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Abstract

The presence of zeroes in Compositional Data (CoDa) is a thorny issue
for Aitchison’s classical log-ratio analysis. Building upon our previous
geometric approach (Faugeras (2023)), we study the full CoDa simplex
from the perspective of affine geometry. This view allows to regard CoDa
as points (and not vectors), naturally expressed in barycentric coordinates.
A decomposition formula for the displacement vector of two CoDa points
yields a novel family of barycentric dissimilarity measures. In turn, these
barycentric divergences allow to define i) Fréchet means and their variants,
ii) isotropic and anisotropic analogues of the Gaussian distribution, and
importantly iii) variance and covariance matrices. All together, the new
tools introduced in this paper provide a log-free, direct and unified way
to deal with the whole CoDa space, exploiting the linear affine structure
of CoDa, and effectively handling zeroes. A strikingly related approach
based on the projective viewpoint and the exterior product will be studied
in the separate companion paper Faugeras (2024a).
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1 Introduction
1.1 A primer on Compositional data (CoDa)
Compositional data (CoDa) analysis deals with the statistical analysis of non-
negative multivariate data a = (a0, a1, . . . , ad) ∈ Rd+1, where each ai ≥ 0
describe the amount of the ith component of a composition. It is understood
that the raw magnitude ai of any component does not have any significance
in itself, but only in its proportion relative to other components. Composition
of soil in geology, elements in a mixture in chemistry, sources of calories in
nutrition, or vote shares in an election are examples of CoDa.

The traditional approach (Aitchison (1986)) normalizes the raw composition
vector a by its sum, i.e. expresses the data in percentages, an operation called
closure in the CoDa literature,

C(a) := a∑d
0 ai

=
a

||a||1
, (1)

where ||.||1 stands for the ℓ1 norm, and the equality follows since a ≥ 0. This
leads to the consideration of normalised (i.e. after rescaling to unit sum) CoDa
element as a vector

x = (x0, . . . , xd) = C(a),

constrained to take its values in the d dimensional unit simplex,

∆d
+ := {x = (x0, . . . , xd) ∈ Rd+1 : xi ≥ 0,

d∑
i=0

xi = 1}. (2)

Due to these unit-sum and non-negativity constraints, CoDa are no longer
genuine vectors and thus can not be directly tackled with classical statisti-
cal multivariate analysis. As a consequence, it is well known (see, e.g., Pear-
son (1897), Chayes (1971)) that the naive covariance matrix Σ of CoDa compo-
nents, i.e.

Σ :=
(
cov(xi, xj)

)
∈ R(d+1)2 (3)

is non-informative, exhibiting spurious correlation and being subcomposition-
ally incoherent. Therefore, these simplex-normalised compositional data points
are studied through a variety of log-ratio transforms, (alr, clr, ilr), which man-
dates to restrict attention to the positive simplex ∆d

++ = {x > 0, x ∈ ∆d
+}.

These transforms turn the positive simplex into an Euclidean vector space in log-
transformed coordinates, on which the classical techniques apply. For recent ac-
counts on this classical vector space approach, see, e.g., Greenacre (2018), Vera
Pawlowsky-Glahn, Juan José Egozcue, and Tolosana-Delgado (2015), Boogaart
and Tolosana-Delgado (2013).

In particular, the CoDa literature has looked for a CoDa analogue of the
classical variance matrix of Euclidean vectors in order to study the codependence
of components. The main approaches promoted are those based on the variance
matrix of log-ratio transformed (alr,clr,ilr) data: Aitchison (1986) defines the
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variation matrix (also called the log-ratio variance matrix) T :=
(
tij
)
∈ R(d+1)2 ,

by
tij := Var

(
ln

xi

xj

)
. (4)

Similarly, the clr-variance matrix Σclr ∈ R(d+1)2 , resp. the ilr-variance matrix
Σclr ∈ Rd2 , is the variance-covariance matrix of the clr-transformed dataset,
resp., ilr-transformed data, see e.g. Aitchison (1986), Greenacre (2018)) or
Boogaart and Tolosana-Delgado (2013).

1.2 Motivation
In spite of its many successes, the main challenge of the classical log-ratio trans-
formed vector space approach is its intrinsic inability to handle CoDa with some
zeroes components: the logarithm is (negative) infinite for zero. Thus, log-ratios
of CoDa components are undefined whenever the numerator or denominator of
the ratio is zero. Such an issue can be severe and fundamental to some fields of
applications, like chemometrics and bioinformatics, where compositional data
sets (e.g. microbiome data) typically exhibit a high proportion of zeros. This
has motivated a growing literature (and debate) on effective methods for re-
placing zeroes, see e.g. Lubbe, Filzmoser, and Templ (2021), Martín-Fernández
et al. (2015) and the references therein for a review of some of (the more and
more involved) imputation methods.

Such zeroes issue is particularly prevalent for the log-ratio variation matrices
(4) and its relatives based on ilr and clr: due to the large (negative) values of the
logarithm function when the argument is small, large relative error are likely to
occur in the log-ratio variance of the small/replaced components, thus distorting
any multivariate analysis based on such log-ratio variances. Any log-ratio based
analysis risks to become particularly sensitive to the imputation method used
to replace the zeroes (see Greenacre (2021)).

This motivates the search of possible alternative representations of CoDa on
the full simplex, in order to have a direct and unified way to deal with CoDa,
with or without zeroes.

1.3 Aims and scope
In Faugeras (2023), we proposed a geometric view of CoDa as an element of the
projectivization Pd

+ of the non-negative orthant cone Rd+1
+ : CoDa are defined

as projective points in the space Pd
+ of equivalence classes [x]+ of non-negative

vectors x ≥ 0, x ∈ Rd+1, where [x]+ is the equivalence class for the (positive)
scaling relation,

z ∈ [x]+ ⇔ z = λx, for some λ > 0.

The components of x are homogeneous coordinates of [x]+, and are noted [x0 :
x1 : . . . : xd]. In turn, these equivalence classes admits several representatives,
which corresponds to several geometric models. In particular, the simplex ∆d

+

is one particular affine model of Pd
+.
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This change of perspective allows to study CoDa using the tools and frame-
work of projective and/or affine geometry. Indeed, a CoDa element x ∈ ∆d

+ of
the simplex should not be envisioned as a vector embedded in a d + 1 dimen-
sional Euclidean space Rd+1, with (x0, x1, . . . , xd) as Cartesian coordinates, but
as an affine representation of a projective point in the d−dimensional projective
space Pd

+, with [x0 : x1 : . . . : xd] as homogeneous coordinates. Thus, a CoDa
projective point [x]+ identifies with an affine point x ∈ ∆d

+, and (x0, x1, . . . , xd)
are then its barycentric (and not Cartesian) coordinates. As a consequence, the
displacement vector from point [y]+ to [x]+ does not write plainly as the vector

x− y = (x0 − y0, . . . , xd − yd)

obtained by the difference of the Cartesian coordinates of simplex representa-
tives, (as would be the case for x,y vectors), but is given by a more complicated
formula (see the forthcoming Lemma 2.4). Consequently, the naive covariance
matrix Σ of (3) based on the expected scalar product 〈.|.〉 of the displacement
vectors from the data x,y ∈ ∆d

+ to their respective mean Ex, Ey ∈ ∆d
+, needs to

account for the fact that x,y ∈ ∆d
+ are affine points in (homogeneous) barycen-

tric coordinates.
In the projective viewpoint, the notion of displacement vector between two

equivalence classes [x]+, [y]+ does not exist. What is meaningful is to consider
the pair ([x]+, [y]+) as a projective line passing between these two points, which
corresponds to the vector plane span(x,y) in the ambient space Rd+1. The (av-
erage) relative orientation between the planes span(x, Ex) and span(y, Ey) can
serve as a basis upon which one can define a notion of covariance and correlation
between points. Grassmann’s exterior (wedge) product ∧ is the key fundamental
algebraic tool which allows to synthetically construct lines from pairs of points
and to decompose the orientations of a pair of planes into components. These
result in bivectors, x∧(Ex) and y∧(Ey), which interprets geometrically as ori-
ented parallelograms. Their components and scalar product serve as analogues
upon which one can construct notions of distance, and covariance matrix for
CoDa.

The closely related projective and affine viewpoints on CoDa thus natu-
rally suggest two related approaches to defining distance/divergence and co-
variance/correlation on CoDa. As readers may not be familiar with projective
geometry, we separate the projective and affine approaches in two different pa-
pers, which can be read independently. The present article only uses notions of
affine geometry and is thus conceptually simpler than Faugeras (2024a), which
is based on the wedge product. The purpose of this paper is thus to define
notions of divergence and variance matrix on the whole CoDa space, based on
the affine viewpoint, using barycentric coordinates.

1.4 Outline
In Section 2, we give a primer on the basics of affine spaces and barycentric coor-
dinates, outlining the differences with vector spaces and Cartesian coordinates.
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In particular, we give the key basic formula (Lemma 2.4) for the displacement
vector between two points expressed in barycentric coordinates, w.r.t. a frame of
affinely independent points. Section 3 elaborates on the simplex representation
of CoDa as affine points expressed in barycentric coordinates. In particular, we
show how the amalgamation, subcomposition and partition operations on CoDa
correspond to affine operations on barycenters. More importantly, we show that
the displacement between two CoDa elements can be decomposed in terms of
displacements of the different pairs of basis frame parts.

This decomposition allows to introduce in Section 4 the first main object
of the paper, which is a family of divergences on the whole CoDa space (thus
allowing for zeroes): the α−barycentric divergences. We study their properties
and generalize to the infinite dimensional case, viz. for general positive mea-
sures. The case α = 2 has a nice geometric interpretation in terms of areas of
triangles on the simplex.

Section 5 gives a first statistical application by defining various notions of
empirical Fréchet means/medians for a sample cloud of CoDa points, based on
these barycentric divergences. Simulations illustrate and allow to compare the
variants obtained. The case of the Fréchet mean for the α = 2 barycentric diver-
gence appears particularly interesting, and reduces to the centroid (arithmetic
mean) for 2− parts compositions.

Section 6 defines corresponding isotropic Laplace-Gaussian distributions based
on the barycentric divergences. Introducing weighted versions of the barycen-
tric divergences allows to generalize further and to define anisotropic general-
ized Laplace-Gaussian distributions. This gives analogues of the multivariate
Laplace-Gaussian distribution on the whole CoDa space, with parameters for
the location, the overall dispersion and the relative directions of variation.

Eventually, we introduce in Section 7 the second major object of the paper:
a notion of variation matrix for CoDa based on an averaged “scalar product”
of displacement vectors, as in the Euclidean vector case, but now with the key
basic formula taking into account the affine nature of the Coda points expressed
in barycentric coordinates. More precisely, we define affine notions of covariance
and correlation matrices for a pair of random CoDa, and of variance matrix for
the study of the intra-dispersion of a single random CoDa among its parts. The
barycentric variance matrix is a log-free analogue of the classical log-variation
matrices based on the variance of log-ratio transformed CoDa of the literature,
in its ability to measure proportionality of CoDa components. Its properties are
studied and illustrated by basic simulations. We conclude in Section 8.

2 A primer on affine geometry and barycentric
coordinates

We briefly recall the basics of affine geometry and of barycentric coordinate
systems. These are the prerequisites to understand CoDa as affine points.
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2.1 Affine spaces
Informally, an affine space is a vector space without a fixed choice of origin. It
describes the geometry of points and free vectors in space, distinguishing be-
tween the two types of objects. As a consequence of the lack of origin, points in
affine space cannot be (linearly) added together by plainly adding their coordi-
nates as is the case for vectors, since the notion of linear combination of points
is frame dependent, see, e.g., Gallier (2011) Chapter 2.1.1 However, a vector
v may be added to a point P by placing the initial point of the vector at P
and then transporting P to the terminal point. The operation thus described
P → P + v is the translation of P along v.

This suggests to develop affine geometry over linear algebra: an affine space
is a set of points equipped with a set of transformations (that is bijective map-
pings), the translations, which form a vector space, and such that for any given
ordered pair of points there is a unique translation sending the first point to the
second; the composition of two translations is their sum in the vector space of
the translations.

Weyl’s axiomatization of an affine space formalizes these considerations:

Definition 2.1 (Affine space). An affine space is a pair (A,
−→
A) consisting of a

nonempty set A (whose elements are called points) and a real vector space −→A
(the space of vectors) such that there is a mapping

A×A →
−→
A

denoted by
(P,Q) ∈ A×A 7→

−−→
PQ ∈

−→
A

satisfying the following axioms:

i) for any P,Q,R ∈ A, we have −→PR =
−−→
PQ+

−−→
QR;

ii) for any P ∈ A and for any x ∈
−→
A there is one and only one Q ∈ A such

that x =
−−→
PQ.

A is often said to be the affine space associated to −→A , or conversely that−→
A is the associated vector space for the affine space A. It is also convenient to
write Q = P + v or v = Q − P , instead of v =

−−→
PQ. The dimension of A is

defined as that of −→A . When A =
−→
A and −−→PQ = Q−P , the vector space −→A itself

is regarded as an affine space.
A point O ∈ A (called the origin) and a vector basis (e1, . . . , ed) of (a finite

d−dimensional) −→A together are called a frame of reference in the affine space A.
The affine coordinates of a point P ∈ A in the frame of reference (O; e1, . . . , ed)

are defined as the (vector) coordinates (α1, . . . , αd) of the vector x :=
−−→
OP in

1Yet, see the forthcoming Section 2.2
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the vector basis (e1, . . . , ed), viz.

x :=
−−→
OP =

d∑
i=1

αiei.

If relative to the frame of reference (O; e1, . . . , ed), the point P has coordinates
(α1, . . . , αd), while the point Q has coordinates (β1, . . . , βd), then the vector −−→PQ
has, with respect to the basis (e1, . . . , ed), coordinates

(β1 − α1, . . . , βd − αd). (5)

Further details on affine transformations, affine subspaces, etc. . ., can be found
on any textbook on affine geometry, see, e.g., Gallier (2011), Shafarevich and
Remizov (2013).

2.2 Barycentric coordinates
Instead of locating a point with respect to a frame made of a point and a vec-
tor basis, one can locate points in a reference system made solely of points.
Barycentric coordinates, introduced by Möbius (1827), specify the location of a
point w.r.t. a simplex (of d+1 points in a d−dimensional affine space). Barycen-
tric calculus interprets as a method of treating geometry by considering a point
as the center of gravity of certain other points to which weights are ascribed.
It is particularly useful to describe triangle centers (the centroid, orthocenter,
incenter, circumcenter, etc.), which enjoy simple barycentric coordinate repre-
sentations with respect to the vertices of their reference triangle. Barycentric
coordinates are used, e.g., in geometric modeling, in computer graphics, in geo-
physics, or in the finite element method for interpolation on polygons.

Barycentric coordinates are defined w.r.t. to a simplex of affine independent
points. Hence, we recall the notion of affine independence:
Definition 2.2 (Affine independence). A set {A1, . . . , AN} of N points in a
d-dimensional affine space, d ≥ 2, is said to be affine independent if the N − 1

vectors −−−→A1Ak , k = 2, . . . , N , are linearly independent2. A simplex of affine
independent points, i.e. a set of d + 1 affinely independent points in a d-
dimensional affine space, is simply called an affine frame.

Barycentric coordinates are then defined as follows:
Definition 2.3 (Barycentric coordinates). Let {A0, . . . , Ad} be d + 1 affinely
independent points in a d-dimensional affine space A. Let P be a given point.
There are scalars p0, . . . , pd, with

∑d
i=0 pi 6= 0, such that, for all points Q,

(

d∑
i=0

pi)
−−→
QP =

d∑
i=0

pi
−−→
QAi. (6)

The elements of a (d + 1) tuple (p0, p1, . . . , pd) that satisfies this equation are
called barycentric coordinates of P with respect to {A0, . . . , Ad}.

2Thus, necessarily, N − 1 ≤ d.
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Proof. SinceA is d-dimensional and {A0, . . . , Ad} are affinely independent, there
exist unique scalars αi, i = 1, . . . , d, s.t. P writes w.r.t. to the frame of reference
(A0;

−−−→
A0A1, . . . ,

−−−→
A0Ad) as

P = A0 +

d∑
i=1

αi
−−−→
A0Ai.

Thus, for all Q ∈ A,
−−→
QP =

−−→
QA0 +

−−→
A0P

=
−−→
QA0 +

d∑
i=1

αi(
−−→
A0Q+

−−→
QAi)

= (1−
d∑

i=1

αi)
−−→
QA0 +

d∑
i=1

αi
−−→
QAi

Thus, equation (6) is satisfied with p0 = 1 −
∑

i ai, pi = αi, i = 1, . . . , d, and∑d
i=0 pi = 1 6= 0.

Conversely, a family of scalars (p0, . . . , pd) s.t.
∑d

i=0 pi 6= 0 define a unique
point P via the vector −−→QP of (6) as

P = Q+
−−→
QP = Q+

d∑
i=0

pi∑d
j=0 pj

−−→
QAi, (7)

where Q can be chosen arbitrarily, see, e.g., Gallier (2011) Lemma 2.1 (1)).
Barycentric coordinates are then homogeneous: scaling each coordinate pi ←
λpi by a common factor λ 6= 0 defines the same point P in (7). Thus, in barycen-
tric coordinates only ratios of coordinates are relevant. Therefore, in analogy
with homogeneous coordinates of projective geometry, barycentric coordinates
of the point P will be denoted by (p0 : p1 : . . . : pd). The affine indepen-
dence of the affine frame insures that the barycentric coordinate representation
of a point with respect to the affine frame is unique, up to scaling. Imposing
the condition

∑d
i=0 pi = 1 yields unicity of the (p0, . . . , pd) and result in nor-

malised barycentric coordinates, which are sometimes given as the definition of
barycentric coordinates. In this case, the point P of (7) is simply written as a
combination of the points in the frame,

P =

d∑
i=0

piAi, with
d∑

i=0

pi = 1, (8)

and is called the barycenter (with weight 1) of the weighted points (pi, Ai),
i = 0, . . . , d.
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If
∑d

i=0 pi = 0, then, by Gallier (2011) Lemma 2.1 (2),

d∑
i=0

pi
−−→
QAi

is independent of Q and thus defines a unique vector. Combining both cases
allows to give a meaning to general linear combination of points∑

i∈I

λiPi, λi ∈ R,

where (Pi)i∈I is a family of points and I an index set: it will yield

i) either a point, if
∑

i∈I λi 6= 0, defined as the barycenter of the weighted
points (λi, Pi). If

∑
i∈I λi 6= 1, writing P =

∑
i∈I λiPi expresses P in

homogeneous barycentric coordinates w.r.t (Pi)i∈I and thus corresponds
to the barycenter

P =
∑
i∈I

λi∑
j∈I λj

Pi

in normalised homogeneous coordinates (8). In other words, the point P
is given the weight

∑
i λi.

ii) or a vector, if
∑

i∈I λi = 0, defined as
∑d

i=0 λi
−−→
QPi with Q chosen arbi-

trarily. In particular, the difference P1 − P2 of two points gives a vector,
hereby justifying the notation of a vector in affine space as a difference of
two points.

2.3 Formula of the displacement vector from barycentric
coordinates of points

Let F = {A0, . . . , Ad} be d+1 affine independent points in the affine space Rd.
Let the points M , resp. N , with barycentric coordinates (m0 : . . . : md), resp.
(n0 : . . . : nd), w.r.t. F . Then, the following key (elementary) lemma gives the
displacement vector v =

−−→
MN from M to N :

Lemma 2.4. For M and N defined by barycentric coordinates as

M =

∑
i miAi∑
i mi

, N =

∑
j njAj∑
j nj

,

the displacement vector v =
−−→
MN from M to N writes

v =

∑
i<j det

∣∣∣∣mi ni

mj nj

∣∣∣∣−−−→AiAj∑
i mi

∑
j nj

. (9)
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Proof. One has, by definition of M and N ,

v =
−−→
MN = −M +N = −

∑
i miAi∑
i mi

+

∑
j njAj∑
j nj

=

∑
i

∑
j njmi(Aj −Ai)∑
i mi

∑
j nj

=

∑
i<j njmi(Aj −Ai) +

∑
i>j njmi(Aj −Ai)∑

i mi

∑
j nj

=

∑
i<j njmi(Aj −Ai) +

∑
i<j nimj(Ai −Aj)∑

i mi

∑
j nj

(10)

=

∑
i<j(minj − nimj)(−Ai +Aj)∑

i mi

∑
j nj

=

∑
i<j det

∣∣∣∣mi ni

mj nj

∣∣∣∣−−−→AiAj∑
i mi

∑
j nj

.

where (10) follows by exchanging the role of i and j.

Notice that v is homogeneous, i.e. is invariant w.r.t. rescalings m ← λm
and n← µn, λ, µ 6= 0, of the barycentric coordinates of M and N .

3 CoDa as an affine point in barycentric coordi-
nates

The quick reminder on affine geometry of the previous Section 2, especially the
homogeneous character of barycentric coordinates, justify the claims of Section
1.2 and make it clear why CoDa elements, identified as elements of the simplex
∆d

+, are to be seen as affine points in barycentric coordinates, and not as vectors:
identifying each component i of a composition with an affine point Ai, it is
reasonable to assume that F = {Ai, i = 0, . . . , d} are affinely independent, since
components relate to different entities and are thus not related to each others.
Then, a (simplex representative of) CoDa x ∈ ∆d

+ corresponds to the affine
point

x =

d∑
i=0

xiAi,

d∑
i=0

xi = 1, xi ≥ 0,

in normalized barycentric coordinates, as in (8).

3.1 CoDa operations as affine operations on points
In particular, the Amalgamation, Subcomposition and Partition operations on
CoDa of Aitchison (1986) have a simple geometric description in terms of
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barycenters and affine combinations of points. Recall that given a CoDa x =
(x0, . . . , xd) ∈ ∆d

+, an amalgamation of order 1 is a mapping

∆d
+ 3 x 7→ t ∈ ∆1

+,

obtained when the parts of a (d + 1)− composition are separated into two
mutually exclusive and exhaustive subsets, and the composition within each
subset are added together. This results in a 2−parts composition in ∆1

+. For
example, x = (x0, x1, x2, x3) ∈ ∆3

+ can be amalgamated into t = (t0, t1) with
t0 = x0 + x1, t1 = x2 + x3. A subcomposition

∆d
+ 3 x 7→ c ∈ ∆k

+

is obtained by selecting k + 1 parts of a composition and closing the selected
subvector to obtain a subcomposition in ∆k

+. Finally, a partition of order one is
the separation of a (d+ 1)−parts composition into two disjoint and exhaustive
subsets, and recording the amalgamation and subcomposition of each subsets.
For example, the order one partition

(x0, . . . , xk

∣∣xk+1, . . . , xd)

cuts the (d+1)−parts at position 0 ≤ k ≤ d and yields an amalgamation vector
t = (t0, t1), with t0 = (x0 + . . . , xk), t1 = (xk+1 + . . . + xd), together with the
two vectors of subcompositions

c0 = C(x0, . . . , xk) =
(x0, . . . , xk)

t0
, c1 = C(xk+1, . . . , xd) =

(xk+1, . . . , xd)

t1
.

By Property 2.10 and 2.11 of Aitchison (1986), this results in a bijective trans-
formation

∆d
+ 3 x 7→ (t, c0, c1) ∈ ∆1

+ ×∆k
+ ×∆d−k−1

+ .

Identifying a CoDa element x = (x0, . . . , xd) ∈ ∆d
+ with the affine point

P =
∑d

i=0 xiAi expressed as a barycenter of the base parts-points Ai, the point
P can be decomposed as a sum of two points

P =

(
k∑

i=0

xiAi

)
+

(
d∑

i=k+1

xiAi

)
:= C0 + C1.

C0 and C1 write, in normalized barycentric coordinates, as

C0 =

k∑
i=0

xi∑k
j=0 xj

Ai =

k∑
i=0

xi

t0
Ai =

k∑
i=0

c0iAi,

C1 =

d∑
i=k+1

xi∑d
j=k+1 xj

Ai =

d∑
i=k+1

xi

t1
Ai =

d∑
i=k+1

c1iAi,
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where (c0i), resp. (c1i), are the components of c0, resp. c1. The weighted point
(1, P ) writes, also in normalized barycentric coordinates, as

P = t0C0 + t1C1, t0 + t1 = 1. (11)

In other words, the composition P can be partitioned into two subcomposi-
tions C0 and C1, whose normalized barycentric coordinates c0, c1 corresponds to
the subcomposition operation of Aitchison (1986). In addition, the original com-
position point P writes as the barycenter of these two subcompositions points,
with barycentric coordinates t = (t0, t1) w.r.t. C0, C1, corresponding to the
amalgamation operation. The equality (11) is the statement of Properties 2.10
and 2.11 of the partitioning operation of Aitchison (1986) in affine geometric
language and corresponds to the well-known property of associativity/reduction
of the barycenter, that is to say that a barycenter can be computed from sub-
barycenters.

These considerations, although elementary, shed a geometric light on the ba-
sic operations on compositions and thus vindicate the affine viewpoint espoused
in this paper. In particular, it clarifies the role of the total/amalgamation/closure
in the treatment of CoDa with a total.

3.2 Displacement vectors of CoDa points
For CoDa points x,y ∈ ∆d

+, the unit sum normalization ||x||1 = ||y||1 = 1
entails a simplification in formula (9) in Lemma 2.4, as

−→xy =
∑
i<j

det
∣∣∣∣xi yi
xj yj

∣∣∣∣−−−→AiAj (12)

and makes it clear why the displacement between two CoDa points should not
write as a difference (5) of their coordinates in a frame of reference (see the
forthcoming Remark 2). Formula (12) is the key ingredient for the affine view-
point of this paper: it gives the decomposition of the displacement vector from
x to y in terms of the d(d + 1)/2 displacements −−−→AiAj of two different points
Ai, Aj , i 6= j, of the affine frame F .

Remark 1 (Displacement coordinates as weighted ratios). Let

vij := det
∣∣∣∣xi yi
xj yj

∣∣∣∣ , 0 ≤ i 6= j ≤ d, (13)

be the determinantal coefficient of the component of the displacement in the−−−→
AiAj direction in formula (12). It writes, for xi 6= 0, yi 6= 0, as

vij = xiyj − yixj = xiyi

(
yj
yi
− xj

xi

)
. (14)

Let Ui := {[x]+ ∈ Pd
+ : xi 6= 0} be the subset of the CoDa space with non-null

(hence positive) i-th coordinate. Then, following Faugeras (2023), Ui can be
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identified with the non-negative part of the affine hyperplane {x : xi = 1} of
Rd+1: a projective CoDa point [x]+ ∈ Ui with homogeneous coordinates

[x0 : . . . : xi : . . . : xd]+ = [x0/xi : . . . : 1 : . . . : xd/xi]+

can in turn be identified, after dropping the constant 1 at the ith position, with
an affine point X/i ∈ Rd with inhomogeneous coordinates

X/i := (x0/xi, . . . , xi−1/xi, xi+1/xi, . . . , xd/xi).

Thus, if both [x]+ and [y]+ belong to Ui, equation (14 interprets as a weighted
difference yj/yi − xj/xi of the jth inhomogeneous coordinate of the points X/i

and Y/i, in the affine patch corresponding to Ui, with a weight xiyi given by
the product of their ith (simplex) coordinate. In other words, the displacement
for positive CoDa elements decomposes as a weighted difference, not of their
coordinate components (xj), but of their ratios. The weight xiyi translates the
relative importance of components i of x and y.

If one sets conventionally 0/0 := 1, then formula (14) becomes true for all
(non-negative) Coda elements [x]+, [y]+ ∈ Pd

+. This interpretation of coordinate
displacements as a weighted sum of components ratios is important from the
subcompositional coherence point of view: only ratios of CoDa components are
subcompositionally coherent, see, e.g., Greenacre (2021)

Remark 2 (Displacement vector in the reference frame (A0;
−−−→
A0A1, . . . ,

−−−→
A0Ad)).

Formulas (12) and (9) expresses the displacement vectors in terms of the d(d+

1)/2 vectors −−−→AiAj. It is more common in affine geometry to write the displace-
ment vector w.r.t. to a reference frame (O; e1, . . . , ed). W.lo.g. we take the
affine frame with A0 as origin and ei =

−−−→
A0Ai, i = 1, . . . , d. Then, either by

setting Q = A0 in (6) and computing the difference of points or decomposing
−−−→
AiAj =

−−−→
AiA0 +

−−−→
A0Aj in (12), one can write the displacement vector of −→xy, for

simplex-normalized x,y ∈ ∆d
+, w.r.t. the reference frame (A0;

−−−→
A0A1, . . . ,

−−−→
A0Ad),

as

−→xy =

d∑
j=1

 ∑
0≤i ̸=j≤d

vij

 ej =

d∑
j=1

(yj − xj)ej . (15)

This gives the usual formula (5) of the displacement vector between two points
expressed in d + 1 barycentric coordinates in terms of the difference of d in-
dependent coordinates. (Note the absence of the zero coordinates x0 and y0).
However, the formula is not symmetric w.r.t coordinate components as one
component serves as origin and thus play a distinguished role.

Note that if one directly applies formula (6), then, obviously, for any point
Q,

−→xy =
−→
Qy −

−→
Qx =

d∑
i=0

(yi − xi)
−−→
QAi.
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However, (−−→QA0,
−−→
QA1, . . . ,

−−→
qAd) is not a vector basis, since it now contains d+1

vectors in a d−dimensional space. In addition, it introduces the extrinsic element
Q, whose choice is arbitrary. This gives another reason why analysis of CoDa
elements based on the usual coordinate difference is clearly wrong.

4 Barycentric divergence on the CoDa space
4.1 Motivation and definition
Lemma 2.4, and its specialization via formula (12) to CoDa represented on the
simplex ∆d

+, by giving the decomposition of the displacement vector of CoDa
x to y in terms of the d(d + 1)/2 displacements −−−→AiAj of two different points
Ai, Aj , provides a natural way to measure the distance or proximity between
two CoDa elements.

Indeed, each component i = 0, . . . , d of a composition identifies with a point
Ai in a d−dimensional affine space. However, components of a composition are
just different entities with no proper geometric properties. Hence, although the
displacements −−−→AiAj , i < j are dependent from the affine geometric viewpoint,
it makes sense, from the compositional viewpoint, to consider each pair (i, j) of
components, identified with the displacements −−−→AiAj , i 6= j in formula (12), as
if they were “orthogonal”. In fact, the principle of subcompositional coherence
in CoDa is based on the idea that, quoting Vera Pawlowsky-Glahn, Juan José
Egozcue, and Tolosana-Delgado (2015) p. 16, “subcompositions should behave
like orthogonal projections in real analysis”. This principle somehow motivates
(heuristically) the idea that two different elementary displacements −−−→AiAj , and
−−−→
AkAl, for (i, j) 6= (k, l), should be thought as “orthogonal” and that each cor-
responding determinantal coordinate coefficient in (12) measures “orthogonal”
characteristics of a pair of CoDa, from which one can build a measure of distance
or proximity between CoDa points. (A more principled mathematical justifi-
cation will be given in Faugeras (2024a), based on exterior products.) Taking
a measure of the magnitude of the displacement vector −→xy, via the choice of a
norm ||.||, e.g., an ℓα norm, leads to the following definition:

Definition 4.1. Let [x]+, [y]+ ∈ Pd
+ be two CoDa elements, and α be a real

number. Then, the α-barycentric divergence is defined, for 1 ≤ α <∞, as

dα([x]+, [y]+) :=

(∑
i<j

∣∣∣∣det
∣∣∣∣xi yi
xj yj

∣∣∣∣∣∣∣∣α)1/α

||x||1||y||1
, (16)

and, for α =∞, as

dα([x]+, [y]+) :=

maxi<j

∣∣∣∣det
∣∣∣∣xi yi
xj yj

∣∣∣∣∣∣∣∣
||x||1||y||1

.
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Both expressions reduces to the numerator in case of simplex representatives
x,y ∈ ∆d

+.

The following theorem studies properties of such divergences, and justifies
the heuristic motivation which had lead to their definition.

Theorem 4.2. i) dα is well defined on Pd
+, dα : Pd

+ × Pd
+ → R+, i.e. does

not depend on the representatives x,y of [x]+, [y]+, viz.

dα([x]+, [y]+) = dα([λx]+, [µy]+), λ, µ > 0.

ii) Symmetry: dα([x]+, [y]+) = dα([y]+,x]+).

iii) Permutation invariance: let σ = (σ0, σ1, . . . , σd) be a permutation of
{0, 1, . . . , d} and write xσ for the vector (xσ0

, . . . , xσ1
, xσd

). Then,

dα([xσ]+, [yσ]+) = dα([x]+, [y]+).

iv) Boundedness: 0 ≤ dα([x]+, [y]+) ≤ 1.

v) Positive-definiteness: dα([x]+, [y]+) ≥ 0 and dα([x]+, [y]+) = 0⇔ [x]+ =
[y]+

vi) Zeroes subcompositional coherence: if [x]+, [y]+ ∈ Pd
+ are seen as subcom-

positions of larger compositions [x̃]+ := [x : 0]+ ∈ Pd+k
+ and [ỹ]+ := [y :

0]+ ∈ Pd+k
+ , where 0 ∈ Rk, for some integer k > 0, and where x : 0 stands

for the concatenation of x ∈ Rd+1
+ and 0, then

dα([x̃]+, [ỹ]+) = dα([x]+, [y]+).

Proof. i) Since [x]+, [y]+ ∈ Pd
+, x,y 6= 0. Thus, ||x||1, ||y||1 6= 0. Scale in-

variance x← λx, y← µy, in the r.h.s. of (16) follows from multilinearity
of the determinant.

ii) and iii) follows easily from the definition.

iv) For 1 ≤ α <∞, Minkowski’s inequality yields∑
i<j

|xiyj − xjyi|α
1/α

≤

∑
i<j

|xi|α|yj |α
1/α

+

∑
i<j

|yi|α|xj |α
1/α

≤

∑
i,j

|yi|α|xj |α
1/α

=

(∑
i

|yi|α
)1/α

∑
j

|xj |α
1/α

= ||x||α||y||α

≤ ||x||1||y||1,
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where the last line follows from the Lp inequality, and which gives the
result.
For α =∞, the results follows from

|xiyj − xjyi| ≤ max(xiyj , xjyi) ≤ ||x||1||y||1.

v) Assume

dα([x]+, [y]+) = 0⇔ xiyj = xjyi for all i 6= j ∈ {0, 1, . . . , d}. (17)

Set I = {i : xi 6= 0}. Since x 6= 0, I 6= ∅. By permutation invariance iii),
one can assume w.l.o.g. that x0 6= 0. Then, (17) with i = 0 yields

yj = xj

(
y0
x0

)
, ∀j 6= 0.

Set λ := y0/x0. λ 6= 0 because, if λ = 0, then, y0 = 0 and the above
equation yields yj = 0, ∀j 6= 0. This would lead to a contradiction, since
y 6= 0. One has thus y = λx, with λ > 0, viz. [x]+ = [y]+.
The converse direction is obvious from the anti-symmetry property of the
determinant.

vi) Both numerator and denominator in (16) remain the same if some zeroes
are added to the components of x and y.

4.2 The case α = 2

One has thus obtained a family of symmetric, permutation-invariant, bounded
divergences on the full Coda space (i.e. also for CoDa with zeroes). Among all
possible divergences, noticeable cases occur for α = 1, 2,∞. Indeed, for α = 2,
the divergence write as follows:

Lemma 4.3. The 2−barycentric divergence writes as

d2([x]+, [y]+) =

√
||x||22||y||22 − 〈x|y〉2
||x||1||y||1

(18)

=
||x||2||y||2
||x||1||y||1

sin θxy, (19)

where θxy ∈ [0, π/2] is the acute angle between the rays [x]+ and [y]+.
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Proof. By symmetry,∑
i<j

(xiyj − xjyi)
2 =

1

2

∑
i,j

(xiyj − xjyi)
2

=
1

2

∑
i,j

(
x2
i y

2
j + x2

jy
2
i − 2xiyixjyj

)

=
1

2

∑
i

x2
i

∑
j

y2j +
∑
i

x2
i

∑
j

y2j − 2
∑
i

xiyi
∑
j

xjyj


= ||x||22||y||22 − 〈x|y〉2,

which gives (18). Together with 0 ≤ 〈x|y〉 = ||x||2||y||2 cos θxy, with θxy ∈
[0, π/2], it yields formula (19).

Remark 3. i) Since ||x||2 ≤ ||x||1, formula (19) implies that

0 ≤ d2([x]+, [y]+) ≤ 1,

which gives, for the case of the 2-divergence, another proof of the upper
bound in Theorem 4.2 iv).

ii) Formula (19) involves the the sine of the (acute) angle between rays [x]+
and [y]+. Since ||x||2 ≤ ||x||1 ≤

√
d+ 1||x||2, one has that

sin θxy
d+ 1

≤ d2([x]+, [y]+) ≤ sin θxy,

thus d2 is Lipshitz-equivalent to the sine distance on rays.
The dissymmetry between the ||.||2 and ||.||1 norms in the fraction in
(19) suggests that we (should) eliminate this ratio-of-norms coefficient by
replacing in the definition (19) the denominator ||x||1||y||1 by ||x||2||y||2.
This amounts to normalizing the CoDa elements [x]+, [y]+ by the ||.||2
norm instead of the ||.||1 norm, i.e. to replace the closure operation (1)
which radially projects the ray [x]+ on the simplex by a radial projection
on the unit sphere. Such a step will be performed in Faugeras (2024a),
and justified mathematically from the projective viewpoint. In addition,
such a change will lead to improved properties.

iii) Let A =
(
xy
)
∈ R(d+1)×2 be the matrix with columns x,y. Then, formula

(18) writes

d2([x]+, [y]+) =

√
det(ATA)

||x||1||y||1
Hence, the numerator is the square root of the determinant of the Gram
matrix,

ATA =

(
〈x|x〉 〈x|y〉
〈x|y〉 〈y|y〉

)
,
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and thus interprets geometrically to the area of the parallelogram spanned
by {x,y}. Thus, for simplex representatives x,y ∈ ∆d

+, d2([x]+, [y]+)
interprets geometrically has twice the area of the triangle Oxy, with O
the origin of the ambient vector space Rd+1. In addition, this form allows
to re-derive some of the properties of Theorem 4.2, and more importantly,
suggests the more abstract approach of Faugeras (2024a).

4.3 Infinite dimensional version
As a CoDa element is simply a discrete probability distribution on a finite
number of locations whose locations are forgotten (see, e.g., Faugeras (2024b)),
Definition 4.1 can be generalized to general probability measures and even to
σ−finite positive measures P,Q on some measurable space (Ω,A), with 0 <
P (Ω), Q(Ω) < ∞. (Infinite dimensional versions of CoDa vector spaces are
called Bayes space in the CoDa literature, see, e.g., J. J. Egozcue, Díaz-Barrero,
and V. Pawlowsky-Glahn (2006)). Let µ be a measure dominating P and Q,
(e.g., µ = (P + Q)/2). By Radon-Nikodym’s theorem, P , Q have densities
f = dQ

dµ , g = dQ
sµ . One can then define in such general case the following

symmetric divergence:
Definition 4.4. Let α ≥ 1. If P , resp. Q, with densities f , resp. g are such
that f, g ∈ Lα(Ω,A, µ), then the finite symmetric divergence,

Dα(P,Q) :=

(∫∫
|f(x)g(y)− f(y)g(x)|αµ(dx)× µ(dy)

)1/α
P (Ω)Q(Ω)

which reduces to the numerator in case P and Q are probability measures, is
well defined.
Proof. From the inequality, |a − b|α ≤ 2α−1(|a|α + |b|α), (which itself follows
from convexity of x 7→ |x|α for α ≥ 1), one has that

|f(x)g(y)− f(y)g(x)|α ≤ 2α−1(|f(x)|α|g(y)|α + |f(y)|α|g(x)|α).

Hence, if ||f ||α, ||g||α <∞, then the numerator is finite.

To our knowledge, such divergence has not been introduced before in the
probabilistic literature. It allows to compare measures with different total
masses and possibly disjoint supports3.

5 Fréchet means based on the barycentric diver-
gences

5.1 Definitions and basic properties
Having a notion of divergence between CoDa points, one can now define notions
of center and measures of dispersion of a cluster of points, following the metric

3More precisely, it allows to compare the compositional part of measures, in case they have
unequal total mass.

19



approach of Fréchet (1948) (See also Faugeras (2023) Section 7). Indeed, given
a CoDa sample [x1]+, . . . , [x

n]+ ∈ Pd
+, for any Coda point [m]+ ∈ Pd

+, the
following functional

Fα,β([m]+) :=

n∑
i=1

dβα([m]+, [x
i]+), (20)

with 1 ≤ α ≤ ∞, β > 0, gives a measure of the outlyingness4 (i.e. is a depth
function) of the point [m]+ w.r.t. the data points [x1]+, . . . , [x

n]+. Minimizing
such functional over the whole CoDa space thus gives a notion of central point,
and the value of Fα,β at a minimum gives a measure of dispersion of the cloud
of points. We thus introduce the following definition:

Definition 5.1. An empirical (α, β)-barycentric Fréchet mean is defined as a
minimizer of (20). It is simply called an α-barycentric Fréchet mean for β = α.

Among possible choices for β, one can consider three interesting cases, i)
β = 2, ii) β = 1 and iii) β = α. Case i) gives the the well-known Fréchet mean,
but for the different α-divergences of equation (16). In particular, the case
α = β = 2 leads to a quadratic program, and the resolution of a linear system.
Case ii) gives a notion of spatial median, again for the different α-divergences
considered, which is a more robust version of center than the Fréchet mean, but
is usually more computationally difficult. Case iii) is a sort of generalized Fréchet
mean, which gives the median for the 1-divergence, the Fréchet mean for the
2−divergence. By removing the power of the outer bracket in the determinantal
formula (16), it somehow appears as a natural choice.

The following theorem easily ensues.

Theorem 5.2. i) For 1 ≤ α ≤ ∞, β > 0, a (α, β)-barycentric Fréchet mean
always exists.

ii) For β ≥ α ≥ 1 and α = ∞, β ≥ 1, stationary points of (20) are (α, β)-
barycentric Fréchet means.

iii) For ∞ > β ≥ α > 1, a (α, β)-barycentric Fréchet mean is unique.

Proof. i) Restricting to simplex representatives in ∆d
+, the functional writes

(20) as a sum of (absolute values of) powers on a compact convex space,
hence is continuous, and Weierstrass theorem ensues that minimizers al-
ways exists.

ii) The functional (20) is convex (for β ≥ α and α =∞, β ≥ 1), so that local
minima are global ones.

iii) For ∞ > β ≥ α > 1, (20) is strictly convex.

4or, following Huygens’ terminology in mechanics of solids, is the inertia of the data set
relative to the point [m]+.
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It is worth noting some advantages of such means/medians: compared to the
classical Aitchison’s mean, which is based on log-ratios and results in the geo-
metric mean, the proposed approach enables handling situations where zeroes
are present in the composition. Compared to the Fréchet means/medians based
on Hilbert’ projective metric, introduced in Faugeras (2023), characterizing and
computing the barycentric means/medians is a much easier convex problem. In
particular, the case α = β = 2 stands out as particularly appealing since unicity
is guaranteed and the problem reduces to a simple basic quadratic program.

Remark 4. i) The barycentric means/medians are based on the minimiza-
tion of the Fréchet functional (20) over the whole CoDa space Pd

+, (equiv-
alently, ∆d

+). One can also consider several versions of so-called medoids
(see e.g. Kaufman and Peter J. Rousseeuw (1990)) where the minimiza-
tion of (20 is restricted to the finite set of data points [x1]+, . . . , [x

n]+.
This allows to obtain a center which is always a member of the data set.
This can be useful in cases where the data set has a special geometric
structure (e.g. sits on a line, a curve, or more generally a manifold), and
one wants to ensure that the central point is representative of the data
structure. It is also beneficial in terms of interpretability of the center.
See Examples 4 and 5.
In addition, the computation reduces to a discrete optimization problem,
i.e. computing all pairwise divergences between points and identification of
the minimal one. This requires at most O(n2) distance evaluations, and
there exists some algorithms (Wang and Eppstein (2006), Baharav and
Tse (2019)) which allows to reduce the number of distance evaluations to
an almost linear time. This can be crucial for (moderately) large datasets,
where computation time is the main bottleneck of the method.

ii) The Fréchet mean/median/medoid look for a single central point. It can
be generalized to k-mean/median/medoid clustering (see e.g. Everitt et
al. (2011), Simovici (2021)) which ask for the location of k cluster centers
and a partition the n observations into k cluster sets,W = {S1, S2, ..., Sk},
so as to minimize the sum of β-powers of the α-divergences from each
sample point to its nearest cluster: the objective is to find

argmin
W

k∑
j=1

∑
[x]+∈Sj

dβα([x]+, [m
i]+)

where [mi]+ is itself the Fréchet mean/median

[mi]+ := arg min
[m]+∈Pd

+

∑
[x]+∈Si

dβα([x]+, [m]+).

Several variants/algorithms can be envisioned. In particular, the forth-
coming Definition 6.1 of Generalized Gaussian distribution based on the
barycentric divergence (16) suggests to investigate Expectation-Minimization
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clustering algorithms based on a model of mixture of such barycentric Gaus-
sian distributions. We leave this suggestion for further research.

iii) The measure of the Fréchet functional (20) at the minimum gives a mea-
sure of the global variability of the cloud of CoDa points. An alternative
robust measure of dispersion of a cloud of CoDa points can be obtained
by replacing the sum in (20), calculated at the mean/median point [m]+,
by the median. In particular, taking α = β = 1 gives the Mean Absolute
Deviation, defined as

MAD = Median
(
d1([x

i]+,Med([x1]+, . . . , [x
n]+))

)
,

where Med([x1]+, . . . , [x
n]+) is a Fréchet median of the data points based

on the 1−barycentric divergence (β = α = 1). See, e.g., Peter J Rousseeuw
and Croux (1993), Gauss (1816).

5.2 Numerical experiments and comparison with the cen-
troid

We illustrate and investigate the different kind of means based on α-barycentric
divergence. In the following, we always choose β = α in Definition 5.1, except
for α =∞, for which we set β = 1.

For α = 2, the barycentric Fréchet mean sometimes corresponds to the
arithmetic mean, i.e. the centroid defined as the arithmetic average of the data
points on the simplex, viz.

[x]+ :=

[
1

n

n∑
i=1

C(xi)

]
+

,

where C is the closure operation of (1). Also, the barycentric median (α = 1)
may not be unique. The following toy example illustrates these points.

Example 1 (Toy example: centroid/barycenter of the triangle). A simple
calculation shows that the 2-barycentric Fréchet mean (m0,m1,m2) ∈ ∆+

d of
the vertices of the basic triangle A1A2A3, with A1 = (1, 0, 0), A2 = (0, 1, 0),
A3 = (0, 0, 1) minimizes the Lagrangian

L(m) := 2(m1
0 +m2

1 +m2
2) + λ(m0 +m1 +m2 − 1),

where λ is the Lagrange multiplier, and is thus easily seen to be equal to m =
(1/3, 1/3, 1/3), i.e. the barycenter or centroid of the triangle.

On the other hand, the Fréchet functional for the 1-divergence is constant
and equal to 2, hence any point in the triangle is a 1-barycentric Fréchet mean.
For the ∞-divergence, the Fréchet functional writes, for normalized m ∈ ∆+

d ,
as

max(m0,m1) + max(m0,m2) + max(m1,m2),

and is also minimal for the barycenter.
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Note that this toy example, how trite as it may appear, illustrates a case which
can not be dealt with Aitchison’s log-ratio approaches, since the data contains
some zero components.

When CoDa is one-dimensional (i.e., has two components), one can prove
that the empirical Fréchet mean based on the 2−barycentric divergence coin-
cides with the arithmetic mean, as shown in the following Proposition.

Proposition 5.3. For d = 1, the empirical Fréchet mean based on the 2−divergence
is the arithmetic mean.

Proof. Assume x1, . . . ,xn is a simplex-normalized sample, so that xi = (xi
0, x

i
1) ∈

∆1
+, i = 1, . . . , n. The normalized Fréchet mean m ∈ ∆1

+ minimizes

F (m) =

n∑
i=1

(xi
0m1 − xi

1m0)
2 =

n∑
i=1

(xi
0 − xi

0m0 − xi
1m0)

2

=

n∑
i=1

(xi
0 −m0)

2,

since m0 + m1 = 1 and xi
0 + xi

1 = 1. The latter is obviously minimized by
taking the arithmetic mean of the first coordinate m0 = 1

n

∑n
i=1 x

i
0, which

yields m1 = 1
n

∑n
i=1 x

i
1.

However, in general, the Fréchet mean based on the 2−barycentric diver-
gence is different from the arithmetic (linear) mean. We illustrate this fact with
the simple Example 2, where the data is made of only two data points.

Example 2 (Toy counter-example: two data points). One considers two data
points (0.05, 0.85, 0.15), (0.3, 0.2, 0.5), located on the left of the triangle, as de-
picted by the blue points on Figure 1, together with the barycentric Fréchet
means for α = 2 (orange square), α = 1 (green lozenge), α = ∞ (downward
violet triangle) and the arithmetic mean (red upward triangle). Here, only the
2-barycentric mean remain close, yet distinct, from the arithmetic mean, which
is the mid-point between the to data points. All Fréchet means appears somehow
skewed towards the right of the triangle, away from the segment line where the
data sits.
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Figure 1: Comparison of the means for a toy example of 2 data points. Sample
points (blue), Arithmetic mean (red upward triangle), Fréchet means for the
α-divergence: α = 2 (orange square), α = 1 (green lozenge), α =∞ (downward
violet triangle).

A more comprehensive picture of the influence of the α parameter on the
location of the α−barycentric mean is given in Example 3, still very basic with
only three data points. In general, when the number of points is larger, the
different α−means have a tendency to be less spread apart.

Example 3. A counter example with three points One consider the means of the
three (blue) data points (1/8, 1/8, 3/4), (1/17, 12/17, 4/17), and (4/9, 1/9, 4/9),
see Figure 2. The 2-Fréchet mean is, approximately, (0.160, 0.462, 0.378) and
is depicted by the red upward triangle, while the arithmetic mean (red circle) is
approximately equals to (0.140, 0.467, 0.393), and are thus clearly different. Note
that the means remain different if one replaces the normalization by ℓ1-norm in
the denominator of the 2-divergence by the ℓ2 norm. Also shown on the Figure
are the Fréchet mean based on the 1-divergence (green lozenge), the Fréchet
mean for the ∞-divergence (violet downward triangle), and several barycentric
Fréchet mean for the α-divergence (orange squares), for α varying from 1.1 to
10. For α = 1, the Fréchet mean corresponds statistically to the “median” (the
Fermat-Weber-Torricelli problem), albeit with a different notion of “distance”.
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Figure 2: Comparison of the means for a toy example of 3 data points. Sam-
ple points (blue), Fréchet mean for the 2 divergence (red upward triangle),
arithmetic mean (red circle), Fréchet mean for the 1-divergence (green lozenge),
Fréchet mean for the ∞-divergence (violet downward triangle). Fréchet mean
for the α-divergence (orange squares), for α varying from 1.1 to 10.

When the data have a special geometric structure, in particular when it is
on a straight (Euclidean) lines, the different Fréchet means exhibit intriguing
properties, as illustrated in the next two examples.

Example 4. Let a0, a1 be independent, uniformly distributed r.v. on [0, 1] and
set a2 = a1, so that the raw amounts a1 and a2 are co-monotonic. CoDa is
obtained by closure, i.e. x = C(a). A sample of n = 10 i.i.d. replications of
x is shown on Figure 3 (blue points) and sits on the straight line x1 = x2 in
the triangle. The Fréchet Means for α = 2, α = 1, α = ∞ , together with the
arithmetic mean, are computed and displayed on Figure 3. It is noteworthy to
remark that four means considered respect the geometry of the data, in the sense
that they all lie on the line x1 = x2. On this example, the 2-barycentric Fréchet
mean (orange square) and the arithmetic mean (green lozenge) coincide, and are
distinct from the 1-barycentric Fréchet mean (red upward triangle), resp. ∞-
barycentric Fréchet mean (violet downward triangle). As the sample size grows,
we notice empirically that the 1 and∞ barycentric Fréchet mean seem to become
indistinguishable, on this example, see Table 2.
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Mean x0 x1 x2

n = 10
Arithmetic 0.519382 0.240309 0.240309
2− barycentric 0.519382 0.240309 0.240309
1− barycentric 0.616009 0.191995 0.191995
∞− barycentric 0.615063 0.192469 0.192469
n = 50
Arithmetic 0.335202 0.332399 0.332399
2− barycentric 0.335202 0.332399 0.332399
1− barycentric 0.310344 0.344828 0.344828
∞− barycentric 0.310345 0.344828 0.344828

Table 1: Comparison of the different kind of means of Example 4.

Figure 3: Comparison of the means for Example 4 of 10 data points on a line.
Sample points (blue), Fréchet mean for the 2 divergence (orange square), arith-
metic mean (green lozenge), Fréchet mean for the 1-divergence ((red upward
triangle)), Fréchet mean for the ∞-divergence (violet downward triangle).

The previous example showed barycentric Fréchet means aligned with the
line where the data sits. However, the picture in Figure 3 is somehow misleading
and is due to the symmetry in the data of Example 4. In general, this is not
the case, as illustrated on the following example.

Example 5. As in Example 4, we sample a0, a1 as independent, uniformly
distributed r.v. on [0, 1], but we now set a2 = a0+a1, and eventually, x = C(a).
The data (blue points) sits on the line x2 = 1/2 displayed on Figure 4. In this
example, only the arithmetic mean and the ∞-barycentric mean sit on the line
x2 = x0 + x1 = 0.5. In addition, the 2−barycentric Fréchet mean now clearly
differs from the arithmetic mean. All mean remain close to each others, yet
different, and seem to converge to the same point as the sample size increases.
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Mean x0 x1 x2

n = 10
Arithmetic 0.317668 0.182332 0.5
2− barycentric 0.324976 0.191089 0.483935
1− barycentric 0.375724 0.137818 0.486458
∞− barycentric 0.368017 0.131983 0.5
n = 50
Arithmetic 0.236695 0.263305 0.5
2− barycentric 0.241752 0.268185 0.490062
1− barycentric 0.238849 0.266468 0.494683
∞− barycentric 0.237808 0.262192 0.5

Table 2: Comparison of the different kind of means of Example 5.

Figure 4: Comparison of the means for Example 5 of 10 data points on a line.
Sample points (blue), Fréchet mean for the 2 divergence (orange square), arith-
metic mean (green lozenge), Fréchet mean for the 1-divergence ((red upward
triangle)), Fréchet mean for the ∞-divergence (violet downward triangle).

6 Generalized Laplace-Gaussian distribution based
on the determinantal barycentric divergence

6.1 Isotropic Generalized Laplace-Gaussian distributions
As in Faugeras (2023), one can define a family of generalized Gaussian distri-
butions, based on the family of divergences (16).

Definition 6.1. A random [X]+ ∈ Pd
+ follows a Generalized Barycentric Gaus-

sian distribution with parameters ([m]+, σ, α) ∈ Pd
+×R++× [1,∞], if its distri-
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bution admits a density w.r.t. to the uniform measure ν on Pd
+ given by

fα([x]+; [m]+, σ) := Z−1
α ([m]+, σ) exp

(
−
(
dα([x]+, [m]+)

σ

)α)
(21)

for 1 ≤ α <∞, and by

f∞([x]+; [m]+, σ) := Z−1
∞ ([m]+, σ) exp

(
−d∞([x]+, [m]+)

σ

)
, α =∞,

where Zα([m]+, σ) is a normalizing constant.

Definition 6.1 gives an analogue of the Gaussian, resp. Laplace, distribution
when α = 2, resp., α = 1, with [m]+ a mean parameter and σ a dispersion
parameter. Figure 5 show density ternary plots (i.e. for d = 2) of such distribu-
tions with a centered and non-centered mean parameter, in the noticeable cases
α = 1, 2,∞. The level sets of the density shows the geometry of the balls for the
corresponding divergence. In particular, α = 2 give the usual Euclidean distance
geometry, but truncated on the (full) simplex. The cases α = 1 and α = ∞
give polygonal balls. It is interesting to note that the level sets of the centered
distributions (i.e., for m = 1) have the same (truncated) hexagonal shape for
α = 1 and α = ∞, which is also similar to the balls in Hilbert projective dis-
tance, see Faugeras (2023). The level sets of the non-centered distribution for
α =∞ (lower right panel) appears, due to the truncation, as (part of) lozenges.
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Figure 5: Generalised Barycentric Gaussian distributions with α-divergence.
Left column: centered distribution with [m]+ = [1 : 1 : 1]+. Right column: a
non-centered distribution with m = (0.7, 0.1, 0.2). α = 1 (up), α = 2 (center),
α =∞ (down). σ = 1.

6.2 Anisotropic Generalized Laplace-Gaussian distributions
As a further generalization, one can consider weighted versions of the barycen-
tric divergences (16) and corresponding Gaussian-type distributions of Defini-
tion 6.1. Indeed, in classical multivariate analysis, when measuring distance
between vectors x,y ∈ Rd+1 made of heterogeneous components, it is common
to standardize the variables by their standard deviation, in order to balance out
the contributions of each variable. This corresponds to measuring the distance
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between two sample elements x,y with the Standardized Euclidean distance

dS(x,y) :=

√√√√ d∑
i=0

(
xi

si
− yi

si

)2

,

where s = (s0, . . . , sd), with si the standard deviation of the ith variable. A
generalization of this principle, taking into account the correlation of the data,
leads to the definition of the well-known Mahalanobis distance,

dΣ(x,y) :=
√
(x− y)TΣ−1(x− y),

where Σ is the covariance matrix.
Here, we can apply this idea to CoDa, as follows:

Definition 6.2. Let W ∈ R(d+1)×(d+1) be a symmetric matrix, with positive
components wij > 0, and null diagonal. Let [x]+, [y]+ ∈ Pd

+ be two CoDa
elements. Then, the W -weighted barycentric α-divergence is defined, for 1 ≤
α <∞, as

dα,W ([x]+, [y]+) :=

(∑
i<j w

−1
ij

∣∣∣∣det
∣∣∣∣xi yi
xj yj

∣∣∣∣∣∣∣∣α)1/α

||x||1||y||1
(22)

and, for α =∞, as

d∞,W ([x]+, [y]+) :=

maxi<j

(
w−1

ij

∣∣∣∣det
∣∣∣∣xi yi
xj yj

∣∣∣∣∣∣∣∣)
||x||1||y||1

.

It is easily seen that the W -weighted barycentric α-divergence satisfy all
properties of Theorem 4.2, with the exception that the upper bound 1 has to
be replaced by the minimal weight.

The corresponding Generalized Laplace-Gaussian distribution is defined anal-
ogously to (21), now with the added parameter matrix W . Without loss of
generality, one can constrain W further by requiring that

∑
i<j wij = 1. This

allows to interpret the parameters as follows: W controls the shape of the balls
in weighted α-divergence, while the σ parameter measures their overall size.
Thus, we define

W0 = {W ∈ R(d+1)×(d+1) : wij = wji > 0, i 6= j;wii = 0;
∑
i<j

wij = 1}

as the resulting set of constrained symmetric weight matrices with zero diagonal
and positive weights.

Definition 6.3. A random [X]+ ∈ Pd
+ is said to follow a Generalized Weighted

Barycentric Gaussian distribution with parameters ([m]+,W, σ, α) ∈ Pd
+×W0×
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R++ × [1,∞], if its distribution admits a density w.r.t. to the uniform measure
ν on Pd

+ given by

fα([x]+; [m]+,W, σ) := Z−1
α ([m]+,W, σ) exp

(
−
(
dα,W ([x]+, [m]+)

σ

)α)
(23)

for 1 ≤ α <∞, and, for α =∞, by

f∞([x]+; [m]+,W, σ) := Z−1
∞ ([m]+,W, σ) exp

(
−d∞([x]+, [m]+)

σ

)
,

where Zα([m]+,W, σ) is a normalizing constant.

Figure 6 illustrates Definition 6.3 for the case α = 2. The left column shows
a centered Generalized Weighted Barycentric Gaussian distribution, i.e. with
mean parameter [m]+ = [1 : 1 : 1]+. The upper, resp., lower, left panels have
shape parameter

W =

 0 0.8 0.1
0.8 0 0.1
0.1 0.1 0

 , resp. W =

 0 0.1 0.8
0.1 0 0.1
0.8 0.1 0

 .

Compared to Figure 5, one has elongated the balls in barycentric 2-divergence
in the direction having the higher weight 0.8, that is the contour plots obtained
are ellipses stretched out in the −−−→A0A1 direction (up) and −−−→A0A2 direction (down
panel). The right column shows the same distributions as the left column, but
with a non-centered mean, viz. m = (0.7, 0.1, 0.2), so one can also compare
with the isotropic distributions of Figure 5.
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Figure 6: Generalised Weighted Barycentric Gaussian distributions with 2-
divergence. σ = 1. Left column: centered distribution with m = (1 :
1 : 1). Right column: a non-centered distribution with m = (0.7, 0.1, 0.2).
(w01, w02, w12) = (0.8, 0.1, 0.1) (up), (w01, w02, w12) = (0.1, 0.8, 0.1) (down).

We provide in Appendix 9 some supplementary simulations of these gener-
alized weighted barycentric Gaussian distribution, in the cases α = 1,∞, for
illustration and comparison purposes.

We have thus obtained an analogue of the multivariate Laplace-Gaussian
distribution and its generalizations on the whole CoDa space Pd

+: α sets the
general form of the balls in α-divergence, [m]+ is the location parameter, and
(W,σ) the dispersion ones. Such distributions can thus be made to accommodate
for a large variety of shapes of the data points and should prove useful for
modeling and estimation purposes. For example, one could build nonparametric
(density or regression) estimators with a kernel based on such distributions. We
leave this investigation for further research.

Remark 5 (Weighted Hilbert projective distance). We remark that the idea of
weighting the components entering in the formula of the barycentric α-divergence
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can also be applied to Hilbert’s projective metric (see Faugeras (2023)). We can
thus generalize the latter and define the weighted Hilbert projective metric as
follows:

Definition 6.4. Let W ∈ W0. The weighted Hilbert projective metric on Pd
++,

with weight matrix W , is defined as

dH,W ([x]+, [y]+) := max
0≤i<j≤d

wij

∣∣∣∣ln xi

xj
− ln

yi
yj

∣∣∣∣ .
In turn, the corresponding Gaussian type distribution is defined analogously

to Definition 6.3 and Definition 7.4 in Faugeras (2023), with dH,W replac-
ing dα,W in (23). It also gives risen to an anisotropic Generalised Gaussian
type distribution, this time based on the weighted version of Hilbert’s projective
metric. Appendix 9 provides some simulations for illustration purposes.

7 Variance and covariance matrices
7.1 Definitions
We now turn to the definition of a notion of covariance matrix for CoDa, based
on the barycentric/affine viewpoint. The basic idea is to construct a covariance
matrix based on averaged scalar product of displacement vectors, as in the
Euclidean vector case, but now with taking into account the affine nature of the
data points expressed in barycentric coordinates.

More precisely, let [x]+, [y]+ ∈ Pd
+ be a pair of random CoDa (projective)

points. Assume one has some corresponding (deterministic) mean points

[µx]+ = [µx
0 : . . . : µx

d ]+, resp. [µy]+ = [µy
0 : . . . : µy

d ]+.

A priori, one could consider a variety of mean points, such as the arithmetic
mean (centroid), the geometric (Aitchison) mean, the Fréchet-Hilbert mean
(Faugeras (2023)), the (α, β)-barycentric Fréchet mean of Definition 5.1, etc.
It will turn out that most interesting properties are obtained using the centroid
means. We thus only consider these thereafter and set

[µx]+ = [Ex]+, [µy]+ = [Ey]+,

From the discussion of Section 3, one can regard these four projective points
as affine points, expressed in barycentric coordinates w.r.t. the frame F =
{A0, . . . , Ad}. Thus, formula (9) applied to M ≡ [µx]+ and N ≡ [x]+, resp.
M ≡ [µy]+ and N ≡ [y]+, allows to compute the displacement vectors to the
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CoDa points from the corresponding means as,

vx :=
−−−−−−−→
[µx]+ [x]+ =

∑
i<j det

∣∣∣∣µx
i xi

µx
j xj

∣∣∣∣−−−→AiAj

||µx||1||x||1
,

vy :=
−−−−−−−→
[µy]+ [y]+ =

∑
i<j det

∣∣∣∣µy
i yi

µy
j yj

∣∣∣∣−−−→AiAj

||µy||1||y||1
.

A term-by-term product of the −−−→AiAj component of vx and vy, viz.

det
∣∣∣∣µx

i xi

µx
j xj

∣∣∣∣× det
∣∣∣∣µy

i yi
µy
j yj

∣∣∣∣
||µx||1||x||1||µy||1||y||1

gives a measure of the (random) covariation of the displacement vectors vx and
vy in the same direction −−−→AiAj . Taking expectation, this gives an analogue of
the covariance between two Coda points [x]+ and [y]+ as the average of the
displacement vectors of the Coda point [x]+ and [y]+ from their respective
mean, in the common direction from component i to j. This leads to the
following definition of the covariance matrix of the random CoDa points [x]+
and [y]+:

Definition 7.1 (Covariance matrix for a pair of CoDa). Let [x]+, [y]+ ∈ Pd
+ be

random CoDa points, with corresponding mean point [µx]+, [µ
y]+ ∈ Pd

+. The
barycentric covariance matrix of [x]+ and [y]+, w.r.t. [µx]+, [µ

y]+, is defined
as the following symmetric matrix (with null diagonal) of size d+ 1

Cov([x]+, [y]+) :=
(
Cov([x]+, [y]+)i,j

)
∈ R(d+1)×(d+1),

where the (i, j) component is set as

Cov([x]+, [y]+)i,j := E

det
∣∣∣∣µx

i xi

µx
j xj

∣∣∣∣× det
∣∣∣∣µy

i yi
µy
j yj

∣∣∣∣
||µx||1||x||1||µy||1||y||1

 . (24)

If all four representatives are normalized to sit on the simplex, viz. x,y,µx,µy ∈
∆d

+, the previous expression (24) reduces to its numerator.

Taking [y]+ = [x]+ and [µx]+ = [µy]+ in the previous definition leads to
the definition of the analogue of a variance matrix for a random CoDa [x]+:

Definition 7.2 (Variance matrix for CoDa). The barycentric variance matrix
of [x]+ w.r.t. the deterministic mean point [µx]+ is defined as the following
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symmetric matrix (with null diagonal)

Var([x]+) := Cov([x]+, [x]+) ∈ R(d+1)×(d+1)

=

E

det2
∣∣∣∣∣∣µ

x
i xi

µx
j xj

∣∣∣∣∣∣
||µx||21||x||21




i=0,··· ,d
j=0,··· ,d

. (25)

In case both representatives of [x]+, [µx]+ are chosen on the simplex, viz.
x,µx ∈ ∆d

+, the (i, j) component of Var([x]+), simplifies as

Var([x]+)i,j = E

(
det2

∣∣∣∣µx
i xi

µx
j xj

∣∣∣∣) .

Since the squared 2−barycentric divergence d22([x]+, [µ
x]+) is a separable

function of its i < j components, the expected divergence between [x]+ and
its mean decomposes as a sum of the expected pairwise barycentric divergence,
along the i < j components,

Ed22([x]+, [µ
x]+) =

∑
i<j

E

det2
∣∣∣∣µx

i xi

µx
j xj

∣∣∣∣
||µx||21||x||21

 =
∑
i<j

Var([x]+)i,j

Therefore, it is natural to define the total variance, which quantifies the total
variability in a compositional data set, as the sum of the variance components
of the variance matrix.

Definition 7.3 (Total Variance for CoDa). The total variance of [x]+ w.r.t. the
deterministic mean point [µx]+ is the scalar

TVar([x]+) =
∑
i<j

Var([x]+)i,j .

By dividing the Variance matrix components Var([x]+)i,j by the Total Vari-
ance TVar([x]+), one obtains a normalised Variance matrix, (called the con-
tained variance in Greenacre (2021)), which allows to quantify the importance
of each variance component to the total.

Eventually, a measure of correlation is obtained by combining Definitions
7.1 and 7.2:

Definition 7.4 (Correlation matrix for CoDa). The barycentric correlation ma-
trix of [x]+ and [y]+, w.r.t. [µx]+, [µ

y]+, is defined as

ρ([x]+, [y]+) :=
(
ρ([x]+, [y]+)i,j

)
∈ R(d+1)×(d+1),
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with, for i 6= j,

ρ([x]+, [y]+)i,j :=
Cov([x]+, [y]+)i,j√

Var([x]+)i,jVar([y]+)i,j
,

=

E

det

∣∣∣∣∣∣µ
x
i xi

µx
j xj

∣∣∣∣∣∣×det

∣∣∣∣∣∣µ
y
i yi

µy
j yj

∣∣∣∣∣∣
||µx||1||x||1||µy||1||y||1


√√√√√√√E

det2
∣∣∣∣∣∣µ

x
i xi

µx
j xj

∣∣∣∣∣∣
||µx||21||x||21


√√√√√√√E

det2
∣∣∣∣∣∣µ

y
i yi

µy
j yj

∣∣∣∣∣∣
||µx||21||x||21


and ρi,i = 0.

In definition 7.4, the normalisation by the ||.||1 norm enters both in the
expectation of the numerator and in the expectation of denominator. This
suggests the following modified version of correlation, directly as a ratio of
determinants:

Definition 7.5 (Modified correlation matrix for CoDa). The modified barycen-
tric correlation matrix of [x]+ and [y]+, w.r.t. [µx]+, [µy]+, is defined as

r([x]+, [y]+)i,j :=

E

(
det
∣∣∣∣µx

i xi

µx
j xj

∣∣∣∣× det
∣∣∣∣µy

i yi
µy
j yj

∣∣∣∣)√
E

(
det2

∣∣∣∣µx
i xi

µx
j xj

∣∣∣∣)
√
E

(
det2

∣∣∣∣µy
i yi

µy
j yj

∣∣∣∣)
, i 6= j,

and r([x]+, [y]+)i,i = 0.

Remark 6. i) By definition of Pd
+, if [x]+ ∈ Pd

+, then x 6= 0 and ||x||1 6= 0.
Hence, the ratios in Definitions 7.1 and 7.2 are well-defined. By linearity
of ||.||1 and multilinearity of the determinant, (24) is invariant by positive
rescaling x ← αx, y ← βy, µx ← γµx, µy ← δµy, with α, β, γ, δ > 05.
Hence, Definitions 7.1 and 7.2 are well-defined on Pd

+.
Definition 7.4, is undefined when Var([x]+)i,j = 0 or Var([y]+)i,j = 0
(and the discussion is similar for Definition 7.5). The situation here
is analogous to Euclidean vectors, where Pearson’s classical correlation
coefficient is undefined for a degenerate (Dirac) random variable. We thus
set the corresponding coefficient equal to 0 in such a case.

ii) When all four points [x]+, [y]+, [µx]+, [µy]+, are simplex normalized,
viz. x,y,µx,µy ∈ ∆d

+, Definition 7.5 coincides with Definition 7.4. The
difference lies in the fact that Definition 7.5 is scale-invariant only for
non-random rescaling, whereas Definition 7.4 is scale-invariant for deter-
ministic and random rescaling alike.

5Note that α, β may be random.
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7.2 Discussion and properties of barycentric variation ma-
trices

The component i, j of the Variance matrix (25) measures the proportionality of
parts i, j, as shown in the next Proposition.

Proposition 7.6. Assume w.l.o.g. that x ∈ ∆d
+ is the simplex normalized

representative. Var([x]+)i,j = 0 if and only if xi and xj are proportional or one
of them is zero.

Proof. ⇐: If x ∈ ∆d
+,
∑d

i=0 xi = 1 implies 1 =
∑d

i=0 Exi =
∑d

i=0 µ
x
i , that is

to say, µx ∈ ∆d
+ and µx

i = Exi. Therefore, if, say, xj = λxi a.s., for some

λ > 0, then, µx
j = λµx

i and det
∣∣∣∣µx

i xi

µx
j xj

∣∣∣∣ = det
∣∣∣∣ µx

i xi

λµx
i λxi

∣∣∣∣ = 0 a.s. (two

proportional rows). Thus, Var([x]+)i,j = 0.
On the other hand, if, say, xi = 0 a.s. then µx

i = 0 and Var([x]+)i,j = 0
also.

⇒: Notice that one always has that

Edet
∣∣∣∣µx

i xi

µx
j xj

∣∣∣∣ = E(xjµ
x
i − xiµ

x
j ) = µx

j µ
x
i − µx

i µ
x
j = 0.

If Var([x]+)i,j = 0, Tchebychev’s inequality entails that, for all t > 0,

P

(∣∣∣∣det
∣∣∣∣µx

i xi

µx
j xj

∣∣∣∣∣∣∣∣ > t

)
= 0.

Thus, xiµ
x
j − xjµ

x
i = 0 a.s. Since xi ≥ 0, µx

i = 0 iff xi = 0 a.s. Therefore,
xiµ

x
j − xjµ

x
i = 0 a.s. entails xi and xj are proportional or one of them is

zero.

This result is intuitively clear since Var([x]+)i,j measures the quadratic dis-
placement variation of [x]+ around its mean [µx]+, along the i, j components:
if both components xi and xj are proportional, there is no variation in the
(AiAj) direction (and similarly if one of them is always zero). One thus ob-
tains for the variance matrix an object similar to the log variation matrix of
Aitchison (1986), (or of its variants to be found in Lovell et al. (2015), Erb and
Notredame (2016), Filzmoser and Hron (2009), Juan José Egozcue and Vera
Pawlowsky-Glahn (2023)), in its ability to measure the proportionality of parts.

It is worth stressing some of its advantageous features. First, being log-free,
the proposed variation matrix (25) is defined on the whole CoDa space Pd

+, and
is now able to process CoDa with zeroes. This is in contrast to all of the above-
mentioned measures, which fail to be defined whenever some zeroes are existent
in a component. Second, even if the data has no zeroes, log transformations will
turn parts with small values into large values, resulting in large variations in the
log-ratio variance. The relative error in the small components are likely to be
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high and to distort any multivariate analysis based on such log-ratio variances.
This issue occurs in particular with imputation methods for CoDa with zeroes,
see e.g. Greenacre (2021) Section 7. To the contrary, the proposed variation
matrix (25) does not alter the scale of the parts by a nonlinear transformation.
At last, it has been argued that when two parts are not exactly proportional,
the log-ratio variance of Aitchison (1986) has no intrinsic scale and so is hard
to interpret. This is especially relevant for determining a cut-off for selecting
variables, and motivated Lovell et al. (2015) to propose their scale-free variant
ϕ which puts the log-ratio variance in relation to the size of the single variances
involved. Here, since the Total Variance of Definition 7.3 interprets as the
average displacement of [x]+ w.r.t. to its centroid mean, it makes sense to scale
the components Var([x]+)i,j of the Variance matrix (25) by the (scalar) total
variance, i.e. to set the Normalised Variance matrix

NVar([x]+) :=
Var([x]+)

TVar([x]+)
,

as a scale-free version of the Variance Matrix, with components between 0 and
1.

Let us illustrate these points with basic examples.

Example 6 (Variance matrix with two identical components). We take the
same distribution as in Example 4, Figure 3, but with n = 10000 sample points.
The empirical variance matrix is

Var([x]+) =

 0. 0.0132371 0.0132371
0.0132371 0. 0.
0.0132371 0. 0.

 .

This empirically confirms the result of Proposition 7.6: since the data (blue
points) sits on the straight line x1 = x2 in the triangle, there is no variation in
the direction A1A2. The empirical variance var([x]+)1,2 computed on the data
is exactly zero as x1 and x2 carry the same proportional information.

Example 7 (Variance matrix with uniform Dirichlet distribution). Let x =
(x0, x1, x2) be distributed according to the Dirichlet(1, 1, 1) distribution, which
corresponds to the uniform distribution on the simplex ∆2

+. The empirical
arithmetic mean computed on 10000 i.i.d. replications is given by

µx = (0.331853, 0.335558, 0.33259).

The empirical barycentric variance matrix and normalized version are

Var([x]+) =

 0. 0.0186154 0.0184052
0.0186154 0. 0.0187276
0.0184052 0.0187276 0.

 ,

NVar([x]+) =

 0. 0.333919 0.330149
0.333919 0. 0.335932
0.330149 0.335932 0.

 .
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One obtains approximately the same values in all directions for the empirical
mean and variance matrix, as expected with such an isotropic distribution.

If the composition above was in fact a four-parts composition with, say, null
second component, i.e. if one adds a column of zeros at the second component, so
that x1 = 0, (x0, x2, x3) ∼ Dirichlet(1, 1, 1), then the new normalized barycentric
variance matrix is

NVar([x]+) =


0. 0. 0.333919 0.330149
0. 0. 0. 0.

0.333919 0. 0. 0.335932
0.330149 0. 0.335932 0.

 .

In other words the new normalized barycentric variance matrix is unchanged,
except for an additional row and column of zeroes at position 2 corresponding
to the null component x1 = 0: there is zero variation in the directions A1Aj,
j = 0, 2, 3, in agreement with Proposition 7.6.

7.3 Discussion and properties of barycentric correlation
matrices

The barycentric covariance and correlation matrices of Definitions 7.1, 7.4 and
7.5 allow to measure the joint variation of a pair of random CoDa elements
w.r.t. to their respective arithmetic mean, in a direction AiAj corresponding to
the parts i, j, as shown in the next Proposition:

Theorem 7.7 (Properties of Covariance, Correlation). i) Boundedness:

Cov2([x]+, [x]+)i,j ≤ Var([x]+)i,jVar([y]+)i,j ,
− 1 ≤ ρ([x]+, [y]+)i,j ≤ 1,

− 1 ≤ r([x]+, [y]+)i,j ≤ 1.

ii) Zero covariance when pair of simplex representatives are independent:
Assume x,y ∈ ∆d

+ are simplex representatives of [x]+, [y]+. If the pair
(xi, xj) is independent of the pair (yi, yj), then

Cov([x]+, [y]+)i,j = ρ([x]+, [y]+)i,j = r([x]+, [y]+)i,j = 0.

iii) Zero modified covariance when independence of pairs of raw amounts:
Assume the compositional data is obtained by closure of the raw amounts,
viz. x = C(a), y = C(b). If the pair (ai, aj) is independent of the pair
(bi, bj), and the means representatives are chosen to be the expectations of
the raw amounts, i.e.

µx = Ea, µy = Eb,

then
r([x]+, [y]+)i,j = 0.

Note that (ai, aj) ⊥ (bi, bj) does not imply (xi, xj) independent of (yi, yj).
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Proof. Let us denote Xij :=

∣∣∣∣µx
i xi

µx
j xj

∣∣∣∣, Yij := ∣∣∣∣µy
i yi

µy
j xyj

∣∣∣∣.
i) By Cauchy-Schwarz,(

E

(
detXij

||µx||1||x||1
× detYij
||µy||1||y||1

))2

≤ E

(
det2Xij

||µx||21||x||21

)
E

(
det2Yij
||µy||21||y||21

)
,

which is
Cov2([x]+, [x]+)i,j ≤ Var([x]+)i,jVar([y]+)i,j ,

and yields the result for ρ. The proof for r is similar.

ii) By independence, E(detXij × detYij) = E(detXij) × E(detYij). Since
[µx]+ and [µy]+ are the centroid means, Exi = λµX

i , Exj = λµX
j , for

some λ > 0. Therefore, E(detXij) = λ(µX
j µX

i −µX
i µX

j ) = 0, and similarly,
E(detYij) = 0. Thus, Cov([x]+, [y]+)i,j = 0.

iii) By choosing as representatives of

[x] = [a]+, [y]+ = [b]+,

directly the raw amounts a,b, independence of (ai, aj) with (bi, bj) imply
independence of

detXij = det
∣∣∣∣ai Eai
aj Eaj

∣∣∣∣ , with detYij = det
∣∣∣∣bi Ebi
bj Ebj

∣∣∣∣ .
The rest of the proof is the same as ii).

Property iii) means that if the raw/absolute amounts are available, the mod-
ified correlation matrix allows to detect independence of pairs of components.

8 Conclusion
“Who ever uses barycentric coordinates ?” once asked the famous french math-
ematician J.A. Dieudonné6. Well, one would be tempted to reply that one goal
of this paper was to demonstrate that CoDa is a natural domain of application
of barycentric coordinates. Thinking geometrically about Coda as points in an
affine space in barycentric coordinates gives a direct and unified way to deal
with CoDa, with or without zeroes alike.

One key element of our approach is a decomposition formula for the displace-
ment between two CoDa elements in terms of the displacements of the different
pairs of the basis frame parts. This allows to define a family of barycentric
divergences on the whole CoDa simplex space. In turn, these novel barycentric

6quoted by Pedoe (1970).
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divergences enables to build essential statistical constructs like Fréchet means
and their variants, Gaussian-type distributions accounting for anisotropic dis-
persion, and eventually log-free variance-covariance matrices set up as averaged
“scalar product” of the displacement between Coda and their mean points.

In retrospect, such an affine viewpoint for the simplex seems natural, (af-
ter all, a ternary plot is really a plot in barycentric coordinates and we have
shown that classical subcompositional operations are related to barycenters),
but appears neglected in the CoDa literature. By providing for the necessary
mathematical background on affine geometry and barycenters, our ambition is
to supply essential tools for further statistical analysis of CoDa from such an
affine viewpoint, free of the positivity constraint induced by the log transforms
in classical log-ratio analysis. It is remarkable that the projective viewpoint
aided with the exterior product gives strikingly similar divergences and covari-
ances matrices concepts. Such a related approach will be treated in a separate
companion paper (Faugeras (2024a)).

9 Appendix: Supplementary simulations
9.1 Anisotropic Generalised Barycentric Gaussian distri-

butions with α = 1,∞.
For illustration and comparison purposes, we present in Figures 7 and 8 a sample
of density plots of the weighted barycentric Gaussian distributions (see Defini-
tion 6.3), based on the W -weighted barycentric α-divergence, for α = 1,∞ and
varying shape W and location [m]+ parameters.
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Figure 7: Generalised Weighted Barycentric Gaussian distributions with α = 1-
divergence. Left column: centered distribution with [m]+ = [1 : 1 : 1]+. Right
column: a non-centered distribution with m = (0.7, 0.1, 0.2). (w01, w02, w12) =
(0.8, 0.1, 0.1) (up), (w01, w02, w12) = (0.1, 0.8, 0.1) (down). σ = 2.
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Figure 8: Generalised Weighted Barycentric Gaussian distributions with α =∞-
divergence. Left column: centered distribution with [m]+ = [1 : 1 : 1]+. Right
column: a non-centered distribution with m = (0.7, 0.1, 0.2). (w01, w02, w12) =
(0.8, 0.1, 0.1) (up), (w01, w02, w12) = (0.1, 0.8, 0.1) (down). σ = 2.

9.2 Anisotropic Generalised Hilbert-Gaussian distributions
For illustration purposes, we present in Figure 9 density plots of the weighted
Hilbert Gaussian distributions, based on the (square of) the W−weighted Hilbert
Projective metric, defined in Remark 5.
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Figure 9: Generalised Weighted Hilbert-Gaussian distributions based on the
W -weighted Hilbert projective metric. [m]+ = [1 : 1 : 1]+, (w01, w02, w12) =
(0.8, 0.1, 0.1) (upper left), [m]+ = [1 : 1 : 1]+, (w01, w02, w12) = (0.1, 0.8, 0.1)
(upper right), m = (0.7, 0.1, 0.2), (w01, w02, w12) = (0.4, 0.5, 0.1) (lower left),
[m]+ = [1 : 1 : 1]+, (w01, w02, w12) = (0.4, 0.5, 0.1) (lower right). σ = 100.
α = 2.
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