-0.6-0.6

-0.4-0.4

-0.2-0.2

0.20.2

0.40.4

0.60.6

00

partial impl.

FIGURE 1. Possible Expected Payments to the Agents in Ex. 3: B-IC under ti (0, θ−i)≡ 0. The thick

black line, in both figures, is the expected canonical transfer to each agent (feasible for agent 1 but

infeasible for agent 2). The gray area represents the possible interim payments under partial imple-

mentation (resulting from possibly different transfer schemes, with the restriction that the lowest type

pays zero).
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Figure 1 plots the range of expected payments (as a function of θi, for any

b ∈ Bθi) that are associated with B-IC transfers and the condition that the low-

est type pays 0. If, however, the designer’s model consists of a Bayesian setting

that also satisfies the conditions of Prop. 2, then any expected payments can

be induced in an incentive compatible way. For instance, let B⋄ be such that,

for each θi, b⋄θi consists of a mixture of two independent uniform distributions,

over [0, θi] and [0,1], respectively with weights γ and (1− γ). Then, mimicking the

proof of Prop. 2, we can consider for surplus extraction our ‘target’ transfers to be

ti(θ) = −vi(d(θ), θ), which would attain FSE, and obtain the expected difference

gi(θi) =
∫
Θj

(
ti − t̂i

)
dbθi , where t̂i is a suitable IIC transfer.

For agent 1, the canonical transfers are IIC , and hence they can be used in

the role of t̂1. The integral equation
∫
Θ2

κ1 (θ2)dbθ1 =−K
[
γ θ21

2 + (1− γ)θ12

]
solved

for κ1(·) gives κ1(θ2) =
K(1+γ)

γ [θ2(2 + γ) + (1− γ)] if θ2 ∈ [0, γ] and κ1(θ2) = 0 oth-

erwise. (See Appendix B for the solution of this class of integral equations.) For

agent 2, we can take t̂2(θ) = t∗2 (θ) − A
(
γθ22/2+(1−γ)θ2

2 − θ1θ2

)
from eq. (7), which

is IIC for A > 2K/γ. The integral equation
∫
Θ1

κ2 (θ1)dbθ2 =
θ22
2

[
K(1 + γ)− γA

2

]
+

K(1−γ)θ22 solved for κ2(·) gives κ2(θ1) =− (1−γ)
γ

[
θ1

(2+γ)
γ

(
K(1 + γ)− γA

2

)
+ (1− γ)K

]
if θ1 ∈ [0, γ] and κ2(θ1) = 0 otherwise. The resulting transfers, t′i = t̂i + κi, preserve

IIC and at the same time extract all the surplus from both agents. Moreover, any

other differentiable ti payments can be matched by constructing transfers this

way. □

Hence, information rents remain, even within models where agents’ beliefs

might play a role in facilitating the implementation task. If the belief-restrictions

are not Bayesian, even if any d can be implemented under the condition of Propo-

sition 1, there may still be bounds to the surplus that can be extracted. The size

of the information rents depends on the joint properties of the allocation rule,

agents’ preferences, and the belief restrictions, and they get get larger as the ro-

bustness requirement strenghtens (i.e., as the belief sets get larger).

To formalize these statements, for any (v, d), and for any belief restrictions B,

let F (B) denote the set of transfer schemes that are both B-IC and B-individually
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rational, and let V (B) denote the set of all triplets (i, θi, b) such that i ∈ I , θi ∈ Θi

and b ∈Bθi . Then, define:

τ(B) := inf
t∈F (B)

sup
(i,θi,b)∈V(B)

EbU t
i (θi; θi)

if F (B) is non-empty, and τ(B) :=∞ otherwise.

First note that, with this notation, FSE obtains if and only if there exists t ∈ F (B)
such that the constraint for B-IR holds with equality for all types of all agents, i.e.

if τ(B) = 0. If ∞> τ(B)> 0, in contrast, in each incentive compatible and individ-

ually rational mechanism there is at least some type that enjoys strictly positive

rents. This bound to the designer’s ability to extract surplus, however, decreases

monotonically as belief restrictions get finer. At the extreme, if B is a Bayesian

setting with correlated types, then FSE obtains.

PROPOSITION 5. For any (v, d), and for any B: B′ ⊆ B implies τ(B′)≤ τ(B). More-

over, if τ(BBF )> 0, then there exist B and B′ such that:13 (i) B admits a responsive

moment condition (Def. 3) and is such that 0 < τ(B) <∞; (ii) B′ ⊂ B and is such

that τ(B′) = 0.

The weak monotonicity of τ(·) with respect to set inclusion follows directly

from the definition of B-IC. The rest of the proposition states that – unless the

environment is trivial – there always exist belief restrictions B in which FSE is

not possible, despite B already granting maximal flexibility in implementing any

allocation rule via belief-based terms. FSE can be achieved, but only by relying

on extra information B′ ⊂B about beliefs. Hence, in essentially any environment

beliefs can play a meaningful role to expand the possibility of implementation,

without entailing FSE.

13Note that τ(BBF ) = 0 only holds in trivial environments, in which each vi is constant in own type.
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5. DISCUSSION

5.1 Implications of Theorem 1

5.1.1 On the Richness of Belief-based terms in Bayesian Settings As we men-

tioned in Section 3.2.2, in a Bayesian setting, B⋄, for any i ∈ I and for any

Gi :M → R that is Lebesgue-integrable with respect to mi, the function fi (θi) :=

Eb⋄θiGi (θi, θ−i) is uniquely pinned down by agent i’s beliefs. Hence, letting βi (m) :=∫mi

θi
Gi (s,m−i)ds−

∫mi

θi
fi (s)ds, we obtain a viable belief-based term, since βi thus

defined satisfies condition (5) in Theorem 1. The results in the previous section

showed how this richness, and the associated freedom to choose such functions,

can be used to obtain full-surplus extraction. Other results in the literature have

also exploited this richness, to obtain various results (cf. footnote 2). We will re-

turn to this point throughout this Section.

5.1.2 On Bayesian Settings with Independent Types The result in point 1 of

Corollary 2 formalizes why with independent types it is with no essential loss

of generality to study incentive compatibility as if there were a single agent.

When this condition does not hold, however, the heterogeneity of beliefs across

a player’s types may indeed expand the set of feasible interim payments and im-

plementable allocation rules, and hence the reduction to a single-agent setting is

not without loss.

Note, however, that even with independence, and notwithstanding the payoff-

equivalence of all IIC transfers, there may still be a value in characterizing the full

set, beyond the canonical transfers. That is if the designer has other objectives,

beyond mere incentive compatibility. In these cases, the single-agent approach

does entail a loss of generality, even with independent types.

EXAMPLE 4 (Independence and Multiplicity). Consider the environment from Ex.

1, but now assume that types are i.i.d. draws from the uniform distribution over

[0,1]. Then, Corollary 2 implies that IIC is possible if and only if the VCG transfers

are IIC. In turn, Corollary 5 ensures that this is the case if and only if γ ≥−1.
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Next, suppose that γ = 3/2, and consider the following transfers:

tfulli = tV CG
i + αi

(
mj −

1

2

)
(1 + γ)mi

With γ = 3/2, the VCG transfers are IIC. Furthermore, since Eb[θj |θi] = 1/2 for all

θi, these modified transfers satisfy both conditions in Theorem 2 for any αi. While

this richness of transfers is redundant from the viewpoint of IIC alone, it may still

be useful for other purposes. For instance, if one also cares about unique imple-

mentation, with γ = 3/2 the VCG transfers induce too strong strategic externali-

ties, and hence multiplicity of equilibria. The results from Ollár and Penta (2017)

ensure that truthful revelation is the only rationalizable strategy (and, hence, also

the unique equilibrium) for αi ∈ (1/2,5/2). In fact, for αi = γ, truthful revelation

is an interim dominant strategy. □

5.1.3 On Generalized Independence Corollary 3 generalizes Theorem 1 in Ollár

and Penta (2023), which only focused on the Bid-restrictions (i.e., under common

belief in identicality), and it sheds light on some influential results in Lopomo

et al. (2021) and in Jehiel et al. (2012)).

Lopomo et al. (2021) showed that, under standard single-crossing and mono-

tonicity assumptions, a “full dimensionality” condition on the overlap of the be-

lief sets implies that there is no gap between the possibility of B-IC and ep-IC.

First note that our notion of generalized independence is weaker than the anal-

ogous condition in Lopomo et al. (2022), as it does not impose any form of full-

dimensionality on the overlap of the belief sets. Furthermore, under generalized

independence, B-IC is possible if and only if it is achieved by the canonical trans-

fers (Corollary 3). Under standard ex-post SCM conditions, the canonical trans-

fers are ep-IC (Corollary 4), and hence our results also imply that– under gener-

alized independence – there is no gap between the possibility of ep-IC and B-IC.
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But without ep-SCC, as in our general setting, the canonical transfers may be B-

IC without necessarily being ep-IC.14 Then, it would not be the case that B-IC and

ep-IC coincide, although revenue equivalence would still hold (Corollary 3.2).

5.2 Equilibrium Payoffs: An Envelope Formulation

Theorem 3 implies the following characterization of the equilibrium payoffs of

B-IC mechanisms:

THEOREM 4 (Payoff Characterization). Fix belief restrictions B and allocation rule

d. For each i, let Di ⊆ RΘ denote the set of all belief-based terms that satisfy the

conditions of Theorem 3. Then, (Ui)i∈I ∈ ×i∈IRΘ is a feasible payoff-function in

the truthful equilibrium of a B-IC mechanism if and only if, for each i, there exists

βi ∈Di such that

Ui (θi, θ−i; θ) =

∫ θi

θi

∂vi
∂θi

(d (s, θ−i) , s, θ−i)ds+ βi (θi, θ−i) . (8)

This formulation of the equilibrium payoffs resembles well-known envelope

conditions that characterize the equilibrium payoffs of incentive compatible

transfers. In fact, Theorem 4 generalizes several such results along different di-

mensions. It also highlights the limitations of pursuing an evenlope approach

either when beliefs do not fall within certain special cases, or when the designer

has other objectives beyond mere incentive compatibility.

To see this, first suppose that the environment is belief-free. Then, by Corol-

lary 1, the set Di only contains βi : Θ→ R that are constant in mi, and hence (8)

boils down to the standard envelope condition (3) in Milgrom and Segal (2002).

More generally, for belief-restrictions that satisfy generalized independence (cf.

Def. 2), and letting b ∈ ∩θi∈Θi
Bθi , then all βi ∈Di are such that Eb(βi) is constant

in mi (Corollary 3), and hence also in this case the formula in (8) delivers the

14Ollár and Penta (2023) provide an example of this possibility within the context of the Bid-

restrictions.
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standard ‘integral condition’ for the interim expected payoffs, Eb(Ui), here gen-

eralized to accommodate both the possibility of interdependent values as well as

non-Bayesian settings with generalized independence.

Thus, when Eb(βi) is constant in mi for all βi ∈Di, the interim expected equi-

librium payoffs under incentive compatibility are effectively pinned down, up to

a constant in own message, and hence this formula can be used to obtain the

incentive compatible transfers, by inverting the integral condition and using the

fact that Ui(m,θ) = vi(d(m), θ)+ ti(m). But when the set Di is richer than that, then

there is a non-trivial multiplicity of payoff functions, each with its own envelope

condition. In these cases, which include for instance Bayesian settings with cor-

related types, the payoff function is only determined once the transfers are fixed,

and hence the envelope formula cannot be used to recover the incentive com-

patible transfers. The multiplicity of transfers determines a family of envelope

conditions, for distinct belief-dependent terms in Di.

Finally, even when the envelope approach can be used to recover the incen-

tive compatible transfers (as under generalized independence), it still overlooks

the richness of the set of incentive compatible transfers, which may be useful for

other purposes beyond incentive compatibility. For instance, in Bayesian settings

with independent types, the expected payments for all IIC transfers only differ

up to a constant in own message. Such transfers, however, may induce different

payoffs at non-equilibrium profiles, and hence exhibit different properties with

respect to other objectives, such as uniqueness, budget balance, etc. (see, e.g.,

Ex. 4 above). In this sense, also in such settings the envelope approach is more

limited than the first-order approach that we pursue in this paper.

6. RELATED LITERATURE

This paper contributes to the literature on robust mechanism design, particularly

following the approach in Bergemann and Morris (2005), that is to achieve imple-

mentation of a given allocation rule for a large set of beliefs. The first wave of this

literature focused on belief-free environments. More specifically, Bergemann and
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Morris (2005, 2009a,b) study belief-free implementation in static settings, respec-

tively in the partial, full and virtual implementation sense. The belief-free ap-

proach has been extended to dynamic settings by Müller (2016) and Penta (2015).

Penta (2015) considers environments in which agents may obtain information

over time, and applies a dynamic version of rationalizability based on a backward

induction logic (cf. Penta (2011) and Catonini and Penta (2022)). Müller (2016) in-

stead studies virtual implementation via dynamic mechanisms, in a static belief-

free environment, using a stronger version of rationalizability with forward in-

duction.

Belief restrictions as a way to introduce intermediate notions of robustness (as

well as unify also the belief-free and Bayesian benchmarks) were first introduced

in Ollár and Penta (2017), and some special cases are analyzed in Ollár and Penta

(2022, 2023, 2024b), with the objective of studying how information about beliefs

could be used to obtain unique implementations in settings in which incentive

compatibility followed directly from standard assumptions. In this paper, in con-

trast, we focused on the more fundamental question of how beliefs can be used

for the very establishment of incentive compatibility.

From a methodological viewpoint, we pursued a generalization of the classical

first-order approach that identifies necessary conditions for local incentive com-

patibility constraints (cf. Rogerson (1985); Jewitt (1988)), and then studies suffi-

cient conditions for global optimality. This methodological shift is necessary to

account for the general belief restrictions we consider, and particularly for those

that do not satisfy ‘generalized independence’, where the envelope formula can-

not be used. But it also brings to the forefront a hiterto neglacted richness of in-

centive compatible transfers also when the conditions for the envelope theorems

hold (including, as discussed, Bayesian settings with independent types). Carva-

jal and Ely (2013) also studied the design of incentive compatible mechanisms

in settings in which the envelope formula cannot be used, due to non-convexity

or non-differentiability of the valuations, but only within standard Bayesian set-

tings. Related ways of modeling robustness have been explored instead by He and

Li (2022), Lopomo et al. (2021, 2022), Gagnon-Bartsch et al. (2021), and Gagnon-

Bartsch and Rosato (2023).
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Several papers have used special cases of belief restrictions to model robust-

ness with respect to local perturbations around a given Bayesian belief-setting.

For instance, Jehiel et al. (2012) show that, under certain restrictions on prefer-

ences, minimal notions of robustness are as demanding as the belief-free case.

A similar result is proven in Lopomo et al. (2021), for overlapping beliefs, and in

Lopomo et al. (2022), within an auction setting. As discussed, these results are

in line with those we obtain under generalized independence (cf. Corollary 3).

The exact connections between our results and those of these papers are dis-

cussed in Sections 3 and 5. In terms of the framework, the belief-restrictions that

we consider encompass the belief sets studied by the above papers. In contrast to

those papers, we develop a first-order approach and also provide several possibil-

ity results for transfer design under various degrees of robustness. Lopomo et al.

(2021), on the other hand, also consider more general preferences, which are be-

yond the scope of our work (notably, their model allows for preferences that are

not necessarily quasilinear in transfers, as well as the possibility of incomplete

preferences due to Knightian uncertainty).

Several alternative approaches to robustness have been put forward. For in-

stance, Börgers and Smith (2012, 2014), focus on the role of eliciting beliefs

to weakly implement a correspondence in a belief-free setting. Börgers and Li

(2019) provide a more systematic analysis of implementation relying on first-

order beliefs. Other approaches model robustness with respect to certain be-

havioral concerns directly in the implementation concept. These include criteria

such as credibility of the designer (Akbarpour and Li (2020)), a behavioral no-

tion of strong strategy proofness (Li (2017)), safety considerations with respect to

model misspecification (Gavan and Penta (2023)), convergence of best response

dynamics (Mathevet (2010); Mathevet and Taneva (2013); Healy and Mathevet

(2012), and Sandholm (2002, 2005, 2007)), etc.

Yet another approach is based on maxmin criteria, as pursued for example by

Chung and Ely (2007); Chassang (2013); Carroll (2015); Yamashita (2015); He and

Li (2022). The aim here is typically to explore whether ‘natural’ mechanisms can

be justified as worst-case optimal, within a suitable robustness set (see Carroll

(2019) for a survey of this literature). In this paper, in contrast, we fix an allocation
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rule and require implementation not only for the worst-case beliefs, but for all

beliefs in the robustness set. In this sense, our approach is closer to the original

belief-free approach of Bergemann and Morris (2005, 2009a,b).

7. CONCLUSIONS

We studied incentive compatibility in a general framework for robust mecha-

nism design, that can accommodate various degrees of robustness with respect

to agents’ beliefs, and which includes as special cases both belief-free (e.g., Berge-

mann and Morris (2005, 2009a,b)) and standard Bayesian settings. For general

belief restrictions, we characterized the set of incentive compatible direct mech-

anisms in general environments with interdependent values. The necessary con-

ditions that we identified, based on a first-order approach, provide a unified view

of several known results, as well as novel ones, including a robust version of the

revenue equivalence theorem that holds under a notion of generalized indepen-

dence that also applies to non-Bayesian settings.

From a methodological perspective, we showed that, in spite of its simplicity,

a suitable generalization of the classical first-order approach (e.g., Laffont and

Maskin (1980); Rogerson (1985); Jewitt (1988), etc.), allows a wealth of novel re-

sults: (i) on the one hand, it identifies the class of incentive compatible trans-

fers in settings which cannot be handled with the standard envelope approach

(such as in Bayesian settings with correlated types, or with general belief restric-

tions); (ii) on the other hand, even in settings where the the equilibrium pay-

offs are pinned down by the envelope approach (e.g., under generalized indepen-

dence – cf. Corollary 3 and Theorem 4) , it identifies the richness of incentive

compatible transfers that may serve purposes beyond incentive compatibility

(such as budget balance (d’Aspremont and Gérard-Varet, 1979), stability (Math-

evet (2010); Mathevet and Taneva (2013); Healy and Mathevet (2012), and Sand-

holm (2002, 2005, 2007)), uniqueness (Ollár and Penta, 2017, 2022, 2023), etc.),

which has hitherto escaped a unified, systematic analysis. Both of these features

allow several directions for possible future research.
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Our main results inform the design of belief-based terms, in pursuit of vari-

ous objectives in mechanism design, including attaining incentive compatibility

in environments that violate standard single-crossing and monotonicity condi-

tions. Outside of environments with generalized independence, we showed that

minimal information about agents’ beliefs may suffice to implement any alloca-

tion rule. Yet, if the setting is non-Bayesian, information rents are generally possi-

ble, and they get larger the less information the designer has about agents’ beliefs.

Our belief restrictions may thus capture a meaningful notion of ‘comovement’ of

beliefs and types that is useful for implementation, but without incurring into the

pitfalls of ‘full-surplus extraction’ results (cf. Crémer and McLean, 1985, 1988).

This framework may thus favor mechanism design’s reappropriation of environ-

ments with non-exclusive information, in which distilling intuitive and reliable

economic intuition has long appeared elusive, within the prevailing paradigm.

We believe that this is a valuable feature of our framework, which enables explor-

ing several novel questions.
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Appendix

APPENDIX A: PROOFS

Proof of Theorem 1. Fix an agent i. Firts, we show that t∗i (m) is well-defined since

the allocation rule d is p.diff.15 Since vi is twice continuously differentiable, ∂vi
∂θi

is

continuously differentiable over X ×Θ. Now, for fixed m−i,
∂vi
∂θi

(d (·,m−i) , ·,m−i)

– a function from Mi to R – is a composite function of d and ∂vi
∂θi

and since d is

piecewise differentiable over Θi, we have that for all m−i,
∂vi
∂θi

(d (·,m−i) , ·,m−i), a

function from Mi to R, is piecewise continuous, therefore integrable, over Mi.

CLAIM 1: t∗i is p.diff over M .

Proof of Claim 1: Recall that t∗i (m) =−vi (d (m) ,m)+
∫mi

θi
∂vi
∂θi

(d (s,m−i) , s,m−i)ds.

Since d is p.diff, restricted to its pieces, ∂vi
∂θi

(d(·), ·) :M →R is continuously differ-

entiable over the same pieces as vi is twice cont.diff. Therefore
∫mi ∂vi

∂θi
is p.diff

over M , and thus t∗i is p.diff over M .

Now, consider a piecewise differentiable B-IC ti, and we let βi := ti − t∗i . Then,

by Claim 1, βi is p.diff over M . Next, since ti is B-IC, for all θi, b ∈ Bθi , we have

that, when the derivative exists,
[
∂iEb

(
vi (d (mi, θ−i) , θ) + ti (mi, θ−i)

)] ∣∣
mi=θi

= 0.

15For example, consider two agents. The single item allocation rule given by the allocation prob-

abilities d1 (θ) = 1− d2 (θ) = {1 if θ1 > θ2; 1/2 if θ1 = θ2; 0 otherwise} satisfies our definition of piece-

wise differentiability.
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Since the canonical transfer t∗ by its construction satisfies the ex-post FOC, the

above statement holds for t∗i too. Now, from this, for ti − t∗i , for all θi and b ∈ Bθi

for which both derivatives exist, we have
[
∂iEb

(
ti − t∗i

)(
mi

)] ∣∣
mi=θi

= 0. Next, we

use the following claim to extend this result to all differentiability points of Ebβi,

beyond the joint differenttiability points of Ebti and Ebt∗i . □

CLAIM 2: For a p.diff f : M → R and b ∈ ∆(Θ−i) with p.diff cdf, Ebf : Mi → R is

p.diff.

Proof of Claim 2: Consider b’s cdf. which has finitely many pieces: Sb
1, . . . , S

b
K .

Write Ebf (mi) =
∫
Θ−i

f (mi, θ−i)db =
∑K

j=1

∫
int Sb

j
f (mi, θ−i)db. For each j, let

Aj (mi) :=
∫
int Sb

j
f (mi, θ−i)db. Since f is p.diff over M , it is p.diff over each Sb

j

and it has finitely many pieces of Sb
j : Sb

j,1, . . . , S
b
j,l, . . . , S

b
j,Lj

. Rewrite Aj such that

Aj (mi) =
∑Lj

l=1

∫
int Sb

j,l
f (mi, θ−i)db, and note that f is continuouse over int Sb

jl.

Therefore Aj :Mi → R is p.diff over Mi for each j. Since Ebf is a sum of K such

functions, it is p.diff over Mi (that is, it has at most finitely many jumps). □

Note that by Claim 2, if b has a p.diff cdf, then Ebvi is p.diff and thus Ebt∗i is p.diff,

which also means that Eb (ti − t∗i ) is p.diff, moreover, it is differentiable in the joint

differentiability points of Ebti and Ebt∗i , that is, over Mi with the exception of at

most finitely many points. Therefore, if Ebβi (·) has further differentiability points,

then the expected value condition must extend to these as well, and hence the

Theorem follows. ■

REMARK. As this is clear from the last part of the proof above, for a belief

b ∈ Bθi which has a p.diff cdf,16 Ebβi is almost everywhere differentiable on Mi.

Thus the expected value condition of Theorem 1, for typically considered belief-

restrictions, implies substantial restrictions on what form the function βi can

take.

Proof of Corollary 1. By Theorem 1, for every b ∈ ∆(Θ−i), at each point of dif-

ferentiability, ∂iEbβi (mi, θ−i) = 0. In particular, this holds for all point-beliefs,

and thus for all fixed m−i, in all points of differentiability of βi (·,m−i), we have

∂iβi (mi, θ−i) = 0. Thus for each fixed m−i, the function βi (·,m−i) can jump at

16Note that for example, discrete distributions, full support continuous distributions, as well as

their convex combinations have piecewise differentiable cdfs and are Borel-measures.
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most finitely many times, and on its pieces, the derivative is 0, therefore on its

pieces, it must be constant. However, if it had a jumping point, then by the

smoothness properties of vi, it would violate incentive compatibility. Therefore

βi must be constant everywhere in mi. ■

Proof of Corollary 2. Let B⋄ be a Bayesian environment with independent types,

and note that by independence the belief does not change with the type, so

let b⋄i ∈ ∆(Θ−i) denote agent i’s beliefs, regardless of his type. First, recall that

Eb⋄i [βi (·, θ−i)] is a function over Mi that can jump at most finitely many times. In

its points of differentiability, the derivative is 0, thus the function is constant. If

the function itself would jump, it would violate incentive compatibility, hence it

is the same constant κi over Mi, which proves (1) of this corollary. By the charac-

terization in Theorem 1, (2) and (3) follow. ■

Proof of Corollary 3. The proof of Corollary 2 applies to belief pi ∈ ∩θi∈Θi
∆(Θ−i).

■

Proof of Theorem 2. By the assumed differentiability, βi is also twice continu-

ously differentiable and as the functions have compact domains, by the Leibniz

rule, (1) obtains from Theorem 1. Further, under ti, reporting θi is locally optimal

and thus (2) obtains from the decomposition of the payoff function into U∗
i and

βi. In the other direction, if (2) holds strictly for all mi, then the expected payoff

function is strictly concave, and by the decomposition and (1), the FOC holds at

θi, hence ti is B-IC. ■

Characterization of Belief-based Terms in Ex. 2. CLAIM: Consider the belief-

restrictions Bγ ; for all i ∈ {1,2} and for all θi, B
γ
θi
=
{
b ∈∆(θj) : Ebθj = γiθi

}
. In the

special case of γi = 1/2, this is the setting considered in Ex. 2. Recall that θi ∈ [0,1]

and we assume that 0< γi < 1. Then a function βi :M →R which is differentiable

in mi is a belief-based term if and only if for some real functions Hi on M and τi

on M−i, it takes the form βi (m) =
∫mi

0

(
s− mj

γi

)
Hi (s)ds+ τi (m−i).

Proof of the Claim. First, if βi is of the given form, then ∂iβi (mi,mj) =
(
mi −

mj

γi

)
Hi (mi)

which for all θi, at the truthtelling profile for all beliefs in Bθi satisfies the ex-

pected value condition, thus it is a belief-based term. Second, in the other di-

rection, if βi is a differentiable belief-based term, then by the point-beliefs in
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Bγ
θi

, we have that (i) ∂iβi (θi, γiθi) = 0 for all θi. Next, we show that ∂iβi : M → R
is linear in mj . This is so, as Bγ

θi
contains beliefs that place non-zero probabil-

ities on two points x and y which give a splitting of γiθi: there is a probabil-

ity α such that αx + (1− α)y = γiθi. Note that such α exists for any points that

are such that x ≤ γiθi ≤ y. Each of these beliefs imply, by the expected value

condition, that α∂iβi (θi, x) + (1− α)∂iβi (θi, y) = 0 as well. Hence for any fixed

mi, ∂iβi is linear in mj . Hence, there are functions f1 and f2 onMi for which

∂iβi (m) = f1 (mi)mj + f2 (mi). At the same time, as by (i) above, these functions

must be such that for all θi, f1 (θi)γiθi + f2 (θi) = 0. From this and by change of

notation for the functions, βi (m) has the form as claimed. Finally, the initial con-

dition of "0 type pays 0" of this example implies that τi ≡ 0 and so βi takes the

form as stated in Ex. 2. □

Proof of Theorem 3. The payoffs Ui = vi + t∗i + βi, by using (3) and adding and

subtracting
∫ θi
mi

∂vi
∂θi

(d (s,m−i) s,m−i)ds+ βi (θi,m−i), can be rewritten, at the pro-

file m−i = θ−i, as

Ui (mi, θ−i; θ) =
∫ θi
θi

∂vi
∂θi

(d (s, θ−i) , s, θ−i) ds+ βi (θ)

−
∫ θi
mi

(
∂vi
∂θi

(d (s, θ−i) , s, θ−i)−
∂vi
∂θi

(d (mi, θ−i) , s, θ−i)

)
︸ ︷︷ ︸

=:SCi(mi,s,θ−i)

ds+ βi (mi, θ−i)− βi (θ) .

The first two terms do not depend on the report mi, and the latter three terms

give 0 if mi = θi. Thus mi = θi is best response if and only if the expected gain from

misreport, −Eb
∫ θi
mi

SCi (mi, s, θ−i)ds+ Ebβi (mi)− Ebβi (θi), is nonpositive; which

is the condition from the inequality of this theorem. ■

Proof of Proposition 3. Fix agent i. It can be shown, by generalizing the Claim

used in the Characterization of Belief-based terms in Ex. 2., that if B is maximal

with respect to (Li, fi)i∈I , then any belief-based term βi satisfies the necessary

condition of Theorem 1 if and only if ∂iβi = (Li (m−i)− fi (mi))Hi (mi), where Hi

is a real function over Mi. Then, if ti is B-IC, by Theorem 1, it can be written as,

ti (m) = t∗i (m) +

∫ mi

θi

(Li (m−i)− fi (s))Hi (s) ds+ τi (m−i) .
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Next, we need to check when the SOC at the truthful profile holds.17 To this end,

we need to study when it is the case that for all bθi ∈Bθi ,

∂2iiE
bθiU∗

i (mi, θ−i, θ)

∣∣∣∣
mi=θi

+ ∂2iiE
bθiβi (mi, θ−i)

∣∣∣∣
mi=θi

≤ 0

−Ebθi

(
∂2vi (d (θ) , θ)

∂x∂θi

∂d (θ)

∂θi

)
≤ f ′i (θi)Hi (θi)

Let us set

SCM i (θi) := sup
bθi∈Bθi

Ebθi

(
−∂2vi (d (θ) , θ)

∂x∂θi

∂d (θ)

∂θi

)
.

With this notation, if f ′i > 0, then SCM i/f
′
i is a lower bound on Hi and if f ′i < 0,

then SCM i/f
′
i is an upper bound on Hi. Next, consider the modification of the

interim payments and notice that the order of integration can be exchanged:

Ebθiβi (θ) = Ebθi

∫ θi

θi

(Li (θ−i)− fi (s))Hi (s) ds

=

∫ θi

θi

(
EbθiLi (θ−i)− fi (s)

)
Hi (s) ds=

∫ θi

θi

(fi (θi)− fi (s))Hi (s) ds.

First, if f ′i > 0, then the weights on Hi are positive, and the lower bound on Hi

gives a lower bound on the second term. ThereforeEbθiβi (θ)≥
∫ θi
θi

(fi (θi)− fi (s)) [SCM i/f
′
i ] (s) ds.

Second, if f ′i < 0, then the upper bound on Hi gives a lower bound on the second

term, hence, in this case too, the same inequality holds. ■

Proof of Proposition 4. By way of contradiction, assume that t is B-IC and ex-

tracts the surplus. By Theorem 1, ti can be written as ti (m) = t∗i (m)+
∫mi

θi
(Li (m−i)− fi (s))Hi (s) ds+

τi (m−i). Moreover, for all θi and b ∈Bθi , EbU t
i (θ; θ) = 0. Using the formula in 3, and

the calculation for Ebθi
∫ θi
θi

(Li (θ−i)− fi (s))Hi (s) ds=
∫ θi
θi

(fi (θi)− fi (s))Hi (s) ds

17The canonical externalities are ∂2
ijU

∗
i (m,θ) =

(
∂2vi(θ,d(m))

∂2x
∂d
∂θj

− ∂2vi(m,d(m))
∂x∂θj

− ∂2vi(m,d(m))
∂2x

∂d
∂θj

)
∂d
∂θi

+(
∂vi(θ,d(m))

∂x − ∂vi(m,d(m))
∂x

)
∂2d

∂θj∂θi
.
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as in the Proof of Prop. 3, these impy that

Eb

(∫ θi

θi

∂vi
∂θi

(d (s, θ−i) s, θ−i) ds+ τi (θ−i)

)
=−

∫ θi

θi

(fi (θi)− fi (s))Hi (s) ds.

Note that the RHS of this expression depends on θi but not on b, therefore the

LHS must also be the same for all b ∈ Bθi . By B being maximal wrt (Li, fi)i∈I , by

the generalization of the proof of the Characterization of the Belief Based Terms

in Ex. 2, we have that the function
∫ θi
θi

∂vi
∂θi

(d (s, θ−i) s, θ−i) ds+ τi (θ−i) must take a

form which is Li-linear. This function is differentiable in θi and so, its derivative
∂vi
∂θi

(d (θ) , θ) must also be Li-linear. In summary, unless ∂vi
∂θi

(d (θ) , θ) is Li-linear,

B-IC and FSE lead to a contradiction. ■

Proof of Proposition 5. Fix (v, d). The first inequality follows from the relaxed

robustness requirement. The rest of the proposition requires the construction

of the two belief-restrictions B and B′. Note that for each i, there is a function

Li :M−i → R such that ∂vi
∂θi

(d (θ) , θ) is not Li-linear. For each i fix γi ∈ (0,1), and

let the belief-restrictions B be maximal with respect to the responsive moment

condition (Li, γiθi)i∈I .Prop. 1 implies that B-IC transfers exist, thus F (B) is non-

empty and ∞> τ (B). Yet, as a consequence of Prop. 4, FSE is not possible, that is,

τ (B)> 0. Next, let B′ be s.t. B′
θi
= {pθi} and s.t. (i) pθi has a pdf that is continuouse

and non-zero over the support ×j ̸=i

[
θj , θj + (θi − θi) (lj/li)

]
, where for each i, li :=

θi − θi, and (ii) for all θi, EpθiLi (θ−i) = γiθi. (Note that for each θi, matching the

fixed first moment is possible.) For B′ thus constructed, the construction in Ex. 3

shows that a t exists which ensured FSE and is B-IC and hence B′-IC as well. ■

Proof of Theorem 4. Consider the payoff equation of the Proof of Theorem 3. By

setting mi = θi, the theorem follows. ■

APPENDIX B: ON EXAMPLE 3: BELIEFS AND THE INVERSE PROBLEM

Consider an agent with type θi and beliefs given such that θj |θi = γνθi +(1− γ)ηij

where νθi is U [0, θi] and, independently of this, ηij is U [0,1]. Let us examine the

solvability of
∫ 1
0 αi (θj)p (θj |θi)dθj = f (θi). (For a thorough mathematical treat-

ment on the solvability of integral equations we recommend the book Hochstadt

(1989).) The pdf of the conditional random variable is such that:

https://www.econometricsociety.org/
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if 1− γ > γθi,

p (θj |θi) =



1
γθi(1−γ)θj if θj ∈ (0, γθi)

1
1−γ if θj ∈ [γθi,1− γ)

1−γ+γθi−θj
γθi(1−γ) if θj ∈ [1− γ,1− γ + γθi)

0 otherwise

and if 1− γ < γθi

p (θj |θi) =



1
(1−γ)γθi

θj if θj ∈ (0,1− γ)

1
γθi

if θj ∈ [1− γ, γθi)

1−γ+γθi−θj
(1−γ)γθi

if θj ∈ [γθi,1− γ + γθi)

0 otherwise

.

There are two cases to be considered: either γ ≤ 1/2 or γ > 1/2.

Part 1: If γ ≤ 1/2, then for all θi, 1 − γ > γθi. Let us look for solutions of the

form such that αi (θj) is 0 outside of θj ∈ [0, γ]. In this case, since θi <
1−γ
γ for all θi,∫ 1

0 αi (θj)p (θj |θi)dθj = f (θi) can be written as

∫ γθi

0
α (θj)

θj
(1− γ)γθi

dθj +

∫ γ

γθi

α (θj)
1

1− γ
dθj = f (θi) .

Starting from this expression, in the following three lines, (1) we change variable

to s := γθi and differentiate and simplify, (2) reorganize and differentiate for a

second time, (3) reorganize:∫ s

0
α (θj)

−θj (1− γ)

(1− γ)2 s2
dθj = f ′

(
s

γ

)
1

γ

α (s) s=− (1− γ)

(
f ′′
(
s

γ

)
s2

γ
+ 2f ′

(
s

γ

)
s

γ

)
α (s) =− (1− γ)

(
f ′′
(
s

γ

)
s

γ
+ 2f ′

(
s

γ

)
1

γ

)
,
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to, finally, introduce notation Lγ (s) := f ′′
(
s
γ

)
s
γ + 2f ′

(
s
γ

)
1
γ and change variables

to get the solution which is: for all θj ∈ [0, γ], α (θj) = − (1− γ)Lγ (θj), and 0 oth-

erwise.18

Part 2: If γ > 1/2, then there are two cases to be considered: either 1− γ > γθi

or 1− γ ≤ γθi. Eitherways, let us look for solutions of the form such that αi (θj) is

0 outside of [γ,1].

Case (A): 1− γ > γθi. In this case,
∫ 1
0 αi (θj)p (θj |θi)dθj = f (θi) can be written as

∫ 1−γ+γθi

γ

1− γ + γθi − θj
(1− γ)γθi

α (θj) dθj = f (θi) .

Starting from this expression, we change variable to s := γθi and simplify and

differentiate, differentiate for a second time,

0 +

∫ 1−γ+s

γ
α (θj) dθj = (1− γ)

(
f

(
s

γ

)
s

)′

α (1− γ + s) = (1− γ)

(
f ′′
(
s

γ

)
s

γ
+ 2f ′

(
s

γ

)
1

γ

)
,

to, finally, change variables, use the notation Lγ and get the solution which is: for

all θj ∈ [γ,1], α (θj) = (1− γ)Lγ (θj − (1− γ)), and 0 otherwise.

Case (B): 1− γ ≤ γθi. In this case,
∫ 1
0 αi (θj)p (θj |θi)dθj = f (θi) can be written as

∫ γθi

γ

1

γθi
α (θj)dθj +

∫ 1−γ+γθi

γθi

1− γ + γθi − θj
(1− γ)γθi

α (θj) dθj = f (θi) .

Starting from this expression, we change variable to s := γθi and simplify and

differentiate, differentiate for a second time,

α (s) + 0− α (s) +

∫ 1−γ+s

s

1

1− γ
α (θj) dθj =

(
f

(
s

γ

)
s

)′

α (1− γ + s)− α (s) = (1− γ)

(
f ′′
(
s

γ

)
s

γ
+ 2f ′

(
s

γ

)
1

γ

)
.

18Note that Lγ (s) =
(
f
(

s
γ

)
s
)′′

.
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Finally, change variables, use the notation Lγ , and the assumption on the format

such that α (s) is 0 for all s < γ and get the solution which is: for all θj ∈ [γ,1],

α (θj) = 0 + (1− γ)Lγ (θj − (1− γ)), and 0 otherwise.

In summary, in Part 2, differentiating the integral equation twice implies a

unique candidate solution since the solution suggested for Case (B) is the same

as in Case (A). The candidate solution, when checked against the domain restric-

tions, works indeed and hence is the solution of the integral equation. □
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