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1. Introduction

Addressing the climate crisis requires widespread carbon dioxide reduction to

prevent or lessen severe environmental impacts. Market incentives alone often fall

short in prompting companies to cut pollution and embrace necessary technologies,

making government intervention essential.

Government action can take various forms, including subsidies, regulatory stan-

dards, inspections, R&D support, and emission-related taxes or tradeable permits.

Regulatory standards are the most common and encompass various approaches.

Performance standards, for instance, set limits on emissions per unit of prod-

uct, such as restricting CO2 emissions to a certain amount per kilowatt-hour of

electricity generated.1

In this paper, we examine two key regulatory tools: mandating standards and

inspections. We explore the optimal regulatory behaviour for enforcing standards

and conducting inspections, considering different levels of commitment for the

regulator.

Firms incur different costs for adjusting their technology to meet mandated

standards. The government can set these standards to foster firms to adopt new

technologies. Additionally, the government has the authority to audit firms to

assess the costs associated with implementing these technologies.

Our model presumes that the benefits of adopting a technology are known

to the government, while the costs are known only to the polluting firms. The

government can discover these costs through audits. Importantly, we assume that

the government cannot compel a firm to adopt a technology. The firm can move

the business to another country or state. Therefore, the government’s objective is

to develop a cost-effective strategy that incentivizes efficient enough firms to adopt

abatement technologies.

We also analyze the impact of varying levels of commitment ability of the

regulator. Specifically, we assume that the regulator cannot commit to standards

once inspections have taken place. We investigate the implications of this limited

commitment power and identify the key instruments the regulator should use to

effectively overcome the lack of commitment.2

1For more information see: Solomon (2007), section 13.2.1.1 regulations and standards.
2Lack of commitment can arise from various sources. 1) Legal enforcement: For legal

enforcement to be effective, the court must remain impartial and not collude with any party,
and the contract must be clear and ideally complete. Furthermore, the court needs to verify
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Section 2 considers the problem of a Principal (regulator) who can commit to

inspection and actions (standards) in case of no inspection. The Agent (firm)

prefers higher actions (more pollution and emission, lower performance standards)

and the Principal prefers lower actions (less pollution and emission, higher perfor-

mance standards) and cannot use transfers. The Agent is protected by Ex-post

participation constraint; therefore, the Principal faces a trade-off between low

actions and the risk that the Agent rejects the action, and chooses his outside

option. We discuss properties of the optimal mechanism if the Principal can commit

to actions post audit.

In Section 3, we present the Principal’s optimization problem and demonstrate

that if the Principal’s fear of ruin is greater than the Agent, then deterministic

inspection is the optimal choice. We also provide an upper bound on the payoff

of stochastic inspection relative to deterministic inspection. This upper bound is

calculated as the aggregate difference in fear of ruin between the Principal and

the Agent, scaled by the Principal’s marginal utility. In section 3.1 we focus on

deterministic inspection. We show that the optimal mechanism with deterministic

inspection is a cutoffs policy that splits types into three regions. Low types (efficient

types) are never inspected and face a cap on their actions. The intermediate types

are inspected and are mandated to a first best action. Finally, high types (inefficient

types) are excluded. The Principal offers a low action to high types, and they refuse

to undertake this action. This structure highlights the importance of inspecting

intermediate types which limits the low types’ rents while obtaining a low action

for efficient types. Finally commitment on actions in case of inspection (post audit)

does not increase the Principal’s payoff.

In Section 4, we explore various levels of commitment ability of the Principal.

Section 4.1 assumes that while the Principal cannot commit to inspections, she still

can commit to actions in case of no inspection. We demonstrate that the equilibrium

identical to the optimal deterministic policy exists. Furthermore, we show that

if the Agent’s utility exhibits log-supermodularity, the highest equilibrium payoff

will involve only deterministic inspections and will match the payoff of the optimal

deterministic policy.

deviations from the contract, which can be particularly difficult with non-deterministic promises.
2) Reputation: reputation can help ensure that the regulator adheres to pre-committed promises,
if the regulator interacts with multiple agents, either sequentially or simultaneously. This
interaction could enable the regulator to commit to a consistent decision-making frequency, but
this may require additional assumptions, such as the absence of macroeconomic shocks and the
presence of post-facto incentives to align observations with incentive schemes.
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Section 4.2 contrasts with Section 4.1 by assuming that the Principal can only

commit to an inspection policy. We demonstrate that if the Principal cannot

commit to actions, focusing on semi-separating equilibria with only two groups of

pooling types and deterministic inspections is enough to find the highest (ex-ante)

equilibrium payoff for the Principal.

Furthermore, we show the highest equilbrium payoff involve inspection of ineffi-

cient types. In Section 4.3, we assume the Principal lacks the power to commit to

any of her instruments. In both scenarios from Sections 4.2 and 4.3, the structure

of the highest equilibrium payoff is similar to that of the optimal deterministic

inspection policy, though the thresholds may differ.

Finally, in Section 4.4, we explore a partial commitment setting. If the cost

of inspection is not high, and the Principal commits to inspection whenever the

Agent requests, then the Principal can achieve the optimal deterministic inspection

policy through this partial commitment.

Relationship to the literature. The paper contributes to two areas of literature:

first, mechanism design with costly state verification (CSV), and second, CSV

without commitment. The literature on mechanism design with CSV begins with

the well-known paper by Becker (1968), which argues that high punishments and

low probabilities of monitoring are the best policy for the Principal. However, this

analysis assumes that very high punishments are enforceable.

The literature continues with an application to financial markets by Townsend

(1979). Townsend examines the optimal insurance contract between a risk-neutral

principal (investor) and a risk-averse agent (entrepreneur). At the time of con-

tracting, both parties have the same information. After the contract is written,

the agent privately observes the project’s income. The agent reports an income,

and according to the contract, must pay a cost to verify this income. A contract

specifies two things for each income report: whether the agent should verify the

income, and the transfer from the agent to the principal. Townsend’s optimal

contract maximizes the ex-ante payoff of the agent, subject to the ex-ante individual

rationality (IR) constraint of the principal. This optimal contract resembles a debt

contract, where the agent verifies incomes below a certain threshold.

Gale and Hellwig (1985) studies a similar problem involving a risk-neutral

borrower (agent) and a risk-neutral lender (principal). The optimal mechanism

maximizes the agent’s expected utility under the principal’s zero profit (IR con-

straint) and the agent’s incentive compatibility constraints. Similarly, the agent

incurs a cost to verify the project’s income. Both Townsend (1979) and Gale and
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Hellwig (1985) focus on deterministic inspection.

Border and Border and Sobel (1987) consider a more general mechanism with

stochastic audits and bounded pre-audit and post-audit transfers. They assume the

Principal may never make a net payment (reward) to the Agent. They show that

the probability of an audit should decrease with the agent’s wealth. They illustrate

with an example that if the principal aims to maximize expected revenue net of

audit costs, the optimal contract involves large rewards and infrequent audits.

Mookherjee and Png (1989) assume the borrower is risk-averse and demonstrate

that the optimal contract should be stochastic. This paper differs from the existing

literature in four ways. First, the Principal does not have full commitment power

and cannot commit to the mechanism after inspection occurs. Second, it does

not consider transfers as a tool for the designer. Third, most works in the CSV

literature on financial markets assume a competitive borrowing market, maximizing

the borrower’s utility subject to the lender’s outside option and the borrower’s

truth-telling condition. Fourth, unlike in this paper, the state of nature is not

known by any party at the contract date.

Another application of mechanism design with CSV is for optimal allocations

of objects and collective choice problems. Ben-Porath et al. (2014) considers

a principal allocates an object to one of I Agents. The principal cannot use

transfers but can check the private information of each agent at a cost. The private

information is the value of the object for each agent. Mylovanov and Zapechelnyuk

(2017), study a similar problem with a different verification technology, and limited

punishments. They assume the principal can verify information after allocating

the object, and contingent on this observation, can destroy a fraction of the

agent’s payoff. Li (2020) studies the connection between costly verification and

limited punishment. Patel and Urgun (2022) assume money burning as a new

instrument for the Principal and study the optimal allocation problem with CSV,

and Erlanson and Kleiner (2020) investigates the optimal allocation and collective

choice problems.

Another branch of mechanism design with CSV is in Monopoly regulation. Baron

and Besanko (1984) extend Baron and Myerson (1982) to allow random and costly

audit. In their setting, monopolist pricing is a two-part tariff consisting of a fixed

charge and unit price. Palonen and Pekkarinen (2022) consider a CVS regulation

principal-agent problem with a different approach. They assume the Agent can

reduce the probability of being verified, by engaging in costly avoidance action. The

paper assumes a linear and exogenous punishment function if the the agent caught
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being untruthful, and no reward if the agent is truthful. The principal maximizes

the expected weighed sum of the agent’s payoff and transfers net of monitoring

costs subject to the incentive compatibility and the participation constraints. These

papers departs from ours for two reasons. First, we have ex-post participation

constraint, so punishments are endogenous and restricted to the utility of the agent.

Second, these papers do not study different commitment ability of the principal.

The paper most closely related to ours is Halac and Yared (2020), which examines

a CSV principal-agent delegation problem where the agent has a bias towards

higher actions. When the agent’s bias becomes extreme, their model under full

commitment resembles ours. However, unlike their study, we do not limit our

analysis to deterministic mechanisms, and the agent is not protected by ex-post

participation constraint. Further differences are discussed following the introduction

of a related result in sections 3.1 and 4.2.

Section 4 connects with the literature on cheap talk models, following the work

of Crawford and Sobel (1982).3 Khalil (1997) contributes to the literature on CSV

without commitment by examining a model where the Principal cannot commit to

an inspection policy. His model involves costly signaling rather than cheap talk.

Melumad and Mookherjee (1989) also considers a setting without commitment on

inspection. The main differences are that the Principal can commit to transfers in

the event of an inspection, and the Agent cannot reject the mechanism ex-post.

Banks (1989) explores a model where an agent requests a budget. The principal

lacks commitment power, utilities are linear in transfer, and inspection is imperfect.

Unlike our setting (see Section 4.3), full pooling is the only equilibrium. In any

equilibrium, no information is conveyed from the agent to the principal.

3Our model is not exactly the same as cheap talk models, since the Agent (sender) can accept
or reject the proposed action by the Principal (receiver).
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2. Model

Players, and information structure. There are two players, an Agent (he) and a

Principal (she). The Agent has type θ ∈ [θ, θ] drawn from a commonly known

cumulative distribution function F (·), and probability distribution function f(·) > 0.

The type is the Agent’s private information.

Mechanism and action. The Principal chooses and commits to a mechanism.4

The mechanism M = (M, i(m), a(m)) has three components: the message space

M , the probability of inspection and the mandated action. The probability of

inspection as a function of message m ∈M is i(m) ∈ [0, 1], and inspection allows

learning the true type of the Agent. Action a(m) ∈ R+ is in case of no inspection

which determine the Agents’ actions as a function of the message m. In case of

inspection the Principal, without commitment, mandates aI(m, θ) ∈ R+. Action

aI(m, θ) ∈ R+ is as a function of the message m and the true type θ through

inspection.

Inspection costs ϕ > 0 to the Principal. We assume the Agent is secured by

ex-post participation: the Agent can accept or reject the final action.

Payoffs. If the Agent rejects the mandated action, the payoffs of both players

are zero. He rejects when the mandated action generates a negative payoff (the

outside option is zero) for him.5 The payoff of the Agent with type θ and action a

is max{u(θ, a), 0}. The Principal’s payoff is

v(θ, a)1u(θ,a)≥0 − ϕ1inspection.

Timing. The Principal commits to the mechanism. The nature draws a type θ, and

the Agent learns it privately. The Agent sends a message m ∈M . The Principal

inspects with probability i(m). If does not inspect, with commitment, mandates

an action a(m). If inspects, without commitment, mandates an action aI(m, θ).

The Agent accepts or rejects the action. Figure 1 shows the timing of the model.

We consider pure strategy Perfect Bayesian equilibrium as the solution concept

and maintain the following assumptions throughout the paper.

Assumption 1 (Agent’s utility) (i) Utility u(θ, a) is C2 for all (θ, a) ∈ [θ, θ]2. (ii)

A type θ ∈ [θ, θ] of the Agent gets a zero payoff when a = θ, and prefers higher

4In section 4, we study different commitment ability of the Principal.
5Another interpretation of this model is that the Agent has a private outside option θ.
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Figure 1: Timing

actions. Formally

u(θ, θ) = 0, and ua(θ, a) > 0 for all (θ, a) ∈ [θ, θ]2.

Assumption 2 (Principal’s utility) (i) Utility v(θ, a) is C2 for all (θ, a) ∈ [θ, θ]2.

(ii) All types of the Agent are valuable for the Principal. Moreover, lower types

are more valuable for the Principal than higher types. Formally v(θ, θ) is positive

and weakly decreasing in θ, for all θ ∈ [θ, θ]. (iii) The Principal prefers lower

actions for all types of the Agent. Formally

va(θ, a) < 0 for all (θ, a) ∈ [θ, θ]2.

Assumption 1 simply says the Agent’s utility starts from zero (a normalization)

at action equal to his type (a = θ), and it is increasing in action. More precisely,

the Agent prefers higher actions by only considering the support of CDF F (.), i.e.

a ∈ [θ, θ]. The assumption is silent for actions above θ.

Assumption 2 states lower types are more valuable for the Principal than higher

types. This assumption assures that the existence of all types of the Agent is

valuable for the Principal. This assumption is without loss of generality. If we

assume v(θ, θ) < 0, then the Principal can exclude this type by mandating actions

to be less that θ. The principal prefers lower actions down to θ. If the principal

chooses an action less than θ, the agent will reject the action (due to the ex-post

participation constraint).

By Assumption 1 we can conclude, the payoff of the Agent at final action a

given type θ is u(θ, a)1a≥θ, and the Principal’s payoff is v(θ, a)1a≥θ − ϕ1inspection.
6

6In Assumption 1, u(θ, θ) can be changed with u(θ, a∗(θ)) = u(θ), where a∗(θ) is the action
that gives the Agent the same utility as his outside option, u(θ).
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Discussion on commitment ability of the Principal on aI(·, ·): If the Principal is

able to commit on aI(θ̂, θ), then aI(θ̂, θ) for θ̂ ≠ θ is off the equilibrium path and the

Principal implements the maximum punishment: aI(θ̂, θ) ≤ θ. The main challenge

is when the Principal inspects and the Agent is truthful, i.e. aI(θ, θ). In Appendix,

Reward Based Mechanisms, we show if lima→∞−v(θ, a) = lima→∞ −u(θ,a)
v(θ,a)

= ∞, the

optimal mechanisms does not exists.7 Moreover, we show reward based mechanisms

approximate first-best value. Reward based mechanisms set the efficient action

without inspection a(θ) = θ, and inspects all types with a small probability. In

case of inspection these mechanisms generate a very high payoff for the Agent,

i.e, aI(θ, θ) a high amount. In environmental regulation, aI(θ, θ) means (as an

example) that the regulator allows the Agent to pollute with a very high rate.

However, We do not see these type of incentive schemes in practice. Non existence

of the optimal solution and reward based mechanisms has been raised in settings

with transfer.8 Reward based mechanisms require a high commitment power for

the Principal. One way to tackle this issue, as Border and Sobel (1987) (a setting

with transfer) is to assume an exogenous upper bound on rewards, i.e. aI ≤ a. An

alternative way is to assume the Principal cannot commit on actions following an

inspection.9

3. Results

In this section, we begin by formulating the Principal’s problem as an optimization

problem. We then derive properties of the optimal mechanism and identify the

conditions under which deterministic inspection is optimal. Following this, we

explore the relationship between the fear of ruin and our problem. Finally, we

discuss the value of stochastic inspection when deterministic inspection is not

optimal.

In any equilibrium, the Principal mandates action aI(m, θ) = θ. This is due to

the lack of commitment of the Principal after inspection occurs. By the revelation

principle we can restrict the messages space M to the types space [θ, θ], and

mechanisms to direct mechanisms. The Principal chooses a direct mechanism

7An example is v(θ, a) = −|θ − a| 12 and u(θ, a) = a − θ. Mookherjee and Png (1989)

assumes (changing the notation) lima→∞ −v(θ, a) = lima→∞ −u(θ,a)
v(θ,a) = 0 and shows the optimal

mechanism exists in a finite type space.
8See for example: Border and Sobel (1987) and Ahmadzadeh and Waizmann (2024).
9This idea has been suggested by Halac and Yared (2020) as well. See discussion on stochastic

inspection in this paper.
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M =
(
i(θ̂), a(θ̂)

)
, which θ̂ is the reported type of the Agent. The Agent’s expected

payoff given its type θ and the report θ̂ is

π(θ̂, θ) ≡ (1− i(θ̂))
(
u(θ, a(θ̂))

)
1a(θ̂)≥θ + i(θ̂)

(
u(θ, aI(θ̂, θ))

)
1aI(θ̂,θ)≥θ

= (1− i(θ̂))
(
u(θ, a(θ̂))

)
1a(θ̂)≥θ.

The Principal’s expected payoff if the Agent with type θ reports θ̂ is

(1− i(θ̂))
(
v(θ, a(θ̂))

)
1a(θ̂)≥θ + i(θ̂)

(
v(θ, θ)− ϕ

)
.

The Principal’s problem:

Define the problem P as follows

P : max
i(·),a(·)

E
[
(1 − i(θ))

(
v(θ, a(θ))

)
1a(θ)≥θ + i(θ)

(
− ϕ + v(θ, θ)

)]
,

subject to combined ex-post participation constraints and the truth telling condi-

tions (IC) for the Agent:

π(θ, θ) ≥ sup
θ̂

π(θ̂, θ),

for all θ ∈ [θ, θ]. For simplicity, let π(θ) = π(θ, θ). Note that the mandated

action without inspection a(θ̂), can be less than the true type of the Agent, which

implies that the Agent rejects the offered action, or in other words, the Principal

can exclude some types. It is without loss of optimality, to assume a(θ̂) = θ, if

the Principal wants to exclude a type through a(·). We assume the solution to

problem P exists and is piece-wise continuous. This existence of the solution is not

a challenge when type space is finite.

Assumption 3 The solution to problem P exists and it is piece-wise continuous.

Types with zero payoffs:

Let us begin the analysis with types that have zero payoffs. Let M =
(
i(·), a(·)

)
,

satisfies IC. Define

θ̃ = {inf θ|π(θ) = 0}.

The following lemma studies the structure of M for θ > θ̃.
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Lemma 1 (i) π(θ) = 0 for all θ ≥ θ̃.

(ii) If a(θ) < θ, then it is without loss of generality to assume a(θ) = θ.

(iii) If a(θ) = θ, then optimality of M implies that for all θ
′
> θ, a(θ

′
) = θ.

(iv) If a(θ) ≤ θ, then for all θ
′
> θ, either a(θ

′
) = θ or i(θ

′
) = 1.

The proof of Lemma 1 is in Appendix. Lemma 1 (iii), and (iv) imply that a

necessary condition for M to be optimal is that there exists ˜̃θ ∈ [θ̃, θ], such i(θ) = 1

for θ ∈ [θ̃, ˜̃θ], and a(θ) = θ for θ ∈ [ ˜̃θ, θ]. This means that full inspection and

exclusion areas are completely separated. Using the structure of Lemma 1, one

can conclude that types θ ≤ θ̃ do not have incentive to mimic types higher than θ̃.

In addition, a necessary and sufficient condition for incentives of types higher than

θ̃, is that a(θ) ≤ θ̃ for θ ≤ θ̃. This implies a(θ̃) = θ̃.

Corollary 1 In any optimal M, a∗(θ̃) = θ̃.

An upper bound on the payoff of the Principal:

Now we establish an upper bound on the Principal’s payoff. Using this upper

bound, we then identify the conditions under which deterministic inspection is

optimal. Finally, we present the conditions where the optimal outcome matches

the upper bound.

Lemma 2 Denote
(
M =

(
i∗(·), a∗(·)

))
the solution to problem P replacing global

IC constraints by local IC constraints. Suppose there exists θ∗ such that i∗(θ) = 0

for all θ ≤ θ∗. Then the payoff of the Principal (problem P with global IC) is

(weakly) less than∫ θ∗

θ

(
v(θ, a∗(θ))−

u(θ∗, a∗(θ))

ua(θ∗, a∗(θ))
va(θ, a∗(θ))

)
dF (θ) +

∫ ˜̃
θ

θ∗

(
v(θ, θ)− ϕ

)
dF (θ).

The proof of Lemma 2 is in Appendix. Lemma 2 finds an upper bound on

the Principal’s payoff. Replacing global IC by local IC weaken the constraints.

Therefore the payoff of the Principal should be weakly higher.

To grasp the intuition behind the proof of Lemma 2, we first need to reformulate

problem P by substituting the global incentive compatibility (IC) constraints with

local IC constraints.
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max
i(.),a(.),θ̃,

˜̃
θ

∫ ˜̃
θ

θ

[
(1− i(θ))

(
v(θ, a(θ))− v(θ, θ) + ϕ

)
+
(
v(θ, θ)− ϕ

) ]
dF (θ),

subject to

(1− i(θ))u(θ, a(θ)) ≥ (1− i(θ̂))u(θ, a(θ̂)),

for all θ, θ̂ and a(θ) ≥ θ, θ̃ ≤ ˜̃θ and a(θ̃) = θ̃. The argument is analogous to

methods used in the Calculus of Variations. A global variation in the inspection

probability involves decreasing (1− i(θ)) to (1− β)(1− i(θ)) for types in [θ∗, θ̃]. In

words β percentage decrease in probability of not inspection. After this variation

types above θ∗ do not mimic types above θ∗ since (1− β) cancels from both sides

of IC inequalities. However, types above θ∗ would like to mimic types below θ∗.

In order to keep the incentives unchanged a variation on a∗(θ) is a
β
∗ (θ) such that

aβ∗ (θ) solves

u(θ∗, aβ∗ (θ)) = (1− β)u(θ∗, a∗(θ)).

For small enough β > 0, the marginal change in the payoff by decreasing β

percentage of not inspection is∫ θ̃

θ∗
(1− i∗(θ))

(
v(θ, a∗(θ))− v(θ, θ) + ϕ

)
dF (θ).

For enough β > 0, the marginal change in the payoff by changing a∗(θ) to a
β
∗ (θ) is∫ θ∗

θ

u(θ∗, a∗(θ))

ua(θ∗, a∗(θ))
va(θ, a∗(θ)) dF (θ).

Similar arguments holds for β > 0. At the optimal, the total marginal change

should be zero, therefore∫ θ̃

θ∗
(1− i∗(θ))

(
v(θ, a∗(θ))− v(θ, θ) + ϕ

)
dF (θ) =

∫ θ∗

θ

− u(θ∗, a∗(θ))

ua(θ∗, a∗(θ))
va(θ, a∗(θ)) dF (θ).

Using the above equality, one can derive the payoff stated in Lemma 2. The left

side represents the marginal increase in payoff by reducing one percent of not

inspection for types in [θ∗, θ]. The right side represents the marginal increase in

the payoff by adjusting a∗(θ) so that the utility of type θ∗ decreases by one percent.

At the optimal, the gain by increasing inspection should trade off the gain by

decreasing a∗(θ).
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Lemma 2 indicates that the net gain from stochastic inspection, as opposed to

deterministic inspection, is∫ θ∗

θ

(
v(θ, a∗(θ))−

u(θ∗, a∗(θ))

ua(θ∗, a∗(θ))
va(θ, a∗(θ))− v(θ, θ)

)
dF (θ)

If the above payoff is not strictly positive, then deterministic inspection is optimal.

Particularly, if for all θ∗ ≤ a∗(θ) (θ ≤ θ∗ ≤ a∗(θ) ≤ θ) the integral is negative, then

the optimal inspection is deterministic.

Fear of ruin:

Theorem 1 If fear of ruin of the principal is higher than the agent then deter-

ministic inspection is optimal.

An immediate consequence of Lemma 2 is if

v(θ, a∗(θ))− v(θ, θ)

va(θ, a∗(θ))
≥ u(θ∗, a∗(θ))− u(θ∗, θ∗)

ua(θ∗, a∗(θ))
,

then there is no benefit from stochastic inspection. The debate on the sub-

optimality of deterministic inspection was initiated by Townsend (1979). He

provided an example demonstrating that stochastic inspection yields a higher

payoff than deterministic inspection. However, many questions remain unanswered.

For instance, under what conditions is deterministic inspection optimal, and to

what extent is stochastic inspection superior to deterministic inspection?

The concept of the fear of ruin was introduced by Aumann and Kurz (1977) in

the context of taxation policies. We explain this concept in our setting. Suppose

an agent’s type is θ and the agent is considering a bet where he risks his entire

fortune a(θ) for a potential small increase to a(θ) + a′. The probability q of ruin

must be very small for the Agent to be indifferent between taking the bet and

keeping his current fortune, i.e., u(θ, a(θ) + a′) = (1− q)u(θ, a(θ)) + qu(θ, θ). Thus,

the more unwilling the agent is to risk ruin, the smaller q will be. Therefore, q

serves as an inverse measure of the agent’s aversion to risking ruin. It can be

shown that the probability of ruin (q) per potential extra gain (a′) represents the

fear of ruin, i.e., limq→0 q/a
′ = u(θ, a(θ))/ua(θ, a(θ)). It is well-known that both

v(·, a) and u(·, a) are concave in a and if Arrow-Pratt coefficient of the Principal is
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higher than the Agent, then fear of ruin of the Principal is also higher.10

It seems intuitive that if the Principal has a greater fear of ruin than the Agent, it

is less favorable for her to use stochastic inspection. However, employing stochastic

inspection might reduce the Agent’s information rent, potentially offsetting the

risk the Principal assumes.

Theorem 1 asserts that regardless of the inspection cost, if the Principal’s fear

of ruin exceeds that of the Agent, the optimal inspection strategy is deterministic.

However, this does not imply that the optimal mechanism is unaffected by the

inspection cost. In Section 3.1, we identify the optimal deterministic inspection

policy.

Example 1 (linear utilities) Suppose v(θ, a) = α(a− θ) + b and u(θ, a) = a− θ,

where α < 0, and b > 0. Then fear of ruin of the Principal is equal to the Agent.

Therefore the optimal using Theorem 1 is deterministic.

When utilities are linear in actions, they can be interpreted as transfers. The

literature on CSV with transfers does not predict the optimality of deterministic

inspection for several reasons. In Border and Sobel (1987) and Chander and

Wilde (1998), the Principal can commit to an action (transfer) in the event of

an inspection. Unlike our setting, the Agent’s payoff is higher when inspected

(truthful report) than when not inspected. Commitment to action in the case

of inspection enhances the efficiency of stochastic inspection. The Principal can

leverage rewards for truthful reporting.11

Example 2 (Principal risk-averse) Suppose v(θ, a) = α(a− θ)
1
2 + b and u(θ, a) =

a− θ, where α < 0, and b > 0. Then fear of ruin of the Principal is higher than

the Agent. Therefore the optimal mechanism is deterministic.

Harris and Raviv (1996) and Harris and Raviv (1998) study a principal-agent

model in the context of capital budgeting and delegation. Agent’s utility is

linear but Principal has a concave utility. These papers deal with finite types

(maximum three types) and predict optimality of stochastic inspection. Their

10See Proposition 4 of Foncel and Treich (2005).
11Palonen and Pekkarinen (2022) assumes no reward for the Agent following the inspection.

Among other differences to our paper their punishment is linear (exouenously fixed). They predict
inspection probabilities take two values. This result is due to the specific punishment.
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argument depends on the discreteness of the type space and continuity of inspection

probability.

Theorem 1 is silent when the Principal has less fear of ruin. In Mookherjee and

Png (1989) and Melumad and Mookherjee (1989) the principal is risk neutral and

the agent is risk-averse. The principal maximizes the agent’s payoff subject to

IR of the principal and IC of the Agent. Both papers predicts the optimality of

stochastic inspection. Their argument depends on the discreteness of the type

space and continuity of inspection probability. In addition, this result, leave the

question that how different is the payoff of optimal stochastic inspection to the

deterministic inspection.

Lemma 2 provides an intuitive upper bound on the payoff of stochastic inspection.∫ θ∗

θ

va(θ, a∗(θ))
(v(θ, a∗(θ))− v(θ, θ)

va(θ, a∗(θ))
− u(θ∗, a∗(θ))

ua(θ∗, a∗(θ))

)
dF (θ).

The upper bound is the aggregate difference of fear of ruin of the Principal for

types below θ∗ and the Agent for type θ∗ evaluated at a∗(θ) scaled by the marginal

utility of the Principal.

Claims 1 and 2 in Appendix, given θ∗ and θ̃, provide the solution of problem P
if local IC is sufficient condition for global IC and if the solution does not involve

bunching in interval [θ∗, θ̃]. Next Lemma provides a condition that local IC is

sufficient for global IC.

Lemma 3 Suppose u(·, ·) is log-Supermodular: For all θ ≤ a, and (θ, a) in [θ, θ]2

∂2 ln
(
u(θ, a)

)
∂θ ∂a

≥ 0.

Then (i) IC implies that a(θ) and i(θ) are weakly increasing for all θ ≤ θ̃. (ii)

Local IC and a(·) increasing, implies global IC.

The proof of Lemma 3 is in Appendix. Log-Supermodularity closely resembles

Supermodularity in the standard mechanism design literature. The reason for

incorporating the logarithm is that, unlike transfers, the inspection probability

multiplies the Agent’s utility. Thus, a logarithmic transformation adjusts the

Agent’s (IC) to fit the standard mechanism design framework. However, this

transformation is not applicable to the Principal’s objective.
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If the optimal mechanism, as derived using Claims 1 and 2 in the Appendix,

does not involve bunching, then the Principal’s optimal payoff will match the upper

bound established in Lemma 2.

3.1. Deterministic Inspection

In this section we derive the optimal policy restricting inspection policy to deter-

ministic inspection. In order to state the optimal policy, we need to define two

thresholds. Define the problem PD as follows

PD : max
θ∗∈[θ,θ]

{∫ θ∗

θ

(
v(θ, θ∗)

)
dF (θ) +

∫ θ

θ∗

(
v(θ, θ)− ϕ

)
1v(θ,θ)≥ϕ dF (θ)

}
.

Let Θ∗ be the set of the solutions of PD.
12 For θ∗ ∈ Θ∗, define θ∗∗ ≥ θ∗ such that

θ∗∗ =

{
θ∗ if v(θ∗, θ∗) ≤ ϕ

θ if v(θ, θ) > ϕ
,

otherwise define θ∗∗ as the solution of v(θ∗∗, θ∗∗) = ϕ. Using θ∗, and θ∗∗, the below

proposition expresses the optimal policy.

Theorem 2 The optimal policy for all θ ∈ [θ, θ] is

i∗(θ) =


0 θ < θ∗

1 θ∗∗ ≥ θ ≥ θ∗

0 θ > θ∗∗,

a∗(θ) =


θ∗ θ < θ∗

θ θ∗∗ ≥ θ ≥ θ∗

θ θ > θ∗∗.

Moreover, commitment on aI(·, ·) does not have any benefit for the Principal.

The proof of Theorem 2 is in Appendix. First, Theorem 2 states that there are two

thresholds. We call the first threshold (θ∗), inspection threshold, and the second

threshold (θ∗∗), exclusion threshold. The optimal policy divides types in to three

areas. Efficient types (θ < θ∗), intermediate types (θ ∈ [θ∗, θ∗∗]), and inefficient

12Problem PD is continuous in θ∗ ∈ [θ, θ], therefore it admits a maximizer.
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types (θ > θ∗∗). If the inspection cost is high (v(θ∗, θ∗) ≤ ϕ), then there is no

inspection region. If the inspection cost is low (v(θ, θ) > ϕ), there is no exclusion

region.

Second, Theorem 2 expresses that the principal mandates the efficient action

after inspection, i.e. aI(θ, θ) = θ. The Principal does not give a reward for telling

the truth in case of inspection. The reason is by excluding inefficient types and

inspecting intermediate types, the Principal can decrease the informational rent

(the set of types that can mimic) of efficient types and leave a zero for intermediate

types. Thus intermediate types cannot mimic higher types, and the Principal

optimally can set aI(θ, θ) = θ.

Third, the Theorem says the Principal does not waste resources (cost of inspec-

tion) for inefficient types (θ > θ∗∗), so inspection is zero. Instead she mandates a

low action without inspection (a(·)) and excludes the inefficient types. By inspect-

ing intermediate types, the optimal policy hits two goals. First, if does not allow

efficient types (θ < θ∗) to mimic intermediate types. Second by having full infor-

mation on the intermediate types, she can mandate efficient action (aI(θ, θ) = θ)

for these types.

Fourth, Theorem 2 argues that the optimal mandated action without inspection

(a(·)) sets a fixed action equal to θ∗ for efficient types. This is in contrast to CSV

literature with deterministic inspection. The mandated action for efficient types is

fixed (the same as ours), but strictly less than the efficient action for the lowest

type that is inspected (a < θ∗).13 In our paper, if a for efficient types is less than θ∗,

then types in interval [a, θ∗] will reject the mandated action ex-post. This means

that the Principal is excluding some efficient types. The aforementioned structure

cannot be optimal, since the Principal can shift the inspection area toward more

efficient types, and instead exclude more inefficient types.

The trade-off at the inspection threshold, is between inspecting the marginal

type at the benefit of decreasing a for all efficient types. The trade-off at the

exclusion threshold, is between inspecting the marginal type at the benefit of

mandating the efficient action, instead of exclusion of the marginal type.

Figure 2 illustrates the optimal policy. The Principal sets a cap on actions equal

to θ∗. She inspects types between θ∗ and θ∗∗, and mandates the efficient action

for these types. The Principal excludes types above θ∗∗ by mandating a very low

action a(θ̂) = θ.

13See Halac and Yared (2020), section IV, definition of TEC.
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Threshold structure of the optimal policy does not come as a surprise due to

deterministic inspection. Similar structure exists in Townsend (1979), Gale and

Hellwig (1985), Malenko (2019) (the static case), and Halac and Yared (2020).

Beside the differences in the modeling assumptions of these papers with the current

paper, the prediction of these models are different compare to ours. First, There is

no exclusion region in these papers. The reason is either because the inspection

cost is borne by the Agent (Townsend (1979) and Gale and Hellwig (1985)), or the

first best value of high types is increasing (Malenko (2019) and Halac and Yared

(2020)), as opposed to ours which v(θ, θ) is decreasing in θ.

Second, In these papers,14 at the contracting date, the Principal and the Agent

have similar information. Therefore naturally these papers assume ex-ante IR as

opposed to ex-post participation constraint in our paper. Hence inspection is used

for two reasons.15 Protecting inefficient types from excessive losses, and reducing

the rent of efficient types. Therefore the inspection area is affected by the outside

option (ex-ante) of the Agent, whereas, in our model inspection does not act as an

insurance to excesses losses for the agent, since the agent can always rejects the

mandated action ex-post.

Figure 2: optimal policy

14Except Halac and Yared (2020).
15Note that in Townsend (1979) and Gale and Hellwig (1985), the Agent is borne the cost of

inspection, in Malenko (2019) the Principal and in Halac and Yared (2020) both.
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4. Different commitment ability

In this section, we examine the varying commitment capabilities of the Principal.

There are two motivations for this analysis.

Firstly, it helps to identify which instruments are essential for the Principal to

commit to. Understanding this is crucial for determining the effectiveness of the

Principal’s commitment ability across different tools.

Secondly, in practice, the Principal’s commitment can vary depending on the

application. For instance, in some cases, a government department specifies only

audit policies without setting standards (actions in our context). In other cases, a

regulator has an independent audit agency that does not specify when and under

what conditions inspections are conducted. We view these different environments

as representing different commitment abilities for the Principal.

By studying these variations, we can gain deeper insights into the strategic

importance of each instrument and how the Principal can best utilize them in

practice.

4.1. Commitment only to the action

From an ex post perspective, the principal may lack the incentive to conduct

inspections. When the agent sends a message to the principal, it might not be

optimal for the principal to inspect the agent, making it challenging to ensure

adherence to the contract. Additionally, if the principal’s inspection efforts are

unobservable, they might reduce their effort to save on inspection costs. Especially

when the optimal inspection policy is stochastic, it becomes difficult to monitor

whether the principal is adhering to the contract, and it is hard to enforce and

verify deviations in court.

In this section, we examine a scenario where the Principal can commit to an

action if no inspection occurs but does not commit to inspection policies. For

example, consider an environmental regulator that sets standards (action in our

setting) when there is no inspection. However, the regulator does not specify when

inspections will occur, under what conditions they will take place, or what the

mandated standards will be after an inspection.

Suppose the Principal can commit only to a(·) : M → R+. Timing is as

follows: The Principal commits to a(·). Agent privately observes type θ ∼ F (·),
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and sends a message m. Principal observes m, and decides to inspect or not:

with inspection observes the true type and mandates a (without commitment).

without inspection mandates a(m) (with commitment). Agent accepts or rejects

the mandated standard.

Agent’s strategy is: m(θ) ∈ R+. Principal’s strategy is
(
i(m) ∈ [0, 1], aI(m, θ) ∈

R+

)
. Principal’s belief is: β(θ|m).

A similar observation is that the Principal is opportunistic in case of inspection:

aI(m, θ) = θ.

Theorem 3 (i) The Equilibrium similar to the optimal deterministic policy (The-

orem 2) exists. (ii) Suppose u(·, ·) is log-Supermodular, then the maximum ex-ante

payoff is equal to the optimal deterministic policy (Theorem 2).

The proof of Theorem 3 is in Appendix. Theorem 3 asserts that the principal

can guarantee a payoff equivalent to deterministic inspection by committing solely

to a(·). The equilibrium strategies are as follows: types [θ, θ∗] ∪ [θ∗∗, θ] sends

message mN and types in [θ∗, θ̃] send mI . The Principal sets the cap θ∗ on actions

without inspection i.e., a(m) = θ∗ and inspects only when receives message mI

i.e., i(mI) = 1. The principal’s off the equilibrium path belief is β(θ|m) is θ with

probability one.

We explain intuitively why the above strategies form an equilibrium. Types

below θ∗ do not deviate to mI , otherwise they receive a zero payoff. Moreover,

types above θ∗ receive a zero payoff anyhow.

The principal adheres to her inspection strategy. If does not inspect intermediate

types (types that send mI), then she will exclude types through the pre-committed

action a(mI) = θ∗. By committing to this action, she effectively penalizes herself.

She has committed to a low action when she does not inspect and receives mI .

The Principal does not inspect mN . If inspecting mN would yield a higher payoff,

then inspecting both messages could generate an even higher payoff than optimal

deterministic inspection (Theorem 2). However, this implies that in the optimal

deterministic inspection, full inspection (inspecting all types) should be optimal.

This cannot be the case unless the inspection cost, ϕ, is zero.

Note that Theorem 3 does not claim that there is no equilibrium yielding a higher

payoff for the Principal than the optimal deterministic inspection. This might

seem counterintuitive, as one might expect that without the ability to commit to

an inspection policy, the Principal would be indifferent between inspecting and
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not inspecting, thus simplifying the policy to a deterministic one. However, this is

not entirely accurate. While it is true that the Principal should be indifferent to

inspection when the probability of inspection is between zero and one, stochastic

inspection can influence the Agent’s incentives and reduce the information rent.

Theorem 3 (ii) states that if the Agent has log-supermodular utility, the Principal

cannot use stochastic inspection to lower the Agent’s information rent. In fact,

the proof of Theorem 3 (ii) relies on the following monotonicity property of an

equilibrium: if m ∈ m(θ) and m′ ∈ m(θ′), where θ̃ > θ′ > θ, then i(m′) ≥ i(m)

and a(m′) ≥ a(m). The monotonicity condition can be shown using IC condition

of the agent for log-supermodular utilities.

Khalil (1997) examines a model of CSV where the Principal cannot commit

to an inspection policy. Inspections occur ex-post (after production), and the

Principal cannot adjust allocations post-inspection, with penalties being exogenous.

Therefore, his model is one of costly signaling rather than cheap talk. An ex-

post audit implies that if auditing is optimal, then inspections are stochastic and

compliance is random (with the agent playing a mixed strategy due to the presence

of two types). In an audit contract, the agent does not receive rent in either state of

nature because the inefficient type is indifferent. This paper finds that there is more

auditing under no-commitment than under commitment. Conversely, our paper

shows that the level of auditing remains the same whether there is no-commitment

(section 4.1) or commitment to inspection (section 3.1).

Melumad and Mookherjee (1989) is also consider a setting with no commitment

on inspection. The main differences are that the principal can commit on transfers

in case of inspection and the agent cannot reject the mechanism ex-post. In our

model the principal can punish her by mandating a very low action if receives

mI and does not inspect. Then the agent will reject. This helps the principal

to decrease the value of not inspecting without generate a big loss for the agent.

Therefore in our model the principal can achieve the full (deterministic) inspection

payoff.

4.2. Commitment only to inspection

In this section, we examine a scenario where a Principal commits to an inspection

policy but does not commit to actions. For instance, consider an inspector agency

that outlines the timing and conditions under which inspections will occur and

provides this information to a regulatory body. However, the regulatory body does
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not set specific standards for these inspections.

Suppose the Principal can only commit to i(·) : M → [0, 1]. Timing is as follows:

Principal commits to i(·). Agent privately observes type θ ∼ F (·), and sends a

message m. Principal inspects or not based on i(m). With inspection observes

the true type of the Agent and chooses an action a. without inspection chooses

an (possible different) action a. Agent accepts or rejects the mandated standard.

Agent’s strategy is m(θ) ∈ R+. Principal’s strategy is
(
a(m) ∈ R+, a(m, θ) ∈ R+

)
.

Principal’s belief: β(θ|m). Strategies and beliefs are measurable. A similar

observation is that the Principal is opportunistic in case of inspection: aI(m, θ) = θ.

Lemma 4 Fix i(·). In any equilibrium, (i) a(m) is constant for all on-path

messages m such that i(m) < 1. (ii) For on-path messages m1 and m2, if i(m1) < 1

and i(m2) < 1, then i(m1) = i(m2).

The proof of Lemma 4 is in Appendix. Lemma 4 asserts that the mandated action,

in the absence of inspection, should be uniform across all messages. The reasoning

is as follows: if there are two distinct mandated actions, types that are very close

to the lower action will attempt to imitate those with the higher action. This

phenomenon occurs regardless of the probability of inspection (as long as it is less

than one). The underlying reason is that there will always be a type very close to

an action; otherwise, the Principal can reduce that action.

As a result of Lemma 4, we can consolidate all messages with an inspection value

less than 1 into a single message, mN , and all messages with an inspection value

of exactly 1 into another single message, mI . Consequently, we can focus solely

on equilibria with at most two messages on the equilibrium path. The following

Corollary formally states this observation.

Corollary 2 For any equilibrium, there exists an outcome (ex-ante payoff of the

Principal and ex-ante payoff of all types of the Agent) equivalent equilibrium with

maximum two different messages mI and mN . i(mI) = 1, i(mN) < 1.

An interpretation of these two messages in Corollary 2 is that when the Agent

sends mI , he is requesting an inspection, whereas when he sends mN , he is not

requesting an inspection.

Theorem 4 (i) The highest ex-ante payoff of the principal is achieved by strategies

such that: Agent’s strategy is: types in [θ, s∗]∪ [s∗∗, θ] send mN and types in [s∗, s∗∗]

21



send mI . Principal’s strategy is: i(mI) = 1, i(mN) = 0 and a(mN) = s∗. (ii)

θ∗∗ ≤ s∗∗. (iii) If ϕ < v(θ, θ), (no exclusion region), is equivalent to optimal

deterministic inspection policy.

The proof of Theorem 4 is in Appendix. Theorem 4 indicates that the equi-

librium yielding the highest payoff shares a similar threshold structure with the

optimal deterministic inspection policy (Theorem 2). However, the thresholds

differ. The equilibrium structure does not involve stochastic inspection, suggesting

that commitment to stochastic inspection is beneficial only if the Principal can

also commit to an action (a(θ)).

It is intuitive that the exclusion area is not in the middle of the type space. In

other words, the Principal does any inspects type θ′ that is higher than θ type that

excludes. Otherwise, replacing the messages send by these types (m(θ) = mI and

m(θ′) = mN) both increases the Principal’s payoff and does not change the best

reply of the Principal when receives message mN . The payoff increases since v(θ, θ)

is decreasing in θ. The best reply, a(mN ), does not change since for all a ≤ a(mN )∫ a

θ

[
v (θ, a)1a≥θ

]
β(θ|mN) dθ ≤

∫ a(mN )

θ

[
v (θ, a(mN))1a(mN )≥θ

]
β(θ|mN) dθ.

The inequality remains valid because both sides are unchanged before and after

the modification. This inequality holds for all a ≥ a(mN ) as well since the left side

(weakly) decreases.

The Theorem states that to incentivize the Principal to mandate sufficiently

low actions when the Agent sends mN , the Principal should commit to inspect

inefficient types, i.e., s∗∗ ≥ θ∗∗. The benefit from exclusion area should be small

enough such that the Principal does not deviate in a(mN) and chooses a higher

action. Moreover, if the inspection cost is sufficiently low, meaning the exclusion

area does not exist as per Theorem 2, then the highest payoff and equilibrium

structure align with Theorem 2.

In the limited commitment section, Halac and Yared (2020) examines a delegation

model where the Principal can commit to inspection but may alter the allowable

action. This model shares some similarities with the one discussed in this section.

However, Halac and Yared (2020) focuses on deterministic inspections, and v(θ, θ)

increases with θ. Consequently, there is no exclusion area.
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4.3. No commitment

Now we analysis the case that the Principal does not have any commitment power.

Timing is as follows: Agent privately observes type θ ∼ F (·), and sends a message

m. Principal observes m, and decides to inspect or not. With inspection observes

the true type and chooses action a. Without inspection chooses action (possibly

different) a. Agent accepts or rejects the mandated standard.

Agent’s strategy is: m(θ) ∈ R+. Principal’s strategy is:
(
i(m) ∈ [0, 1], a(m) ∈

R+, a(m, θ) ∈ R+

)
. Principal’s belief is: β(θ|m).

By Lemma 4, since the Principal cannot commit on action without inspection,

one can construct all equilibria outcomes by at most two messages. We focus on

interval strategies Agent’s strategy m(θ) alternates between mI , and mN in finite

intervals.

Assumption 4 For all (θ, θ′, s) ∈ [θ, θ]3, such that θ′ ≤ θ ≤ s,

v(θ, s)− v(θ, θ) ≥ v(θ′, s)− v(θ′, θ′).

It is easy to see that Assumption 4 is a weaker condition than supermodularity.

Theorem 5 Suppose the Principal’s utility satisfies Assumption 4. Then the equi-

librium with highest ex-ante payoff has a structure similar to optimal deterministic

inspection policy (with different thresholds).

The proof of Theorem 5 is in Appendix. Banks (1989) examines a model such

that an agent requests a budget. In the open procedure section, the principal may

choose to inspect or not and then decides on a budget for the agent accordingly.

Utilities are linear, and inspection is imperfect; there is a probability that the

inspection does not yield any information. Imperfect inspection incentivizes types

just below but very close to s∗ to send mI , therefore (full) pooling are the only

equilibria. In any equilibrium, no information is transmitted from the agent to the

principal.

In contrast, our paper focuses on finding the highest payoff for the principal

and with perfect inspection there are equilbria like Theorem 5 that reveals more

information to the Principal. Non existence of no new information will be trans-

mitted from the agent to the principal. In contrast, our paper focuses on finding

the highest payoff for the principal and with perfect inspection there are equilbria
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like Theorem 5 that reveals more information to the Principal. Then non existence

of semi-separating equilbria in Banks (1989) is due to imperfect inspection. How-

ever, this is a knife edge case. Even with imperfect inspection, the Principal can

incentives types below s∗ to not send mI . If a type below s∗ sends mI and if the

inspection is successful, then the agent should pay a small part of inspection cost.

4.4. Partial commitment

Suppose the Principal is obligated to conduct an inspection only if the Agent

requests it. In numerous applications, there are institutions in place to ensure

that principals cannot refuse an audit once it has been requested. Thus, the

agent always has the option to ask for an audit. We demonstrate that with this

minimal level of commitment, and if the inspection cost is not high, then the

highest equilibrium payoff matches with the payoff described in Theorem 2.

Theorem 6 (Partial commitment) Suppose the inspection cost is not high, i.e.

ϕ < v(θ, θ), and the Principal can commit to inspect message mI . There exists an

equilibrium such that the ex-ante payoff of the Principal is the same as Theorem 2.

The proof of Theorem 6 is in Appendix. The intuition behind the above theorem

is as follows. Since the Principal cannot commit to actions, by employing Lemma

4 and Theorem 4, we can focus on equilibria with deterministic inspection and

two messages, {mI ,mN}. Suppose types in [θ∗, θ] send message mI , while other

types send mN . The Principal has no incentive to inspect mN . If inspecting mN

would yield a higher payoff, then inspecting both messages could generate an even

higher payoff than the optimal deterministic inspection. The Principal optimally

chooses action a(mN) = θ∗ after observing mN . The reasoning is as follows: first,

a(mN) ≤ θ∗, since the Principal assigns zero probability to types above θ∗ after

observing mN . Second, if a(mN) < θ∗, then a policy that caps actions at a(mN)

and inspects types in the interval [θ∗, θ] yields a strictly higher payoff than the

optimal policy in problem PD, which is not possible.

5. Conclusion

In conclusion, this paper provides a comprehensive analysis of the regulatory

tools of mandating standards and conducting inspections within a principal-agent
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framework. We have examined how different levels of commitment by the regulator

affect the effectiveness of these tools. Our findings indicate that when the regulator’s

fear of ruin exceeds firm’s fear of ruin, a deterministic inspection policy proves to

be optimal. This policy involves a structured approach where types are segmented

into efficient, intermediate, and inefficient categories. This segmentation helps in

balancing the trade-off between encouraging technology adoption and managing

the risk of firm rejecting standards.

Moreover, our analysis of varying commitment levels reveals that while full

commitment to both actions and inspections yields higher payoffs, partial com-

mitment scenarios also show promising outcomes. When the cost of inspections

is not high and the regulator commits to inspecting upon request, the optimal

deterministic policy can still be achieved. These insights highlight the importance

of strategic commitment and the potential for tailored regulatory approaches to

effectively incentivize technology adoption. Overall, our study underscores the

need for regulators to carefully design and commit to their policies to maximize

their effectiveness in achieving desired environmental and performance standards.
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A. Appendix

A.1. Reward Based Mechanisms

Fix α > 0. For all n ∈ N, define mechanism Mn(α) as follows: aI(θ, θ) = n,

i(θ) = −α
v(θ,n)

, a(θ) = θ, and aI(θ̂, θ) = θ if θ̂ ̸= θ for all (θ, θ̂) ∈ [θ, θ]2.

Lemma 5 Let u = sup(θ̂,θ)∈[θ,θ]2 u(θ, θ̂), and α > 0. Suppose lima→∞ v(θ, a) =

−∞, and lima→∞−u(θ,a)
v(θ,a)

> u
α
, for all θ ∈ [θ, θ]. Then the payoff of mechanisms

Mn(α) converges to E
[
v(θ, θ)

]
− α, as n goes large.

Proof. For n large enough the mechanism Mn is incentive compatible, i.e,

(1− i(θ))
(
u(θ, a(θ))

)
1a(θ)≥θ + i(θ)

(
u(θ, aI(θ, θ))

)
1aI(θ,θ)≥θ

=
−α

v(θ, n)
u(θ, n) ≥ sup

θ̂

(1− i(θ̂))
(
u(θ, a(θ̂))

)
1a(θ̂)≥θ

= sup
θ̂

(1− i(θ̂))u(θ, θ̂).

The reason is limn→∞
−α

v(θ,n)
u(θ, n) > u, and supθ̂(1− i(θ̂))u(θ, θ̂) is weakly less than

u. Note that all types accept Mn ex-post. Now we compute the payoff of Mn for

the Principal.

E
[
(1− i(θ))

(
v(θ, a(θ))

)
1a(θ)≥θ + i(θ)

(
− ϕ+ v(θ, aI(θ, θ))1aI(θ,θ)≥θ

) ]
= E

[
(1− −α

v(θ, n)
)
(
v(θ, θ)

)
+

−α
v(θ, n)

(
− ϕ+ v(θ, n)

) ]

Fixing α, the limit of the above payoff as n goes large is E
[
v(θ, θ)− α

]
.

As a result if lima→∞−u(θ,a)
v(θ,a)

= ∞, then lima→∞−u(θ,a)
v(θ,a)

> u
α
for all α > 0.

Therefore mechanism Mn(α) approximates first-best as n goes large and α goes

small.

Lemma 6 Suppose lima→∞ v(θ, a) = −∞, and lima→∞−u(θ,a)
v(θ,a)

= ∞, for all θ ∈
[θ, θ]. Then the solution to problem P does not exist.

Proof. Assume it exits, therefore the payoff of the Principal should be E
(
v(θ, θ)

)
.

Based on the objective of the principal in problem P, if the payoff is E
(
v(θ, θ)

)
,

i



then i(θ)
a.e
= 0, a(θ)

a.e
= 0. This mechanism clearly cannot satisfy the truth-telling

condition.

A.2. Proof of Lemma 1

Proof.

(i) By contradiction let θ2 > θ1 and π(θ2) > π(θ1) = 0. Then i(θ2) < 1 and

a(θ2) > θ2. But θ1 can mimic θ2 and receive a strictly positive payoff. A

contradiction.

(ii) When a(θ) < θ, it means that the Principal excludes type θ, if she does not

inspect. In this case, type θ’s expected payoff does not change if the principal

decreases a(θ) to θ.

(iii) Let a(θ) = θ. Then for all types θ
′
> θ, we have a(θ

′
) ≤ θ

′
. If a(θ

′
) < θ

′
,

then we can assume a(θ
′
) = θ. If a(θ

′
) = θ

′
, then i(θ

′
) = 1, otherwise type θ,

can mimic θ
′
. If i(θ

′
) = 1, the Principal can strictly gain by switching the

policies for type θ, and θ
′
. Excluding type θ, while keeping θ

′
is not efficient;

i.e v(θ, θ)− ϕ > v(θ
′
, θ

′
)− ϕ.

(iv) If a(θ) ≤ θ, then either a(θ
′
) ≤ θ

′
or i(θ

′
) = 1 for all θ

′
> θ. If a(θ

′
) < θ

′
, we

can assume a(θ
′
) = θ. If a(θ

′
) = θ

′
, then i(θ

′
) = 1, otherwise θ can mimic θ

′
.

A.3. Proof of Lemma 2

Proof. For ease of notation we drop ∗. For θ ≤ ˜̃θ, a(θ) ≥ θ. Therefore the

optimization becomes

max
i(.),a(.),

˜̃
θ

∫ ˜̃
θ

θ

[
(1− i(θ))

(
v(θ, a(θ))− v(θ, θ) + ϕ

)
+
(
v(θ, θ)− ϕ

) ]
f(θ)dθ,

subject to the IC condition. By Lemma 1, there exists θ̃ such that for all θ < θ̃,

a(θ) > θ, a(θ̃) = a(θ̃). For types θ > θ̃, a(·) is irrelevant. Therefore the optimization

becomes

max
i(.),a(.),θ̃,

˜̃
θ

∫ θ̃

θ

[
(1− i(θ))

(
v(θ, a(θ))− v(θ, θ) + ϕ

) ]
f(θ)dθ +

∫ ˜̃
θ

θ

[(
v(θ, θ)− ϕ

) ]
f(θ)dθ
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subject to

(1− i(θ))u(θ, a(θ)) ≥ (1− i(θ̂))u(θ, a(θ̂)),

a(θ) ≥ θ and θ̃ ≤ ˜̃θ. Fixing θ̃ and ˜̃θ, we relax the global IC constraint by local IC

as follows. Given a type θ and θ̂ ∈ (θ, a(θ)). Therefore a(θ̂) > θ. The local IC

condition is

(1− i(θ))u(θ, a(θ)) ≥ (1− i(θ̂))u(θ, a(θ̂)).

By employing the Envelope Theorem, the local truth telling (except those points

that a(·) has a discontinuity) condition gives

∂ ln
[
π(θ)

]
∂θ

=
∂ln

[
u(θ, a(θ))

]
∂θ

,

or equivalently for π(θ) > 0 (θ < θ̃),

π̇(θ) = π(θ)
uθ(θ, a(θ))

u(θ, a(θ))
.

The relaxed problem of P by replacing global IC with local IC is

max
π(·),a(·)

∫ θ̃

θ

[ π(θ)

u(θ, a(θ))

(
v(θ, a(θ))− v(θ, θ) + ϕ

)]
f(θ)dθ +

∫ ˜̃
θ

θ

(
v(θ, θ)− ϕ

)
f(θ)dθ,

subject to (for θ < θ̃)

π̇(θ) = π(θ)
uθ(θ, a(θ))

u(θ, a(θ))
,

π(θ) ≤ u(θ, a(θ)).

Note that the state equation does not need to be valid at discontinuity points

of a(·). We analysis the relaxed problem by using the Pontryagin’s maximum

principle (π is the state and a is the control variable).16 The Hamiltonian for θ < θ̃

is

H(a, π, µ, w, θ) =
π

u(θ, a)

(
v(θ, a)−v(θ, θ)+ϕ

)
f(θ)+µ π

uθ(θ, a)

u(θ, a)
+w(u(θ, a)−π),

where the Lagrangian multiplier for π(θ) ≤ u(θ, a(θ)) is w(θ). From the Pontryagin

principle for the co-state variable µ(θ) we have (except at discontinuity points of

16Note that we can write the Pontryagin’s maximum principle for piece-wise continuous control,
and piece-wise differentiable state. For more information see Seierstad and Sydsaeter (1986),
Chapter 2, Theorem 2, or Kamien and Schwartz (2012), section 14.
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a(·))

µ̇(θ) = −∂H
∂π

= − 1

u(θ, a(θ))

(
v(θ, a(θ))−v(θ, θ)+ϕ

)
f(θ)−µ(θ) uθ(θ, a(θ))

u(θ, a(θ))
+w(θ).

Since u(θ, a(θ)) > 0, then

µ̇(θ)u(θ, a(θ))+µ(θ) uθ(θ, a(θ))−w(θ)u(θ, a(θ)) = −
(
v(θ, a(θ))−v(θ, θ)+ϕ

)
f(θ).

(1)

For types θ ∈ [θ∗, θ̃], w(θ) = 0. Hence

d µ(θ)π(θ)

d θ
= − π(θ)

u(θ, a(θ))

(
v(θ, a(θ))− v(θ, θ) + ϕ

)
f(θ).

Employing Newton–Leibniz theorem, and the fact that µ(·), and π(·) are continuous
functions:∫ θ̃

θ∗

d µ(θ)π(θ)

d θ
dθ =

∫ θ̃

θ∗
− π(θ)

u(θ, a(θ))

(
v(θ, a(θ))− v(θ, θ) + ϕ

)
f(θ) dθ.

Since π(θ̃) = 0,

µ(θ∗)π(θ∗) =

∫ θ̃

θ∗

π(θ)

u(θ, a(θ))

(
v(θ, a(θ))− v(θ, θ) + ϕ

)
f(θ) dθ. (2)

In the next step we compute µ(θ∗). From the Pontryagin’s maximum principle, we

know for all θ < θ̃, a maximizes the following

π(θ)

u(θ, a)

(
v(θ, a)− v(θ, θ) + ϕ

)
f(θ) + µ(θ) π(θ)

uθ(θ, a)

u(θ, a)
+ w(θ)(u(θ, a)− π(θ)).

Sine the above is a C1 function of a, as a necessary condition we can write

Ha = π(θ)

(
u(θ, a(θ))

(
va(θ, a(θ))f(θ) + µ(θ)uθa(θ, a(θ))

)
u2(θ, a(θ))

−
ua(θ, a(θ))

(
(v(θ, a(θ))− v(θ, θ) + ϕ)f(θ) + µ(θ) uθ(θ, a(θ))

)
u2(θ, a(θ))

)
+ w(θ)ua(θ, a(θ)) = 0. (3)
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Pluging 1, we get

Ha =

π(θ)u(θ, a(θ))

(
va(θ, a(θ))f(θ) + µ(θ)uθa(θ, a(θ)) + ua(θ, a(θ))

(
µ̇(θ)− w(θ)

)
u2(θ, a(θ))

)
+ w(θ)ua(θ, a(θ)) = 0.

Simple algebra gives us

π(θ)u(θ, a(θ))

(
va(θ, a(θ))f(θ) + µ(θ)uθa(θ, a(θ)) + ua(θ, a(θ))µ̇(θ)

u2(θ, a(θ))

)
= ua(θ, a(θ))w(θ)

( π(θ)

u(θ, a(θ))
− 1

)
= 0.

The last equality is due to the fact that w(θ)(u(θ, a(θ))− π(θ)) = 0. Finally since

π(θ), and u(θ, a(θ)) are strictly positive we have

µ(θ)uθa(θ, a(θ)) + ua(θ, a(θ))µ̇(θ) = −va(θ, a(θ))f(θ).

The above equation for θ ≤ θ∗ implies∫ θ

θ

d µ(t)ua(t, a(t))

d t
dt =

∫ θ

θ

−va(t, a∗(t))f(t) dt.

The transversality condition at θ is µ(θ) = 0. Hence

µ(θ)ua(θ, a(θ)) =

∫ θ

θ

−va(t, a(θ))f(t) dt. (4)

Employing equations 2 and 4, and the fact that π(θ∗) = u(θ∗, a(θ)), the Principal’s

payoff becomes∫ θ∗

θ

(
v(θ, a(θ))− v(θ, θ) + ϕ

)
f(θ) dθ +

u(θ∗, a(θ))

ua(θ∗, a(θ))

∫ θ∗

θ

−va(θ, a(θ))f(θ) dθ

+

∫ ˜̃
θ

θ

(
v(θ, θ)− ϕ

)
f(θ)dθ.
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Equivalently∫ θ∗

θ

(
v(θ, a(θ))− u(θ∗, a(θ))

ua(θ∗, a(θ))
va(θ, a(θ))

)
f(θ) dθ +

∫ ˜̃
θ

θ∗

(
v(θ, θ)− ϕ

)
f(θ)dθ.

Claim 1 Suppose local IC is sufficient for global IC. Assume a∗(θ) is strictly

increasing in [θ∗, θ̃], then there exists a C1 function µ(θ) such that a∗(θ) satisfy the

below equations:

−µ̇(θ) = v(θ, a∗(θ))− v(θ, θ) + ϕ

u(θ, a∗(θ))
f(θ) + µ(θ)

uθ(θ, a∗(θ))

u(θ, a∗(θ))
,

∂
(v(θ,a∗(θ))−v(θ,θ)+ϕ

u(θ,a∗(θ))

)
∂a

f(θ) + µ(θ)
∂2 ln

(
u(θ, a∗(θ))

)
∂θ ∂a

= 0,

for all θ ∈ [θ∗, θ̃]. Moreover, if a∗(·) is piecewise C1 then a∗(·) satisfies (at all

differentiable and continuous points of a∗) the below first order differential equation

ȧ(θ) =
[
ψ(θ, a∗(θ))−

∂Ψ(θ, a∗(θ))

∂θ

](∂Ψ(θ, a∗(θ))

∂a

)−1
,

with end point condition a∗(θ̃) = θ̃.

Proof. For all θ ∈ [θ∗, θ̃], from equation 3:

µ(θ) =
−

∂
(

v(θ,a∗(θ))−v(θ,θ)+ϕ
u(θ,a∗(θ))

)
∂a

f(θ)

∂2 ln
(
u(θ,a∗(θ))

)
∂θ ∂a

= Ψ(θ, a∗(θ)),

and from equation 1:

−µ̇(θ) = v(θ, a∗(θ))− v(θ, θ) + ϕ

u(θ, a∗(θ))
f(θ) + µ(θ)

uθ(θ, a∗(θ))

u(θ, a∗(θ))
.

Therefore

− µ̇(θ) =

(
uθ(θ, a∗(θ))va(θ, a∗(θ))− uaθ(θ, a∗(θ))(v(θ, a∗(θ))− v(θ, θ) + ϕ)

)
f(θ)

−ua(θ, a∗(θ))uθ(θ, a∗(θ)) + u(θ, a∗(θ))uθa(θ, a∗(θ))

≡ ψ(θ, a∗(θ)).
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Finally a simple calculation gives us the differential equation.

Claim 2 (The optimal inspection) Let a∗(.) be the optimal mandated action in

case of no inspection. Then the expected payoff for the Agent, and the optimal

inspection policy for θ ≤ θ̃, are

π(θ) = π(θ) exp
( ∫ θ

θ

uθ(t, a∗(t))

u(t, a∗(t))
dt
)
,

and

i∗(θ) = 1−
π(θ) exp

( ∫ θ

θ
uθ(t,a∗(t))
u(t,a∗(t))

dt
)

u(θ, a∗(θ))
.

Proof.

Using Newton–Leibniz theorem, and the fact that π(.) is a continuous function:

ln(π(θ))− ln(π(θ)) =

∫ θ

θ

d ln(π(t))

d t
dt =

∫ θ

θ

uθ(t, a(t))dt.

Note that the above equality is valid even if i∗(.) or a∗(.) has discontinuities. Finally

π(θ) = π(θ) exp
( ∫ θ

θ

uθ(t, a∗(t))

u(t, a∗(t))
dt
)
.

We know π(θ) = (1− i∗(θ))u(θ, a∗(θ)), so i∗(θ) = 1− π(θ)
u(θ,a∗(θ))

.

A.4. Proof of Lemma 3

Proof. (i) For all θ < θ̃, i(θ) < 1 and a(θ) > θ. First we show a(·) is weakly

increasing. For all θ, and θ̂ ∈ (θ, a(θ)), IC conditions imply

ln(1− i(θ)) + ln
(
u(θ, a(θ))

)
≥ ln(1− i(θ̂)) + ln

(
u(θ, a(θ̂))

)
,

and

ln(1− i(θ̂)) + ln
(
u(θ̂, a(θ̂))

)
≥ ln(1− i(θ)) + ln

(
u(θ̂, a(θ))

)
.

Assume θ > θ̂. Adding up the above inequalities gives us

ln
(
u(θ, a(θ))

)
− ln

(
u(θ̂, a(θ))

)
θ − θ̂

≥
ln
(
u(θ, a(θ̂))

)
− ln

(
u(θ̂, a(θ̂))

)
θ − θ̂

.
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Using log-Supermodular property of u(·, ·), we conclude a(θ) ≥ a(θ̂). Now we show

i(·) is weakly increasing. By contradiction assume there exist types θ < θ
′
such

that i(θ) > i(θ
′
). Since a(·) is a weakly increasing function, then type θ prefers to

mimic type θ
′
, i.e.

(1− i(θ))u(θ, a(θ)) ≤ (1− i(θ
′
))u(θ, a(θ

′
)).

A contradiction.

(ii) Define y(θ) = ln(π(θ)), and u(θ, a(θ̂)) = ln(u(θ, a(θ̂))). A logarithm trans-

formation of the local truth-telling condition for all t gives us

ẏ(t) = uθ(t, a(t)),

for all t such that a(·) is continuous at t. At discontinuity points of i(.), and a(.)

we should replace the derivatives with left or right derivatives, so

ẏ(t−) = uθ(t, a(t
−)), and ẏ(t+) = uθ(t, a(t

+)).

Let t > t
′
. Using Newton–Leibniz theorem, and the fact that y(.) is a continuous

function:

y(t)− y(t
′
) =

∫ t

t′
uθ(s, a(s))ds, (5)

We need to show for all t, and t
′
.

π(t) ≥ π(t
′
)
u(t, a(t

′
))

u(t′ , a(t′))
,

or

y(t)− y(t
′
) ≥ u(t, a(t

′
))− u(t

′
, a(t

′
)) =

∫ t

t′
uθ(s, a(t

′
))ds

Employing 5, we should show∫ t

t′

[
uθ(s, a(s))− uθ(s, a(t

′
))
]
ds ≥ 0.

By log-Supermodular property of u(·, ·), the integral is positive. Now let t
′
> t.

We need to show

y(t)− y(t
′
) ≥ u(t, a(t

′
))− u(t

′
, a(t

′
)) = −

∫ t
′

t

uθ(s, a(t
′
))ds.
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Rewrite equation 5, y(t)− y(t
′
) = −

∫ t
′

t
uθ(s, a(s))ds, and plugging in the above

inequality, we can conclude∫ t
′

t

[
uθ(s, a(t

′
))− uθ(s, a(s))

]
ds ≥ 0.

Again using log-Supermodular property of u(·, ·) the integral is positive.

Now given a∗(.), we can find the payoff of the Agent π(.), and the optimal

inspection policy i∗(.).

A.5. Proof of Theorem 2

Proof. Due to the maximum punishment rule, and Assumption 1, aI(θ̂, θ) ≤ θ

if θ̂ ̸= θ. Observe that if a(θ) < θ, then the mechanism can choose a(θ) = θ.

Now given a mechanism (i(θ̂), aI(θ̂, θ), a(θ̂)), define θ∗ = sup{a(θ)|i(θ) = 0}.
Assumption 1, and the global IC imply that

i(θ)
(
u(θ, aI(θ, θ))

)
1aI(θ,θ)≥θ + (1− i(θ))

(
u(θ, a(θ))

)
1a(θ)≥θ

≥ i(θ̂)
(
u(θ, aI(θ̂, θ))

)
1aI(θ̂,θ)≥θ + (1− i(θ̂))

(
u(θ, a(θ̂))

)
1a(θ̂)≥θ

= (1− i(θ̂))
(
u(θ, a(θ̂))

)
1a(θ̂)≥θ.

for all θ̂ ̸= θ, and (θ, θ̂) ∈ [θ, θ]2. The last inequality comes from the fact that

either aI(θ̂, θ) = θ, then u(θ, θ) = 0 (by Assumption 1), or aI(θ̂, θ) < θ, then

u(θ, aI(θ̂, θ)1aI(θ̂,θ)≥θ = 0. Thus we have

i(θ)
(
u(θ, aI(θ, θ))

)
1aI(θ,θ)≥θ + (1− i(θ))

(
u(θ, a(θ))

)
1a(θ)≥θ ≥

(
u(θ, θ∗)

)
1θ∗≥θ.

First it means that if i(θ) = 0, and a(θ) = θ, then θ∗ ≤ θ. Second if i(θ) = 0, and

a(θ) ̸= θ means that a(θ) ≥ θ, and then a(θ) ≥ θ∗. However, by the definition of

θ∗, we conclude a(θ) = θ∗. Therefore if i(θ) = 0, then

a(θ) =


θ∗ θ > θ∗

{θ∗, θ} θ = θ∗

θ θ < θ∗.

(6)
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Third if i(θ) = 1, and θ ≤ θ∗, then aI(θ, θ) ≥ θ∗. On the other hand, we know

if i(θ) = 1, then aI(θ, θ) ≥ θ. To see this by contradiction assume aI(θ, θ) < θ,

then if the Principal chooses i(θ) = 0, and a(θ) = θ, will have higher payoff

with no effect on the global IC. The higher payoff comes from the fact that

inspection has a positive cost ϕ > 0. Thus from IC, two necessary conditions are

aI(θ, θ) ≥ max{θ∗, θ}, and condition 6.

Rewrite the Principal’s problem

max
i(.),aI(.,.),aN (.)

∫ θ

θ

[
i(θ)v(θ, aI(θ, θ)) + (1− i(θ))v(θ, a(θ))1a(θ)≥θ − ϕi(θ)

]
dF (θ),

subject to the IC constraints. For the moment we consider weaker conditions, that

are aI(θ, θ) ≥ max{θ∗, θ}, and condition 6. Later we check the global IC condition.

By Assumption 2, the objective function is decreasing in aI(θ, θ). Therefore

aI(θ, θ) = max{θ∗, θ}. Rewriting the objective function

max
i(.),θ∗

{∫ θ

θ

[
i(θ)

(
v(θ,max{θ∗, θ})− ϕ

)
+ (1− i(θ))

(
v(θ, θ∗)

)
1θ∗≥θ

]
df(θ)

}
.

Now if θ ≤ θ∗, then

v(θ,max{θ∗, θ})− ϕ < v(θ, θ∗),

therefore the optimal policy chooses i(θ) = 0 for all θ ≤ θ∗. For θ > θ∗, the optimal

policy chooses i(θ) = 1, iff v(θ, θ) − ϕ ≥ 0. Therefore the objective becomes to

solve problem PD

max
θ∗∈[θ,θ]

{∫ θ

θ∗

(
v(θ, θ)− ϕ

)
1v(θ,θ)≥ϕ dF (θ) +

∫ θ∗

θ

(
v(θ, θ∗)

)
dF (θ)

}
.

The above explanation, and the optimal θ∗ for problem PD, together suggests that

the following policy is optimal for the weaker IC conditions.

aI(θ̂, θ) = θ,

i(θ̂) =


0 θ̂ ≤ θ∗

1 θ∗∗ ≥ θ̂ > θ∗

0 θ̂ > θ∗∗,
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a(θ) =


θ∗ θ̂ ≤ θ∗

θ θ∗∗ ≥ θ̂ > θ∗

θ θ̂ > θ∗∗,

Now we have to show the above policy is globally IC. The argument is as follows.

Types θ ≤ θ∗, cannot mimic types θ̂ ≥ θ∗, since they are either inspected or

excluded. Types θ ≤ θ∗, are indifferent to mimic types θ̂ < θ∗, since a(θ̂) = θ∗.

Types θ > θ∗, cannot mimic types θ̂ ≥ θ∗, since they are either inspected or

excluded. Types θ > θ∗, cannot mimic types θ̂ < θ∗, since a(θ̂) = θ∗ < θ.

A.6. Proof of Theorem 3

Proof. (i) Let mI and mN be two different messages. Consider the following

strategy for the agent. m(θ) = mN for θ ∈ [θ, θ∗] ∪ [θ∗∗, θ] and m(θ) = mI for

θ ∈ (θ∗, θ∗∗). The Principal commits to a(·) as follow: a(mN) = θ∗ and a(m) = θ

for all m ̸= mI . The inspection strategy of the Principal is as follows: i(mI) = 1

and i(m) = 0 for all m ̸= mI . Let the principal’s belief for off the equilibrium path

messages be (with probability one) equal to type θ.

The Agent does not have any deviation strategy. Types in [θ, θ∗] strictly prefer

to send message mN . Types in (θ∗, θ] are indifferent to send any message since

their payoff will be zero anyhow.

The Principal does not have any deviation strategy. If the Principal does not

inspect messagemI , then types (θ∗, θ∗∗) will reject the action a(mI) = θ. The payoff

of inspection is strictly higher since v(θ, θ)−ϕ > 0 for all θ ∈ (θ∗, θ∗∗). The Principal

does not inspect message mN . By contradiction, suppose the ex-ante payoff of

inspecting types in [θ, θ∗] ∪ [θ∗∗, θ] is higher than mandating action a(θ) = θ∗. We

know, the ex-ante payoff of inspection types in (θ∗, θ∗∗) is strictly higher than

mandating action a(θ) = θ∗ for these types. This implies that inspecting all types

yields a higher payoff than mandating action a(θ) = θ∗ for types [θ, θ∗] ∪ [θ∗∗, θ]

and inspecting types in (θ∗, θ∗∗). Hence inspecting all types has a higher payoff

than the maximizer to problem PD. A contradiction.

(ii) Suppose u(·, ·) is log-Supermodular. We find all equilibria (ex-ante) payoffs

for the Principal and show payoffs are (weakly) less than the ex-ante payoff of the

equilibrium in (i). Fix an equilibrium E. Define θ̃ = sup{θ|π(θ) > 0}. Let M be

the set of on equilibrium path messages. By a similar argument to Lemma 3, one

can show if m ∈ M(θ) and m′ ∈ M(θ′), where θ̃ > θ′ > θ, then i(m′) ≥ i(m) and
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a(m′) ≥ a(m). Denote ǐ(θ) = i(m(θ)) and ǎ(θ) = a(m(θ)). Therefore both ǐ(·)
and ǎ(·) are weakly increasing. For ease of notation we use a(·) instead of ǎ(·) and
i(·) instead of ǐ(·). Hence without loss of generality we can assume i(·) and a(·)
are weakly increasing.

Define ΘI = {θ|i(m(θ)) > 0}, ΘN = {θ|i(m(θ)) = 0}. It is easy to see

a∗ ≡ a(m(θ)) = a(m(θ′)) for all θ, θ′ in ΘN . The ex-ante payoff of The Principal

under E is

E
[
v(θ, a∗)1a∗≥θ|θ ∈ ΘN

]
M(ΘN) + E

[
v(θ, θ)− ϕ|θ ∈ ΘI

]
M(ΘI),

where M(ΘN) and M(ΘI) are the probability measure of ΘN and ΘI respectively.

a(·) and i(·) are increasing therefore for all θI ∈ ΘI and θN ∈ ΘN , θN ≤ θI if

π(θN) > 0. Moreover, θN ≤ a∗ ≤ θI if π(θN) > 0. Therefore all equilibria payoffs

for the Principal can be represented by the value of problem Pa.

Pa(a
∗,ΘI ,ΘN) : E

[
v(θ, a∗)1a∗≥θ|θ ∈ ΘN

]
M(ΘN) + E

[
v(θ, θ)− ϕ|θ ∈ ΘI

]
M(ΘI),

subject to the incentive of the Agent: ΘI ⊂ [a∗, θ] and the incentive of the Principal:

E
[
v(θ, θ)− ϕ|θ ∈ ΘN

]
≤ E

[
v(θ, a∗)1a∗≥θ|θ ∈ ΘN

]
.

Note that we do not need to check the incentive of the Principal to inspect mI

since the Principal can commit on a very inefficient action a(mI) and excludes all

types.

In order to find the maximum of Pa, fix a
∗. The optimal ΘI , by Assumption 2 is

an interval starting from a∗. Thus the above optimization yields a similar payoff

to problem PD.

The constraint E
[
v(θ, θ)− ϕ|θ ∈ ΘN

]
≤ E

[
v(θ, a∗)1a∗≥θ|θ ∈ ΘN

]
, implies that

the minimum of Pa is max{E[v(θ, θ)− ϕ], 0}. Now suppose ΘI = [a∗, a∗∗]. The Pa

is continuous in a∗ and a∗∗. Therefore Pa contains all values between the min and

max.

A.7. Proof of Lemma 4

Proof. (i) Let m1 and m2 be two messages on the equilibrium path that the

Principal inspects with probability less than one, i.e. i(m1) < 1 and i(m2) < 1.
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Let Θi = {θ ∈ [θ, θ] : m(θ) = mi} for i ∈ {1, 2}. Let

θmi
= sup

{
θ|m = mi, and

∫
t<θ

β(θ|m = mi) dθ = 0
}
.

By definition, the probability measure of types less than θmi
that send message mi

is zero. By a simple computation, for a small enough δ > 0∫ θmi+δ

θ

[
v(θ, θmi

+ δ)
]
β(θ|m = mi) dθ

=

∫ θmi

θ

[
v(θ, θmi

+ δ)
]
β(θ|m = mi) dθ +

∫ θmi+δ

θmi

[
v(θ, θmi

+ δ)
]
β(θ|m = mi) dθ

=

∫ θmi+δ

θmi

[
v(θ, θmi

+ δ)
]
β(θ|m = mi) dθ > 0.

From second line to third line is by the fact that probability measure of types less

than θmi
is zero and v(·, ·) is bounded. The above value is strictly positive since

by Assumption 2, v(θ, θ) > 0 and the probability measure of types between θmi

and θmi
+ δ is strictly positive. As a consequence, for i ∈ {1, 2} we have

max
ã

∫ ã

θ

[
v(θ, ã)

]
β(θ|m = mi) dθ > 0.

Best reply of the Principal a(m) is

a(m) = argmax
ã

∫ θ

θ

[
V (θ, ã)1ã≥θ

]
β(θ|m) dθ =

∫ ã

θ

[
V (θ, ã)

]
β(θ|m) dθ.

The maximum is strictly positive, therefore a(mi) > inf{Θi}. Moreover for all

ϵ > 0 small enough we can find a type θi ∈ Θi such that a(mi)− θi < ϵ. Otherwise

a(mi) is not optimal and the Principal can decrease it.

Now by contradiction assume a(m1) > a(m2), then types in Θ2 that are very

close but less that a(m2) want to deviate and send message m1. Formally

(1− i(m1))u(θ, a(m1))1a(m1)≥θ > (1− i(m2))u(θ, a(m2))1a(m2)≥θ,

for θ ∈ Θ2 and small ϵ such that θ ∈ (a(m2)− ϵ, a(m2)). The reason is for small

enough ϵ, the right side goes to zero, and the left side is always higher than a

positive amount. A contradiction. Hence a(m1) = a(m2).
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(ii) By contradiction assume i(m1) > i(m2). By (i) a(m1) = a(m2). Let

Θi = {θ ∈ [θ, θ] : m(θ) = mi} for i ∈ {1, 2}. Then types in Θ1 that are less than

a(m1) want to deviate to m2. A contradiction.

A.8. Proof of Theorem 4

Proof. By Lemma 4 we can focus on equilibria with two messages. Fix an

equilibrium E. Define ΘI = {θ|m(θ) = mI} and ΘN = {θ|m(θ) = mN} under E.

Denote M(ΘN ) and M(ΘI) are the probability measure of ΘN and ΘI respectively.

Claim 3 Suppose the Principal cannot commit on a(·). Then in any equilibrium

ΘI ⊂ [a(mN ), θ]. Moreover, the payoff of any equilibrium is equivalent to the value

of problem Pi

Pi : E
[
(1− i(mN))v(θ, a(mN))1a(mN )≥θ|θ ∈ ΘN

]
M(ΘN)

+ E
[
i(mN)(v(θ, θ)− ϕ)|θ ∈ ΘN

]
M(ΘN) + E

[
v(θ, θ)− ϕ|θ ∈ ΘI

]
M(ΘI),

subject to ΘI ⊂ [a(mN), θ] and

a(mN) ∈ argmax
ã

∫ θ

θ

[
v (θ, ã)1ã≥θ

]
β(θ|mN) dθ.

Proof. a(mN ) should be less than all types in ΘI , otherwise types θ ∈ (inf ΘI , a(mN ))

deviate and send message mN . ΘI ⊂ [a(mN), θ] is no deviation constraint for the

Agent and the last equation of the Claim is no deviation constraint for the Principal.

(i) Let a(mN) = s∗. The value of i(mN) in Pi does not affect any constraint.

Therefore, in order to find the maximum, i(mN ) should be 0 if E
[
v(θ, s∗)1s∗≥θ|θ ∈

ΘN

]
≥ E

[
(v(θ, θ)− ϕ)|θ ∈ ΘN

]
, otherwise i(mN) should be 1. If i(mN) = 1, then

full inspection will be the maximum payoff. Therefore let i(mN) = 0. Second we

show ΘI = [s∗, s∗∗] for some s∗∗ < θ. Fix an optimal ΘI . By chaining ΘI to [s∗, s∗∗]

(keeping the same probability measure), s∗ does not change but the ex-ante value

of the principal will (weakly) increase since v(θ, θ) is an increasing function. After

change, s∗ does not change since for all s ≤ s∗∫ s

θ

[
v (θ, s)1s≥θ

]
β(θ|mN) dθ ≤

∫ s∗

θ

[
v (θ, s)1s∗≥θ

]
β(θ|mN) dθ.
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The above inequality holds since both sides remain the same before and after the

change. The above inequality is correct for all s ≥ s∗. The reason is the left side

(weakly) decreases. Therefore we can rewrite the optimization problem as follows

P2 : max
s∗,s∗∗

{∫ s∗

θ

(
v(θ, s∗)

)
dF (θ) +

∫ s∗∗

s∗

(
v(θ, θ)− ϕ

)
dF (θ)

}
,

subject to

s∗ ∈ argmax
s̃

∫
θ∈[θ,s∗]∪[s∗∗,θ]

[
v (θ, s̃)1s̃≥θ

]
dF (θ).

(ii) Now we show if ϕ < v(θ, θ), (no exclusion region), then the maximum payoff is

equivalent to optimal deterministic inspection with full commitment. In this case,

the payoff of P2 is maximized when s∗ = θ∗ and s∗∗ = θ. We just need to show

a(mN) = θ∗. By contradiction, first assume a(mN) < θ∗, then∫ a(mN )

θ

[
v(θ, a(mN))

]
f(θ)dθ >

∫ θ∗

θ

[
v(θ, θ∗)

]
f(θ)dθ.

Therefore∫ a(mN )

θ

[
v(θ, a(mN))

]
f(θ)dθ +

∫ θ

a(mN )

[
v(θ, θ)− ϕ

]
f(θ)dθ

>

∫ a(mN )

θ

[
v(θ, a(mN))

]
f(θ)dθ +

∫ θ

θ∗

[
v(θ, θ)− ϕ

]
f(θ)dθ

>

∫ θ∗

θ

[
v(θ, θ∗)

]
f(θ)dθ +

∫ θ

θ∗

[
v(θ, θ)− ϕ

]
f(θ)dθ.

The value of the first line cannot be higher than the third line, since θ∗ is the

solution to PD. A contradiction.

Second, assume a(mN ) > θ∗. We can conclude a(mN ) > θ∗∗ since after observing

mI by Principal she puts zero probability in interval (θ∗, θ∗∗). However, a(mN) >

θ∗∗ is impossible since θ∗∗ = θ.

(iii) Now we show s∗∗ ≥ θ∗∗. By contradiction assume s∗ ≤ s∗∗ < θ∗∗. By

changing s∗∗ to θ∗∗, the value of P2 increases. We show this change cannot affect
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the constraint of P2. After the change, s∗ does not change since for all s ≤ s∗∫ s

θ

[
v (θ, s)1s≥θ

]
β(θ|mN) dθ ≤

∫ s∗

θ

[
v (θ, s)1s∗≥θ

]
β(θ|mN) dθ.

The above inequality holds since by multiplying both sides by F (s∗)+1−F (θ∗∗)
F (s∗)+1−F (s∗∗)

, the

inequality transforms to the inequality before the change. The above inequality

for the same reason is correct for all s ≥ θ∗∗ > s∗∗.

A.9. Proof of Theorem 5

Proof. Note that since the Principal cannot commit on a(·), we can use both

Lemma 4, and Claim 3. Let a(mN) = s∗. By Assumption 4, the Agent’s strategy

m(θ) alternates between mI , and mN in finite intervals for types in [s∗, θ].

We show ΘI = [s∗, s∗∗] for some s∗∗ ≤ θ. If there exists s∗∗ ∈ [s∗, θ] such that

m(θ) = mI for θ ∈ [s∗, s∗∗) and m(θ) = mN for θ ∈ [s∗∗, θ], the claim has been

proved. Otherwise, by contradiction, there exist two intervals [t1, t2] and [t2, t3]

such that m(t) = mN for t ∈ [t1, t2] and m(t) = mI for t ∈ [t2, t3]. The idea is to

switch two small sub intervals. Let [t′1, t2] ⊂ [t1, t2] and [t2, t
′
2] ⊂ [t2, t3] such that

the probability measure of [t′1, t2] and [t2, t
′
2] are the same in F (·). Therefore after

the switch m(t) = mI for t ∈ [t′1, t2] and m(t) = mN for t ∈ [t2, t
′
2]. Denote βs and

β the posterior belief of the Principal after and before the switch respectively. This

switch, does not change a(mN) since for all θ ≤ s∗, βs = β and for all a ≤ s∗∫ a

θ

[
v (θ, s)1a≥θ

]
βs(θ|mN) dθ ≤

∫ s∗

θ

[
v (θ, s∗)1s∗≥θ

]
βs(θ|mN) dθ.

The above inequality holds since both sides remain the same before and after the

switch. The above inequality is also correct for all a ≥ s∗. The reason is the

value of left side (weakly) decreases after the switch and the value of the right

side remains the same. This implies that the value of not inspecting mN does not

change. However, the value of inspecting mN strictly decreases after the switch.

Now we need to show after the switch, the Principal still wants to inspect

message mI . Denote as(mI), the action of the Principal after the switch and when

observes mI . First as(mI) ̸∈ (t′1, t
′
2). The reason is interval (t′1, t

′
2) is very small,

and by decreasing as(mI) to t1 the Principal’s value strictly increases. The value

strictly increases since the Principal puts zero probability (posterior belief) on
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types in interval [t1, t
′
1) after observing mI . For the same reason as(mI) ̸∈ (t1, t

′
1).

Second if as(mI) is less than t1, then a(mI) is also less than t1 (before the switch).

The reason is after the switch, the value of not inspecting mI (weakly) increases,

but action a = as(mI) is available for the Principal before the switch. Action

a = as(mI) yields the same payoff as the payoff of not inspecting after the switch.

Therefore the switch does not change the value of not inspecting messages mI .

However, the value of inspecting mI strictly increases. Third, let as(mI) be higher

than t′2. The switch increases the value of inspection by(∫ t2

t′1

v(θ, θ) dF (θ)−
∫ t′2

t2

v(θ, θ) dF (θ)
) 1

M(ΘI)
.

We argue the value of not inspecting mI increases (the value after minus before)

at most (∫ t2

t′1

v(θ, as(mI)) dF (θ)−
∫ t′2

t2

v(θ, as(mI)) dF (θ)
) 1

M(ΘI)
.

The reason is∫ θ

θ

[
V (θ, a(mI))1a(mI)≥θ

]
β(θ|mI) dθ ≥

∫ θ

θ

[
V (θ, as(mI))1as(mI)≥θ

]
β(θ|mI) dθ,

and the value of not inspecting mI is at most∫ θ

θ

[
V (θ, as(mI))1as(mI)≥θ

] (
βs(θ|mI)− β(θ|mN)

)
dθ

=
(∫ t2

t′1

v(θ, as(mI)) dF (θ)−
∫ t′2

t2

v(θ, as(mI)) dF (θ)
) 1

M(ΘI)
.

Finally by Assumption 4(∫ t2

t′1

v(θ, θ) dF (θ)−
∫ t′2

t2

v(θ, θ) dF (θ)
) 1

M(ΘI)

≥
(∫ t2

t′1

v(θ, as(mI)) dF (θ)−
∫ t′2

t2

v(θ, as(mI)) dF (θ)
) 1

M(ΘI)
,

which implies the value of inspecting message mI after the switch is still higher

than not inspecting. We conclude ΘI = [s∗, s∗∗].
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Therefore we can rewrite the optimization problem as follows

P3 : max
s∗,s∗∗

{∫ s∗

θ

(
v(θ, s∗)

)
dF (θ) +

∫ s∗∗

s∗

(
v(θ, θ)− ϕ

)
dF (θ)

}
,

subject to

s∗ ∈ argmax
s̃

∫
θ∈[θ,s∗]∪[s∗∗,θ]

[
v (θ, s̃)1s̃≥θ

]
dF (θ),

and

E
[
v(θ, θ)− ϕ|θ ∈ [s∗, s∗∗]

]
M(ΘI) ≥ max

s̃

∫
[s∗,s∗∗]

[
v (θ, s̃)1s̃≥θ

]
dF (θ).

A.10. Proof of Theorem 6

Proof. An ideal equilibrium suggestion for the highest equilibrium payoff for the

Principal is as follows

• Strategies:

m(θ) =

{
mNI θ ∈ [θ, θ∗],

mI θ ∈ (θ∗, θ]

i(m) =

{
1 m = mI ,

0 otherwise

a(m) =

{
θ∗ m = mNI ,

θ otherwise

aI(m, θ) = θ.

• Beliefs: On the equilibrium path, beliefs are consistent with strategies and

the off-path belief puts probability 1 on θ, i.e.

β(θ|m ̸= mI ,mNI) = 1.

The above strategy and beliefs generates the commitment payoff according to the

Proposition 2. We need to check incentives of both players. The Agent does not

have any incentive to deviate. Types above θ∗ do not want to deviate to mNI since

the mandated action becomes less than their types. Types above θ∗ will not deviate
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to mI since they will be inspected and their payoff become zero. The principal

can commit to inspect mI , so we do not check the incentive of the Principal after

observing mI . Now we show a(mN) = θ∗, where

a(mN) = argmax
ã

∫ ã

θ

[
V (θ, ã)

]
β(θ|mNI) dθ.

By contradiction, first assume a(mN) < θ∗, then∫ a(mN )

θ

[
v(θ, a(mN))

]
f(θ)dθ >

∫ θ∗

θ

[
v(θ, θ∗)

]
f(θ)dθ.

Therefore∫ a(mN )

θ

[
v(θ, a(mN))

]
f(θ)dθ +

∫ θ

θ∗

[
v(θ, θ)− ϕ

]
f(θ)dθ

>

∫ θ∗

θ

[
v(θ, θ∗)

]
f(θ)dθ +

∫ θ

θ∗

[
v(θ, θ)− ϕ

]
f(θ)dθ.

The above strict inequality is a contradiction since by the definition, the threshold

θ∗ should generate higher value than the threshold a(mN ). Thus the left side should

not be higher than the right side. A contradiction. Second, assume a(mN) > θ∗.

We can conclude a(mN ) > θ∗∗ since after observing mNI by Principal she puts zero

probability in interval (θ∗, θ∗∗). However, a(mN) > θ∗∗ is impossible since θ∗∗ = θ.

Now we need to show by observing mNI the principal does not inspect, formally∫ a(mN )

θ

[
v(θ, a(mN))

]
β(θ|mNI)dθ ≥

∫ θ∗

θ

[
v(θ, θ)− ϕ

]
β(θ|mNI)dθ,

we can replace a(mN) by θ
∗

∫ θ∗

θ

[
v(θ, θ∗)

]
β(θ|mNI)dθ ≥

∫ θ∗

θ

[
v(θ, θ)− ϕ

]
β(θ|mNI)dθ.
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By contradiction assume the reverse, thus we have

∫ θ∗

θ

[
v(θ, θ)− ϕ

]
f(θ)dθ +

∫ θ

θ∗

[
v(θ, θ)− ϕ

]
f(θ)dθ

>

∫ θ∗

θ

[
v(θ, θ∗)

]
f(θ)dθ +

∫ θ

θ∗

[
v(θ, θ)− ϕ

]
f(θ)dθ.

This is a contradiction by the definition θ∗. So the Principal does not any incentive

to inspect message mNI .
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