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Abstract

In an investment experiment, we show variations in information affect belief and decision

behaviors within the information-beliefs-decisions chain. Subjects observe the time series of a

risky asset and a signal that, in random rounds, helps predict returns. When they perceive the

signal as useless, subjects form extrapolative forecasts, and their investment decisions under-

react to their beliefs. When they perceive the signal as predictive, the same subjects rationally

use it in their forecasts, they no longer extrapolate, and they rely significantly more on their

forecasts when making risk allocations. Analyzing investments without observing forecasts and

information sets leads to erroneous interpretations.
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1 Introduction

How do investors form their expectations about risk and return? How do these expectations af-

fect their investment decisions? While the first question, and how information affects beliefs, has

been extensively studied, it’s only recently that the research has focused on the “beliefs to deci-

sions” channel. The empirical finance literature documents a puzzling fact: investors adjust their

portfolios too little in response to changes in their own beliefs, compared to the classical Merton-

Samuelson investment model (see Giglio et al., 2021a,b). We propose an investment experiment

with information treatments that allows us to better understand the mechanisms underlying this

puzzle. We find that variations in the information subjects observe affect not just their forecasts

and investments, but also how they form their beliefs and how they use their beliefs in their in-

vestment decisions. In the baseline, subjects have extrapolative forecasts and make risk decisions

similar to those observed in Giglio et al. (2021a); and our results replicate the low investment

sensitivity to forecasts puzzle they document. However, when given more information, the same

subjects change their forecast model – they no longer extrapolate; and their risk decisions respond

more elastically to their own beliefs, closer to the classical Merton-Samuelson model, and to the

behavior of large asset managers (see Dahlquist and Ibert, 2024). These within-individual varia-

tions in forecast and investment behaviors operate in all subject subgroups sorted on observable

individual characteristics, indicating they likely extend to real investors.

Relying on the experimental methodology is key for us to analyze the information-beliefs-

decisions chain. First, it gives us full control over which information agents have access to, on their

prior beliefs, on their portfolio constraints and on the risks they face. Varying these inputs across

information treatments allows us to distinguish agent-specific from information-specific behaviors.

Second, it enables us to collect the data, within and across subjects, on both beliefs (forecasts) and

decisions; a crucial distinction from most empirical evidence on investors in naturally-occurring

markets. As we show below, this is key to understand investors’ behaviors: analyzing our subjects’
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investments without the belief data leads to erroneous interpretations.

Our experiment replicates, as much as possible, the risks and information accessible to investors

making decisions in the field. Moreover, our choice of design is motivated by several considerations

and observations from field data. First, predictive information is publicly available to market

participants, hence possibly affecting their time-varying beliefs and risk allocations. Second, the

evidence shows investors’ forecasts deviate from the rational expectation model: they under-utilize

actual predictive variables in the data (Nagel and Xu, 2023), while extrapolating too strongly

from past returns – a bias documented extensively in the macroeconomic and finance literature

(see e.g., Shiller, 2000; Dominitz and Manski, 2011; Greenwood and Shleifer, 2014; Assenza et al.,

2014; Manski, 2018; Bordalo et al., 2020; Beutel and Weber, 2022; Afrouzi et al., 2023). Third,

there is widespread evidence of sub-optimal investment decisions, be it due to inertia (see e.g.,

Brunnermeier and Nagel, 2008; Calvet, Campbell, and Sodini, 2009), or to behavioral biases (e.g.,

the disposition effect, Odean, 1998). Mimicking, in our experiment, investors’ information and

risk opportunities may thus prove fruitful to better understand the mechanisms via which agents

depart from rational beliefs and optimal decisions, with clear implications for households’ portfolio

choices and wealth.

Our experimental design emulates the canonical case of an investor who, first, gathers infor-

mation to forecast asset returns; and, second, makes portfolio decisions. We vary the information

investors receive and study how it affects each of these two steps and, most importantly, their

potential interactions. More precisely, our experiment proceeds as follows.

Subjects are shown time-series displays of two variables, labeled “Index Return” and “Vari-

able A”, over several rounds, each corresponding to new, independent, simulations. “Index Return”

is simulated, in all rounds, from the same process designed to reproduce the US equity index 5-year

returns in its mean and volatility, and with zero time series persistence. “Variable A” also has

the same unconditional distribution in all rounds; but it is simulated to predict “Index Return”

differently across rounds. In some rounds, it is useful to predict returns, and, to mimic signals

available to real market investors, we let “Variable A” have the same persistence and the same

predictability power over “Index Return” as the US equity index dividend-price ratios over equity
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returns at a 5-year horizon (see e.g., Fama and French, 1988; Cochrane, 2009). In these rounds,

“Variable A” and “Index Return” are correlated variables. In the other rounds, “Variable A” is

uncorrelated to “Index Return” and useless to predict returns.

To best study the role of information in our experiment, we impose a high level of ex-ante

uncertainty. Subjects are just told that: 1) “Variable A” helps predict “Index Return” in some

rounds, though we do not specify which ones nor what is their likelihood (we let subjects infer from

the time-series display whether “Variable A” seems predictive of “Index Return”, each round), 2)

all rounds are independent, and 3) the average “Index Return” value is 6.07%. Points 1) and

2) discipline which information subjects may use each round and how; point 3) pins down the

unbiased average “Index Return” forecast.

Each round, subjects are incentivized: i) to state whether they believe “Variable A” is useful,

this round, to predict returns, ii) to give us their forecasts for the next-period “Index Return”, and

iii) to invest an endowment, that we renew each round, between the risky “Index Return” and a

riskless cash asset. At the end of each round, we provide them feedback on all three tasks.

We find that whether or not subjects perceive “Variable A” as useful greatly affects their

forecast and investment behaviors. When they view “Variable A” as useless, subjects have ex-

trapolative forecasts: they use the last realization of “Index Return” to make their next-period

predictions. This finding matches the evidence in the macroeconomic and finance literature (see

above) qualitatively and quantitatively: our subjects have extrapolative biases of the same mag-

nitude as in previous experimental work (Landier, Ma, and Thesmar, 2019; Afrouzi et al., 2023).

When they view “Variable A” as predictive, the same subjects no longer extrapolate. They use

“Variable A” exclusively to make their “Index Return” next-period forecasts; and their beliefs

vary with “Variable A”, in these rounds, consistently with a model of rational expectations under

partial information.

This first set of results establishes that our information treatment generates two distinct

information-to-beliefs processes; switching from one to the other occurs within subjects and de-

pends solely on the perceived source of information. This finding not only shows that extrapolative

biases may not be robust to variations in information, it also invites us to analyze whether these
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within-subject variations may, in turn, induce variations in beliefs-to-investments behaviors, keep-

ing preferences constant and within a fully controlled risk and information framework.

We find subjects vary their investments one round to the next in line with their own forecasts;

however, the magnitude of the pass-through from beliefs to investments differs across round types

– perceived as predictable by “Variable A” or not. Investment decisions are more than twice as

sensitive to variations in forecasts coming from “Variable A” in rounds where it is perceived as

predictive, than they are to extrapolative forecasts in rounds where it is perceived as useless.

To interpret subjects’ investments, we confront them to the classical portfolio choice model

(Merton, 1969), which provides tight predictions about the average ratios of investments to beliefs

across round types; and about the elasticities of investments to beliefs within round types. We

show, first, that subjects increase their average investments when they perceive “Variable A” as

informative strictly as predicted by the classical model under unbiased perceptions of the relative

conditional variances across round types. In an extension to our baseline experiment, we ask

subjects to provide 80% confidence intervals around their forecasts, and we confirm they have

unbiased average risk assessments in both round types. However, we find, second, the sensitivity

of investments to forecasts is too low compared to the classical framework, in both round types; it

is four times too low for extrapolative forecasts.

Our results on average investments and on investment elasticities can be reconciled by a modi-

fied Merton model whereby subjects display cognitive uncertainty (Enke and Graeber, 2023) when

forming their “effective” beliefs – i.e., the beliefs they use to make decisions. Instead of moving

one-for-one with forecasts, beliefs update partially around their average level, depending on how

uncertain subjects are about their interpretation of information; where beliefs “stickiness” is de-

termined by a cognitive uncertainty parameter which fully captures how subjects decisions depart

from the classical framework. Our estimates of this parameter quantify the greater cognitive un-

certainty about extrapolative forecasts than those informed by “Variable A”. In our framework,

subjects know, as explicitly told, that “Variable A” is predictive in some rounds; they think extrap-

olation may help predict returns. The difference is reflected in how they use their own forecasts to

make their risk decisions, and our experimental estimates of cognitive uncertainty.
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We extend our analysis in several directions. First, we elicit subjects’ perceptions of “extreme”

returns – probabilities that next-period returns exceed the +15% upper bound, that they fall below

the -3% lower bound. We find they over-estimate the likelihood of both the upper and the lower

bounds low probability events, and display a preference of skewness: they increase (decrease) their

investments when they perceive upper (lower) bound probabilities as higher, independent from their

forecasts. Second, we analyse and reject that heterogeneity in subjects’ characteristics substantially

change the pattern of forecast and investment behaviors; even though our cognitive uncertainty

estimates vary across subgroups, e.g., subjects with higher education have lower uncertainty. Third,

in additional information treatments, we vary how easily interpretable the “Variable A” signal is

to form forecasts; our results confirm the cognitive uncertainty interpretation.

Next, we verify whether the separate information-beliefs-decisions paths we document for each

round type could be identified using subsets of our experimental data, e.g., only investments, as

often observed in the field. We show that such analyses lead to the erroneous interpretation that

subjects always under-react to information, and have close to no extrapolative biases. Finally, we

discuss the external validity of our findings and their implications for individual investors’ optimal

decisions, as well as for the dynamics of investors’ demand and equilibrium asset prices.

After a review of the literature, we present our experimental design in Section 2. In Section 3,

we describe the main results of our experiment; and in Section 4 how to interpret them. Section 5

provides additional results and robustness checks. In Section 6, we discuss the implications of our

results. Section 7 concludes. Additional results are provided in the Online Appendix.1

Related literature.

Giglio et al. (2021a) elicit market forecasts from a large pool of Vanguard investors, and analyze

their portfolio positions. They find that investors’ beliefs, which are extrapolative, have limited

impact on their risk taking decisions. This finding is replicated in Giglio et al. (2021b), who

study how investors’ expectations about stock returns varied during the COVID-19 crash, and

how they adjusted their portfolios over that period. In contrast, Dahlquist and Ibert (2024) study

1The Online Appendix is available at https://sites.google.com/site/marianneandries/
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professional asset managers and find they have counter-cyclical expectations, in line with the

dividend-price ratio predictability of Fama and French (1988); and these forecast variations affect

their risk decisions, with a higher pass-through than in Giglio et al. (2021a).

In Section 6, we show our results across round types match both sets of evidence, qualitatively

and quantitatively, even though they are obtained within subjects in a controlled environment

that excludes well-known sources of inertia, e.g., inattention, transaction costs and anchoring on

prior decisions. This suggests that the differences between Giglio et al. (2021a) and Dahlquist and

Ibert (2024) may not be due to differences in their investors’ preferences or exogenous constraints

to dynamic portfolio re-allocations but to differences in access to information and the resulting

confidence – or cognitive uncertainty – in one’s own forecasts.

That not just the quantity of information but also the “type” of information received affects

our subjects’ model of belief formation is consistent with various works in the literature, such

as Gabaix (2019) on sparsity, Bordalo, Gennaioli, and Shleifer (2012) on salience; as well as with

experimental evidence on information processing, Woodford (2020); Frydman and Jin (2022); Enke

and Graeber (2023). Our findings complement these papers by showing that differences in the

source of information can also change the model of decision making, i.e., the pass-through from

beliefs to investments.

Liu and Palmer (2021) compare surveys of beliefs on real estate markets to investment choices

into a housing fund, from experimental data, and find that they load on different sources of

information. Though these results differ from ours – our subjects do not use information other

than in their forecasts to make their investment decisions – they confirm the standard information-

to-beliefs-to-decisions chain needs to be revisited. Barberis and Jin (2023) propose a theoretical

framework doing so, whereby actions follow an experience-based model-free approach while beliefs

are model-based and extrapolative. These assumptions are tailored to fit the empirical evidence on

investors’ surveys of beliefs – which are extrapolative on average – and portfolios – which appear

influenced by investors’ own life experience (Malmendier and Nagel, 2011). They cannot, however,

explain our experimental results.

Finally, our results are closely related to two recent experimental works. Beutel and Weber
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(2022) conduct a randomized information field experiment on a representative sample of German

households to whom they ask their forecasts and what risk investments they would hypothetically

choose if given wealth to invest. Similarly to us, they find that subjects tend to excessively

extrapolate from past returns. They also show that different investors display different mental

models when forming expectations, which complements our result that different forecast models

coexist within investors when facing different information treatments. Our finding that providing

useful information can induce beliefs closer to rational expectations is distinct from Beutel and

Weber (2022); it highlights the importance of the way in which information is presented (Ungeheuer

and Weber, 2021), with or without graphical displays. In an experiment on German stockholders,

Laudenbach et al. (2023) find that an information treatment where subjects are graphically shown

there is no auto-correlation in returns makes their beliefs closer to rational expectations.

Another result distinct from Beutel and Weber (2022) is that our subjects’ investment choices

are closer to the classical Merton model when their beliefs are based on the predictive signal we pro-

vide, indicating cognitive uncertainty varies depending on the source of information. This relates

to the experiment in Charles, Frydman, and Kilic (2024), who adapt Enke and Graeber (2023) to

study how the certainty equivalents of risky lotteries vary with beliefs, for subjects who face tasks

of different cognitive “complexity” (see, e.g., Woodford (2020)): they either receive informative

signals to update their payoff distributions, or are explicitly told what the distribution is. The

authors find that subjects with the complex task, i.e., who have to interpret the information they

receive, have a weaker transmission between their stated payoff distributions and their certainty

equivalents. This result on the weak transmission between belief distributions and certainty equiv-

alents complement ours on the low sensitivity of investments to forecasts; and also obtains in Enke

et al. (2024)’s large scale analysis of diminished sensitivities of decisions to information as a result

of cognitive information-processing constraints. Charles, Frydman, and Kilic (2024)’s framework

differs considerably from our investment game and from real investors decisions, both in the actions

subjects take and in the information treatments.2 Their experimental paradigm allows them to

measure the impact of complexity on cognitive uncertainty; ours allows us to mimic real investors’

2In addition, their experiment does not allow to observe variations in decisions’ sensitivity to beliefs within
subjects.
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decisions when facing different predictive signals and to confront our results to the evidence from

the field (e.g., Giglio et al., 2021a; Dahlquist and Ibert, 2024).

2 Experiment

2.1 Design

2.1.1 Baseline treatment

Our experiment is designed to mimic the market risk real investors face and to allow us to study

how their beliefs and portfolio decisions vary with the information they receive.

Subjects observe, in successive independent rounds, graphic displays of the past realizations of

an “Index Return” – in bold red; and of a “Variable A” – in dotted blue; where a yellow dot marks

the last realization of “Variable A”. Subjects are explicitly told that “Variable A” helps predict

returns in some rounds, but is useless in others; and that all rounds are independent. We provide

subjects with examples of the displays with either predictive or un-predictive “Variable A” at the

beginning of the experiment, as shown in Figure 1. Subjects are also given the average value of

the “Index Return”. No other information, e.g. on the return process or on how “Variable A” can

be used to predict returns, is given in the baseline treatment.

Subjects are asked, each round: 1) whether or not they believe, looking at the time series

display, that “Variable A” is useful to predict returns; 2) what their forecasts are for the next-

period “Index Return”; and 3) how much they want to invest, out of a 100 ECU (Experimental

Currency Unit) endowment we renew each round, in the risky “Index Return”.3

Feedback information is given at the end of each round: whether “Variable A” was predictive,

or not, this round; what the next-period “Index Return” turned out to be; how much subjects’

investment portfolios made. The time series display is updated to add the final “Index Return”

realization – with a yellow dot, similar to that of “Variable A”.4 Subjects then move on to the

next round, endowed with a new 100 ECU, irrespective of the returns realized in previous rounds.

3Subjects provide their answers in “boxes” that are made blank at the beginning of each round: past answers do
not appear one round to the next, and neither do “by default” numbers, e.g., a 50% risk investment, so as not to
influence the outcomes of the experiment.

4The instruction sheet and examples of the feedback information subjects receive can be found in Appendix C.
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To mirror real investors’ market risk, we simulate the “Index Return” time series to mimic the

US equity returns averaged over 5-year periods – a realistic buy-and-hold investment horizon, given

the low trade frequencies often observed in the data (Alvarez, Guiso, and Lippi, 2012; Sicherman

et al., 2016). To mirror real investors’ financial market information environment, we simulate

“Variable A”, in rounds where it is predictive, to mimic the predictive power of dividend-price

ratios for the following 5-year returns (Fama and French, 1988; Campbell and Shiller, 1988) – i.e.,

predictive signals real investors can readily obtain when making their portfolio decisions.

Across all rounds, the “Index Return” time series is simulated to have the same average return,

the same average volatility, and, crucially, no serial autocorrelation in returns i.e., no predictable

persistence. Similarly, “Variable A” is simulated to have the same average value, the same average

volatility, and the same persistence, across all rounds. Visually, the time series variations look ex-

actly similar across rounds, except for the co-movements between “Index Return” and “Variable A”

which differ across round types (predictable or not); the key to our experimental treatment.5

In rounds where “Variable A” is not informative, the process rt of “Index Return” is simulated

according to the random walk:

rt+1 = µ+ ϵt+1, (1)

where {ϵt} are i.i.d. normally distributed shocks ϵt ∼ N (0, σ2).

In rounds where “Variable A” is informative, the predictable process rpt of “Index Return” is

simulated according to:

rpt+1 = at + ϵpt+1, (2)

where at is the realization at time t of the “Variable A” and {ϵpt } are i.i.d. normally distributed

shocks ϵpt ∼ N (0, σ2
p). We use the parameters of the return-dividend yield VAR model estimated

by Cochrane (2009) on US equity returns (CRSP data, period 1927-1998).6 The predictive power

of “Variable A” in process (2) is measured by Corr(rpt+1, at) = 57% and σ2
p = 0.67σ2.7

5“Index Return” and “Variable A” unconditional distributions are statistically indistinguishable between rounds.
Kolmogorov–Smirnov tests for distributions on arbitrary pairs of the displayed simulated returns drawn from the
two types of rounds have an average p-value equal to 0.497.

6µ = 6.07%, σ = 9.02%; at follows an AR(1), with mean µ, persistence ρa = 0.66, and volatility σa = 3.98%.
7We describe our simulation method in Appendix B.
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Throughout, we refer to process (1) as the “i.i.d.” case, to process (2) as the “predictable” case.

2.1.2 Additional treatments and outcome variables

In addition to the three questions – 1) is “Variable A” informative or not, 2) next-period forecasts,

3) next period investments, we also elicited subjects’ perceptions of risk. We proceeded in two

ways to do so. In one experiment, we asked subjects to provide 80% confidence intervals around

their own forecasts, each round. In another, we asked them to answer these two questions about

next-period returns: “What is the probability that the index return is higher than 15%?” and

“What is the probability that the index return is lower than -3%?”. The advantage of the first

approach is that it allows us to verify if subjects have the correct perception of the index returns

volatility; the advantage of the second approach, which follows Giglio et al. (2021a), is that it

allows us to determine whether subjects overestimate the risks of low probability events.

We also experimented on information treatments other than the baseline where we varied how

easily interpretable the “Variable A” signal is. In one experiment, we asked subjects to provide their

forecasts and investments over the following cumulative five periods. In contrast to the one period

forecast, for which it is necessary and sufficient to identify at as the best forecast for rt+1 when

“Variable A” is predictive, the long-horizon average forecast requires to also estimate the dynamics

of the “Variable A” process, for which no information is explicitly given in the experiment. The

rational forecast rule for 5-period average returns appears considerably more difficult to evaluate

from the time series displays we provide,8 so this treatment corresponds to making information

less accessible than the baseline.

In two other experiments, we made, instead, “Variable A” easier to interpret. In the first,

we asked subjects to play the investment game in rounds where they were explicitly told when

“Variable A” was useful and when it was not, before they had to make their next-period forecasts

and investments. In the second, we revealed to subjects the simulation processes (1) and (2) before

they played the investment game, but not which rounds “Variable A” was predictive or not.

8A fully informed rational forecaster would derive, under the simulations of processes (1) and (2):
Et (rt+1,t+5 |i.i.d.) = µ and Et (rt+1,t+5 |predictable) = κat + (1 − κ)µ, where rt+1,t+5 is the average return over
five periods starting at t+1; at is the realization of “Variable A” at time t; and κ < 1 depends on ρa, the persistence

of “Variable A”: κ = 1
5

1−ρ5a
1−ρa

= 0.51.

11



2.2 Implementation

In the baseline treatment, we let subjects play for twenty rounds. Ten rounds were simulated with

i.i.d. process (1), and ten with predictable process (2). The order of the graphs was randomized

across subjects. They were not told that “Variable A” was useful in precisely half the rounds.

As compensation for participating in the experiment, subjects received 5 ECU for every correct

answer regarding whether “Variable A” was predictive and 10 ECU for every “precise” forecast

in a (−1%,+1%) interval of the return realization. In addition, they received their full portfolio

ECU value from one randomly drawn round of the experiment.9

This compensation scheme was designed to incentivize subjects to provide truthful answers

on whether they viewed “Variable A” as predictive or not, and on their best forecasts; and to

encourage them to carefully optimize their risk investments. Because the likelihood of “winning”

a precise forecast was low – under processes (1) and (2), the realized next-period returns have

11% chance of being in the (−1%,+1%) interval around the fully informed rational conditional

expectation, on average – the risk that subjects might choose to “hedge” between their forecast

answers and their investment decisions was small. Finally, because the portfolio compensation

derived from a single round randomly chosen at the end of the experiment, the scope for wealth

affecting risk taking decisions differently across rounds is limited.

To verify the simulated data correctly represents either the i.i.d. process (1) or the predictable

process (2), we regressed the returns {rt} in each simulation on the predictive variable {at−1} and

on the previous realized returns {rt−1}. The results (Online Appendix Table C.1), are consistent

with our simulation strategy: the regression coefficients of rt on rt−1 are close to 0 in all rounds;10

the regression coefficients of rt on at−1 are close to 1 with R2 close to R2 = 0.33 of process (2) in

the predictable rounds and around 0 (and not significant) in the i.i.d. rounds.11

Our experiment was implemented in four waves.

9When we elicited both short and long-horizon investments, we randomly selected either one for compensation.
10In two outlier i.i.d simulations, rt has a small but significant negative loading on rt−1 (p-value = 0.04, and 0.06),

though it did not appear to affect subjects’ answers.
11Even though Corr(rt, at) = 0 under both processes (1) and (2), the 20 final draws for “Index Return” and

the 20 final draws for “Variable A” are statistically correlated, with correlation −25%, in our simulated data. For
this reason, we often present results obtained when regressing on the last realized rt and at separately, rather than
simultaneously, in the rest of the paper.
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2.2.1 Master of Finance students

In the first wave of our experiment implementation (January 2019), we recruited 58 participants,

students in the Master of Finance at the University of Toulouse Capitole / Toulouse School of

Economics (TSE). In addition to the baseline treatment, we asked subjects their forecasts and

investments for the full five-periods ahead, over the same twenty rounds of the game.

We recruited 36 students from the same Master in the second wave (January 2020). We asked

subjects to provide 80% confidence intervals around their own forecasts, and, after they finished

the baseline treatment, to play for another twenty rounds where they were told when “Variable A”

was useful and when it was not.12

The experiments took place in the University’s computer lab on an application we built using

the Otree framework (Chen, Schonger, and Wickens, 2016). After logging in, subjects saw detailed

instructions, including a description of the tasks and of the payment rules, as well as one example

of a predictable round display and one example of an i.i.d. round display (see Appendix C).

They could ask questions at any time during the session. All questions were asked and answered

privately.

We conducted a third wave in March 2021 with 26 subjects from the same Master’s program.

After they finished the baseline treatment, subjects played another ten rounds where they were told

when “Variable A” was useful and when it was not; then, we revealed the simulation processes (1)

and (2), and subjects played for ten additional rounds.13 The third wave was conducted online,

due to strict COVID-related lock-downs. Subjects were invited to join a zoom session that allowed

them to interact with the experimenter during the experiment. They accessed the same application

as in the previous two waves, and were told they could ask questions via private message on zoom.14

In addition to the answers we obtained directly from subjects in the first three waves of the

experiment, we also collected their grades in the Master of Finance program, and their gender.

Subjects received as compensation for participating in the experiment a Euro amount equal to

12Subjects played the same twenty rounds as the baseline, in a new randomized order.
13We randomly selected five i.i.d rounds and five predictable rounds from the twenty rounds of the baseline

treatment, in each additional treatment.
14In the lab, many subjects asked that we explain the 80% confidence intervals. Absent such clarification, online

subjects appeared to mis-understand the question, with, e.g., constant 10% and 90% returns thresholds throughout,
despite variations in forecasts, so we do not account for their answers on confidence intervals.
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their total ECU payoff, divided by 20, resulting in an average payment of 12 Euros.

2.2.2 Online subjects, Prolific

TSE students may have, as just starting a Master of Finance, more financial knowledge than the

average population (albeit not necessarily than real investors in financial markets overall).

In the fourth wave of the experiment, we extended our subject pool and recruited subjects from

Prolific, an online survey and experiment platform.15 Because of the time and effort it takes to

complete our experiment – the average time of completion is greater than one hour in the first three

waves, it was both difficult and costly to attract online subjects. We recruited 94 subjects from

Prolific, over several weekends in June and July 2023. They played only the baseline treatment,

but were also asked their upper bound and lower bound probability perceptions (probability of

next-period returns above 15% or below -3%) each round.

Subjects accessed the same application as in the first three waves. We added several attention

checks over the experiment, standard to online subject pools. If subjects failed the attention checks,

they were removed from the experiment and received no compensation. In addition to the answers

collected in the experiment, we added survey questions to gather information on subjects’ gender,

age, income bracket, education and level of financial literacy (see Appendix C).

As compensation for participating in the experiment, subjects received a dollar amount corre-

sponding to their total ECU payoff divided by 10, subject to a minimum participation fee of $5,

as imposed by Prolific compensation rules.

In contrast to the first three waves of the experiment, the participation fee provided an incentive

for some subjects to sign up and exercise no effort in the investment game. The time spent on the

experiment, a standard measure of effort in the lab, does not allow us to identify such subjects, as

we could not control what other activities subjects may have been involved in while playing the

investment game online. We opted for another, indirect, measure of effort: we imposed a threshold

on the number of correct answers when identifying “Variable A” as predictive or not, such that

any subject with 11 or less correct “Variable A” answers in the 20 rounds of the baseline treatment

15https://www.prolific.com/
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was removed from our pool. This threshold, which removed 37 Prolific subjects, was determined

before we analyzed subjects’ forecasts and investments. We chose it because: 1) despite being low,

i.e., remaining subjects can still be incorrect 8 rounds out of 20, it excludes with a 75% chance

subjects who would choose purely random “Variable A” answers; 2) the remaining Prolific subjects

have the same average number of correct “Variable A” answers, 15 out of 20, as the TSE Master of

finance students of the first three waves, denoting they likely exercised a similar amount of effort.16

Our rationale for excluding subjects with 11 or less correct “Variable A” answers, determined

before we analyzed their forecasts and investments, is that they are “playing” the game randomly,

so their answers are uninformative to our analysis. After analyzing their forecasts and investments,

we find compelling evidence supporting this assumption. Results, reported in Online Appendix

Tables A.1 and A.2, show that online subjects with 11 or less correct “Variable A” answers do not

use any available information to form their forecasts, i.e., they do not extrapolate from past returns

or use the “Variable A” signal; and their own forecasts have no influence on their investments.17

Statistics on the remaining Prolific subjects’ demographics is provided in Online Appendix

Table A.3. Our subjects are evenly split in gender (46% identify as female); the median age is

38, with the youngest being 19 years old; 70% have some college education; 35% earn less than

$50,000 per year and 19% earn more than $110,000 per year; finally they correctly answer an

average 2.4 out of 3 questions on financial literacy, with more than half of subjects answering all

three correctly.

3 Main results

Given our time series simulation methodology, the forecast for next-period “Index Return”, at

any time t, of a fully informed rational subject playing our experiment would be the constant

µ in the i.i.d. case and the time-varying at, whose last realization is saliently displayed, in the

predictable case. Under classical investment models, the risk taking decisions of the same fully

16We have no reason to believe Master of Finance students have a comparative advantage at “eyeballing” correla-
tions than the rest of the population.

17Online Appendix Tables A.1 and A.2 report our results for all online subjects, i.e., for the third and fourth waves
of the experiment.
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informed rational subject would move in step with her forecasts in the predictable rounds (and be

constant in the i.i.d. rounds), with a higher average risk investment in predictable rounds where

the next-period “Index Return” conditional variance is lower than in i.i.d rounds. The subjects

in our baseline treatment, however, play the investment game each round without knowing how it

is simulated. We analyze how it affects their forecasts and investments, pooling the four waves of

implementation; as well as subjects’ reported risk assessments. We present below the main results

we obtain for the baseline treatment. Descriptive statistics are in Table 1.18

3.1 “Variable A” information

To study how subjects’ forecasts and decisions vary with the information they receive, we start by

analyzing their ability to identify when “Variable A” is useful or not, and thus to separate i.i.d.

versus predictable round.

Subjects correctly identify returns as predictable 82% of the time, and as unpredictable by

“Variable A” 70% of the time (Table 1); significantly greater than 50%, if guesses were random

(p-value < 0.01). The examples provided in Figure 1 show the difference between the correlated

and uncorrelated rounds is far from visually obvious; making this first result notable. It speaks to

people’s ability to visually infer simple correlations, consistent with existing work in neuroscience

and experimental finance (Wunderlich et al., 2011; Ungeheuer and Weber, 2021).19

Subject have a greater ability to identify information when it is useful rather than useless

(82% > 70% with p-value < 0.01). As a result, subjects perceive “Variable A” information to be

predictive in 56% of rounds, as opposed to the true 50%. This finding is in line with previous

studies that have shown that people have an innate desire to perceive patterns, and find it harder

to identify randomness and the absence of correlations (Chapman, 1967; Tversky and Kahneman,

1973; Whitson and Galinsky, 2008). It may also reflect an optimism bias in over-interpreting the

“Variable A” information as useful.

Taking into account how subjects interpret the information in “Variable A”, we study their

18To be consistent, we also exclude from our pool of subjects TSE students with strictly less than 12 correct
answers (8 students out of 120).

19Ungeheuer and Weber (2021) show correlated tail-events are harder to correctly assess.
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forecasts and risk decisions, in the rest of the paper, in rounds they perceive as predictable versus

rounds they perceive as unpredictable by “Variable A”, which allows us to analyze how investors

vary their beliefs and decisions according to their subjective information set.

3.2 Forecasts

Our experiment is designed to mimic real investors’ market risk in an information environment

where they always observe past market returns; as well as a signal that, in some rounds, mimics

a real returns predictor (the price-dividend ratio) in the data. Our set-up is tailored to analyze

what information they use to form their forecasts: past returns, i.e., extrapolative forecasts (see

the literature review), or other available signals. Accordingly, to analyze forecasts, we run the

following regression:

Fi,k = α1 + α2Predicti,k + β1at,k + β2at,k × Predicti,k (3)

+ δ1rt,k + δ2rt,k × Predicti,k + ϵi,k,

where Fi,k is the forecast of subject i for next-period returns in round k; Predicti,k is a dummy

taking value 1 if subject i perceives “Variable A” as useful to predict returns in round k; at,k

and rt,k are the last realizations of “Variable A” and “Index Return” in round k. The results are

presented in Table 2.

Subjects use both the “Variable A” signal at and the past return rt to form their forecasts

(columns (1)-(2), Table 2). However, they use the “Variable A” signal only when they perceive

it as useful (columns (3)-(5)): the loading on at × Predict is significant at the 1% threshold, the

loading on at alone is not significantly different from zero. Subjects extrapolate from the past

return only when they perceive other information (“Variable A”) as useless (columns (6)-(8)): the

loading on rt alone is significant at the 1% threshold, the loading on rt when Predict = 1 is not

significantly different from zero (p-value = 0.71).

A one percentage point (p.p.) increase in rt increases next-period forecasts by 0.18 p.p. in

rounds perceived as unpredictable by “Variable A”; a one p.p. increase in at increases next-period
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forecasts by 0.37 p.p. in rounds perceived as predictable, controlling for individual and round

fixed effects. Subjects’ ability to exploit the information provided in predictable rounds and vary

their beliefs accordingly translates into greater forecast accuracy: the distance between forecasts

and next-period returns realizations is 7.7 p.p. in rounds perceived as predictable and 10.7 p.p.

otherwise (Table 1), a significant difference (p-value < 0.01).

These results obtain with or without controlling for individual and round fixed effects. The

forecast pattern – using “Variable A” only in rounds where it is perceived as predictive vs. using

extrapolation otherwise – is true both between and within subjects.

3.3 Investments

Our experiment is designed to mimic real investors’ market risk, to study how their decisions

vary with the information they observe, and the forecasts they make. Accordingly, to analyze

investment decisions, we run the following regression:

θi,k = α1 + α2Predicti,k + β1Fi,k + β2Fi,k × Predicti,k + ϵi,k, (4)

where θi,k is subject i’s investment into the risky fund (out of her 100 ECU endowment) in round

k; Fi,k is subject i’s forecast of next period return, and Predicti,k is the “perceived predictable”

dummy, as above. The results are reported in Table 3.

Subjects’ stated beliefs about expected returns have an impact on their risk taking. An increase

of one p.p. in forecasts translates into up to 1.67 ECU greater investments, significant at the 1%

threshold (columns (1)-(3), Table 3). Subjects rely on their own forecasts more when they perceive

returns as predictable by “Variable A”: the loading on Fi,k × Predicti,k is positive and significant

(columns (4)-(6)). Controlling for individual and round fixed effects, an increase of one p.p. in

the next-period return forecast results in an additional 1.38 ECU investment in rounds where

“Variable A” is perceived as useless versus an additional 1.38 + 0.48 = 1.86 ECU in rounds it is

perceived as informative, a 35% greater pass-through from forecasts to investments.

These results obtain with or without controlling for individual and round fixed effects; they

18



are true both between and within subjects. Those with significantly higher average forecasts have

significantly greater risk investments; any given subject has a significantly higher risk investment

in rounds where her next-period return forecast is above her own average; and both effects are

amplified in rounds when “Variable A” is perceived as informative.

We extend the analysis of regression (4) to quantify the impact of information on portfolio

decisions within the information-beliefs-decisions chain. As seen in Table 2, {at, rt} signals explain

only some of subjects’ forecast variations: the regression R2s do not exceed 18% (with individual

and round fixed effects). To isolate how investments are affected by forecasts directly attributable

to {at} signals, when “Variable A” is perceived as predictive, and to {rt} signals, when “Variable A”

is perceived as useless, we use the two-stage least square specification:

θi,k = α̃+ β̃F̃i,k + ϵ̃i,k, (5)

where F̃i,k is derived from the first-stage regressions



Fi,k = αu + βurt,k︸ ︷︷ ︸
F̃i,k

+ϵu,i,k |A perceived useless

Fi,k = αp + βpat,k︸ ︷︷ ︸
F̃i,k

+ϵp,i,k |A perceived predictive

, (6)

and θi,k, Fi,k, at,k, rt,k are as above. F̃i,k corresponds to the “informed forecasts” of subject i in

round k as opposed to the “noisy forecast” Fi,k. The results are reported in Table 4.

When “Variable A” is viewed as useless, the pass-through from forecasts to investments is

unchanged wether forecasts are “informed” or not by the extrapolative signal rt: the difference

between 1.43 ECU and 1.56 ECU in columns (3)-(4), Table 4, is not significant (p-value = 0.78).

When “Variable A” is perceived as predictive, the pass-through is close to double for forecasts

“informed” by at: 3.19 ECU per p.p. change in “informed forecasts” versus 1.85 ECU for “noisy

forecasts” (columns (1)-(2)).

That regressions (4) and (5) differ significantly only in rounds perceived as predictable by “Vari-
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able A” is a key result: it is the first to indicate that subjects use the information in “Variable A”,

which is truly predictive in some rounds, differently from the extrapolative information in “Index

Return”, which is actually useless throughout our experiment.

The greater pass-through from forecasts to investments, and from informative signals to invest-

ments, in rounds where “Variable A” is viewed as useful, has significant return implications for

our subjects. Market timing their investments according to the signal at, when it is perceived as

useful, increases their portfolios’ expected returns by 7% (0.2 p.p.) in predictable rounds.20

3.4 Risk assessments

Subjects provide three separate measures of risk: their 80% confidence intervals (CI) around their

forecasts, their probability estimates that next-period return will exceed +15%, and their proba-

bility estimates that next-period return will fall below -3%. We study how these risk assessments

interact with the next-period forecasts and whether they affect investment decisions.

We find subjects vary their reported confidence intervals independently from their forecasts

(−2% correlation in both round types), consistent with first and second moment estimates of normal

distributions. To analyze the impact of variations in CI on investments, we run the regression:

θi,k = α1 + α2Fi,k + β1HighCIi,k + β2Fi,k ×HighCIi,k + ϵi,k, (7)

where θi,k and Fi,k are subject i’s investment and forecast in round k and HighCIi,k is a dummy

variable equal to 1 if subject i’s CI in round k is above her median CI for rounds of same type,

perceived as predictable or not by “Variable A”, as k. Results are provided in Table 5.

The loading on Fi,k is significant and positive throughout; the loadings on HighCIi,k and on

Fi,k×HighCIi,k are overall not significantly different from zero: variations in confidence intervals,

a measure of subjects’ risk perceptions, have no significant impact on their investment decisions.

Turning to the upper and lower bound probability assessments, we find, first, that subjects vary

20From the results of regressions (3) and (5), θi,k = α̃ + β̃βpat + ϵ̃i,k, where β̃ × βp = 3.19 × 0.37 = 1.18 in
rounds where “Variable A” is perceived as useful. Expected portfolio returns Rp,t+1 = θtRt+1 are thus increased by
β̃βpσ

2(at) (+ small positive Jensen terms) when returns are determined by simulating process (2).

20



them in line with their forecasts, with correlation 39% (−42%) for the probability that next-period

returns exceed +15% (fall below -3%), consistent with a perceived distribution of risk centered

on forecasts, and with the evidence in Giglio et al. (2021a). Second, to analyze the impact of

variations in upper and lower bound probabilities on investments, we run the regressions:


θi,k = αH

1 + αH
2 Fi,k + βH

1 HighProbHighi,k + βH
2 Fi,k ×HighProbHigh+ ϵHi,k,

θi,k = αL
1 + αL

2Fi,k + βL
1 HighProbLowi,k + βL

2 Fi,k ×HighProbLow + ϵLi,k,

(8)

where θi,k and Fi,k are as above, and HighProbHighi,k (HighProbLowi,k) is a dummy variable

equal to 1 if subject i’s upper bound probability (lower bound probability) in round k is above her

median probability for rounds of same type, perceived as predictable or not by “Variable A”, as k.

Results are provided in Table 6.

The loading on Fi,k is positive and significant overall; the loading on HighProbHighi,k is

significant and positive, the loading on HighProbLowi,k is significant and negative; the loadings

on Fi,k ×HighProbHighi,k and Fi,k ×HighProbLowi,k are mostly not significant; in both types

of rounds (perceived as predictable by “Variable A” or not), with and without individual and

round fixed-effects: subjects use their forecasts and, independently, their upper and lower bound

probabilities to make their investment decisions. The coefficients in Table 6 are not only significant

but large in magnitude: subjects invest up to 10.5 additional ECU (up to 14.3 fewer ECU) when

they perceive a greater than median chance that next-period returns are above +15% (below -3%),

in Panel C.

4 Mechanisms

4.1 Interpretation – forecast model

The results of Section 3.2 suggest that, as a forecast rule, subjects choose to use, each round,

only one signal, which varies depending on “Variable A” being informative or not. This matches

previous evidence in the literature on the propensity to rely on one variable at a time when making

forecasts (e.g., Kruschke and Johansen, 1999; Hirshleifer and Teoh, 2003; Hong, Stein, and Yu,
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2007). Using a limited subset of signals, as may be optimal under rational inattention, helps also

explain mutual fund managers’ decisions (Van Nieuwerburgh and Veldkamp, 2010; Kacperczyk,

Van Nieuwerburgh, and Veldkamp, 2016).

Accordingly, we assume that, when “Variable A” is useless, subjects apply expectation model

Eu(rt+1), which loads positively on rt, the last realization of “Index Return”;21 whereas when

“Variable A” is predictive, they apply expectation model Ep(rt+1), which loads positively on at,

the last realization of “Variable A”, such that:


Eu
t (rt+1) = λurt + (1− λu)µ̄

Ep
t (rt+1) = λpat + (1− λp)µ̄

, (9)

where µ̄ = E (rt) = E (at) under subjects’ subjective expectations.

To decide when to apply model Eu(rt+1) or model Ep(rt+1), subjects assess, each round, whether

“Variable A” is predictive or not. However, they know their assessments may be wrong, which we

assume they take into account, such that their forecasts follow:


Et (rt+1 |A perceived useless) = πuEu

t (rt+1) + (1− πu)Ep
t (rt+1)

Et (rt+1 |A perceived predictive) = πpEp
t (rt+1) + (1− πp)Eu

t (rt+1)

, (10)

where πu and πp correspond to the probabilities that a given subject assigns to the fact that

“Variable A” is truly useless or predictive, conditional on the fact that she perceives it as such.

Under the model of Equations (9) and (10), forecasts follow:

Fi,k = αm
1 + αm

2 Predicti,k + βm
1 at,k + βm

2 at,k × Predicti,k (11)

+ δm1 rt,k + δm2 rt,k × Predicti,k,

where Fi,k is the forecast of subject i for next-period returns in round k; Predicti,k is a dummy

21Such extrapolative beliefs can be derived from various psychological mechanisms, including the law of small
numbers (as in Bianchi and Jehiel (2015) and Jin and Peng (2024)) and diagnostic expectations (as in Bordalo et al.
(2019)), or simply from a lack of knowledge of the underlying price process (Adam, Marcet, and Beutel (2017),
Gabaix (2019)).
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equal to 1 if subject i perceives “Variable A” as useful to predict returns in round k; at,k and

rt,k are the last realizations of “Variable A” and “Index Return” in round k; and the coefficients

{αm
1 , αm

2 , βm
1 , βm

2 , δm1 , δm2 } are determined by the parameters {µ̄, λu, λp, πu, πp}.22

To choose {µ̄, λu, λp, πu, πp}, we make the following assumptions. First, we assume subjects

are unbiased in their average forecasts: µ̄ = µ = 6.07% the true unconditional returns expectation,

which we explicitly provide to them in the experiment set-up.

Second, we set πu, πp equal to the true posterior probabilities we observe in the data, i.e., we

assume that subjects do not overestimate nor underestimate their ability to correctly detect when

“Variable A” is predictive. This assumption is motivated by the fact that subjects receive feedback

each round on their ability to identify “Variable A” as predictive.

Third, we assume subjects have same extrapolative bias as previously observed in the literature

when they apply model Eu
t (rt+1) = λurt + (1 − λu)µ̄: we set λu = 0.32, as estimated by Landier,

Ma, and Thesmar (2019); Afrouzi et al. (2023) in an experimental setting comparable to our i.i.d

rounds.

Finally, fourth, we assume subjects update their beliefs rationally from prior µ̄ = µ when they

apply model Ep
t (rt+1) = λpat + (1 − λp)µ̄. Subjects are not told Et(rt+1) = at in predictable

rounds, corresponding to λp = 1, but, in the graphical displays they are provided each round,

they observe 40-period time series of the loadings of {rt+1} on {at}. Our assumption is that they

do not over- or underestimate on average the value of those loadings; while taking into account

their risk of mistakes when identifying “Variable A” as predictive. This fourth assumption yields

λp =
π2
p+(1−πu)2

πp+(1−πu)
;22 such that the model is fully specified by setting parameters {µ̄, λu, πu, πp}.

Equations (9) and (10), and our assumptions for {µ̄, λu, λp, πu, πp}, correspond to a model

where subjects have an imperfect ability to detect predictability and imperfect knowledge of the

return processes, but 1) are sophisticated in being aware of these limitations; 2) are rational in

estimating their probabilities of being right or wrong about “Variable A”; 3) are unbiased in their

average forecasts; 4) are unbiased, on average, in assessing the loading of {rt+1} on {at} in the

simulated graphs; and 5) have the standard “extrapolative” bias in rounds without information.

22The model is described in details in Appendix D.1.
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To test the model in our experimental data, we measure the posterior probabilities {πu,i, πp,i},

for each subject i; which determines, given µ̄ = 6.07%, λu = 0.32, the forecast coefficients

{αm
i,1, α

m
i,2, β

m
i,1, β

m
i,2, δ

m
i,1, δ

m
i,2} of Equation (11). We confront their average values and confidence

intervals to the corresponding regression coefficients, derived in our data, controlling for subject

and round fixed effects. The results are provided in Table 7. We find that the model’s predicted

intercepts and loadings on the last realized values of “Index Return” and “Variable A”, rt and at,

across rounds, cannot be rejected, at conventional levels.23

The dual expectation model of Equations (9) and (10) is consistent not only with the forecast

variations we observe, one round to the next, as captured by the loadings on at and rt, but also with

the average forecast levels across round types: the model-implied intercepts, αm
1 + αm

2 in rounds

where “Variable A” is perceived as predictive and αm
1 otherwise (Equation (11)), cannot be rejected

in our data.24 Because those derive from the anchoring on µ, the true unconditional expectation,

this result shows that, on average, our subjects do not have an optimistic or pessimistic bias in their

forecasts, whether “Variable A” is perceived predictive or not, contrasting with previous investors’

evidence Dominitz and Manski (2007); Hurd and Rohwedder (2012); Giglio et al. (2021a). This

result does not exclude that another form of optimism bias may be at play in subjects’ over-

interpreting “Variable A” as predictive in 56% of rounds instead of the true 50%.

Finally, we note that the model-induced variations in beliefs correspond to the “informed

forecasts” {F̃i,k}, in regression (6); other variations in {Fi,k} are noise according to our model.

4.2 Interpretation – risk assessments

Before we turn to the analysis of subjects’ investments, and the results of Section 3.3, we study

and interpret their risk assessments, described in Section 3.4.

Under our normally distributed simulation processes, next-period return risk are fully captured

by variance estimates. Similar to the forecast model of Equations (9) and (10), we assume that sub-

23Our test of the model in Table 7 would not reject the alternative Eu
t (rt+1) = λurt + (1 − λu)µ + Ẽu

t (rt+1) and

Ep
t (rt+1) = λpat + (1 − λp)µ + Ẽp

t (rt+1), as long as Ẽu
t (rt+1) and Ẽp

t (rt+1) use information orthogonal to at and rt
and have mean 0. Such models are discussed in Section 5.3.

24The low 5.1% average forecast in rounds where “Variable A” is perceived as useless (Table 1) is due to subjects’
extrapolating from rt, which has a low average realization of 1.5% in i.i.d. rounds (Online Appendix Table C.2).
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jects have variance model V arut (rt+1) when “Variable A” is useless, and variance model V arpt (rt+1)

when “Variable A” is predictive; such that, when taking into account their risk of mistakes when

assessing if “Variable A” is informative, their reported variances follows:


V art (rt+1 |A perceived useless) = πuV arut (rt+1) + (1− πu)V arpt (rt+1)

V art (rt+1 |A perceived predictive) = πpV arpt (rt+1) + (1− πp)V arut (rt+1)

, (12)

where πu and πp correspond to the probabilities that a given subject assigns to the fact that

“Variable A” is truly useless or predictive, conditional on the fact that she perceives it as such.

In line with the assumptions for forecast model parameters {µ̄, λu, λp, πu, πp} in Section 4.1, we

assume, first, that subjects are unbiased in their average variance estimates: E (V arut (rt+1)) = σ2

and E (V arp(rt+1)) = σ2
p, the true next period variances from processes (1) and (2). Even though

subjects are not explicitly provided with variance statistics, we do not view this assumption as

unreasonable: variance sample estimates converge quickly with sample size such that the variations

in the 40-period long “Index returns” realized volatilities across the twenty rounds of the experiment

are small (0.18 p.p. standard deviation). Similarly, the correlation between “Variable A” and

“Index returns” is stable within predictable rounds (Online Appendix Table C.1). Subjects thus

“eyeball” the same information each round on both the unconditional and the conditional risk

they face, making the assumption that they have unbiased average estimates credible. Second,

we assume that subjects are unbiased in assessing the shape of the distribution, such that they

perceive risk as normally distributed. Third, as before, we let πu, πp be equal to the true posterior

probabilities in the data, i.e., subjects do not overestimate nor underestimate on average their

ability to correctly detect when “Variable A” is predictive.

We note that the assumptions we make for parameters {E (V arut (rt+1)) ,E (V arp(rt+1)) , πu, πp}

in the model of Equation (12) are meant to capture the average reported confidence intervals in

our data but not their variations within round types. The average risk perceptions are the correct

statistics to interpret average investments, as we show below.

From the posterior probabilities {πu,i, πp,i} for each subject i in our experimental data, we
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derive 80% confidence intervals from the model-implied average variances, and confront them to

subjects’ average reported CI in each round type. The model cannot be rejected, with p-value=

0.38 for rounds where “Variable A” is perceived as useless and p-value= 0.84 in rounds where it is

perceived as predictive.25 The average reported CI is 20.7 p.p. across all rounds, almost exactly

equal to the true 21.0 p.p. in our simulated processes (1) and (2). In addition, the evidence

rejects risk assessment models that do not fall strictly between the unconditional and conditional

variances of processes (1) and (2): subjects’ reported CI in rounds perceived as unpredictable by

“Variable A”, 21.1 p.p., is significantly below the true 23.1 p.p. in process (1) (p-value = 0.02); the

reported CI in rounds perceived as predictable by “Variable A”, 20.4 p.p., is significantly above

the true 18.9 p.p. in process (2) (p-value = 0.05).

We turn next to the upper and lower bound risk assessments. We derive for each subject i and

round-type the probabilities that next period returns exceed +15% or fall below -3% implied by the

variance model of Equation (12) with unbiased average estimates and the assumption of normal

distributions; and confront them to those they report in the experiment. The model is rejected

at the 5% level.26 Subjects perceive fatter tails than the normal distribution, especially on the

downside: in rounds perceived as unpredictable by “Variable A”, the average stated lower-bound

(upper-bound) probability is 10.9 p.p. (1.7 p.p.) above that implied by the model; in rounds where

“Variable A” is perceived as useful, they are 9.0 p.p. (4.9 p.p.) above. Such misperceptions can

arise under the cognitive uncertainty model of Enke and Graeber (2023), as shown in Enke et al.

(2024). As we discuss below, subjects also display cognitive uncertainty behaviors in their risk

decisions; consistent with the interpretation above.

4.3 Interpretation – investment model

To interpret subjects’ investments, we take the classical Merton-Samuelson portfolio choice model

with normally distributed returns (Merton, 1969) as the baseline, and discuss which, if any, exten-

25Testing is done by confronting, individually, for each subject and round type, their average confidence intervals
to the model implied ones.

26The model is tested using for each subject i and round-type, their average reported upper bound and lower
bound probabilities and comparing them to those implied by the variance model, given their average forecasts. We
obtain p-values < 0.01 and < 0.01 for the lower-bounds, and p-values = 0.55 and 0.04 for the upper-bounds, in
rounds where “Variable A” is perceived as useless or as predictive respectively.
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sions are necessary to explain the evidence in our experimental data. An agent with power utility

and risk aversion γi has optimal risk investment

θi =
1

γi

Ei(r)

σ2
i (r)

, (13)

given her expectation Ei(r) and estimated variance σ2
i (r) of normally distributed excess return r.

Average investments.

From Equation (13), and substituting forecasts for expectations, we obtain γiσ
2
i,k =

Fi,k

θi,k
, for any

round k and subject i, using the notations of Section 3; such that the relative average forecast-

to-investment ratios across round types are determined, for each subject, by her relative perceived

variances:

E
(
F
θ |A perceived useless

)
E
(
F
θ |A perceived predictive

) =
E (V ar (rt+1 |A perceived useless))

E (V ar (rt+1 |A perceived predictive))
, (14)

where E denotes sample averages.

Motivated by our analysis of Section 4.2, we derive for each subject i her variance expectations

under the model of Equation (12), using her probability of mistakes when identifying “Variable A”

as useful and assuming unbiased estimates E (V arut (rt+1)) = σ2 and E (V arp(rt+1)) = σ2
p; and her

average forecast-to-investment ratios across round types. We find that Equation (14) cannot be

rejected, at conventional levels (p-value= 0.59).27

Subjects’ average investments follow the Merton-Samuelson model with normally distributed

unbiased risk assessments; consistent with the 80% confidence intervals they report. We note

that this finding excludes possible model extensions, e.g., assuming greater ambiguity in rounds

without “Variable A” information, where the difference in the perceived risk across round types is

significantly greater than for the true variances σ2 and σ2
p.

28

We can infer from Equation (13) each subject i’s implicit risk aversion γi, from her average

investments (relative to forecasts) and average perceived variance (according to Equation (12),

27We removed two subjects with average forecasts-to-investments ≈ 0 when “Variable A” is perceived predictive.
28Such models are discussed in Appendix D.2.
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with unbiased risk assessments). We find a median γ = 24.29 This measure is high with respect to

estimates in the experimental literature (γ estimates in the lab are mostly below 10), but consistent

with previous evidence in asset pricing (e.g. Hansen, Heaton, and Li, 2008; Malloy, Moskowitz, and

Vissing-Jørgensen, 2009).30

Elasticity of investments.

From the Merton-Samuelson model (Equation (13)), we derive:

dθi =
1

γi
d

(
Ei(r)

σ2
i (r)

)
, (15)

i.e., variations in investments are explained by variations in expectation Ei(r) and variance σ2
i (r).

To take Equation (15) to our experimental data, we observe, first, that variations within round

types in reported confidence intervals have no bearing on investments (Table 5). Accordingly, we

assume subjects’ variance beliefs σ2
i (r) are constant within round types, for each subject i. Second,

we assume variations in expectation Ei(r) are captured by variations in F̃i,k, consistent with the

belief model of Section 4.1. Given these assumptions, the Merton-Samuelson model implies:


dθ

dF̃
|A perceived useless = E

(
θ
F |A perceived useless

)
dθ

dF̃
|A perceived predictive = E

(
θ
F |A perceived predictive

) , (16)

where E denotes sample averages.

Under Equation (16), the elasticity of investments to “informed forecasts” is equal to the average

investment-to-forecast. We find this equality is rejected in the data. In rounds where “Variable A”

is perceived as useless, the average investment-to-forecast has mean value 6.01; the elasticity of

investments to “informed forecasts” has mean value 1.56 (column(3), Table 4), almost four times

lower. In rounds where “Variable A” is perceived as predictive, the average investment-to-forecast

has mean value 6.35; the elasticity of investments to “informed forecasts” has mean value 3.19

29Specifically, the median γ is 21 and 26, in rounds where “Variable A” is perceived as useless and as predictive
respectively. A few outlier subjects have “extreme” investment decisions – they always invest 0 ECU or 100 ECU,
hence our reporting the median rather than the average.

30We note the 42.6% average equity share in Table 1 is lower but comparable to the 67.5% in Giglio et al. (2021a).
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(column(1), Table 4), about twice lower. Subjects’ investments are inelastic – they under-react to

their own forecasts – compared to the Merton-Samuelson model.

To reconcile this result with our previous finding that average investments across round types

align with the classical model under unbiased risk perceptions, we posit that variations in next-

period “effective” beliefs Ei(r) in Equation (15) are not those subjects report in their “informed

forecasts” (and the model of Section 4.1). In line with the cognitive uncertainty model of Enke

and Graeber (2023), we assume instead that subjects anchor on their average forecasts, such that

variations in “effective” beliefs, that determine their investment decisions, are given by:

Ei,k(r) = ξiE (Fi) + (1− ξi) F̃i,k, (17)

where E denotes sample averages, and ξi > 0 represents the cognitive uncertainty distortion.

Since the belief model of Equation (17) does not distort average forecasts, it does not inval-

idate the matching, as shown above, of the average investment-to-forecast ratios to the Merton-

Samuelson portfolio choice model; while now allowing the classical model to also accommodates

investment variations, if we let the average “cognitive uncertainty” distortion be higher in rounds

where forecasts are extrapolative than in rounds where they are informed by “Variable A”. Specif-

ically, we derive ξ |A perceived useless= 0.74 and ξ |A perceived predictive= 0.50 on average.

Taking the “informed forecasts” {F̃i,k} (and the model of Section 4.1) as Bayesian updates

given signals {rt, at}, Equation (17) follows Enke and Graeber (2023). However, our finding that

cognitive uncertainty impacts investments decisions but not forecasts, even when incentivized, and

the resulting internal inconsistency between reported expectations and actions, is new to their

analysis;31 as is the evidence that extrapolative beliefs generate higher cognitive uncertainty.

31In the experiment of Enke and Graeber (2023), both belief updates and decisions exhibit cognitive uncertainty.
Charles, Frydman, and Kilic (2024) find an internal inconsistency between subjects’ certainty equivalents of risky
lotteries and the probabilities they assign to each of the lottery payoffs, however they do not elicit their average
expectations.

29



Preference for skewness.

Our analysis, so far, does not account for the evidence that reported probabilities of “extreme”

returns (above +15% / below -3%) 1) are not consistent with normally distributed risk assessments

(Section 4.2); and 2) induce variations in investments (Table 6).

We interpret these results as indicating a preference for skewness, independent from decisions

related to the first and second moments in the risk distribution, such that they do not invalidate

our model interpretation of subjects’ average investments and elasticity of investments to forecasts.

Our reasoning is based on the following two observations. First, subjects’ reported upper and lower

bound probabilities do not influence how changes in forecasts (first moment) affect investments

(Table 6).32 Second, if their reported upper and lower bound probabilities were indicative of

subjects’ perceived variances (second moment), higher estimates on either sides would indicate

higher risk; they would both lower investments contrary to the evidence in Table 6.

The results of Table 6 show, instead, that subjects find positively skewed returns, with higher

probability of “extreme” high payoff, attractive, while they find, at the same time, negatively

skewed returns unappealing. Such preference for positively skewed “lottery stocks” is modeled in,

e.g., Barberis and Huang (2008), based on probability distortions that overestimate tail events

(Kahneman and Tversky, 1979), also consistent with our subjects’ reported beliefs (Section 4.2);

while an aversion for negatively skewed wealth profiles is at the core of the “rare event” literature

in asset pricing (e.g. Barro, 2006; Gabaix, 2008).33

5 Additional results

5.1 Variations across subjects

The results in Section 3 are equally valid across and within subjects, suggesting all subjects follow

similar behaviors; a key finding. We explore what heterogeneity remains in our data.

32This result also excludes that the reported upper and lower bound probabilities may proxy for how cognitive
certain or uncertain subjects are about their own forecasts, i.e. for ξi in Equation (17).

33The classical Merton-Samuelson model with power utility and normal distributions of risk (Equation (13)) can
be extended to allow for the pricing of higher moments in non-normal distributions (Martin, 2013).
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Individual fixed effects.

We find limited heterogeneity in subjects’ average forecasts, only 13% of which are explained by

individual fixed effects. This result contrasts with survey evidence: e.g., Giglio et al. (2021a) find

up to 60% of variations in beliefs are explained by individual fixed effects.

One important difference is that real investors vary their forecasts over time given new data

points on the same time series of market returns, whereas each of the rounds our subjects play cor-

responds to a completely new time series simulation of “Index Return”. The homogeneous average

forecasts we observe in our experiment compared to the belief persistence in survey data suggest

the later may be due to anchoring biases, rather than optimistic versus pessimistic personalities.

Our data confirms this interpretation: only 8 (1) out of 169 subjects have pessimistic (optimistic)

forecasts – below (above) the reported average for a given round – 80% of the time.

Subjects’ average risk investments display greater heterogeneity: 43% of all ECU risk positions

are explained by individual fixed effects. 55 (34) out of 169 subjects have prudent (high) risk

investments – above the average for a given round – 80% of the time. Given their homogeneous

forecasts, these results suggest important variations in risk appetites across subjects.

Prolific versus Master of finance subjects.

As discussed in Section 2, Prolific subjects are recruited online from a representative pool of the

US population, and likely differ in their understanding of financial markets from TSE Master of

finance students. We analyze if these differences are reflected in forecasts and risk decisions across

the two groups, controlling for individual and round fixed effects, as reported in Table 8.

We find Prolific subjects have same behaviors as the Master of Finance subjects: they all use

the information in “Variable A” only when they view it as useful, and extrapolate from past returns

otherwise; they all invest according to their own forecasts, with greater loadings in rounds perceived

as predictable. They use the signals {at, rt} with same magnitude to form their forecasts across

rounds types. Risk investments’ greater loading on forecasts in rounds perceived as predictable

by “Variable A” is not statistically different across the two subject groups. The only significant

difference we observe is that Prolific subjects use their own forecasts less when making their risk
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decisions, in both types of rounds. A one percentage point increase in forecasts leads to 2.03 higher

ECU investments on average for TSE Master’s students, and to 1.17 higher ECU investments on

average for Prolific subjects. Interpreted through the lens of the investment model of Section 4.3,

this result indicates Prolific subjects are less confident in the forecasts they form from the signals

{at, rt}, reflected in a higher average cognitive uncertainty parameter ξ (Equation (17)).34

Individual characteristics.

We group subjects according to observable individual characteristics. We analyze if gender, risk

appetite (as measured by the average risk taking over the experiment), and “understanding” of

information (as measured by the number of correct “Variable A” answers over the experiment)

affect their behaviors. For TSE students, we consider their average grades in the Master’s program,

and, for those who played the experiment in the lab, if they were fast or slow in completing

the tasks.35 For Prolific subjects, we analyze their age, annual income, education, and financial

literacy. The forecasts and investments of subject groups sorted on their individual characteristics

are provided in Online Appendix Tables A.4 to A.12.36

Heterogeneous investment decisions are observed in several cases: women and wealthier subjects

use their own forecasts significantly less when making their risk decisions, in all rounds, whereas

those with greater financial literacy (Prolific subjects) or higher grades (TSE subjects) use their own

forecasts significantly more, in all rounds. Subjects who are slower when playing the experiment in

the lab use their forecasts significantly less in rounds where they perceive “Variable A” as useful,

when choosing their risk investments.

Taken together, and interpreted through the lens of the investment model of Section 4.3, these

results suggest differences across these groups in self-confidence about the forecasts they form from

the signals {at, rt}. To quantify these differences, we measure how the average cognitive uncertainty

ξ (Equation (17)) varies with observable individual characteristics, across round types. We report

34On average, across all rounds, ξ = 0.64 for Prolific subjects versus ξ = 0.56 for TSE students.
35We do not analyze fast or slow answers in the online implementations as we cannot control whether subjects

may sometimes be distracted, pause and stop playing the experiment for any length of time.
36Some of the individual characteristics we analyze co-move, e.g., higher education is 43% correlated with higher

income. The correlation matrix is provided in Online Appendix Table A.13.

32



our results, using the methodology of Section 4.3 based on the elasticity to “informed forecasts”,

in Table 9. We find that subjects with greater financial literacy (Prolific subjects) have lower

cognitive uncertainty ξ’s in rounds where “Variable A” is perceived as useful, while those with

higher grades (TSE subjects) and women have lower cognitive uncertainty in their extrapolative

beliefs. The more educated and the wealthier (Prolific subjects), as well as those who play the

game faster (TSE subjects), have lower cognitive uncertainty in both round types.

Subjects display considerably less heterogeneity in their forecasts. Women extrapolate from rt

more in rounds where they perceive “Variable A” as useful; those who invest more (greater risk

appetite) use “Variable A” more in rounds where they view it as useless. All other differences are

insignificant at the 5% threshold.

Three main results emerge: 1) there is some heterogeneity in investments’ loadings on forecasts;

2) there is limited heterogeneity in forecasts’ loadings on {at, rt}; and 3) even in the few cases where

magnitudes vary significantly, they do not offset the forecast and investment patterns of Section 3:

notwithstanding their individual characteristics, all subjects use the information in “Variable A”

only when they view it as useful, and extrapolate from past returns otherwise; they all invest

according to their own forecasts, with greater loadings in rounds perceived as predictable.37

5.2 Additional treatments

Increasing information uncertainty: long horizon forecasts and investments.

A fully informed rational agent would forecast the average return over five periods starting at t+1

as Et (rt+1,t+5 |i.i.d.) = µ and Et (rt+1,t+5 |predictable) = κat + (1 − κ)µ, where at is the realization

of “Variable A” at time t, and κ < 1 depends on the persistence of “Variable A” (see Section 2).

The rational forecast rule for 5-period average returns thus requires not only to identify at as the

best forecast for rt+1 when “Variable A” is predictive but also the dynamics of the “Variable A”

process; making it considerably more difficult to evaluate from the time series displays we provide.

37The additional pass-through from forecasts to investments in rounds perceived as predictable by “Variable A”
is not significant within the Prolific subjects sub-groups. This is also reflected in the ξ’s for rounds perceived as
predictable by “Variable A” not being systematically lower for all subgroups, e.g. ξ = 0.72 on average for rounds
where “Variable A” is perceived as predictive and ξ = 0.64 on average for rounds where “Variable A” is perceived
as useless for the High Income / Low Income subgroups. This is likely due to the small sample size (28 subjects per
sub-group), since we observe that Prolific subjects otherwise have the same behaviors as TSE students (Table 8).
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To analyze how this greater “information uncertainty” affects subjects’ decisions, we follow an

analysis similar to Section 3 and report our results in Online Appendix Table A.14. Subjects no

longer use the information in “Variable A”, even when they view it as predictive for next-period

returns; they extrapolate from past returns in all rounds, with and without subjects’ fixed effects,

with lower, but still significant, loadings on rt than for next-period returns.38 The sensitivity of

investments to forecasts remains positive and significant, but, 1) it is lower than for next-period

investments – a change in beliefs of one p.p. results in an average 0.74 ECU change in investment;

and 2) the pass-through from forecasts to investments is not significantly higher in rounds where

“Variable A” is perceived as predictive. This is also reflected in the average long-term investments

(Table 1), which are not significantly different across round types (p-value = 0.11).

Reducing information uncertainty.

In the remaining two additional treatments, information was made easier to interpret, either

because subjects were told when “Variable A” was useful to predict returns, or because they were

told about processes (1) and (2). To analyze how lower “information uncertainty” affects subjects’

decisions, we follow an analysis similar to Section 3 and report our results in Online Appendix

Tables A.15 and A.16.

Revealing when “Variable A” is predictable does not change subjects’ forecasts, relative to

the baseline; but it increases significantly the pass-through from forecasts to investments in rounds

revealed as predictable by “Variable A”, to 2.94 ECU per p.p. change in forecasts (Online Appendix

Table A.15).39

Revealing processes (1) and (2) changes the forecast and investment results considerably (Online

Appendix Table A.16): the loadings on at in rounds perceived as predictable by “Variable A”

increase to 0.60; the loading on rt in rounds perceived as non-informative collapses to -0.01; the

influence of forecast variations on investments is greater in all rounds, with a 3.10 ECU average

pass-through, compared to 1.40 ECU for the same subjects (TSE Master’s students, third wave)

38We also find subjects have higher average forecasts for 5-period average returns than for the next period,
consistent with the evidence in Cassella et al. (2021) that investors have optimistic biases at the long-horizon.

39The 2.11 ECU pass-through in rounds revealed as unpredictable by “Variable A” is not statistically different
from the baseline treatment for the same subject pool (TSE Master’s students, second wave and third wave).
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in the baseline treatment.

Taken together, the results we obtain in all three additional treatment are strongly supportive of

the model interpretation of Section 4: the more easily interpretable the information in “Variable A”,

the more it enters forecasts;40 the more uncertain subjects are about the information they use to

form their beliefs, the less their own forecast variations affect their risk decisions.

5.3 Robustness

We extend the empirical analysis of Section 3 in several directions. First, we verify whether the

forecast and investment patterns may emerge gradually and differ between early and late rounds.

Results are reported in Online Appendix Table A.17. We find the overall forecast pattern is

qualitatively the same throughout, though the loading on the “Variable A” signal, when it is

viewed as predictive, is significantly higher in later rounds of the experiment. We find no evidence

that investments’ loadings on beliefs differ between early and late rounds.

Second, we verify if subjects use other realizations of “Variable A” and “Index Return” in round

k, i.e., {at−1,k, at−2,k, . . . } and {rt−1,k, rt−2,k, . . . }, as well as forecasts decisions and realizations

of “Variable A” and “Index Return” in rounds prior to k. The past realizations within the same

round of “Variable A”, when it is perceived as predictable, help explain forecasts: the regression

R2 (adjusted R2) using {at, at−1, at−2, . . . } increases to 22% (14%) compared to 16% (7%) when

only at is used, controlling for individual and round fixed effects (column (1) versus column (3) in

Online Appendix Table A.18).41 We find no evidence that subjects use information from previous

rounds, to form their forecasts and choose their investments (Online Appendix Table A.19). There

is limited evidence of anchoring, though a high forecast in the previous round lowers investments

in the next by 0.24 ECU per p.p. (Online Appendix Table A.20).

Finally, we analyze and reject that the signals {at, rt} may directly contribute to investment

variations, i.e., affect investment decisions other than via their impact on forecasts: though in-

40Accordingly, we would expect higher loadings for the forecast results in Online Appendix Table A.15, in rounds
revealed as predictable by “Variable A”. However, these results are estimated with large standard errors, due to the
small sample size.

41Forecasts in rounds not perceived as predictable by “Variable A” also load significantly on the past returns
realizations {rt,k, rt−1,k, rt−2,k, . . . }, however the regression R2 is unchanged (column (4) versus column (6) in Online
Appendix Table A.18).
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vestments load on at (significant in some specifications), it explains less than 0.5% of investment

“noise”, i.e., variations unexplained by forecasts (Online Appendix Table A.21).

6 Discussion

Our experimental framework allows us to observe separately 1) the information subjects have, 2)

how they perceive the signals they receive, 3) how it affects their forecasts, and 4) how it affects

their investment decisions. From our observations, we document the following set of “rules”:

subjects have extrapolative forecasts “by default” unless they receive a signal they believe to

be predictive, in which case they use it exclusively (Section 3.2); the pass-through from their

forecasts to their investments is low, but less so when forecasts are informed by an external signal

(“Variable A”) perceived as predictive (Section 3.3). We discuss below, first, how crucial the

role of the experimental framework is, i.e., whether these sets of results could be deduced from

real investors’ data; and second, the implications of the mechanisms we document for equilibrium

outcomes.

6.1 Understanding data evidence

Most empirical databases on real investors provide only their portfolio allocations (see e.g., Gabaix

et al. (2024); Andries, Bonelli, and Sraer (2024) for recent examples), not the information they

use, and which beliefs they have. Even in the rare cases where investors’ forecasts are observed,

as in Giglio et al. (2021a), what market information determines said forecasts is unknown. With

similar data on our subjects’ market decisions, would we be able to understand their behaviors?

I.e., beyond allowing us to observe decisions within subjects when exposed to different informa-

tion in a controlled environment, how crucial was our experimental framework to understand the

mechanisms we document? To answer this question, we conduct the following thought experiment:

with subsets of our experimental data, which inferences would we make?

Suppose that we just have access to subjects’ investment decisions.42 Let’s assume, first, we

42The assumption that we can observe subjects’ investments over the twenty independent rounds of the investment
game is already quite strong and not easily comparable to real investors’ data.
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only know that subjects can observe past returns data. To study their extrapolative bias, similar

to e.g. Benartzi (2001); Berk and Green (2004) who document how asset demands respond to their

past returns, we would analyze:

θi,k = α+ δrt,k + ϵi,k, (18)

where θi,k is subject i’s investment into the risky fund (out of her 100 ECU endowment) in round

k, and rt,k is the last realization of “Index Return” in round k. The results of regression (18) are in

Online Appendix Table A.22, columns (1)-(3). We find δ = 0.12 ECU per p.p. change in realized

returns rt, not significant at the 10% threshold when controlling for individual and round fixed

effects; the R2 (adjusted R2) of regression (18) is 46% (43%), almost unchanged from the 43%

we obtain with individual fixed-effects only (see Section 5.1). Moreover, a “back of the envelope”

analysis relating the estimated δ = 0.12 ECU to average investments would suggest that the pass-

through from rt to beliefs is an order of magnitude smaller than reported in Table 2 (for rounds

where subjects do extrapolate).43 We would conclude that our subjects’ extrapolative biases are

weak and much lower than previous estimates in the literature.

Let’s assume, next, we now know that subjects observe a signal (“Variable A”) that can be

predictive. Similar to Dahlquist and Ibert (2024) who analyze if asset managers use price-earning

ratios to make their decisions, we would run:

θi,k = α+ βat,k + ϵi,k, (19)

where θi,k is as above, and at,k is the last realization of “Variable A” in round k. The results of

regression (19) are in Online Appendix Table A.22, columns (4)-(6). We find β = 0.86 ECU per

p.p. change in the signal at, significant at the 1% threshold, controlling for individual and round

fixed effects. However, adding “Variable A” information only improves the R2 of regression (18) to

43To obtain this result 1) we compare δ = 0.12 to the 43 ECU average investment (Table 1), 2) we assume subjects’
average forecast is the true 6.07%, and 3) we assume their risk allocations vary one for one with beliefs as in the
classical model, 2) and 3) being the default assumptions in the absence of forecast data. This gives an extrapolative
pass-through from rt to beliefs of 0.12

43
× 6.07 = 0.02, as compared to the 0.18 extrapolative bias of Table 2.
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47% compared to the 43% obtained with individual fixed-effects only.44 Here too, we would infer

that the pass-through from at to beliefs is significantly lower than the one reported in Table 2 (in

rounds where subjects perceive “Variable A” as predictive).45 We would conclude that predictive

information has only a small impact on subjects’ decisions.

Without observing their beliefs, the analysis of regressions (18) and (19) would lead us to

conclude the information subjects have access to has a limited influence on their behaviors; in

contradiction with the evidence in our data (see, e.g., the 65% R2’s in Table 6).

Finally, suppose that we do observe subjects’ forecasts, but not what information they find

useful, i.e., we do not know which rounds subjects perceive as predictive by “Variable A”. Similar

to Giglio et al. (2021a), we would verify how investments vary with forecasts, and how forecasts

vary with available information (at and rt in our framework), corresponding to columns (1)-(2) in

Table 2 and to columns (1)-(3) in Table 3.

Observing forecasts helps explain investments variations, with R2 = 58% (column (3), Table 3);

but the interpretation of the mechanisms underpinning subjects’ forecasts and decisions remains

incorrect. We would infer subjects always extrapolate but with low extrapolative bias, a 0.10

loading on rt (column (1), Table 2), one third the 0.32 estimate in Landier, Ma, and Thesmar

(2019); Afrouzi et al. (2023); and always use “Variable A” information, but less than they should

rationally do so. We would overestimate how much subjects use their extrapolative forecasts (1.67

ECU pass-through instead of 1.38 ECU, columns (3) versus (6) in Table 3), and underestimate

how much “Variable A” information affects their risk decisions (1.67 ECU pass-trough instead

of the 3.19 ECU pass-through using “informed forecasts” in Table 4). We conclude: knowing

how subjects interpret the information they receive is crucial to understand the mechanisms that

determine their beliefs and belief-to-investment decisions.

44Regressing investments on rt,k and at,k simultaneously does not improve the R2 either (column (7) in Online
Appendix Table A.22).

45The same “back of the envelope” exercise as footnote 43 would lead us to a pass-through of 0.86
43

× 6.07 = 0.12,
as compared to the 0.38 pass-through in Table 2.
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6.2 Market implications

As described above, correctly interpreting investment decisions in our experiment – i.e., that sub-

jects respond more or less elastically to their own forecasts depending on what information they

find useful – requires observing the information subjects have access to, their forecasts, and how

they perceive said information. Such observational data is not readily accessible when analyzing

real investors, and directly testing the belief and investment models of Section 4 on their portfolio

decisions may not be feasible. This raises the two questions, which we discuss below: 1) how much

should we believe our experimental results reflect real investors’ decision process?, and 2) do the

mechanisms we document matter, i.e., what are their implications?

We argue our experimental results are likely representative of real investors’ behaviors based on

the following observations. First, all subject groups in our experiment follow the same information-

forecast-investment process (Section 5). Subjects recruited online on Prolific behave similarly to

TSE Master of Finance students (Table 8). Individual characteristics observable in real investors

– gender, financial literacy, income, education, age, risk appetite – affect the magnitudes of the

pass-throughs but not the mechanisms per se (Online Appendix Tables A.4 to A.11). Given that

all our subject groups behave similarly, we are inclined to believe real investors would also do so.

Second, analyses of real investors that most closely resemble our experimental framework sug-

gest our results are consistent with evidence in the data. Giglio et al. (2021a) study individual

investors’ forecasts and decisions but do not observe what information they use. They find a

pass-through from forecasts to investments of 1.18, controlling for fixed-effects, compared to 1.38

in our experimental data in rounds where subjects do not use “Variable A” information, and 1.67

across all rounds (Table 3); they find forecasts load significantly on past returns but with a low

extrapolation bias of 0.06, similar to the low 0.10 average bias we obtain (columns (2) in Table 2);

and they find, as we do, that forecasts are strongly correlated with perceived probabilities of re-

turns’ lower bounds. Dahlquist and Ibert (2024), in contrast, study asset managers who observe

price-dividend ratio information, similar to the “Variable A” signals in our experiment. Consistent

with our results for rounds where “Variable A” is perceived as useful, Dahlquist and Ibert (2024)
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find forecasts load significantly on price-dividend ratios but not on past returns, i.e., they do not

find any extrapolative bias; they find a pass-through from forecasts to investments of 2.05, com-

parable to 1.86 in our experimental data (for rounds perceived as predictable by “Variable A”).46

The results in Giglio et al. (2021a) and Dahlquist and Ibert (2024), who study investors’ forecasts

and risk decisions in information environments that closely resemble those of our experimental

framework, are strongly suggestive the mechanisms we document operate in the data.

If investors follow the forecasts and investments mechanisms we document, such that they all

respond to information similarly – the behaviors we observe are true across and within subjects,

one of our key results – the real implications may be important. First, for investors’ wealth

accumulation: in our baseline treatment, observing a dividend-price ratio type signal they perceive

as useful increases subjects’ portfolio returns by 31%, via greater average investments (70% of

the increase) and better market timing (30% of the increase). Educating subjects on how to use

“Variable A”, when useful, increases both investments and market timing further, with up to 41%

higher portfolio returns.47 These results make clear the role financial intermediaries can play, not as

portfolio advisors but as information providers (see also Andries and Haddad, 2020; Bender et al.,

2022), and their potentially large impact on investors’ wealth. That advisors can generate greater

market participation is consistent with the evidence in Linnainmaa et al. (2020). Schoar and Sun

(2024) show, in an experiment, that educating investors can lead them to adopt market timing

strategies. Our results also speak to the importance of the way in which information is provided.

Ungeheuer and Weber (2021) show that subjects tend to perceive correlations when presented

in graphical terms, but not when they are described in words. This may explain the difference

between our results and those of Beutel and Weber (2022), who find that subjects’ forecasts are

not sensitive to information on the current price-earning ratio.

Second, we document 1) a limited pass-through from forecasts to risk positions overall, and 2)

a lower pass-through when forecasts are extrapolative. Our results may explain why Chaudhry

46We note that asset managers in the field, who use price-dividend ratios as predictive signals, face the additional
uncertainty, compared to our experimental framework, that they are not certain past predictors will stay informative
in the future, due to, e.g. regime shifts.

47In the information treatment where we reveal to subjects the simulation of processes (1) and (2), investments
are 28% higher in rounds perceived as predictable by “Variable A” (Table 1), while market timing generate 0.35 p.p.
greater returns in predictable rounds, a 13% increase, as calculated under the method of footnote 20.
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(2022) finds the equilibrium price impact of variations in analyst-reported expected returns is orders

of magnitude smaller than implied by standard portfolio choice models. They also suggest we need

to proceed with caution when making inferences for equilibrium outcomes from survey evidence of

extrapolative beliefs (see e.g., Barberis et al., 2015, 2018; Maxted, 2024), similar to Enke, Graeber,

and Oprea (2023) who show the interplay between behavioral biases and confidence is key to analyze

their aggregate impact. Our findings speak further to the interactions between information and the

dynamics of asset demand, with potentially large effects on asset prices (see Gabaix and Koijen,

2021). Charles, Frydman, and Kilic (2024) suggest adapting the model of Haddad, Huebner,

and Loualiche (2021), who show passive investing lowers stocks’ demand elasticities, to study the

impact of investors’ cognitive uncertainty, and more specifically, given our sets of results, the effect

of different information environments on equilibrium price dynamics. We view such estimation as

an interesting avenue for future research.

7 Conclusion

We design an experiment that allows us to analyze how investors form their beliefs about returns,

and choose their risk allocations, depending on the information they receive.

While we find important dispersion in forecasts and risk allocations each round, all subjects

behave according to the following two rules. First, when they are provided with a relatively simple

predictive signal, subjects utilize the relevant information to form rational forecasts. When no

such useful information is given, subjects default to extrapolative expectations, with magnitudes

similar to those documented in previous studies.

Second, even though subjects use their forecasts to choose their investments, they under-react to

the stated beliefs compared to the classical portfolio choice model. The pass-through from forecasts

to decisions differs across information treatments: investments are twice as sensitive to forecasts

informed by the predictive signal we provide than to subjects’ own extrapolative expectations.
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Tables and Figures

Table 1: Descriptive Statistics

Variable Obs. Mean Median Std. Dev. Min Max

Pr(A perceived predictive | predictable) 169 0.82 0.80 0.14 0.30 1
Pr(A perceived useless | i.i.d) 169 0.70 0.70 0.20 0.20 1
Predict 169 0.56 0.55 0.14 0.20 0.90
Forecast (in %) 3,380 5.9 6 8.0 -30 100
Forecast Distance (in %) 3,380 9.0 7.2 8.0 0.0 93.8
Invest (in ECU) 3,380 42.6 35 36.0 0 100
5-year Forecast (in %) 1,080 6.7 6 7.7 -15 100
5-year Invest (in ECU) 1,080 52.4 50 33.4 0 100

Predict=1

Forecast (in %) 1,888 6.5 7 7.6 -30 70
Confidence Interval (in %) 393 20.4 20 14.5 1 88
Upper prob. (in %) 660 22.3 15 23.0 0 100
Lower prob. (in %) 660 20.3 10 22.9 0 100
Forecast Distance (in %) 1,888 7.7 6.2 6.5 0.0 78.0
Invest (in ECU) 1,888 46.4 40 36.3 0 100
5-year Forecast (in %) 566 7.4 6 8.9 -15 100
5-year Invest (in ECU) 566 53.9 50 33.9 0 100

Predict=0

Forecast (in %) 1,492 5.1 5 8.4 -20 100
Confidence Interval (in %) 287 21.1 20 14.1 1 82
Upper prob. (in %) 480 19.4 10 21.1 0 100
Lower prob. (in %) 480 28.3 20 25.1 0 100
Forecast Distance (in %) 1,492 10.7 8.5 9.4 0.1 93.8
Invest (in ECU) 1,492 37.9 25 35.0 0 100
5-year Forecast (in %) 514 6.1 6 6.0 -14.5 80
5-year Invest (in ECU) 514 50.7 50 32.8 0 100

“Variable A” is revealed predictive

Forecast (in %) 460 6.3 7 6.4 -15 28
Invest (in ECU) 460 54.1 50 38.4 0 100

“Variable A” is revealed not predictive

Forecast (in %) 460 6.0 6 7.2 -15 30
Invest (in ECU) 460 49.1 50 38.5 0 100

“Model revealed” treatment - Predict = 1

Forecast (in %) 144 5.8 6.3 5.6 -15 20
Invest (in ECU) 144 55.0 50 37.6 0 100

“Model revealed” treatment - Predict = 0

Forecast (in %) 94 4.7 5 5.7 -16 17
Invest (in ECU) 94 43.0 30 39.9 0 100

Note: “Predict” is a dummy equal to one if the subject perceives “Variable A” is useful
to predict returns. “Predict=1” and “Predict=0” results correspond to rounds perceived as
predictable or not by “Variable A” in the baseline treatment across all waves.
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Table 2: Forecast and Predictability

Dep Variable Forecast

(1) (2) (3) (4) (5) (6) (7) (8) (9)

a(t) 0.24*** 0.06 0.01 0.01 0.15**
(0.05) (0.07) (0.06) (0.06) (0.06)

a(t) × Predict 0.28*** 0.36*** 0.37*** 0.30***
(0.10) (0.08) (0.08) (0.07)

r(t) 0.10 0.18*** 0.18*** 0.18*** 0.19***
(.) (0.03) (0.03) (0.03) (0.03)

r(t) × Predict -0.17*** -0.17*** -0.17*** -0.12***
(0.04) (0.04) (0.04) (0.04)

Predict -0.47 -0.90* -0.95* 1.71*** 1.71*** 1.73*** -0.42
(0.53) (0.47) (0.47) (0.34) (0.40) (0.40) (0.50)

N 3,380 3,380 3,380 3,380 3,380 3,380 3,380 3,380 3,380
R2 0.15 0.15 0.02 0.15 0.16 0.03 0.16 0.16 0.18

Individual FE Yes Yes No Yes Yes No Yes Yes Yes
Round FE Yes Yes No No Yes No No Yes Yes

Note: This table reports the results of OLS regressions. The dependent variable is the forecast of next period
returns in percentage points. “Predict” is a dummy equal to one if the subject declares “Variable A” is useful
to predict returns. a(t) denotes the last realization of “Variable A”. r(t) denotes the last realization of “Index
Return”. Two-way clustered standard errors (round and individual levels) are in parenthesis. ∗, ∗∗ and ∗∗∗

denote significance at 10%, 5% and 1% level, respectively.
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Table 3: Investment and Forecasts

Dep Variable Investment

(1) (2) (3) (4) (5) (6)

Forecast 1.60*** 1.67*** 1.67*** 1.27*** 1.36*** 1.38***
(0.25) (0.18) (0.19) (0.24) (0.19) (0.20)

Forecast × Predict 0.58*** 0.52*** 0.48***
(0.08) (0.14) (0.13)

Predict 3.12** 4.07*** 4.33***
(1.34) (0.91) (0.91)

N 3,380 3,380 3,380 3,380 3,380 3,380
R2 0.13 0.55 0.58 0.14 0.56 0.59

Individual FE No Yes Yes No Yes Yes
Round FE No No Yes No No Yes

Note: This table reports the results of OLS regressions. The dependent variable
is the endowment invested in the risky asset, in ECU. “Forecast” is the forecast
of next period returns in percentage points. “Predict” is a dummy equal to one
if the subject declares that “Variable A” is useful to predict returns. Two-way
clustered standard errors (round and individual levels) are in parenthesis. ∗, ∗∗

and ∗∗∗ denote significance at 10%, 5% and 1% level, respectively.
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Table 4: Investment and “informed forecasts”

Dep Variable Investment

(1) (2) (3) (4)
2SLS OLS 2SLS OLS

Forecast 3.19*** 1.85*** 1.56*** 1.43***
(0.67) (0.10) (0.29) (0.14)

N 1,888 1,888 1,492 1,492

Sample Predict=1 Predict=0
Instrument a(t) r(t)

Individual FE Yes Yes Yes Yes
Round FE Yes Yes Yes Yes

Note: This table reports the results of the 2SLS re-
gressions (5), and the OLS regression of Equation (4).
The dependent variable is the endowment invested in the
risky asset, in ECU. “Forecast” is the forecast of next pe-
riod returns in percentage points. “Predict” is a dummy
equal to one if the subject declares that “Variable A” is
useful to predict returns. In the 2SLS columns, “Fore-
cast” is instrumented by at, the last realization of “Vari-
able A”, when “Predict=1”, and by rt, the last realiza-
tion of “Index Return”, when “Predict=0”. Clustered
standard errors, at the round level, are in parenthesis
(computing standard errors clustered at the individual-
round level would yield a singular covariance matrix).
∗, ∗∗ and ∗∗∗ denotes significance at 10%, 5% and 1%
level, respectively.
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Table 5: Investment and Confidence Intervals

Dep Variable Investment

(1) (2) (3) (4) (5) (6)

Forecast 2.81*** 2.42*** 2.33*** 2.46*** 2.19*** 2.13***
(0.40) (0.42) (0.42) (0.40) (0.60) (0.61)

High CI 1.54 1.14 -0.79 6.72 2.84 1.95
(2.50) (2.82) (2.34) (4.96) (2.92) (3.52)

Forecast × High CI -0.26 -0.10 -0.08 -1.65*** -0.97 -0.85
(0.42) (0.48) (0.44) (0.28) (0.57) (0.57)

N 393 393 393 287 287 287
R2 0.25 0.63 0.68 0.08 0.66 0.68

Sample Predict=1 Predict=0

Individual FE No Yes Yes No Yes Yes
Round FE No No Yes No No Yes

Note: This table reports the results of OLS regressions. The dependent variable
is the fraction of the endowment invested in the risky asset, in percentage points.
“Forecast” is the forecast of next period returns in percentage points. “High CI” is
a dummy equal to one in rounds where the reported confidence interval is above or
equal the subject’s median value for the same round type – perceived as predictable
or not by “Variable A”. “Predict” is a dummy equal to one if the subject declares
that “Variable A” is useful to predict returns. Two-way clustered standard errors
(round and individual levels) are in parenthesis. ∗, ∗∗ and ∗∗∗ denote significance at
10%, 5% and 1% level, respectively. These results were obtained during wave two
of the experiment implementation (TSE lab, January 2020).
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Table 6: Investment and Upper/Lower Bound probability

Dep Variable Investment

(1) (2) (3) (4) (5) (6)

Panel A
Forecast 1.37*** 1.52*** 1.54*** 0.86** 1.28** 1.18**

(0.36) (0.34) (0.31) (0.34) (0.48) (0.44)
HighProbHigh 9.83** 9.62** 10.14*** 5.93 10.84*** 10.41**

(4.45) (3.37) (3.17) (3.59) (3.74) (3.76)
Forecast × HighProbHigh -0.51 -0.61** -0.67*** 0.11 -0.49 -0.31

(0.36) (0.23) (0.18) (0.27) (0.42) (0.37)

N 660 660 660 480 480 480
R2 0.09 0.58 0.64 0.10 0.61 0.64

Sample Predict=1 Predict=0

Panel B
Forecast 0.43 0.61* 0.58 0.63* 0.86*** 0.86***

(0.39) (0.32) (0.40) (0.35) (0.26) (0.25)
HighProbLow -15.18*** -15.45*** -15.44*** -7.40* -7.69** -8.06**

(4.41) (4.09) (4.35) (3.83) (3.01) (3.02)
Forecast × HighProbLow 0.91* 0.74* 0.77* 0.51 0.03 0.11

(0.45) (0.35) (0.40) (0.37) (0.27) (0.26)

N 660 660 660 480 480 480
R2 0.09 0.59 0.64 0.10 0.61 0.64

Sample Predict=1 Predict=0

Panel C
Forecast 0.53 0.87 0.88 0.44 1.14** 0.93*

(0.60) (0.54) (0.56) (0.43) (0.52) (0.47)
HighProbHigh 8.04* 8.21** 8.74** 5.51 10.47*** 10.02**

(4.48) (3.60) (3.27) (3.60) (3.62) (3.62)
HighProbLow -14.27** -13.86*** -13.73*** -7.25* -6.76** -7.65**

(5.12) (4.12) (4.34) (3.68) (2.95) (2.97)
Forecast × HighProbHigh -0.23 -0.43 -0.48* 0.17 -0.46 -0.24

(0.41) (0.32) (0.27) (0.30) (0.41) (0.35)
Forecast × HighProbLow 0.81 0.56 0.57 0.52 -0.04 0.10

(0.51) (0.41) (0.44) (0.38) (0.26) (0.26)

N 660 660 660 480 480 480
R2 0.10 0.60 0.65 0.10 0.62 0.65

Sample Predict=1 Predict=0

Individual FE No Yes Yes No Yes Yes
Round FE No No Yes No No Yes

Note: This table reports the results of OLS regressions. The dependent variable is the fraction
of the endowment invested in the risky asset, in percentage points. “Forecast” is the forecast of
next period returns in percentage points. “HighProbHigh” is a dummy equal to one in rounds
where the reported upper bound probability (probability that next period return is above
15%) is above or equal the subject’s median value for the same round type – perceived as
predictable or not by “Variable A”. “HighProbLow” is a dummy equal to one in rounds where
the reported lower bound probability (probability that next period return is below -3%) is above
or equal the subject’s median value for the same round type – perceived as predictable or not
by “Variable A”. “Predict” is a dummy equal to one if the subject declares that “Variable A” is
useful to predict returns. Two-way clustered standard errors (round and individual levels) are
in parenthesis. ∗, ∗∗ and ∗∗∗ denote significance at 10%, 5% and 1% level, respectively. These
results were obtained during wave four of the experiment implementation (Prolific online, July
2023).
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Table 7: Forecast Model

Model Data Difference p-value

(1) (2) (3) (4)

α1 3.79 3.83 -0.04 0.911
[3.50, 4.08] [3.18, 4.48] [−0.75, 0.67]

α2 -1.36 -0.42 -0.94 0.067
[−1.56,−1.15] [−1.40, 0.56] [−1.94, 0.07]

β1 0.11 0.15 -0.03 0.599
[0.03, 0.26] [−0.14, 0.08]

β2 0.41 0.30 0.11 0.108
[0.17, 0.43] [−0.02, 0.24]

δ1 0.26 0.19 0.07 0.103
[0.21, 0.31] [0.13, 0.26] [−0.01, 0.15]

δ2 -0.18 -0.12 -0.06 0.129
[−0.22,−0.15] [−0.19,−0.05] [−0.14, 0.02]

Note: In column (1), we report the average predicted val-
ues according to the forecast model of Section 4.1. The confi-
dence intervals are obtained by plugging the upper-bound and
lower-bound values of the extrapolation coefficient estimated
by Landier, Ma, and Thesmar (2019); Afrouzi et al. (2023),
λu = 0.32 with S.E. 0.03, into the forecast model of Sec-
tion 4.1. In column (1) we make the conservative assumption
that the probabilities of mistakes when identifying “Variable
A” are estimated without errors, for each subject. In col-
umn (2), we report the estimates of the OLS regression (3):
Fi,k = α1+α2Predicti,k+β1at,k+β2at,k×Predicti,k+δ1rt,k+
δ2rt,k × Predicti,k + ϵi,k, estimated with round and subject
fixed effects. The confidence intervals are obtained using stan-
dard errors two-way clustered by round and subject. The 95%
confidence interval in column (3) are estimated using standard
errors that are computed as

√
σ2
m + σ2

d where σ2
m and σ2

d are
the standard errors as in column (1) and (2), respectively. In
column (4), we report the p-values of the t-tests that the dif-
ference in column (3) is equal to zero.
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Table 8: Forecast and Investment, TSE students versus Prolific
subjects

Dep Variable Forecast Investment

(1) (2) (3) (4)

a(t) -0.03
(0.07)

a(t) × Prolific 0.14
(0.13)

a(t) × Predict 0.42***
(0.09)

a(t) × Predict × Prolific -0.16
(0.18)

r(t) 0.21***
(0.04)

r(t) × Prolific -0.09
(0.08)

r(t) × Predict -0.20***
(0.05)

r(t) × Predict × Prolific 0.07
(0.10)

Forecast 2.03*** 1.69***
(0.17) (0.22)

Forecast × Prolific -0.86** -0.68*
(0.30) (0.33)

Forecast × Predict 0.54**
(0.20)

Forecast × Predict × Prolific -0.26
(0.30)

Predict -1.12* 1.92*** 3.47**
(0.57) (0.40) (1.30)

Predict × Prolific 0.56 -0.56 2.76
(1.16) (0.78) (2.74)

N 3,380 3,380 3,380 3,380
R2 0.16 0.16 0.59 0.60

Individual FE Yes Yes Yes Yes
Round FE Yes Yes Yes Yes

Note: This table reports the results of OLS regressions. In columns
(1)-(2), the dependent variable is the next-period forecast of returns, in
percentage points. In columns (3)-(4), the dependent variable is the ECU
next-period investment in the risky asset. “Predict” is a dummy equal
to one if the subject declares “Variable A” is useful to predict returns.
“Prolific” is a dummy equal to one if the subject was recruited via the
online Prolific platform. Two-way clustered standard errors (round and
individual levels) are in parenthesis. ∗, ∗∗ and ∗∗∗ denote significance at
10%, 5% and 1% level, respectively.
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Table 9: Average ξ accross sub-samples

Sub-sample A perceived useful A perceived useless

High Investments 0.58 0.69
Low Investments 0.37 0.78

Fast 0.36 0.58
Slow 0.56 0.81

High Ability 0.47 0.75
Low Ability 0.52 0.74

Female 0.50 0.60
Male 0.49 0.88

High Grades 0.51 0.68
Low Grades 0.45 0.87

Young 0.58 0.64
Old 0.47 0.75

High Education 0.63 0.59
Low Education 0.99 0.72

High Income 0.65 0.58
Low Income 0.79 0.69

High Fin. Literacy 0.48 0.71
Low Fin. Literacy 0.83 0.44

Note: This table reports the average of ξ estimated on sub-samples
of subjects, using the elasticity to “informed forecasts” {F̃i,k} in
both round types. “High θ” is a dummy equal to one if the subject
takes larger risk investments, on average, than the median; “Fast”
is a dummy equal to one if the subject is faster, on average, than
the median seconds in answering each round’s questions; “High
Ability” is a dummy equal to one if the subject is better than the
median in identifying when “Variable A” is useful or not; “High
Grades” is a dummy equal to one if the subject has average grades
above her/his cohort’s median in TSE Master’s program; “Female”
is a dummy equal to one if the subject is a woman. The variables
“Young”, “High Education”, “High Income” and “High Fin. Lit-
eracy” only apply to Prolific subjects. “Young” is a dummy equal
to one if the subject’s age is less than the median of all Prolific
subjects. “High Education” is a dummy equal to one if the sub-
ject has a 4-year college degree. “High Income” is dummy equal
to one if the subject has annual income above $50,000. “High Fin.
Literacy” is a dummy equal to one if the subjects answer correctly
three financial literacy questions.
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Figure 1: Example page: This page is provided to subjects before they start playing the investment game
and provides examples of the two types of rounds – “Variable A” predictive or not.
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ONLINE APPENDIX

Appendix A Additional Results

Table A.1: Descriptive Statistics: Online subjects (Prolific + TSE) with number
of correct answers ≤ 11

Variable Obs. Mean Median Std. Dev. Min Max

Pr(A perceived predictive | predictable) 39 0.76 0.80 0.19 0.40 1
Pr(A perceived useless | i.i.d) 39 0.25 0.20 0.19 0 0.7
Predict 39 0.76 0.75 0.18 0.35 1
Forecast (in %) 780 13.2 9 15.8 -25 100
Forecast Distance (in %) 780 13.0 8.6 14.2 0.0 95.3
Invest (in ECU) 780 40.2 33.5 33.0 0 100

Predict=1

Forecast (in %) 590 13.5 9 15.8 -25 100
Upper prob. (in %) 568 27.6 20 26.5 0 100
Lower prob. (in %) 568 22.0 12 23.1 0 100
Forecast Distance (in %) 590 12.9 8.5 14.3 0.1 95.3
Invest (in ECU) 590 43.2 40 33.0 0 100

Predict=0

Forecast (in %) 190 12.4 9.5 15.8 -15 100
Upper prob. (in %) 172 19.4 10 20.9 0 90
Lower prob. (in %) 172 24.6 12 27.2 0 100
Forecast Distance (in %) 190 13.3 9.0 14.1 0.0 87.5
Invest (in ECU) 190 30.6 20 31.2 0 100

NOTE: “Predict” is a dummy equal to one if the subject perceives “Variable A” is useful
to predict returns. ““Variable A” is revealed predictive” and “Variable A” is revealed not
predictive” correspond to treatments where subjects are told explicitly if “Variable A” is
useful or not.

1



Table A.2: Forecast and Investments: Online subjects (Prolific + TSE) with number
of correct answers ≤ 11

Dep Variable Forecast Investments

(1) (2) (3) (4) (5) (6) (7) (8) (9)

a(t) 0.65 0.64 0.69
(0.49) (0.42) (0.41)

a(t) × Predict -0.54 -0.51 -0.59
(0.51) (0.44) (0.43)

r(t) 0.12 0.08 0.08
(0.10) (0.09) (0.09)

r(t) × Predict -0.05 -0.00 -0.00
(0.10) (0.12) (0.11)

Forecast -0.05 0.31 0.33
(0.13) (0.24) (0.24)

Forecast × Predict 0.15 0.13 0.15
(0.15) (0.11) (0.14)

Predict 4.19 3.86 4.51* 1.18 0.83 1.01 10.71* 4.96 4.33
(3.67) (2.55) (2.55) (2.28) (0.78) (1.06) (5.69) (3.11) (3.03)

N 780 780 780 780 780 780 780 780 780
R2 0.01 0.63 0.64 0.00 0.63 0.64 0.03 0.55 0.57

Individual FE No Yes Yes No Yes Yes No Yes Yes
Round FE No No Yes No No Yes No No Yes

Note: This table reports the results of OLS regressions. The dependent variable is the forecast of
next period returns in percentage points, and the endowment invested in the risky asset in ECU
respectivement. “Predict” is a dummy equal to one if the subject declares “Variable A” is useful to
predict returns. a(t) denotes the last realization of “Variable A”. r(t) denotes the last realization
of “Index Return”. “Forecast” is the forecast of next period returns in percentage points. Two-way
clustered standard errors (round and individual levels) are in parenthesis. ∗, ∗∗ and ∗∗∗ denote
significance at 10%, 5% and 1% level, respectively.
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Table A.3: Demographic characteristics of Prolific subjects

Variable Obs. Mean Median Std. Dev. Min Max

Age 56 39.1 38 11.9 19 71
FinLit (# of correct answer) 57 2.4 3 0.9 0 3
Female 26/56
Education
High School Degree/GED or less 16/56
Two or four-year college degree 28/56
Master’s degree or above 12/56
Annual income
Less than $50,000 20/57
From $50,000 to $110,000 26/57
Above $110,000 11/57
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Table A.4: Forecast and Investment, Gender

Dep Variable Forecast Investment

(1) (2) (3) (4) (5) (6)

a(t) 0.44*** 0.03
(0.07) (0.10)

a(t) × Female -0.13* -0.07
(0.07) (0.14)

r(t) -0.06 0.14***
(0.04) (0.04)

r(t) × Female 0.12** 0.05
(0.05) (0.06)

Forecast 2.07*** 1.81***
(0.18) (0.22)

Forecast × Female -0.71** -0.67*
(0.30) (0.33)

Forecast × Predict 0.34*
(0.19)

Forecast × Predict × Female 0.11
(0.28)

Predict 5.12**
(1.90)

Predict × Female -1.21
(2.75)

N 1,865 1,475 1,865 1,475 3,340 3,340
R2 0.16 0.27 0.14 0.30 0.58 0.59

Sample Predict = 1 Predict = 0 Predict = 1 Predict = 0 All All

Individual FE Yes Yes Yes Yes Yes Yes
Round FE Yes Yes Yes Yes Yes Yes

Note: This table reports the results of OLS regressions. In columns (1)-(4), the dependent variable is
the next-period forecast of returns, in percentage points. In columns (5)-(6), the dependent variable is the
ECU next-period investment in the risky asset. “Predict” is a dummy equal to one if the subject declares
“Variable A” is useful to predict returns. “Female” is a dummy equal to one if the subject is a woman.
Two-way clustered standard errors (round and individual levels) are in parenthesis. ∗, ∗∗ and ∗∗∗ denotes
significance at 10%, 5% and 1% level, respectively.
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Table A.5: Forecast and Investment, High versus Low Risk Investment

Dep Variable Forecast Investment

(1) (2) (3) (4) (5) (6)

a(t) 0.38*** -0.11
(0.07) (0.07)

a(t) × High Investments -0.02 0.27**
(0.09) (0.12)

r(t) -0.01 0.20***
(0.04) (0.05)

r(t) × High Investments 0.02 -0.06
(0.06) (0.07)

Forecast 1.74*** 1.41***
(0.18) (0.19)

Forecast × High Investments -0.13 -0.07
(0.36) (0.36)

Forecast × Predict 0.48**
(0.20)

Forecast × Predict × High Investments 0.01
(0.28)

Predict 5.03***
(1.03)

Predict × High Investments -1.65
(1.94)

N 1,888 1,492 1,888 1,492 3,380 3,380
R2 0.16 0.27 0.13 0.30 0.58 0.59

Sample Predict = 1 Predict = 0 Predict = 1 Predict = 0 All All

Individual FE Yes Yes Yes Yes Yes Yes
Round FE Yes Yes Yes Yes Yes Yes

Note: This table reports the results of OLS regressions. In columns (1)-(4), the dependent variable is the next-period
forecast of returns, in percentage points. In columns (5)-(6), the dependent variable is the ECU next-period investment
in the risky asset. “Predict” is a dummy equal to one if the subject declares “Variable A” is useful to predict returns.
“High θ” is a dummy equal to one if the subject takes larger or equal risk investments, on average, than the median,
for the same wave and the same round-type, in both types of rounds. Two-way clustered standard errors (round and
individual levels) are in parenthesis. ∗, ∗∗ and ∗∗∗ denotes significance at 10%, 5% and 1% level, respectively.
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Table A.6: Forecast and Investment, High versus Low Ability

Dep Variable Forecast Investment

(1) (2) (3) (4) (5) (6)

a(t) 0.32*** 0.02
(0.08) (0.13)

a(t) × High Ability 0.10 -0.02
(0.10) (0.15)

r(t) 0.04 0.17**
(0.04) (0.06)

r(t) × High Ability -0.09* 0.01
(0.05) (0.07)

Forecast 1.47*** 1.17***
(0.26) (0.26)

Forecast × High Ability 0.45 0.47
(0.30) (0.32)

Forecast × Predict 0.53**
(0.19)

Forecast × Predict × High Ability -0.10
(0.27)

Predict 2.63*
(1.36)

Predict × High Ability 2.89
(1.70)

N 1,888 1,492 1,888 1,492 3,380 3,380
R2 0.16 0.27 0.14 0.30 0.58 0.59

Sample Predict = 1 Predict = 0 Predict = 1 Predict = 0 All All

Individual FE Yes Yes Yes Yes Yes Yes
Round FE Yes Yes Yes Yes Yes Yes

Note: This table reports the results of OLS regressions. In columns (1)-(4), the dependent variable is the next-
period forecast of returns, in percentage points. In columns (5)-(6), the dependent variable is the ECU next-period
investment in the risky asset. “Predict” is a dummy equal to one if the subject declares “Variable A” is useful
to predict returns. “High Ability” is a dummy equal to one if the subject is better or equal to the median, in
the same wave, in identifying when “Variable A” is useful or not, as measured by Pr(A perceived predictive |
predictable) + Pr(A perceived useless | i .i .d). Two-way clustered standard errors (round and individual levels)
are in parenthesis. ∗, ∗∗ and ∗∗∗ denotes significance at 10%, 5% and 1% level, respectively.
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Table A.7: Forecast and Investment, Age

Dep Variable Forecast Investment

(1) (2) (3) (4) (5) (6)

a(t) 0.38*** 0.33
(0.09) (0.20)

a(t) × Young -0.06 -0.39
(0.12) (0.28)

r(t) -0.06 -0.02
(0.07) (0.10)

r(t) × Young 0.10 0.26*
(0.09) (0.12)

Forecast 1.09** 1.05**
(0.46) (0.45)

Forecast × Young 0.13 -0.10
(0.56) (0.57)

Forecast × Predict 0.00
(0.08)

Forecast × Predict × Young 0.51
(0.32)

Predict 9.04***
(2.36)

Predict × Young -4.85*
(2.42)

N 660 480 660 480 1,140 1,140
R2 0.20 0.38 0.18 0.40 0.59 0.60

Sample Predict = 1 Predict = 0 Predict = 1 Predict = 0 All All

Individual FE Yes Yes Yes Yes Yes Yes
Round FE Yes Yes Yes Yes Yes Yes

Note: This table reports the results of OLS regressions. In columns (1)-(4), the dependent variable is
the next-period forecast of returns, in percentage points. In columns (5)-(6), the dependent variable is the
ECU next-period investment in the risky asset. “Predict” is a dummy equal to one if the subject declares
“Variable A” is useful to predict returns. “Young” is a dummy equal to one if the subject is younger or of
same age as the median of 38 years old. Two-way clustered standard errors (round and individual levels)
are in parenthesis. ∗, ∗∗ and ∗∗∗ denotes significance at 10%, 5% and 1% level, respectively. These results
were obtained during wave four of the experiment implementation (Prolific online, July 2023).
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Table A.8: Forecast and Investment, Income

Dep Variable Forecast Investment

(1) (2) (3) (4) (5) (6)

a(t) 0.32*** 0.06
(0.11) (0.23)

a(t) × High Income 0.05 0.05
(0.06) (0.25)

r(t) 0.02 0.15
(0.07) (0.11)

r(t) × High Income -0.05 -0.06
(0.09) (0.15)

Forecast 1.80*** 1.79***
(0.39) (0.48)

Forecast × High Income -0.87* -0.98*
(0.47) (0.52)

Forecast × Predict 0.01
(0.49)

Forecast × Predict × High Income 0.17
(0.58)

Predict 3.88
(3.44)

Predict × High Income 5.11
(4.97)

N 649 471 649 471 1,120 1,120
R2 0.20 0.38 0.18 0.39 0.59 0.61

Sample Predict = 1 Predict = 0 Predict = 1 Predict = 0 All All

Individual FE Yes Yes Yes Yes Yes Yes
Round FE Yes Yes Yes Yes Yes Yes

Note: This table reports the results of OLS regressions. In columns (1)-(4), the dependent variable is the next-
period forecast of returns, in percentage points. In columns (5)-(6), the dependent variable is the ECU next-period
investment in the risky asset. “Predict” is a dummy equal to one if the subject declares “Variable A” is useful to
predict returns. “High Income” is a dummy equal to one if the subject has income above or equal to $50,000 per
year. Two-way clustered standard errors (round and individual levels) are in parenthesis. ∗, ∗∗ and ∗∗∗ denotes
significance at 10%, 5% and 1% level, respectively. These results were obtained during wave four of the experiment
implementation (Prolific online, July 2023).
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Table A.9: Forecast and Investment, Education

Dep Variable Forecast Investment

(1) (2) (3) (4) (5) (6)

a(t) 0.23 0.23
(0.16) (0.18)

a(t) × High Education 0.20 -0.20
(0.12) (0.21)

r(t) -0.02 0.16
(0.08) (0.10)

r(t) × High Education 0.02 -0.09
(0.10) (0.14)

Forecast 1.52*** 1.37***
(0.28) (0.42)

Forecast × High Education -0.55 -0.49
(0.42) (0.47)

Forecast × Predict 0.18
(0.41)

Forecast × Predict × High Education 0.01
(0.47)

Predict 5.39
(3.29)

Predict × High Education 2.17
(4.85)

N 649 471 649 471 1,120 1,120
R2 0.20 0.38 0.18 0.39 0.59 0.60

Sample Predict = 1 Predict = 0 Predict = 1 Predict = 0 All All

Individual FE Yes Yes Yes Yes Yes Yes
Round FE Yes Yes Yes Yes Yes Yes

Note: This table reports the results of OLS regressions. In columns (1)-(4), the dependent variable is the next-
period forecast of returns, in percentage points. In columns (5)-(6), the dependent variable is the ECU next-period
investment in the risky asset. “Predict” is a dummy equal to one if the subject declares “Variable A” is useful to
predict returns. “High Education” is a dummy equal to one if the subject has a 4-year college degree or above. Two-
way clustered standard errors (round and individual levels) are in parenthesis. ∗, ∗∗ and ∗∗∗ denotes significance at
10%, 5% and 1% level, respectively. These results were obtained during wave four of the experiment implementation
(Prolific online, July 2023).
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Table A.10: Forecast and Investment, High Financial Literacy

Dep Variable Forecast Investment

(1) (2) (3) (4) (5) (6)

a(t) 0.40** 0.03
(0.16) (0.32)

a(t) × High Fin. Literacy -0.08 0.13
(0.17) (0.38)

r(t) 0.07 0.08
(0.08) (0.14)

r(t) × High Fin. Literacy -0.13 0.05
(0.10) (0.16)

Forecast 0.61** 0.57**
(0.25) (0.22)

Forecast × High Fin. Literacy 1.25*** 1.20***
(0.38) (0.40)

Forecast × Predict 0.15
(0.16)

Forecast × Predict × High Fin. Literacy -0.09
(0.31)

Predict 8.19***
(2.62)

Predict × High Fin. Literacy -2.99
(4.09)

N 660 480 660 480 1,140 1,140
R2 0.20 0.38 0.18 0.39 0.61 0.62

Sample Predict = 1 Predict = 0 Predict = 1 Predict = 0 All All

Individual FE Yes Yes Yes Yes Yes Yes
Round FE Yes Yes Yes Yes Yes Yes

Note: This table reports the results of OLS regressions. In columns (1)-(4), the dependent variable is the next-period
forecast of returns, in percentage points. In columns (5)-(6), the dependent variable is the ECU next-period investment
in the risky asset. “Predict” is a dummy equal to one if the subject declares “Variable A” is useful to predict returns.
“High Fin. Literacy” is a dummy equal to one if the subject has correct answers on all three financial literacy questions.
Two-way clustered standard errors (round and individual levels) are in parenthesis. ∗, ∗∗ and ∗∗∗ denotes significance
at 10%, 5% and 1% level, respectively. These results were obtained during wave four of the experiment implementation
(Prolific online, July 2023).
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Table A.11: Forecast and Investment, Grades

Dep Variable Forecast Investment

(1) (2) (3) (4) (5) (6)

a(t) 0.38*** -0.05
(0.09) (0.11)

a(t) × High Grades -0.05 -0.03
(0.15) (0.14)

r(t) 0.02 0.20***
(0.05) (0.07)

r(t) × High Grades 0.01 -0.01
(0.07) (0.09)

Forecast 1.69*** 1.32***
(0.26) (0.32)

Forecast × High Grades 0.99** 1.13**
(0.35) (0.48)

Forecast × Predict 0.67
(0.43)

Forecast × Predict × High Grades -0.33
(0.52)

Predict 2.72
(2.67)

Predict × High Grades 1.95
(3.02)

N 959 801 959 801 1,760 1,760
R2 0.15 0.16 0.13 0.22 0.60 0.61

Sample Predict = 1 Predict = 0 Predict = 1 Predict = 0 All All

Individual FE Yes Yes Yes Yes Yes Yes
Round FE Yes Yes Yes Yes Yes Yes

Note: This table reports the results of OLS regressions. In columns (1)-(4), the dependent variable is the next-
period forecast of returns, in percentage points. In columns (5)-(6), the dependent variable is the ECU next-period
investment in the risky asset. “Predict” is a dummy equal to one if the subject declares “Variable A” is useful
to predict returns. “High Grades” is a dummy equal to one if the subject has average grades at or above her/his
cohort’s median in TSE Master’s program. Two-way clustered standard errors (round and individual levels) are
in parenthesis. ∗, ∗∗ and ∗∗∗ denotes significance at 10%, 5% and 1% level, respectively. Because grading was
affected by the COVID period, these results are specific to TSE students in the lab implementation (TSE lab,
January 2019, 2020).
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Table A.12: Forecast and Investment, Fast versus Slow

Dep Variable Forecast Investment

(1) (2) (3) (4) (5) (6)

a(t) 0.46*** -0.08
(0.10) (0.12)

a(t) × Slow -0.20 0.03
(0.16) (0.16)

r(t) 0.01 0.23***
(0.03) (0.05)

r(t) × Slow 0.03 -0.05
(0.06) (0.07)

Forecast 2.38*** 1.70***
(0.32) (0.41)

Forecast × Slow -0.44 0.18
(0.38) (0.45)

Forecast × Predict 1.20**
(0.44)

Forecast × Predict × Slow -1.12**
(0.53)

Predict 0.21
(2.51)

Predict × Slow 5.17
(3.16)

N 959 801 959 801 1,760 1,760
R2 0.15 0.16 0.13 0.22 0.59 0.60

Sample Predict = 1 Predict = 0 Predict = 1 Predict = 0 All All

Individual FE Yes Yes Yes Yes Yes Yes
Round FE Yes Yes Yes Yes Yes Yes

Note: This table reports the results of OLS regressions. In columns (1)-(4), the dependent variable is
the next-period forecast of returns, in percentage points. In columns (5)-(6), the dependent variable is
the ECU next-period investment in the risky asset. “Predict” is a dummy equal to one if the subject
declares “Variable A” is useful to predict returns. “Slow” is a dummy equal to one if the subject is as slow
or slower, on average, than the median seconds in answering each round’s questions. Two-way clustered
standard errors (round and individual levels) are in parenthesis. ∗, ∗∗ and ∗∗∗ denotes significance at 10%,
5% and 1% level, respectively. Because the time spent on the experiment may be affected by external
constraints for online subjects, we report these results solely for the lab implementation (TSE lab, January
2019, 2020).
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Table A.14: Forecast and Investment, Long Horizon

Dep Variable Forecast (5) Investment (5)

(1) (2) (3) (4) (5) (6)

a(t) -0.07 -0.08
(0.10) (0.09)

a(t) × Predict 0.05 0.09
(0.11) (0.09)

r(t) 0.07** 0.08***
(0.03) (0.03)

r(t) × Predict -0.03 -0.06
(0.05) (0.05)

Forecast (5) 0.74** 1.39**
(0.27) (0.50)

Forecast (5) × Predict -0.90
(0.61)

Predict 1.03 0.81* 1.33** 1.48** 7.20
(0.62) (0.46) (0.58) (0.53) (4.48)

N 1,080 1,080 1,080 1,080 1,080 1,080
R2 0.01 0.15 0.01 0.16 0.51 0.52

Individual FE No Yes No Yes Yes Yes
Round FE No Yes No Yes Yes Yes

Note: This table reports the results of OLS regressions. In columns (1)-(4),
the dependent variable is the forecast of the average returns over the next five
periods, in percentage points. In columns (5)-(6), the dependent variable is
the ECU investment in the risky asset for the next five periods. “Predict” is
a dummy equal to one if the subject declares “Variable A” is useful to predict
returns. a(t) denotes the last realization of “Variable A”. r(t) denotes the last
realization of “Index Return”. Two-way clustered standard errors (round and
individual levels) are in parenthesis. ∗, ∗∗ and ∗∗∗ denotes significance at 10%,
5% and 1% level, respectively. These results were obtained during wave one of
the experiment implementation (TSE lab, January 2019).
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Table A.15: Forecast and Investment, Revealed Predictability

Dep Variable Forecast Investment

(1) (2) (3) (4) (5) (6)

a(t) 0.11 0.10
(0.10) (0.11)

a(t) × R.Predictive 0.24** 0.24**
(0.10) (0.10)

r(t) 0.21*** 0.22***
(0.04) (0.04)

r(t) × R.Predictive -0.33*** -0.38***
(0.06) (0.05)

Forecast 2.49*** 2.11***
(0.27) (0.29)

Forecast × R.Predictive 0.83**
(0.33)

R.Predictive -1.19 -1.25 1.34** 1.49** -0.32
(1.07) (0.95) (0.58) (0.53) (3.23)

N 920 920 920 920 920 920
R2 0.01 0.16 0.06 0.21 0.62 0.63

Individual FE No Yes No Yes Yes Yes
Round FE No Yes No Yes Yes Yes

Note: This table reports the results of OLS regressions. In columns (1)-(4), the
dependent variable is the next-period forecast of returns, in percentage points. In
columns (5)-(6), the dependent variable is the ECU next-period investment in the
risky asset. “R.Predictive”, for “revealed predictive”, is a dummy equal to one when
subjects are told, before they form their forecasts and investments, that “Variable A”
is useful to predict returns. a(t) denotes the last realization of “Variable A”. r(t)
denotes the last realization of “Index Return”. Two-way clustered standard errors
(round and individual levels) are in parenthesis. ∗, ∗∗ and ∗∗∗ denotes significance
at 10%, 5% and 1% level, respectively. These results were obtained during wave two
and three of the experiment implementation (TSE lab, January 2020 and TSE online,
2021).
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Table A.16: Forecast and Investment, Revealed Model

Dep Variable Forecast Investment

(1) (2) (3) (4) (5) (6)

a(t) -0.04 -0.04
(0.15) (0.19)

a(t) × Predict 0.62*** 0.64**
(0.18) (0.23)

r(t) 0.01 -0.01
(0.09) (0.11)

r(t) × Predict -0.06 -0.04
(0.10) (0.11)

Forecast 3.10*** 2.59***
(0.34) (0.79)

Forecast × Predict 0.71
(0.70)

Predict -3.03** -2.50 1.20 1.94** 1.95
(1.06) (1.55) (0.72) (0.83) (5.21)

N 238 238 238 238 240 238
R2 0.10 0.28 0.01 0.19 0.72 0.73

Individual FE No Yes No Yes Yes Yes
Round FE No Yes No Yes Yes Yes

Note: This table reports the results of OLS regressions for our third wave
of experiment (March 2021). In columns (1)-(4), the dependent variable is
the next-period forecast of returns, in percentage points. In columns (5)-(6),
the dependent variable is the ECU next-period investment in the risky as-
set.“Predict” is a dummy equal to one if the subject declares “Variable A”
is useful to predict returns. a(t) denotes the last realization of “Variable A”.
r(t) denotes the last realization of “Index Return”. Two-way clustered stan-
dard errors (round and individual levels) are in parenthesis. ∗, ∗∗ and ∗∗∗

denotes significance at 10%, 5% and 1% level, respectively. These results were
obtained during wave three of the experiment implementation (TSE online,
March 2021).
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Table A.17: Forecast and Investment, Learning

Dep Variable Forecast Investment

(1) (2) (3) (4)

a(t) 0.00
(0.08)

a(t) × Late Rounds 0.02
(0.08)

a(t) × Predict 0.27***
(0.08)

a(t) × Predict × Late Rounds 0.18**
(0.08)

r(t) 0.21***
(0.05)

r(t) × Late Rounds -0.05
(0.05)

r(t) × Predict -0.18***
(0.06)

r(t) × Predict × Late Rounds 0.00
(0.06)

Forecast 1.50*** 1.25***
(0.18) (0.24)

Forecast × Late Rounds 0.33 0.24
(0.29) (0.35)

Forecast × Predict 0.42*
(0.23)

Forecast × Predict × Late Rounds 0.15
(0.26)

Predict -0.94* 1.74*** 4.15***
(0.48) (0.40) (0.87)

Late Rounds -0.58 0.35 6.20*** 6.11***
(0.61) (0.32) (1.98) (1.86)

N 3,380 3,380 3,380 3,380
R2 0.15 0.16 0.57 0.58

Individual FE Yes Yes Yes Yes
Round FE No No No No

Note: This table reports the results of OLS regressions. In columns (1)-(3),
the dependent variable is the next-period forecast of returns, in percentage
points. In columns (4)-(5), the dependent variable is the ECU next-period
investment in the risky asset. “Predict” is a dummy equal to one if the subject
declares “Variable A” is useful to predict returns. “Late Rounds” is a dummy
equal to one for rounds 11-20, the second half of the baseline treatment. a(t)
denotes the last realization of “Variable A”. r(t) denotes the last realization
of “Index Return”. Two-way clustered standard errors (round and individual
levels) are in parenthesis. ∗, ∗∗ and ∗∗∗ denotes significance at 10%, 5% and
1% level, respectively.
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Table A.18: Forecasts – Time Series Information other than {at, rt}

Dep Variable Forecast

(1) (2) (3) (4) (5) (6)

a(t) 0.37*** 0.39*** 0.44***
(0.06) (0.09) (0.08)

a(t-1) -0.42*** -0.41***
(0.06) (0.05)

a(t-2) -0.21*** -0.19**
(0.07) (0.07)

a 17.94 11.11
(24.28) (24.97)

r(t) 0.17*** 0.18*** 0.18***
(0.03) (0.03) (0.04)

r(t-1) 0.08* 0.09**
(0.04) (0.04)

r(t-2) 0.03 0.03
(0.02) (0.02)

r 40.63*** 41.35***
(9.81) (11.81)

N 1,888 1,888 1,888 1,492 1,492 1,492
R2 0.16 0.09 0.22 0.30 0.05 0.31
Adj. R2 0.07 0.09 0.14 0.20 0.05 0.21

Sample Predict=1 Predict=0

Individual & Round FE Yes No Yes Yes No Yes

Note: The dependent variable is the next-period forecast of returns, in percentage points.
Columns (1)-(2) are restricted to rounds perceived as predictable by “Variable A”. Columns
(3)-(4) are restricted to rounds perceived as unpredictable by “Variable A”. at, at−1, at−2

and rt, rt−1, rt−2 are the last three realizations of “Variable A” and “Index Return” in
the current round; a and r are their average values in the current round’s full time series.
“Predict” is a dummy equal to one if the subject declares that “Variable A” is useful to
predict returns. Two-way clustered standard errors (round and individual levels) are in
parenthesis. ∗, ∗∗ and ∗∗∗ denotes significance at 10%, 5% and 1% level, respectively.
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Table A.19: Forecast, Past Rounds Returns

Dep Variable Forecast

(1) (2) (3) (4) (5) (6) (7)

a1(t) -0.00 -0.00 0.03
(0.06) (0.06) (0.06)

a1(t) × Predict -0.05 -0.06 -0.01
(0.08) (0.08) (0.09)

r1(t+ 1) 0.04* 0.04* 0.02
(0.02) (0.02) (0.03)

r1(t+ 1) × Predict -0.04 -0.04 -0.04
(0.03) (0.03) (0.03)

a1(t) -0.19 -0.19 -0.23
(0.18) (0.17) (0.18)

a1(t) × Predict -0.32 -0.31 -0.31
(0.20) (0.20) (0.23)

r1(t+ 1) 0.14*** 0.14*** 0.11*
(0.04) (0.04) (0.06)

r1(t+ 1) × Predict -0.07 -0.09 -0.05
(0.06) (0.07) (0.08)

Predict 1.70** 1.66*** 2.01*** 3.31** 1.85*** 3.81** 3.82**
(0.61) (0.40) (0.64) (1.32) (0.52) (1.52) (1.51)

Round number 0.04 0.04 0.04 0.04 0.03 0.04 0.04
(0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02)

N 3,211 3,211 3,211 3,211 3,211 3,211 3,211
R2 0.15 0.15 0.15 0.15 0.15 0.15 0.15

Individual FE Yes Yes Yes Yes Yes Yes Yes
Round FE No No No No No No No

Note: This table reports the results of OLS regressions. The dependent variable is the
forecast of next period returns in percentage points in any given round k > 1. “Predict”
is a dummy equal to one if the subject declares “Variable A” is useful to predict returns in
round k. a−1(t) and r−1(t+1) denote the final realization of “Variable A” and of “Index
Returns” in the previous round k− 1. a−(t) and r−(t+ 1) denote the average of all final
realizations of “Variable A” and of “Index Returns” in rounds 1 to k − 1. The “Round
number” variable is added to detect possible trends. Two-way clustered standard errors
(round and individual levels) are in parenthesis. ∗, ∗∗ and ∗∗∗ denote significance at 10%,
5% and 1% level, respectively.
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Table A.20: Forecast and Investment, Anchoring

Dep Variable Forecast Investment

(1) (2) (3) (4) (5) (6) (7) (8)

Past Forecast 0.14 -0.01 0.13 0.00 -0.83*** -0.24***
(0.15) (0.08) (0.12) (0.07) (0.17) (0.07)

Past Forecast × Predict -0.06 -0.05 -0.05 -0.05 0.04 -0.01
(0.11) (0.07) (0.09) (0.06) (0.18) (0.10)

Past Error 0.17* 0.10* 0.34** 0.17*
(0.09) (0.05) (0.14) (0.08)

Past Error × Predict -0.13* -0.10** -0.08 -0.17
(0.07) (0.04) (0.19) (0.12)

Past Investment -0.02 -0.02** 0.44*** 0.02 0.51*** 0.05
(0.01) (0.01) (0.04) (0.04) (0.04) (0.04)

Past Investment × Predict 0.01 0.01 0.06* 0.03 0.07** 0.04
(0.01) (0.01) (0.03) (0.03) (0.03) (0.03)

Past Profit 0.05 0.03 -0.05 -0.08
(0.05) (0.05) (0.18) (0.18)

Past Profit × Predict -0.03 -0.02 -0.14 -0.14
(0.06) (0.06) (0.24) (0.23)

Predict 1.80** 1.67*** 2.29** 2.11*** 6.77*** 8.20*** 6.81** 9.58***
(0.71) (0.53) (0.87) (0.68) (2.04) (1.64) (2.73) (2.26)

Round number 0.04* 0.04 0.04* 0.05 0.38*** 0.80*** 0.33*** 0.78***
(0.02) (0.03) (0.02) (0.03) (0.04) (0.11) (0.04) (0.10)

N 3,211 3,211 3,211 3,211 3,211 3,211 3,211 3,211
R2 0.02 0.15 0.04 0.16 0.24 0.48 0.27 0.48

Individual FE No Yes No Yes No Yes No Yes
Round FE No No No No No No No No

Note: This table reports the results of OLS regressions. In columns (1)-(4), the dependent variable is
the next-period forecast of returns, in percentage points. In columns (5)-(8), the dependent variable is the
ECU next-period investment in the risky asset. “Predict” is a dummy equal to one if the subject declares
“Variable A” is useful to predict returns. “Past Forecast”, “Past Error”, “Past Investment” and “Past Profit”
are, respectively, the next-period forecast of returns, the error between the realized next-period return and the
forecast, the ECU next-period investment in the risky asset, and the ECU profit made on the risk investment
in the preceding round. The “Round number” variable is added to detect possible trends. Two-way clustered
standard errors (round and individual levels) are in parenthesis. ∗, ∗∗ and ∗∗∗ denotes significance at 10%, 5%
and 1% level, respectively.
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Table A.21: Information and Investment – Outside Forecasts

Dep Variable Investment “Noise”

(1) (2) (3) (4) (5) (6)

a(t) 0.43*** 0.40* 0.39 0.31** 0.34** 0.40**
(0.15) (0.22) (0.23) (0.14) (0.14) (0.16)

r(t) -0.05 -0.07 -0.12 0.08 0.04 0.06
(0.09) (0.08) (0.08) (0.09) (0.08) (0.05)

N 1,888 1,888 1,888 1,492 1,492 1,492
R2 0.00 0.00 0.01 0.00 0.00 0.00
Adj. R2 0.00 -0.09 -0.10 -0.00 -0.13 -0.14

Sample Predict=1 Predict=0

Individual FE No Yes Yes No Yes Yes
Round FE No No Yes No No Yes

Note: This table reports the results of OLS regressions. The de-
pendent variable is the residual of the regression of ECU next-period
investment in the risky asset on subjects’ stated forecasts. at is the
last realization of “Variable A” and rt the last realization of “Index
return”. Columns (1)-(3) are restricted to rounds perceived as pre-
dictable by “Variable A”. Columns (4)-(6) are restricted to rounds
perceived as unpredictable by “Variable A”. Two-way clustered stan-
dard errors (round and individual levels) are in parenthesis. ∗, ∗∗ and
∗∗∗ denotes significance at 10%, 5% and 1% level, respectively.
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Table A.22: Investment and Information

Dep Variable Investment Forecast

(1) (2) (3) (4) (5) (6) (7) (8) (9)

r(t) 0.13 0.13* 0.12 0.24*** 0.17***
(0.08) (0.07) (0.07) (0.04) (0.03)

a(t) 0.86*** 0.86*** 0.88*** 1.06*** 0.37***
(0.13) (0.16) (0.16) (0.18) (0.06)

N 3,380 3,380 3,380 3,380 3,380 3,380 3,380 1,888 1,492
R2 0.00 0.43 0.46 0.01 0.44 0.47 0.47 0.16 0.30
Adj. R2 0.00 0.40 0.43 0.01 0.41 0.43 0.44 0.07 0.20

Sample All All All All All All All Predict = 1 Predict = 0

Individual FE No Yes Yes No Yes Yes Yes Yes Yes
Round FE No No Yes No No Yes Yes Yes Yes

Note: The dependent variable is the ECU next-period investment in the risky asset in column (1) - (7) and
the stated forecast in column (8) and (9). rt is the last realization of “Index Return”. at is the last realization
of “Variable A”. Two-way clustered standard errors (round and individual levels) are in parenthesis. ∗, ∗∗ and
∗∗∗ denote significance at 10%, 5% and 1% level, respectively.
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Appendix B Return Process

Case with Predictable Returns.

We simulate predictable annual returns according to the VAR process:

rp1,t+1 = αx1,t + ε1,t+1, (B.1)

x1,t+1 = βx1,t + δ1,t+1,

where rp1,t is the demeaned annual excess log return and x1,t is a state variable, estimated from the

demeaned annual log dividend yield. The two shocks ε1 and δ1 follow normal distributions with

mean 0 and standard deviation σ(ε1) and σ(δ1) respectively, and have correlation ρε,δ. We use the

estimated parameters from Cochrane (2009) on US equity (CRSP, 1927-1998): α = 0.16, β = 0.92,

σ(δ1) = 15.2%, σ(ε1) = 19.2%, ρε,δ = −0.72.

The returns in the predictable process (2) displayed to subjects in the experiment correspond to

a compounded 5-year average of returns simulated from annual process (B.1) above. For any simu-

lated series from process (B.1) of length 5×T : {x1,1, x1,2...x1,5×T } and {rp1,2, r
p
1,3...r

p
1,5×T+1}, we ex-

tract the returns {rp2, r
p
3, ..., r

p
T+1} where r

p
2 = µ+

rp1,2+rp1,3+rp1,4+rp1,5+rp1,6
5 ; rp3 = µ+

rp1,7+rp1,8+rp1,9+rp1,10+rp1,11
5 ;...;

rpT+1 = µ +
rp1,5T−4+rp1,5T−2+rp1,5T−1+rp1,5T+rp1,5T+1

5 , where µ = 6.07% (again from Cochrane (2009)).

Iterating from rp1,t+1, we obtain

rpt+1 = µ+
1

5
α
1− β5

1− β
x1,t︸ ︷︷ ︸

expected return at

+
1

5

[
α
1− β5−1

1− β
δ1,t+1 + α

1− β5−2

1− β
δ1,t+2 + ..+ αδ1,t+5−1 +

5∑
i=1

ε1,t+1

]
︸ ︷︷ ︸

shock ϵpt+1

,

corresponding to the predictable returns process (2).

From a simulated series from process (B.1): {rp1,2, r
p
1,3...r

p
1,5×T+1} and {x1,1, x1,2...x1,5×T }, we

also extract the conditional expectations {a1, a2...aT } for the predictable returns {rp2, r
p
3...r

p
T+1}

where a1 = µ + 1
5α

1− β5

1− β
x1,1; a2 = µ + 1

5α
1− β5

1− β
x1,6;...; aT = µ + 1

5α
1− β5

1− β
x1,5T−4, where
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µ = 6.07% as above. The predictive variable a thus constructed is such that (a − µ) follows an

AR(1) process with persistence β5.

Case with i.i.d. returns.

We simulate i.i.d. annual returns according to process:

r1,t+1 = µ+ e1,t+1, (B.2)

where µ = 6.07% as in (B.1) and e1 ∼ N(0, σ2(e1)). We set σ(e1) = 20.18% so that the uncon-

ditional variance is the same as for rp1,t+1 in (B.1). The returns in i.i.d. process (1), displayed to

subjects in the experiment, correspond to a compounded 5-year average of returns simulated from

annual process (B.2).

Conditional Variance of Returns.

Let rN,t be the N -year demeaned average return in the i.i.d. case

rN,t =
r1,t + r1,t+1 + ...+ r1,t+N

N
.

The conditional variance (equal to the unconditional variance) of NrN,t is

V art(NrN,t+1) = Nσ2(e1). (B.3)

Let rpN,t be the N -year demeaned average return in the predictable case:

rpN,t =
rp1,t + rp1,t+1 + ...+ rp1,t+N

N
,

such that:

NrpN,t+1 = α
1− βN

1− β
x1,t︸ ︷︷ ︸

expected return NxN,t

+(α

N−1∑
i=1

1− βi

1− β
δ1,t+i +

N∑
i=1

ε1,t+i)︸ ︷︷ ︸
shock NεPt+1

,
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with conditional variance:

V art(NrpN,t+1) = Nσ2(ε1) + α2σ2(δ1)
N−1∑
i=1

(
1− βi

1− β
)2

+2αρε,δσ(ε1)σ(δ1)

N−1∑
i=1

1− βi

1− β
.

Given our estimated parameters, the negative term in ρe,δ dominates the positive term in α2, so

that V art(r
p
N,t+1) < V art(rN,t+1), for N sufficiently low. For our experiment, we are interested

in N = 5 for the one-period returns and N = 25 for the five-period averages, for which we have

V art(r
p
5,t+1) = 0.67V art(r5,t+1); V art(r

p
25,t+1) = 0.61V art(r25,t+1).
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Appendix C Experimental Protocol

Appendix C.1 Baseline treatment

The experiment starts with the instruction page (Figure C.1), then an example page (Figure 1),

followed by 20 rounds of Question Page / Result Page (Figures C.2 and C.3).48 Each round

corresponds to a new simulation of returns, 10 rounds for the i.i.d. process (1) and 10 rounds for

the predictable process (2). Subjects “play” the 20 rounds in a randomized order.

For the predictable rounds, we obtain the simulated returns of process (2) via a simulation

of length 225 of the VAR process (B.1), averaged over 5-year periods to obtain 45 points for

the expected return process rpt+1 and 45 points for the conditional expectations at. We repeat

this procedure to get 1,000 simulations, among which we choose the 10 simulations that have

a statistical correlation between the simulated returns rpt+1 and the conditional expectations at

closest to 0.57, the theoretical correlation between the returns process and the predictive variable

a.

For the i.i.d. rounds, we obtain the simulated returns of process (1) via a simulation of length

225 of the annual i.i.d. process (B.2), averaged over 5-year periods to obtain 45 points for the

expected return process rt+1. In addition, and independently, we add a simulation of length 225 of

the state variable x1,t from VAR process (B.1) to obtain 45 points with same distribution as the

variable at in the predictable rounds. We repeat this procedure to get 1,000 simulations, among

which we choose the 10 simulations that have a statistical correlation between the simulated returns

rt+1 and the variable at closest to 0, the theoretical correlation between the returns process and

the variable a in the i.i.d. case.

We verify for each of the 20 rounds displayed to our subjects, the statistical regressions of the

returns rt on the variable at−1, and on past returns rt−1. The results are displayed in Online

Appendix Table C.1. In all rounds, the graph displayed in the Question page shows the first 40

points for the returns rt, from t = −40 to t = −1 in red, and the first 41 points for variable at−1,

from t = −40 to t = 0 in blue (shifted so that rt and at−1 are one above the other); with a−1,

48Figure C.1, C.2 and C.3 correspond to the first wave of our experiment implementation, in the TSE Lab (January
2019).
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the best predictor for next-period returns r0 displayed as a fat yellow dot at t = 0. Descriptive

statistics for the 20 rounds are provided in Online Appendix Table C.2.

Appendix C.2 Additional questions/treatments

The instruction page in Figure C.1, as well as the Question Page / Result Page in Figures C.2

and C.3 add to the baseline treatment the solicitation of 5-period ahead forecasts and investments.

In another implementation of our experiment, we asked subjects to provide, instead, their 80%

confidence intervals via the two questions of Figure C.4. In yet another implementation, we asked

subjects to provide their upper and lower bound probabilities via the two questions of Figure C.5.

In a separate treatment, subjects were asked to play another 20 rounds after they had completed

the baseline treatment, where we revealed in the first 10 rounds that “Variable A” was predictive

and in the last 10 rounds that it was useless to preduct returns. We used exactly the same 10

predictive and 10 i.i.d rounds as in the baseline treatment, each set in a new randomized order, to

ensure subjects’ answers can be compared across treatments.

Finally, in another treatment, subjects were asked to play another 10 rounds, after they had

completed the baseline treatment. Before they had to choose their forecasts and investments in

the new treatment, we revealed the simulation processes (1) and (2). The 10 rounds simulations

were chosen randomly from the 20 rounds of the baseline treatment, 5 from i.i.d simulations, 5

from predictable simulations. The order of the 10 rounds was random across subjects.

Appendix C.3 Prolific: demographics, individual characteristics

For the online implementation of our experiment, we recruited subjects from Prolific.

To make sure these subjects understood and were paying attention to the experiment, they

were asked two comprehension and two attention questions, standard to online experiments on

such platforms (Figure C.6).

At the end of the experiment, we asked subjects to answer demographics questions on their

gender, age, income, and education. In addition, we asked three questions related to their financial

literacy. The Prolific survey questions, including financial literacy, are provided in Figure C.7.
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Table C.1: Regression Coefficients of rt on at−1 and rt−1.

Graph no. Predictable a(t-1) p-value R-squared r(t-1) p-value R-squared

(1) (2) (3) (4) (5) (6) (7) (8)

1 No 0.07 0.79 0 -0.13 0.45 0.02
2 No -0.05 0.88 0 -0.01 0.96 0.00
3 No 0.09 0.78 0 0.16 0.34 0.02
4 No -0.02 0.95 0 0.02 0.89 0.00
5 No -0.27 0.4 0.02 0.13 0.44 0.02
6 No -0.12 0.58 0.01 0.58 0.6 0.01
7 No -0.02 0.94 0 -0.1 0.52 0.01
8 No -0.05 0.91 0 -0.3 0.06 0.09
9 No 0.01 0.96 0 -0.34 0.04 0.11
10 No -0.01 0.98 0 -0.04 0.81 0.00
11 Yes 1.17 0 0.34 0.21 0.21 0.04
12 Yes 1.53 0 0.38 -0.07 0.67 0.01
13 Yes 1.19 0 0.38 0 0.99 0.00
14 Yes 1 0 0.36 0.03 0.87 0.00
15 Yes 0.96 0 0.33 0.07 0.64 0.01
16 Yes 0.99 0 0.32 0.04 0.79 0.00
17 Yes 1.11 0 0.4 0 0.99 0.00
18 Yes 1.09 0 0.35 0.14 0.4 0.02
19 Yes 1.06 0 0.35 -0.11 0.5 0.01
20 Yes 0.85 0 0.32 -0.14 0.39 0.02

Note: This table reports the results of OLS regressions. The dependent variable is the
returns rt either for the i.i.d process (1) or the predictable process (2). Columns (3), (4)
and (5) report the coefficient, p-value and R2 of the regression on at−1. Column (6), (7)
and (8) report the coefficient, p-value and R2 of the regression on rt−1.

Table C.2: Descriptive Statistics

Variable Obs. Mean Median Std. Dev. Min Max

a(t) 20 6.04 5.48 3.32 2.06 12.17
r(t) 20 3.16 2.95 8.90 -11.79 19.04
r(t+1) 20 6.62 5.94 8.45 -7.75 30.92

“Variable A” predictive

a(t) 10 5.99 5.36 3.40 2.11 11.88
r(t) 10 4.82 3.82 8.15 -11.79 16.76
r(t+1) 10 4.93 3.78 4.13 -0.19 11.34

“Variable A” useless

a(t) 10 6.08 5.70 3.42 2.06 12.17
r(t) 10 1.49 -2.44 9.73 -10.51 19.04
r(t+1) 10 8.31 6.72 11.29 -7.75 30.92

Note: This table reports the statistics for the last realizations of
“Variable A” and of “Index Return”, a(t) and r(t), that subjects
observe, each round, in the “Question page”.
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Figure C.1: Instruction page: This page is provided to subjects before they start playing the investment
game and provides instructions.
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Figure C.2: Question page: Example of the question page where subjects write their answers on.
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Figure C.3: Answer page: Example of the answer page where subjects are told the realization of “Index
returns”, and how well they did this round.
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Figure C.4: Confidence Intervals: We elicit subjects’ confidence intervals via the questions above.

Figure C.5: Upper and Lower Bound probabilities: We elicit subjects’ upper and lower Bound
probabilities via the questions above.

32



Figure C.6: Comprehension and attention: We verify subjects’ comprehension and attention to the
game via the questions above.
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Figure C.7: Survey page: The questions above allow us to obtain demographics information from online
subjects.
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Appendix D Models

Appendix D.1 Forecast Model

In the model described in Section 4.1, subjects want to use expectation model Eu(rt+1) when

“Variable A” is useless, and expectation model Ep(rt+1) when “Variable A” is predictive, s.t.:


Eu
t (rt+1) = λurt + (1− λu)µ̄

Ep
t (rt+1) = λpat + (1− λp)µ̄

,

where rt is the last realization of “Index Return”, at is the last realization of “Variable A”, and

µ̄ = E (rt+1) is the unconditional subjective expectation.

Because subjects take their risks of mistake when identifying “Variable A” as useful or not,

their forecasts follow:


E (rt+1 |A perceived useless) = πuEu(rt+1) + (1− πu)Ep(rt+1)

E (rt+1 |A perceived predictive) = πpEp(rt+1) + (1− πp)Eu(rt+1)

,

where the weights πu and πp correspond to the probabilities that a given subject assigns to the

fact that “Variable A” is indeed useless or predictive, conditional on the fact that she perceives it

as such.

Given these assumptions, forecasts are given by:

Fi,k = αm
1 + αm

2 Predicti,k + βm
1 at,k + βm

2 at,k × Predicti,k

+ δm1 rt,k + δm2 rt,k × Predicti,k,

where Fi,k is the forecast of subject i for next-period returns in round k; Predicti,k is a dummy

taking value 1 if subject i perceives “Variable A” as useful to predict returns in round k and taking

value 0 otherwise; at,k and rt,k are the last realizations of “Variable A” and “Index Return” in round
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k. The coefficients {αm
1 , αm

2 , βm
1 , βm

2 , δm1 , δm2 } are fully determined by parameters {µ̄, λu, λp, πu, πp}:



αm
1 = (πu (1− λu) + (1− πu) (1− λp)) µ̄

αm
1 + αm

2 = (πp (1− λp) + (1− πp) (1− λu)) µ̄

βm
1 = (1− πu)λp

βm
1 + βm

2 = πpλp

δm1 = πuλu

δm1 + δm2 = (1− πp)λu

As described in Section 4.1, we set µ̄ = µ = 6.07% the true statistical average and λu = 0.32

as in Landier, Ma, and Thesmar (2019); Afrouzi et al. (2023). We assume that subjects do

not overestimate nor underestimate on average their ability to correctly detect whether or not

“Variable A” is predictive: we set πu, πp as the true posterior probabilities

πp = Pr (predictable | A perceived predictive)

πu = Pr (i .i .d | A perceived useless) ,

which we observe in the data for each individual subject.

To set λp, we assume that subjects have no systematic bias, i.e., they do not overestimate nor

underestimate on average the value of the loadings of {rt+1} on {at}, and take into account their

risk of mistakes in identifying “Variable A” as predictive.

Let λp
p and λu

p be the estimated loadings of {rt+1} on {at} in rounds perceived as predictable

and as useless, respectively. The unbiased estimates of λp
p and λu

p are:


λp
p =

π̄p×1+(1−π̄u)×0
π̄p+(1−π̄u)

λu
p =

π̄u×0+(1−π̄p)×1
π̄u+(1−π̄p)

where π̄p = Pr(A perceived predictive | predictable) is the true fraction of predictable graphs
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perceived as such and π̄u = Pr(A perceived useless | i .i .d) is the true fraction of i.i.d. graphs

perceived as such, i.e., πp =
π̄p

π̄p+(1−π̄u)
and πu = π̄u

π̄u+(1−π̄p)
.

Taking into account their probability of mistakes in identifying “Variable A” as predictive

corresponds to setting parameter λp to:

λp =
πpλ

p
p + (1− πu)λ

u
p

πp + (1− πu)
,

such that we obtain:

λp =
π2
p + (1− πu)

2

πp + (1− πu)
.

The forecast model of Section 4.1 is entirely specified by setting parameters {µ, λu, πu, πp}.

Appendix D.2 Investment Model

In Section 3.3, we show that subjects rely on their own forecasts differently across rounds, with

a more limited “trust” accorded to extrapolative belief variations. We verify whether formalizing

such a notion may be achieved via ambiguity averse agents, as in the classic Ellsberg Paradox

(Ellsberg, 1961). Extending the classical Merton-Samuelson model of Equation (13) to allow for

ambiguous returns predictability, in the one-period static case of our experiment, i) lowers the

average risk investment, for a given level of return volatility; and ii) leads to a lower pass-through

to investment from positive predictive signals than from negative ones, the well-known “worst case

scenario” over-weighting specific to such models.49 Both the decrease in the average risk taking and

the asymmetry in the impact of “good” versus “bad” signals are amplified by greater ambiguity.

In our estimates, however, we do not find evidence of a systematically higher pass-through from

forecasts to investment decisions when subjects receive “bad” versus “good” predictive signals, in

either round type (Online Appendix Tables D.1 and D.2). Moreover, as shown in Section 4.3, our

subjects’ average investments are consistent with the classical Merton-Samuelson model: they do

49See, e.g., the theoretical results of Chen, Ju, and Miao (2014) who derive optimal risk taking decisions under
ambiguous returns predictability in a dynamic framework.
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not reflect potential differences in model uncertainty across round types.

Models in which our subjects would view their own forecasts as noisier, and hence riskier, in

rounds without a predictive “Variable A” can be rejected for the same reason. If greater noise risk

were perceived when subjects extrapolate from past returns, it would depress average portfolio

investments in these rounds, and the difference in risk taking across round types would no longer

match the return variances unbiased estimates of Equation (12), under E (V arut (rt+1)) = σ2 and

E (V arp(rt+1)) = σ2
p.

Finally, though measurement errors play an important role, as evidenced by the differential

impact of the “instrumented forecasts” of Equation 5 relative to the outright forecasts of Equa-

tion (4) in rounds where “Variable A” is perceived as useful, they cannot explain why forecasts

“instrumented” by “Variable A” signals, in rounds where they are perceived as predictive, are

treated differently from forecasts “instrumented” by extrapolation elsewhere, our core investment

result.

Table D.1: Ambiguity aversion – Asymmetry test I

Dep Variable Investment

(1) (2) (3) (4)

Forecast 1.62*** 2.00*** 1.41*** 1.43***
(0.19) (0.15) (0.22) (0.23)

N 1,018 866 447 1,029
R2 0.70 0.65 0.75 0.65

Sample Predict = 1 Predict = 1 Predict = 0 Predict = 0
Below = 0 Below = 1 Below = 0 Below = 1

Subject FE Yes Yes Yes Yes
Round FE Yes Yes Yes Yes

Note: This table reports the results of OLS regressions. The dependent
variable is the ECU next-period investment in the risky asset. “Forecast”
is the forecast of next period returns in percentage points. “Predict” is
a dummy equal to one if the subject declares that “Variable A” is useful
to predict returns. “Below” in the column (1), (2) take value of 1 if at

is equal or below the true mean 6.07% and 0 otherwise. “Below” in the
column (3), (4) take value of 1 if rt is equal or below the true mean
6.07% and 0 otherwise. Clustered standard errors (round level) are in
parenthesis. ∗, ∗∗ and ∗∗∗ denotes significance at 10%, 5% and 1% level,
respectively.

38



Table D.2: Ambiguity aversion – Asymmetry test II

Dep Variable Investment

(1) (2) (3) (4)

Forecast 1.49*** 1.94*** 1.48*** 1.29***
(0.28) (0.13) (0.15) (0.22)

N 743 1,142 603 874
R2 0.72 0.63 0.73 0.66

Sample Predict = 1 Predict = 1 Predict = 0 Predict = 0
Below = 0 Below = 1 Below = 0 Below = 1

Subject FE Yes Yes Yes Yes
Round FE Yes Yes Yes Yes

Note: This table reports the results of OLS regressions. The dependent
variable is the ECU next-period investment in the risky asset. “Forecast”
is the forecast of next period returns in percentage points. “Predict” is
a dummy equal to one if the subject declares that “Variable A” is useful
to predict returns. “Below” in the column (1), (2) take value of 1 if at

is equal or below the average realization of “Variable A” in the same
round and 0 otherwise. “Below” in the column (3), (4) take value of 1
if rt is equal or below the average realization of “Index Return” in the
same round and 0 otherwise. Clustered standard errors (round level)
are in parenthesis. ∗, ∗∗ and ∗∗∗ denotes significance at 10%, 5% and
1% level, respectively.
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