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Abstract

We formalize inter-sectoral knowledge diffusion in a standard fully endogenous Schum-
peterian growth model. Each sector is simultaneously sending and receiving knowledge;
thereby, to produce new knowledge, the research and development activity of each sector
draws from a pool of knowledge which stems from this diffusion. This enables us to revisit
the scale effects issue by revealing how this property (inconsistent with empirical evidence)
relates with knowledge diffusion (the importance of which is empirically highlighted). We
show that suppressing knowledge diffusion across sectors is a sufficient but not necessary
condition for obtaining scale-invariancy. Then, we identify several sets of assumptions
which enable us to obtain models which are reasonably consistent with empirical evidence
both on scale effects and how knowledge diffuses in the economy. Specifically, these models
do not exhibit scale effects (or at least not significant ones) while considering various scope
of knowledge diffusion (including possible occurrence of general-purpose technologies).
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1 Introduction

The seminal models of endogenous growth theory based on innovation, as initiated by Romer
(1990), Grossman & Helpman (1991), or Aghion & Howitt (1992), all have in common to
predict that the economy’s long-run per capita growth rate increases in its size, measured
by the population level. The presence of this scale effects property is strongly inconsistent
with twentieth century observed stylized facts. Indeed, empirical evidence both for the United
States (e.g., Backus, Kehoe & Kehoe 1992) and for OECD countries (e.g., Jones 1995a) have
invalidated the fact that the larger the scale of the economy is, the stronger growth will be.
Furthermore, the scale effects property entails a theoretical problem if one aims at considering
population growth; in particular, if population is assumed to grow at a positive and constant
rate, the economy’s per capita growth rate increases exponentially over time and eventually
becomes infinite in the steady-state.1

A large body of literature has analyzed the issue of scale effects (see, for instance, the surveys
in Jones 1999, Laincz & Peretto 2006, Dinopoulos & Sener 2007, Ha & Howitt 2007, or Bond-
Smith 2019). The presence of scale effects in innovation-based growth models is generally related
to the non rivalry property of knowledge. Indeed, each unit of knowledge produced in any given
sector can potentially be used simultaneously and infinitely by any agent in the economy without
precluding its use by any other agent, notably by the research and development (R&D) activity
of any other sector. However, this does not necessarily mean that this unit is effectively used by
all of these agents. In particular, some sectors’ R&D activity may not use it; this, for various
reasons. Obviously, some units of knowledge are of no use for some sectors, and usability
may require some technological, or sectorial, proximity. Besides, institutional factors - such as
international trade agreements, degree of patent protection granted by intellectual property law,
degree of easiness of doing business - can also determine whether the knowledge produced in a
given sector diffuses to other sectors, or not. This means that, beyond the non rivalry property
of knowledge, it appears necessary to formalize explicitly how knowledge diffuses across sectors.
In the present paper, we develop a Schumpeterian endogenous growth model à la Aghion

& Howitt (1992, 1998) in which the pools of knowledge used by R&D activities stem from
inter-sectoral knowledge diffusion.2 This formalization enables us to provide new insights on

1Two forms of scale effects can be identified in the literature: “strong scale effects”, as in the first generation
of endogenous growth models, and “weak scale effects” as in the semi-endogenous growth models. We provide a
few more details on this distinction below. One can also refer to Jones (2005) for a thorough discussion on this
subject. In the present paper, we focus on “strong scale effects” and, as it is generally done, we refer to them
simply as “scale effects”.

2The term “diffusion” has also been used to refer to the phenomenon involving that “there is a lag between
the appearance of a technology and its peak usage” (Chari & Hopenhayn 1991). The link between this temporal
dimension of knowledge diffusion and scale effects has been studied for instance by Schulstad (1993); he shows
that “the introduction of a diffusion process through which new technology is gradually incorporated into the
economy-wide stock of knowledge can reduce and eliminate the dependence of the growth rate upon the size
of the economy”. In this paper, we abstract away from this temporal dimension of knowledge diffusion by
considering instantaneous diffusion, and we focus on inter-sectoral knowledge diffusion. The introduction of a
lag involved by technology adoption remains to be explored within our model and is left for further research (one
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the issue of scale effects. Let us briefly present our main contributions before developing them
in more detail hereinafter.
First, a simple key message of the paper is the following. If the scope of knowledge diffusion

is large (the limit case being the one in which each sector’s R&D receives the whole knowledge
produced in any other one), scale effects are likely to occur. On the contrary, if the scope of
knowledge diffusion is narrow (the limit case being the one in which each sector uses only its own
knowledge, that is the case of no inter-sectoral knowledge diffusion), it is likely that there are no
scale effects. Then, this enables us to show that the assumptions on the technologies introduced
in the related literature in order to develop scale-invariant endogenous growth models are
formally equivalent to assuming that there is no inter-sectoral diffusion of knowledge (see points
a. and b. in Subsection 3.1).
Second, deepening the analysis of the link between knowledge diffusion and scale effects, we

show how an apparent paradox can be overcome. In theoretical models, inter-sectoral knowl-
edge diffusion seems to imply scale effects. Besides, various empirical studies highlight the
existence of inter-sectoral knowledge diffusion (see, for instance, Griliches 1992 and 1995; or
Hall, Mairesse & Mohnen 2010) but, as mentioned above, there is no empirical evidence of
important scale effects. We investigate whether it is possible to develop a growth model that
maintains inter-sectoral knowledge diffusion while remaining in accordance with the empirical
facts regarding scale effects. Eventually, we identify a set of assumptions consistent with empir-
ical evidence on knowledge diffusion such that the results given by the model are also relevant
regarding the scale effects property.

It is commonly agreed in the literature that the undesirable property of scale effects is fun-
damentally linked to the technologies considered in the models, in particular to the production
function of innovations, in which one generally considers two types of inputs: rival ones (e.g.,
labor, capital) and a stock of knowledge. For instance, Romer (1990) considers that the R&D
activity uses the whole stock of knowledge to produce a new variety of good/a new sector (this
in a linear form). In other words, it is implicitly assumed that there is global knowledge dif-
fusion; this explains why this model exhibits scale effects. Among others, Eicher & Turnovsky
(1999) or Jones (1999, 2005), explain that production possibilities are likely to be characterized
by increasing returns to scale because of knowledge spillovers. That is why, as the population
size increases, knowledge is used by more agents, thus leading the economy to grow at a higher
rate. Thenceforth, many models have eliminated scale effects by modifying the technologies
initially introduced. Synthetic expositions of the various functional forms of knowledge produc-
tion adopted, as well as quite exhaustive surveys of the literature on scale effects, can be found
in Jones (1999, 2005), in Li (2000, 2002), in Laincz & Peretto (2006), in Dinopoulos & Sener
(2007), in Ha & Howitt (2007), or in Bond-Smith (2019). Two major approaches to suppress
scale effects have been identified.
A first range of scale-invariant models - including Jones (1995b), Kortum (1997), Segerstrom

(1998), among others - has given birth to the “semi-endogenous growth” literature. The major

could for instance consider that the more distant two sectors are, the longer the lag in technology adoption).
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drawback of semi-endogenous growth models lies in the fact that economic policies have no
incidence on the long-run growth rates.
An alternative range of models - often referred to as “ fully endogenous growth models

without scale effects” - appeared through the impulse of Aghion & Howitt (1998), Dinopoulos
& Thompson (1998), Peretto (1998), Young (1998), Howitt (1999), Peretto & Smulders (2002),
among others. These models restore the effect of economic policies on long-term growth, without
displaying the scale effects property. In the present paper, we develop a model which belongs
to this branch.
The approach of the semi-endogenous growth literature is based on the notion of “diminish-

ing technological opportunities”; it provides scale-invariant growth models in which the long-run
growth rate of the economy is proportional to the exogenous rate of population growth. More
precisely, these models exhibit “weak scale effects”: scale effects are still present in the deter-
mination of the variables levels but no longer of their growth rates. Moreover, in the absence
of population growth, the growth rate of the economy is nil. Finally, economic policies - es-
pecially subsidies to R&D - turn to have an impact only on the levels of economic variables,
not on the long-run growth rates. In semi-endogenous growth models, returns to scale are still
increasing, and (strong) scale effects are suppressed by assuming decreasing returns in the stock
of knowledge.3

Contrary to semi-endogenous growth models, scale-invariant fully endogenous growth mod-
els consider constant returns in the stock of knowledge. Scale effects are eliminated through a
“variety expansion mechanism.” This mechanism is in line with Young (1998)’s insight that,
as population grows, the proliferation of sectors reduces the efficiency of R&D activities in
improving the quality of an existing product because the R&D effort is diluted in more sec-
tors. As explained by Dinopoulos & Sener (2007), “horizontal product differentiation takes the
form of variety accumulation and removes the scale effects property from these models [...].
Vertical product differentiation takes the form of quality improvements or process innovations
and generates endogenous long-run growth.” The model developed in the present paper builds
upon this literature while introducing explicitly knowledge diffusion. Notably, this enables us to
show that scale-invariancy is typically achieved by wiping out inter-sectoral knowledge diffusion;
more fundamentally, we show that this is a sufficient but not necessary condition. Eventually,
we provide a scale-invariant fully endogenous growth model with some inter-sectoral knowledge
diffusion.
Successive reviews have given rise to a debate regarding the respective relevancy of using

semi-endogenous or fully endogenous models. Li (2000), for instance, argues that the former
methodology is more general than the latter. Ha & Howitt (2007) maintain that fully endoge-
nous growth is more accurate; like Madsen (2008), they argue that empirical evidences are more
supportive of fully endogenous Schumpeterian growth theory than they are of semi-endogenous

3Even though this paper focuses on fully endogenous growth theory, we derive a law of knowledge accu-
mulation (see Lemma 1) which could be easily modified in order to consider decreasing returns in the stock of
knowledge (see point c. in Subsection 2.1). This would enable us to introduce explicitly inter-sectoral knowledge
diffusion in a semi-endogenous growth framework.
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growth theory. Cozzi (2017) considers a hybrid model and shows that “if population is in-
creasing fast enough the semi-endogenous growth approach characterizes the long-run, while if
population grows less, is constant, or shrinks, the fully endogenous approach eventually becomes
dominant.” These two ranges of the literature both basically focus on how technologies deter-
mine scale effects. Obviously, besides these approaches, the literature has also studied other
ways that can limit scale effects, in particular via market structure. For instance, Peretto &
Connolly (2007) introduce fixed costs for product lines to cancel scale effects. Laincz & Peretto
(2006) provide support for the product proliferation mechanism later used in Peretto (2018)
to develop a scale-invariant Schumpeterian growth model with endogenous market structure in
which the overall production structure does not need to be linear in the growth-driving factor
and yet generates endogenous growth.

In the present paper, as mentioned above, we show that it is possible to develop a fully
endogenous Schumpeterian growth model which, on the one hand does not exhibit scale ef-
fects (or, at least, not important ones), and on the other hand allows a certain inter-sectoral
knowledge diffusion to be taken into account. The key point here is to provide a formaliza-
tion describing how knowledge may (or may not) diffuse across sectors. For that purpose, we
introduce a circle à la Salop (1979) within a standard Schumpeterian model à la Aghion &
Howitt (1992, 1998). Then, we use this formalization to provide new insights on the issue of
scale effects. Formally, we assume that a continuum of sectors is located on the circle and that
each sector is simultaneously a sender and a receiver of knowledge. Furthermore, we assume
that the knowledge produced by the R&D activity of each sector can diffuse more or less over
the circle. More precisely, we formalize the following idea. The knowledge created in any given
sector diffuses towards a set of other sectors; the R&D activity of each sector creates knowledge
using the knowledge produced by a set of other sectors; and the size of these sets depends on
the scope of knowledge diffusion (i.e. on the extent to which the R&D activity of any given
sector interacts with the R&D activity of any other sector). Let us now examine our key results
in more details.
First, we show why assuming no inter-sectoral knowledge diffusion (assumption which obvi-

ously appears as counterfactual) is a sufficient condition to have a scale-invariant fully endoge-
nous growth model.
Second, we prove that it is not a necessary condition; indeed, we provide a set of basic

assumptions on knowledge diffusion such that there are no scale effects, public policies have
an impact on the growth rate, and there still remains some inter-sectoral knowledge diffusion.
These assumptions may however appear questionable insofar as they impose some restrictions
on the way knowledge diffuses which seem to be counterintuitive. Specifically, we first assume
that, as the size of the economy increases, the scope of diffusion remains unchanged ( i.e. the
subset of sectors reached by each innovation remains unchanged). However, some innovations
indubitably entail knowledge that is likely to impact a wide range of sectors of the economy
(potentially all sectors) and to impact new sectors as they come into being. One can think
in particular of “General-Purpose Technologies” (GPTs) which are not considered under these

5



simple assumptions.4

Third, we relax these simplifying assumptions and investigate if the model can nevertheless
comply with most of the commonly agreed empirical facts regarding growth models - namely
the absence of significant scale effects, the effects of public policies, and somehow realistic in-
teractions among sectors R&D activities. First, we consider possible arrival of GPTs. This
implies scale effects; however, we show that their extent is small because it depends on the
probability of occurrence of GPTs which is low, as argued by Lipsey, Carlaw & Bekar (2005).
Second, we consider that the scope of knowledge diffusion changes as the economy expands. We
derive the following series of results. Assuming that the scope of knowledge diffusion expands
with the economy implies scale effects; but, under assumptions of increasing complexity, the
extent of these scale effects decreases as the economy expand and/or these scale effects asymp-
totically vanish. On the contrary, assuming that the scope of knowledge diffusion contracts as
the size of the economy increases (the underlying idea would be that there is some specializa-
tion effect at stake), there are negative scale effects. Ultimately, we manage to provide a fully
endogenous Schumpeterian growth model in accordance with the main empirical facts related
to innovation-based growth theory.
Our paper is thus a contribution to the fully endogenous growth without scale effects theory.

In this literature - as argued in Jones (1999, 2005), Peretto & Smulders (2002), Laincz & Peretto
(2006), Dinopoulos & Sener (2007), Ha & Howitt (2007), Aghion & Howitt (2009, Ch.4), or
Bond-Smith (2019) - scale effects are eliminated by means of two assumptions. The first one
consists in assuming that the size of the economy, as measured by the size of its population,
has an impact on the number of sectors (or equivalently the variety of goods). The second one
has to do with the way the process of knowledge accumulation is formalized.
The first assumption has been widely debated by the related literature and a consensus has

been reached: most models consider that an increase in population size results in a proportion-
ate increase in the number of sectors (e.g., Peretto 1998; Young 1998; Aghion & Howitt 1998,
Ch. 12; Dinopoulos & Thompson 1998; Howitt 1999). This feature has been justified empiri-
cally (see, for instance, Laincz & Peretto 2006). Besides, it can be derived from market-based
mechanisms as explained, for instance, by Dinopoulos & Sener (2007). This first assumption
introduces a form of “variety expansion mechanism” and thus neutralizes a possible channel for
scale effects insofar as the increase in R&D effort made possible by a growing population is
diluted by the increasing number of sectors. In fact, one could think that this assumption could
be sufficient to suppress scale effects from models initially exhibiting this undesirable property.
In these models, the number of sectors is fixed; hence, as the population increases, so does
the quantity of labor available for R&D activity in each sector. Consequently, each sector is
likely to produce more innovations, which eventually fosters growth. Introducing an assump-
tion whereby the population size and the number of sectors increase proportionally cancels out
this effects. Indeed, as the population increases, the R&D effort spreads over a growing number

4A few examples of GPTs are writing, electricity, or computer science. For more details on the theory and
applications of GPTs, we refer the reader to Helpman (1998), to Lipsey, Carlaw & Bekar (2005), or to Aghion
& Howitt (2009, Ch. 9).
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of sectors; thereby, the effect on the overall rate of productivity growth dispels. Nevertheless,
this assumption may not be sufficient to obtain scale invariancy because there is a second more
intricate mechanism at stake. Knowledge diffusion may imply that, as the number of sectors
increases, not only each sector receives knowledge from more sectors, but each sector produces
knowledge which diffuses to a growing number of sectors. Accordingly, there is an increasing
number of sectors, each of which having access to more knowledge, and thus producing more
knowledge, which then diffuses to a growing number of sectors. In short, if knowledge diffusion
is sufficiently broad, an increase in the population - because it goes along with an increase in
the number of sectors - can give rise to a “snowball effect” leading to a higher growth rate. In
the present paper, we aim to delve further into this issue. For that purpose, we also make this
proportionality assumption in order to be able to focus on a second possible channel of scale
effects, namely knowledge diffusion.
The second assumption - which relates to the formalization of the process of knowledge

accumulation - is implicitly connected to knowledge diffusion. Specifically, it relates to how
the input knowledge is considered in the technology formalizing the production of innovations.
The surveys mentioned above identify two types of formalization. a) It can be assumed that,
in each sector, R&D activity produces new knowledge by using merely the knowledge previ-
ously accumulated within this sector (e.g., Segerstrom 1998; Peretto 1999; Acemoglu 2009, Ch.
14; Aghion & Howitt 2009, Ch. 4). In other words, they explicitly consider the absence of
inter-sectoral diffusion of knowledge. b) Alternatively, it can be assumed that, in each sec-
tor, R&D activity produces new knowledge by using the average knowledge across all sectors
(e.g., Dinopoulos & Thompson 1998; Peretto 1998; in Howitt 1999; Li 2000 and 2003). The
framework introduced in the present paper enables us to show that assuming that the pool of
knowledge used by R&D activity in each sector consists in the average knowledge also amounts
to considering no inter-sectoral knowledge diffusion; this seems somewhat counterintuitive given
the assumption initially made here.
This more or less explicit assumption of absence of inter-sectoral knowledge diffusion is a

way to neutralize a second channel of scale effects: “as discussed in detail in Aghion and Howitt
(1998), Peretto (1998) and Peretto & Smulders (2002), as long as the knowledge aggregator
does not rise with the number of sectors/goods, there is no scale effect.” (Connolly & Peretto
2007). However, this assumption not only removes inter-sectoral knowledge diffusion from
growth models originally highlighting interaction between sectors (e.g., Romer 1990; Aghion &
Howitt 1998; Jones 2005), it also goes against the fact that many empirical studies have shown
the significance of the interactions between sectors (e.g., Griliches 1992 and 1995; Hall 2004;
Hall, Mairesse & Mohnen 2010).
This is a key point on which the present paper stands out from the related literature. The

explicit formalization of knowledge diffusion in a standard Schumpeterian growth model enables
us to consider a variety of pools of knowledge in which R&D activities draw from to produce
new knowledge. Thereby, we are able to complete the results of the related literature, and to
study the hereinabove paradox.
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The paper is organized as follows. In Section 2, we develop a fully endogenous Schumpete-
rian growth model in which we formalize explicitly knowledge diffusion and how it gives rise
to the pools of knowledge used by R&D activities. Besides, we provide the basic intuitions
regarding the link between scale effects and knowledge diffusion. Finally, we fully characterize
the decentralized equilibrium à la Aghion & Howitt (1992). In Section 3, we use this model to
revisit the issue of scale effects. We conclude in Section 4. All computations are provided in
Appendix - Section 5.

2 A Fully Endogenous Schumpeterian Growth Model With
Explicit Knowledge Diffusion

In this section, we develop a fully endogenous Schumpeterian growth model in which we ex-
plicitly formalize knowledge diffusion. In particular, we explain how inter-sectoral knowledge
diffusion shapes the pools of knowledge in which R&D activities draw from to produce new
knowledge. In Subsection 2.1, we present the assumptions on which the process of knowledge
creation rely, and we derive the resulting general law of knowledge accumulation: in each sector,
knowledge is produced using two complementary factors, labor and a pool of knowledge. This
enables us to give some basic intuitions on the origin of scale effects. In Subsection 2.2, we
formalize how these pools stem from knowledge diffusion. In Subsection 2.3, we present the re-
maining assumptions. Finally, in Subsection 2.4 we define and characterize the Schumpeterian
equilibrium à la Aghion & Howitt (1992).

In all what follows, gzt denotes the rate of growth, żt/zt, of any variable zt. There is a
continuum Ωt, of measure Nt, of intermediate sectors uniformly distributed on a circle in the
spirit of Salop (1979). At each date t, each sector ω, ω ∈ Ωt, is characterized by a stock of
knowledge χωt and by an intermediate good ω, produced in quantity xωt, which embodies this
stock of knowledge. Assuming that knowledge is homogenous, the whole stock of knowledge in
the economy at date t is

Kt =

∫

Ωt

χωt dω. (1)

In this paper, we aim to develop a Schumpeterian model in direct line with the fully endoge-
nous growth models without scale-effects (e.g., Aghion & Howitt 1998; Dinopoulos & Thompson
1998; Peretto 1998; Young 1998; Howitt 1999; Segerstrom 2000). These quality improving in-
novations models do not exhibit the undesirable property of scale effects while maintaining
the effects of public policies. As underlined by the literature reviews in Jones (1999), Laincz
& Peretto (2006), Dinopoulos & Sener (2007), Ha & Howitt 2007), Aghion & Howitt (2009,
Ch. 4), or Bond-Smith (2019), scale effects are removed through a “variety expansion mecha-
nism”. As stated by Bond-Smith (2019), in these models “the entry of variety expanding ideas
in response to population growth mitigates increasing returns to innovation by spreading re-
search effort over a wider variety of ideas” and “constrains the impact of increasing returns
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from a growing population on innovation.” In other words, the increase in R&D effort made
possible by the growing population is diluted by the expanding set of sectors. In that respect,
these papers all have in common to somehow consider that the number of sectors increases
as the population level does so. In the present paper, we aim to investigate the link between
knowledge diffusion and scale effects within this range of the literature. In that respect, we
also introduce a “variety expansion mechanism” assumption in order to turn off the channel
between the intensity of R&D within each sector and scale effects, which enables us in turn to
focus on the channel between knowledge diffusion and scale effects. Formally, we consider the
following standard set of assumptions.

Assumption 1. The measure of the set of sectors Nt and the size of the population Lt are
proportional: Nt = γLt, γ > 0. Population grows at constant rate gLt = n, n > 0, and its
initial size, L0, is normalized to one.

In what follows, we will refer to Lt or indifferently Nt as to the “size of the economy”.
Besides, for simplicity’s sake and through misuse of language, we will often refer to Nt as to
the “number of sectors”, even though the set of sectors is a continuum.
There are several ways to justify a linear relation between the number of sectors and the

population level.5 The main argument put forward by Laincz & Peretto (2006) is empirical.
They show that, even though this relation “might induce one to conclude that this class of
models requires another ‘knife-edge’ condition in that one needs to assume that the number of
firms is exactly proportional to population”, the number of establishments is indeed proportional
to employment according to their data. This relation can also be justified theoretically; as
stated by Dinopoulos & Sener (2007), “the linear relationship between the number of varieties
and the level of population can be derived from market-based mechanisms with solid micro
foundations.” For instance, in Young (1998), it is derived under the standard assumptions of
fixed-entry costs and monopolistic competition. Howitt (1999) or Segerstrom (2000), consider
both vertical (quality improving) and horizontal (variety expanding) R&D activities; linearity is
then obtained as a general equilibrium result. Peretto (2018) presents a Schumpeterian growth
model with endogenous market structure that allows the overall production structure to be
more than linear in the growth-driving factor, and in which linearity is achieved in the steady
state. In Aghion & Howitt (1998, Ch. 12, and 2009, Ch. 4), the set up is quite straightforward;
it can easily be adapted in the present paper to obtain the linear relation of Assumption 1.
Assume that the probability of inventing a new intermediate good at date t is a linear function
of the population size and that, at each date t, an exogenous fraction of intermediate goods
becomes obsolete and vanishes. Then, the variation of the number of sectors at date t is
given by Ṅt = κLt − ξNt, where κ and ξ are positive parameters, and where Lt = ent. The
solution of this differential equation is Nt = κ

n+ξ

(
ent − e−ξt

)
, ∀t; dividing both sides by Lt gives

5Jones (1999) provides a discussion on the more general relation Nt = Lβ
t , β T 1. This assumption could

be introduced in our model in replacement of Assumption 1 to generalize our analysis and more specifically to
investigate how this channel of growth intertwine with knowledge diffusion to possibly generate scale effects;
this issue is left for further research.
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Nt

Lt
= κ

n+ξ
ent−e−ξt

ent = κ
n+ξ

(
1 − e−(ξ+n)t

)
, ∀t. Consequently, since ξ + n > 0, the ratio number

of intermediate sectors over population level will eventually stabilize at a steady-state value,
(Nt/Lt)

ss = κ/(n + ξ) ≡ γ.
One might think that such a proportionality assumption may be sufficient to cancel scale

effects. Indeed, part of the issue in the Schumpeterian growth models initially exhibiting scale
effects relates to the fact that the set of sectors in the economy is constant. Accordingly,
assuming an increasing population implies that the quantity of labor devoted to R&D in each
sector is also likely to increase, thus leading to the production of more innovations in each
sector, and therefore to higher growth. Then, introducing an assumption according to which
the size of the population impacts the size of the set of sectors could offset this source of scale
effects. One could indeed infer that, as the population increases, sectors proliferation would
dilute R&D effort in a larger set of sectors, thus dissipating its effect on the overall rate of
productivity growth. However, as it will be underlined in this paper, this assumption is not
sufficient to cancel scale effects. In fact, an expanding set of sectors may result in a more
intricate issue which has to do with the nature of knowledge spillovers, and more precisely with
the way knowledge diffuses across sectors. This can be summarized as follows. Given that an
increase in the population size goes along with an expansion of the set of sectors, if knowledge
spillovers are sufficiently strong (i.e. if inter-sectoral knowledge diffusion is broad enough), not
only the knowledge produced in each sector will diffuse to an expanding set of sectors, but
each sector will receive knowledge from an expanding set of sectors. In brief, there will be a
growing number of sectors, each of which having access to more knowledge and thus producing
more innovations; this “snowball effect” may ultimately lead to higher growth. Therefore, this
framework may exhibit scale effects insofar as an increase in the population size is likely to lead
to a higher growth rate.
As detailed in Section 3, we delve further into this issue by analyzing precisely to what extent

inter-sectoral knowledge diffusion may generate scale effects. Beforehand, let us present the
process of knowledge creation and some simple intuitions regarding the fact that the presence
(or the absence) of scale effects is fundamentally linked to the size of the pool of knowledge
used by the R&D activity of each sector. Obviously, as it will be detailed further, the formation
of these pools and their size are determined by the extent to which knowledge diffuses across
sectors, that we coin the “scope of knowledge diffusion” , and that we will formally define in
Subsection 2.2.

2.1 Knowledge accumulation and simple intuitions

In line with the standard literature discussed above, we formalize precisely the idea along which
the R&D activity of any sector produces knowledge (innovations) using two types of inputs:
rival goods (e.g., labor, physical capital, final good) and a non rival good (a stock of knowledge
previously created). For that purpose, we consider that the mechanism at the source of the
creation of knowledge relies on two core assumptions. First, we assume stochastic arrival of
innovations as initially introduced in Grossman & Helpman (1991) or in Aghion & Howitt
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(1992). Second, in order to take into account the fact that each R&D activity creates new
knowledge making use of previously created knowledge, we introduce a new assumption along
which the R&D activity of each sector ω draws from a specific pool of knowledge Pωt. Formally,
we assume that, for any intermediate good ω, ω ∈ Ωt, if an innovation occurs at date t, the
increase in knowledge Δχωt (i.e. the jump on the quality ladder, or the quality improvement
of the intermediate good) depends positively on the current size of this pool of knowledge.

Assumption 2. If lωt is the amount of labor devoted to R&D at date t in any intermediate
sector ω, ω ∈ Ωt, to move on to the next quality of intermediate good ω, innovations occur
randomly with a Poisson arrival rate λlωt, λ > 0.

Assumption 3. For any intermediate sector ω, ω ∈ Ωt, if an innovation occurs at date t, the
increase in knowledge is Δχωt = σPωt, σ > 0.

From these two assumptions, we show that the expected knowledge in any intermediate
sector ω, E [χωt], is a differentiable function of time, and we derive its law of motion. By
language abuse we call “law of motion of knowledge” what is in fact the law of motion of
expected knowledge. Formally, we write χ̇ωt ≡

d E[χωt]
dt

. This enables us to write the following
lemma.

Lemma 1. Under Assumptions 2 and 3, the law of knowledge accumulation in any sector ω is

χ̇ωt = λσlωtPωt, ∀ω ∈ Ωt. (2)

Proof. See Appendix 5.1.

Note that, in order to obtain properties that are standard in endogenous growth theory, only
the input lωt (resp. the input Pωt) appears in Assumption 2 (resp. Assumption 3); moreover,
the relations considered in these two assumptions are assumed to be linear. More generally,
one could assume that the Poisson arrival rate in Assumption 2 is a function λ (lωt,Pωt) and
that the increase in knowledge, Δχωt, in Assumption 3 is a function σ (lωt,Pωt). Accordingly,
one would obtain the following law of knowledge accumulation: χ̇ωt = λ (lωt,Pωt) σ (lωt,Pωt),
∀ω ∈ Ωt. This law is rather general and encompasses most of the ones used in the literature as
illustrated by the following few examples.

a. It is interesting to note that this knowledge production function relates to the one originally
introduced in the seminal paper of Romer (1990). Indeed, if one assumes λ (lωt,Pωt) = λlωt,
σ (lωt,Pωt) = σPωt, and Pωt = Kt, one gets χ̇ωt = λσlωtKt, ∀ω ∈ Ωt. Furthermore, assuming
Nt = N (i.e. Ωt = Ω) and summing on Ω, one obtains K̇t = λσLR

t Kt, where LR
t =

∫
Ω

lωt dω

is the overall quantity of labor used in R&D in the economy. Hence, the law of knowledge
accumulation which is here derived from assumptions made in a model with stochastic vertical
innovations leads to a law of motion of the whole knowledge formally identical to the one
considered in endogenous growth models with horizontal innovations as initially introduced by
Romer.
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b. Consider that λ (lωt,Pωt) = λlωt (as in Assumption 2), and that σ (lωt,Pωt) = σPωt (as in
Assumption 3).

• If one assumes furthermore that Pωt = χωt, one gets χ̇ωt = λσlωtχωt, ∀ω ∈ Ωt. This
law of knowledge accumulation is similar to the ones often considered in endogenous
growth models with vertical innovations as for instance in Grossman & Helpman (1991),
in Segerstrom (1998), in Peretto (1999), in Acemoglu (2009, Ch. 14), or in Aghion &
Howitt (2009, Ch. 4).

• Assuming that Pωt = χmax
t ≡ max {χωt, ω ∈ Ωt}, one gets χ̇ωt = λσlωtχ

max
t , ∀ω ∈ Ωt; a

law similar to the one introduced initially in Aghion & Howitt (1992).

c. One last example is the following. Assuming λ (lωt,Pωt) = λlωt, σ (lωt,Pωt) = σPωt
Φ, with

σ > 0, Φ < 1, and Pωt = Kt, one gets χ̇ωt = λσlωtKt
Φ, ∀ω ∈ Ωt. Furthermore, assuming

Nt = N (i.e. Ωt = Ω) and summing on Ω, one obtains K̇t = λσLR
t Kt

Φ, where LR
t =

∫
Ω

lωt dω.
This law - which considers decreasing returns in the stock of the whole knowledge available in
the economy - is formally identical to those assumed in the semi-endogenous growth theory.
Indeed, in Jones (1999), in Laincz & Peretto (2006), in Dinopoulos & Sener (2007), in Ha &
Howitt (2007), in Acemoglu (2009, Ch. 13), or in Bond-Smith (2019), this theory is presented
using a similar law of knowledge accumulation.

Finally, it remains to explain what exactly these pools of knowledge Pωt consist of, and how
they are shaped. This is done in Subsection 2.2 below, in which we formalize the fact that the
stock of knowledge which constitutes each of these pools stems from knowledge diffusion. In
particular, we explain how knowledge can diffuse on a more or less large subset of sectors: it
will be made clear that the broader the scope of knowledge diffusion is in average, the larger
the pools are. Beforehand, let us give basic intuitions by presenting succinctly the two polar
cases.

i. The case in which the knowledge produced in any sector ω diffuses across the whole set of
sectors Ωt (we will refer to this type of knowledge diffusion as to “global inter-sectoral knowledge
diffusion”). Here, all sectors use the same pool of knowledge which comprises the whole stock
of knowledge available in the economy (in each sector, the R&D activity uses the knowledge
accumulated in this sector as well as in any other sector): Pωt = Kt, ∀ω ∈ Ωt.

ii. The case in which the knowledge produced in each sector ω does not diffuse to other
sectors (there is no inter-sectoral knowledge diffusion). Here, in each sector ω, the pool of
knowledge used by the R&D activity comprises only the knowledge accumulated within this
sector: Pωt = χωt, ∀ω ∈ Ωt.

Considering the law of knowledge accumulation (2) in these two polar case enables us to
provide the basic intuitions regarding the link between knowledge diffusion and the presence or
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the absence of scale effects. In order to obtain these intuitions as directly as possible, let us use
some standard assumptions and basic results which are usual in endogenous growth models.
These results will be rigourously proven in Subsection 2.4 below, once the presentation of the
whole model is complete.
Let us consider the commonly made assumption of symmetry across sectors.6 In the present

paper, this amounts to assuming that the quantity of labor and the level of knowledge character-
izing each sector are both identical across sectors: lωt = lt, and χωt = χt, ∀ω ∈ Ωt. Furthermore,
computing the Schumpeterian equilibrium presented further in Definition 1, one will obtain the
two following results (see Appendix 5.2 and Lemma 6). First, the quantity of labor allocated
to R&D activity in each sector is constant over time and independent of Lt (lt = l); therefore,
in each sector ω, the law of knowledge accumulation (2) is χ̇ωt = λσlPωt, ∀ω ∈ Ωt. Second the
growth rate of per capita consumption is gct = gχt + n. Now back to the two polar cases.

i. Global inter-sectoral knowledge diffusion: Pωt = Pt = Kt, ∀ω ∈ Ωt. Using Assump-
tion 1 and the symmetry assumption, (1) writes Kt = Ntχt = γLtχt; thus, in any sector ω ∈ Ωt,
the law of knowledge accumulation (2) is χ̇t = λσγlLtχt. Then the growth rate of per capita
consumption is gct = gχt + n = λσγlLt + n; it depends on Lt. Accordingly, global inter-sectoral
knowledge diffusion goes along with the presence of scale effects.

ii. No inter-sectoral knowledge diffusion: Pωt = χωt, ∀ω ∈ Ωt. From the symmetry
assumption, in each sector ω, the pool of knowledge is Pωt = Pt = χt, ∀ω ∈ Ωt, and the law of
knowledge accumulation (2) is χ̇ωt = χ̇t = λσlχt, ∀ω ∈ Ωt. Then the growth rate of per capita
consumption is gct = gχt + n = λσl + n; it is independent of Lt. There are no scale effects in
the absence of inter-sectoral knowledge diffusion.

The brief analysis of these two polar cases enables us to understand intuitively that the
presence or the absence of scale effects is basically linked with the composition of the pool
of knowledge used by the R&D activity of each sector. Moreover, since it is legitimate to
think that these pools are shaped by the way knowledge diffuses across sectors, this analysis
illustrates the key part played by inter-sectoral knowledge diffusion in the understanding of
the scale effects property. In particular, it appears that suppressing inter-sectoral knowledge
diffusion is a sufficient condition to remove scale effects. Is it a necessary condition? To explore
these issues further, it appears necessary to formalize how knowledge diffusion shapes the pools
of knowledge.
After having completed the presentation of our fully endogenous Schumpeterian growth

model in the remaining of Section 2, we will establish and study rigourously the link between
knowledge diffusion and scale effects in Section 3.

6The assumption of symmetry across sectors is commonly made in endogenous growth theory. It is required
at some point to compute the first-best social optimum as well as the decentralized equilibrium; see, for instance,
Aghion & Howitt (1992 or 1998 - Ch. 3), Peretto & Smulders (2002), or Peretto (2018). For more details on
this issue, one can refer to Peretto (1998, 1999), Laincz & Peretto (2006) or to Cozzi, Giordani & Zamparelli
(2007) in which the relevancy of the symmetric equilibrium is discussed.
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2.2 Knowledge diffusion and pools of knowledge

In Subsection 2.1, we have described the knowledge accumulation process (see Lemma 1) with-
out providing any particular specification to the pool of knowledge Pωt used by R&D activity
in each sector ω. Now, we propose a mechanism formalizing how the composition of each of
these pools relies on the influence that R&D activities have on each other. In that respect, we
explicitly introduce a process of knowledge diffusion across sectors’ R&D activities. The re-
sulting framework encompasses the two polar cases described above, as well as all intermediary
cases of inter-sectoral knowledge diffusion.
Many empirical studies highlight the fact that R&D performed in one sector may pro-

duce positive spillovers effects on other sectors (e.g., Griliches 1992 and 1995; Hall 2004; Hall,
Mairesse & Mohnen 2010). Furthermore, as stated by Hall et al., “such spillovers are all the
more likely and significant as the sender and the receiver are closely related.” Consistent with
these stylized facts, we consider that any given sector ω, ω ∈ Ωt, is simultaneously a potential
sender and a potential receiver of knowledge. As a sender, this sector’s R&D activity produces
knowledge χωt which diffuses toward other sectors. As a receiver, this sector’s R&D activity
uses a pool of knowledge Pωt which comprises the knowledge produced in this sector so far,
χωt, and potentially knowledge diffused from other sectors.

2.2.1 Sending knowledge: the scope of knowledge diffusion

We first intend to provide a formalization allowing us to consider simultaneously several types
of knowledge diffusion ranging from no inter-sectoral diffusion (only intra-sectoral knowledge
diffusion) to global inter-sectoral knowledge diffusion. More precisely, we want to present a
model with the following two fundamental features. First, at any date t, i) some sectors produce
knowledge that diffuses across the whole set of sectors, ii) some sectors produce knowledge that
does not diffuse to any other one, and finally iii) some sectors produce knowledge that diffuses
toward a more or less wide set of sectors. Second, we want the weights of the three types of
sectors to be able to vary between zero and one, such that any case comprised between the
two polar cases mentioned above may be encompassed. Formally, we consider the following
framework in which all three types of sectors are homogeneously spread over the circle.

i. A proportion pG of sectors are such that the knowledge produced in each of these sectors
diffuses across the whole set of sectors in the economy (we will refer to “global inter-sectoral
knowledge diffusion”). We therefore consider the possible arrival of a type of knowledge diffusion
that echoes to the concept of “General-Purpose Technologies” (GPTs) as coined by Bresnahan
& Trajtenberg (1995), who argue that some particular innovations “are characterized by per-
vasiveness [...], inherent potential for technical improvements.” One can cite as examples of
such innovations, in ancient times, writing and printing, and in more recent times, electricity,
microchip, information and communication technologies (ICTs), or artificial intelligence (AI).
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ii. A proportion ps of sectors are such that the knowledge produced in each of them diffuses
only within this sector. In this case without any inter-sectoral knowledge diffusion, we will refer
to “sector specific knowledge” .

iii. A proportion pm of sectors are such that the knowledge they produce diffuses over a more
or less wide set of sectors. In this intermediate case, we will refer to the diffusion of “medium
knowledge” or to “partial inter-sectorial knowledge diffusion”. To simplify the analysis, we
assume that if a sector ω produces medium knowledge, this knowledge diffuses symmetrically
over the circle Ωt from the location of sector ω on a subset of sectors of measure θt; formally,
knowledge χωt diffuses on the subset of sectors [ω − θt/2; ω + θt/2]. In other words, θt is the
“number” of receivers of knowledge χωt; thus it is assumed to be smaller than the total “number”
of sectors: θt < Nt. We also assume that θt > 1; the reason for this is given in footnote 7.
Furthermore, we assume that θt is a function of Nt, the measure of the set of sectors Ωt (or,

by abuse of language, the “number” of sectors in the economy). The reason for this lies in that
as the number of sectors increase, the number of potential receivers of knowledge is affected in
two possible ways. At first glance, one could consider that it increases; however, one could also
consider that as the number of sectors increase, each sector tends to specialize, thus limiting
the potential interactions between sectors. Moreover, since Nt = γLt, it is equivalent to assume
that θt is a function of Lt. Formally, we assume θt = θ (Lt), where θ (.) is a monotonous function
of class C2, bounded below by one and above by Nt. In Section 3 below, we will make some
additional assumptions on this function, in particular on the signs of θ′ (Lt) and θ′′ (Lt), and
we will study the consequence of these different assumptions on scale effects.
Let us denote by Θωt the “scope of knowledge diffusion” of the stock of knowledge χωt, which

is defined as the measure of the subset of sectors of Ωt which receive and use the knowledge
χωt produced in sector ω. Then, since the proportions pG, ps, and pm (with pG + ps + pm = 1)
can also be interpreted as the probabilities that a given sector ω produces one particular type
of knowledge, Θωt is a random variable which can take three values: Nt = γLt with probability
pG, 0 with probability ps, and θ (Lt) with probability pm. One gets the following lemma.

Lemma 2. At each date t, for any sector ω, the average scope of knowledge diffusion is

E [Θωt] ≡ E [Θt] = pGγLt + pmθ (Lt) , ∀ω ∈ Ωt.

According to the framework developed so far, E [Θωt] is the expected measure of the subset
of sectors of Ωt using the knowledge produced in sector ω. Nevertheless, an alternative inter-
pretation of E [Θωt] - which will be useful in the remaining of the paper - can be given. Because
we assume that all three types of sectors are uniformly distributed over the circle and that, for
each sector, knowledge diffuses symmetrically from its position, E [Θωt] can also be considered
as the expected measure of the subset of sectors that produce knowledge which is effectively
received by sector ω. This will be made explicit below in 2.2.2. Note that the average scope of
knowledge diffusion, E [Θt], can also be related to the concept of “technological distance” intro-
duced in Peretto & Smulders (2002). Indeed, they explain that the “extent to which a firm can
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take advantage of the public knowledge created by other firms decreases with the technological
distance between the creator and the user of such knowledge.” In our framework, the wider
E [Θt] is, the more likely firms are to interact: accordingly, a technological distance could be
obtained as a decreasing function of E [Θt].

2.2.2 Receiving knowledge: how are the pools of knowledge shaped?

Now, we aim to provide a formal expression of the pool of knowledge Pωt used by R&D activity
in each sector ω. In that respect, given the formalization introduced in 2.2.1, we investigate how
these pools are shaped by knowledge diffusion. Specifically, one has to determine the impact
of each of the three types of knowledge diffusion on any given sector.
Let us consider the standard symmetric case in which χωt = χt, ∀ω ∈ Ωt. The R&D activity

of any sector ω, ω ∈ Ωt, uses knowledge produced in three disjoint subsets of sectors of Ωt.
Firstly, the R&D activity of sector ω always uses the stock of knowledge χωt = χt it produces.
Secondly, the R&D activity of sector ω can also use the stock of knowledge produced in sectors
that are located in the neighborhood [ω − θ (Lt) /2; ω + θ (Lt) /2]. On this subset of measure
θ (Lt), the knowledge that could potentially be used by the R&D activity of sector ω and
which comes from other sectors is equal to [θ (Lt) χt − χt] (the stock χωt = χt is subtracted
since it has already been taken into account). The knowledge effectively used by the R&D
activity of sector ω is either diffused from sectors producing medium knowledge which are close
enough to sector ω (i.e. located in the neighborhood), or from any sector producing GPTs also
located in this neighborhood. Since the proportions of these sectors are respectively pm and
pG, the total stock of knowledge diffused from this neighborhood and effectively used is thus
(pm + pG) [θ (Lt) χt − χt]. Thirdly, the R&D activity of sector ω can finally use the stock of
knowledge produced in sectors located outside the neighborhood [ω − θ (Lt) /2; ω + θ (Lt) /2],
that is located on the subset of Ωt of measure Nt − θ (Lt). The knowledge diffused from this
subset that could be used by the R&D activity of sector ω is [Nt − θ (Lt)] χt. Since within this
subset only the knowledge diffused from sectors producing GPTs can reach sector ω, and since
the proportion of such sectors is pG, the total stock of knowledge diffused from this subset and
effectively used is thus pG [Nt − θ (Lt)] χt. Finally, the pool of knowledge used by the R&D
activity of sector ω is Pt = χt + (pm + pG) [θ (Lt) χt − χt] + pG [Nt − θ (Lt)] χt. By assumption
one has ps + pm + pG = 1 and Nt = γLt; after simplification, one gets

Pt = psχt + pmθ (Lt) χt + pGKt,with Kt = Ntχt = γLtχt.

This expression can be rewritten using Lemma 2. One obtains the following lemma which
summarizes the main results related to knowledge diffusion and to the pools of knowledge that
stem from it.7

7We do not allow θ (Lt) < 1 for consistency. Consider the intermediate case in which pm = 1. Then, one
has E [Θt] = θ (Lt), and thus Pt = θ (Lt) χt. Assuming that θ (Lt) > 1 guarantees that this pool is necessarily
greater than the pool in the polar case without inter-sectoral knowledge diffusion ( i.e. in which ps = 1), Pt = χt.

16



Lemma 3. At each date t, for any sector ω, the pool of knowledge used by its R&D activity is

Pωt ≡ Pt = (ps + E [Θt]) χt, ∀ω ∈ Ωt, where E [Θt] = pGγLt + pmθ (Lt) .

In Section 3, we will consider successively different assumptions on the probabilities pG, ps

and pm, and on the derivatives θ′ (Lt) and θ′′ (Lt). Depending on the assumptions considered,
we will get a model exhibiting the scale effects property, or not. For instance, the three following
results will be rigorously proven. If pG = 0 and θ′ (Lt) = 0, there are no scale effects. If pG > 0

and/or θ′ (Lt) > 0, there are scale effects. If pG = 0 and θ′ (Lt) > 0 there are scale effects, but
if one assumes moreover that θ′′ (Lt) < 0, the extent of these scale effects decreases over time.
Before completing the presentation of the model, let us return to the two polar cases pre-

sented in Subsection 2.1. From Lemmas 1, 2, and 3, one obtains the following results.

i. Global inter-sectoral knowledge diffusion. The first polar case corresponds to an
economy in which there would only be GPTs; it is obtained by assuming pG = 1. The average
scope of knowledge diffusion would be maximum: from Lemma 2, one has E [Θt] = γLt = Nt.
The pool of knowledge used in each sector would comprise the whole stock of knowledge in the
economy: from Lemma 3, one has Pωt = Pt = Ntχt = Kt, ∀ω ∈ Ωt. Hence, in any sector ω, the
law of knowledge accumulation (2) would be χ̇ωt = λσlωtKt, ∀ω ∈ Ωt.

ii. No inter-sectoral knowledge diffusion. The second polar case corresponds to an
economy in which there would be only “sector specific knowledge”, that is only intra-sectoral
knowledge diffusion; it is obtained by assuming ps = 1. The average scope of knowledge
diffusion would be minimum: from Lemma 2, one has E [Θt] = 0. The pool of knowledge used
in each sector would comprise solely the knowledge accumulated within the sector so far: from
Lemma 3, one has Pωt = Pt = χt, ∀ω ∈ Ωt. Therefore, in any sector ω, the law of knowledge
accumulation (2) would be χ̇ωt = λσlωtχωt, ∀ω ∈ Ωt.

2.3 Remaining assumptions

In the two previous subsections, we presented the way knowledge accumulates, the key part
played by the pools of knowledge in this process, and we formalized how these pools arise
from knowledge diffusion. Now, we present the remainder of the assumptions, all of which are
standard in Schumpeterian growth theory.
Each household is modelled as a dynastic family whose intertemporal preferences are repre-

sented by the discounted utility U =
∫∞

0
Ltu(ct)e

−ρtdt, where ρ > n is the common subjective
discount rate and u(ct) is the individual instantaneous utility at date t,8 which is given by
u(ct) = ln(ct).9 Given Assumption 1, the population of workers in the economy at date t is

8Barro & Sala-i-Martin (1995, Ch. 2) provide more details on this formulation of the households behavior
within the context of the Ramsey model of growth. See also Segerstrom (1998).

9The results are robust if one considers a C.E.S. instantaneous utility function of parameter ε, u(ct) = c1−ε
t

1−ε .
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Lt = ent. Thus one has

U =

∫ ∞

0

ln(ct)e
(n−ρ)tdt. (3)

At each date t, each of the Lt identical households is endowed with one unit of labor that is
supplied inelastically. The total quantity of labor Lt is used to produce the final good and in
R&D activities. Hence, the labor constraint is

Lt = LY
t +

∫

Ωt

lωt dω. (4)

Besides labor, the production of the final good requires the use of all available intermediate
goods, each of which is associated with its own level of knowledge. The final good production
function is

Yt = (LY
t )1−α

∫

Ωt

χωt(xωt)
αdω , 0 < α < 1. (5)

The final good has two competing uses. Firstly, it is used in the production of intermediate
goods along with

xωt =
yωt

χωt

, ω ∈ Ωt, (6)

where yωt is the quantity of final good used to produce xωt units of intermediate good ω. This
technology illustrates the increasing complexity in the production of intermediate goods: as the
quality of a given intermediate good increases, its production requires more resources. Secondly,
it is consumed by the representative household in quantity ct. One gets the following constraint
on the final good market:

Yt = Ltct +

∫

Ωt

yωtdω. (7)

This concludes the presentation of our model which is based on assumptions commonly
used in fully endogenous Schumpeterian growth models; the novelty being that we explicitly
formalize how knowledge diffusion gives rise to the pools of knowledge used by R&D activities.
Let us now compute the Schumpeterian equilibrium.

2.4 Schumpeterian equilibrium

We consider a decentralized economy with creative destruction which is in direct line with the
one introduced by Aghion & Howitt (1992).10 Once an innovation occurs in a given sector,
the innovator is granted an infinitely-lived patent, and monopolizes the production and sale of
the intermediate good (which embodies knowledge) until replaced by the next innovator. This
equilibrium involves two market failures.
The first one, which results from the presence of monopolies, can be corrected by an ad

valorem subsidy ψ on each intermediate good demand. The second one relates to the externality

10We implicitly consider the case of drastic innovations. One could characterize the condition on the param-
eters, in particular the ones related to knowledge diffusion, under which innovations are drastic or non drastic
(see, for instance, Gray & Grimaud 2016).

18



triggered by the fact that there is no market for knowledge; it can be corrected by a public tool
ϕ which can consist in a subsidy or in a tax on the profits of R&D activities. Normalizing the
price of final good to one, and denoting the rate of return on assets, the wage, and the price of
intermediate good ω at date t by rt, wt, and qωt (ω ∈ Ωt), respectively, the set of Schumpeterian
equilibria is defined as follows.

Definition 1. At each vector of public policy tools (ψ, ϕ) is associated a particular Schumpete-
rian equilibrium. It consists of time paths of set of quantities

{(
ct (ψ, ϕ) , Yt (ψ, ϕ) , {lωt (ψ, ϕ)}ω∈Ω , LY

t (ψ, ϕ) , {xωt (ψ, ϕ)}ω∈Ω , {χωt (ψ, ϕ)}ω∈Ω

)}∞
t=0

and of prices {(
rt (ψ, ϕ) , wt (ψ, ϕ) , {qωt (ψ, ϕ)}ω∈Ω

)}∞
t=0

,

such that: the representative household maximizes its utility; firms maximize their profits; the
final good market, the financial market, and the labor market are perfectly competitive and
clear; on each intermediate good market, the innovator is granted an infinitely-lived patent and
monopolizes the production and sale until replaced by the next innovator; and there is free entry
on each R&D activity (i.e. the zero profit condition holds for each R&D activity).

Lemma 6 in Appendix 5.2 presents exhaustively the variables at the steady state equilibrium
(all computations are provided in this appendix). In particular, one gets the growth rates of
total output and of per capita consumption:

gYt (ψ, ϕ) = gKt (ψ, ϕ) + n and gct (ψ, ϕ) = gKt (ψ, ϕ) = gχt (ψ, ϕ) + n,

where gχt (ψ, ϕ) = λσ (ps + E [Θt]) l (ψ, ϕ) and l (ψ, ϕ) =
1

γ
−

λ/γ + ρ

λ
(
1 + 1+ϕ

1−ψ
α
) . (8)

It is noteworthy that all the equilibrium variables depend on the vector of public policy
tools (ψ, ϕ). In particular, R&D public policies have an impact on the growth rates. In this
respect, this model is in line with the ones developed in the fully endogenous growth theory.
This literature has indeed provided endogenous growth models in which public policies affect
the economy; besides, they did so while suppressing the scale effects property.
Clearly, our model might exhibit scale effects: as it will be detailed in Section 3, the growth

rate of per capita consumption, gct (ψ, ϕ), can potentially depend on the size of the economy,
as measured by the population level Lt, or equivalently by the measure of the set of sectors (the
“number of sectors” in the economy) Nt. Indeed, gct (ψ, ϕ) is determined by gχt (ψ, ϕ), which
depends on the average scope of knowledge diffusion, E [Θt], which itself might depend on Lt.11

11More precisely, the model might exhibit strong scale effects (i.e. gct (ψ,ϕ) might depend on the population
size Lt); and it exhibits weak scale effects (i.e. gct (ψ,ϕ) depends on the population growth rate n), as long as
n > 0. As mentioned above in the introduction (see footnote 1), this paper focuses on the issue of strong scale
effects; accordingly we refer to them simply as to “scale effects”. Note that, contrary to semi-endogenous growth
models, the growth rate is still positive even if n = 0.
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3 Scale Effects Property Revisited

Because it explicitly formalizes knowledge diffusion, the fully endogenous Schumpeterian growth
model developed in Section 2 enables us to revisit the issue of scale effects by studying how this
undesirable property is fundamentally linked with inter-sectoral knowledge diffusion. For that
purpose, the following lemma recapitulates the relevant key results obtained when computing
the set of Schumpeterian equilibria à la Aghion & Howitt (see Lemma 6 in Appendix 5.2 for the
full characterization). To lighten the notations in this section, the argument (ψ, ϕ) is dropped
in all variables.

Lemma 4. Consider the Schumpeterian equilibrium presented in Definition 1 and computed
in Lemma 6. One has the following results. In each sector ω, the quantity of labor devoted to
R&D activity is

lωt = l =
1

γ
−

λ/γ + ρ

λ
(
1 + 1+ϕ

1−ψ
α
) , ∀ω ∈ Ωt; (9)

and the pool of knowledge used by R&D activity is

Pωt = Pt = (ps + E [Θt]) χt, ∀ω ∈ Ωt. (10)

The average scope of knowledge diffusion in the economy is

E [Θt] = pGγLt + pmθ (Lt) , (11)

where pG ≥ 0, ps ≥ 0, pm ≥ 0, and θ (.) is a monotonous function of class C2, bounded below
by one and above by Nt.
Then, in each sector ω, the law of knowledge accumulation is

χ̇ωt = χ̇t = λσlPt, ∀ω ∈ Ωt; (12)

and the growth rate of knowledge is

gχωt = gχt = λσ (ps + E [Θt]) l, ∀ω ∈ Ωt. (13)

Finally, the growth rate of per capita consumption is

gct = gχt + n = λσ (ps + E [Θt]) l + n = λσ [ps + pGγLt + pmθ (Lt)] l + n. (14)

As mentioned above, the model may or may not exhibit scale effects insofar as the growth
rate of per capita consumption, gct , given in (14), may or may not depend on the size of the
population Lt.
First and foremost, as shown by (9), the R&D effort (i.e. the “number of researchers”) in

each sector, l, does not depend on the size of the population, Lt. This results from the fact that
in the present framework two main opposite effects exactly compensate each others. On the
one hand, when Lt increases, the number of potential researchers increases; this tends to imply
that l increases in Lt. On the other hand, there is a “variety expansion mechanism”: when the
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“number of sectors” Nt increases, there is a potential dilution of the “number of researchers”
available for each sector; since Lt and Nt are assumed to be proportional, this tends to imply
that l decreases in Lt. Because of the two commonly made assumptions of linearity between
Lt and Nt, and of symmetry across sectors, these two effects cancel each other out; thereby, l

is independent of Lt and Nt.
Consequently, the presence of any scale effects cannot be due to the fact that an increase

in Lt would imply a rise in the quantity of labor used in the R&D activity of each sector, l,
leading to a higher growth rate. This feature - which results from assumptions commonly made
in the related literature - enables us to suppress a potential channel of scale effects in order to
focus on the part played by knowledge diffusion. In the present framework, the transmission
channel for scale effects necessarily involves that an increase in Lt leads to an increase in the
marginal productivity of labor in R&D.
As shown in Lemma 5 below, a key determinant of this marginal productivity is obviously

the size of the pool of knowledge available; more fundamentally, this lemma proves that the
marginal productivity of labor in R&D might depend intricately on Lt since it depends on
E [Θt] (which, as seen in (11), may depends on Lt) and on χt (which itself depends on E [Θt]).

Lemma 5. In each sector, the marginal productivity of labor in R&D activity is

∂χ̇t

∂l
= λσ

(

1 + lλσ

∫ t

0

(ps + E [Θu]) du

)

Pt,

where Pt = (ps + E [Θt]) χt, χt = χ0e
λσl

∫ t
0 (ps+E[Θu])du, and E [Θt] = pGγLt + pmθ (Lt) .

Proof. See Appendix 5.3.

As shown by (14), scale effects can only stem from the fact that the average scope of
knowledge diffusion E [Θt] depends on Lt. More precisely, gct can only depend on Lt through
two fundamental terms, each of which corresponding to a specific type of knowledge diffusion.
The first term, pGγLt, relates to the presence of general-purpose technologies (GPTs). The
second one, pmθ (Lt), relates to the presence of “medium knowledge” and how its diffusion
across sectors is impacted by Lt.
To go further in the analysis of the link between knowledge diffusion and scale effects, we

introduce a measure of the impact of Lt on the growth rate of per capita consumption:

Definition 2. The measure of scale effects is

St =
∂gct

∂Lt

= λσl
∂E [Θt]

∂Lt

= λσl [pGγ + pmθ′ (Lt)] . (15)

Clearly, as mentioned above, two types of inter-sectoral knowledge diffusion have an influ-
ence on the extent of scale effects:

1. Scale effects can result from the presence of GPTs: St depends on the probability pG of
occurrence of GPTs.
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2. Scale effects can also be a consequence of the presence of medium knowledge ( i.e. knowl-
edge impacting a more or less wide range of sectors): St depends both on the probability
pm of arrival of this type of knowledge, and on the derivative θ′ (Lt), which measures
to what extent the diffusion of this knowledge is affected by an increase in the size of
the population Lt, or equivalently in the measure of the set of sectors (the “number of
sectors”) Nt (since Nt = γLt ). Regarding the sign of this derivative, we argue that it
depends on two opposite effects.

(a) On the one hand, one could argue that, as the “number of sectors” Nt increases,
the knowledge produced in any given sector can potentially influence more sectors.
This “expanding effect” tends to increase θ (Lt), that is the measure of the subset of
sectors that use medium knowledge [ω − θ (Lt) /2; ω + θ (Lt)/2] .

(b) On the other hand, it could also be argued that, as its size increases, the economy
becomes more complex, which implies that sectors specialize and become less likely
to interact. This “specialization effect” tends to reduce θ (Lt).

If the expanding effect outweighs the specialization effect, then the derivative θ′ (Lt) is
positive. Conversely, if the specialization effect outweighs the expanding effect, then θ′ (Lt)

is negative.

In Subsection 3.1, we study three particular cases of knowledge diffusion within the fully
endogenous Schumpeterian growth model developed in Section 2. Studying in turn only sector
specific knowledge, global inter-sectoral knowledge diffusion, and only constant partial inter-
sectoral knowledge diffusion enables us to understand the fundamental relation between knowl-
edge diffusion and scale effects. Then, in Subsection 3.2, we consider more general cases in
which several types of knowledge diffusion coexist, and in which partial inter-sectoral knowl-
edge diffusion may rely on more sophisticated assumptions. In these more sophisticated cases,
scale effects may be present, but we identify under which assumptions they could nevertheless
be cancelled, or at least mitigated. Eventually, not only do we provide a richer model but also
a model more in line with empirical facts both from the point of view of scale effects and of
knowledge diffusion.

3.1 Knowledge diffusion and scales effects: the main insights

In the following proposition we consider three particular cases of knowledge diffusion and, for
each of them, we give the key results related to scale effects. Each of these three cases consider
only one type of knowledge diffusion at once (this assumption will be relaxed in Subsection 3.2).
Case 1 and Case 2 correspond to the two polar cases presented above, namely to polar case ii.
(in which there is no inter-sectoral knowledge diffusion) and to polar case i. (in which there is
global inter-sectoral knowledge diffusion), respectively. Case 3 consists in an intermediate case
in which partial inter-sectoral knowledge diffusion is considered in the simplest way insofar as
the scope of diffusion of medium knowledge remains constant as the economy expands (this
assumption will also be relaxed in Subsection 3.2).
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Proposition 1. The link between knowledge diffusion and scales effects is illustrated by the
following three elementary cases.

Case 1. If ps = 1 (i.e. pG = pm = 0), then E [Θt] = 0 and St = 0.

There are no scale effects due to the absence of inter-sectoral knowledge diffusion.

Case 2. If pG = 1 (i.e. ps = pm = 0), then E [Θt] = γLt = Nt and St = λσlγ > 0.

There are scale effects due to the presence of global inter-sectoral knowledge diffusion.

Case 3. If pm = 1 (i.e. ps = pG = 0) and θ (Lt) = θ > 1, then E [Θt] = θ and St = 0.

In spite of the fact that there is some inter-sectoral knowledge diffusion, there are no
scale effects. Scale invariancy results from the absence of GPTs and from the fact that
the expanding and specialization effects exactly compensate each other (i.e. pG = 0 and
θ′ (Lt) = 0, respectively; see Definition 2 above).

Proof. For each of the three cases, the expressions of E [Θωt] and St are straightforwardly
derived from Lemma 4 and from (15) by taking particular values for pG, ps, and pm; and, for
Case 3, by assuming furthermore that θ (Lt) is constant. �

The analysis of these three cases of fully endogenous growth models (R&D public policies
have an impact on the growth rates) is going to enable us to highlight and to understand the
link between inter-sectoral knowledge diffusion and scale effects. Beforehand, let us recall some
essential points. Determining whether a model exhibits scale effects, or not, basically amounts
to studying the impact of an increase in the population size, Lt, on the growth rate of per
capita consumption, gct . As shown in Lemma 4 , gct depends on the growth rate of knowledge
in each sector: gct = gχt + n. It is therefore necessary to study the impact of an increase in Lt

on gχt .
As shown in Lemma 4, the creation of new knowledge in each sector, χ̇t, involves two

complementary inputs. Indeed, as seen in (12), the R&D activity of each sector uses labor in
quantity l - which, as discussed above, is independent of Lt (see (9)) - as well as the pool of
knowledge Pt given in (10). Thus, the growth rate of knowledge, gχt = χ̇t/χt depends on l

and on the ratio Pt/χt. Consequently, the analysis of scale effects comes down to the following
questions: do the pools, and more precisely the ratio Pt/χt, depend on Lt? and why is it so?
From (10), we know that Pt/χt = ps +E [Θt]; hence, for each of the three cases presented in

Proposition 1, we need to understand what the impact of an increase in Lt on the average scope
of knowledge diffusion E [Θt] is. In what follows, for each of the three cases, we will compute
the marginal productivity of labor in R&D (see Lemma 5 for its general expression), and we
will check whether it depends on Lt or not.
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Case 1 - No inter-sectoral knowledge diffusion, absence of scale effects.

In this case, it is assumed that ps = 1, and thus that pG = pm = 0. In any sector, the R&D
activity produces neither GPTs nor medium knowledge, but only sector specific knowledge.
Hence, the average scope of knowledge diffusion is nil: E [Θt] = 0. Since the knowledge produced
in each sector thus diffuses solely within this sector, the pool of knowledge used by each sector
R&D activity is limited to the stock of knowledge accumulated within this sector; formally,
Pωt = Pt = χt, ∀ω ∈ Ωt. Since Pt/χt = 1, one has gχt = λσl, and thus gct = λσl + n, both of
which do not depend on Lt. There are no scale effects: from (15), one has St = 0.
When the economy expands (i.e. when the size of the population Lt and thus the measure

of the set of sectors (the “number of sectors”) Nt = γLt increase), the R&D activity of each
sector keeps operating without being affected by the growing “number of sectors” producing
knowledge, precisely because this knowledge does not diffuse. Each sector continues to produce
its knowledge using exclusively its own stock of knowledge: χ̇t = λσlχt.
The basic reason for the absence of scale effects in this case lies in that the marginal pro-

ductivity of labor in R&D is independent of Lt: from Lemma 5, one has
∂χ̇t

∂l
= λσ (1 + lλσt) χt,

with χt = χ0e
λσlt. That is why the increase in Lt has no effect on the R&D activity of each sec-

tor, hence no effect on the growth rate of the knowledge produced by this sector, and eventually
no effect on the growth rate of per capita consumption.

Case 2 - Global inter-sectoral knowledge diffusion, presence of scale
effects.

In this case, it is assumed that pG = 1: the knowledge produced in any sector diffuses across the
whole set of sectors. Therefore, the average scope of knowledge diffusion includes all sectors:
E [Θt] = Nt. Consequently, the pool of knowledge used by R&D activity in each sector is the
whole stock of knowledge in the economy (i.e., it includes the knowledge accumulated in all
sectors so far): Pωt = Pt = Kt = Ntχt = γLtχt, ∀ω ∈ Ωt. Each of these pools clearly depends
on Lt. Besides, one has Pt/χt = γLt, gχt = λσlγLt, and thus gct = λσlγLt + n. This case
exhibits scale effects: from (15), one has St = λσγl > 0.
Here, when Lt - or equivalently Nt - increases, the R&D activity of each sector is directly af-

fected. This impact comes from the interaction between the formation of the pools of knowledge
and the production of new knowledge which gives rise to a kind of “snowball effect”.
In the presence of global inter-sectoral knowledge diffusion, the pool used by the R&D

activity in each sector (Pt) grows faster than the sector’s own stock of knowledge (χt). Formally,
in Case 2, one has gPt = gχt + gNt = gχt + n, while in the absence of inter-sectoral diffusion
(Case 1), one has gPt = gχt . The reason for this is twofold. First, because in Case 2 the
knowledge produced in each sector diffuses to all sectors, the R&D activity of each sector
receives knowledge from a subset of sectors of measure Nt, which furthermore increases with
Lt (since Nt = γLt); conversely, this measure is nil in Case 1. Second, in Case 2, the stock of
knowledge emitted by each of these sectors also increases with Lt: indeed, from Lemma 5 one
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has
χt = χ0e

λσl
∫ t
0 Nudu = χ0e

λσl
∫ t
0 γLudu = χ0e

λσγl
n

(ent−1) = χ0e
λσγl

n
(Lt−1). (16)

Consequently, in each sector, the R&D activity uses a pool of knowledge which is an increasing
function of Lt: Pt = γLtχt = γLtχ0e

λσγl
n

(Lt−1).
Moreover, since the knowledge produced by each sector, χ̇t, is a linear function of the pool

Pt, and since this pool is increasing in Lt, each sector produces a flow of knowledge which
increases with Lt: χ̇t = λσlPt = λσlγLtχ0e

λσγl
n

(Lt−1). Then, the quantity of knowledge diffused
from each sector increases as Lt increases, resulting in more knowledge received by each of the
sectors of the economy, which in turn will produce more knowledge, and so on and so forth.
Finally, the fact that Pt increases faster than χt basically results from this “snowball effect”.
As in Case 1, this result can be understood by looking at the marginal productivity of labor

in R&D. In Case 2, Lemma 5 writes

∂χ̇t

∂l
= λσ

(

1 + λσl

∫ t

0

γLudu

)

Pt = λσ

(

1 + λσlγ

∫ t

0

enudu

)

Pt

= λσ

(

1 +
λσlγ

n
(ent − 1)

)

Pt, where Pt = γLtχt and χt given in (16).

Therefore, one has
∂χ̇t

∂l
= λσγ

(

1 +
λσlγ

n
(Lt − 1)

)

Ltχ0e
λσlγ

n
(Lt−1).

Here, the presence of scale effects goes through the fact that, unlike in Case 1, the marginal
productivity of labor in R&D increases rapidly because it depends on Lt and on χt (which itself
depends on Lt).

The results obtained in Cases 1 and 2 prove rigourously - within a general equilibrium
Schumpeterian growth model - the intuitions given at the end of Subsection 2.1 which were
derived from a brief analysis of the two polar cases. Especially, we have now shown that
suppressing any type of inter-sectoral knowledge diffusion (i.e. assuming that the R&D activity
of each sector uses a pool of knowledge which consist in the stock of knowledge accumulated
in this sector only) is a sufficient condition for a standard fully endogenous growth model not
to exhibit scale effects. In fact, this result echoes to the way the scale effects property has
been removed in most fully endogenous growth models; indeed, as it will be argued below,
scale-invariancy has often been achieved by wiping out inter-sectoral knowledge diffusion.
As mentioned above (see Assumption 1), surveys by Jones (1999), Laincz & Peretto (2006),

Dinopoulos & Sener (2007), Ha & Howitt (2007), or Bond-Smith (2019) explain that a “variety
expansion mechanism” has been introduced in order to remove scale effects from endogenous
growth models while maintaining the effects of public policies. The basic underlying idea in
these fully endogenous growth models follows from Young (1998)’s insight that, as population
grows, the proliferation of sectors reduces the efficiency of R&D activities in improving the
quality of an existing product because the R&D effort is diluted in more sectors. The for-
malization typically considered relies on two assumptions. The first one is the proportionality
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between the size of the population and the “number of sectors”; in the present paper, we also
make this assumption (see Assumption 1 and its associated comments), so as to focus on the
second assumption, which relates to the way the process of knowledge accumulation is formal-
ized. As detailed in the surveys mentioned above, two types of formalization can a priori be
distinguished. Let us present both types using the framework introduced in the present paper,
and show that they both boil down to considering implicitly that there is no inter-sectoral
knowledge diffusion.

a. In Segerstrom (1998), Peretto (1999), Acemoglu (2009, Ch. 14), or Aghion & Howitt (2009,
Ch. 4), among others, it is implicitly assumed that, in each sector, the pool of knowledge in
which R&D activity draws from to produce new knowledge comprises solely the knowledge
previously accumulated within this sector. Using our notations, the considered knowledge
production function in each sector is χ̇ωt = λσlωtPωt, where Pωt = χωt, ∀ω ∈ Ωt. Therefore,
in this first type of scale-invariant fully endogenous growth models, it is implicitly assumed
that there is no inter-sectoral knowledge diffusion; exactly as in Case 1 of our model presented
above.

b. A second type of scale-invariant fully endogenous growth models - such as the models
presented in Dinopoulos & Thompson (1998), in Peretto (1998), in Howitt (1999), or in Li
(2000 and 2003) - consider firm-specific knowledge production functions such that, as stated
by Laincz & Peretto (2006), “spillovers depend on average knowledge”.12 In other words, as
argued in the surveys mentioned hereinbefore, in each sector, new knowledge is produced using
the average knowledge across all sectors. For instance, Laincz & Peretto (2006) formalize this
assumption in equation 9 of their paper. One can equivalently refer to equations 7 and 9
in Jones (1999), to equations 13 and 14 in Dinopoulos & Sener (2007), to equation 5 in Ha
& Howitt (2007), to equation 7 in Bond-Smith (2019), or to the framework used in Aghion
& Howitt (2009, Ch. 4). Using our notations, this assumption amounts to considering the
following knowledge production function in each sector:

χ̇ωt = λσlωtPωt, where Pωt =

∫

Ωt

χht

Nt

dh =
Kt

Nt

, ∀ω ∈ Ωt. (17)

12The argument commonly put forward to justify this assumption follows from the idea that the number of
sectors is a measure of R&D difficulty. Then, assuming that each sector uses only the average knowledge is
a way to account for the fact that, as R&D difficulty increases, a given level of R&D investment is going to
generates fewer innovations. As stated by Peretto & Smulders (2002), “R&D productivity depends on some
measure of accumulated public knowledge that is independent of the number of firms and hence of the scale of
the economy. This independence may stem from the assumption that (a) spillovers across firms are absent (e.g.,
Peretto 1999), that (b) spillovers depend on average knowledge (e.g., Smulders & Van de Klundert 1995; Peretto
1998; Dinopoulos & Thompson 1998), or that (c) spillovers depend on the knowledge of the most advanced firm
(e.g., Young 1998; Aghion & Howitt 1998; Howitt 1999). All these models have the property that a large
economy replicates the structure of a small economy. [...] Moreover, although they allow for spillovers, all these
models assume that a larger number of firms undertaking independent R&D projects does not support a larger
aggregate stock of public knowledge.”
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Actually, assuming that the pool of knowledge used by R&D activity in each sector consists in
the average knowledge in the economy is equivalent to considering that this pool is limited to
the stock of knowledge produced within this sector. Indeed, consider the usual symmetric case -
assumption required to compute the equilibrium - in which χωt = χt, ∀ω ∈ Ωt. The whole stock
of knowledge (1) then writes Kt = Ntχt. Consequently, from (17), one has Pωt = χt, ∀ω ∈ Ωt.
Here too, it is implicitly assumed that there is no inter-sectoral knowledge diffusion as in Case
1 of our model.

To sum up, the formalization of knowledge diffusion and of the resulting pools of knowledge
introduced in the present paper has enabled us to highlight that many scale-invariant fully
endogenous models consider laws of knowledge accumulation in which it is eventually assumed
that there is no inter-sectoral knowledge diffusion. Just like in the particular Case 1 of our
model, these models implicitly suppose that E [Θt] = 0 (or equivalently that ps = 1).
More fundamentally, the analysis carried out so far has revealed that under the assumption of

linearity between the size of the population and the “number of sectors”, a sufficient condition to
suppress scale effects is to assume that there is no inter-sectoral knowledge diffusion. However,
wiping out inter-sectoral knowledge diffusion from models originally considering some type
of interaction between sectors appears to be in contradiction with the common view on how
knowledge springs into existence. Indeed, these interactions have been strongly emphasized in
growth theory (e.g., Romer 1990; Aghion & Howitt 1998; Jones 2005): it is generally agreed
that new pieces of knowledge “diffuse gradually, through a process in which one sector gets
ideas from the research and experience of others.” (Aghion & Howitt 1998, Ch. 3). Moreover,
the significance of the interactions between sectors has also been highlighted by many empirical
studies (e.g., Griliches 1992 and 1995; Hall 2004; Hall, Mairesse & Mohnen 2010).
Thereby, this leads us to wonder whether assuming no inter-sectoral knowledge diffusion

is a necessary condition to obtain a scale-invariant fully endogenous growth model. For the
purpose of studying this question, let us now consider an intermediate case to Cases 1 and 2,
the analysis of which constitutes a first basic step in the study of the apparent paradox sketched
above.

Case 3 - Constant partial inter-sectoral knowledge diffusion: a fully
endogenous growth model with inter-sectoral knowledge diffusion but
without scale effects.

We now assume pm = 1 and θ (Lt) = θ > 1. Here, unlike Case 2, there is no global inter-sectoral
knowledge diffusion (i.e. we do not consider possible occurrence of GPTs since pG = 0).
However, contrary to Case 1, there is nevertheless some inter-sectoral knowledge diffusion.
Furthermore, this diffusion is assumed to be constant (θ is independent of Lt); as explained
above, this may be interpreted as a situation in which the expanding effect and the specialization
effect exactly compensate each other. The knowledge produced in each sector diffuses to a
subset of sectors the measure of which is constant. Accordingly, the average scope of knowledge
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diffusion is also constant: E [Θt] = θ. Consequently, each sector receives knowledge from a
subset of sectors (which includes this sector itself) the measure of which remains constant
as Lt increases. Then, the pool of knowledge used by the R&D activity of each sector is
Pωt = Pt = θχt, ∀ω ∈ Ωt. Therefore, the ratio Pt/χt = θ is independent of Lt. Finally, one has
gχt = λσlθ and thus gct = λσlθ + n. This case does not exhibit scale effects: from (15), one
has St = 0. In fact, Case 3 is close to Case 1 hereinabove insofar as in both cases, the growth
rate of knowledge in any sector, gχt , is independent of Lt. The difference between these two
cases lies in the fact that there is inter-sectoral knowledge diffusion in Case 3. However, this
diffusion is circumscribed to a neighborhood of sectors which remains constant as the economy
expands. Note that, the greater the value of θ, the higher the growth rate gχt . Because of this
inter-sectoral diffusion, the growth rate of knowledge in each sector is higher in Case 3 than
in Case 1. Nevertheless, like in Case 1, the basic reason for the absence of scale effects is also
related to the fact that the marginal productivity of labor in R&D is independent of Lt; indeed,
from Lemma 5, one has ∂χ̇t

∂l
= λσ [1 + λσlθt)]Pt, where Pt = θχt and χt = χ0e

λσlθt. That is the
reason why the increase in Lt has no effect on the R&D activity of each sector, no effect on
the growth rate of the knowledge produced by this sector, and finally no effect on the growth
rate of per capita consumption. In spite of the fact that there is some inter-sectoral knowledge
diffusion, there are no scale effects.
We have seen through Case 1 that the absence of inter-sectoral knowledge diffusion is a suf-

ficient condition to cancel scale effects in a standard fully endogenous Schumpeterian growth
model; Case 3 proves that it is not a necessary condition.

The framework developed in Case 3 is in line with the fully endogenous Schumpeterian
growth theory insofar as it does not exhibit scale effects while maintaining the impact of public
policies on the growth rate. However, contrary to the previous literature, this particular case of
our model preserves some inter-sectoral knowledge diffusion. Nevertheless, the simplicity of the
considered diffusion of knowledge can appear questionable. Indeed, only one type of diffusion
is considered at once; furthermore, it is assumed that knowledge diffusion is never expanding
(absence of GPTs and restrictions on the way medium knowledge diffuses since the expanding
effect and the specialization effect exactly compensate each other). Let us now return to cases
which considers simultaneously several types of knowledge diffusion (including possibly GPTs)
and more general assumptions on partial inter-sectoral knowledge diffusion.

3.2 Knowledge diffusion and scale effects: more insights. Expanding
effect, complexity effect, specialization effect, GPTs, and Scale
effects

Our objective is now to study the consequence on the scale effects property of the occurrence
of GPTs, and of the fact that medium knowledge diffuses to a subset of sectors the measure
of which varies with Lt (i.e. of the fact that the expanding and specialization effects do not
exactly compensate each other in general). Eventually, we investigate under which reasonable
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assumptions on inter-sectoral knowledge diffusion one can obtain a Schumpeterian growth model
in adequation with commonly agreed empirical facts; that is a model in which public policies
have an impact on the growth rate, in which GPTs can occur, and in which medium knowledge
diffusion may be affected by the fact that the economy expands , and which does not exhibit scale
effects (or, if it does, in which it is not a significant problem).
Foremost, regarding the impact of public policies; as explained previously, this is not an

issue in the present framework. Indeed, all the equilibrium variables depend on the vector of
public policy tools (ψ, ϕ), and this for any assumption on knowledge diffusion (see Lemma 6,
Appendix 5.2); in particular, as seen in (8), R&D public policies have an effect on the growth
rates.
The study of the three cases presented in the following proposition enables us to tackle the

issue related to knowledge diffusion and scale effects. We proceed in two steps. In a first step,
we study independently the consequences on the scale effects property on the one hand of GPTs
(Case 4) and on the other hand of the fact that medium knowledge diffusion relies on broader
assumptions (Case 5). In a second step, we move on to Case 6, which considers the richest set
of assumptions as it merges Cases 4 and 5.

Proposition 2. The links between expanding effect, complexity effect, specialization effect,
GPTs, and Scale effects are illustrated by the three following cases, all of which consider simul-
taneously several types of knowledge diffusion.

Case 4. If pG > 0, ps > 0, pm > 0, and θt = θ (Lt) = θ > 1 then E [Θt] = pGγLt + pmθ, and

St = λσlpGγ > 0.

There are scale effects due to the presence of GPTs only.

Case 5. If pG = 0, ps > 0, pm > 0, and θt = θ (Lt), where θ (.) is a monotonous function of
class C2, bounded below by one and above by Nt, then E [Θt] = pmθ (Lt), and

St = λσlpmθ′ (Lt) . (18)

There might be scale effects, negative scale effects, or even no scale effects, depending on
the sign of the derivative θ′ (Lt), which depends on the relative extent of the expanding
and specialization effects.

Sub case 5.1. If θ′ (Lt) > 0, then St > 0. There are scale effects because the expanding
effect overcomes the specialization effect.

Sub case 5.2. If θ′ (Lt) < 0, then St < 0. There are negative scale effects because the
specialization effect overcomes the expanding effect.

Sub case 5.3. If θ′ (Lt) = 0, then St = 0. There are no scale effects because the special-
ization effect and the expanding effect neutralize each other.
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Case 6. If pG > 0, ps > 0, pm > 0, and θt = θ (Lt), where θ (.) is a monotonous function of
class C2, bounded below by one and above by Nt, then E [Θt] = pGγLt + pmθ (Lt), and

St = λσl [pGγ + pmθ′ (Lt)] .

The presence of GPTs tends to imply scale effects. Besides, the consequence of the pres-
ence of medium knowledge on scale effects depends on the sign of the derivative θ′ (Lt).
Eventually, there might be positive, negative, or even no scale effects.

Proof. For each case, the expressions of E [Θωt] and St are straightforwardly derived from
Lemma 4 and from (15). �

Let us comment Proposition 2. Each of these three cases may exhibit scale effects; our aim
is to try to find out how they could nevertheless be cancelled, or at least mitigated. For that
purpose, we investigate how additional assumptions on the probability of arrival of GPTs, pG,
and on the scope of diffusion of medium knowledge, θt, affect the scale effects property.

Case 4 - Constant partial inter-sectoral knowledge diffusion and GPTs.

Here, we assume pG > 0, ps > 0, pm > 0, and θ (Lt) = θ > 1. We consider simultaneously
the three types of knowledge diffusion. Besides, we assume that medium knowledge diffuses to
a subset of sectors the measure of which is independent of Lt: like in Case 3, the expanding
and specialization effects exactly compensate each other. But, unlike in Case 3, we now allow
for the possible arrival of GPTs. Thus, it is clear that in this case, there are scale effects only
because of the occurrence of GPTs. The basic reason for this is that their scope of knowledge
increases proportionally to the size of the economy.
Because the existence of GPTs is not questionable, one could think that one faces here a

paradox in the sense that the presence of GPTs leads to a property of the model (scale effects)
which is at odds with well established empirical facts (no significant evidence of scale effects).
In fact, this contradiction is only apparent. The measure of scale effects is St = λσlpGγ. It is
indeed strictly positive; yet, it depends on pG, the probability of occurrence of GPTs.
As emphasized by the literature on GPTs (e.g., Helpman 1998, or Lipsey, Carlaw & Bekar

2005), we know that it is empirically reasonable to assume that, in the large mass of discoveries,
GPTs are quite rare (one can think, for instance, of writing and printing, electricity, microchip,
or AI); in the present framework, this amounts to assuming that pG is low. Therefore, even
if the presence of GPTs implies scale effects, their measure St is small; moreover, one has
limPG→0 St = 0. The main intuition behind these results is obtained by analyzing the expression
of the marginal productivity of labor obtained from Lemma 5:

∂χ̇t

∂l
= λσ

(

1 + lλσ

∫ t

0

(ps + E [Θu]) du

)

Pt,

where Pt = (ps + E [Θt]) χt, χt = χ0e
λσl

∫ t
0 (ps+E[Θu])du, and E [Θt] = pGγLt + pmθ.
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The key point here lies in that, since the probability pG is low, the impact of Lt on the
marginal productivity of labor is weak, thus scale effects are not substantial. Moreover, one

has limPG→0
∂χ̇t

∂l
= λσ

(
1 + lλσ

∫ t

0
(ps + pmθ) du

)
(ps + pmθ) χt, where χt = χ0e

λσl
∫ t
0 (ps+pmθ)du;

if GPTs are extremely rare, then the marginal productivity tends to be independent of Lt. In
the end, for pG very small, Case 4 boils down to a case similar to Case 3 (in fact, it corresponds
to the merger of Cases 1 and Case 3, in which one would have simultaneously sector specific
knowledge and medium knowledge).
To sum up, the occurrence of GPTs in the present framework does not necessarily contradict

empirical findings according to which there is no significant evidence of the presence of scale
effects.

Case 5 - Non-constant partial inter-sectoral knowledge diffusion: ex-
panding effect, complexity effect, and specialization effect.

Here, we assume pG = 0, ps > 0, pm > 0, and θt = θ (Lt), where θ (.) is a monotonous function
of class C2, bounded below by one and above by Nt. In order to focus on the part played by the
diffusion of medium knowledge, we now assume that there are no GPTs, and we consider more
general assumptions on how inter-sectoral knowledge diffusion expands, or contracts, when the
size of the economy, Lt, increases.
Until now, the diffusion of medium knowledge was assumed to be independent of Lt: we have

considered so far that the expanding and specialization effects were neutralizing each other.
This can obviously be disputable. Contrary to all the above, we now relax this simplifying
assumption by considering that medium knowledge diffuses on a subset of sectors of measure
θt = θ (Lt), and we study how this affects scale effects.13 Specifically, we make additional
assumptions on the signs of θ′ (Lt) and θ′′ (Lt) , and we investigate under which reasonable set
of assumptions, one can obtain a model in adequation with empirical evidences that there are
no (substantial) scale effects.
The measure of scale effects is St = λσlpmθ′ (Lt). Clearly, it depends on θ′ (Lt), which

represents the extent to which the diffusion of medium knowledge is affected by an increase in
the size of the population Lt. In other words, St is determined by how the scope of diffusion of
medium knowledge evolves as the economy expands. In Cases 5.1, 5.2, and 5.3, we study how
the sign of the derivative θ′ (Lt) influences the scale effects property.

Sub case 5.1 - Expanding effect and complexity effect.

If θ′ (Lt) > 0, the expanding effect overcomes the specialization effect, and this case exhibits
scale effects (St > 0) because medium knowledge diffusion expands with the size of the economy.
When the “number of sectors” increases, each sector receives knowledge from an increasing
“number of sectors”. Hence, the size of the pool of knowledge used in each sector increases.
Thereby, each sector produces more knowledge. Each sector receiving an increasing amount

13In fact, we study the general case of diffusion of medium knowledge presented above in Subsection 2.2.1-iii).

31



of knowledge from an increasing “number” of sectors is thus going to produce more knowledge
which will then diffuse to an increasing “number of sectors”. Accordingly, this snowball effect
enhance the marginal productivity of labor in R&D. That is the reason why there are scale
effects.
However, the following could be considered. As the size of the economy (and thus the “num-

ber of sectors”) increases, the knowledge produced in each sector impacts a growing “number of
sectors” (because of expanding knowledge diffusion). Nevertheless, one could think that a larger
“number of sectors” makes interactions between sectors more complex. It is then reasonable to
think that this increasing complexity implies that the proportion of sectors impacted within
the expanding economy could decrease and eventually tend to zero. This could explain the
presence of scale effects, but also why they may progressively vanish as the economy expands.
The following corollary formalizes these ideas, and shows that adding some extra assump-

tions on the function θ (Lt) allows us to mitigate scale effects while maintaining expanding
diffusion.

Corollary 1. Introducing a “complexity effect”.
Assume pG = 0, ps > 0, pm > 0, and θt = θ (Lt), where θ (.) is a monotonous function of

class C2, bounded below by one and above by Nt, and θ′ (Lt) > 0.

1. If θ′′ (Lt) < 0, then ∂St

∂Lt
< 0 ⇔ Ṡt < 0: the measure of scale effects decreases as the size

of the economy increases, or, equivalently, is decreasing over time.

2. If limLt→∞ θ′ (Lt) = 0, then limt→∞ St = 0: scale effects asymptotically vanish.

Proof. The derivative of (18) with respect to Lt writes

∂St

∂Lt

=
∂λσlpmθ′ (Lt)

∂Lt

= λσlpmθ′′ (Lt) < 0.

Besides, since Lt = ent, the derivative of (18) with respect to time writes

Ṡt =
∂λσlpmθ′ (Lt)

∂t
=

∂λσlpmθ′ (ent)

∂t
= λσlpmnentθ′′

(
ent
)

= λσlpmnLtθ
′′ (Lt) < 0.

This proves the first point. The proof of the second point is straightforward; writing the limit
of (18) given that Lt = ent and that limLt→∞ θ′ (Lt) = 0, one gets limt→∞ St = 0. �

Corollary 1 shows that scale effects can be alleviated by considering that, even if knowledge
diffusion expands, it is slowed down by the fact that the economy expansion goes along increas-
ing complexity. Formally, this can be achieved by assuming that θ (Lt) is concave, or/and by
assuming that the scope of diffusion of medium knowledge becomes asymptotically constant.
If θ′′ (Lt) < 0, the expansion of the scope of knowledge diffusion is curbed down by the prolif-
eration of sectors (recall that Nt = γLt). Because the scope of knowledge diffusion does not
expand as fast as the size of the economy, each sector interacts with a growing subset of sectors
but the measure of this subset decreases relatively to the measure of the whole expanding set
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of sectors. Thereby, increasing complexity somehow dilutes scale effects: the measure of scale
effects decreases as Lt increases ( ∂St

∂Lt
< 0), or equivalently decreases over time (Ṡt < 0). If

limLt→∞ θ′ (Lt) = 0, the set of sectors on which knowledge diffuses becomes constant asymp-
totically; because of increasing complexity, scale effects asymptotically vanish ( limt→∞ St = 0).
To sum up, even if there are scale effects induced by the fact that the expanding effect

overcomes the specialization effect (θ′ (Lt) > 0), they can be mitigated by the introduction of
a complexity effect (θ′′ (Lt) < 0 or/and limLt→∞ θ′ (Lt) = 0), allowing us to match empirical
evidences and to have a non explosive growth rate.

Sub case 5.2 - Specialization effect.

Now, if θ′ (Lt) < 0, the expanding effect is outweighed by the specialization effect, and this
case exhibits negative scale effects (St < 0). In other words, the growth rate of the economy
is impacted by the size of the economy, but negatively. Why is it so? From Assumption 1, we
know that the “number of sectors” increases as the population level increases. Even if there is
inter-sectoral knowledge diffusion, this diffusion tends to contract (θ′ (Lt) < 0). Specialization
implies that, as sectors proliferate, each sector is likely to interact with a decreasing “number
of sectors”; hence, each sector is able to use fewer stocks of knowledge.14 This implies that, in
each sector, the pool of knowledge in which R&D activity draws from tends to shrink as the
economy expands; thereby weakening the marginal productivity of labor in R&D. 15

Sub case 5.3 - Back to constant partial inter-sectoral knowledge diffusion.

If θ′ (Lt) = 0, the expanding and specialization effects cancel each other, and the resulting
model is scale-invariant. One gets back to a case similar to Case 3, but in which one would
have simultaneously sector specific knowledge and diffusion of medium knowledge.

In Cases 4 and 5, we investigated how to obtain a fully endogenous Schumpeterian growth
model in which one makes reasonable assumptions on knowledge diffusion (firstly, in Case 4,
on the presence of GPTs and secondly, in Case 5, on the influence of the economy expansion on
the scope of diffusion of medium knowledge) while conforming to empirical evidence on the non
significance of scale effects. Let us now study the most general cases of our framework which
merge Cases 4 and 5; basically, we get back to the initial specification of our model presented

14Note that, in this paper, knowledge diffusion formalization lies on the fact that sectors share a more or
less large “number” of stocks of knowledge, each of which being produced by a given sector. One could adapt
the formalization to consider that it is the flow of knowledge inherent in each innovation that diffuses and not
the accumulated stock. On the distinction between these flows and stocks of knowledge, see Gray & Grimaud
(2016).
15Negative scale effects appears in other frameworks for other reasons. In Jones (1999), they occur as a

result of the fact that “the number of sectors grows less than proportionally with population.” In Peretto
& Connolly (2007), fixed operating costs are introduced in an endogenous growth model with horizontal and
vertical innovation; negative scale effects result from the fact that at equilibrium, the number of firms increases
more than the aggregate demand.
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in Section 2,

Case 6 - Expanding effect, complexity effect, specialization effect, and
GPTs.

We assume pG > 0, ps > 0, pm > 0, and θt = θ (Lt), where θ (.) is a monotonous function of
class C2, bounded below by one and above by Nt. We consider simultaneously the occurrence
of GPTs and non-constant partial inter-sectoral knowledge diffusion; accordingly, the average
scope of knowledge diffusion in the economy is E [Θt] = pGγLt + pmθ (Lt). Our objective is to
analyze the effects of GPTs and of the diffusion of medium knowledge together. The measure of
scale effects is St = λσl [pGγ + pmθ′ (Lt)]; it depends both on pG (like in Case 4) and on θ′ (Lt)

(like in Case 5). The following corollary merges the results obtained when analyzing Cases 4
and 5, and illustrates how the scale effect property is affected by the presence of GPTs together
with, on the one hand, an expanding knowledge diffusion and a complexity effect, and, on the
other hand, a specialization effect.

Corollary 2. Assume pG > 0, ps > 0, pm > 0, and θt = θ (Lt), where θ (.) is a function of
class C2.

Case 6.1. If θ′ (Lt) ≥ 0, then St > 0. The model exhibits scale effects because of the occurrence
of GPTs and also potentially because the scope of medium knowledge diffusion may be
expanding (if θ′ (Lt) > 0). However, these scale effects are not necessarily an issue for
two reasons.

• The impact of GPTs can be considered as weak, since pG may be assumed small.

• In the presence of an expanding scope of diffusion of medium knowledge, its impact
can be mitigated by introducing a complexity effect, that is by assuming θ′′ (Lt) < 0

or/and limLt→∞ θ′ (Lt) = 0.

Case 6.2. If θ′ (Lt) < 0, then St T 0. The scale effects generated by GPTs may be more or
less offset by the specialization effect that contracts the diffusion of medium knowledge.

Corollary 2 exhibits two versions of our fully endogenous Schumpeterian growth model both
complying with several commonly agreed key empirical facts. Public policies have an impact on
the growth rates, GPTs can occur, and there is no significant problem of scale effects; moreover,
both models consider that the scope of diffusion of medium knowledge evolves as the economy
expands.
In Case 6.1. the scope of diffusion of medium knowledge stretches as the economy expands

(θ′ (Lt) ≥ 0). Then, for the scale effects issue to be mitigated, two additional assumptions on
inter-sectoral knowledge diffusion are required. First, innovations involving knowledge diffusing
across the whole set of sectors (GPTs) should not be too frequent (pG must be small); since
this is likely the case empirically, the impact of GPTs on scale effects can be considered as
negligible. Second, the function θ (Lt) should display a complexity effect.

34



In Case 6.2, the scope of diffusion of medium knowledge contracts as the economy expands
(θ′ (Lt) < 0). When the presence of GPTs is combined with the fact that the specialization
effect overcomes the expanding effect, there are two opposite mechanisms at stake as the econ-
omy expands. On the one hand, each GPT enter the pool of knowledge of a growing set of
sectors. On the other hand, the specialization effect contracts the subset of sectors on which
medium knowledge diffuses. Eventually, the measure of scale effects St may be positive, nil, or
even negative, depending on the sign of pGγ + pmθ′ (Lt).

In Section 3, we revisited the issue of scale effects in light of knowledge diffusion within a
fully endogenous Schumpeterian growth model. Firstly, we showed that the absence of inter-
sectoral knowledge diffusion (E [Θt] = 0, or equivalently pG = pm = 0) is a sufficient condition
to eliminate scale effects (Case 1), and that global inter-sectoral knowledge diffusion (any
innovation involves knowledge which diffuses across the whole set of sectors) undoubtedly entails
scale effects (Case 2). Secondly, we proved in Case 3 that the absence of inter-sectoral knowledge
diffusion is not a necessary condition for scale-invariancy. In fact, as illustrated by Cases 3, 4,
5, and 6, there is no contradiction between the presence of inter-sectoral knowledge diffusion
and the absence of scale effects as long as the overall scope of knowledge diffusion is not too
“broad”, which is the case under relatively reasonable assumptions (GPTs should not occur too
frequently; and, if the scope of knowledge diffusion expands, it should do so at a lower pace
than the one of the economy).

4 Conclusion

This paper develops the idea that there is a close link between the fact that fully endogenous
growth models exhibit (or not) the undesirable scale effects property and the scope of knowledge
diffusion considered in such models.
This link clearly appears at first when studying two polar cases of fully endogenous Schum-

peterian growth models. On the one hand, a model assuming knowledge spillovers across all
sectors (i.e. considering that the R&D activity of each sector uses a pool of knowledge that
comprises all the knowledge accumulated in the economy) exhibits scale effects. On the other
hand, a model assuming no inter-sectoral knowledge spillovers (i.e. considering that the R&D
activity of each sector uses a pool that consists only of the knowledge accumulated within this
sector) does not display scale effects.
The underlying reason of the link between scale effects and knowledge diffusion is found

in the impact of the pools of knowledge on the marginal productivity of labor in R&D. The
basic insights are as follows. The wider inter-sectoral knowledge diffusion, the larger the pool
of knowledge used by each sector’s R&D activity. Then, the more knowledge diffusion spreads
with the size of the economy (as measured equivalently by the number of sectors or by the
population level), the more likely an increase in the size of the economy will lead to larger
pools of knowledge, implying a higher marginal productivity of labor in R&D activity, more
innovations, and thus a higher growth rate. Hence, the more knowledge diffusion spreads along
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with the size of the economy, the more likely the model will be displaying scale effects.
Accordingly, it becomes obvious that a sufficient condition to have a scale-invariant fully

endogenous growth model is to assume no inter-sectoral knowledge diffusion. In fact, this has
been a channel often used in the fully endogenous growth literature to remove scale effects
while maintaining the effect of R&D policies on the growth rate. However, the point is that
the assumption according to which there would be no significant knowledge spillovers is not
reasonable. Many papers have indeed pointed out that knowledge produced in a given sector
may be used by the R&D activities of other sectors (e.g., Romer 1990; Scotchmer 1991; Griliches
1992, 1995; Aghion & Howitt 1998; Weitzman 1998; Hall 2004; Jones 2005; Hall, Mairesse &
Mohnen 2010). Furthermore, as detailed for instance in Bresnahan & Trajtenberg (1995) or
in Helpman (1998), the occurrence of general-purpose technologies (GPTs) seems indubitable.
Similarly, as argued for instance by Coe & Helpman (1995), Coe, Helpman & Hoffmaister (1997
and 2009), or Bournakis, Christopoulos & Mallick (2018), there is also evidence of international
R&D Spillovers.
We therefore face the following paradox. There is (some) knowledge diffusion across sectors

(including the one resulting from GPTs) but there are no scale effects (or at least they are
not empirically significant); and, at first glance, inter-sectoral knowledge diffusion seems to
generate scale effects. In this paper, we investigate whether this paradox can be overcome and
we show that it is in fact only apparent.
In that respect, we use a new methodology: we introduce explicitly knowledge diffusion in

a standard fully endogenous Schumpeterian growth model. In particular, the formalization we
provide explains how knowledge diffusion shapes the pools of knowledge used by R&D activities
and thus determines the significance of scale effects. The first basic result we obtain within
this framework confirms that if there is no inter-sectoral knowledge diffusion, there are no scale
effects, precisely because the size of the pools is minimum.
This leads us to tackle the aforementioned paradox. We first build a model in which scale

effects are cancelled while maintaining some inter-sectoral knowledge diffusion. Even if it solves
the paradox, this model is somehow restrictive on the way knowledge diffusion is considered:
it does not allow for the occurrence of GPTs, and it assumes that the scope of diffusion of
knowledge remains constant as the economy expands (i.e. is not impacted by the size of the
economy). Then, we isolate the impact of GPTs on scale effects and we show that, even if
a model that considers the possible arrival of GPTs displays scale effects, these effects are
not important since their strength depends on the probability of occurrence of GPTs which
can be considered as low (Lipsey, Carlaw & Bekar 2005). Finally, we introduce more general
assumptions on how knowledge diffusion expands (or contracts) as the economy expands and we
determine under which sets of assumptions one can obtain Schumpeterian growth models that
comply with most of the commonly agreed empirical facts - namely the absence of important
scale effects, the impact of public policies on the growth rate, and somehow realistic interactions
among sectors R&D activities (including the occurrence of GPTs).
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5 Appendix

5.1 Law of knowledge accumulation - Proof of Lemma 1

Consider any given sector ω, ω ∈ Ωt, and a time interval (t, t + Δt). The level of knowl-
edge in this sector at date t is χωt. Let k, k ∈ N, be the number of innovations that
occur over (t, t + Δt). Given Assumptions 2 and 3, the level of knowledge at date t + Δt,
χω t+Δt, is a random variable taking the values {χωt + kσPωt}k∈N with associated probabilities{

(
∫ t+Δt

t λlωudu)
k

k!
e−

∫ t+Δt
t λlωudu

}

k∈N

. Therefore, the expected level of knowledge at date t + Δt is

E [χω t+Δt] =
∞∑

k=0

(∫ t+Δt

t
λlωudu

)k

k!
e−

∫ t+Δt
t λlωudu [χωt + kσPωt] . (19)

Let Iωu denote a primitive of lωu with respect to the time variable u. Thus, one has

∫ t+Δt

t

λlωudu = λ (Iωt+Δt − Iωt) ≡ Λ.

Accordingly, (19) rewrites

E [χω t+Δt] =
∞∑

k=0

Λk

k!
e−Λ [χωt + kσPωt] = e−Λ

[

χωt

∞∑

k=0

Λk

k!
+ σPωt

∞∑

k=0

k
Λk

k!

]

= e−Λ

[

χωt

∞∑

k=0

Λk

k!
+ σPωt

∞∑

k=1

k
Λk

k!

]

= e−Λ

[

χωt

∞∑

k=0

Λk

k!
+ σPωt

∞∑

k=1

Λk

(k − 1)!

]

= e−Λ

[

χωt

∞∑

k=0

Λk

k!
+ σPωtΛ

∞∑

k=1

Λk−1

(k − 1)!

]

= e−Λ

[

χωt

∞∑

k=0

Λk

k!
+ σPωtΛ

∞∑

k′=0

Λk′

k′!

]

.

The Maclaurin series expansion for eΛ is given by eΛ =
∑∞

k=0
Λk

k!
. Therefore, one has

E [χω t+Δt] = e−Λ
[
χωte

Λ + σPωtΛeΛ
]

= χωt + σPωtΛ = χωt + σPωtλ (Iωt+Δt − Iωt) .

Then, one can express the Newton’s difference quotients of E [χωt] and of Iωt:

E [χω t+Δt] − χωt

Δt
= λσ

Iωt+Δt − Iωt

Δt
Pωt.

Finally, letting Δt tend to zero, one has d E[χωt]
dt

= λσlωtPωt.
Therefore, the expected knowledge at date t in any sector ω is a differentiable function of

time; we thus obtain the law of accumulation of E [χωt]. By abuse of notation, we assimilate the
evolution of the random variable χωt to the evolution of its expected value E [χωt]. Formally,
we write χ̇ωt ≡

d E[χωt]
dt

= λσlωtPωt. This proves Lemma 1.
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5.2 Schumpeterian equilibrium: characterization and computation

This appendix provides the detailed analysis of the decentralized economy presented in Defini-
tion 1. We derive the time paths of set of prices and of quantities and fully characterize the set
of equilibria as functions of the public tools vector (ψ, ϕ).

In the final sector, the competitive firm maximizes its profit

πY
t = (LY

t )1−α

∫

Ωt

χωt(xωt)
αdω − wtL

Y
t −

∫

Ωt

(1 − ψ)qωtxωtdω.

The first-order conditions with respect to LY
t and xωt give respectively

wt = (1 − α)
Yt

LY
t

and qωt =
α(LY

t )(1−α)χωt(xωt)
α−1

1 − ψ
, ∀ω ∈ Ωt. (20)

Given the production function (6), in each intermediate good sector ω, ω ∈ Ωt, the incum-
bent monopoly maximizes its profit

πxω
t = qωtxωt − yωt = (qωt − χωt)xωt, (21)

where the demand for intermediate ω is given in (20). The first-order condition with respect to

xωt gives
α2(LY

t )(1−α)χωt(xωt)α−1

1−ψ
−χωt = 0, ∀ω ∈ Ωt. Hence, one gets the usual result of symmetry

in the use of intermediate goods:

xωt = xt =

(
α2

1 − ψ

) 1
1−α

LY
t , ∀ω ∈ Ωt. (22)

The final good production function (5) can be rewritten using (22) together with the definition
of the whole disposable knowledge in the economy (1); one gets

Yt =

(
α2

1 − ψ

) α
1−α

LY
t Kt. (23)

Log-differentiating (23) with respect to time gives

gYt = gLY
t

+ gKt . (24)

The final good resource constraint (7) can be rewritten using (22) together with (1) and (6);

one gets Yt = Ltct + [α2/(1 − ψ)]
1

1−α LY
t Kt. Dividing both sides by Yt and using (23), one gets

Ltct

Yt

= 1 −
α2

1 − ψ
(25)

Log-differentiating (25) gives gLt + gct − gYt = 0. Since gLt = n from Assumption 1, one gets

gYt = gct + n. (26)

38



The wage and the price of intermediate goods given in (20) can be rewritten using (23) and
(22), respectively:

wt = (1 − α)

(
α2

1 − ψ

) α
1−α

Kt and qωt =
χωt

α
, ∀ω ∈ Ωt. (27)

From (22) and from the marked-up price of intermediate good ω given in (27), one can rewrite
(21), the instantaneous monopoly profit on the sale of each intermediate good ω, as

πxω
t =

1 − α

α

(
α2

1 − ψ

) 1
1−α

LY
t χωt, ∀ω ∈ Ωt. (28)

Let us now consider any R&D activity ω, ω ∈ Ωt, and derive the innovators’ arbitrage condi-
tion. Given the governmental intervention on behalf of R&D activities, the incumbent innovator
having successfully innovated at date t receives, at any date τ > t, the net profit π̃xω

τ = (1+ϕ)πxω
τ

with probability e−
∫ τ

t λlωudu (i.e. provided that there is no innovation upgrading intermediate
good ω between t and τ). The sum of the present values of the incumbent’s expected net prof-
its on the sale of intermediate good ω, at date t, is therefore Π̃xω

t =
∫∞

t
π̃xω

τ e−
∫ τ

t (ru+λlωu)dudτ .
Differentiating this expression with respect to time gives the arbitrage condition in each R&D
activity ω:

rt + λlωt =
˙̃Πxω

t

Π̃xω
t

+
π̃xω

t

Π̃xω
t

, ∀ω ∈ Ωt. (29)

The free-entry condition (i.e. zero profit condition) in each R&D activity ω is wt = λΠ̃xω
t ,

where wt is the unit cost of labor, given in (27), and where λΠ̃xω
t is the expected revenue when

one unit of labor is invested in R&D.16 This gives

Π̃xω
t = Π̃x

t =
1 − α

λ

(
α2

1 − ψ

) α
1−α

Kt, ∀ω ∈ Ωt. (30)

Log-differentiating (30) with respect to time gives ˙̃Πxω
t /Π̃xω

t = gKt . Moreover, from (28) and
(30), one has

π̃xω
t

Π̃xω
t

=
(1 + ϕ)1−α

α

(
α2

1−ψ

) 1
1−α

LY
t χωt

1−α
λ

(
α2

1−ψ

) α
1−α

Kt

=
(1 + ϕ)λαLY

t χωt

(1 − ψ)Kt

, ∀ω ∈ Ωt.

Accordingly, the arbitrage condition (29) writes

rt + λlωt = gKt +
(1 + ϕ)λαLY

t χωt

(1 − ψ)Kt

, ∀ω ∈ Ωt. (31)

16Indeed, innovations in sector ω are assumed to occur with a Poisson arrival rate of λlωt: for one unit of
labor is invested in R&D activity ω, the probability to obtain one innovation at date t is thus λ. Moreover, its
value, taking into account the R&D public policy, is Π̃xω

t .
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The representative household maximizes intertemporal utility (3) subject to the standard
budget constraint ḃt = wt + rtbt − ct −nbt −Tt/Lt, where bt is the per capita financial asset and
Tt is a lump-sum tax charged by the government.

The Hamiltonian of the problem writes H = ln(ct)e
(n−ρ)t + μt

[
wt + rtbt − ct − nbt − Tt

Lt

]
,

where μt is the co-state variable associated with the household’s budget constraint. The first-
order conditions and the transversality condition are

∂H
∂ct

= 0 ⇔
1

ct

e(n−ρ)t = μt; (32)

∂H
∂bt

= −μ̇t ⇔ μt (rt − n) = −μ̇t ⇔
μ̇t

μt

= n − rt; (33)

and lim
t→∞

μtbt = 0. (34)

Log-differentiating (32) with respect to time gives −gct + n − ρ = μ̇
μt
; then, using (33), Hence,

one gets the usual Keynes-Ramsey condition:

rt = gct + ρ. (35)

Besides, at date t, in intermediate sector ω, there is one fixed intangible asset stemming from
the latest innovation (a patent); its value, Π̃xω

t , is given in (30). Accordingly, one has

bt =
1

Lt

∫

Ωt

Π̃xω
t dω =

Nt

Lt

Π̃x
t = γΠ̃x

t . (36)

As commonly done in the literature (see footnote 6), we make the standard symmetry
assumption, in which lωt = lt and χωt = χt, ∀ω ∈ Ωt. One gets the following results:

• The labor constraint (4) (using Nt = γLt from Assumption 1) becomes

Lt = LY
t +

∫

Ωt

lωt dω = LY
t + Ntlt = LY

t + γLtlt. (37)

• The whole disposable knowledge (1) becomes Kt = Ntχt. Besides, since one has Nt = γLt

and gLt = n (Assumption 1), one obtains

gKt = gχt + n. (38)

• In any sector ω, the pool of knowledge and the law of knowledge accumulation (Lemmas 1,
2 and 3) rewrite Pωt = Pt = (ps + E [Θt]) χt, ∀ω ∈ Ωt, and χ̇ωt = χ̇t = λσltPt, ∀ω ∈ Ωt,
respectively. Consequently, the growth rate of knowledge in any sector ω is

gχωt = gχt = λσ (ps + E [Θt]) lt , ∀ω ∈ Ωt. (39)

• The arbitrage condition in any R&D activity ω, ω ∈ Ωt, (31) becomes rt + λlt = gKt +
(1+ϕ)λαLY

t χt

(1−ψ)Ntχt
. Furthermore, using (38), (39) and Nt = γLt (Assumption 1), one gets

rt + λlt = λσ (ps + E [Θt]) lt + n +
(1 + ϕ)λαLY

t

(1 − ψ)γLt

. (40)
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The following system summarizes the equations that enable us to compute the equilibrium:





xωt = xt =
(

α2

1−ψ

) 1
1−α

LY
t , ∀ω ∈ Ωt (22)

Yt =
(

α2

1−ψ

) α
1−α

LY
t Kt (23)

gYt = gLY
t

+ gKt (24)

gYt = gct + n (26)

wt = (1 − α)
(

α2

1−ψ

) α
1−α

Kt and qωt = χωt

α
, ∀ω ∈ Ωt (27)

rt = gct + ρ (35)

Lt = LY
t + γLtlt (37)

gKt = gχt + n (38)

gχωt = gχt = λσ (ps + E [Θt]) lt , ∀ω ∈ Ωt (39)

rt + λlt = λσ (ps + E [Θt]) lt + n +
(1+ϕ)λαLY

t

(1−ψ)γLt
(40)

From 35) and (40), one gets

gct + ρ + λlt = λσ (ps + E [Θt]) lt + n +
(1 + ϕ)λαLY

t

(1 − ψ)γLt

. (41)

Using (24), (38) and (39), one has gYt = gLY
t

+gKt = gLY
t

+gχt +n = gLY
t

+λσ (ps + E [Θt]) lt+n.
Then, from (26), one obtains

gct = gLY
t

+ λσ (ps + E [Θt]) lt. (42)

Combining (41) and (42) gives gLY
t

+ ρ + λlt = n +
(1+ϕ)λαLY

t

(1−ψ)γLt
. Using (37), and rearranging the

terms, one gets

gLY
t
−

λ

γLt

[

1 +
1 + ϕ

1 − ψ
α

]

LY
t = n − ρ −

λ

γ
. (43)

In order to solve this differential equation in LY
t , we use a variable substitution: let Xt = 1/LY

t .
Log-differentiation with respect to time gives gXt = −gLY

t
. Substituting into (43) gives the

following first-order linear differential equation in Xt:

−gXt −
λ

γLt

[

1 +
1 + ϕ

1 − ψ
α

]
1

Xt

= n − ρ −
λ

γ
⇔ Ẋt −

(
λ

γ
+ ρ − n

)

Xt = −
λ

γ

[

1 +
1 + ϕ

1 − ψ
α

]

e−nt.

The solution of this Ricatti equation is

Xt = e(
λ
γ
+ρ−n)t



X0 −

λ
γ

(
1 + 1+ϕ

1−ψ
α
)

(
λ
γ

+ ρ − n
)
− (−n)



+

λ
γ

(
1 + 1+ϕ

1−ψ
α
)

(
λ
γ

+ ρ − n
)
− (−n)

e−nt

⇔ Xt = e(
λ
γ
+ρ−n)t

[

X0 −
λ

λ + γρ

(

1 +
1 + ϕ

1 − ψ
α

)]

+
λ

λ + γρ

(

1 +
1 + ϕ

1 − ψ
α

)

e−nt

⇔ Xt = e−nt

{

e(
λ
γ
+ρ)t

[

X0 −
λ

λ + γρ

(

1 +
1 + ϕ

1 − ψ
α

)]

+
λ

λ + γρ

(

1 +
1 + ϕ

1 − ψ
α

)}

.
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Accordingly, one gets

LY
t =

1

Xt

=
ent

e(
λ
γ
+ρ)t

[
1

LY
0
− λ

λ+γρ

(
1 + 1+ϕ

1−ψ
α
)]

+ λ
λ+γρ

(
1 + 1+ϕ

1−ψ
α
) .

From Assumption 1, one has Lt = ent (L0 has been normalized to one), thus one has

LY
t =

(λ + γρ) Lt

e(
λ
γ
+ρ)t

[
λ+γρ
LY

0
− λ

(
1 + 1+ϕ

1−ψ
α
)]

+ λ
(
1 + 1+ϕ

1−ψ
α
) . (44)

Now, using the transversality condition (34), let us show that it is necessarily the case that LY
t

immediately jumps to its steady-state level. Using (30), (32) and (36), one gets

μtbt =
1

ct

e(n−ρ)tγΠ̃x
t =

1

ct

e(n−ρ)tγ
1 − α

λ

(
α2

1 − ψ

) α
1−α

Kt;

and using (23) and (25), one gets

Ltct =

(

1 −
α2

1 − ψ

)

Yt =

(

1 −
α2

1 − ψ

)(
α2

1 − ψ

) α
1−α

LY
t Kt.

Thus, one obtains

μtbt =
e(n−ρ)tγ 1−α

λ

(
α2

1−ψ

) α
1−α

Kt

(
1 − α2

1−ψ

)(
α2

1−ψ

) α
1−α LY

t Kt

Lt

=
1−α

λ
e(n−ρ)tγLt(

1 − α2

1−ψ

)
LY

t

.

Then, using (44), one has

μtbt =
1−α

λ
e(n−ρ)tγLt(

1 − α2

1−ψ

) ∙
e(

λ
γ
+ρ)t

[
λ+γρ
LY

0
− λ

(
1 + 1+ϕ

1−ψ
α
)]

+ λ
(
1 + 1+ϕ

1−ψ
α
)

(λ + γρ) Lt

⇔ μtbt =
(1 − α)γ

λ
(
1 − α2

1−ψ

)
(λ + γρ)

(

e(
λ
γ
+n)t

[
λ + γρ

LY
0

− λ

(

1 +
1 + ϕ

1 − ψ
α

)]

+ e(n−ρ)tλ

(

1 +
1 + ϕ

1 − ψ
α

))

.

Since ρ > n, one has limt→∞ e(n−ρ)tλ
(
1 + 1+ϕ

1−ψ
α
)

= 0. Hence the transversality condition (34)

holds if and only if

lim
t→∞

e(
λ
γ
+n)t

[
λ + γρ

LY
0

− λ

(

1 +
1 + ϕ

1 − ψ
α

)]

= 0 ⇔
λ + γρ

LY
0

− λ

(

1 +
1 + ϕ

1 − ψ
α

)

= 0.

Consequently, (44) gives

LY
t =

(λ + γρ) Lt

λ
(
1 + 1+ϕ

1−ψ
α
) = LY

0 Lt, and thus gLY
t

= n. (45)
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We can now fully characterize the set of Schumpeterian equilibria described in Definition
1; that is the quantities and prices as functions of the public policy tools vector (ψ, ϕ). The
equilibrium labor partition is characterized by (37) and (45):

LY
t (ψ, ϕ) =

1 + ργ
λ

1 + 1+ϕ
1−ψ

α
Lt and lt (ψ, ϕ) =

1

γ
−

LY
t (ψ, ϕ)

γLt

=
1

γ
−

λ/γ + ρ

λ
(
1 + 1+ϕ

1−ψ
α
) . (46)

From (22) and (46), one gets the equilibrium quantity of intermediate good ω, xωt (ψ, ϕ) =

xt (ψ, ϕ), ∀ω ∈ Ωt. From (39) and (46), one obtains the growth rate of knowledge in each
intermediate sector ω at equilibrium, gχωt (ψ, ϕ) = gχt (ψ, ϕ) = λσ (ps + E [Θt]) l (ψ, ϕ) , ∀ω ∈
Ωt, and the equilibrium growth rate of the economy gct (ψ, ϕ) = gYt (ψ, ϕ) − n = gKt (ψ, ϕ) =

gχt (ψ, ϕ) + n ≡ gt (ψ, ϕ). The equilibrium prices are derived from (35) and (27). The interest

rate is rt (ψ, ϕ) = gt (ψ, ϕ) + ρ, the wage is wt (ψ, ϕ) = (1 − α)
(

α2

1−ψ

) α
1−α

Kt (ψ, ϕ) , and the

prices of intermediate goods are qωt (ψ, ϕ) = qt (ψ, ϕ) = Kt(ψ,ϕ)
αγLt

, ∀ω ∈ Ωt, where Kt (ψ, ϕ) =

K0e
∫ t
0 gs(ψ,ϕ)ds. Finally, one gets the following lemma.

Lemma 6. At each date t, the set of Schumpeterian equilibria à la Aghion & Howitt is char-
acterized as follows.
Quantities (levels and growth rates). The quantity of labor used in the R&D activity of
each sector ω is

lωt (ψ, ϕ) = l (ψ, ϕ) =
1

γ
−

λ/γ + ρ

λ
(
1 + 1+ϕ

1−ψ
α
) , ∀ω ∈ Ωt;

The quantity of labor and the quantity of each intermediate good ω used in the final good
production are

LY
t (ψ, ϕ) = Lt − Ntl (ψ, ϕ) = [1 − γl (ψ, ϕ)] Lt

and xωt (ψ, ϕ) = xt (ψ, ϕ) =

(
α2

1 − ψ

) 1
1−α

LY
t (ψ, ϕ) , ∀ω ∈ Ωt.

The growth rate of knowledge in each sector ω is

gχωt (ψ, ϕ) = gχt (ψ, ϕ) = λσ (ps + E [Θt]) l (ψ, ϕ) , ∀ω ∈ Ωt, where E [Θt] = pmθ (Lt) + pGγLt.

The growth rate of the whole knowledge in the economy is

gKt (ψ, ϕ) = gχt (ψ, ϕ) + n.

The growth rate of the total output is

gYt (ψ, ϕ) = gKt (ψ, ϕ) + n.

The growth rate of per capita consumption is

gct (ψ, ϕ) = gKt (ψ, ϕ) = gχt (ψ, ϕ) + n.
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Prices. The equilibrium interest rate, wage and prices of intermediate goods (price of final
good is normalized to one) are respectively

rt (ψ, ϕ) = gt (ψ, ϕ) + ρ, wt (ψ, ϕ) = (1 − α)

(
α2

1 − ψ

) α
1−α

Kt (ψ, ϕ) ,

qωt (ψ, ϕ) = qt (ψ, ϕ) =
Kt (ψ, ϕ)

αγLt

, ∀ω ∈ Ωt, where Kt (ψ, ϕ) = K0e
∫ t
0 gs(ψ,ϕ)ds.

5.3 Marginal productivity of labor in R&D - Proof of Lemma 5

In each sector, the marginal productivity of labor in R&D activity As shown in Lemma 4, at
equilibrium, the law of knowledge accumulation - that is the innovations production function -
is χ̇t = λσlPt = λσl (ps + E [Θt]) χt. Besides, denoting by χ0 the initial stock of knowledge in
any sector, one has χt = χ0e

∫ t
0 gχudu = χ0e

λσl
∫ t
0 (ps+E[Θu])du. Then, at equilibrium, the marginal

productivity of labor in R&D activity is

∂χ̇t

∂l
= λσ (ps + E [Θt])

(

χt + l
∂χt

∂l

)

,

with
∂χt

∂l
=

(

λσ

∫ t

0

(ps + E [Θu]) du

)

χ0e
λσl

∫ t
0 (ps+E[Θu])du =

(

λσ

∫ t

0

(ps + E [Θu]) du

)

χt.

Therefore, since Pt = (ps + E [Θt]) χt, one obtains

∂χ̇t

∂l
= λσ (ps + E [Θt])

(

χt + l

(

λσ

∫ t

0

(ps + E [Θu]) du

)

χt

)

= λσ

(

1 + lλσ

∫ t

0

(ps + E [Θu]) du

)

(ps + E [Θt]) χt = λσ

(

1 + lλσ

∫ t

0

(ps + E [Θu]) du

)

Pt.�
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