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1 Introduction

We consider a two-player nonzero-sum stopping game in continuous time where the payoff

for player i = 1, 2 is given by (with j = 3− i):

J i(x, τ i, τ j) = Ex
[
1τ i≤τ j e−rτ

i

Ri(Xτ i) + 1τ j<τ i e−rτ
j

Gi(Xτ j)
]
,

where X is a homogenous linear diffusion defined on an interval I ⊂ R and satisfying X0 = x.

The reward functions Ri and Gi are sufficiently integrable continuous functions, r ≥ 0 is

a constant discount rate, and τ 1 and τ 2 are stopping times of the filtration of X chosen

by players 1 and 2, respectively. Our main assumption is that Ri ≤ Gi for i = 1, 2; this

reflects a second-mover advantage and is typical in the timing games referred to as wars

of attrition in the economics literature (see [28, 37, 20, 27, 12, 21] for examples of such

games under Brownian uncertainty). A pair of stopping times (τ 1, τ 2) is a Nash equilibrium

for the continuous-time war of attrition started at x if, for each player i = 1, 2, we have

J i(x, τ i, τ j) = supτ J
i(x, τ, τ j). A Markov-perfect equilibrium (MPE) in pure strategies is

a pair of Markovian stopping times (characterized as hitting times of a closed subset of I)

which form a Nash equilibrium for every initial condition x.

The existence of pure-strategy MPEs for games of the war-of-attrition type has been

established under a variety of assumptions. (1) Cattiaux and Lepeltier [7] (see also Lepeltier

and Etourneau [31]) prove the existence of a pure-strategy MPE under the additional

assumption that (e−rtGi(Xt))t≥0 is a supermartingale. (2) More recently, De Angelis, Ferrari,

and Moriarty [10] prove the existence of a pure-strategy MPE under geometric conditions

on the functions Ri, i = 1, 2; similar results have been derived by Attard [1] and Martyr and

Moriarty [34]. (3) Existence of an MPE in the zero-sum case is obtained in Ekström and

Villeneuve [15] and Ekström and Peskir [14].

In the absence of such additional assumptions, a pure-strategy MPE may not exist—we

provide a simple and explicit example in Section 7. Lepeltier and Maingueneau [32] (in

the zero-sum case) and Hamadene and Zhang [23] (in the nonzero-sum case) prove that a

Nash equilibrium always exists in games of the war-of-attrition type. However, the strategies

constructed in, e.g., [23] are not Markovian, and the resulting equilibrium is typically not

subgame-perfect in the sense of Riedel and Steg [39], implying that it requires that some

player make a noncredible threat.

To recover the existence of equilibria, a classical approach in game theory consists in

extending the class of strategies to mixed strategies. In the present context, this amounts

to considering randomized stopping times, whereby, loosely speaking, players choose a
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distribution on the set of stopping times. Randomized stopping times have been considered

for a long time in the theory of optimal stopping (see, e.g., Baxter and Chacon [3], Meyer

[36], and El Karoui, Lepeltier, and Millet [18]) and in the analysis of stopping games (see,

e.g., Touzi and Vieille [43], Riedel and Steg [39], Laraki and Solan [29], Laraki and Solan

[30], De Angelis, Merkulov, and Palczewski [11]).

In the case where, as in the present paper, the underlying state variable follows a

homogenous linear diffusion process, Décamps, Gensbittel, and Mariotti [12] derive from

a representation result for multiplicative functionals due to Sharpe [42] that any Markovian

randomized stopping time can be represented by a pair (µ, S), where S is a closed subset of

I and µ is a locally finite measure on I \ S such that the conditional survival function Λt

(that is, the probability to stop strictly after t conditionally on (Xs)s∈[0,t]) writes under the

form Λt = 1t<τS e−
∫
I\S L

y
t µ(dy), where Lyt is the local time of X at (y, t) and τS is the hitting

time by X of S. The set S is the region of immediate stopping and µ is a (possibly singular)

intensity of stopping outside of S. The pair (µ, S) can alternatively be seen as a nonnegative

measure on I that explodes on S.

In the present paper, we build on this representation theorem to prove the existence

of an MPE in randomized stopping times without additional assumptions on the reward

functions such as those in Cattiaux and Lepeltier [7] or in De Angelis, Ferrari, and Moriarty

[10]. To this end, the natural approach is to use an appropriate fixed-point theorem for the

best-reply correspondence. We show that the lack of convexity of the space of Markovian

randomized stopping times, reflecting the possibility that a player stops with infinite intensity

on some subset of I, can be overcome by invoking a fixed-point theorem due to Eilenberg

and Montgomery [16], which applies to (non necessarily convex) compact absolute retracts.

In so doing, we also establish another result of interest about the topology of Markovian

randomized stopping times. Specifically, we show that the set of nonnegative (but not

necessary locally finite) regular measures endowed with a topology that extends vague

convergence of locally finite measures is a compact absolute retract.

In contemporaneous independent work, Christensen and Schultz [8] derive an analogous

existence theorem using a different method. They first consider a family of auxiliary games

in which the players are only allowed to stop over increasingly finer finite subsets of the state

space. In these discretized games, the best-reply sets are convex and the existence of an

MPE can be directly proved using Kakutani’s fixed-point theorem [25]. The existence of an

MPE for the primary game is then obtained as the limit of a convergent sequence of MPEs

of these auxiliary games. The analysis requires the introduction of two distinct topologies.
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The first one allows one to use Kakutani’s fixed-point theorem in the auxiliary discretized

games. The second, based on the distribution of stopped processes, defines an appropriate

notion of convergence allowing one to pass from a sequence of MPEs of the discretized games

to an MPE of the primary game.

By using the Eilenberg-Montgomery fixed-point theorem, our approach is more direct,

avoids convexity issues, and only requires us to define a natural topology under which the set

of Markovian randomized stopping times, which can be identified to the set of nonnegative

regular measures on I taking values in [0,∞], is a compact absolute retract. Interestingly,

when the discretization is locally finite, the topology used in the auxiliary games introduced

by Christensen and Schultz [8] actually corresponds to the restriction to a finite or countable

subspace of the state space of the topology we define on Markovian randomized stopping

times. Another difference is that, in Christensen and Schultz [8], the diffusion X is assumed

to live on a compact interval whose endpoints are absorbing points for X, and at which the

payoff functions Ri and Gi coincide for every player i = 1, 2. In our model, by contrast, the

state space for X is a possibly unbounded interval I whose endpoints are natural boundaries

for the diffusion, and the functions Ri and Gi, i = 1, 2, may be unbounded, as is often the

case in economic applications.

To the best of our knowledge, [8] and the present paper are the only papers proving the

existence of an MPE in the continuous-time war of attrition under the weak assumption

Ri ≤ Gi for i = 1, 2. Our approach and that in [8] are complementary in that the method of

proof in the latter paper shows that at least some MPEs of the continuous-time game can

be obtained as limits of MPEs of suitably discretized games. Whether this is the case of all

MPEs remains an open question.

2 Model and Main Results

2.1 A Brownian Model of the War of Attrition

Consider a one-dimensional time-homogeneous diffusion process X := (Xt)t≥0 defined on the

canonical space (Ω,F ,Px) of continuous trajectories with X0 = x under Px, that is solution

in law to the SDE

dXt = b(Xt) dt + σ(Xt) dWt, t ≥ 0, (2.1)

driven by some Brownian motion W := (Wt)t≥0. The state space for X is an interval

I := (α, β), with −∞ ≤ α < β ≤ ∞, and b and σ are continuous functions, with σ > 0 on
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I. We assume that α and β are natural endpoints for the diffusion. Therefore, X is regular

on I and the SDE (2.1) admits a weak solution that is unique in law.

The process X is defined on the canonical space (Ω,F) of continuous trajectories endowed

with the usual family of shift operators (θt)t≥0. Let Pµ be the law of the process X with initial

distribution µ ∈ ∆(I), where ∆(I) is the space of probability measures on the Borel σ-field

B(I). We denote by (F0
t )t≥0 the natural filtration (σ(Xs; s ≤ t))t≥0 generated by X, and we

let F0
∞ := σ(

⋃
t≥0F0

t ). For each µ, we denote by Fµ∞ the completion of F0
∞ with respect to

Pµ, and, for each t ≥ 0, we let Fµt be the augmentation of F0
t by the Pµ-null, Fµ∞-measurable

sets. The usual augmented filtration (Ft)t≥0 is then defined by Ft :=
⋂
µ∈∆(I)F

µ
t for all t ≥ 0

and it is right-continuous (see, e.g., [38, Chapter III, §2, Proposition 2.10]). As usual, we

say that a property of the trajectories ω ∈ Ω is satisfied a.s. if, for each x ∈ I, it is satisfied

for Px-a.e. ω ∈ Ω.

The game is played as follows. Player 1 chooses a stopping time τ 1 and player 2 chooses

a stopping time τ 2 in the set T of all stopping times of (Ft)t≥0. Both players discount future

payoffs at a constant rate r ≥ 0. For each i = 1, 2, the expected payoff of player i is1

J i(x, τ i, τ j) := Ex
[
1τ i≤τ j e−rτ

i

Ri(Xτ i) + 1τ i>τ j e−rτ
j

Gi(Xτ j)
]
. (2.2)

For each i = 1, 2, we assume

A0 The functions Ri and Gi in (2.2) are continuous on I and Ri ≤ Gi.

For each i = 1, 2 and every function f = Ri, Gi, we assume

A1 Ex [supt≥0 e−rt|f(Xt)|] <∞ for all x ∈ I.

A2 limt→∞ e−rtf(Xt) = 0 a.s.

Assumption A1 guarantees that the family (e−rτf(Xτ ))τ∈T is uniformly integrable, that is,

the process (e−rtf(Xt))t≥0 is of class (D).

A game satisfying the above assumptions is hereafter generically referred to as a BWoA.

2.2 Randomized Stopping Times

In this section, we briefly recall some definitions and results that are standard in the

literature; we refer to [12] for the missing proofs. For every player i = 1, 2, consider the

enlarged probability space (Ωi,F i) := (Ω × [0, 1],F ⊗ B([0, 1])), endowed with the product

probability Pix := Px ⊗ λ, where λ denotes Lebesgue measure.

1By convention, we let e−rτf(Xτ ) := 0 on {τ =∞} for any Borel function f and any random time τ , see
Assumption A2 below.
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Definition 2.1. For each i = 1, 2, a randomized stopping time for player i is an F⊗B([0, 1])-

measurable function γi : Ωi → R+ such that, for λ-a.e. ui ∈ [0, 1], γi(·, ui) ∈ T . The process

Γi := (Γit)t≥0 defined by

Γit(ω) :=

∫
[0,1]

1γi(ω,ui)≤t dui, (ω, t) ∈ Ω× R+, (2.3)

is the conditional cumulative distribution function (ccdf) of the randomized stopping time γi.

Likewise, the process Λi := (Λi
t)t≥0 defined by

Λi
t(ω) := 1− Γit(ω), (ω, t) ∈ Ω× R+, (2.4)

is the conditional survival function (csf) of the randomized stopping time γi.

We denote by Tr the set of randomized stopping times. The process Γi defined by (2.3)

takes values in [0, 1] and has nondecreasing and right-continuous trajectories.

Lemma 2.2 ([12, Lemma 2]). The ccdf process Γi is (Ft)t≥0-adapted and, for Px-a.e. ω ∈ Ω,

Γit(ω) = Pix [γi ≤ t |Ft](ω) (2.5)

for all x ∈ I and t ≥ 0.

By convention, we let Γi0− := 0 and thus Λi
0− := 1. This allows us in what follows to

interpret integrals of the form
∫

[0,τ)
· dΓit or

∫
[0,τ)
· dΛi

t in the Stieltjes sense for any ccdf Γi

and any csf Λi. Notice for further reference that, for any sufficiently integrable process Z,∫
[0,τ)

Zs dΓis = Γi0Z0 +

∫
(0,τ)

Zs dΓis. (2.6)

If the players use randomized stopping times γ1 and γ2, then their expected payoffs are

defined on the product probability space Ω× [0, 1]× [0, 1] with canonical element (ω, u1, u2),

endowed with the product probability Px := Px ⊗ λ⊗ λ. Specifically, we have

J i(x, γ1, γ2) := Ex
[
1γi≤γj e−rγ

i

Ri(Xγi) + 1γi>γj e−rγ
j

Gi(Xγj)
]
, (2.7)

where γ1 := γ1(ω, u1) and γ2 := γ2(ω, u2), reflecting that player 1 and player 2 use the

independent randomization devices u1 and u2, respectively. The next lemma shows that we

may equivalently work with the family of ccdf processes Γi.

Lemma 2.3 ([12, Lemma 3]). If the players use randomized stopping times with ccdfs Γ1

and Γ2, then their expected payoffs write as

J i(x,Γ1,Γ2) = Ex
[∫

[0,∞)

e−rtRi(Xt)Λ
j
t− dΓit +

∫
[0,∞)

e−rtGi(Xt)Λ
i
t dΓjt

]
. (2.8)
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Moreover, any nondecreasing, right-continuous, (Ft)t≥0-adapted, [0, 1]-valued process Γi is

the ccdf of the randomized stopping time γ̂i defined by

γ̂i(ui) := inf {t ≥ 0 : Γit > ui}. (2.9)

2.3 Markovian Randomized Stopping Times

We now recall the definition of a Markovian randomized stopping time used in [12].

Definition 2.4. A randomized stopping time for player i = 1, 2 with csf Λi : Ω×R+ → [0, 1]

is Markovian if, for all x ∈ I, τ ∈ T , and s ≥ 0,

Λi
τ+s = Λi

τ (Λ
i
s ◦ θτ ) on {τ <∞} Px-a.s. (2.10)

Processes satisfying (2.10) are known as multiplicative functionals of the Markov process

X, see, e.g., [5]. Combining a result in [42] with the classical representation result for additive

functionals of regular diffusions [6, Part I, Chapter II, Section 4, §23] yields the following

representation result.

Theorem 2.5 ([12, Theorem 1]). For each i = 1, 2, Λi : Ω × R+ → [0, 1] is the csf of

a Markovian randomized stopping time for player i if and only if there exists a closed set

Si ⊂ I and a Radon measure2 µi on I \ Si such that, for all x ∈ I and t ≥ 0,

Λi
t = 1t<τSi

e−
∫
I\Si L

y
t µ

i(dy) Px-a.s., (2.11)

where Lyt := limε↓0
1
2ε

∫ t
0
1(y−ε,y+ε)(Xs)σ

2(Xs) ds is the local time of X at (y, t), and τSi :=

inf {t ≥ 0 : Xt ∈ Si} is the hitting time by X of Si. In particular, the mapping t 7→ Λi
t is

continuous on [0, τSi) Px-a.s.

In the following, we refer to a Markov strategy as a pair (µi, Si), a ccdf Γi, or a csf Λi,

based on the relations established in Theorem 2.5. Three special cases discussed in [12] are

worth mentioning.

1. The pure stopping case: If µi = 0, then the Markov strategy (0, Si) is just the hitting

time τSi by X of Si.

2. The absolutely continuous case: If µi = gi · λ, then, from the occupation time formula

2A measure on the Borel sets of a Hausdorff topological space is Radon if it is inner regular with respect
to compact sets and locally finite in the sense that every point has a neighborhood of finite measure. When
the underlying space is an open subset of R, local finiteness alone implies regularity, i.e., inner regularity
with respect to compact sets and outer regularity with respect to open sets [40, Chapter 2, Theorem 2.18].
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[38, Chapter VI, §1, Corollary 1.6],

Λi
t = 1t<τSi

e−
∫
I\Si L

y
t g
i(y) dy = 1t<τSi

e−
∫ t
0 g

i(Xs)σ2(Xs) ds. (2.12)

This absolutely continuous strategy therefore amounts for player i to conceding with

intensity λi(Xt) := gi(Xt)σ
2(Xt) outside Si.

3. The singular case: If, e.g., µi = aiδxi , where ai > 0 and δxi is the Dirac mass at

xi ∈ I \ Si, then

Λi
t = 1t<τSi

e−a
iLx

i

t . (2.13)

Such discrete singular strategies are the building blocks of all mixed-strategy MPEs in

the model studied in [12, Theorems 2–3] when players are asymmetric.

2.4 Markov-Perfect Equilibrium and Properties of Best Replies

We recall the definition and some properties of best replies.

Lemma 2.6 ([12, Lemma 4]). For each x ∈ I and for any pair of randomized stopping times

with ccdfs (Γ1,Γ2), J i(x,Γi,Γj) ≤ supτ i∈T J
i(x, τ i,Γj).

Definition 2.7. For each i = 1, 2, (µi, Si) is a perfect best reply (pbr) for player i to (µj, Sj)

and J̄ i(·, (µj, Sj)) is player i’s best-reply value function (brvf) to (µj, Sj) if

∀x ∈ I, J i(x, (µi, Si), (µj, Sj)) = J̄ i(x, (µj, Sj)) := sup
τ i∈T

J i(x, τ i, (µj, Sj)).

The set of pbrs of player i against (µj, Sj) is

PBRi(µj, Sj) := {(µi, Si) : ∀x ∈ I, J i(x, (µi, Si), (µj, Sj)) = J̄ i(x, (µj, Sj))},

and the pbr correspondence is defined by

PBR((µ1, S1), (µ2, S2)) := PBR1(µ2, S2)× PBR2(µ1, S1). (2.14)

A Markov-perfect equilibrium (MPE) is a profile ((µ1, S1), (µ2, S2)) of Markov strategies such

that, for each i = 1, 2, (µi, Si) is a pbr for player i to (µj, Sj).

When no confusion can arise as to the strategy of player j, we write J̄ i instead of

J̄ i(·, (µj, Sj)). It follows from Definition 2.7 that a pair of Markovian randomized stopping

times is an MPE if and only if it is a fixed point of the pbr correspondence, i.e.,

((µ1, S1), (µ2, S2)) ∈ PBR((µ1, S1), (µ2, S2))).

The following proposition provides useful general properties of pbrs and brvfs.
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Proposition 2.8. Given (µj, Sj), the corresponding brvf J̄ i satisfies

(a) Ri ≤ J̄ i on I;

(b) J̄ i = Gi on Sj;

(c) for each x ∈ Sj, if Gi(x) > Ri(x), then J̄ i > Ri on a neighborhood of x.

Furthermore, if (µi, Si) is a pbr to (µj, Sj), then

(i) Si ∩ Sj ∩ {Gi > Ri} = ∅;

(ii) Si ⊂ Si := {J̄ i = Ri};

(iii) suppµi \ Sj ⊂ Si and suppµi ∩ Sj ⊂ {J̄ i = Gi};

(iv) (0, Si) is also a pbr to (µj, Sj); more generally, (µ̃i, Si) is a pbr to (µj, Sj) for any µ̃i

such that supp µ̃i ⊂ Si ∪ Sj.

Except for point (c), the proof of Proposition 2.8 essentially follows along the lines of

[12, Proposition 1], and is therefore postponed to the Appendix. Notice that points (i)–(iv)

assume that a pbr to (µj, Sj) exists.

2.5 Main Results

We are now ready to state our two main results, Theorems 2.9 and 2.10.

Let M(I) be the set of nonnegative, regular, but non necessarily finite measures m :

B(I) → [0,∞]. Our first main result, which may be of independent interest, introduces a

convenient topological structure on M(I).

Theorem 2.9. Let ϑ be the coarsest topology on M(I) such that

1. for all a, b ∈ I ∩ Q such that a < b, the mapping M(I) → [0,∞] : m 7→ m((a, b)) is

lower semicontinuous (lsc);

2. for all a, b ∈ I ∩ Q such that a ≤ b, the mapping M(I) → [0,∞] : m 7→ m([a, b]) is

upper semicontinuous (usc).

Then (M(I), ϑ) is a compact absolute retract.

Our second main result encapsulates our central existence claim.

Theorem 2.10. Any BWoA admits an MPE.

Notice that the MPE whose existence is asserted in Theorem 2.10 may well have to

involve randomized stopping times. Indeed, we provide in Section 7 an example of a BWoA

that admits no pure-strategy MPE.
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2.6 An Overview of the Argument

The proof of Theorem 2.10 is based on a fixed-point theorem for correspondences applied to

a slightly modified version of the pbr correspondence (2.14). In this section, we outline the

main steps of the proof, emphasizing the central role played by Theorem 2.9.

An Alternative Representation of Markov Strategies First, it is useful to identify a

pair (µ, S), where S ⊂ I is a closed set and µ is a Radon measure on I \S, with a measure in

M(I) that is identically ∞ on S. Precisely, given such a pair (µ, S), let m : B(I)→ [0,∞]

be the measure defined by

m(A) :=

{
µ(A) if A ∩ S = ∅
∞ if A ∩ S 6= ∅

, A ∈ B(I). (2.15)

That m is regular and, hence, belongs to M(I), follows directly from (2.15) and from µ

being a Radon measure on I \ S. Conversely, given m ∈ M(I), let e(m) be the explosion

set of m, defined as

e(m) := {x ∈ I : ∀ε > 0, m(Nε(x)) =∞},

where Nε(x) := (x− ε, x+ ε) ∩ I.

Lemma 2.11. For each m ∈M(I), the set e(m) is closed and m|I\e(m) is a Radon measure

on I \ e(m). Moreover, if A ∈ B(I) is such that A ∩ e(m) 6= ∅, then m(A) =∞.

Proof. First, if xn → x with xn ∈ e(m) for all n ≥ 0, then, for each ε > 0, |xn − x| < ε
2

for

any sufficiently large n, so that

m(Nε(x)) ≥ m(N ε
2
(xn)) =∞,

proving that e(m) is closed. Next, by definition, every point x ∈ I\e(m) has a neighborhood

with finite m-measure, which implies the second assertion. Finally, the last assertion is a

direct consequence of the regularity of m and of the definition of e(m). The result follows.

Using Lemma 2.11, we can define a mapping

m 7→ (µ, S) := (m|I\e(m), e(m)) (2.16)

that associates to each m ∈M(I) a pair (µ, S) such that S is a closed subset of I and µ is

a Radon measure on I \ S. By (2.15), this mapping is one-to-one and onto, which allows us

to identify a pair (µ, S) with the corresponding measure m, and thus the set of Markovian

randomized stopping times with M(I). With some abuse of notation, we will accordingly

write (µ, S) ∈M(I).
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A Fixed-Point Theorem Proving that an MPE exists in any BWoA requires applying an

appropriate fixed-point theorem to the pbr correspondence. The main difficulty is that the

domainM(I) of this correspondence is not convex for the two natural vector-space structures

we can think of. First, the set of csfs (or ccdfs) associated to Markovian randomized

strategies is not convex.3 Second, because we allow the measures in M(I) to take the

value ∞ on compact sets, M(I) is not a subset of the vector space of signed locally finite

measures. Therefore, we cannot easily apply standard results such as Glicksberg’s [22]

infinite-dimensional generalization of Kakutani’s [25] fixed-point theorem, which requires

a convex structure. Our proof is instead based on a more general fixed-point theorem due

to Eilenberg and Montgomery [16].4

Let us first recall the definition of an absolute retract appearing in Theorem 2.10 as well

as the definition of a contractible space appearing in the fixed-point theorem we will use.

Definition 2.12. A metric space (E, d) is an absolute retract (AR) if, for any continuous

map f : E → E ′ into a metric space (E ′, d′) such that f is an homeomorphism between E

and f(E) and f(E) is closed in E ′, there exists a continuous map g : E ′ → f(E) such that

for all x ∈ f(E), g(x) = x (i.e., f(E) is a retract of E ′).

Definition 2.13. A metric space (E, d) is contractible if there exists a continuous map

H : E × [0, 1] → E and x0 ∈ E such that H(·, 0) = IdE and H(·, 1) = x0 (i.e., the identity

map is homotopic to a constant map).

The following result is a corollary of Eilenberg–Montgomery’s fixed-point theorem.

Theorem 2.14 ([35, Theorem 14.3]). If (E, d) is a compact AR and Φ : E � E is a

correspondence with a closed graph and nonempty contractible values, then Φ admits a fixed

point, i.e., there exists e∗ ∈ E such that e∗ ∈ Φ(e∗).

The importance of Theorem 2.9 is now clear. Theorem 2.5 and Lemma 2.11 enable

us to identify the set of Markovian randomized stopping times with M(I), and Theorem

2.9 shows that M(I) is a compact AR. This provides in turn the required foundation for

applying Theorem 2.14.

The Main Steps of the Proof The remainder of the paper is organized as follows:

1. In Section 3, we show that there exists a pbr to any Markovian strategy (Proposition

3This can be seen by considering the average of the csfs associated to the hitting times τx and τy for two
points x 6= y in I: the average csf jumps from 1 to 1

2 at τ = τx ∧ τy, which contradicts (2.10) applied at τ
with s = 0.

4Debreu [9] uses this theorem to prove the existence of a social equilibrium in an abstract economy.
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3.1) and we provide a characterization of pbrs (Proposition 3.3). We also introduce a

correspondence Φ in (3.12)–(3.13) whose values are subsets of the pbr correspondence

(2.14), and to which we will eventually apply Theorem 2.14.

2. In Section 4, we show that the topology ϑ on M(I) is compact and metrizable and

extends the classical vague topology for Radon measures to the whole set M(I)

(Proposition 4.1). We also show that convergence for this topology implies almost

sure weak convergence of the associated csfs (Proposition 4.3).

3. In Section 5, we show that the correspondence Φ has a closed graph.

4. In Section 6, we prove Theorem 2.9 and we show that the correspondence Φ has

contractible values. Except for the tools from general topology we use, the proof is

relatively elementary, and is based on classical convolutions and orthogonal projections.

Applying Theorem 2.14 to Φ finally concludes the proof of Theorem 2.10.

5. Finally, in Section 7, we present an example of game which does not admit any MPE

in pure stopping times, but admits an MPE in randomized stopping times that has a

similar structure as the MPEs identified in [12] in a more specific framework.

3 Existence and Characterization of Pbrs

3.1 Existence of Pure Pbrs

Let us fix (µj, Sj) ∈M(I) and consider the following optimal stopping problem:

J̄ i(x) := sup
γi∈Tr

J i(x, γi, (µj, Sj)) = sup
τ i∈T

J i(x, τ i, (µj, Sj)), x ∈ I, (3.1)

where the second equality follows from Lemma 2.6. By Definition 2.7, the Markovian

randomized stopping times that are optimal in (3.1) for all x are the pbrs to (µj, Sj). By

(2.8), we have

∀τ i ∈ T , J i(x, τ i, (µj, Sj)) = Ex [Yτ i ],

where

Yt :=

∫
[0,t)

e−rsGi(Xs) dΓjs + e−rtRi(Xt)Λ
j
t−, t ≥ 0. (3.2)

Notice that Y∞ = Y∞− =
∫

[0,∞)
e−rsGi(Xs) dΓjs. Therefore, the problem

J̄ i(x) = sup
τ i∈T

Ex [Yτ i ] (3.3)

11



falls into the general theory of optimal stopping, from which we will borrow several results

below. It follows from Proposition 2.8 and Si = {J̄ i = Ri} that

Sj ∩ Si ⊂ {Gi = Ri} and Sj \ Si ⊂ {Gi > Ri}. (3.4)

Notice that the set Si may be empty. We now prove that a pure pbr exists.

Proposition 3.1. Si is closed and (0, Si) is a pbr to (µj, Sj).

Proof. The proof consists of five steps.

Step 1 Observe first from Gi ≥ Ri that the process Y := (Yt)t≥0 defined in (3.2) has

càglàd and lsc trajectories; specifically, the only potential discontinuity is at τSj whenever

τSj <∞. Observe also that the value function of problem (3.3) is not modified if we replace

Y with its right-continuous modification Ȳ , defined by

Ȳt := Yt+ =

∫
[0,t]

e−rsGi(Xs) dΓjs + e−rtRi(Xt)Λ
j
t , t ≥ 0. (3.5)

Indeed, Ȳ ≥ Y and thus

J̄ i(x) ≤ sup
τ∈T

Ex [Ȳτ ], (3.6)

and the reverse inequality follows from the fact that, by dominated convergence,

Ex[Ȳτ ] = lim
n→∞

Ex [Yτ+ 1
n
]. (3.7)

Notice that Ȳ has càdlàg and usc trajectories. These remarks lead us to consider the problem

J̄ i(x) = sup
τ∈T

Ex [Ȳτ ]. (3.8)

By Assumption A1, the processes Y and Ȳ are of class (D). Therefore, J̄ i is analytically

measurable [18, Proposition 2.4], and thus universally measurable. In particular, for each τ ∈
T , J̄ i(Xτ ) defines a random variable on Ω. For each x ∈ I, let Zx denote the Snell envelope

of Ȳ on the stochastic basis (Ω,F , (Ft)t≥0,Px). It is known (see [13, Appendix 1, §22] and

[17, Theorem 2.28 and Proposition 2.29]) that Zx is a strong optional supermartingale of

class (D) with almost surely càdlàg paths and that

∀τ ∈ T , Zx
τ = ess sup

ρ≥τ, ρ∈T
Ex [Ȳρ |Fτ ].

Using the same argument as in (3.6)–(3.7) with conditional expectations, one can check that

Zx is also the Snell envelope of Y .

12



Step 2 We first claim that the Snell envelope Zx is indistinguishable under Px from the

process Ẑ defined by

Ẑt :=

∫
[0,t]

e−rsGi(Xs) dΓjs + Λj
t e−rtJ̄ i(Xt), t ≥ 0. (3.9)

First, it follows from [18] that, for every stopping time τ of the canonical filtration (F0
t )t≥0,

Zx
τ = Ẑτ Px-a.s. (3.10)

The proof of (3.10) is detailed in the Appendix for the sake of completeness. To prove that

Zx and Ẑ are indistinguishable, it is sufficient to show that J̄ i is continuous on I \ Sj and

that Ẑ has càdlàg trajectories.

As for the continuity of J̄ i on I \ Sj, let x /∈ Sj and, for each n ∈ N, consider the

(F0
t )t≥0-stopping time τn defined as the first exit time by X of an interval (x− δ, x+ εn) for

an arbitrary sequence εn → 0 in R+ and a fixed δ > 0. We have Zx
0 = J̄ i(x) Px-a.s., and, as

Zx is Px-a.s. right-continuous and of class (D),

J̄ i(x) = Zx
0

= lim
n→∞

Ex [Zx
τn ]

= lim
n→∞

Ex [Ẑτn ]

= lim
n→∞

Ex
[∫

[0,τn]

e−rsGi(Xs) dΓjs + Λj
τne−rτn J̄ i(Xτn)

]
,

where the third equality follows from (3.10). Using that J̄ i(Xτn) = J̄ i(x + εn) on {Xτn =

x+ εn}, we have, for some constant C > 0,∣∣∣∣Ex[∫
[0,τn]

e−rsGi(Xs) dΓjs + Λj
τne−rτn J̄ i(Xτn)

]
− J̄ i(x+ εn)

∣∣∣∣ ≤ CEx [Γjτn + 1Xτn=x−δ]→ 0.

This implies that limn→∞ J̄
i(x + εn) = J̄ i(x), and thus that J̄ i is right-continuous at x as

the sequence (εn)n≥0 in R+ is arbitrary. The proof of the left-continuity of J̄ i on I \ Sj is

similar and thus omitted.

The continuity of J̄ i on I \ Sj implies that Ẑ has càdlàg trajectories, with a single

potential discontinuity at τSj . Therefore, the processes Zx and Ẑ are indistinguishable. The

claim follows. As the Snell envelope is defined up to an evanescent set, for all x ∈ I, Ẑ is

the Snell envelope of Ȳ on the stochastic basis (Ω,F , (Ft)t≥0,Px). We will use this fact in

the subsequent steps.

Step 3 We now prove that Si is closed. Consider a sequence (xn)n≥0 in Si converging
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to x ∈ I. We need to show that x ∈ Si. If x /∈ Sj, then x ∈ Si as J̄ i is continuous on

I \ Sj by Step 2. If x ∈ Sj, then it must be that Gi(x) = Ri(x); otherwise, by Proposition

2.8(c), there would exist a neighborhood of x which does not intersect Si, a contradiction.

By Proposition 2.8(b), J̄ i(x) = Gi(x) as x ∈ Sj. Thus J̄ i(x) = Gi(x) = Ri(x), which implies

that x ∈ Si. This concludes the proof that Si is closed.

Step 4 We next claim that τSi ∧ τSj is optimal for (3.8). As Ȳ has usc trajectories and is

of class (D), it follows from [17, Theorem 2.41] that

τ ∗ := inf {t ≥ 0 : Ẑt = Ȳt}

is the smallest optimal stopping time for (3.8). In turn [17, Theorem 2.31], the optimality

of τ ∗ in (3.8) is equivalent to the facts that:

� Ẑ is a martingale up to τ ∗;

� Ẑτ∗ = Ȳτ∗ .

Let us focus on the second condition. From (3.5) and (3.9), Ẑt = Ȳt is equivalent to

Λj
t [J̄

i(Xt)−Ri(Xt)] = 0.

Recalling that inf {t ≥ 0 : Λj
t = 0} = τSj , we deduce that

τ ∗ = inf {t ≥ 0 : J̄ i(Xt) = Ri(Xt)} ∧ τSj = τSi ∧ τSj a.s.

The claim follows.

Step 5 We finally prove that τSi is optimal for (3.3). For each x ∈ I,

J̄ i(x) = Ex [Ȳτ∗ ]

= Ex [Ẑτ∗ ]

= Ex
[∫

[0,τ∗]

e−rsGi(Xs) dΓjs + Λj
τ∗ e−rτ

∗
J̄ i(Xτ∗)

]
= Ex

[
1τSi<τSj

[∫
[0,τSi ]

e−rsGi(Xs) dΓjs + Λj
τSi

e−rτSiRi(XτSi
)

]

+ 1τSi=τSj

[∫
[0,τSi ]

e−rsGi(Xs) dΓjs + Λj
τSi

e−rτSiRi(XτSi
)

]

+ 1τSi>τSj

[∫
[0,τ

Sj
]

e−rsGi(Xs) dΓjs + Λj
τ
Sj

e−rτSj J̄ i(Xτ
Sj

)

]]
,
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where the first and second equalities follow from the optimality of τ ∗ in (3.8), and the fourth

equality follows from J̄ i(XτSi
) = Ri(XτSi

) as Si is closed.

Let us examine the three terms in the last expression separately. For the first one, using

that Λj is continuous on [0, τSj), we obtain

1τSi<τSj

[∫
[0,τSi ]

e−rsGi(Xs) dΓjs + Λj
τSi

e−rτSiRi(XτSi
)

]

= 1τSi<τSj

[∫
[0,τSi )

e−rsGi(Xs) dΓjs + Λj
τSi−

e−rτSiRi(XτSi
)

]
= 1τSi<τSj

YτSi .

For the second one, using that Gi = Ri on Sj ∩ Si, we obtain

1τSi=τSj

[∫
[0,τSi ]

e−rsGi(Xs) dΓjs + Λj
τSi

e−rτSiRi(XτSi
)

]

= 1τSi=τSj

[∫
[0,τSi )

e−rsGi(Xs) dΓjs + e−rτSi (Λj
τSi−
− Λj

τSi
)Gi(XτSi

) + Λj
τSi

e−rτSiRi(XτSi
)

]

= 1τSi=τSj

[∫
[0,τSi )

e−rsGi(Xs) dΓjs + Λj
τSi−

e−rτSiRi(XτSi
)

]
= 1τSi=τSj

YτSi .

For the third one, using that Λj = 0 on [τSj ,∞), we obtain

1τSi>τSj

[∫
[0,τ

Sj
]

e−rsGi(Xs) dΓjs + Λj
τ
Sj

e−rτSjRi(Xτ
Sj

)

]
= 1τSi>τSj

∫
[0,τ

Sj
]

e−rsGi(Xs) dΓjs

= 1τSi>τSj

[∫
[0,τSi )

e−rsGi(Xs) dΓjs + Λj
τSi−

e−rτSiRi(XτSi+
)

]
= 1τSi>τSj

YτSi .

Gathering these three equalities, we obtain:

J̄ i(x) = Ex
[(
1τSi<τSj

+ 1τSi=τSj
+ 1τSi>τSj

)
YτSi

]
= Ex

[
YτSi

]
,

from which it follows that τSi is optimal in problem (3.3) and thus that (0, Si) is a pbr to

(µj, Sj). Hence the result.

It follows from this result and the definition of Si that Si is the largest set over which

it is optimal for player i to stop in a pbr to (µj, Sj). Equilibrium may however require that

player i stop on a smaller set, and possibly mix on the complement of this set. Thus we

need to characterize all pbrs to (µj, Sj), a task to which we now turn.
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3.2 Characterization of Pbrs

Define the set

Σi := {Si ⊂ I closed : (0, Si) is a pbr to (µj, Sj)}.

The characterization of pbrs relies on the following lemma.

Lemma 3.2. The set Σi is nonempty, stable by intersection, and has a smallest element Si.

Moreover,

Σi = {Si ⊂ I closed : Si ⊂ Si ⊂ Si}.

Proof. By Proposition 3.1, Si ∈ Σi, so that Σi is nonempty. Moreover, by Proposition 2.8(ii),

every element of Σi is a subset of Si. Now, let Si ⊂ Si be closed and recall that Ri = Gi on

Sj ∩ Si by (3.4). We have a.s.

ẐτSi =

∫
[0,τSi ]

e−rsGi(Xs) dΓjs + Λj
τSi

e−rτSi J̄ i(XτSi
)

=

∫
[0,τSi ]

e−rsGi(Xs) dΓjs + Λj
τSi

e−rτSiRi(XτSi
)

=

∫
[0,τSi )

e−rsGi(Xs) dΓjs + Λj
τSi−

e−rτSiRi(XτSi
)

= YτSi , (3.11)

where the first equality follows from (3.9)–(3.10), the second equality follows from XτSi
∈ Si,

and the third equality follows from the fact that either ∆ΓjτSi = 0 or τSi = τSj , the latter

implying that Ri(XτSi
) = Gi(XτSi

) as in the proof of Proposition 3.1. The remainder of the

proof consists of two steps.

Step 1 We first show that Σi is stable by intersection, i.e., that, given two subsets Si and

Ŝi of Σi, the stopping time τSi∩Ŝi = τSi ∨ τŜi is optimal in (3.3). By [17, Theorem 2.31], it

is sufficient to prove that Yτ
Si∩Ŝi

= Ẑτ
Si∩Ŝi

and that Ẑ is a martingale up to τSi∩Ŝi . The first

property follows from (3.11). As for the martingale property, because Ẑ is a supermartingale,

we only need to verify that for each x ∈ I, Ex
[
Ẑτ

Si∩Ŝi

]
= Ex [Ẑ0]. We have

Ex
[
Ẑτ

Si∩Ŝi

]
= Ex

[
ẐτSi1τŜi≤τSi + Ẑτ

Ŝi
1τ

Ŝi
>τSi

]
= Ex

[
Ẑτ

Ŝi
1τ

Ŝi
≤τSi + Ẑτ

Ŝi
1τ

Ŝi
>τSi

]
= Ex

[
Ẑτ

Ŝi

]
= Ex [Ẑ0]
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where the second and fourth equalities follow from the fact that Ẑ is a martingale up to τSi

and τŜi , respectively. We conclude that τSi∩Ŝi = τSi ∨ τŜi is indeed optimal in (3.3) and thus

that Si ∩ Ŝi ∈ Σi.

Step 2 Now, let us define Si :=
⋂
Si∈Σi S

i. Because I \ Si is the union of the open sets

I \Si for Si ∈ Σi, which admits a countable subcover as any open subset of the real line is a

Lindelöf space, there exists a sequence (Sin)n≥0 in Σi such that Si =
⋂
n≥0 S

i
n. As a result, Si

is the intersection of the nonincreasing sequence of closed sets (Ŝin)n≥0 := (
⋂n
p=1 S

i
p)n≥0 in Σi.

The sequence (τŜin)n≥0 is nondecreasing, and thus limn→∞ τŜin is well-defined. We claim that

τSi = limn→∞ τŜin . It is clear that τSi ≥ limn→∞ τŜin . If this limit is infinite, then the equality

holds. If this limit is finite, then Xlimn→∞ τ
Ŝin

belongs to Si and thus τSi ≤ limn→∞ τŜin , so

that the equality again holds. The claim follows. Because τŜin is optimal in (3.3), it follows

from (3.11) that J̄ i(x) = Ex
[
Ẑτ

Ŝin

]
= Ex

[
YŜin

]
for all n ≥ 0. On the other hand, (3.11)

implies ẐτSi = YτSi a.s. and we conclude that J̄ i(x) = Ex
[
ẐτSi

]
= Ex

[
YSi
]

by dominated

convergence using that Y is left-continuous. In particular, Si ∈ Σi and Si is the smallest

element of Σi. It follows that Σi ⊂ {Si ⊂ I closed : Si ⊂ Si ⊂ Si}. To prove the reverse

inclusion, it suffices to notice that, if Si ⊂ Si ⊂ Si, then (3.11) implies ẐτSi = YτSi and that

Ẑ is a martingale up to τSi as it is a martingale up to τSi ≥ τSi . The result follows.

We are now ready to characterize the set of pbrs to (µj, Sj).

Proposition 3.3. (µi, Si) is a pbr to (µj, Sj) if and only if Si ⊂ Si ⊂ Si and µi is a Radon

measure on I \ Si that is concentrated on (Si \ Si) ∪ Sj.

Proof. If (µi, Si) is a pbr to (µj, Sj), then, by Proposition 2.8(iv), (0, Si) is also a pbr to

(µj, Sj) and thus Si ∈ Σi, which proves the inclusions by Lemma 3.2. The second point

follows directly from Proposition 2.8-(iii–iv). Conversely, if Si ⊂ Si ⊂ Si and µi is a Radon

measure on I \ Si that is concentrated on (Si \ Si) ∪ Sj, then (0, Si) is a pbr to (µj, Sj) by

Lemma 3.2, and (µi, Si) is a pbr to (µj, Sj) by Proposition 2.8-(iv). Hence the result.

3.3 The Correspondence Φ

We now consider a correspondence Φi whose values are nonempty subsets of the values of

PBRi. Specifically, for each (µj, Sj) ∈M(I), let

Φi(µj, Sj) := {(µi, Si) ∈M(I) : Si ⊂ Si ⊂ Si and µi is concentrated on Si \ Si}. (3.12)

We will apply the fixed-point Theorem 2.14 to the correspondence Φ : M(I) ×M(I) �
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M(I)×M(I) defined by

Φ((µ1, S1), (µ2, S2)) := Φ1(µ2, S2)× Φ2(µ1, S1). (3.13)

Our approach is justified by the fact that Φi takes values in the set of pbrs of player i, as

the following result shows.

Lemma 3.4. For all (µj, Sj) ∈M(I),

Φi(µj, Sj) = {(µi, Si) ∈ PBRi(µj, Sj) : µi(Sj ∩ {Gi > Ri}) = 0}. (3.14)

Proof. Let (µi, Si) ∈ Φi(µj, Sj). By Proposition 3.3, (0, Si) ∈ PBRi(µj, Sj). By Proposition

2.8(iv), because µi is concentrated on Si \ Si ⊂ Si ∪ Sj, (µi, Si) ∈ PBRi(µj, Sj). By (3.4),

Sj ∩ Si ⊂ {Gi = Ri}, and thus

µi(Sj ∩ {Gi > Ri}) = µi(Sj ∩ Si ∩ {Gi > Ri}) = 0.

Conversely, let (µi, Si) ∈ PBRi(µj, Sj) such that µi(Sj ∩ {Gi > Ri}) = 0. By Proposition

3.3, Si ⊂ Si ⊂ Si and µi is concentrated on (Si \ Si) ∪ Sj. By (3.4), Sj \ Si ⊂ Sj ∩
{Gi > Ri}, and thus

µi(Sj \ Si) ≤ µi(Sj ∩ {Gi > Ri}) = 0.

Hence, µi is concentrated on Si \ Si, so that (µi, Si) ∈ Φi(µj, Sj). The result follows.

4 A Compact Topology on M(I)

Recall that M(I) denotes the set of nonnegative regular measures m : B(I) → [0,∞], i.e.,

such that5

m(A) = inf {m(O) : A ⊂ O, O open} = sup{m(K) : K ⊂ A,K compact}, A ∈ B(I).

The proof of the following result follows along more or less standard lines (see, e.g., [26,

chapter 4]) and is therefore postponed to the Appendix.

Proposition 4.1. The topology ϑ on M(I) defined in Theorem 2.9 is metrizable and

compact. Moreover,

1. for every open set O ⊂ I, the mapping M(I)→ [0,∞] : m 7→ m(O) is lsc;

5It is well-known that Radon measures on I are regular, see Footnote 2. However, this is not true for
arbitrary nonnegative measures on I, as, e.g., for the measure defined by m(A) = ∞ if A ∩ Q 6= ∅ and 0
otherwise, which is not outer regular.
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2. for every compact set K ⊂ I, the mapping M(I)→ [0,∞] : m 7→ m(K) is usc;

3. a sequence (mn)n≥0 converges to m if and only if

� for every open set O such that O ∩ e(m) 6= ∅, mn(O)→∞;

� letting Lφ(m) :=
∫
I φ dm, Lφ(mn)→ Lφ(m) for all φ ∈ C+

c (I \ e(m)).

Remark 4.2. The second part of point (3) implies that the topology induced by ϑ on the

subset Mloc(I) of locally finite, i.e., Radon measures coincide with the usual vague topology,

as a sequence (mn)n≥0 in Mloc(I) converges vaguely to m ∈ Mloc(I) if Lφ(mn) → Lφ(m)

for all φ ∈ C+
c (I) (see, e.g., [26, Chapter 4]).

The next result is very important as it will allow us to prove convergence of expected

payoffs under appropriate assumptions.

Proposition 4.3. Suppose that (µn, Sn) → (µ, S) in M(I), and let Λn,Λ denote the csfs

associated with (µn, Sn) and (µ, S), respectively. Then

∀t 6= τS, Λn
t → Λt a.s.

Proof. For each t ≥ 0, we have

Λn
t = 1t<τSn

e−
∫
I\Sn L

y
t µn(dy) and Λt = 1t<τS e−

∫
I\S L

y
t µ(dy). (4.1)

Recall that by convention Λn
∞ = Λ∞ := 0, so that Λn,Λ define for each ω ∈ Ω the survival

function of a probability measure on [0,∞]. Let x ∈ I. We distinguish two cases.

Case 1: t < τS Notice that there exists a set Ω1 of Px-probability 1 such that, for each

ω ∈ Ω1, the mapping (t, y) 7→ Lyt (ω) is continuous (see, e.g., [38, Chapter VI, §1, Theorem

1.7]). Define Mt = max0≤s≤tXs and mt = min0≤s≤tXs. Using the occupation time formula

[38, Chapter VI, §1, Corollary 1.6]), for every interval A ⊂ I,∫ t

0

1A(Xs)σ
2(Xs) ds =

∫
I
1A(y)Lyt dy Px-a.s.

Therefore, there exists a set Ω2 of Px-probability 1 such that the above equality holds for all

A with rational endpoints. Now, notice that {t < τS} = {[mt,Mt] ⊂ I \S}. Fix ω ∈ Ω1∩Ω2

such that τS(ω) > 0. Then, for t < τS(ω), we have, for every interval A ⊂ I \ [mt(ω),Mt(ω)]

with rational endpoints,

0 =

∫ t

0

1A(Xs(ω))σ2(Xs(ω)) ds =

∫
I
1A(y)Lyt (ω) dy
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as Xs ∈ [mt,Mt] for all s ∈ [0, t]. Using the continuity of y 7→ Lyt (ω), we deduce that

Lyt (ω) = 0 for all y ∈ I \ [mt(ω),Mt(ω)], and therefore that y 7→ Lyt (ω) is a continuous

function with compact support Kt(ω) ⊂ I \ S. Now, for each n ≥ 0, let mn denote the

measure in M(I) associated to (µn, Sn). Because the restriction of mn to I \ S converges

vaguely to µ by Theorem 4.1(3), Kt(ω) ∩ Sn = ∅ for any sufficiently large n, and thus the

restrictions of µn and mn to Kt(ω) coincide. As a result, for each ω ∈ Ω1 ∩ Ω2 ∩ {t < τS},∫
I\Sn L

y
t (ω)µn(dy) =

∫
Kt(ω)

Lyt (ω)µn(dy) →
∫
Kt(ω)

Lyt (ω)µ(dy) =
∫
I\S L

y
t (ω)µ(dy) and thus

Λn
t (ω)→ Λt(ω) by (4.1).

Case 2: t > τS We first claim that, for each z ∈ I, letting τz denote the hitting time of

z, we have, for every event A ∈ Fτz

Px [Lzt > 0, t > τz, A] = Px [t > τz, A]. (4.2)

First, because t 7→ Lzt is a strongly additive functional of the diffusion process X [6, Part I,

Chapter II, Section 2, §13, and Section 4, §21], we have, with Px-probability 1 on {τz < t},

Lzt (ω) = Lzτz(ω)(ω) + Lzt−τz(ω)(θτz(ω)(ω)) = Lzt−τz(ω)(θτz(ω)(ω)).

Then, denoting by Ω̃ a copy of the canonical space endowed with the probabilities P̃y = Py
for y ∈ I,

Px [Lzt > 0, t > τz, A] = Ex [P̃z [Lzt−τz(ω)(ω̃) > 0]1t>τz(ω)1A(ω)] = Px [t > τz, A],

where the first equality follows from the Markov property, and the second equality follows

from the fact that Py [Lyt > 0] = 1 for all y ∈ I and t > 0. The claim follows. Now, if t > τS,

then it must be that either XτS = x if x ∈ S or XτS ∈ {a, b} ⊂ S if x /∈ S, where (a, b)

denotes the largest open interval containing x in I \ S. We claim that

Px
[
L
XτS
t > 0, t > τS

]
= Px [t > τS]. (4.3)

If x ∈ S, XτS = x and τS = 0, so both sides are equal by the same reasoning as above. If

x /∈ S, we have, again by the same reasoning,

Px
[
L
XτS
t > 0, t > τS

]
= Px [Lat > 0, t > τa, XτS = a] + Px [Lbt > 0, t > τb, XτS = b]

= Px [t > τa, XτS = a] + Px [t > τb, XτS = b]

= Px [t > τS].

The claim follows. Let Ω3 be a set of Px-probability 1 such that L
XτS (ω)
t (ω) > 0 for all

ω ∈ Ω3 ∩ {t > τS}. For ω ∈ Ω1 ∩ Ω2 ∩ Ω3 ∩ {t > τS}, the mapping y 7→ Lyt (ω) is
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continuous, vanishes outside of [mt(ω),Mt(ω)], and L
XτS (ω)
t (ω) > 0. By continuity, it must

be that mt(ω) < XτS(ω) < Mt(ω), and there exist ε(ω), η(ω) > 0 such that Lyt (ω) ≥ η(ω)

for all y ∈ (XτS(ω) − ε(ω), XτS(ω) + ε(ω)) ⊂ [mt(ω),Mt(ω)]. Because (µn, Sn) → (µ, S)

and XτS(ω) ∈ S, it must be that mn((XτS(ω) − ε(ω), XτS(ω) + ε(ω))) → ∞, where mn

denotes the measure in M(I) associated to (µn, Sn). Notice that 1t<τSn (ω) 6= 0 if and only

if Sn ∩ [mt(ω),Mt(ω)] = ∅, which implies (XτS(ω) − ε(ω), XτS(ω) + ε(ω)) ⊂ I \ Sn and

mn((XτS(ω)− ε(ω), XτS(ω) + ε(ω))) = µn((XτS(ω)− ε(ω), XτS(ω) + ε(ω))). We deduce that

0 ≤ Λn
t (ω) = 1t<τSn (ω) e−

∫
I\Sn L

y
t (ω)µn(dy) ≤ 1t<τSn (ω) e−η(ω)µn((XτS (ω)−ε(ω),XτS (ω)+ε(ω))) → 0,

which concludes the proof because Λt(ω) = 0 by (4.1) as t > τS(ω). Hence the result.

5 Closedness of the Graph of Φ

We will use the following classical result.

Theorem 5.1 ([4, Theorems 5.1 and 5.4]). Let E be a Polish space and (νn)n≥0 a sequence

of probability measures on E that converges weakly to ν. Suppose that f : E → R is a

measurable function such that ν(D) = 0, where D is the set of discontinuity points of f, and

that the variables of law νn ◦ f−1 are uniformly integrable, i.e.,

lim
M→∞

sup
n≥0

∫
E

|f(x)|1|f(x)|≥M νn(dx) = 0.

Then ∫
E

f dνn →
∫
E

f dν.

The following result then holds.

Proposition 5.2. The correspondence Φ defined by (3.13) has a closed graph.

Proof. Because Φ is defined as a cartesian product, it is sufficient to prove that, for each

i = 1, 2, Φi has a closed graph inM(I)×M(I). BecauseM(I) is metrizable, it is sufficient

to prove that the graph of Φi is sequentially closed. Let us therefore consider a sequence

((µin, S
i
n), (µjn, S

j
n))n≥0 in M(I) ×M(I) such that, for each n ≥ 0, (µin, S

i
n) ∈ Φi(µjn, S

j
n).

Assume further that this sequence converges to a limit ((µ1, S1), (µ2, S2)). We need to prove

that (µi, Si) ∈ Φi(µj, Sj) or, equivalently, by Lemma 3.4, that (µi, Si) is a pbr to (µj, Sj)

such that µi(Sj ∩ {Gi > Ri}) = 0.

By Proposition 4.3, for each t 6= τSi , Λi
n,t → Λi

t a.s., where the processes Λi and Λi
n are
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the csfs associated to (µi, Si) and (µin, S
i
n), respectively. Recall also that

J i(x,Γi,Γj) = Ex
[∫

[0,∞)

e−rtRi(Xt)Λ
j
t− dΓit +

∫
[0,∞)

e−rtGi(Xt)Λ
i
t dΓjt

]
, (5.1)

J i(x,Γin,Γ
j
n) = Ex

[∫
[0,∞)

e−rtRi(Xt)Λ
j
n,t− dΓin,t +

∫
[0,∞)

e−rtGi(Xt)Λ
i
n,t dΓjn,t

]
. (5.2)

The remainder of the proof consists of three steps.

Step 1 We first prove that Si ∩ Sj ∩ {Ri < Gi} = ∅. Hence suppose, by way of

contradiction, that x ∈ Si ∩ Sj ∩ {Ri < Gi}. For each n ≥ 0, because (µin, S
i
n) ∈ Φi(µjn, S

j
n),

we have J̄ i(y, (µjn, S
j
n)) = Ri(y) for all y ∈ Sin ∪ suppµin, and therefore stopping immediately

gives a weakly larger payoff than never stopping, i.e.,

Ri(y) ≥ Ey
[∫

[0,∞)

e−rsGi(Xs) dΓjn,s

]
=: κn(y). (5.3)

Now, because x ∈ Si and mi
n := (µn, Sn) → (µi, Si), for each ε > 0 we have mn((x −

ε, x + ε)) → ∞, and there exists N(ε) > 0 such that mn((x − ε, x + ε)) > 0 and thus

(x − ε, x + ε) ∩ suppmn 6= ∅ for all n ≥ N(ε). Hence, because suppmn = Sin ∪ suppµn for

all n ≥ 0, there exists a sequence xn → x such that for each n ≥ 0, xn ∈ Sin ∪ suppµin and

thus satisfies (5.3). Fix some ε > 0 such that Gi > Ri(x) + ε on [x− ε, x+ ε]. By the above

reasoning, we can assume that xn ∈ (x− ε, x+ ε) for n large enough.

Next, observe that the mapping [0,∞]→ R : t→ e−rtGi(Xt), which is a.s. equal to 0 at

∞ by Assumption A2, is a.s. continuous and bounded, and that the sequence of probabilities

over [0,∞] with csfs (Λj
n)n≥0 converges weakly to the probability ν with csf Λj by Proposition

4.3. Therefore, we can apply Theorem 5.1 with E = [0,∞] to obtain∫
[0,∞)

e−rsGi(Xs) dΓjn,s →
∫

[0,∞)

e−rsGi(Xs) dΓjs a.s.

Using Assumption A1 and x ∈ Sj, we conclude by dominated convergence that

κn(x) = Ex
[∫

[0,∞)

e−rsGi(Xs) dΓjn,s

]
→ Ex

[∫
[0,∞)

e−rsGi(Xs) dΓjs

]
= Gi(x).

It follows that κn(x) ≥ Ri(x) + ε for n large enough. Let τ denote the exit time from

(x− ε, x+ ε) and τx the hitting time of x. Using the Markov property and (2.10) as in the

proof of Proposition 2.8(c), we deduce that

Exn
[∫

[0,∞)

e−rsGi(Xs) dΓjn,s

]
= Exn

[∫
[0,τx∧τ)

e−rsGi(Xs) dΓjn,s + 1τx<τ Λj
n,τx− e−rτxκn(x) + 1τ<τx

∫
[τ,∞)

e−rsGi(Xs) dΓjn,s

]
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≥ [Ri(x) + ε]Exn [1τx<τ e−rτx ] + Exn
[
1τ<τx

∫
[τ,∞)

e−rsGi(Xs) dΓjn,s

]
. (5.4)

Again, as in the proof of Proposition 2.8(c), there exists a constant C ′ > 0 such that∣∣∣∣Exn[1τ<τx ∫
[τ,∞)

e−rsGi(Xs) dΓjn,s

]∣∣∣∣ ≤ C ′Pxn [τ < τx]. (5.5)

We deduce from (5.3) applied to xn and from (5.4)–(5.5) that

Ri(xn) ≥ Exn
[∫

[0,∞)

e−rsGi(Xs) dΓjn,s

]
≥ [Ri(x) + ε]Exn

[
1τx<τe

−rτx
]
− C ′Pxn [τ < τx].

The right-hand side of this inequality converges to Ri(x)+ε as n→∞, whereas the left-hand

side converges to Ri(x), a contradiction. We conclude that Si ∩ Sj ∩ {Ri < Gi} = ∅.

Step 2 We now prove that µi(Sj ∩ {Ri < Gi}) = 0. Suppose, by way of contradiction,

that µi(Sj ∩ {Ri < Gi}) > 0. Then there exists x ∈ Sj ∩ {Ri < Gi} such that every

neighborhood O of x is such that µi(O) > 0. Because x /∈ Si by Step 1, it must be that

[x − ε, x + ε] ∩ Si = ∅ for any sufficiently small ε > 0, and thus µi([x − ε, x + ε]) < ∞.

Because (µin, S
i
n) = mi

n → mi = (µi, Si), it follows that

lim sup
n→∞

mi
n([x− ε, x+ ε]) ≤ mi([x− ε, x+ ε]) = µi([x− ε, x+ ε]) <∞,

so that Sin ∩ [x− ε, x+ ε] = ∅ for n large enough. We deduce that

lim inf
n→∞

µin((x− ε, x+ ε)) = lim inf
n→∞

mi
n((x− ε, x+ ε))

≥ mi((x− ε, x+ ε))

= µi((x− ε, x+ ε))

> 0.

As this is true for any sufficiently small ε > 0, there exists a sequence xn → x such that for

all n, xn ∈ suppµin. Because (µin, S
i
n) ∈ Φi(µjn, S

j
n), we have Ri(xn) = J̄ i(xn, (µ

j
n, S

j
n)). Thus,

for any large enough n, inequality (5.3) holds with y = xn, which leads to a contradiction as

in Step 2. We conclude that µi(Sj ∩ {Ri < Gi}) = 0.

Step 3 We finally prove that (µi, Si) is a pbr to (µj, Sj). By Assumptions A1–A2, the

random function f : [0,∞]2 → R defined by

f(t, t′) := 1t≤t′ e
−rtR1(Xt) + 1t′<t e−rt

′
G1(Xt′),

with f(∞,∞) := 0, is a.s. bounded, and the set of discontinuities of f is the set

{(t, t) ∈ [0,∞)2 : R1(Xt) < G1(Xt)}.
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Letting νin and νi denote the probabilities over [0,∞] with csfs Λi
n and Λi respectively, and

similarly for player j, we have∫
[0,∞]2

f(t, t′) νi ⊗ νj(dt, dt′) =

∫
[0,∞)

e−rtRi(Xt)Λ
j
t− dΓit +

∫
[0,∞)

e−rtGi(Xt)Λ
i
t dΓjt . (5.6)

Because Si ∩ Sj ∩ {Ri < Gi} = ∅, the probability ν1 ⊗ ν2 does not charge the set of

discontinuities of f ; indeed, the conditional probability that t′ = t given t is 0 unless t = τSj ,

the probability that t = τSj is 0 unless τSi = τSj , and it cannot be that τSi = τSj and

Ri(XτSi
) < Gi(XτSi

). Proposition 4.3 thus implies that the sequence (νin ⊗ νjn)n≥0 converges

weakly to νi ⊗ νj. We can thus apply Theorem 5.1 to obtain∫
[0,∞]2

f(t, t′) νin ⊗ νjn(dt, dt′)→
∫

[0,∞]2
f(t, t′) νi ⊗ νj(dt, dt′) a.s.

By Assumption A1, the random variables (f(t, t′))(t,t′)∈[0,∞]2 are uniformly integrable. As a

result, the sequence of random variables (
∫

[0,∞]2
f(t, t′) νin ⊗ νjn(dt, dt′))n≥0 is also uniformly

integrable. Therefore, the above convergence also holds in expectation, which leads by

(5.1)–(5.2) and (5.6) to

J i(x,Γin,Γ
j
n)→ J i(x,Γi,Γj).

Let now τ ∈ T be an arbitrary stopping time for player i such that τ 6= τSj on Ri(Xτ ) <

Gi(Xτ ) a.s. Replacing Λi
n and Λi in the preceding proof by Λt = 1t<τ , we obtain

J i(x, τ,Γjn)→ J i(x, τ,Γj).

Because, for each n ≥ 0, (µin, S
i
n) ∈ PBRi(µjn, S

j
n), we have, for each x ∈ I,

J i(x, τ,Γjn) ≤ J i(x,Γin,Γ
j
n).

Taking the limit on both sides, it follows that, for each τ ∈ T such that τ 6= τSj a.s. and for

each x ∈ I,

J i(x, τ,Γj) ≤ J i(x,Γi,Γj). (5.7)

To conclude, notice that a stopping time τ such that τ = τSj and Ri(Xτ ) < Gi(Xτ ) with

positive probability cannot be optimal, as player 1 would prefer, conditionally on this event,

to wait indefinitely so as to let player j stop first. Hence, (5.7) holds without restriction for

all τ ∈ T . We conclude that (µi, Si) ∈ PBRi(µj, Sj) and therefore that the graph of Φi is

closed. Hence the result.
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6 Contractibility and the AR Property

The aim of this section is twofold. First, we establish in Proposition 6.6 that the space

(M(I), ϑ) is contractible, which, together with Proposition 4.1, completes the proof of

Theorem 2.9. Second, we establish in Proposition 6.7 that the correspondence Φ defined

in (3.12) has contractible values, which together with the results of the preceding sections

completes the proof of Theorem 2.10. Both proofs rely on an explicit construction of a

contraction of the space M(I) using convolutions.

Let us first introduce more tools from general topology of metric spaces.

Definition 6.1. A metric space (E, d) is an absolute neighborhood retract (ANR) if, for any

continuous map f : E → E ′ into a metric space (E ′, d′) such that f is an homeomorphism

between E and f(E) and f(E) is closed in E ′, there exists an open set U such that f(E) ⊂ U

and a continuous map g : U → f(E) such that for all x ∈ f(E), g(x) = x (i.e., f(E) is a

retract of some neighborhood U).

From Definition 2.12, it is clear that an AR is an ANR, and we have the following

characterization of ARs.

Proposition 6.2 ([35, Theorem 8.2]). (E, d) is an AR if and only if it is a contractible

ANR.

This equivalence is useful as there are sufficient conditions for a metric space to be an

ANR. The first one can be stated as follows.

Proposition 6.3 ([35, Proposition 8.3]). A metrizable convex subset of a locally convex

Hausdorff topological vector space is an ANR.

The second sufficient condition we will use states that the closure (in the strong sense of

homopotopy-denseness defined below) of an ANR is still an ANR.

Definition 6.4. Let (E, d) be a metric space and A ⊂ E. A is said to be homotopy-dense

in E if there exists a continuous map H : E × [0, 1] → E such that H(·, 0) = IdE and

H(E × (0, 1]) ⊂ A.

Proposition 6.5 ([41, Corollary 6.6.7]). Let (E, d) be a metric space and A a homotopy-

dense subset of E. Then E is an ANR if and only if A is an ANR.

The first main result of this section can be stated as follows.
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Proposition 6.6. There exists a continuous map H :M(I)× [0, 1]→M(I) such that

1. for each m ∈M(I), H(m, 0) = m and H(m, 1) = 0;

2. for all ε ∈ (0, 1] and m ∈M(I), H(m, ε) ∈Mloc(I).

Before proving Proposition 6.6, let us first show how this result enables us to complete

the proof of Theorem 2.9.

Proof of Theorem 2.9. By Proposition 4.1, M(I) is compact and metrizable. Proposition

6.6 implies that M(I) is contractible and that Mloc(I) is homotopy-dense in M(I). The

topology induced by ϑ on Mloc(I) coincides with the topology of vague convergence by

Proposition 4.1(3), and thus Mloc(I) can be identified with a convex subset of the vector

space of linear functionals on Cc(I) endowed with the vague topology. Therefore,Mloc(I) is

a convex subset of a locally convex Hausdorff topological vector space and is metrizable. We

deduce from Proposition 6.3 that Mloc(I) is an ANR. Because Mloc(I) is homotopy-dense

in M(I) and an ANR, we conclude by Proposition 6.5 that M(I) is an ANR. As M(I) is

also contractible, we conclude from Proposition 6.2 that it is an AR. Hence the result.

Let us come back to the proof of Proposition 6.6.

Proof of Proposition 6.6. The proof consists of two steps.

Step 1 We first show that it is sufficient to prove the result for I = R. Let ψ : I → R
denote a C1-diffeomorphism and assume that a function H satisfying properties 1 and 2

exists with I = R. Define

Ĥ(m, ε) := H(m ◦ ψ−1, ε) ◦ ψ, (m, ε) ∈M(I)× [0, 1],

where m ◦ ψ−1 denotes the image of the measure m by ψ, defined for each B ∈ B(R) by

m ◦ ψ−1(B) := m(ψ−1(B)), and ν ◦ ψ the image of the measure ν by ψ−1, so that

∀(m, ε,A) ∈M(I)× [0, 1]× B(I), Ĥ(m, t)(A) = H(m ◦ ψ−1, ε)(ψ(A)).

We just need to check that Ĥ is continuous and satisfies Properties 1 and 2 in Proposition

6.6. Property 1 is immediate and Property 2 follows from the fact that ψ preserves compact

sets. To prove continuity, it is sufficient to prove that the mappings

M(I)→M(R) : m 7→ m ◦ ψ−1 and M(R)→M(I) : ν 7→ ν ◦ ψ

are continuous. As the arguments for the two mappings are similar, we only consider the

first one. Thus suppose that mn → m in M(I). If O is open in R, then ψ−1(O) is open in
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I and

lim inf
n→∞

mn ◦ ψ−1(O) = lim inf
n→∞

mn(ψ−1(O)) ≥ m(ψ−1(O)) = m ◦ ψ−1(O).

Similarly, if K is compact in R, then ψ−1(F ) is compact in I and

lim sup
n→∞

mn ◦ ψ−1(K) = lim sup
n→∞

mn(ψ−1(K)) ≤ m(ψ−1(K)) = m ◦ ψ−1(K).

We conclude that mn ◦ ψ−1 → m ◦ ψ−1 in M(R), as desired. Notice for later use that, by

choosing ψ as a C1-diffeomorphism, we ensure that, if, for some ε ∈ [0, 1], H(m ◦ ψ−1, ε) is

absolutely continuous with respect to Lebesgue measure, then so is Ĥ(m, ε).

Step 2 We now prove the result for I = R. Define, for all (m, ε, x) ∈M(R)× (0, 1]× R,

h(m, ε, x) := min

{∫
R
ρε(x− y)m(dy),

1

ε2

}
, (6.1)

where ρε is a continuous function with compact support [−ε, ε] defined by

ρε(x) =
1

ε
max

{
1− |x|

ε
, 0

}
, x ∈ R.

One can easily verify the following properties for all ε ∈ (0, 1] and c ∈ (0, 1):

0 ≤ ρε ≤
1

ε
1(−ε,ε),

∫
R
ρε(x) dx = 1, lim

δ→ε
‖ρδ − ρε‖∞ = 0, ρε ≥

(1− c)
ε

1(−cε,cε). (6.2)

Define then, for all (m, ε) ∈M(R)× (0, 1],

H(m, ε) := (1− ε)h(m, ε, .) · λ,

where λ denotes Lebesgue measure, and H(m, 0) := m. Notice that, for all (m, ε) ∈M(R)×
(0, 1], the measure H(m, ε) is absolutely continuous with respect to Lebesgue measure and

has a bounded density, so that H(m, ε) ∈Mloc(R).

Because H(·, 0) = IdM(R) and H(·, 1) = 0, we only need to check that H is jointly

continuous on M(R)× [0, 1]. Thus consider a sequence (εn,mn)→ (ε,m) in M(R)× [0, 1].

Case 1: ε > 0 With no loss of generality, we can assume that εn > 0 for all n ≥ 0.

Denoting d(., C) the usual distance to a set C in R, define the sets

E+(m, ε) := {x ∈ R : d(x, e(m)) > ε},

E−(m, ε) := {x ∈ R : d(x, e(m)) < ε},

E0(m, ε) := {x ∈ R : d(x, e(m)) = ε}.

We examine these three sets separately in cases numbered 1.1, 1.2, 1.3, respectively.

Case 1.1 For each x ∈ E+(m, ε), we have d(x, e(m)) > ε, so that ρε(x−·) ∈ C+
c (R\e(m)).
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It then follows from Proposition 4.1(3) that∫
R
ρε(x− y)mn(dy)→

∫
R
ρε(x− y)m(dy) <∞.

Moreover, ρεn(x− ·)→ ρε(x− ·) uniformly, and, for n sufficiently large, all the supports of

these functions are contained in a compact subset K of R \ e(m). As lim supn→∞mn(K) ≤
m(K) <∞ and ε > 0, we have, by (6.2),∫

R
|ρεn(x− y)− ρε(x− y)|mn(dy) ≤ ‖ρεn − ρε‖∞mn(K)→ 0.

This implies ∫
R
ρεn(x− y)mn(dy)→

∫
R
ρε(x− y)m(dy)

and therefore, by (6.1),

h(mn, εn, x)→ h(m, ε, x),

as desired.

Case 1.2 The set E−(m, ε) = e(m)+(−ε, ε) is open. Let x ∈ E−(m, ε) and z ∈ e(m) such

that |x− z| < ε. Letting c ∈ ( |x−z|
ε
, 1), we have, by (6.2),

ρε(x− ·) ≥
(1− c)
ε

1(x−cε,x+cε).

For n sufficiently large, ‖ρε − ρεn‖∞ ≤ c
ε
, and thus

ρεn(x− ·) ≥ (1− 2c)

ε
1(x−cε,x+cε).

Using that z ∈ (x− cε, x+ cε) ∩ e(m), we have limn→∞mn((x− cε, x+ cε)) =∞ and thus∫
R
ρεn(x− y)mn(dy) ≥ 1− 2c

ε
mn((x− cε, x+ cε))→∞.

It follows that, for n sufficiently large, h(m, εn, x) = 1
ε2n

by (6.1). On the other hand,∫
R ρε(x− y)m(dy) =∞, so that h(m, ε, x) = 1

ε2
by (6.1) again, and we conclude that

h(mn, εn, x)→ h(m, ε, x),

as desired.

Case 1.3 Observe first that the set E0(m, ε) is countable and thus has Lebesgue measure

0; indeed, e(m)c is open and thus is a countable union of disjoint open intervals, each of
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which contains at most two points in E0(m, ε). Given φ ∈ C+
c (I), thanks to the analysis of

Cases 1.1 and 1.2, we can apply the bounded convergence theorem to deduce that

Lφ(H(mn, εn)) =

∫
R
φ(x)h(mn, εn, x) dx→

∫
R
φ(x)h(m, ε, x) dx = Lφ(H(m, ε)).

Because e(H(m, ε)) = ∅, we conclude by Proposition 4.1(3) that

H(mn, εn)→ H(m, ε),

as desired.

Case 2: ε = 0 For each n such that εn = 0, we have H(mn, 0) = mn, so we may assume

with no loss of generality that εn > 0 for all n. To prove that H(mn, εn) → H(m, 0) = m,

we use Proposition 4.1(3). We check each property in turn.

Property 1 Given an open subset O of R such that O ∩ e(m) 6= ∅, we have to prove

that limn→∞H(mn, εn)(O) = ∞. Let us fix some c ∈ (0, 1), and let z ∈ O ∩ e(m) and

δ > 0 be such that (z − δ, z + δ) ⊂ O. There exists some n0 such that, for each n ≥ n0,

(y − cεn, y + cεn) ⊂ O for all y ∈ (z − δ, z + δ). By (6.1)–(6.2), we have

H(mn, εn)(O) = (1− εn)

∫
R
1O(x)h(mn, εn, x) dx

= (1− εn)

∫
1O(x) min

{∫
R
ρεn(x− y)dmn(y),

1

ε2
n

}
dx

≥ (1− εn)

∫
R
1O(x) min

{
1− c
εn

mn((x− cεn, x+ cεn)),
1

ε2
n

}
dx. (6.3)

In turn, letting An := {x ∈ O : (1− c)mn((x− cεn, x+ cεn)) < 1
εn
}, we have

(1− εn)

∫
R
1O(x) min

{
1− c
εn

mn((x− cεn, x+ cεn)),
1

ε2
n

}
dx

=
1− εn
εn

∫
R
1O(x) min

{
(1− c)mn((x− cεn, x+ cεn)),

1

εn

}
dx

=
1− εn
εn

∫
R

[
1An(x)(1− c)mn((x− cεn, x+ cεn)) + 1O\An(x)

1

εn

]
dx

=
1− εn
εn

[∫
R

∫
R
1An(x)(1− c)1(x−cεn,x+cεn)(y)mn(dy) dx+

1

εn
λ(O \ An)

]
=

1− εn
εn

[∫
R
(1− c)λ(An ∩ (y − cεn, y + cεn))mn(dy) +

1

εn
λ(O \ An)

]
, (6.4)

where the last equality follows from Fubini’s theorem. Suppose, by way of contradiction,

that, along some subsequence, H(mn, εn)(O) is bounded above by a constant M . Then, from

(6.3)–(6.4), it must be that 1−εn
ε2n

λ(O \An) ≤M . Because (y− cεn, y+ cεn) ⊂ O, we deduce
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that, for each n ≥ n0 in the subsequence and each y ∈ (z − δ, z + δ),

λ(An ∩ (y − cεn, y + cεn)) = λ((y − cεn, y + cεn))− λ((O \ An) ∩ (y − cεn, y + cεn))

≥ 2cεn −M
ε2
n

1− εn
≥ cεn

for n sufficiently large. It follows from (6.3)–(6.4) that, along this subsequence,

H(mn, εn)(O) ≥ (1− εn)c(1− c)mn((z − δ, z + δ))→∞,

a contradiction. We conclude that H(mn, εn)(O)→∞, as desired.

Property 2 Given φ ∈ C+
c (R \ e(m)), we have to prove that Lφ(H(mn, εn))→ Lφ(m). Let

K := suppφ and, for each x ∈ R, Kx := K + [−x, x]. Because K is a compact subset of the

open set R \ e(m), there exists δ > 0 such that Kδ ∩ e(m) = ∅. Because limn→∞mn = m,

we have lim supn→∞mn(Kδ) <∞, and hence lim supn→∞mn(Kεn) <∞. Moreover,

H(mn, εn)(K) ≤
∫
K

∫
R
ρεn(x− y)mn(dy) dx

=

∫
R

∫
K

ρεn(x− y) dxmn(dy)

≤
∫
R
1Kεn (y)

∫
R
ρεn(x− y) dxmn(dy)

= mn(Kεn),

where the first inequality follows from (6.1), the first equality follows from Fubini’s theorem,

the second inequality follows from the definition of ρε, and the last equality follows from

(6.2). We deduce from this that lim supn→∞H(mn, εn)(K) <∞. Now, recall that

Lφ(H(mn, εn)) =

∫
R
φ(x)h(mn, εn, x) dx =

∫
R
φ(x) min

{∫
R
ρεn(x− y)mn(dy),

1

ε2
n

}
dx.

By (6.2), for n sufficiently large,∫
R
ρεn(x− y)mn(dy) ≤ 1

εn
mn((x− εn, x+ εn)) ≤ 1

εn
mn(Kδ) ≤

1

ε2
n

for all x ∈ K, where the last inequality follows from lim supn→∞mn(Kδ) < ∞. Therefore,

for n sufficiently large, we have, by Fubini’s theorem,

Lφ(H(mn, εn)) =

∫
R
φ(x)

∫
R
ρεn(x− y)mn(dy) dx

=

∫
R

∫
R
φ(x)ρεn(x− y) dxmn(dy)
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=

∫
R

∫
R
φ(u+ y)ρεn(u) dumn(dy).

Using that
∫
R ρεn(u) du = 1, we obtain

|Lφ(H(mn, εn))− Lφ(mn)| =
∣∣∣∣∫

R

∫
R
[φ(u+ y)− φ(y)]ρεn(u) dumn(dy)

∣∣∣∣
≤
∫
R

∫
R
|φ(u+ y)− φ(y)|ρεn(u) dumn(dy)

=

∫
Kεn

∫
R
|φ(u+ y)− φ(y)|ρεn(u) dumn(dy)

≤ ωφ(εn)mn(Kεn)

→ 0, (6.5)

where, recalling that φ ∈ C+
c (I \ e(m)) and thus is uniformly continuous, ωφ denotes the

modulus of continuity of φ. As mn → m and suppφ ∩ e(m) = ∅, we have Lφ(mn)→ Lφ(m)

by Proposition 4.1(3). From this and (6.5), we conclude that

Lφ(H(mn, εn))→ Lφ(m),

as desired. Hence the result.

Because the correspondence Φ defined by (3.13) and characterized by (3.14) has nonempty

values by Proposition 3.1 and a closed graph by Proposition 5.2, and becauseM(I)×M(I)

is a compact AR as the product of two compact ARs [35, Exercise 8.4], the following result

enables us to apply Theorem 2.14 to Φ and thereby to complete the proof of Theorem 2.10.

Proposition 6.7. The correspondence Φ has contractible values.

Proof. Recall that Φ take values in M(I) × M(I) and that, denoting mi ∈ M(I) the

measure associated to the pair (µi, Si), we have

∀(m1,m2) ∈M(I)×M(I), Φ(m1,m2) = Φ1(m2)× Φ2(m1).

Because the product of two contractible spaces is contractible, it is therefore sufficient to

prove that, for all i = 1, 2 and mj ∈ M(I), Φi(mj) is contractible in M(I). The measure

mj being fixed, we have, by (3.12),

Φi(mj) = {m ∈M(I) : Si ⊂ e(m) ⊂ Si, m(I \ Si) = 0},

where Si and Si are the closed subsets of I defined in Section 3. The open set O = I \ Si

can be written as a countable union O =
⋃
k≥0Ok of disjoint open intervals Ok ⊂ I. For
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each k ≥ 0, let Fk := Si ∩Ok, which is closed in Ok. Every measure m ∈ Φi(mj) can in turn

be written as

m = m+
∑
k≥0

mk, (6.6)

where m is defined by

m(A) =

{
∞ if A ∩ Si 6= ∅
0 if A ∩ Si = ∅

, A ∈ B(I),

and, for each k ≥ 0, mk is the restriction of m to Ok that we identify with a (not necessarily

regular) measure on I through the formula

mk(A) = m(A ∩Ok), A ∈ B(I).

Reciprocally, given any sequence (mk)k≥0 of regular measures on Ok, the formula (6.6) defines

a regular measure on I.

The proof consists of two steps. In Step 1, we prove that the contraction H constructed in

Proposition 6.6 can be modified to obtain, for each k ≥ 0, a contraction of the set of measures

in M(Ok) concentrated on Fk. To do so, we simply compose, up to a diffeomorphism, H

with the projection on Fk. In Step 2, we paste together a family of such contractions using

(6.6) to obtain a contraction of Φi(mj).

Step 1 We first prove that, for each k ≥ 0, the set

Ck := {m ∈M(Ok) : m(Ok \ Fk) = 0}

is contractible for the topology induced by ϑ onM(Ok). Notice that Ck is closed inM(Ok)

as the mapping m 7→ m(Ok \Fk) is lsc and nonnegative. Fix some k ≥ 0 and let ψk : Ok → R
be a C1-diffeomorphism. Then the map ψ̂k :M(Ok)→M(R) defined by

ψ̂k(m) = m ◦ ψ−1
k , m ∈M(Ok),

is a homeomorphism (see the proof of Proposition 6.6). Letting F̂k := ψk(Fk) and Ĉk :=

ψ̂k(Ck), consider then the map pk : R→ F̂k defined by

pk(x) = max

{
y ∈ F̂k : |x− y| = inf

z∈F̂k
|x− z|

}
, x ∈ R,

which is a right-continuous version of the orthogonal projection on F̂k. The map pk is

nondecreasing and continuous outside of an at most countable set Dk. It is easy to verify

that for any interval U ⊂ R, p−1
k (U) is an interval and that

p−1
k (U) = p−1

k (U ∩ F̂k) and p−1
k (U) ∩ F̂k = U ∩ F̂k.
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Define a map Ĥk :M(R)× [0, 1]→M(R) by

Ĥk(m, ε) = H(m, ε) ◦ p−1
k , (m, ε) ∈M(R)× [0, 1],

where H :M(R)× [0, 1]→M(R) denotes the contraction ofM(R) explicitly constructed in

Step 2 of the proof of Proposition 6.6. By construction, Ĥk(m, 0) = m◦p−1
k and Ĥk(m, 1) = 0

for all m ∈M(R). In particular, Ĥk(m, 0) = m for all m ∈ Ĉk. Therefore, to prove that Ĥk

is a contraction of Ĉk, we only need to check that it is jointly continuous on Ĉk × [0, 1] and

takes values in Ĉk. Thus consider a sequence (mn, εn)→ (m, ε) in Ĉk× [0, 1]. We distinguish

two cases.

Case 1: ε > 0 With no loss of generality, we can assume that εn > 0 for all n ≥ 0. First,

let U ⊂ R be an open interval. Then p−1
k (U) is an interval, whose interior we denote by U ′.

For each n ≥ 0, we have

Ĥk(mn, εn)(U) = H(mn, εn)(p−1
k (U)) = H(mn, εn)(U ′),

where the second equality follows from the fact that H(mn, εn) is absolutely continuous and

that p−1
k (U)\U ′ consists of at most one point, which, whenever it exists, is the left-endpoint

of p−1
k (U). Using that H is continuous, we conclude by the same argument that

lim inf
n→∞

Ĥk(mn, εn)(U) ≥ H(m, ε)(U ′) = Ĥk(m, ε)(U). (6.7)

Next, let K ⊂ R be a compact interval. Then p−1
k (K) is an interval, but it is not necessarily

bounded. However, because the measures mn belong to Ĉk, using the definition of H and

letting Gk be the convex hull of Fk + [−1, 1], we have H(mn, εn)(R \Gk) = 0 and therefore

H(mn, εn)(p−1
k (K)) = H(mn, εn)(p−1

k (K) ∩Gk)

for all n ≥ 0. We claim that p−1
k (K)∩Gk is a (possibly empty) bounded interval. That it is

an interval follows from the fact that it is the intersection of two intervals. Now, suppose,

by way of contradiction, that it is not bounded. Then there exists an unbounded monotone

sequence (xm)m≥0 in p−1
k (K) ∩Gk. With no loss of generality, assume that this sequence is

increasing. Because pk(xm) ∈ K for all m ≥ 0, we have, for any sufficiently large m,

pk(xm) = x∗ := max K ∩ F̂k and (x∗, xm) ∩ F̂k = ∅.

Letting m → ∞, this implies (x∗,∞) ∩ F̂k = ∅ and in turn that Gk ⊂ (−∞, x∗ + 1], a

contradiction as xm ∈ Gk for all m ≥ 0. The claim follows. Define K ′ as the closure of

p−1
k (K) ∩Gk, we have

Ĥk(mn, εn)(K) = H(mn, εn)(p−1
k (K) ∩Gk) = H(mn, εn)(K ′),
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where the second equality follows from the fact that H(mn, εn) is absolutely continuous and

that K ′ \ (p−1
k (K) ∩ Gk) is finite. Using that H is continuous, we conclude by the same

argument that

lim sup
n→∞

Ĥk(mn, εn)(K) ≤ H(m, ε)(K ′) = Ĥk(m, ε)(K). (6.8)

It follows from (6.7)–(6.8) that Ĥk is continuous at (m, ε).

Case 2: ε = 0 For each n such that εn = 0, we have Hk(mn, 0) = mn, so we may assume

with no loss of generality that εn > 0 for all n. First, let U ⊂ R be an open interval. Then

p−1
k (U) is an interval, whose interior we denote by U ′. As in Case 1, we have

lim inf
n→∞

Ĥk(mn, εn)(U) ≥ H(m, 0)(U ′) = m(U ′).

Notice that p−1
k (U) \ U ′ consists of at most one point, which, whenever it exists, is the

left-endpoint of p−1
k (U) and does not belong to F̂k. Thus m(U ′) = m(p−1

k (U)) as m is

concentrated on F̂k. Using the properties of pk and the fact that m ∈ Ĉk, it follows that

m(U ′) = m(p−1
k (U)) = m(U ∩ F̂k) = m(U).

We conclude that

lim inf
n→∞

Ĥk(mn, εn)(U) ≥ m(U ′) = m(U) = Ĥk(m, 0)(U). (6.9)

Next, let K ⊂ R be a compact interval, and let K ′ be the closure of p−1
k (K) ∩ Gk. As in

Case 1, we have

lim sup
n→∞

Ĥk(mn, εn)(K) ≤ H(m, 0)(K ′) = m(K ′).

Using the properties of pk and the fact that m ∈ Ĉk, we have

m(K) = m(K ∩ F̂k) = m(p−1
k (K)) = m(p−1

k (K) ∩Gk).

Because Gk is a closed interval, any point in K ′ \ (p−1
k (K) ∩ Gk) must be an endpoint of

p−1
k (K) which does not belong to p−1

k (K) and thus cannot belong to F̂k. It follows that

m(K) = m(p−1
k (K) ∩Gk) = m(K ′).

We conclude that

lim sup
n→∞

Ĥk(mn, εn)(K) ≤ m(K ′) = m(K) = Ĥk(m, 0)(K). (6.10)
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It follows from (6.7)–(6.8) that Ĥk is continuous at (m, 0).

The analyses of Cases 1–2 above imply that Ĥk is a contraction of Ĉk. Define then

H∗k(m, ε) := Ĥk(m ◦ ψ−1
k , ε) ◦ ψk, (m, ε) ∈ Ck × [0, 1].

By composition, H∗k is continuous and, from the properties of Ĥk, we have

∀m ∈ Ck, H∗k(m, 0) = m and H∗k(m, 0) = 0.

Hence H∗k is a contraction of Ck, as desired.

Step 2 We now prove that Φi(mj) is contractible. Define the map H∗ : Φi(mj)× [0, 1]→
Φi(mj) by

H∗(m, ε) := m+
∑
k≥0

H∗k(mk, ε), (m, ε) ∈ Φi(mj)× [0, 1], (6.11)

where m and the measures (mk)k≥0 are defined in (6.6) and, for each k ≥ 0, H∗k is the map

constructed in Step 1. We only need to prove that H∗ is continuous; indeed, that

∀m ∈ Φi(mj), H∗(m, 0) = m and H∗(m, 1) = m

follows directly from (6.6), (6.11), and the properties of the maps H∗k . Thus consider a

sequence (mn, εn)→ (m, ε) in Φi(mj)× [0, 1]. Notice first that, for each k ≥ 0, the sequence

(mk,n)n≥0 converges to mk in M(Ok), so that

H∗k(mk,n, εn)→ H∗k(mk, ε).

First, let U be an open subset of I. If U ∩ Si 6= ∅, then

H∗(mn, εn)(U) =∞→∞ = H∗(m, ε)(U).

If U ∩ Si = ∅, then U is the disjoint union of the open sets U ∩Ok, and we have

lim inf
n→∞

H∗(mn, εn)(U) = lim inf
n→∞

∑
k≥0

H∗k(mn, εn)(U ∩Ok)

≥
∑
k≥0

lim inf
n→∞

H∗k(mk,n, εn)(U ∩Ok)

≥
∑
k

H∗k(mk, ε)(U ∩Ok)

= H∗(m, ε)(U).
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Next, let K be a compact subset of I. If K ∩ Si 6= ∅, then

H∗(mn, εn)(K) =∞→∞ = H∗(m, ε)(K).

If K ∩ Si = ∅, then K is the disjoint union of the compact sets K ∩Ok, and we have

lim sup
n→∞

H∗(mn, εn)(K) = lim sup
n→∞

∑
k≥0

H∗k(mn, εn)(K ∩Ok)

≤
∑
k≥0

lim sup
n

H∗k(mk,n, εn)(K ∩Ok)

≤
∑
k≥0

H∗k(mk, ε)(K ∩Ok)

= H∗(m, ε)(K).

It follows that H∗ is continuous at (m, ε). Hence the result.

7 An Example

We consider in this section the diffusion X with state space I = (0, 1) solution of the SDE

dXt = Xt(1−Xt) dWt. (7.1)

This process satisfies the assumptions of section 2 and is a martingale appearing in filtering

equations (see, e.g., [33]) that satisfies X∞ := limt→∞Xt ∈ {0, 1} a.s. We let the discount

rate r be equal to 0. In order to satisfy Assumption A2, the payoff functions Ri and Gi,

i = 1, 2, must converge to 0 at both boundaries 0 and 1.

The payoff functions, which we consider as functions on [0, 1] equal to 0 at 0 and 1, are

represented in Figure 1. Assumption A1 is satisfied as all these functions are bounded.

R1

G1

x
1
6

1
4

1
3

1
2

1
0
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R2

G2

x
1
6

1
4

1
3

1
2

2
3

1
0

Figure 1: The players’ payoff functions.

We shall not give explicit formulas for these functions, as this does not help for the proof.

The properties of these functions that will be useful are the following:

1. For R1, R2, G1, and G2 are symmetric around 1
2
;

2. G1 > R1 on (0, 1), R1 < 0 on (0, 1
3
) ∪ (2

3
, 1), and R1 > 0 on (1

3
, 2

3
);

3. G1 is decreasing on [1
6
, 1

3
], and G1(1

4
) > R1(1

2
) > G1(1

3
);

4. G2 > R2 on (0, 1), and G2 is concave on (0, 1) and constant on [1
6
, 5

6
];

5. R2 is strictly concave and C2 on (0, 1
3
], (R2)′(1

3
) = 0, R2 < R2(1

3
) on (1

3
, 2

3
), and

R2(1
6
) + (R2)′(1

6
)(1

3
− 1

6
) = G2(1

3
) and R2(1

4
) + (R2)′(1

4
)(2

3
− 1

4
) = G2(2

3
). (7.2)

The central result of this section can then be stated as follows.

Proposition 7.1. Consider the BWoA with underlying diffusion process solution to (7.1)

and payoff functions illustrated in Figure 1 and satisfying Properties 1–5. Then,

(i) there exists no pure-strategy MPE;

(ii) the randomized stopping times (µ1, S1) := (αδ 1
2
, ∅) and (µ2, S2) := (0, (0, x∗]∪[1−x∗, 1))

form an MPE, where x∗ is the unique solution in (1
4
, 1

3
) of G1(x∗) = R1(1

2
) and

α =
(R2)′(x∗)

G2(1
2
)−R2(x∗)− (R2)′(x∗)(1

2
− x∗)

> 0.

To prove the Proposition 7.1(i), we will use a semi-harmonic characterization of best
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replies that can be found in [2], proven in a more general framework. To deduce the

statement below from [2], we use that the fine topology associated to X coincides with the

usual topology in (0, 1), that all points of (0, 1) are regular for X, and that super-harmonic

functions are just concave functions because X is a martingale and r = 0.

Theorem 7.2 ([2, Theorem 5.3]). Let J̄ i denote the pbr value function to some pure strategy

(0, Sj). Then J̄ i is continuous and is the pointwise minimum of the family of continuous

functions u : (0, 1)→ R satisfying Ri ≤ u ≤ cavGi, u = Gi on Sj, and u is concave on each

connected component of (0, 1) \ Sj, where cavGi is the smallest concave function bounded

below by Gi.

Notice that, for one-dimensional continuous diffusions, the characterization given in

Theorem 7.2 has a local character, in the sense that the restriction of J̄ i to any connected

component (a, b) of (0, 1) \ Sj is the smallest concave function bounded below by Ri that is

equal to Gi at a and b (where, if a = 0, this equality means that the limit at 0+ is 0, as

implied by the inequalities Ri ≤ u ≤ cavGi together with the fact that cavGi(0) = 0, and

similarly if b = 1).

Proof of Proposition 7.1. (i) Suppose, by way of contradiction, that a pure-strategy MPE

((0, S1), (0, S2)) exists. We will use Theorem 7.2 several times during the proof, as well as

the fact that, if (0, Si) is a pbr to (0, Sj), then Si ⊂ Si = {J̄ i = Ri} (Proposition 2.8), where

J̄1, J̄2 are the players’ equilibrium brvfs.

We first claim that

S1 ⊂ [1
3
, 2

3
]. (7.3)

Let x ∈ (0, 1
3
). If x ∈ S2, then x /∈ S1 as J̄1(x) = G1(x) > R1(x) on (0, 1). If x /∈ S2, let

(a, b) denote the connected component of (0, 1) \ S2 containing x. By Theorem 7.2, J̄1 is

concave on (a, b), bounded below by R1, and equal to G1 at a and b. As G1 ≥ 0, if follows

that J̄1(x) ≥ 0 > R1(x) and thus x /∈ S1. A symmetric result holds for (2
3
, 1). Hence (7.3).

The claim follows.

We next claim that

S2 ⊂ (0, 1
3
] ∪ [2

3
, 1). (7.4)

The proof is similar to that of (7.3) and is thus omitted. The claim follows.

Now, we claim that, if S1 = S1 ∩ [1
3
, 2

3
] 6= ∅, then it must be that

∃(x0, x1) ∈ [1
6
, 1

4
]× [3

4
, 5

6
], S2 = (0, x0] ∪ [x1, 1). (7.5)
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Let z0 := minS1 ∈ [1
3
, 2

3
]. Using (7.2) along with the fact that R2 is strictly concave and

increasing on [1
6
, 1

4
], we obtain that the mapping x 7→ R2(x) + (R2)′(x)(z0 − x) is decreasing

on [1
6
, 1

4
], larger or equal to G2(z0) = G2(1

3
) at 1

6
and smaller or equal to G2(z0) = G2(2

3
) at

1
4
. It follows that there exists a unique point x0 ∈ [1

6
, 1

4
] such that

R2(x0) + (R2)′(x0)(z0 − x0) = G2(z0).

By Theorem 7.2, the restriction of J̄2 to (0, z0] is the smallest concave function bounded

below by R2 and bounded above by G2 which is equal to G2 at 0 and at z0. It follows

that J̄2 = R2 on [0, x0] and that J̄2(x) = R2(x0) + (R2)′(x0)(x − x0) for all x ∈ [x0, z0].

A symmetric argument on the interval [z1, 1) with z1 := maxS1 shows that there exists

x1 ∈ [3
4
, 5

6
] such that J̄2 = R2 on [x1, 1] and J̄2(x) = R2(x1) + (R2)′(x1)(x − x1) for all

x ∈ [z1, x1]. Finally, it must be that J̄2 = G2 on [z0, z1]: first, on [z0, z1], J̄2 ≤ G2, with

equality on S1, and G2 is constant; second, J̄2 is concave on any connected component (a, b)

of (z0, z1) \ S1 and equal to G2 at a and b. Therefore J̄2 is constant on any such interval,

and thus J̄2 = G2 on [z0, z1]. Hence (7.5). The claim follows.

Now, if (7.5) holds, then it must be that S1 = ∅. Indeed, any continuous function that

is equal to G1 on S2 and is concave on (x0, x1) is strictly larger than R1, so that J̄1 > R1

using again Theorem 7.2. Because S1 6= ∅ implies (7.5), we deduce that it must be that

S1 = ∅. We deduce from this that S2 = (0, 1
3
] ∪ [2

3
, 1), and hence that J̄1(1

2
) = G1(1

3
) =

G1(2
3
) because r = 0 and X is a martingale such that X∞ ∈ {0, 1} a.s., a contradiction as

G1(1
3
) = G1(2

3
) < R1(1

2
) and J̄1 ≥ R1. We conclude that no pure-strategy MPE exists.

(ii) Let J̄ i denote the brvf to (µj, Sj) for the randomized stopping times defined in the

statement of the proposition. First, we easily see that J̄1 is equal to G1 on S2 and is constant

and equal to R1(1
2
) on [x∗, 1 − x∗]. It follows that S1 = {1

2
}. To show that (0, S1) = (0, ∅)

is a best reply to (0, S2), just note that the expected payoff from not stopping starting from

any point in (x∗, 1− x∗) is equal to G1(x∗) = G1(1− x∗) = R1(1
2
) because r = 0 and X is a

martingale such that X∞ ∈ {0, 1} a.s. From Proposition 2.8(iv), we conclude that (0, α′δ 1
2
)

is a pbr to (0, S2) for any nonnegative α′.

Notice then that α > 0. Indeed, R2 is strictly concave and increasing on (1
4
, 1

3
], so that

(R2)′(x∗) > 0 and

R2(x∗) + (R2)′(x∗)(1
2
− x∗) < R2(1

4
) + (R2)′(1

4
)(1

2
− 1

4
) < R2(1

4
) + (R2)′(1

4
)(2

3
− 1

4
) = G2(1

2
)

by (7.2) as G2(1
2
) = G2(2

3
). Let us prove that (0, S2) is a pbr to (αδ 1

2
, ∅). By Proposition

3.3, it is sufficient to prove that J̄2 is equal to R2 on S2 and is strictly larger than R2 on
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(x∗, 1− x∗). Let w2 : (0, 1)→ R be equal to R2 on S2 and such that

w2(x) = R2(x∗) + (R2)′(x∗)(x− x∗), x ∈ [x∗, 1
2
],

w2(x) = R2(1− x∗) + (R2)′(1− x∗)[x− (1− x∗)], x ∈ [1
2
, 1− x∗].

Notice that w2 > R2 on (x∗, 1− x∗), that w2 is C1 over (0, 1
2
) ∪ (1

2
, 1) and piecewise C2, and

that w2 is solution to the variational system

w2(0+) = w2(1−) = 0,

w2 = R2 on (0, x∗] ∪ [1− x∗, 1),

(w2)′(x∗) = (R2)′(x∗),

(w2)′(1− x∗) = (R2)′(1− x∗),

(w2)′′ = 0 on (x∗, 1
2
) ∪ (1

2
, 1− x∗),

(w2)′′ < 0 on (0, x∗) ∪ (1− x∗, 1),

α[G2(1
2
)− w2(1

2
)] + 1

2
∆(w2)′(1

2
) = 0.

Proceeding along the same lines as in [12, Lemma A.4], the proof that J̄2 = w2 now follows

from a standard verification argument based on the Itô–Tanaka–Meyer formula. First, let

us observe that for τ ∈ T and denoting by L the local time of X at 1
2
, we have

J2(x, (µ1, S1), τ) = Ex
[
R2(Xτ )Λ

1
τ +

∫
[0,τ)

G2(Xs)Λ
1
s dLs

]
. (7.6)

Applying the Itô–Tanaka–Meyer formula to the process (Λ1
tw

2(Xt))t≥0 yields

w2(x) = Λ1
τw

2(Xτ )−
∫

[0,τ)

w2(Xs) dΛ1
s −

∫
[0,τ)

Λ1
s(w

2)′(Xs) dXs

− 1

2

∫
[0,τ)

Λ1
s(w

2)′′(Xs)X
2
s (1−Xs)

2 ds− 1

2
∆(w2)′(1

2
)

∫
[0,τ)

Λ1
s dLs. (7.7)

Because (w2)′′ ≤ 0 on (0, 1) \ {x∗, 1
2
, 1− x∗}, with equality on (x∗, 1− x∗) \ {1

2
}, we have

−
∫

[0,τ)

Λ1
s(w

2)′′(Xs)X
2
s (1−Xs)

2 ds ≥ 0. (7.8)

From the last line of the variational system for w2 and the properties of L, we have

− 1

2
∆(w2)′(1

2
)

∫
[0,τ)

Λ1
s dLs = α

[
G2(1

2
)− w2(1

2
)
] ∫

[0,τ)

Λ1
s dLs

=

∫
[0,τ)

αG2(Xs)Λ
1
s dLs −

∫
[0,τ)

αΛ1
sw

2(Xs) dLs

=

∫
[0,τ)

G2(Xs) dΓ1
s +

∫
[0,τ)

w2(Xs) dΛ1
s. (7.9)
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We deduce that

w2(x) ≥ Ex
[
Λ1
τw

2(Xτ ) +

∫
[0,τ)

G2(Xs) dΓ1
s

]
≥ Ex

[
Λ1
τR

2(Xτ ) +

∫
[0,τ)

G2(Xs) dΓ1
s

]
= J2(x, (µ1, S1), τ), (7.10)

where the first inequality follows from (7.7)–(7.9) along with the fact that the stochastic

integral in (7.7) is a centered integrable variable as X is a bounded martingale, the second

inequality follows from the fact that w2 ≥ R2 on (0, 1), and the equality follows from (7.6).

Taking the supremum over τ ∈ T in (7.10) yields w2 ≥ J̄2. It is easy to check that the above

inequalities turn into equalities when τ = τS2 , which concludes the proof that w2 = J̄2.

Hence the result.

Let us conclude this section by explaining why the pure Nash equilibria constructed

using the method of Hamadene and Zhang [23] need not be Markovian. In our example, the

algorithm in [23] actually stops after two iterations and leads to the following equilibrium:

Assume first that player 1 never stops. Then, as shown in the proof of Proposition 7.1, a

pure best reply of player 2 is to use the hitting time τS2 with S2 := (0, 1
3
] ∪ [2

3
, 1). In turn,

facing the strategy (0, S2), a pure best reply of player 1 is to use the hitting time τS1 , where,

letting J̄1 denote the brvf of player 1 against (0, S2), S1 := {J̄1 = R1} is a nonempty subset

of (1
3
, 2

3
), see again the proof of Proposition 7.1. Define then the stopping time

τ 1 = 1τS1<τS2
τS1 + 1τS2<τS1

∞.

This strategy consists for player 1 in stopping in S1 if X did not visit S2 before, and to

never stop if X visits S2 before S1 (one could say that player 1 threatens to play∞ if player

2 does not stop in S2). On the one hand, τ 1 is a best reply to τS2 as it gives the same

payoff to player 1 as τS1 against τS2 . On the other hand, whereas, as shown in the proof of

Proposition 7.1, τS2 is not a best reply to τS1 , it turns out that τS2 is a best reply to τ 1 and

that (τ 1, τS2) is a Nash equilibrium. Indeed, when facing the strategy τ 1, player 2 will not

stop if S1 is reached before S2 as G2 > R2, and player 2 will not stop before X reaches S1 or

S2 as this would give him a strictly smaller payoff than playing τS2 . However, if X reaches

S2 before S1, player 2 believes that player 1 will never stop in the future, and thus the best

player 2 can do is to play a best reply against the stopping time ∞, that is, to stop in S2.

Notice that we may reverse the roles of the players in this construction and obtain another

Nash equilibrium in which player 2 plays a non-Markovian strategy.
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Appendix

A.1 Proof of Proposition 2.8

Point (a) follows from the fact that stopping immediately is suboptimal in problem (3.3).

Point (b) follows from the fact that, for x ∈ Sj, the payoff of player i is Gi(x) if he does

not stop immediately and Ri(x) ≤ Gi(x) otherwise. Let us now prove point (c). Under the

stated condition, by continuity, there exist C ∈ R and ε, δ > 0 such that

∀y ∈ [x− δ, x+ δ], Gi(y) ≥ C ≥ Ri(y) + ε. (A.1)

Using that τ i =∞ is suboptimal in problem (3.3), we have for all y ∈ [x− δ, x+ δ], letting

τx and τδ denote respectively the hitting time of x and the exit time of [x− δ, x+ δ]:

J̄ i(y) ≥ Ey
[∫

[0,∞)

e−rsGi(Xs) dΓjs

]
= Ey

[∫
[0,τx]

e−rsGi(Xs) dΓjs

]
= Ey

[
1τx<τδ

∫
[0,τx]

e−rsGi(Xs) dΓjs

]
+ Ey

[
1τx>τδ

∫
[0,τx]

e−rsGi(Xs) dΓjs

]
≥ CEy [e−rτx1τx<τδ ] + Ey

[
1τx>τδ

∫
[0,τx]

e−rsGi(Xs) dΓjs

]
, (A.2)

where the second inequality follows from the fact that
∫

[0,τx]
dΓjs = 1 when τx <∞ as x ∈ Sj.

Consider the last term on the right hand side of (A.2). We have

Ey
[
1τx>τδ

∫
[τδ,τx]

e−rs|Gi(Xs)| dΓjs

]
= Ey

[
1τx>τδ e−rτδ

[
|Gi(Xτδ)|(Γjτδ − Γjτδ−) + Λj

τδ

∫
(τδ,τx]

e−r(s−τδ)|Gi(Xs)| d(Γjs ◦ θτδ)
]]

= Ey
[
1τx>τδ e−rτδΛj

τδ−

∫
[τδ,τx]

e−r(s−τδ)|Gi(Xs)| d(Γjs ◦ θτδ)
]
,

where the first equality follows from (2.10), and the second equality follows from the facts

that Γjτδ − Γjτδ− = Λj
τδ− − Λj

τδ
and that Λj is continuous except at τSj where it jumps to 0.

Using this result, we have, for some constant C ′ > 0,∣∣∣∣Ey[1τx>τδ ∫
[0,τx]

e−rsGi(Xs) dΓjs

]∣∣∣∣
≤ Ey

[
1τx>τδ

∫
[0,τδ)

e−rs|Gi(Xs)| dΓjs

]
+ Ey

[
1τx>τδ

∫
[τδ,τx]

e−rs|Gi(Xs)| dΓjs

]
≤ sup

[x−δ,x+δ]

|Gi|Ey[1τx>τδ ] + Ey
[
1τx>τδ e−rτδΛj

τδ−

∫
[τδ,τx]

e−r(s−τδ)|Gi(Xs)| d(Γjs ◦ θτδ)
]
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≤ sup
[x−δ,x+δ]

|Gi|Ey[1τx>τδ ] + Ey
[
1τx>τδ EXτδ

[
sup
t≥0

e−rt|Gi(Xt)|
]]

≤ C ′Py [τx > τδ], (A.3)

where the third inequality follows from the Markov property, and the fourth inequality

follows from assumption A1 along with the fact that Xτδ ∈ {x− δ, x+ δ} Py-almost surely.

From (A.2)–(A.3), we deduce that

J̄ i(y) ≥ CEy [e−rτx1τx<τδ ]− C ′Py [τx > τδ].

The above lower bound is a continuous function of y that is equal to C at x and to −C ′ at

x− δ and x+ δ. Therefore, by (A.1), there exists δ′ ∈ (0, δ) such that J̄ i(y) > Ri(y) for all

y ∈ [x− δ′, x+ δ′]. This proves (c).

Finally, points (i)–(iv) can be proven exactly as in [12, Proposition 1]. Hence the result.

A.2 Proof of Equation (3.10)

For the sake of completeness, we show how to deduce (3.10) from the arguments in [18].

Recall that Zx is the Snell envelope on the stochastic basis (Ω,F , (Ft)t≥0,Px) of the process

Ȳ defined by

Ȳt :=

∫
[0,t]

e−rsGi(Xs) dΓjs + Λj
t e−rtRi(Xt), t ≥ 0,

and that Ẑ is defined by

Ẑt :=

∫
[0,t]

e−rsGi(Xs) dΓjs + Λj
t e−rtJ̄ i(Xt), t ≥ 0.

First, it is clear that Ẑ ≥ Ȳ . Then, recall that (see [18, Lemma 3.4 and the references

therein], noticing that we work on the smaller canonical space of continuous trajectories),

for every stopping time τ of (F0
t )t≥0 and every stopping time ρ of (F0

t+)t≥0 such that ρ ≥ τ ,

there exists an F0
τ ⊗F0

∞ measurable random variable U : Ω× Ω→ [0,∞] such that

� U(ω, ω̃) = 0 if τ(ω) =∞ or if X0(ω̃) 6= Xτ (ω);

� for each ω ∈ Ω, U(ω, ·) is a stopping time of (F0
t+)t≥0;

� for all ω ∈ Ω such that τ(ω) <∞, ρ(ω) = τ(ω) + U(ω, θτ(ω)(ω)).

We deduce that, on the event {τ <∞},

Ex [Ȳρ |Fτ ] = Ex
[∫

[0,ρ]

e−rsGi(Xs) dΓjs + Λj
ρ e−rρRi(Xρ)

∣∣∣Fτ]
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= Ex
[∫

[0,τ ]

e−rsGi(Xs) dΓjs +

∫
(τ,ρ]

e−rsGi(Xs) dΓjs + Λj
ρ e−rρRi(Xρ)

∣∣∣Fτ]
=

∫
[0,τ ]

e−rsGi(Xs) dΓjs + Λj
τ e−rτEx

[ ∫
(0,U(ω,θτ (ω))]

e−rsGi(Xs) d(Γj ◦ θτ )s

+ (Λj
U(ω,θτ (ω)) ◦ θτ ) e−rU(ω,θτ (ω))Ri(Xτ+U(ω,θτ (ω)))

∣∣∣Fτ]
=

∫
[0,τ ]

e−rsGi(Xs) dΓjs + Λj
τ e−rτEx

[ ∫
[0,U(ω,θτ (ω))]

e−rsGi(Xs) d(Γj ◦ θτ )s

+ (Λj
U(ω,θτ (ω)) ◦ θτ ) e−rU(ω,θτ (ω))Ri(Xτ+U(ω,θτ (ω)))

∣∣∣Fτ]
≤
∫

[0,τ ]

e−rsGi(Xs) dΓjs + Λj
τ e−rτ J̄ i(Xτ ),

= Ẑτ ,

where the third equality follows from (2.10) and the decomposition of stopping times, the

fourth equality follows from the fact that Λj
τ = 0 whenever Γj ◦ θτ has a jump at time

0 by (2.10), which allows us to replace the integral over (0, U(ω, θτ (ω))] by an integral

over [0, U(ω, θτ (ω))], and the inequality follows from the Markov property. We deduce that

Ex [Ȳρ | Fτ ] ≤ Ẑτ as it is an equality on {τ = ∞}. Because for each x ∈ I, every stopping

time in T is Px-a.s. equal to a stopping time of (F0
t+)t≥0 [24, Lemma I.1.19]), we deduce

that, for every stopping time τ of (F0
t )t≥0,

Zx
τ = ess sup

ρ≥τ, ρ∈T
Ex [Ȳρ |Fτ ] ≤ Ẑτ .

To prove the reverse inequality, it is sufficient to prove that Ex [Ẑτ ] ≤ Ex [Zx
τ ]. By [18,

Proposition 2.4],

∀ν ∈ ∆(I),

∫
I
J̄ i(y) ν(dy) = sup

ρ∈T 0

Eν [Ȳρ],

where T 0 denotes the set of stopping times of the canonical filtration (F0
t )t≥0. Let ν̂ denote

the finite measure on I defined by

ν̂(A) := Ex[Λj
τ e−rτ1A(Xτ )], A ∈ B(I).

Whenever ν 6= 0, define the probability ν := ν̂
ν̂(I)

. Then, denoting by Ω̃ a copy of the

canonical space endowed with the probabilities P̃y := Py for y ∈ I, we have

Ex [Λj
τ e−rτ J̄ i(Xτ )] =

∫
I
J̄ i(y) ν̂(dy) = ν̂(I) sup

ρ∈T 0

Eν [Ȳρ] = sup
ρ∈T 0

Ex [Λj
τ e−rτ ẼXτ [Ȳρ]]. (A.4)
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We deduce that

Ex[Ẑτ ] ≤ sup
ρ∈T 0

Ex
[∫

[0,τ ]

e−rsGi(Xs) dΓjs + Λj
τ e−rτ ẼXτ [Ȳρ]

]
= sup

ρ∈T 0

Ex
[ ∫

[0,τ ]

e−rsGi(Xs) dΓjs + Λj
τ e−rτ Ex

[ ∫
[0,ρ◦θτ ]

e−rsGi(Xs) d(Γj ◦ θτ )s

+ (Λj
ρ◦θτ ◦ θτ ) e−r(ρ◦θτ )Ri(Xτ+ρ◦θτ )

∣∣∣Fτ]]
= sup

ρ∈T 0

Ex
[ ∫

[0,τ ]

e−rsGi(Xs) dΓjs + Λj
τ e−rτ Ex

[ ∫
(0,ρ◦θτ ]

e−rsGi(Xs) d(Γj ◦ θτ )s

+ (Λj
ρ◦θτ ◦ θτ ) e−r(ρ◦θτ )Ri(Xτ+ρ◦θτ )

∣∣∣Fτ]]
= sup

ρ∈T 0

Ex
[∫

[0,τ+ρ◦θτ ]

e−rsGi(Xs) dΓjs + Λj
τ+ρ◦θτ e−r(τ+ρ◦θτ )Ri(Xτ+ρ◦θτ )

]
= sup

ρ∈T 0

Ex[Ȳτ+ρ◦θτ ]

≤ Ex[Zx
τ ],

where the first inequality follows from (A.4), the first equality follows from the strong Markov

property, the second equality follows from the fact that Λj
τ = 0 whenever Γj ◦ θτ has a jump

at time 0, which allows us to replace the integral over [0, ρ◦ θτ ] by an integral over (0, ρ◦ θτ ],
and the third equality follows from (2.10). This concludes the proof of (3.10).

A.3 Proof of Proposition 4.1

It is hereafter assumed without explicit mention that M(I) is endowed with the topology

ϑ. The proof consists of three parts.

Metrizability We first prove thatM(I) is metrizable. By Urysohn’s metrization theorem

(see, e.g., [19, Theorem 4.58]), it is sufficient to check that M(I) is Hausdorff, regular, and

second countable.

First, we check that M(I) is second countable. By definition, the topology ϑ has a

countable subbasis of neighborhoods defined by all the sets U, V of the form

U = Ua,b,c := {m ∈M(I) : m((a, b)) > c} and V = Va,b,d := {m ∈M(I) : m([a, b]) < d}

for all a, b ∈ I ∩ Q, c ∈ [0,∞) ∩ Q, and d ∈ ((0,+∞) ∩Q) ∪ {∞}. Therefore, M(I) is

second countable.

Next, we check that M(I) is regular. To this end, let B be a nonempty closed set in

M(I) and m ∈ M(I) \ B. We have to prove that B and m have disjoint neighborhoods.
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The complement Bc of B is open and thus

Bc =
⋃
α

(
nα⋂
k=1

Oα
k

)
and B =

⋂
α

(
nα⋃
k=1

(Oα
k )c

)
,

where α ranges through an arbitrary countable set, and each Oα
k is of the form U, V above.

In particular, there exists α such that m ∈
⋂nα
k=1 O

α
k and B ⊂ Bα :=

⋃nα
k=1(Oα

k )c. Therefore,

it is sufficient to prove the claim for Bα instead of B. Thus assume that B =
⋃n
k=1(Ok)

c.

In turn, it is sufficient to prove the claim for each (Ok)
c and then take the union of the

neighborhoods of each set (Ok)
c, and the (finite) intersection of the neighborhoods of m.

Thus assume that B = Oc with O of the form U, V above. We accordingly distinguish two

cases, depending on the form of O.

Case B = U c with U = Ua,b,c Let δ > 0 such that m((a, b)) > c + 2δ. There exists

(a′, b′) ⊂ (a, b) such that m((a′, b′)) > c+ 2δ by inner regularity, so that Ua′,b′,c+2δ is an open

neighborhood of m. On the other hand Va′,b′,c+δ is an open neighborhood of B as

∀ν ∈ B, ν([a′, b′]) ≤ ν((a, b)) ≤ c < c+ δ.

To conclude, notice that Va′,b′,c+δ and Ua′,b′,c+2δ are disjoint.

Case B = V c with V = Va,b,d Notice that m /∈ B is equivalent to m([a, b]) < d, so that

m([a, b]) < ∞. There exists (a′, b′) ⊃ [a, b] such that m([a′, b′]) < d by outer regularity.

Thus let d′, d′′ such that m([a′, b′]) < d′ < d′′ < d, and observe that B ⊂ Ua′,b′,d′′ whereas

m ∈ Va′,b′,d′ . To conclude, notice that Va′,b′,d′ and Ua′,b′,d′′ are disjoint.

Therefore, M(I) is regular.

Finally, we check that M(I) is Hausdorff. As M(I) is regular, it is sufficient to prove

that singletons are closed. Let m0 ∈M(I) and consider the closed set

C(m0)

:=
⋂

a,b∈I∩Q

(
{m ∈M(I) : m((a, b)) ≤ m0((a, b))} ∩ {m ∈M(I) : m([a, b]) ≥ m0([a, b])}

)
.

If m 6= m0, then there exists an interval (a, b) ⊂ I such that m((a, b)) 6= m0((a, b)). By

inner regularity, we can assume that a, b ∈ Q. If m((a, b)) > m0((a, b)), then m /∈ C(m0).

If m((a, b)) < m0((a, b)), then, by inner regularity, there exists an interval [a′, b′] ⊂ (a, b)

such that a′, b′ ∈ Q and m([a′, b′]) < m0([a′, b′]), so that m /∈ C(m0). We conclude that

C(m0) = {m0} and hence that singletons are closed. Therefore, M(I) is Hausdorff.

The proof that M(I) is metrizable is now complete.
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Proofs of Assertions 1–3 We prove each assertion in turn.

(1) Any open set O ⊂ I can be written as O =
⋃
n≥0On for some nondecreasing sequence

(On)n≥0 such that each On is a finite disjoint union of open intervals with rational endpoints.

The mapping m 7→ m(On) is lsc as a finite sum of lsc mappings, and the mapping m 7→ m(O)

is lsc as the supremum of lsc mappings.

(2) Any compact set K ⊂ I can be written as K =
⋂
n≥0Kn for some nonincreasing

sequence (Kn)n≥0 such that each Kn is a finite disjoint union of compact intervals with

rational endpoints. The mapping m 7→ m(Kn) is usc as a finite sum of usc mappings, and

the mapping m 7→ m(F ) is usc as the infimum of usc mappings.

(3) Suppose that mn → m in M(I). If O ∩ e(m) 6= ∅ with O open, then m(O) = ∞,

and thus mn(O) → ∞ by point (1). Now, let φ ∈ C+
c (I \ e(m)), with support K. Because

m(K) < ∞, by outer regularity, there exists a compact neighborhood K ′ of K such that

m(K ′) <∞. Then, by point (2), lim supn→∞mn(K ′) ≤ m(K ′) <∞. The restrictions of the

measures (mn)n≥0 to the open set O′ := intK ′ are therefore locally finite for any sufficiently

large n, and by [26, Lemma 4.1(iv)], converge vaguely to the restriction of m to O′, which

implies Lφ(mn)→ Lφ(m).

Conversely, suppose that the sequence (mn)n≥0 in M(I) and the measure m satisfy the

properties that, for every open set O such that O ∩ e(m) 6= ∅, mn(O) → ∞, and that, for

each φ ∈ C+
c (I \ e(m)), Lφ(mn) → Lφ(m). We want to prove that mn → m in M(I).

Let a, b ∈ I ∩ Q. If (a, b) ∩ e(m) 6= ∅, then, by the first property, lim infn→∞mn((a, b)) =

∞ = m((a, b)). If (a, b) ∩ e(m) = ∅, let (φk)k≥0 be a nondecreasing sequence of continuous

functions with compact support in (a, b) with pointwise limit 1(a,b). Then, by the second

property, we have, for each k,

lim inf
n→∞

mn((a, b)) ≥ lim
n→∞

Lφk(mn) = Lφk(m),

and thus, by monotone convergence,

lim inf
n→∞

mn((a, b)) ≥ m((a, b)). (A.5)

If [a, b] ∩ e(m) 6= ∅, then lim supmn→∞([a, b]) ≤ ∞ = m([a, b]). If [a, b] ∩ e(m) = ∅, then

m([a, b]) < ∞, and there exists a′, b′ such that [a, b] ⊂ (a′, b′) and m((a′, b′)) < ∞ by outer

regularity; in particular, (a′, b′) ∩ e(m) = ∅. Let (φk)k≥0 be a nonincreasing sequence of

continuous functions with compact support in (a′, b′) and pointwise limit 1[a,b]. Then, by the

second property, we have, for each k,

lim sup
n→∞

mn([a, b]) ≤ lim
n→∞

Lφk(mn) = Lφk(m),

47



and thus, by bounded convergence,

lim sup
n→∞

mn([a, b]) ≤ m([a, b]). (A.6)

We conclude from (A.5)–(A.6) that mn → m in M(I).

Compactness We finally prove that M(I) is compact. As M(I) is metrizable, it is

sufficient to prove that it is sequentially compact, i.e., that any sequence (mn)n≥0 has a

convergent subsequence. The proof consists of three steps.

Step 1 Let B = {O1, O2, ...} denote a countable basis of open sets for I. If lim supn→∞mn

(O1) =∞, then we extract a subsequence (m1
n)n≥0 such that limn→∞m

1
n(O1) =∞, otherwise

we let (m1
n)n≥0 := (mn)n≥0. Assuming that the subsequence (mk

n)n≥0 for some k ≥ 1 is

constructed, if lim supn→∞m
k
n(Ok+1) = ∞, then we extract a subsequence (mk+1

n )n≥0 of

(mk
n)n≥0 such that limn→∞m

k+1
n (Ok+1) = ∞, otherwise we let (mk+1

n )n≥0 := (mk
n)n≥0. By

diagonal extraction, we obtain a subsequence (m∗n)n≥0 of (mn)n≥0 such that, for each k ≥ 1,

either limn→∞m
∗
n(Ok) =∞ or lim supn→∞m

∗
n(Ok) <∞. Now, for all x ∈ I, let Dx := {k ≥

1 : x ∈ Ok}, and notice that {x} =
⋂
k∈Dx Ok. Define then

S :=
{
x ∈ I : ∀k ∈ Dx, lim

n→∞
m∗n(Ok) =∞

}
.

We claim that S is closed. Indeed, let (xp)p≥0 be a sequence in S with limit x ∈ I. For

each k ∈ Dx, we have xp ∈ Ok for p sufficiently large and thus k ∈ Dxp . Therefore,

limn→∞m
∗
n(Ok) =∞ for all k ∈ Dx, which proves that x ∈ S. The claim follows.

Step 2 Let (Kp)p≥0 be an increasing sequence of compact sets such that
⋃∞
p=0Kp = I \S.

We claim that lim supn→∞m
∗
n(Kp) <∞ for all p ≥ 0. Indeed, each x ∈ Kp is such that there

exists k ∈ Dx such that lim supn→∞m
∗
n(Ok) < ∞. These open sets form an open covering

of Kp, and we may therefore extract a finite open cover (Ok1 , . . . , Okr). We conclude that

lim sup
n→∞

m∗n(Kp) ≤ lim sup
n→∞

r∑
t=1

m∗n(Okt) ≤
r∑
t=1

lim sup
n→∞

m∗n(Okt) <∞.

The claim follows. Because lim supn→∞mn(K1) <∞, the restriction of m∗n to K1 is a finite

measure for all sufficiently large n. By [26, Theorem 4.2], it admits a subsequence that

converges weakly to some finite measure µ1 on K1.6 Iterating the process and using diagonal

extraction, we can extract a subsequence (m∗∗n )n≥0 of (m∗n)n≥0 such that, for each p ≥ 0,

the sequence of the restrictions of the measures (m∗∗n )n≥0 to Kp converges weakly to some

6A sequence a finite measures (νn)n≥0 on some metric space E converge weakly to ν if
∫
E
φ dνn →

∫
E
φdν

for every bounded and continuous function φ : E → R.
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finite measure µp on Kp. By construction, the measures (µp)p≥0 are consistent in the sense

that there exists a Radon measure µ on I \ S whose restriction to Kp is µp for all p ≥ 0,

and therefore the sequence of the restrictions of the measures (m∗∗n )n≥0 to I \ S converges

vaguely to µ.

Step 3 Define m ∈M(I) such that e(m) := S and m|I\e(m) := µ. Then, by Assertion 3,

the subsequence (m∗∗n )n≥0 constructed in Step 2 converges in M(I) to m. Hence the result.
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