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ABSTRACT

Invariant Coordinate Selection (ICS) is a multivariate technique that relies on the simultaneous
diagonalization of two scatter matrices. It serves various purposes, including its use as a dimension
reduction tool prior to clustering or outlier detection. Unlike methods such as Principal Component
Analysis, ICS has a theoretical foundation that explains why and when the identified subspace should
contain relevant information. These general results have been examined in detail primarily for specific
scatter combinations within a two-cluster framework. In this study, we expand these investigations
to include more clusters and scatter combinations. The case of three clusters in particular is studied
at length. Based on these expanded theoretical insights and supported by numerical studies, we
conclude that ICS is indeed suitable for recovering Fisher’s discriminant subspace under very general
settings and cases of failure seem rare.

Keywords Dimension reduction · Simultaneous diagonalization · Mixture of elliptical distributions · Scatter matrix ·
Subspace estimation

1 Introduction

In many fields, the number of variables is increasing while it is often assumed that the actual information of interest
remains contained within a low-dimensional subspace. This is the fundamental idea behind dimension reduction (DR):
that it is possible to estimate this lower-dimensional space without losing crucial information, and that analyzing data
within this subspace simplifies the process. Clustering and outlier detection are two unsupervised multivariate methods
that can benefit significantly from prior dimension reduction. However, the justifications for why a specific DR method
is suitable to recover an effective subspace for clustering and outlier detection are often heuristic in nature. Typical
dimension reduction methods include principal component analysis (PCA, Hotelling [1933], Joliffe [2002]), projection
pursuit (PP, Huber [1985], Jones and Sibson [1987], Fischer et al. [2021]), and invariant coordinate selection (ICS,
Tyler et al. [2009], Caussinus and Ruiz [1990]).
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Recent research has sought to provide justifications for using these methods as preprocessing steps, often considering
specific settings. The most popular framework involves the Gaussian mixture model, with the benchmark being whether
the DR method can estimate Fisher’s discriminant subspace (FDS) Fisher [1936] in an unsupervised, or blind, manner.
Outlier detection approaches are incorporated into this framework when some clusters are rare.

In the context of PCA, also known as tandem PCA Arabie and Hubert [1994] when it is used in conjunction with
clustering, it is well-documented that FDS is seldom obtained Radojičić et al. [2021]. PP is considered here when
skewness or kurtosis are used as PP indices, and conditions under which these estimate the FDS are detailed in Radojičić
et al. [2021] in the two-cluster case. ICS is the most recent DR method among those mentioned. ICS simultaneously
diagonalizes two scatter matrices and has been considered for outlier detection in Archimbaud et al. [2018] and as
tandem clustering with ICS in Alfons et al. [2024]. Tyler et al. [2009] actually provide very general results for ICS
with respect to FDS estimation. However, detailed results exist only for very specific scatter combinations in very
specific settings. The goal of this paper is to extend these results to broader settings. The structure of the paper is as
follows. In Section 2 we recall ICS in more detail, particularly focusing on its application in estimating FDS. Section 3
examines the properties of ICS for DR when the clusters in the mixtures exhibit no variability. In this context, and
when the dimension of the FDS is equal to the number of groups minus one, we prove that for any scatter combination,
the ICS eigenvalues do not depend on the cluster locations but only on the cluster proportions. Section 4 then gives
closer attention to this model for a specific scatter combination and studies the behavior of the ICS eigenvalues when
the cluster proportions vary. Section 5 explores the same scatter combination within a certain Gaussian mixture model
consisting of three clusters. Section 6 validates the theoretical results and investigates the behavior of previously
unexamined scatter combinations in such settings through a simulation study. The paper concludes with Section 7.
Calculations and proofs are provided in the appendix together with some details on the parameters for our experiments.

2 What is already known about ICS in relation with the Fisher discriminant subspace

2.1 General principle of ICS

Following the notations in Tyler et al. [2009], let Y be a random vector of dimension p, with distribution function FY .
Let Pp be the set of all positive definite symmetric matrices of order p. A scatter matrix of Y , denoted by V (FY ),
is a function of the distribution of Y that is uniquely defined at FY , is such that V (FY ) belongs to Pp, and is affine
equivariant, i.e. V (FAY+b) = AV (FY )A

⊤ for all non-singular matrices A of dimension p× p and for all b ∈ Rp, and
where ⊤ denotes the transpose operation. In what follows, we will drop the dependence on FY and simply denote by V
the scatter V (FY ) when the context is obvious.

If the data distribution is elliptical, then all affine equivariant scatter matrices are proportional Nordhausen and Tyler
[2015]. This property is not true in general, outside the context of elliptical distributions, and ICS exploits the
difference between two scatter matrices to detect non-elliptical structures such as clusters [Alfons et al., 2024] or
outliers [Archimbaud et al., 2018]. To perform this comparison, ICS relies on the simultaneous diagonalization of two
scatter matrices V1 and V2 :

H⊤V1H = D1 and H⊤V2H = D2,

where D1 and D2 are diagonal matrices such that D−1
1 D2 = diag(ρ1, . . . , ρp), ρ1 ≥ . . . ≥ ρp being the eigenvalues of

V−1
1 V2 sorted in descending order, and H = (h1, . . . , hp) is a p× p non singular matrix containing the corresponding

eigenvectors. Usually H is scaled such that D1 = Ip, where Ip denotes the identity matrix of dimension p. The term
“generalized eigendecomposition" (and correspondingly, “generalized eigenvalue" and “generalized eigenvector") is
sometimes used in this context, but for simplicity, we avoid this terminology in the present paper.

The Z = H⊤Y transformation of Y leads to new variables, that are invariant under affine transformation in the sense of
Theorems 1 and 2 in Tyler et al. [2009], and are called invariant coordinates or components. Apart from being invariant
by affine transformations, ICS has many applications and useful properties, as investigated for example in Nordhausen
et al. [2008], Peña et al. [2010], Nordhausen et al. [2011], Loperfido [2013], Alashwali and Kent [2016], Loperfido
[2021], Nordhausen and Ruiz-Gazen [2022], Archimbaud et al. [2023a]. Of particular interest to us, is the following
property for finite mixture models of the form:

fY (y) = det(Γ)−1/2
k∑

j=1

αjgj((y − µj)
⊤Γ−1(y − µj)), (1)

where αj > 0 for j ∈ {1, . . . , k}, with
∑k

j=1 αj = 1, are the mixture proportions, the µj are distinct location vectors
(also called group centers or group means), Γ ∈ Pp is the within-group scatter matrix parameter, and g1, . . . , gk are
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non-negative functions. Thus, each of the k components of the mixture is elliptical and the standard Gaussian mixture
model is a special case. For such a model, Theorem 4 from Tyler et al. [2009] is fundamental and justifies the use
of ICS as a dimension reduction method when the objective is clustering or anomaly detection. In short, this result
proves that for model (1) and under some conditions, the ICS components associated with the largest and/or smallest
eigenvalues span the FDS which is the one obtained by using the linear discriminant analysis in a supervized context.
In the next subsection, we recall this theorem and also discuss some of its limitations.

2.2 ICS and the Fisher discriminant subspace

In a supervized context, when the distribution of Y is a mixture of distributions, Fisher [1936] suggested to look for the
linear function of the p variables in Y which maximize the ratio of the between-group variability to the within-group
variability. This function corresponds to the projection of Y onto the eigenvector associated with the largest eigenvalue
of the simultaneous decomposition of the between and within-group covariance matrices. In the case of a mixture of
two Gaussian groups with means µ1 and µ2 and equal within-group covariance matrices Γ, this eigenvector is equal to
Γ−1(µ1 − µ2) and spans the FDS with dimension q = k − 1 = 1. For a mixture of k groups such as model (1), the
FDS is spanned by the vectors Γ−1(µj − µk) for j ∈ {1, . . . , k − 1}.

Let us denote by q the dimension of the vector space associated with the affine space spanned by the group centers
µj , j ∈ {1, . . . , k}. According to Theorem 4 from Tyler et al. [2009], the simultaneous diagonalization of two scatter
matrices results in at least one eigenvalue, denoted by ρ∗, with a multiplicity greater than or equal to p − q. This
eigenvalue is associated with an eigenspace of dimension at least p− q which is the direct sum of the complementary
space of the FDS (with dimension p − q) and, if the multiplicity of ρ∗ is strictly larger than p − q, a space that is
included in the FDS. If no eigenvalue has multiplicity greater than p− q, the subspace spanned by the eigenvectors
associated with the other eigenvalues than ρ∗ (larger or smaller) is the FDS.

Theorem 4 in Tyler et al. [2009] is proven by using the equivariance property of the scatter matrices V1 and V2, and
transforming the random vector Y , with distribution given by (1), in the following way. Let M = (µ1, . . . , µk) be the
matrix of rank q which contains the location vectors of Y , and let M0 = Γ− 1

2 (M −µk1
⊤
k ), where 1k is a k-dimensional

vector of ones. The QR decomposition of M0 is:

M0 = PT = P

(
Tu 0
0 0

)
,

where P is an orthogonal matrix, T = (t1, . . . , tk) with tj a p-dimensional vector for j ∈ {1, . . . , k}, and Tu is an
upper triangular matrix of dimension k−1 ≥ 1 such that the last k−1−q ≥ 0 rows are zero. Note that the dimension of
Tu in Tyler et al. [2009] differs slightly from ours, but this does not impact the remainder of the proof. The distribution
of the transformed random vector X = P⊤Γ− 1

2 (Y − µk1
⊤
k ) is a mixture of spherical distributions with density:

fX(x) =

k∑
j=1

αjgj((x− tj)
⊤(x− tj)), (2)

where for j ∈ {1, . . . , k}, αj > 0,
∑k

j=1 αj = 1, the tj are distinct, tk is the zero vector, and g1, . . . , gk are non-
negative functions. By decomposing the scatter matrices V1(FX) and V2(FX) in four blocks where the left top block
has dimension q × q, and using the affine equivariance of the scatter matrices, Tyler et al. [2009] are able to write:

V1(FX)−1V2(FX) =

(
Aq 0
0 γIp−q

)
,

for some γ > 0. This result implies that V1(FX)−1V2(FX) has an eigenvalue equal to γ with multiplicity at least
equal to p − q. The associated eigenspace can be written as the direct sum of the complementary space of the
FDS (with dimension p − q) and, if the multiplicity of γ is strictly larger than p − q, a space that is included in
the FDS. The result is then derived for Y by noting that the eigenvalues of V1(FY )

−1V2(FY ) are proportional to
the ones of V1(FX)−1V2(FX). Thus there exists an eigenvalue ρ∗ of V1(FY )

−1V2(FY ) with multiplicity at least
p − q. Moreover, if the multiplicity of ρ∗ is p − q, it is proven that the eigenvectors of V1(FY )

−1V2(FY ) which
are not associated with ρ∗ span the same subspace that is spanned by Γ−1(M−µk1

⊤
k ) and which corresponds to the FDS.

This result holds for model (1) and for any pair of scatter matrices, making it very general. The problem, however, is
that in order to perform dimension reduction with ICS, the eigenvalues associated with the FDS should be distinct from
ρ∗ meaning that the multiplicity of ρ∗ should not be greater than p− q. Tyler et al. [2009] mention that this condition
generally holds except for special cases, and that these special cases depend on the scatter pair and on the model
parameters. In the following subsection, we recall some special cases for which the behavior of ICS is understood more
precisely.
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2.3 Mixture of two Gaussian groups with different centers and other special cases

If k = 2, model (1) is a mixture of two elliptical distributions and q = 1. Thus the multiplicity of ρ∗ greater than p− 1
corresponds to a multiplicity equal to p and V−1

1 V2 is proportional to the identity. In this case, it is not possible to
distinguish the Fisher discriminant direction from the others. In order to better understand the conditions under which
this situation occurs, we need to specify the scatter pair and the elliptical distributions in the mixture (1). The case of a
mixture of two Gaussian distributions has been further explored in Archimbaud et al. [2018] in the context of anomaly
detection, where the authors recommend the use of the covariance matrix, denoted COV, for V1, and the matrix based
on fourth-order moments, denoted COV4, for V2:

COV = E[(Y − E(Y ))(Y − E(Y ))⊤],

COV4 =
1

p+ 2
E[d2(Y ) (Y − E(Y ))(Y − E(Y ))⊤],

where d2(Y ) is the square of the Mahalanobis distance:

d2(Y ) = (Y − E(Y ))⊤COV−1(Y − E(Y )).

For the scatter pair combination COV − COV4, also known as FOBI Cardoso [1989], Nordhausen and Virta [2019],
γ = 1 and the case where all eigenvalues of ICS are equal to one occurs when one of the groups has a proportion
exactly equal to (3 −

√
3)/6, i.e., approximately 21% [Tyler et al., 2009]. If one group has a proportion below this

threshold, there is one eigenvalue that is strictly greater than the others, which are all equal to one. Conversely, if both
groups have proportions above this threshold, there will be an eigenvalue strictly lower than the others, which are all
equal to one. For outlier detection, it makes sense to assume that the proportion of outliers is less than 21% and thus,
selecting the first invariant component is sufficient as proposed in Archimbaud et al. [2018]. However, limiting the
theoretical study to two groups only is restrictive and we aim at finding more general results.

In the appendix of Chapter 2 in Archimbaud [2018], the eigenvalues of COV−1COV4 are computed for a mixture
of three Gaussian distributions: one group with zero mean, and two groups with opposite non-zero mean vectors.
The two non-zero group means have the same proportion in the mixture. Due to the symmetry of the mixture,
the dimension of the FDS restricts to q = 1. Corollary 2 in Archimbaud [2018] addresses the case where all
three groups have a covariance matrix equal to the identity. It states that the largest (or smallest) eigenvalue
of ICS corresponds to the FDS if and only if the zero-mean group has a proportion greater than (or less than)
1/3. In the special case where all groups have equal proportions (1/3 each), COV−1COV4 becomes the identity
matrix, and consequently, ICS fails to detect the group structure. While this three-group case extends beyond
the two-group case, the assumption of symmetric groups is highly restrictive. Our goal is to develop more general results.

Before going further into the behavior of ICS for mixture models (2) with more than two groups, we point out that ICS
can also make it possible to find the FDS in mixture models other than (2). The so-called “barrow wheel” distribution
introduced in Hampel et al. [2011] [see also the discussion by Stahel and Mächler in Tyler et al., 2009] is the following
two groups mixture distribution: (

1− 1

p

)
N
(
0p, diag(σ2

11, 1, . . . , 1
)
+

1

p
G,

where p is the dimension and G is such that if Y = (Y1, Y2, . . . , Yp)
⊤ is distributed according to G, Y 2

1 follows a
chi-square distribution with ν degrees of freedom, and is independent of Y2, . . . , Yp, while (Y2, . . . , Yp)

⊤ follows a
p−1 dimensional Gaussian distribution with zero mean and covariance matrix equal to σ2

22Ip−1. As detailed on page 43
of Tyler et al. [2009], the result of Theorem 4 still applies to the barrow wheel distribution, for any scatter pair matrices
(as soon as they are not proportional). Moreover, Proposition 4 in the appendix of Chapter 2 of Archimbaud [2018]
gives the eigenvalues of COV−1COV4 as functions of the dimension p, the group proportions, and the parameters ν,
σ2
11 and σ2

22.

2.4 Going further with the scatter pair COV − COV4 and the Gaussian mixture

Considering the scatter pair COV − COV4, it is possible to make calculations for model (2) with Gaussian densities.
The COV and COV4 matrices can be expressed as follows (see Appendix A.1 for details):

COV =

[
β 0
0 Ip−q

]
, COV−1 =

[
B 0
0 Ip−q

]
, COV4 =

[
Ψ 0
0 Ip−q

]
,
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where β = (βms), Ψ = (ψms) and B = (bms) are q × q matrices, and the product of the two scatter matrices is then:

COV−1COV4 =

[
BΨ 0
0 Ip−q

]
. (3)

These computations illustrate Theorem 4 from Tyler et al. [2009] since we get a block diagonal matrix for COV−1COV4

with the identity of dimension p− q as the lower diagonal block, meaning that COV−1COV4 has an eigenvalue equal
to one with multiplicity at least p− q and the associated eigenspace is in direct sum with the FDS which is the space
spanned by the columns of T (the group centers matrix). We go further in Appendix A.1 and derive the terms of matrix
Ψ:

ψms =
1

p+ 2

[
q∑

i=1

q∑
j=1

bijE[xc
mx

c
sx

c
i x

c
j ] + (p− q)E[xc

mx
c
s ]

]
, (4)

for m, s ∈ {1, . . . , q}, with (xc
1 , . . . , x

c
p)

⊤ = X − E(X). The expectations in ψms and the expressions of βms are
also provided in Appendix A.1. However, when using formula (3) and (4) to compute COV−1COV4, we do not have
easy expressions for COV−1 and we propose to compute COV−1COV4 and its eigenvalues numerically for particular
mixture models (2).

We set the value of p to 6 and the four panels of Figure 1 correspond to different values of k and q. On each panel,
we make the group proportions vary on the x-axis. We consider 20 different configurations for the group means (see
Table 1 and the details in Appendix B), and draw boxplots of the eigenvalues of COV−1COV4 on Figure 1. On most
panels, there are p− q eigenvalues equal to one, which is consistent with the block Ip−q in expression 3. However, the
eigenvalues of the block BΨ are more difficult to analyze, and vary with the number of groups k, the group centers
and the dimension q of the FDS. For the two-group case, we observe the following known results. When no group
proportion is less than 21%, the last eigenvalue is the only eigenvalue distinct from and smaller than one. When one
group has a proportion of approximately 21%, all eigenvalues are equal or nearly equal to one. In the case of a group
with a proportion of less than 21%, only the first eigenvalue differs and is larger than one.

The number of eigenvalues larger (resp. smaller) than one seems to depend on the group proportions with some
variability of the eigenvalues depending on the group means. In all panels, when the groups are balanced and have
proportions equal to 1/k, we observe q eigenvalues less than one. When the group proportions are unbalanced, implying
that some groups have proportions of less than 1/k, we observe that some eigenvalues can be larger than one. For the
two-group case, we know that the value 21% is a threshold for the group proportions. A change in one of the two group
proportions from a value larger than 21% to a value lower than 21% leads to an ICS eigenvalue shifting from smaller
than one to larger than one. For more than two groups, one question arises. Is there a threshold value, depending on
the number of groups, group centers and group proportions, such that, when groups are unbalanced, changing a group
proportion from a value larger than the threshold to a value lower than the threshold leads to a change of an eigenvalue
smaller than one to an eigenvalue larger than one? The question is not easy to answer.

Indeed, the experiment illustrates that the eigenvalues of ICS exhibit a complicated dependence on the mixture
parameters, requiring a simplified framework to discover interesting results. Theorem 4 in Tyler et al. [2009] ensures
that for the elliptical mixture (1), at least p− q eigenvalues of the simultaneous diagonalization of two affine equivariant
scatter matrices are equal and are not associated with FDS. With this result established, we now examine the remaining
eigenvalues. To simplify the analysis of their behavior, we eliminate the dimensions not associated with FDS, meaning
that we focus on the case where p equals q. Using a dimension reduction method is not interesting in practice if p = q
but the objective here is only to simplify the calculations. Even in this context, it remains difficult to understand the
behavior of the ICS eigenvalues associated with the FDS. We therefore further restrict our study to the case where there
is no within-group variability. This means the covariance matrix equals the between-group covariance matrix, and the
distribution of Y is simply a mixture of k Dirac distributions in p dimensions. Finally, in the next two sections, we also
focus on the case where q = k − 1, meaning that the group centers q × k matrix M is of maximum rank q = k − 1. As
explained in the following section, this particular case with p = q = k − 1 and no within-group variability yields a
remarkable result: the ICS eigenvalues depend solely on the proportions of the components of the mixture, and not on
the group centers. This property no longer holds when q is less than k − 1. The latter case is more complex and will be
examined only for k = 3 and q = 1 in Section 5.

3 Study of V−1
1 V2 eigenvalues when p = q with varying group centers, varying group

proportions and no within-group variability

Let us consider a mixture of Dirac distributions in p = q dimensions: Y ∼
∑k

j=1 αjδµj
with distinct group centers µj ,

and proportions αj > 0 such that
∑k

j=1 αj = 1, for j ∈ {1, . . . , k}. Following Tyler et al. [2009], given the affine

5
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Fig. 1: Boxplots of the eigenvalues of COV−1COV4, where the group centers vary across 20 different configurations
(see Appendix B for details), with p = 6, and 12 different group proportions scenarios (αj , j ∈ {1, . . . , k}) on the
x-axis. The values of k and q vary across the panels.

invariance property of ICS, we can simplify this model and consider the following mixture model:

X ∼
k∑

j=1

αjδtj , (5)

with tk being the q-dimensional zero vector, and with distinct group centers tj for j ∈ {1, . . . , k}. This model
corresponds in some sense to model (2) with p = q and after removing the within-group variability. This is an extreme
situation but it will give us indications on the behavior of the eigenvalues of ICS when the noise (measured by the
within-group covariance matrix) is “small” compared to the signal (measured by the between-group covariance matrix).
Even if the Dirac measures do not have probability density functions, it is possible to compute some scatter matrices
such as COV and COV4, and simultaneously diagonalize them. Note however that since the between-group covariance
is equal to the total covariance matrix for model (5), linear discriminant analysis consists in diagonalizing the identity
matrix which is of no interest.

3.1 General theoretical result for q = k − 1

For model (5) and under the assumption that the group centers matrix is of full rank q = k − 1, we can derive the
following proposition that states that the eigenvalues of ICS do not depend on the group centers.
Proposition 1. For the mixture model (5) with full rank group centers matrix, and for any pair of affine equivariant
scatter matrices V1(FX)−V2(FX) that exist at FX , the eigenvalues of ICS, i.e. of V1(FX)−1V2(FX), do not depend
on the group centers matrix but only on the proportions αj , j ∈ {1, . . . , k} of the mixture components.

Proof. Let us consider two mixtures of the form (5) with the same component proportions αj for j ∈ {1, . . . , k}, but
with different (k − 1)× k full rank group center matrices T = (t1, . . . , tk) and T̃ = (t̃1, . . . , t̃k) respectively, where
tk and t̃k are zero vectors. Let Tk−1 (resp. T̃k−1) be the (k − 1) × (k − 1) matrix such that T = (Tk−1, 0) (resp.
T̃ = (T̃k−1, 0)). The matrices Tk−1 and T̃k−1 are square matrices with rank k− 1 and are thus invertible. We can write
T̃k−1 = ATk−1 where A = T̃k−1T

−1
k−1 is a (k − 1)× (k − 1) non-singular matrix and we also have that T̃ = AT . Let

X be a (k − 1)-dimensional random vector following the mixture (5) with group centers matrix T . The random vector
Y = AX follows the mixture (5) with the same proportions αi, i ∈ {1, . . . , k} and the group centers matrix T̃ . Using the
affine equivariance property of the scatter matrices we have that V1(FY )

−1V2(FY ) = (A⊤)−1V1(FX)−1V2(FX)A⊤

and has the same eigenvalues as V1(FX)−1V2(FX).

This result is a kind of generalization of the result for the two-group case detailed in Subsection 2.3. For two groups
with distinct group centers, we have q = 1 and thus the assumption q = k − 1 always holds. The result in Subsection

6
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2.3 however differs from Proposition 1 in several aspects. The result for the two-group case focuses on a Gaussian
mixture and accommodates some within-group variability but applies only to the COV − COV4 scatter pair. In the
next subsection, we investigate numerically the ICS eigenvalues for COV− COV4 for model (5) when p = q = k − 1.

3.2 Numerical results for COV − COV4

For model (5) with k = 2, we have p = q = 1 and it is possible to derive the exact expression of COV−1COV4,
which is a positive number. More precisely, we get after some simple computation, COV = α1α2(t1 − t2)

2 and
COV4 = (α3

1 + α3
2)(t1 − t2)

2/3 so that COV−1COV4 = (α3
1 + α3

2)/(3α1α2) does not depend on t1 and t2. We then
recover a result similar to the one at the beginning of Subsection 2.3 for COV − COV4 and a mixture of two Gaussian
distributions: the eigenvalue associated with the FDS is equal to one (which is the value of the other eigenvalues when
p > q) if and only if one of the two-group proportion is equal to (3 −

√
3)/6. More specifically, using the fact that

α2 = 1− α1 and fixing α1 ≤ α2, COV−1COV4 is equal to one (respectively larger or smaller than one) if and only if
α1 = (3−

√
3)/6 (respectively α1 smaller or larger than (3−

√
3)/6).

When k > 2, the eigenvalues of COV−1COV4 cannot be easily derived explicitly and numerical computations are
necessary. By using the expressions derived in Appendix A.2, alongside numerical computations for the inverse of
COV, the eigenvalues of COV−1COV4 can be calculated. These calculations are performed for 20 different group
centers and 18 different scenarios of group proportions (see Appendices A.2 and B for details). Boxplots in Figure 2
display the outcomes when p = q = k − 1, for k = 2, 3, 5 and 10 groups (as in Figure 1). The boxplots consist of a
single line for each scenario, indicating that varying the group means does not impact the eigenvalues when q = k − 1.
However, the values of the eigenvalues differ from one scenario to another. Therefore, it can be concluded that the
group proportions do have an impact on the eigenvalues. A more detailed examination of this impact will be presented
in the next section. When q < k − 1, the results are different, as illustrated in Figure 3 for k = 3 and q = 1, k = 5 and
q = 1, k = 3 and q = 2, and k = 3 and q = 3 (see also Figure 10 in Appendix B with k = 10 and q = 1, 3, 5, 7). For
each scenario, the eigenvalues exhibit quite large variability across the different group centers. This variability is such
that boxplots cross red horizontal dotted line corresponding to the value one. Unlike the case where q = k − 1, we
cannot draw any conclusions about the conditions which cause the eigenvalues to be larger or smaller than one. The
influence of group proportions on eigenvalues persists, but the influence of the group centers is also crucial.

Fig. 2: Boxplots of the eigenvalues of COV−1COV4 for p = q = k − 1 and with no within-group variability, when
the group centers vary across 20 different configurations (see Appendix B for details). The values of k vary across the
panels and the x-axis of each panel corresponds to 18 group proportions scenarios (αj , j ∈ {1, . . . , k}).
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Fig. 3: Boxplots of the eigenvalues of COV−1COV4 for p = q < k− 1 and with no within-group variability, when the
group centers vary across 20 different configurations (see Appendix B for details). The values of k and q vary across
the panels and the x-axis of each panel corresponds to 18 group proportions scenarios (αj , j ∈ {1, . . . , k}).

4 Study of COV − COV4 eigenvalues for q = k − 1 with fixed group centers, varying group
proportions, and no within-group variability.

As stated in Section 3, in the context of a mixture of Dirac distributions with q = k − 1, only the group proportions
influence the eigenvalues of COV−1COV4. In this section, the group means are therefore fixed to the first row of
the group centers of Table 1 of Appendix B. The relationship between the group proportions and the eigenvalues
is further investigated in the same context as in the previous subsection. Theoretical calculations do not permit to
measure precisely the impact of group proportions on the eigenvalues of COV−1COV4. Therefore, we vary the group
proportions on a grid and calculate numerically the corresponding eigenvalues to better understand their behavior. The
three-group case is described in Subsection 4.1, while Subsection 4.2 generalises to k groups.

4.1 The case of three groups

One of the most advantageous aspects of studying three groups is the ability to represent the proportions of each group
in a ternary diagram, as in Figure 4. This diagram [see Pawlowsky-Glahn et al., 2015] displays the values of three
positive variables that sum up to 100%, and can be applied for the three-group proportions. Each point on the ternary
diagram represents a scenario of group proportions, and the color of the point is determined by the eigenvalues obtained
for that scenario. As k = 3, we have q = 2 and we focus on the case p = 2 in order to avoid irrelevant dimensions
associated with eigenvalues equal to one. COV−1COV4 has thus two eigenvalues ρ1 ≥ ρ2 and two ternary diagrams
are plotted: Figure 4a for ρ1, and Figure 4b for ρ2.

Figure 4a illustrates that the values of ρ1 are less than one in the center of the plot, indicating that when none of the
three groups has a proportion smaller than roughly 18%, ρ1 is less than one. Around this region, there is a white area
that corresponds (given the continuity of the eigenvalues as functions of the group proportions) to ρ1 almost equal or
equal to one. ρ1 = 1 is thus indistinguishable from the eigenvalues associated with the p− q dimensions that do not
span the FDS. It occurs when one group proportion is roughly 18%. The area beyond this white zone in the direction of
the vertices is red, which indicates that the value of ρ1 is greater than one when a group proportion is smaller than 18%.
Looking at the areas around the vertices on Figure 4b demonstrates that the value of ρ2 is greater than one for scenarios
where two proportions are smaller than roughly 18%. A white area is also present around each of these regions, which
corresponds to values of ρ2 almost equal or equal to one. It occurs once again when one group has a proportion of
roughly 18% and another group has a proportion smaller than or equal to 18%. The rest of the plot is blue, implying
ρ2 is smaller than one. A comparison of Figures 4a and 4b indicates that the white regions do not seem to intersect,
thereby suggesting that the two eigenvalues are not equal to one simultaneously. In the two-group case, at the threshold
value of 21%, all eigenvalues are equal to one. In the three-group case with q = k − 1, our conjecture is that there is at
least one eigenvalue that differs from one for any possible group proportion scenario.
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(a) ρ1 (b) ρ2

Fig. 4: Ternary diagram of the group proportions (α1, α2, α3) color-coded by the values of ρ1 (a) and ρ2 (b) when
k = 3 and with no within-group variability. The color gradient indicates the departure of the eigenvalues from one
(white when equal, blue when smaller and red when larger). Group means are fixed to t1 = (200, 0), t2 = (400, 100),
t3 = (0, 0) but have no impact on the results. See Appendix C.1 for details.

The eigenvalues representation from Figures 4a and 4b are interesting since the greater the deviation from one, the easier
it will be to detect the directions that span the FDS when in practice we will have p > k. To facilitate the comparison
between the behavior of the two eigenvalues, both are plotted on the same ternary diagram on Figure 5. In the event that
two groups exhibit proportions roughly smaller than 18%, both eigenvalues are greater than one, as may be observed in
the red area of Figure 5. When a single group proportion is roughly smaller than 18%, the first eigenvalue is greater
than one and the second is less than one. This occurs in the purple region in Figure 5. Finally, when all groups are in
proportion roughly larger than 18%, in the blue area of Figure 5, both eigenvalues are less than one. As illustrated in
Figures 4a and 4b, each boundary between the colored zones should display scenarios for which a single eigenvalue
differs from one. However, the analysis has a numerical constraint: the 0.1% step size for the discretization of the
group proportions while we use the exact value of one as the reference eigenvalue. A consequence of this experiment
limitation is that only three scenarios exhibit an eigenvalue precisely equal to one. They correspond to a proportion of
60% for one group and 20% for the other two groups. These points are not represented in Figure 5.

The findings for k = 3 indicate that there is a threshold value (around 18%) such that when a group proportion goes
from a value above this threshold to a value below, an eigenvalue of COV−1COV4 goes from a value less than one to a
value greater than one. For two groups, this threshold is known and is approximately 21%. From Figure 5, establishing
the precise threshold for three groups is not easy, but it is clear that the threshold is less than 21% and approximately
18%. Additionally, the rounded boundaries between the zones suggest that this threshold may slightly vary with the
other group proportions. The goal now is to increase the number of groups beyond three, and to study whether there
also exists a threshold value for the group proportions that would induce the same impact on the behavior of the
ICS eigenvalues with COV − COV4. Subsection 4.2 also proposes to numerically approximate the values of these
thresholds as a function of the number of groups k.

4.2 The general case of k groups

The thresholds described previously are computed in this section for three setups of group proportions and for values
of k between 2 and 10. Note that for a given k, the maximum proportion of a group is larger than 1/k, while the
minimum proportion is smaller than 1/k. The balanced case corresponds to proportions all equal to 1/k. In Setup 1,
we consider scenarios of the mixture proportions such that the first group proportion ranges from 0.001 to 1/k, the
intermediate group proportions are set to 1/k, and the last group proportion is adjusted to maintain the total sum to one.
The eigenvalues of COV−1COV4 are calculated for each scenario. The threshold is defined as the first value of the
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Fig. 5: Ternary diagram of the group proportions (α1, α2, α3) color-coded by the eigenvalues of COV−1COV4 for
k = 3 and p = q = 2 (blue when both eigenvalues are smaller than one, purple when one eigenvalue is larger and the
other is smaller than one, and red when both eigenvalues are larger than one). Group centers are fixed to t1 = (200, 0),
t2 = (400, 100), and t3 = (0, 0) but have no impact on the results. See Appendix C.1 for more details.

first group proportion for which an eigenvalue exceeds one when increasing the first group proportion. In Setup 2, the
second group proportion is set to the threshold value identified in Setup 1 plus 2%. The first group proportion ranges
from 0.001 to 1/k. The remaining groups maintain a proportion of 1/k, with the exception of the last group, whose
proportion is adjusted as in Setup 1 to maintain the total sum to one. The objective of this setup is to examine the
influence of a group located in proximity to the threshold. It requires at least three groups. The threshold is determined
similarly to Setup 1. The grid in Setup 3 is identical to the one in Setup 2, with the exception that the second group
proportion is fixed at 5%, and the last group proportion is adjusted accordingly. This setup includes a group proportion
initially below the threshold for any value of k between 3 and 10, thereby ensuring that at least one eigenvalue exceeds
one. The threshold is defined as the first value of the first group proportion for which two eigenvalues exceed one.
As with Setup 2, this method requires at least three groups. Further details and examples may be found in Appendix
C.2. The thresholds identified through the three setups, for k = 2 to 10 groups, are plotted in Figure 6. Since the grid
generation in Setups 2 and 3 requires more than three groups, there is only one point when k = 2 for Setup 1. This
point is roughly equal to 21% which is the result already known theoretically. For k = 3, the threshold value found for
Setup 1 is around 18%, the one for Setup 2 is 20%, and the one for Setup 3 is 17%. Fixing a group proportion near
the first threshold or below the threshold has indeed an impact. Nonetheless, the thresholds remain around 18%. As k
increases, the thresholds for the three setups appear to converge toward the same value and to depend solely on k. Table
4 in Appendix C.2 gives the specific values of the thresholds for k ∈ {3, . . . , 10}. It is worth noting that the presented
setups could be applied to a larger number of groups, although we have limited our analysis to 10 groups.

Once the thresholds for three to ten groups have been identified, the boxplots from the previous section can be
reproduced for adjusted scenarios. It is of particular interest to visualize the eigenvalues when one group proportion is
at the identified threshold, and to select two or three of the previous mixture proportion scenarios to vary the number of
groups with proportions below this threshold. Figure 7 illustrates this experiment. Although boxplots are plotted, the
group centers remain fixed and equal to the values of the first row of the group centers of Table 1 of Appendix B.

The results presented in Figure 7 validate the thresholds of Setup 1 presented in Figure 6 for k =2, 3, 5, and 10 groups.
In each boxplot, the scenario where a group is at the threshold level has an eigenvalue almost equal to one. This is
the first eigenvalue, given that these scenarios do not have proportions below the respective threshold. The results are
consistent with the logic described in Figure 5, which states that the number of eigenvalues greater than one is linked to
the number of groups with proportion below the threshold. For the scenarios of Figure 7, when k = 5 (resp. k = 10),
the number of eigenvalues larger than one is equal to the number of groups with proportions equal to 10% (resp. 5%).
However, this relationship needs further investigation in cases involving more than three groups.
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Fig. 6: Thresholds computed in Setups 1, 2 and 3, for different values of k.

Fig. 7: Boxplots of the eigenvalues of COV−1COV4 with no within-group variability, with p = q = k − 1, and 14
different group proportions scenarios (αj , j ∈ {1, . . . , k}) on the x-axis. The values of k vary across panels. In each
panel, the second scenario (on the x-axis) contains a group at the identified threshold value (see Appendices B and C.2
for details).
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5 Study of COV−1COV4 eigenvalues for a Gaussian mixture of three groups with aligned
group centers

In Section 3, Figures 2 and 3 display the eigenvalues of ICS using COV− COV4 for various Gaussian mixture models
described by equation (5). Figure 2 illustrates that, if q = k − 1, these eigenvalues do not depend on the group means,
and Proposition 1 in Section 4 confirms the result theoretically. However, as shown in Figure 3, this result does not hold
if q < k − 1, leading to a more complex analysis of the eigenvalues. In the present section, we examine the eigenvalues
of COV−1COV4 for model (2) with three Gaussian groups (k = 3) and q = 1 < k − 1 = 2. This corresponds to the
following p-dimensional Gaussian mixture:

α1Np(t1, Ip) + α2Np(t2, Ip) + (1− α1 − α2)Np(0p, Ip), (6)

with t1 = (t11, 0, . . . , 0)
⊤, t2 = (t21, 0, . . . , 0)

⊤, t11 ̸= 0, t21 ̸= 0, and t11 ̸= t21. We can prove the following
proposition.
Proposition 2. Let us consider model (6) and let rα1,α2

be the following polynomial of degree 4:

rα1,α2(x) = α1(−1 + 7α1 − 12α2
1 + 6α3

1)x
4 + 4α1α2(1− 6α1 + 6α2

1)x
3 + 6α1α2(1− 2α2+

α1(−2 + 6α2))x
2 + 4α1α2(1− 6α2 + 6α2

2)x+ α2(−1 + 7α2 − 12α2
2 + 6α3

2).

All eigenvalues of ICS for the scatter pair COV−COV4 are equal to one if and only if the first coordinates t11 and t21
of the group centers are such that

rα1,α2
(t11/t21) = 0. (7)

The proof is given in Appendix D. Proposition 2 demonstrates that the behavior of the ICS eigenvalues for a mixture of
three Gaussian groups with aligned group centers differs from the two-group case (see Subsection 2.3). For model (6),
the condition under which all eigenvalues of COV−1COV4 equal one depends not only on the group proportions but
also on the group centers, as determined by the fourth-order equation (7). This equation has four solutions in the complex
plane but, between zero and four solutions in the real space, depending on the group proportions. Using Mathematica
[Wolfram Research, Inc., 2022] to simplify the computations, we found that for α1 = α2 ≤ (3−

√
3)/12 (≃ 10.6%),

or α1 = α2 equal to 1/3 or 1/4, equation (7) has no real solution. This implies that one and only one eigenvalue of
ICS differs from one, and is associated with an eigenvector that spans the FDS (which is only one-dimensional for
model (6)). However, we can also identify group proportions for which, given specific group centers, all eigenvalues of
ICS equal one, indicating that ICS does not work in all situations. For instance, when α1 = α2 = 1/6, equation (7)
has three real solutions, and all the eigenvalues of ICS equal one if t21/t11 equal -1, (2

√
6 + 7)/5 or (−2

√
6 + 7)/5.

While these situations are highly specific, they illustrate that analysing the eigenvalues of COV−1COV4 becomes more
complex when q is less than k − 1, and that this phenomenon is already true for k = 3.

6 Empirical study

In Section 3, we derive a theoretical understanding of the behavior of the eigenvalues of V−1
1 V2 in the context of

a mixture of Dirac distributions (model (5)). Firstly, for a mixture model with full rank group centers matrix and
in the absence of within-group variability, the eigenvalues of V−1

1 V2, depend only on the group proportions (see
Proposition 1). Secondly, in Subsection 4.2, the thresholds for the proportion of groups that result in an eigenvalue
transitioning from less than the eigenvalue of multiplicity p − q to greater than it, have been identified for different
number of groups. Both analyses are restricted to the case where the dimension of the FDS is q = k − 1. To confirm
those results in a more general context but still with q = k − 1, we perform simulations of a mixture of Gaussian
distributions, including within-group variability and noise, and we also focus on different scatter pairs. Subsection 6.1
describes the simulations settings, Subsection 6.2 studies the eigenvalues of COV−1COV4 when group centers vary
in the presence of within-group variability, while Subsection 6.3 focuses on the behavior of eigenvalues for different
scatter pairs.

6.1 Simulation design

We generate n = 1000 observations from a particular case of model (2) of a mixture of Gaussian distributions with k
different group means and equal covariance matrix, under the assumption that the group centers matrix is of full rank
q = k − 1 as in Alfons et al. [2024]:

X ∼
k∑

j=1

αj N (tj , Ip), (8)
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where αj > 0 are mixture weights such that
∑k

j=1 αj = 1, for j ∈ {1, . . . , k}, t1 = 0, and tl+1 = δel, for
l ∈ {1, . . . , k − 1}, el is a p-dimensional vector with one in the l-th coordinate and zero elsewhere, for different
numbers of clusters k ∈ {2, 3, 5, 10}, on p = 5k variables. In this setting, the cluster structure lies in a low-dimensional
subspace of dimension q = k − 1. We consider 17 scenarios of group proportions (αj , j ∈ {1, . . . , k}):

• k = 2 clusters: 50–50, 40–60, 30–70, 21–79, 10–90,
• k = 3 clusters: 33–33–34, 18–35–50, 10–40–50, 10–30–60, 10–80–10,
• k = 5 clusters: 20–20–20–20–20, 14–20–20–20–26, 10–20–20–20–30, 10–10–20–20–40,
• k = 10 clusters: 10–10–10–10–10–10–10–10–10–10, 8–10–10–10–10–10–10–10–10–12, 5–5–5–5–5–5–5–

15–20–30.

We consider δ ∈ {1, 5, 10, 50, 100} for the study on different group centers in Subsection 6.2. For the study on different
scatters in Subsection 6.3, we fix δ = 10 and we focus on the following scatter pairs: COV−COV4, COVAXIS−COV,
TCOV−COV and MCDτ −COV with τ ∈ {0.25, 0.5, 0.75}. COVAXIS is a one-step M-estimator using the inverse
weight function of the squared Mahalanobis distance, TCOV is also a one-step M-estimator but with weights based
on pairwise Mahalanobis distances and MCDτ are the (raw) minimum covariance determinant estimators based on
nτ = ⌈τn⌉ observations for which the sample covariance matrix has the smallest determinant. See Subsection 3.1 of
Alfons et al. [2024] for details on those scatter matrices. Note that we follow Alfons et al. [2024] and take V1 being
more robust than V2. In addition, MCDτ are computed using the FAST-MCD algorithm of [Rousseeuw and Driessen,
1999]. For the selection of components, we choose the med criterion as introduced in Alfons et al. [2024], which selects
the k − 1 components whose eigenvalues deviate the most from the median of all eigenvalues. This test relies on the
assumption that the dimension of interest q is low compared to the number of variables p: q ≤ p/2, which implies that
the majority of the eigenvalues should be equal, which is met in our context. We simulate 50 data sets for each of the
different settings.

6.2 COV−1COV4 eigenvalues when group centers vary in the presence of within-group variability and
q = k − 1

As proven in Proposition 1, theoretically, for a mixture model with full rank group centers matrix and in the absence of
within-group variability, the eigenvalues of V−1

1 V2 depend only on the group proportions αj , j ∈ {1, . . . , k} of the
mixture components. Here, instead of computing the eigenvalues theoretically, we simulate a mixture of Gaussian
distributions with some within-group variability to evaluate the sensitivity of this proposition and we compare with
the results in Figure 7 for COV−1COV4. In Figure 8, we display the boxplots of the k − 1 first and the k − 1
last eigenvalues of COV−1COV4 over 50 replications when the group centers vary in the presence of within-group
variability. Grey-shaded areas expose the eigenvalues which are theoretically different from one. The cases for which
the eigenvalue one has multiplicity greater than p− q are identified by the red-shaded areas.

Contrary to Figure 7, we can see some variability for the eigenvalues over the replications and between the different
group centers, determined by the values of δ. In addition, given the presence of within-group variability and noise with
p > q = k − 1, none of the eigenvalues are strictly equal to one. However, the eigenvalues of interest for highlighting
the groups’ structure (in grey-shaded areas), are still easily identifiable as the ones further away from one. For example,
for the first row with scenarios of a mixture of two components, only the first or the last eigenvalue should be different
from one. More specifically, as illustrated in Subsection 4.2, for a mixture with group proportion of 50− 50, only the
last eigenvalue is different from one, as we can see in the first subplot. If one group proportion decreases until being
below 21% then it is now the first eigenvalue which is different from one. For this threshold of 21%, all eigenvalues are
equal to one as highlighted by the red-shaded area. We can identify the same behavior when the number of groups
increases. For example, in the second row, if all the three group proportions are “large enough” then the last two
eigenvalues are different from one. When only one group proportion is “low”, as in the scenario 10 − 40 − 50, the
first and the last components are different from one. When two group proportions are “low”, like in the scenario
10− 10− 80, then only the first two components are different from one. This pattern repeats itself for mixtures of 5 or
10 groups as illustrated in the third and fourth rows. The thresholds are clearly identifiable when one group proportion is
equal to: 18% for 3 groups, 14% for 5 groups and 8% for 10 groups and confirms the ones identified in Subsection 4.2
in case of absence of within-group variability.

It is also important to note that the variability of the eigenvalues between group centers, i.e for different values of δ, is
smaller for the eigenvalues which are theoretically equal to one (in white or red-shaded areas) no matter the value of
δ. This supports evidence for some stability of the eigenvalues associated with no structure of the data, no matter the
group centers. Clearly, at the thresholds, identified by red-shaded areas, there is almost no variability of the eigenvalues,
as we can see in the first row, in the well-known case of a mixture of two components with group proportions 21− 79.
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Fig. 8: Boxplots of the k − 1 first and the k − 1 last eigenvalues of COV−1COV4 when the group centers vary in the
presence of within-group variability, for q = k − 1, p = 5k, n = 1000, and different values of k over 50 replications.
Results for different group proportions are shown in different panels. Grey-shaded areas expose the eigenvalues which
are theoretically different from one. Red-shaded areas highlight the cases for which the eigenvalue one has multiplicity
greater than p− q.

For the eigenvalues of interest (in grey-shaded areas), some variability is visible but they seem to quickly converge as δ
increases. In addition, the eigenvalues are clearly different from one as soon as δ ≥ 5. For δ = 1, the ratio signal over
noise is too low and so, all eigenvalues are close to one. On the contrary, if δ ≥ 50, the ratio signal over noise is high
and the noise is almost null so, we are almost in the same context as for the Proposition 1, and the eigenvalues with
δ = 50 or δ = 100 are almost equal. In fact, it appears that the eigenvalues converge more slowly in the presence of a
low group proportion, as observed in scenarios where at least one group has a proportion of 5% or 10%. In this context,
the eigenvalues are also higher in absolute value for any δ so it is one of the favorable cases for ICS since it is easy to
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identify it is different from one. So, for the next study, we consider that the group centers have a negligible effect, and
we focus on the case δ = 10.

6.3 V−1
1 V2 eigenvalues for different scatter pairs in the presence of within-group variability and for q = k − 1

In this section, we extend our study to the behavior of the eigenvalues of V−1
1 V2 for different affine equivariant scatter

pairs and not only to COV − COV4. In such a context, and in the absence of within-group variability, only the group
proportions should impact the eigenvalues. Here, we introduce some within-group variability and we analyze if the
general behavior for the eigenvalues of COV−1COV4 is the same for different scatter pairs. More specifically, we want
to know if the thresholds are linked to the same group proportions and if only “low” group proportions are associated
with first eigenvalues being different from each other. Deriving theoretical eigenvalues for more complex scatter pairs is
a difficult task so, we focus on the analysis of the invariant components instead. Indeed, to highlight the data structure,
we have to project the data onto the subspace spanned by the eigenvectors associated with eigenvalues which are not
equal to each other. So we can hypothesize that the invariant components to select are the ones associated with the
eigenvalues which are not equal to each other. To identify the components of interest, we followed the recommendations
of Alfons et al. [2024] and we chose the k − 1 invariant components based on the med criterion, i.e the ones associated
with eigenvalues which deviate the most from the median of all eigenvalues.

In Figure 9, we display heatmaps of the percentage of selections for the k−1 first and the k−1 last invariant components
of V−1V2 by the med criterion, for different numbers of groups, for group proportions and for different scatter pairs. If
the value is of 100%, it indicates that the value of the eigenvalue associated with this component is stable and different
from each others. If the percentage is less than 100%, it means that over the replications, the criterion has not chosen
consistently the same eigenvalue which suggests that the eigenvalue might be not significantly different from the other
ones. For example, in the first subplot, for the scatter pair COV − COV4, the value is 100% for the case of a mixture
of two Gaussian distributions with group proportions of 10-90. We can deduce that the first component IC1 is always
chosen over the 50 replications. This is in line with the previous conclusion which states that if one group proportion is
“low" then the first eigenvalue is different from one. In case of 50-50, it is always the last one which is chosen and of
interest. For group proportions in between, the choice is not as clear mainly for the scenario 21-79. In this case, IC1 is
selected instead of IC10 only in 75% of cases. When the selection is not clear, this is a sign that the eigenvalues are
not as far away from the others and it might indicate a threshold. Precisely, this result confirms the theory recalled in
Subsection 2.3 that, when a group proportion is equal to 21% and in presence of two groups, then all the eigenvalues
are equal to one with COV − COV4. In practice, the group proportion associated with the threshold is not as precise
as in the theoretical situation since, even when a group proportion is around 30%, it can be difficult to have a clear
separation between eigenvalues in 15% of cases.

Overall, for COV−COV4 we can corroborate the same thresholds as mentioned in the previous section: approximately
21% for 2 groups, 18% for 3 groups, 14% for 5 groups and 8% for 10 groups. However, because we infer the behavior
of the eigenvalues based on the selection of components and we are in the context of within-group variability, noise
and simulated data, the values of the thresholds are not as precise as in the theoretical cases illustrated in Figure 7.
Nevertheless, this analysis globally confirms the results already observed and demonstrated in Subsection 4.2. It is also
quite easy to visually identify on which components the structure of interest relies depending on the group proportions
and to extend our understanding of such behavior for the other scatter pairs.

The scatter pair COVAXIS − COV is almost exhibiting the same behavior as COV − COV4 as well as for the
thresholds. This is not surprising since COVAXIS is also a one-step M-estimator as COV4 but uses an inverse weight
function of the squared Mahalanobis distance instead. For TCOV − COV, the choice of the components seems to
be easy and always associated with the first eigenvalues, except for one case with 5 groups (10-20-20-20-30). For the
scatter pairs based on MCDτ , the patterns are conditional on the value τ . It is interesting to note that the behavior
for MCD0.25 − COV looks almost the same as for TCOV − COV, apart from one case with three balanced groups.
For MCD0.50 − COV then the situation is no longer perfect and sometimes the last eigenvalue is chosen, e.g. in the
scenario of group proportions of 50-50. Finally, for MCD0.75 − COV the situation looks worse and the choice is not
clear in a lot of cases, even more than for the scatter pair COV − COV4. These results support the recommendations
of using TCOV − COV or MCD0.25 − COV when clustering is the goal. Alfons et al. [2024].

To conclude, it appears that those two scatter pairs, TCOV − COV or MCD0.25 − COV, seem to behave in a simpler
manner than COV − COV4 by finding groups only on the first components no matter the group proportions and with
fewer thresholds. In addition, the more groups are present, the easier it looks to find them. However, we have shown
that in a few scenarios, those scatter pairs might fail to identify some groups. Since our analysis is not exhaustive on the
number of scenarios, we can suppose it might happen in other situations. One idea to overcome such a potential issue,
without knowing the theoretical eigenvalues, is to run ICS multiple times, with different scatter pairs and to combine and
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COV − COV4 COVAXIS − COV TCOV − COV MCD0.25 − COV MCD0.5 − COV MCD0.75 − COV

IC1 IC10 IC1 IC10 IC1 IC10 IC1 IC10 IC1 IC10 IC1 IC10

          50−50

          40−60

          30−70

          21−79

          10−90

25% 50% 75% 100%

 % of selected IC 
 over 50 replications

COV − COV4 COVAXIS − COV TCOV − COV MCD0.25 − COV MCD0.5 − COV MCD0.75 − COV

IC1 IC2 IC14 IC15 IC1 IC2 IC14 IC15 IC1 IC2 IC14 IC15 IC1 IC2 IC14 IC15 IC1 IC2 IC14 IC15 IC1 IC2 IC14 IC15

       33−33−34

       18−32−50

       10−40−50

       10−30−60

       10−10−80

COV − COV4 COVAXIS − COV TCOV − COV MCD0.25 − COV MCD0.5 − COV MCD0.75 − COV

IC1 IC2 IC3 IC4 IC22 IC23 IC24 IC25 IC1 IC2 IC3 IC4 IC22 IC23 IC24 IC25 IC1 IC2 IC3 IC4 IC22 IC23 IC24 IC25 IC1 IC2 IC3 IC4 IC22 IC23 IC24 IC25 IC1 IC2 IC3 IC4 IC22 IC23 IC24 IC25 IC1 IC2 IC3 IC4 IC22 IC23 IC24 IC25

 20−20−20−20−20

 14−20−20−20−26

 10−20−20−20−30

 10−10−20−20−40

COV − COV4 COVAXIS − COV TCOV − COV MCD0.25 − COV MCD0.5 − COV MCD0.75 − COV

IC1 IC3 IC5 IC7 IC9 IC47 IC49

IC2 IC4 IC6 IC8 IC46 IC48 IC50

IC1 IC3 IC5 IC7 IC9 IC47 IC49

IC2 IC4 IC6 IC8 IC46 IC48 IC50

IC1 IC3 IC5 IC7 IC9 IC47 IC49

IC2 IC4 IC6 IC8 IC46 IC48 IC50

IC1 IC3 IC5 IC7 IC9 IC47 IC49

IC2 IC4 IC6 IC8 IC46 IC48 IC50

IC1 IC3 IC5 IC7 IC9 IC47 IC49

IC2 IC4 IC6 IC8 IC46 IC48 IC50

IC1 IC3 IC5 IC7 IC9 IC47 IC49

IC2 IC4 IC6 IC8 IC46 IC48 IC50

10−10−10−10−10
10−10−10−10−10

8−10−10−10−10
10−10−10−10−12

5−5−5−5−5−5
5−15−20−30  

Fig. 9: Heatmaps of the percentage of selection for the k − 1 first and k − 1 last selected invariant components of
V−1V2 by the med criterion, in the presence of within-group variability, for q = k− 1, p = k/0.2, n = 1000, different
values of k over 50 replications. Results for different numbers of groups are shown in separate rows, for different group
proportions in the y-axis and for different scatter pairs in different panels.

analyze the selected components from multiple pairs to be sure to detect the entire group structure. Another possibility
is to perform localized PP after ICS to see which directions are interesting as suggested in Dümbgen et al. [2023].

7 Conclusions and perspectives

Dimension reduction is becoming increasingly important. PCA is probably the most utilized method in practice due to
its simplicity, despite lacking guarantees for its effectiveness as a preprocessing tool for clustering or outlier detection.
In these contexts, PP appears much more natural and has theoretical justification Radojičić et al. [2021]. However, PP is
computationally expensive. From that perspective, ICS is a promising alternative – it is computationally less demanding,
and theoretical properties can be derived in quite general mixture model frameworks. As shown in the seminal paper
Tyler et al. [2009], ICS can recover the FDS. It essentially reduces to an eigenvalue problem where the noise space has
identical eigenvalues. The crucial question is then whether all eigenvalues belonging to the space spanning the FDS are
distinct from the noise value. In the two-component Gaussian mixture model using the combination COV − COV4, it
was known that this generally works except for one specific mixing proportion. In this work, we extended this result to
cover richer mixture models and different scatter combinations, though theoretical studies seem mainly feasible only for
COV − COV4. Based on the findings, it seems that ICS is indeed a natural dimension reduction method for clustering
and outlier detection, and with an increasing number of clusters (k still smaller than p), the FDS will be estimated.
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Based on the current paper, it would be worthwhile to pursue extending these results to even richer mixture models and
also consider in more detail other scatter combinations. It could also be investigated whether, in cases where one scatter
combination fails, there are other combinations that will work, or if there exists a global worst-case scenario.

In practice, it seems customary to compare the performance of different scatter combinations and choose the best one,
which is, however, still done heuristically, and corresponding tools for a comparison could be developed. One crucial
issue in practice is then also to establish what the noise space eigenvalue is, and which eigenvalues are distinct from that
value. Some heuristic rules are, for example, discussed in Archimbaud et al. [2018], Alfons et al. [2024], Radojicic and
Nordhausen [2020], but inferential tools are still missing. So far, only Kankainen et al. [2007] propose some tests using
COV − COV4 if all eigenvalues are equal in the Gaussian case (i.e., testing for multivariate normality) and Luo and Li
[2016], Radojicic and Nordhausen [2020], Nordhausen et al. [2022] in a non-Gaussian component analysis framework
for the equality of eigenvalues for components belonging to Gaussian components. Similar tests might be of interest
also in model (1).

Computational details

All computations in Sections 2, 3, 4 are performed with Python version 3.10.13 [Van Rossum and Drake, 2009], notable
packages include NumPy [Harris et al., 2020] for numerical computations, Pandas [The pandas development team,
2020, McKinney, 2010] for data manipulation and Plotly [Plotly Technologies Inc., 2015] for data visualization in
Subsection 2.4, Sections 3 and 4. Furthermore, all simulations in Section 6 are performed with R version 4.3.3 [R Core
Team, 2023] and uses the R packages ICS [Nordhausen et al., 2008, 2023] for ICS, ICSClust [Archimbaud et al.,
2023b] for selecting the components, rrcov [Todorov and Filzmoser, 2009] for the MCD scatter matrix. Replication
files for the theoretical computations and simulations are available upon request.
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Appendix A. Calculation details for the scatter pair COV − COV4

Appendix A.1. The case of Gaussian mixture in Subsection 2.4

Because of the invariance property of ICS, we consider wlog [see A.2 in Tyler et al., 2009] the mixture :

X ∼
k∑

j=1

αjNp(tj , Ip), where the tj = (tji) ∈ Rp are distinct for j ∈ {1, . . . , k} and can be written
∑j

i=1 tjiei (with

ei the p-dimensional vector with one in the i-th coordinate and zero elsewhere for j ∈ {1, . . . , k − 1}), and tk is the
p-dimensional zero vector. Furthermore, to ease ourcomputations, we define Xc := X − E(X) whose distribution is
k∑

j=1

αjNp(t
c
j , Ip), where tcj = tj − E(X) has coordinates tcji, for j ∈ {1, . . . , k} and i ∈ {1, . . . , q}. The covariance

matrix of X is COV = ΓW + ΓB where ΓW = Ip is the within-group covariance matrix and ΓB =
∑k

j=1 αjt
c
j (t

c
j )

⊤

is the between-group covariance matrix. This yields:

COV =

[
β 0
0 Ip−q

]
and COV−1 =

[
B 0
0 Ip−q

]
,

where the terms of β are βms =
∑k

j=1 αjt
c
jmt

c
js for distinct m, s ∈ {1, . . . , q}, and βmm = 1 +

∑k
j=1 αj(t

c
jm)2 for

m ∈ {1, . . . , q}. B = (bij) is q × q matrix whose terms are difficult to express. Concerning COV4, we get:

COV4 =
1

p+ 2
× E

(
(Xc)⊤COV−1XcXc(Xc)⊤

)
=

1

p+ 2
× E

[(
q∑

i=1

q∑
j=1

xc
i x

c
j bij +

p∑
i=q+1

(xc
i )

2

)
Xc(Xc)⊤

]
,

where xc
i are the coordinates of Xc, for i ∈ {1, . . . , p}. We proceed to compute the moments of the coordinates

of Xc to obtain the final form of COV4. Let fX(µ) = µ, fX2(µ, σ) = µ2 + σ2, fX3(µ, σ) = µ3 + 3µσ2, and

17



ICS and Fisher discriminant subspace beyond the case of two groups A PREPRINT

fX4(µ, σ) = µ4 + 6µ2σ2 + 3σ4 be the functions that give the moments of order 1 to 4 of the univariate normal
distribution with mean µ and variance σ2. The moments of the mixture are equal to the linear combination of the
moments of its components. For i, j ∈ {1, . . . , q}, xc

i and xc
j are not independent, but for each mixture component, the

coordinates are independent and we get the following expressions:

E[xc2

a ] =

k∑
j=1

αjfX2(tcja, 1), E[xc
ax

c
b ] =

k∑
j=1

αjfX(tcja)fX(tcjb), E[xc4

a ] =

k∑
j=1

αjfX4(tcja, 1),

E[xc3

a x
c
b ] =

k∑
j=1

αjfX3(tcja, 1)fX(tcjb), E[xc2

a x
c2

b ] =

k∑
j=1

αjfX2(tcja, 1)fX2(tcjb, 1),

E[xc2

a x
c
bx

c
c ] =

k∑
j=1

αjfX2(tcja, 1)fX(tcjb)fX(tcjc)

E[xc
ax

c
bx

c
cx

c
d] =

k∑
j=1

αjfX(tcja)fX(tcjb)fX(tcjc)fX(tcjd),

,

for distinct a, b, c, d ∈ {1, . . . , q}. For i > q and j ∈ {1, . . . , p}, xc
i and xc

j are independent which leads to many

elements of COV4 being equal to 0 and to the following expression: COV4 =

[
Ψ 0
0 Ip−q

]
where Ψ = (ψms) is q × q

matrix whose terms for m, s ∈ {1, . . . , q} are given by:

ψms =
1

p+ 2
E

[
q∑

i=1

q∑
j=1

xc
mx

c
sx

c
i x

c
j bij + xc

mx
c
s

p∑
i=q+1

(xc
i )

2

]
=

1

p+ 2

[
q∑

i=1

q∑
j=1

bijE[xc
mx

c
sx

c
i x

c
j ] + (p− q)E[xc

mx
c
s ]

]
.

Appendix A.2. The case of Dirac mixture in Section 3

Upon the removal of the noise and the dimensions not associated with FDS, the Gaussian distributions are simplified
to Dirac distributions with parameter tj , denoted by δtj : X ∼

∑k
j=1 αjδtj , where tj =

∑j
i=1 tjiei, and ei is a

q-dimensional vector with one in the i-th coordinate and zero elsewhere for j ∈ {1, . . . , k − 1}, tk is the zero vector,
and the tj are distinct for j ∈ {1, . . . , k}.

The calculations are very similar to the ones in Appendix A.1 with the within-group matrix ΓW equals to the
zero matrix, which removes some terms in the scatter expressions. In accordance with the previously estab-
lished notation, it yields COV = [βms] where βms =

∑k
j=1 αjt

c
jmt

c
js for m, s ∈ {1, . . . , q}, and COV4 =

1
q+2 × E

[(∑q
i=1

∑q
j=1 x

c
i x

c
j bij

)
Xc(Xc)⊤

]
. The moments of a random variable following a Dirac distribution

centered at tc is given by mν = (tc)ν . All the moments can be expressed as E[xc
ax

c
bx

c
cx

c
d] =

∑k
j=1 αjt

c
jat

c
jbt

c
jct

c
jd

for a, b, c, d ∈ {1, . . . , q}. It yields COV4 = [ψms] where ψms =
1

q + 2

[
k∑

l=1

αlt
c
lmt

c
ls(t

c
l )

⊤COV−1(tcl )

]
for

m, s ∈ {1, . . . , q}.

(COV−1COV4)ms =
1

q + 2

[
k∑

l=1

αl(t
c
l )

⊤COV−1(tcl )
q∑

i=1

bmit
c
lit

c
ls

]
for m, s ∈ {1, . . . , q}.

Appendix B. Details for the study of COV−1COV4 eigenvalues in Subsections 2.4, 3.2, 4.2
and additional figure

Subsection 2.4 and Sections 3 and 4 study the eigenvalues behavior of COV−1COV4. Appendix B.1 provides details
about the analysis in the case of a Gaussian mixture (Subsection 2.4) whereas Appendix B.2 explains the study in the
case of a Dirac mixture (Sections 3 and 4).
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Appendix B.1. Gaussian mixture

In Subsection 2.4, the eigenvalues of COV−1COV4 are analysed in the case of a mixture of a Gaussian distributions.
Figure 1 displays the eigenvalues obtained with numerical computations which are based on the theoretical ones
described in Appendix A.1. In order to comprehend the behavior of eigenvalues for any number of groups k and any
value of the dimension spanned by the group centers q, we will examine in particular the following cases: (i) k = 2:
q = 1, (ii) k = 3: q = 2, (iii) k = 5: q = 2 and q = 4. There are two cases with k = 5 to illustrate the two subcases
q = k − 1 and q < k − 1. To perform such numerical computations, we set to 6 the number of variables p, and we
specify values for the group proportions and the group means. The latter are described in Table 1. We recall from
Subsection 2.2 that:

T =

(
Tu 0
0 0

)
,

where T = (t1, . . . , tk) with tj a p-dimensional vector for j ∈ {1, . . . , k}, and Tu is an upper triangular matrix of
dimension k − 1 ≥ 1 such that the last k − 1− q ≥ 0 rows are zero. In Table 1, only the elements above the diagonal
of Tu are mentioned. The values are selected manually, ensuring that the matrix Tu is full rank and that different
configurations are represented. Some group means exhibit a particular structure. The first configuration of group means
has a regular increment δi for each dimension, i.e. t(j+1)i = tji + δi if tji ̸= 0 for j ∈ {1, . . . , k − 1}, i ∈ {1, . . . , p}
and tji being the i-th element of tj . The second configuration is equal to the first one multiplied by 10, i.e. T2 = 10×T1
where T1 (T2) are the group mean matrices of the first (second) configuration. The third configuration is a diagonal
matrix. The remaining group mean configurations were randomly selected to ensure a variety of configurations. The
dimensions of the matrix containing the group means are determined by the number of groups. Consequently, the
initial (k − 1) columns of Table 1 are selected, and a column of zeros is appended to the end. Only the first q-th rows
are selected and zeros must be added up to the p-th row in order to fill the elements below the diagonal of Tu. This
methodology yields the desired structure, which is consistent with the number of groups selected. For example, if k = 3
and p = 3, we obtain from the first row of Table 1 T1,q=2 if q = 2 and T1,q=1 if q = 1:

T1,q=2 =

(
200 200 0
0 400 0
0 0 0

)
, T1,q=1 =

(
200 400 0
0 0 0
0 0 0

)
.

For each value of k, we select mixture proportions, i.e., the values of αj for j ∈ {1, . . . , k}. The values have been
selected to represent a range of scenarios and are listed in Table 2. For each number of groups, there is a scenario in
which all groups have the same proportion. Then, the number of “low” and “large” groups is varied.

Next, for each mixture proportions scenario and each group centers configuration, the eigenvalues of COV−1COV4

are calculated. The results are plotted on a graph with the group proportions on the x-axis and a boxplot per eigenvalue
on the y-axis, representing the distribution of the eigenvalue across the group centers for a given scenario. This
representation permits the comparison of eigenvalues across scenarios and across group centers for a given number of
groups.

Appendix B.2. Dirac Mixture

Section 3 analyses the eigenvalues of V −1
1 V2 in the case of a mixture of a Dirac distributions where p = q. Figures 2,

10 and the additional Figure 10 show the eigenvalues of COV−1COV4 obtained with numerical calculations which are
based on the theoretical ones described in Appendix A.2. To understand the behavior of eigenvalues for any number of
groups, we will examine the cases of a mixture of 2, 3, 5, and 10 groups in particular. For each of these cases, we select
mixture proportions scenarios that are described in Table 3. For 2, 3 and 5 groups, we added more scenarios to the one
from Table 2. For k = 10, we created scenarios following the same logic. The centers of the groups are the same as
those in Appendix B.1, described in Table 1. In Figure 2, q = k − 1. In Figures 3 and 10, q < k − 1. More precisely,
we looked at: (i) k = 3: q = 1, (ii) k = 5: q = 1, q = 2 and q = 3, (iii) k = 10: q = 1, q = 3, q = 5 and q = 7.

In Subsection 4.2, we still consider the case of a Dirac mixture where p = q. However, the subsection focuses on the
case q = k − 1 and does not address the impact of group centers. The group centers are then fixed to the configuration
given by the first row of Table 1. Subsection 4.2 studies the idea of threshold values in the group proportions that result
in an eigenvalue transitioning from less than one to more than one. Figure 7 illustrates these thresholds. Its configuration
is very similar to the one of Figure 2: the represented number of groups k are 2, 3, 5 and 10, and p = q = k − 1. The
proportions scenarios are described in Table 3. For each value of k, there is one scenario in which the proportion of the
first group is at threshold level. The threshold is defined with the Setup 1 explained in Appendix C.2.
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Table 1: Group centers used to compute the theoretical eigenvalues

(a) Groups 1 to 5

t1 t2 t3 t4 t5
1 [200] [400, 100] [600, 300, 200] [800, 500, 300, 300] [1000, 700, 400, 500, 200]
2 [2000] [4000, 1000] [6000, 3000, 2000] [8000, 5000, 3000, 3000] [10000, 7000, 4000, 5000,

2000]
3 [2] [0, 2] [0, 0, 6] [0, 0, 0, 7] [0, 0, 0, 0, 5]
4 [1] [5, 7] [9, 10, 2] [13, 13, 3, 4] [17, 16, 4, 8, 6]
5 [6] [-3, 7] [-10, 6, 4] [1, 2, 8, 6] [3, -3, 7, 9, 4]
6 [60] [-30, 70] [5, 15, 45] [75, 23, 54, 66] [59, 86, 38, 29, -32]
7 [18] [9, 14] [15, 22, 150] [65, 42, 32, 15] [22, 45, 12, 28, 41]
8 [-2] [11, 4] [0, 0, 10] [0, 3, 0, 13] [0, 0, 11, 34, 14]
9 [1200] [180, 910] [320, 112, 1000] [550, 321, 875, 200] [1000, 710, 593, 340, 900]

10 [36] [39, 66] [15, 88, 18] [48, 67, 36, 83] [22, 59, 48, -43, 36]
11 [300] [460, 180] [250, 80, 110] [410, 100, 230, 260] [230, 200, 160, 420, 318]
12 [12] [50, 27] [5, 13, 31] [25, 25, 31, 42] [49, 37, 21, 39, 45]
13 [16] [-30, 18] [1, 18, 50] [11, -18, 59, -36] [11, -18, 64, -12, 39]
14 [63] [-35, 12] [22, -12, 19] [55, -71, 22, 38] [54, -60, 31, 23, 45]
15 [22] [9, 33] [61, 42, 41] [86, 42, 71, 30] [48, 67, 36, 83, 22]
16 [-2] [1, 2] [3, 4, 6] [8, 1, 5, 24] [3, -3, 7, 9, 5]
17 [3] [0, 6] [0, 0, 9] [0, 0, 0, 4] [0, 0, 0, 0, 5]
18 [400] [200, 550] [280, -450, 356] [312, 718, 462, 425] [410, 100, 230, 0, 300]
19 [1080] [2100, 1800] [1870, 3200, 2200] [1200, 2690, 3850, 4086] [4800, -1700, 600, 2300, 2200]
20 [54] [32, 41] [12, 33, 81] [43, 12, 79, 84] [11, 18, 59, 36, 23]

(b) Groups 6 and 7

t6 t7
1 [1200, 900, 500, 700, 300, 100] [1400, 1100, 600, 900, 400, 200, 100]
2 [12000, 9000, 5000, 7000, 3000, 1000] [14000, 11000, 6000, 9000, 4000, 2000, 1000]
3 [0, 0, 0, 0, 0, 8] [0, 0, 0, 0, 0, 0, -3]
4 [21, 19, 5, 12, 12, 10] [25, 22, 6, 16, 18, 20, 9]
5 [-4, 2, 8, -5, 12, 7] [4, 12, 5, -7, 23, 3, 8]
6 [77, 43, -55, 63, 0, 48] [54, 92, 19, 74, -23, 44, 32]
7 [12, 33, 16, 32, 46, 33] [17, 33, 21, 38, 57, 49, 67]
8 [0, 0, 8, 28, 17, 16] [0, 0, 17, 22, 31, 2, 16]
9 [370, 212, 2000, 560, 230, 410] [220, 230, 900, 120, 222, 714, 600]

10 [65, 45, 32, 56, 74, 43] [8, 43, 59, -23, 31, 32, 54]
11 [530, 210, 310, 450, 530, 310] [50, 100, 300, 536, 430, 320, 120]
12 [45, 27, 32, 65, 27, 33] [32, 37, 26, 34, 45, 43, 21]
13 [12, 37, 21, 22, 7, 12] [23, 37, 21, 34, 45, 32, 12]
14 [22, 37, 21, 38, 45, 69] [22, 33, 64, 62, 45, 23, 36]
15 [49, 37, 21, 39, 45, 13] [39, 45, 22, 45, 76, 23, 34]
16 [5, 2, 6, -4, 3, 8] [1, 15, 4, 5, 6, 7, -3]
17 [0, 0, 0, 0, 0, 6] [0, 0, 0, 0, 0, 0, 2]
18 [390, 0, 450, 360, -300, 380] [690, -212, 500, 560, -120, 410, 340]
19 [2100, 1000, -1000, 1389, 2300, 4500] [500, 1000, 0, 4362, 4300, 3200, 1200]
20 [49, 37, 21, 39, 7, 65] [45, 37, 32, 65, 28, 31, 66]
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Table 1: Group centers used to compute the theoretical eigenvalues – Continued

(c) Groups 8 and 9

t8 t9
1 [1600, 1300, 700, 1100, 500, 300, 200, 100] [1800, 1500, 800, 1300, 600, 400, 300, 200, 100]
2 [16000, 13000, 7000, 11000, 5000, 3000, 2000, [18000, 15000, 8000, 13000, 6000, 4000, 3000, 2000,

1000] 1000]
3 [0, 0, 0, 0, 0, 0, 0, 16] [0, 0, 0, 0, 0, 0, 0, 0, 20]
4 [29, 25, 7, 20, 24, 30, 14, 5] [34, 27, 8, 24, 30, 40, 19, 10, 4]
5 [2, 32, 14, 3, -3, 0, 12, 10] [6, 21, 19, 8, 7, 11, 26, 20, 16]
6 [34, 56, 44, 22, 0, 38, 0, 32] [51, 32, 39, 30, 10, 78, 40, 28, 29]
7 [12, 20, 11, 31, 37, 9, 12, 30] [0, 5, 31, 16, 7, 11, 19, 20, 17]
8 [0, 0, 7, 17, 27, 13, 9, 13] [0, 0, 17, 32, 41, 5, 3, 19, 22]
9 [320, 530, 1100, 1200, 333, 743, 800, 900] [120, 130, 2200, 3200, 444, 743, 2100, 200, 300]

10 [18, 32, 14, 45, 89, 21, 43, 32] [20, 22, 44, 56, 61, 41, 61, 53, 33]
11 [110, 300, 500, 136, 230, 320, 0, 220] [210, 0, 650, 536, 560, 400, 30, 100, 300]
12 [12, 32, 25, 35, 51, 54, 31, 50] [32, 54, 76, 36, 22, 62, 66, 13, 56]
13 [37, 6, 54, 32, 0, 66, 10, 12] [19, 26, 32, 54, 0, 55, 34, 17, 31]
14 [-39, 32, 22, 81, 56, 38, 74, 12] [55, 34, 69, 65, 26, 38, 64, 42, 22]
15 [32, 38, 44, 52, 19, 42, 51, 21] [25, 8, 79, 63, 43, 72, 61, 51, 32]
16 [2, 20, 11, 3, 3, 9, 12, 10] [22, 2, 1, 4, 0, 5, 1, 8, 13]
17 [0, 0, 0, 0, 0, 0, 0, 8] [0, 0, 0, 0, 0, 0, 0, 0, 5]
18 [0, 89, 345, 280, 0, 270, 500, 220] [610, 0, 385, 680, 0 ,470, 76, 290, 300]
19 [0, 3100, 1400, 3800, 2300, -1100, 4200, 1800] [3900, 100, 4200,1900, 3700, 1100, 3100, -300, 2400]
20 [41, 32, 24, 74, 51, 23, 44, 65] [27, 6, 51, 42, 61, 56, 33, 55, 52]

Table 2: Scenarios analysed in Figure 1
k Scenarios
2 50-50, 20-80, 10-90
3 33-33-34, 10-40-50, 10-10-80
5 20-20-20-20-20, 10-10-20-20-40, 10-10-10-10-60

Table 3: Scenarios analysed in Figures 2, 3, 7 and 10
k Scenarios for Figures 2, 3, 10 Scenarios for Figure 7
2 50-50, 40-60, 30-70, 20-80, 10-90 30-70, 21-79, 10-90
3 33-33-34, 20-30-50, 10-40-50, 10-30-60, 10-20-70, 10-10-80 33-33-34, 18-32-50, 10-40-50, 10-10-80
5 20-20-20-20-20, 10-20-20-20-30, 20-20-20-20-20, 14-20-20-20-26,

10-10-20-20-40, 10-10-10-30-40 10-10-20-20-40, 10-10-10-30-40
10 10-. . . -10, 5-5-5-10-10-10-10-10-15-20, 10-. . . -10, 8-10-10-10-10-10-10-10-10-12,

5-5-5-5-5-5-5-15-20-30 5-5-5-5-5-5-5-15-20-30

Appendix C. Details for the study of COV−1COV4 eigenvalues when group proportions vary
in the absence of within-group variability in Section 4

In Section 4, we consider the case of a Dirac mixture, the scatter pair COV − COV4, and p = q = k − 1, where p is
the number of variables and q is the dimension of the space spanned by the group centers. We know that in this case
the group centers have no effect on the eigenvalues of COV − COV4. Therefore, we only vary the proportions of the
groups. The eigenvalues of COV−1COV4 are obtained with numerical calculations using the theoretical developments
described in Appendix A.2.

Appendix C.1. The case of three groups

Subsection 4.1 focuses on the case where the number of groups k is 3, and thus the number of variables p is 2. The
eigenvalues are represented in ternary diagrams in Figures 4 and 5. The construction of such figures is achieved through
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Fig. 10: Boxplots of the eigenvalues of COV−1COV4 with no within-group variability, where the group centers vary
across 20 different configurations, with k = 10 and p = q < k − 1. The values of q vary across the panels. The 12
group proportions scenarios (αj , j ∈ {1, . . . , k}) vary on the x-axis.

the generation of a grid comprising all possible combinations of the group proportions α1, α2 and α3, with values
between zero and one, such that their sum is equal to one. The step size is 0.001 (0.1%). This approach ensures
exhaustive coverage of the proportion space and guarantees that every point on the ternary diagram represents a valid
combination of α1, α2, and α3. The eigenvalues of COV−1COV4, ρ1 and ρ2, are calculated for each combination of
the grid. To perform this calculation, it is necessary to have values for the centers of the three groups. As these values
will have no impact on the result, they may be assigned randomly. For the sake of simplicity, we choose the first row of
Table 1.

In Figure 4, it is of interest to highlight the case in which the eigenvalue is equal to one (white), as this is the case in
which ICS does not “work”. Subsequently, two situations are distinguished: when the eigenvalue is smaller than one
(blue), and when the eigenvalue is greater than one (red). Both blue and red parts follow a color gradient to illustrate the
distance of the value from one. The logarithm of the eigenvalue was used in the coloring of the plot, because it allows
for a more balanced distribution of colors. The logarithmic scale reduces the range difference between the blue and red
parts, and since log(1) = 0, it conveniently positions the transition color at a meaningful point. The scale of the gradient
ranges from blue at the minimum of log(ρ) to red at the maximum of log(ρ), log(ρ) = 0 being white. The gradient
effectively illustrates the variations in the eigenvalue across the group proportions grid and highlights instances where
ICS does not “work”. However, the color bar at the bottom of the plot represents the original eigenvalue, enhancing the
plot’s interpretability.

Both eigenvalues are shown qualitatively in Figure 5. Since the information of interest is whether the eigenvalues are
greater or less than one (as explained in Subsection 4.2, three cases are distinguished: ρ1 and ρ2 > 1 (red), ρ1 > 1 and
ρ2 < 1 (purple), and ρ1 and ρ2 < 1 (blue)).

Appendix C.2. The case of k groups

Subsection 4.2 generalizes the context to a number k of groups and focuses on the notion of “thresholds”. Figure 6 is an
illustration of the thresholds found using three different setups, for 2 to 10 groups. The threshold values are described
in Table 4.

The first setup (Setup 1 in Figure 6) is the simplest. It is known that the sum of all group proportions must be equal to
one. The most balanced scenario is the one in which all groups have the same proportion. In this case, each proportion
is equal to 1/k, where k is the number of groups. Thus, the smallest group proportion cannot exceed 1/k and the largest
group proportion cannot be strictly smaller than 1/k. A grid with group proportions is created for a given number of
groups. The proportions are ordered in ascending order. For the first group proportion α1, the values range from 0.001
to1/k with a step of 0.001. For each intermediate group proportion αj , j ∈ {2, . . . , k − 1}, the value is set to 1/k. The
last group proportion αk is the remaining proportion: αk = 1−

∑k−1
j=1 αj . This setup ensures that the sum of group
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Table 4: Thresholds computed for each setup
k Setup 1 Setup 2 Setup 3
3 0.18 0.2 0.171
4 0.155 0.161 0.151
5 0.135 0.138 0.133
6 0.12 0.121 0.119
7 0.107 0.108 0.107
8 0.097 0.097 0.097
9 0.089 0.089 0.088
10 0.082 0.082 0.081

proportions is exactly one. Table 5 provides an example of the grid obtained with the first setup when k = 4. For each
scenario in the grid, the eigenvalues of COV−1COV4 are calculated. Initially, all proportions are equal to 1/k, and all
eigenvalues are less than one. Subsequently, the proportion of the first group is the smallest and decreases by 0.001 at
each iteration. The threshold of Setup 1 is the first value of the first group proportion for which one eigenvalue exceeds
one. This procedure is repeated for 2 to 10 groups.

Table 5: Grids used in Setups 1, 2, and 3 for k = 4
Setup 1 Setup 2 Setup 3

α1 α2 α3 α4 α1 α2 α3 α4 α1 α2 α3 α4

0.25 0.25 0.25 0.25 0.25 0.175 0.25 0.325 0.25 0.05 0.25 0.45
0.249 0.25 0.25 0.251 0.249 0.175 0.25 0.326 0.249 0.05 0.25 0.451
0.248 0.25 0.25 0.252 0.248 0.175 0.25 0.327 0.248 0.05 0.25 0.452

...
...

...
...

...
...

...
...

...
...

...
...

0.001 0.25 0.25 0.499 0.001 0.175 0.25 0.574 0.001 0.05 0.25 0.699

The second setup (Setup 2 in Figure 6) uses a grid based on the results obtained with the first setup. From the Setup 1
grid, the value of the second group proportion is updated. It is set to the threshold found in Setup 1 to which 2% is
added. The proportion of the first group is the same, ranging from 0.001 to 1/k with a step of 0.001. The intermediate
groups have a proportion of 1/k only for group 3 through k − 1, since the proportion of the second group is already set.
The value of the last group proportion is also updated, but it is still equal to one minus the other group weights. This
procedure ensures that the sum of each row is exactly one. An example of the grid obtained with the second setup when
k = 4 is shown in Table 5. However, it requires at least three groups: one that is set to the first threshold plus 2%, and
two groups with variable proportions. For each configuration of group weights, the eigenvalues of COV−1COV4 are
calculated. Initially, the first group is not necessarily the smallest one; it could be the second group. However, the value
of the second group proportion is set such that it is above the threshold, implying that all eigenvalues are initially below
one. Thus, the threshold of Setup 2 is, as in Setup 1, the first value of the first group weight for which one eigenvalue
exceeds one. The concept in this procedure revolves around examining the impact of a group that is positioned near the
threshold to determine if this proximity affects it. This process is repeated for a number of groups ranging from 3 to 10.

Finally, the third procedure (Setup 3 in Figure 6) uses a grid similar to Setup 2. The second group proportion is no
longer dependent on the threshold of Setup 1 but is set to 0.05. Again, the last group proportion is updated to one minus
the combined weights of the other groups. All other group proportions remain the same as in Setups 1 and 2. Table 5
provides an example of the third setup grid with k = 4. As for the grid in Setup 2, it requires at least three groups: one
for the fixed proportion and two to vary. The objective of this procedure is to include a small group initially, specifically
below the threshold for k from 3 to 10. This implies that, from the initial point, there is already an eigenvalue greater
than one. Thus, the threshold of Setup 3 is the first value of the first group weight for which two eigenvalues exceed
one. This is aimed at identifying the point where the second eigenvalue surpasses one. This setup is repeated for 3 to 10
groups.
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Appendix D. Proof of Proposition 2

Proof. By adapting the calculations in Appendix A (with the same notations) to the Gaussian mixture model (9), we
obtain

COV =

[
β11 0
0 Ip−1

]
, COV−1 =

[
b11 0
0 Ip−1

]
, and COV4 =

[
a11 0
0 Ip−q,

]

where β11 = 1 +
∑3

j=1 αj(t
c
j1)

2, b11 = β−1
11 and a11 =

1

p+ 2

[
b11E[(xc

1)
4] + (p− 1)E[(xc

1)
2]

]
. We have

COV−1COV4 =

[
b11a11 0

0 Ip−1.

]
All eigenvalues of COV−1COV4 equal one if and only if

b11a11 = 1, (9)

(9) is equivalent to a11 = b−1
11 = β11. Noting that E[(xc

1)
2] = β11, and expanding the expression of a11, (9) is

equivalent to 3β2
11 = E[(xc

1)
4]. Using the formula of β11 and the formula of E[(xc

1)
4] from Appendix A, we obtain that

(9) is equivalent to:

α1(3α1 − 1)(tc11)
4 + α2(3α2 − 1)(tc21)

4 + α3(3α3 − 1)(tc31)
4

+ 6α1α2(t
c
11)

2(tc21)
2 + 6α1α3(t

c
11)

2(tc31)
2 + 6α2α3(t

c
21)

2(tc31)
2 = 0.

For the mixture (6), we know from Theorem 4 in Tyler et al. [2009] and using the computations of Subsection 2.4, that
at least p− 1 eigenvalues of COV−1COV4 are equal to one. As for the remaining eigenvalue, using the computations
of Subsection 2.4 and Mathematica Wolfram Research, Inc. [2022], we can prove that it is equal to one if and only if

pα1,α2
(t11, t12) = 0, (10)

where

pα1,α2
(t11, t12) = α1(−1 + 7α1 − 12α2

1 + 6α3
1)t

4
11 + 4α1α2(1− 6α1 + 6α2

1)t
3
11t12 + 6α1α2(1− 2α2+

α1(−2 + 6α2))t
2
11t

2
12 + 4α1α2(1− 6α2 + 6α2

2)t11t
3
12 + α2(−1 + 7α2 − 12α2

2 + 6α3
2)t

4
12.

Since t21 ̸= 0, we have

pα1,α2
(t11, t12) = t421rα1,α2

(t11/t21),

for the polynomial rα1,α2
of degree 4 given in Proposition 2, which concludes the proof.
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