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Abstract

A scan method for functional data indexed in space has been developed. The scan statistic
is derived from the Hotelling test statistic for functional data, extending the univariate and
multivariate Gaussian spatial scan statistics. This method consistently outperforms existing
techniques in detecting and locating spatial clusters, as demonstrated through simulations. It
has been applied to two types of real data: economic data in order to identify spatial clusters
of abnormal unemployment rates in Spain and climatic data in order to detect unusual climate
change patterns in Great Britain, Nigeria, Pakistan, and Venezuela.
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1. Introduction

Spatial cluster detection has become a prominent area of statistical research, with notable
advancements in recent decades. It aims to identify concentrations of events within specific
areas; for a comprehensive overview, see Lawson and Denison (2002).

One of the most widely used techniques for cluster detection is the scan statistic, first
introduced by Naus (1963). This statistic was originally defined as the maximum number of
events within a fixed-size window, known as the scanning window, as it continuously moves
across the study area. Understanding the distributions of these scan statistics (Alm, 1997) is
key to decide whether the occurrence of a cluster of events is statistically significant or not.

The field of spatial scan statistics was significantly advanced by the work of Kulldorff (1997):
he introduced the use of circular windows with varying sizes to scan the study area and identi-
fied the most probable cluster using a likelihood ratio test. He used either the Bernoulli model
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(Kulldorff and Nagarwalla, 1995) or the Poisson model (Kulldorff, 1997) and assessed the sta-
tistical significance of the clusters using a Monte Carlo procedure. These advancements led
to numerous studies where researchers adapted spatial scan statistics for various data types,
employing different distributions, such as exponential (Huang et al., 2007), normal (Kulldorff
et al., 2009), Weibull (Bhatt and Tiwari, 2014) and Poisson with overdispersion (Lima et al.,
2014).

Sometimes, numerous continuous variables have to be analysed in the same time. A multi-
variate scan statistic combining different univariate scan statistics has been proposed by Kull-
dorff et al. (2007). However, this scan statistic does not take into account the correlation
structure of the observed variables. This problem was recently tackled by Cucala et al. (2017)
who developed a spatial scan statistic based on a likelihood ratio and a multivariate normal
probability.

Although previous scan statistics are parametric due to their reliance on likelihood ratios,
alternative nonparametric methods have also been introduced such as Cucala (2014), Cucala
(2016) in the univariate case and Cucala et al. (2019) in the multivariate case which are con-
structed using two-sample test statistics such as the Wilcoxon-Mann-Whitney ones (Wilcoxon,
1945; Mann and Whitney, 1947).

Advances in sensing and data storage have enabled continuous measurements over time, lead-
ing to the development of functional data analysis (FDA) by Ramsay and Silverman (2005).
Much effort has been devoted to adapting classical statistical methods to functional data.
Horváth and Kokoszka (2012) reviewed recent developments in functional data inference. Var-
ious techniques, such as principal component analysis (Boente and Fraiman, 2000), hypothesis
testing (Cuevas et al., 2004; Horváth et al., 2013; Chakraborty and Chaudhuri, 2015; Joseph
et al., 2015; Smida et al., 2022a), and regression (Ferraty and Vieu, 2002), have been developed.
Recent work by Aneiros et al. (2019) and Aneiros et al. (2022) offers comprehensive reviews on
these topics. Dabo-Niang and Frévent (2024) highlighted the rise of FDA across various fields,
including medicine, biology, chemistry, economics, and environmental science.

In spatial statistics, using a univariate approach with time-averaged data results in signifi-
cant information loss, while a multivariate approach faces issues with high dimensionality and
correlation, leading to reduced power. Smida et al. (2022b) highlight these challenges through
simulation studies. To address this, they first developed a nonparametric scan statistic for func-
tional data, based on the Wilcoxon-Mann-Whitney test (Chakraborty and Chaudhuri, 2015).
Frévent et al. (2021) later introduced two additional spatial scan statistics: one using functional
ANOVA (Cuevas et al., 2004) and another combining the distribution-free spatial scan statistic
(Cucala, 2014) with the max statistic (Zhenhua Lin and Müller, 2021).

In this study, we introduce a scan statistic for functional data indexed in space. Since there
is no associated likelihood for functional random variables (Ferraty et al., 2011), applying a
traditional likelihood ratio test is not possible. However, in the Gaussian context, maximizing
the likelihood ratio is equivalent to the Hotelling test statistic (Hotelling, 1931). Therefore, our
proposed scan statistic is based on the Hotelling test for functional data (Joseph et al., 2015;
Horváth et al., 2013). This approach extends the Gaussian spatial scan statistics previously
developed for univariate and multivariate Gaussian data (Kulldorff et al., 2009; Cucala et al.,
2017), providing a robust tool for identifying clusters in functional data.

The rest of this paper is organized as follows. In Section 2, we outline the construction of the
proposed spatial scan statistic for functional data based on the Hotelling test statistic, present
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its computational method, and evaluate its statistical significance using random permutations.
In Section 3, we conduct a simulation study to assess the performance of the new approach,
comparing it with the methods of Smida et al. (2022b) and Frévent et al. (2021). In Section
4, we apply our method to real economic and climate datasets. Finally, Section 5 provides a
discussion and outlines potential directions for future research.

2. A Hotelling spatial scan statistic for functional data

2.1. Introducing the statistic
Consider a random variable X taking values in the infinite dimensional space χ = L2(T,R)

where T = [a, b] is a closed interval. Let X1, . . . , Xn be observations of X at n different spatial
locations s1, . . . , sn included in D ⊂ R2. Following the terminology of point process theory, D
is the observation domain and Xi is the mark associated with location si, for all i = 1, . . . , n.
Our goal is to detect a cluster of unusual marks, i.e. a spatial zone Z ⊂ D in which the
functional marks exhibit a different behaviour than elsewhere. In order to do that, we aim
to set up a scan statistic, which is usually defined as the maximum of a concentration index
observed in a collection of variable size potential clusters (Nagarwalla, 1996). Concerning the
potential clusters, two main possibilities have been proposed in the literature. In the first
one, the windows have known geometric shapes: rectangular (Loader, 1991; Chen and Glaz,
2009), circular (Kulldorff and Nagarwalla, 1995; Kulldorff, 1997), elliptic (Kulldorff, 2006), or
any other shape. In the second one, the windows have irregular shapes and the procedure to
identify them is based only on pairwise distances (Dematteï et al., 2007; Assunção et al., 2006;
Duczmal and Assunção, 2004). In this work, without loss of generality, we consider the circular
clusters introduced by Kulldorff (1997). Hence, the set of potential clusters S is defined as
follows:

S = {Di,j, 1 ≤ i ≤ n, 1 ≤ j ≤ n},

where Di,j is the disc centred on si and passing through sj. Notably, since i can equal j, the
number of potential clusters is n2. However, it is easy to notice that some disks may contain
the same set of points. For instance, if s1 and s2 are each other’s nearest neighbors, then the
disks D1,2 and D2,1 will contain the same set of points. To optimize calculations, it may be
useful to reduce the size of S by removing duplicates. We denote this reduced set as S̃, with
size Ñ . For instance, in the simulation data presented in section 3, the initial set S has a size
of n2 = 942 = 8836, while the refined set S̃, after eliminating duplicates, contains Ñ = 7044
clusters.

Following the seminal work of Kulldorff (1997), spatial scan statistics for univariate (X ∈
R) or multivariate (X ∈ R

d, d ≥ 2) marks are generally constructed using a concentration
index derived from a likelihood ratio. This likelihood ratio is based on assuming a particular
probability distribution for the marks and testing the null hypothesis H0 (no cluster) against
the alternative hypothesis H1,Z (presence of a cluster in Z) for each potential cluster Z ∈ S.

As stated in section 1, Kulldorff et al. (2009) proposed a Gaussian-based scan statistic for
detecting clusters in univariate continuous data. This approach relies on the likelihood ratio
between two hypotheses: the null hypothesis assumes that the marks are normally distributed
and independent with equal means and variances, while the alternative hypothesis considers
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equal variances but different means inside and outside the potential cluster. Notably, the con-
centration index in this case corresponds to the two-sample Student’s T 2 test statistic, as shown
in the following Lemma 1.

Lemma 1. For a univariate variable (X ∈ R), maximizing the concentration index IG(Z) for
any potential cluster Z using the likelihood Gaussian ratio LRG(Z) from Kulldorff et al. (2009)
is equivalent to maximizing the Student’s T 2 test (Student, 1908). This equivalence is captured
by the following relationship:

(LRG(Z))
2
n = 1 +

T 2

n− 2
.

The proof is provided in online supplementary material.
An extension of the Gaussian-based scan statistic from Kulldorff et al. (2009) to the mul-

tivariate case was proposed by Cucala et al. (2017). In this approach, all multivariate marks
are assumed to be normally distributed and independent. The null hypothesis considers equal
mean vectors and covariance matrices for all marks, while the alternative hypothesis assumes
equal covariance matrices but different means inside and outside the cluster. In this multivariate
case, it is notable that the concentration index is equivalent to the two-sample Hotelling T 2

H

test statistic of Hotelling (1931) as established by the following Lemma 2.

Lemma 2. In the multivariate case (X ∈ Rd, with d ≥ 2), maximizing the concentration index
IMG(Z) for any potential cluster Z using the multivariate Likelihood Gaussian ratio LRMG(Z)
from Cucala et al. (2017) is equivalent to maximizing Hotelling’s T 2

H test (Hotelling, 1931).
This equivalence is described by the following relationship:

(LRMG(Z))
2
n = 1 +

T 2
H

n− 2
.

The proof can be found in online supplementary material.
In the context of functional random variables, the concept of probability density generally

does not exist, despite various suggested approximations (Jacques and Preda, 2013; Liu and
Houwing-Duistermaat, 2024). As a result, researchers have chosen clustering indices based on
nonparametric tests for equality of distributions, with notable contributions from Jung and Cho
(2015); Cucala (2016), and Cucala et al. (2019) for univariate and multivariate data, respectively,
and from Smida et al. (2022b) and Frévent et al. (2021) for functional data.

Similarly, as there is an equivalence between the Gaussian likelihood ratio and the T 2 test
statistic in the univariate case, and T 2

H in the multivariate framework (as demonstrated in the
online supplementary material), our approach adopts the functional extension of the Hotelling
T 2
FH test statistic, as proposed by Joseph et al. (2015) (or equivalently Horváth et al., 2013), to

construct a concentration index.

Hereinafter, we suppose that X1, . . . , Xn are independent observations of the functional
random variable X (this is a classical assumption in scan statistics). Let Z ∈ S be any potential
cluster of size nZ , where nZ =

∑︁n
i=1 1(si ∈ Z) and Zc its complement of size nZc = n− nZ .

Thus, in the context of cluster detection, the null hypothesis H0 (absence of a cluster) can
be defined as follows: H0 : ∀Z ∈ S, µZ = µZc = µD (the absence of cluster), where µZ , µZc ,
and µD represent the mean functions within Z (i.e. µZ = E(Xi(t)), i : si ∈ Z, t ∈ T ), outside Z
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((i.e. µZc = E(Xi(t)), i : si ∈ Zc, t ∈ T ), and across the entire domain D, respectively. Thus,
the aim is to test:

H0 : µZ = µZc = µD vs. H1,Z : µZ ̸= µZc .

Let µ̂Z = 1
nZ

∑︂
i:si∈Z

Xi and µ̂Zc = 1
nZc

∑︂
i:si∈Zc

Xi be the sample mean functions within Z and

outside Z respectively. We consider ΓZ,Zc the covariance operator of µ̂Z − µ̂Zc .
To test the equality of means, a functional Hotelling’s T 2

FH statistic is defined as:

T 2
FH =

K∑︂
k=1

â2k

λ̂k
,

where the choice of K will be discussed further below. Here, âk = ⟨µ̂Z − µ̂Zc , ψ̂k⟩ represents
the functional principal component scores for k ≥ 1 , with ψ̂1, . . . , ψ̂k and λ̂1,≥ λ̂2 ≥ . . . ≥ λ̂K
denoting the eigenfunctions and their associated eigenvalues, respectively, of Γ̂Z,Zc , which is an
estimate of ΓZ,Zc to be provided below. The notation ⟨u, v⟩ =

∫︁
T
u(t)v(t)dt denotes the standard

inner product in the functional space χ.
As in the univariate and multivariate contexts, following the Gaussian spatial scan statistics

proposed by Kulldorff et al. (2009) and Cucala et al. (2017), we assume that the covariance
matrices inside and outside the cluster are equal, i.e., ΓZ = ΓZc = ΓX . Consequently, the
covariance operator of µ̂Z − µ̂Zc , is given by:

ΓZ,Zc =
nZ + nZc

nZnZc

ΓX

which can be estimated by:

Γ̂Z,Zc =
nZ + nZc

nZnZc

Γ̂X ,

where Γ̂X is the pooled covariance, defined as:

Γ̂X(η) =
1

nZ + nZc − 2

(︂
(nZ − 1)Γ̂Z(η) + (nZc − 1)Γ̂Zc(η)

)︂
for η ∈ χ. Here, Γ̂Z and Γ̂Zc are the sample covariance operators of ΓZ and ΓZc , respectively,
given by:

Γ̂Z(η) =
1

nZ − 1

nZ∑︂
i=1

⟨Xi − µ̂Z , η⟩(Xi − µ̂Z)

and

Γ̂Zc(η) =
1

nZc − 1

nZc∑︂
i=1

⟨Xi − µ̂Zc , η⟩(Xi − µ̂Zc).

As noted by Smida et al. (2022b) and recommended by Cucala (2017), when defining a
concentration index for constructing a scan statistic, it is essential to check that its distribution

5



under the null hypothesis does not depend on nZ , the size of the potential cluster Z. It is
important to note that the Hotelling’s T 2

FH statistic is equivalent to a normalized version of
the two-sample test statistics proposed by Horváth and Kokoszka (2012), known as T (1)

N,M , or
as U2

N,M in Horváth et al. (2013). Consequently, under H0, the limiting distribution of the
Hotelling’s T 2

FH statistic (the normalized statistic of Horváth and Kokoszka, 2012) follows a
chi-squared distribution with K degrees of freedom, which is fixed and does not depend on the
size of the potential cluster Z. Thus, we believe the concentration index

I(Z) := T 2
FH

is relevant for comparing potential clusters with different population sizes.
Thus, the scan statistic can be defined as the maximum of this concentration index on the

set of potential clusters S which has been previously defined. The Hotelling functional scan
statistic (HFSS) is

ΛHFSS = max
Z∈S

I(Z)

and the potential cluster detected, for which ΛHFSS is obtained, is

Ĉ = arg max
Z∈S

I(Z).

This latter is called the Most Likely Cluster (MLC).

2.2. Computing the scan statistic
2.2.1. The choice of the threshold parameter K

The computation of the scan statistic ΛHFSS requires evaluating the concentration index
I(Z) for each potential cluster Z ∈ S, which depends on the choice of the threshold parameter
K. This parameter determines the number of eigenfunctions and eigenvalues of the sample
covariance matrice ΓZ,Zc to use. In practice, since our concentration index is equal to the
Hotelling’s T 2

H statistic, it can be applied to solve the testing problem using various values of
K. The results of these tests can then be compared. However, when K equals the number
of measurements kmax (which is finite in practice), the test statistic tends to be abnormally
large, often leading to a detected cluster that contains only one observation. This issue arises
due to numerical precision errors associated with small eigenvalues. Therefore, it is advisable
to establish a procedure for selecting an appropriate value of K to ensure a consistent decision
when applying this hypothesis to real data. To this end, we rely on the cumulative percentage of
total variance (CPV) (for more details, see, for example, Horváth and Kokoszka, 2012; Horváth
et al., 2013; Joseph et al., 2015). This approach is the standard method for determining the
number of sample principal components to retain. For each potential cluster Z, the CPVZ
function is defined as follows:

CPVZ(k) =

∑︁k
j=1 λ̂j∑︁kmax

j=1 λ̂j
,

where the λ̂j’s are the eigenvalues of Γ̂Z,Zc and kmax represents the total number of estimated
eigenvalues. CPVZ is an increasing function that approaches 1. It is calculated for each potential
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cluster Z, and by averaging over all Z, we obtain a function CPV¯ that depends only on k. The
next step is to determine the optimal value K, which can be done in at least two ways. Horváth
and Kokoszka (2012) recommend choosing K such that the CPV¯ function exceeds a desired
threshold, with 85% being the recommended value. Alternatively, as in Joseph et al. (2015), K
can be chosen where CPV¯ shows a marginal increase toward 1. This procedure ensures that
the same value K is selected for all potential cluster Z, so that the limiting distribution of T 2

FH

is always the same whatever potential cluster Z.

2.2.2. Algorithm for the computation of the proposed scan statistic
The algorithm used to derive ΛHFSS and its associated most likely cluster Ĉ is as follows:

Algorithm 1 Computing the HFSS and the Most Likely Cluster (MLC)
1: Data: {(s1, X1), . . . , (sn, Xn)}, each curve Xk is observed in a finite number of points kmax

and each spatial location sk is expressed in Cartesian coordinates.
2: For all i, j ∈ {1, . . . , n}, compute the distance di,j between locations si and sj to determine

the disc Di,j centered at si and passing through sj.
3: Define S̃ as the set of potential clusters without duplicates, with size Ñ . To create S̃, we

add the discs Di,j for i, j = 1, . . . , n from S only if a disc with the same locations isn’t
already included. Define Zp, for p = 1, . . . , Ñ , as the potential clusters in S̃, of size nZp and
Zc

p its complement of size nZc
p
.

4: function HFSS (computing the HFSS scan statistic)
5: Input: X, S̃
6: Output: Λ̂HFSS, Ĉ (MLC)
7: for p = 1 to Ñ do
8: Compute: µ̂Zp

= 1
nZp

∑︁
k:sk∈Zp

Xk and µ̂Zc
p
= 1

nZc
p

∑︁
k:sk∈Zc

p
Xk

9: Compute: Γ̂Zp , Γ̂Zc
p
, and Γ̂X =

((nZp−1)Γ̂Zp+(nZc
p
−1)Γ̂Zpc )

nZp+nZc
p
−2

10: Compute eigenvalues λ̂j and eigenvectors âj, j = 1, . . . , kmax, of Γ̂Zp,Zc
p
=

nZp+nZc
p

nZpnZc
p

Γ̂X

11: Compute CPVZp(k) =
∑︁k

j=1 λ̂j∑︁kmax
j=1 λ̂j

, for k = 1, . . . , kmax

12: Compute Ik(Zp) =
k∑︂

j=1

â2j

λ̂j
, for k = 1, . . . , kmax

13: Compute CPV¯ (k) = 1
Ñ

∑︁Ñ
i=1CPVZp(k) and select K as the point at which the function

CPV¯ begins to increase very slowly towards 1.
14: Λ̂HFSS = max

Z⊂S̃
IK(Z)

15: Ĉ = arg max
Z⊂S̃

IK(Z)

2.3. Computing the statistical significance
After computing the scan statistic ΛHFSS and identifying the most likely cluster Ĉ, it is

necessary to assess its significance. However, the distribution of a variable window scan statistic
under H0 does not have an analytical form. To address this issue, Dwass (1957) proposed a test
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procedure based on Monte Carlo simulations to approximate the null distribution. This method
was later extended by Barnard (1963) and Hope (1968). The approach involves comparing the
observed scan statistic to scan statistics generated from datasets simulated under H0. Since no
assumptions are made about the distribution of the functional marks, the only way to obtain
such datasets is by using a method called random labeling (Cucala, 2014). In this method, a
simulated dataset is created by randomly associating the functional marks Xi with the spatial
locations si. Based on T random permutations, we consider

Λ
(1)
HFSS, . . . ,Λ

(T )
HFSS

which represent the scan statistics obtained from the simulated datasets. Then, as outlined by
Dwass (1957), the p-value of the observed scan statistic ΛHFSS in the initial sample is calculated
as follows:

pvalue =

1 +
T∑︂
i=1

1{Λ(i)
HFSS>ΛHFSS}

T + 1
.

Undoubtedly, a higher number of permutations T leads to a more accurate estimation of the
scan statistic’s p-value. However, due to the considerable computational cost, one needs to find
a trade-off between these factors. Lastly, the MLC Ĉ is considered to be statistically significant
if the associated pvalue is less than the type I error.

3. Simulation study

In the simulation study, we evaluated the performance of the Hotelling functional scan statis-
tic (HFSS) ΛHFSS introduced in the previous section. We compared it with the distribution-free
functional spatial scan statistic (DFFSS) ΛDFFSS, the parametric functional spatial scan statistic
(PFSS) ΛPFSS proposed by Frévent et al. (2021), and the nonparametric functional spatial scan
statistic (NPFSS) ΛNPFSS developed by Smida et al. (2022b).

We generated artificial datasets using the geographic locations of the administrative centers
of the 94 French administrative areas, known as départements. The simulated true cluster,
denoted by C, was defined as a group of départements within the Parisian region, based on two
configurations: (i) 8 départements and (ii) 10 départements. Maps of the simulated clusters
are available in Fig. S1 in online supplementary material. To calculate the distances between
départements, we use the Cartesian coordinates of their centroids, expressed in meters. The size
of S is n2 = 472 = 8836, while after removing duplicates, the size of S̃ is Ñ = 7044.

At each location si, i ∈ [1; 94], the functional marks Xi associated with these location take
values in χ = L2([0, 1],R) and are generated according to the following model (see, Smida et al.,
2022b, for more details):

∀i = 1, . . . , 94, Xi(t) =
∞∑︂
k=1

Zi,kek(t) + ∆(t)1{si∈C},
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where, for all k ≥ 1, ek(t) =
√
2 sin (t/σk) forms an orthonormal basis for χ, with σk =

((k − 0.5)π)−1, and the Zi,k’s are independent random variables representing the projection
of Xi onto the Karhunen-Loève basis (Karhunen, 1947; Lévy, 1965). This decomposition of the
functional marks is based on the Karhunen-Loève expansion, a technique widely used in im-
age processing and functional data analysis (Ahmed et al., 2018; Chakraborty and Chaudhuri,
2015). In our case, these marks are observed at 101 equispaced points in [0, 1]. We considered
four scenarios:

(i) A standard Brownian motion (sBm), i.e. Zi,k/σk ∽ N (0, 1).

(ii) A centered Student-t process on [0, 1] with 4 degrees of freedom, i.e. Zi,k/σk ∽ t(4).

(iii) An exponential distribution with parameter 4, where Zi,k/σk ∽ Exp(4).

(iv) A chi-squared distribution with parameter 4, where Zi,k/σk ∽ χ2(4).

Three types of clusters were simulated with an intensity controlled by a parameter α > 0.
The chosen shifts ∆, which are positive and vary over time, are given by: ∆1(t) = αt,
∆2(t) = αt(1 − t) and ∆3(t) = α exp [−100(t− 0.5)2] /3, for all t ∈ [0, 1]. According to Smida
et al. (2022b), the level of spatial heterogeneity in the functional marks is entirely controlled
by the parameter α, as the marks are independent. Different values of this parameter were
considered for each ∆. Additionally, α = 0 was also tested to check if the nominal type I error
rate is preserved as shown in Smida et al. (2022b) and Frévent et al. (2021). An example of
simulated data is available in Fig. S2 in online supplementary material.

To compare the four scan methods HFSS, DFFSS, NPFSS and PFSS, we created 200 simu-
lated datasets for each distribution of the marks and each value of the cluster intensity α. For
each method, we assessed three distinct criteria: the power to detect a significant cluster, the
true positive rate (TP), and the false positive rate (FP). These three criteria were calculated as
follows:

- The power of the test was defined as the proportion of datasets where a significant cluster
was detected with a type I error rate of 0.05, using T = 199 random permutations.

- The TP was defined as the average proportion of true positive départements across all
simulated datasets. It was computed as the ratio of the number of départements that are
present in both the significant cluster Ĉ and the true cluster C to the total number of
départements in C.

- The FP was calculated as the average proportion of false positive départements, which are
the départements found in the most significant cluster Ĉ but not in the true cluster C,
divided by the number of départements not included in C.

To implement the HFSS method, we selected the optimal value of K according to the CPV
criterion. The aggregated CPV¯ curves from several simulations, based on different values of the
cluster intensity α, the three shifts, and the four probabilistic models„ are plotted in Fig. S3 in
online supplementary material. It seems that keeping five eigenvalues prevents the CPV¯ curves
from increasing, regardless of the parameters used. Additionally, we chose K = 5 for each
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simulation to ensure that the results are comparable across different scenarios. This choice of
K = 5 is also supported by the theoretical simulation model, particularly within the Gaussian
framework. In this context, we know the true eigenvalues of the covariance operators used in the
simulation procedure (see the formula provided in the online supplementary material). The first
ten cumulative percentages are 0.8122, 0.9025, 0.9350, 0.9515, 0.9616, 0.9683, 0.9731, 0.9767,
0.9795, and 0.9817, respectively. As shown, the cumulative percentages grow very slowly from
the fifth eigenvalue.
The results of the simulation study are presented in Fig. 1, and Fig. 2 for scenarios where the
true cluster consists of 8 départements. For scenarios where the true cluster consists of 10
départements, the results can be found in Fig. S4, Fig. S5, and Fig. S6, online supplementary
material.
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Figure 1: Simulation study- Power, TP and FP results of the HFSS, DFFSS, NPFSS and PFSS methods for the
shift ∆1(t) = αt using four distributions: Normal, Student-t, Exponential and Chi-squared. The true cluster
contains 8 départements.
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Based on the power curves shown in Fig. 1, and Fig. 2, the sizes of the different methods
(i.e., the power when α = 0) are close to the nominal type I error rate of 0.05, regardless of the
distribution of the marks. The performance of all scan statistics tends to increase with higher
cluster intensity, α. Notably, the power of the proposed scan statistic HFSS is consistently
higher than that of DFFSS, PFSS, and NPFSS across all cases whatever the size of the true
cluster C and the shift ∆, particularly in the case of ∆3. On the other hand, power grows more
slowly with Student-t or Chi-squared distributions compared to normal or exponential ones,
due to their heavier tails. Additionally, for a fixed cluster intensity α, the power increases as
the cluster size grows from 8 to 10 (see Fig. S4, Fig. S5, and Fig. S6 in online supplementary
material), since larger clusters are easier to detect.

The true positive rate and false positive rate also improve as the cluster intensity α increases
(higher TP and lower FP). The true positive of the proposed HFSS is consistently higher than
that of all other methods, especially for shifts ∆2 and ∆3, regardless of the true cluster size
C. In terms of false positives, HFSS consistently shows the lowest false positive rates, with a
notable difference observed for shifts ∆2 and ∆3. According to Frévent et al. (2021), NPFSS
exhibits the highest false positive rates. However, it is also evident that NPFSS achieves higher
true positive rates for shifts ∆1 and ∆2 compared to DFFSS and PFSS (which have the lowest
true positive rates) whatever the size of the true cluster.

4. Application to real data

In this study, we will employ the scan statistic for functional data to explore two types of
applications: economic and climatic data. For the economic data, the scan statistic will be
applied to detect spatial clusters of abnormal unemployment rates in Spain over time. For the
climatic data, the aim is to monitor environmental changes by identifying spatial clusters of
unusual climate change patterns over time in Great Britain, Nigeria, Pakistan, and Venezuela.

Comparison of the procedures. To identify spatial clusters of low or high unemployment rates in
Spain and unusual climate change in Great Britain, Nigeria, Pakistan, and Venezuela, we used
the HFSS, DFFSS, NPFSS, and PFSS methods to detect the MLCs with high concentration
indices. Additionally, we examined the presence of the most likely secondary clusters (2MLC)
following the approach outlined by Zhang et al. (2010) (see also Smida et al., 2022b). For all
four methods, the set of potential clusters S is constructed as described in subsection 2.1. The
significance of the MLCs and 2MLCs was evaluated through T = 999 Monte Carlo permutations,
with statistical significance defined as a p-value below 0.05, as detailed in subsection 2.3.

4.1. Application to unemployment rates in Spain
Unemployment rate data in Spain. Given that Spain has consistently been one of the countries
with the highest unemployment rates in the European Union, we conducted an analysis of
unemployment rate data sourced from the Spanish Institute of Statistics (www.ine.es). This
data spans each quarter from 2002 to 2022 (a total of 80 quarters) across all 47 provinces of Spain
(see Fig. S7 in online supplementary material, left panel). The right panel of Fig. S7 presents
a chart illustrating significant fluctuations in unemployment rates over time. Fig. S9 in online
supplementary material shows the spatial distribution of the average unemployment rate from
2002 to 2022, highlighting that high unemployment rates were mainly in the south of Spain,
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while lower rates were found in the north. Additionally, Fig. S8 in the online supplementary
material, which displays the mean unemployment rate every two years, indicates a diverse
pattern across provinces. Thus, we propose using functional spatial scan statistics to identify
spatial clusters of unemployment at the provincial level.

Cluster detection results. Here, the size of S is n2 = 472 = 2209, whereas the size of S̃ after
removing duplicates is Ñ = 1613. For the HFSS method, we select K = 2 based on the
CPV criteria (see Fig. S10 in online supplementary material for plots of CPV¯ ), which explains
approximately 90% of the total variance. Fig. 3 shows the significant spatial clusters (MLCs
and 2MLCs) identified by the HFSS, DFFSS, NPFSS, and PFSS methods. For the MLCs,
the p-values for all methods are zero up to two decimal places (or 0.001). For the most likely
secondary clusters, the HFSS method has the most significant p-value (0.003), though the p-
values for the other methods are also below the type I error threshold of 0.05. The complete
results are presented in Table 1 in online supplementary material.

The HFSS, DFFSS, and PFSS methods identified exactly the same MLC of 13 provinces in
southern Spain. In contrast, the NPFSS detected a larger MLC of 17 provinces, encompassing
the same 13 provinces plus 4 additional ones. The unemployment rate in these detected re-
gions was consistently higher than the rest of Spain throughout the period. These MLCs were
homogeneous, as they included provinces with unemployment rates above the national average
(except for two provinces at the end of the study period and the larger cluster detected by
NPFSS).

For the secondary clusters, the HFSS and NPFSS methods detected the same 2MLC con-
sisting of 15 provinces. The PFSS method identified a slightly larger 2MLC, which included
these 15 provinces plus one additional province. In contrast, the DFFSS method detected a
much larger 2MLC of 22 provinces. All 2MLCs were located in northern Spain, except for the
DFFSS cluster, which also extended into the northeast. All these clusters detect the provinces
with the lower unemployment rates between 2002 and 2022. Notably, the unemployment rate
curves for the HFSS and NPFSS secondary clusters were below the national average curve.

To conclude, this first application revealed that the detected clusters (MLCs or 2MLCs)
correspond to curves consistently positioned above or below the others, with all four meth-
ods performing comparably. However, the HFSS and PFSS methods have the advantage of
producing more reasonable cluster sizes.
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Figure 3: Clusters for the HFSS, DFFSS, PFSS, NPFSS methods, for the variable Unemployment rate (in %),
observed quarterly from 2002 to 2022 in Spain.
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4.2. Application to climate data
Some changes, such as droughts, heat waves, and extreme rainfall, are occurring faster than

scientists estimated. In this work, we focus on annual indicators of global climate change from
2010 to 2023 (i.e., 24 measurement points), such as the number of heat waves days, the differ-
ence in temperatures from seasonal norms, and extreme precipitation events. Additionally, we
selected one country per continent (Great Britain in Europe, Nigeria in Africa, Pakistan in Asia,
and Venezuela in America) to determine whether we could detect regions where climate change
is expressed differently. To achieve this, we used the Modern-Era Retrospective analysis for Re-
search and Applications Version 2 (MERRA-2), provided by the National Aeronautics and Space
Administration (NASA) Global Modeling and Assimilation Office (GMAO) from 1981 to 2023.
MERRA-2 is fully described in Gelaro et al. (2017) and has been used in many recent scientific
articles (see, for instance, https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/pubs/). All
of the MERRA-2 atmospheric variables are provided at 0.5◦ × 0.625◦ spatial resolution.

4.2.1. Difference from average temperatures in Great Britain
Temperature Data for Great Britain. We consider the island of Great Britain, which includes the
countries England, Scotland and Wales. The island is divided into 145 cells, covering around
209 331 km2 (Fig. S11, left panel). We focus on the difference from average temperatures,
observed from 2010 to 2023 (Fig. S11, right panel). This difference is defined as the deviation
between the average yearly temperature and the normal yearly temperature, which is computed
from the period 1981-2010.

The spatial distributions of the average temperature over the entire observed time period
(Fig. S13) were heterogeneous. Lower temperatures tended to aggregate in northern Scotland,
while higher temperatures were observed in southeastern England. Additionally, in Fig. S12
in online supplementary material, we map the average of the variable aggregated over a two-
year window. This mapping reveals that the period 2021–2023 was particularly warmer across
almost all regions. During 2018–2020, the southeast experienced the most significant rise in
temperatures. The periods 2000–2002, 2009–2011 and 2012–2014 were not far from normal
temperatures. Finally, between 2003 and 2006, the north of Great Britain experienced tem-
peratures higher than normal compared to the rest of the country. Moreover, according to
Christidis et al. (2020), in addition to the noticeable contrast between warmer summers in
the south and cooler temperatures in the north, southeast England stands out as the region
where high temperature extremes are most likely to occur. Here, we are exploring whether scan
statistics can identify results comparable to those observed.

Cluster detection results. In this instance, S contains n2 = 1452 = 21025 elements, while after
eliminating duplicates, the size of S̃ decreases to Ñ = 13644. For running the HFSS method,
we selected K = 6 based on the CPV criteria (refer to Fig. S14 in online supplementary material
for the plots of CPV¯ ), which explains aapproximately 94% of total variance. The MLCs and
2MLCs detected by all methods are significant at level 1o/oo (see, Table 2 online supplementary
material). In Figure 4, we observe that the MLCs identified by the NPFSS, PFSS and DFFSS
are very similar. The MLCs contain 73 cells for NPFSS and PFSS, and 104 cells for DFFSS. The
observations are concentrated in a large southern part of Great Britain, where the temperatures
are essentially higher than in other areas throughout the observation period. The 2MLCs
identified by NPFSS, PFSS, and DFFSS contain observations located just above the MLCs.

15

https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/pubs/


The sizes of these secondary clusters are smaller than the MLCs, with 30, 52, and 20 cells,
respectively.

Moreover, the MLC obtained by the HFSS method is of reasonable size (50 cells). It is located
at the extreme north of the island, where the differences from average temperatures are the
smallest throughout the observation period, except for the period 2003–2005, when the increases
in temperature compared to normal were greater. In contrast, the 2MLC (31 cells in size) is
located in the southeastern part of the island, where the difference from average temperatures
are the highest, except for the period 2003–2005, when the increases in temperature compared
to normal were greater.

Finally, the HFSS method stands out by identifying two clusters that differ significantly in
both size and geographic location. In this case, the detected clusters no longer correspond to
curves consistently positioned above or below the others. Instead, the identified curves alternate
between periods where they are sometimes above and other times below the remaining curves.
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Figure 4: Clusters for the HFSS, DFFSS, PFSS, NPFSS methods, for the variable difference with the normal
temperatures (in degree Celsius) in Great-Britain.
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4.2.2. Maximum consecutive 5-days precipitation in Nigeria
Precipitation Data in Nigeria. Nigeria, situated in West Africa, has experienced severe flooding
in recent years, displacing millions of people, destroying homes, and causing damage worth
billions of naira (local currency). According to Dike et al. (2020), the maximum consecutive 5-
day rainfall totals have increased across Nigeria’s three climatic zones: the Guinea coast (south),
Sub-Sahel (central), and Sahel (north) regions. To examine these changes in detail, we analyze
data from 285 grid cells that cover approximately 923 768 km2 (Fig. S15, left panel). We focus
on the variable maximum consecutive 5-days precipitation (in mm), observed from 2010 to 2023
(Fig. S15, right panel). This variable represents the highest amount of cumulative precipitation
observed over any five consecutive days within a year.

The spatial distribution of the average maximum consecutive 5-day precipitation over the en-
tire observed period was heterogeneous (see Fig. S17 in online supplementary material). Higher
values of maximum consecutive 5-day precipitation were generally observed in the southeast
and northern regions near the center, while lower values tended to be in the northeastern part
of the country. To further explore these trends, Fig. S16 maps the average of this variable over
a three-year window. This mapping shows that, before 2018, heavy rainfall mainly impacted
the southern region of Nigeria. However, starting in 2019, heavy rainfall began to impact the
entire country, with particular intensity in the central northern regions. Here, we aim to deter-
mine whether scan statistics can identify these regions and evaluate whether heavy precipitation
patterns have changed differently in various areas or if some regions are at greater risk than
others.

Cluster detection results. In this example, the size of S is n2 = 2852 = 81225, but after removing
duplicates, the size of S̃ reduces to Ñ = 70172. For the HFSS method, we select the value K = 6
based on the CPV criteria (see Fig. S18 in online supplementary material for plots of CPV¯ ),
which explains approximately 94% of the total variance. The MLCs and 2MLCs detected by
all methods are significant at level 1o/oo (see Table 3 in online supplementary material). Fig. 5
displays the significant spatial clusters identified by the HFSS, DFFSS, NPFSS, and PFSS
methods. It shows that HFSS and PFSS produce similar results, both identifying a small
cluster (9/285 observations) in Bauchi State (north-central) with peaks in 2020 and 2022. In
September 2022, this area experienced severe flooding that affected 2185 individuals due to
heavy rain and strong winds (International Organization for Migration, 2022). This region is
also identified as 2MLC by the DFFSS method. Additionally, the MLC detected by the DFFSS
method (which corresponds to secondary cluster identified by the PFSS, HFSS, and NPFSS
methods) is located in southern Nigeria. This region, characterized by an equatorial climate,
receives the highest rainfall and has a hot, humid climate with heavy precipitation.

To conclude, the HFSS, DFFSS, and PFSS methods successfully identified a cluster with
curves showing a sudden shift in behavior, similar to a shock in time series. However, the MLC
detected by the NPFSS method is less interesting due to its large size (200 out of 285), making
it less useful compared to the other methods.
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Figure 5: Clusters for the HFSS, DFFSS, PFSS, NPFSS methods, for the variable Maximum consecutive 5-days
precipitation (in mm), in Nigeria.
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4.2.3. Maximum consecutive 5-days precipitation in Pakistan
Precipitation Data in Pakistan. According to United Nations Human Settlements Programme
(2023), Pakistan ranks among the top 10 countries most vulnerable to climate change. During
the monsoon season, from July to August, the country typically receives an average of 255 mm
of rainfall per month. However, in the summer of 2022 (June–September), the average daily
rainfall surged to 3.95 mm, which was 283% higher than the 42-year average of 1.03 mm/day
and exceeded the inter-annual standard deviation by sevenfold, based on the Climate Prediction
Center’s (CPC) unified precipitation analysis (You et al., 2024). To better understand these
variations, we divided Pakistan into 306 cells, covering an area of approximately 881,913 km²
(Fig. S19, left panel). Our analysis focuses on the "Maximum consecutive 5-day precipitation"
variable (in mm), observed from 2010 to 2023 (Fig. S19, right panel), as previously outlined.

The spatial distribution of the average maximum consecutive 5-day precipitation over the
entire period was varied, as shown in Fig. S21 in online supplementary material. Additionally,
Fig. S20 in online supplementary material presents the average precipitation over a three-year
period. This figure indicates that before 2018, the southeastern and northern regions experi-
enced slightly higher precipitation compared to the rest of the country. However, starting in
2019, heavy rainfall began to impact nearly every region of Pakistan. Thus, we seek to assess
whether scan statistics can reveal regions with varying levels of impact from heavy rainfall.

Cluster detection results. In this scenario, the size of S is n2 = 3062 = 93636, while after
removing duplicates, the size of S̃ is Ñ = 71053. For the HFSS method, we chose K = 6
based on the CPV criteria (refer to Fig. S22 in online supplementary material for CPV¯ plots),
which explains about 90% of the total variance. All MLCs and 2MLCs detected by the methods
are significant at the 1o/oo level (see Table 4 in online supplementary material). Figure 6 shows
that the same MLC is identified by both the NPFSS and PFSS methods. This MLC is quite
large (226/305) and corresponds to the eastern part of the country. The DFSSS and HFSS
methods deliver particularly valuable results, as they identify clusters of reasonable size in
notable regions. The MLC detected by the DFSSS method corresponds to Kashmir, which has
seen significant heavy rainfall in the past, particularly in 2014. The 2MLC identified by the
same method is in the Sindh region (including Karachi), which has experienced heavy rainfall
in several years, including 2020, 2017, and 2015. In contrast, the HFSS method identifies the
highest peak observed over the years, which occurred in 2021 in northern Balochistan. This
MLC is relatively small (11/305) and is situated near Quetta. In 2021, the total precipitation
over a five-day period in this area exceeded 600 mm. Additionally, the 2MLC (of size 31)
corresponds to a region heavily affected by the floods in 2020 and 2022 (see, for instance, the
map produced by Joint Research Center, 2022, for the European Union).

In this example, the HFSS method, similar to the DFFSS and PFSS methods, was effective
in detecting clusters that represent sudden changes in the functional data. This capability
enables the identification of regions experiencing rapid climate change.
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Figure 6: Clusters for the HFSS, DFFSS, PFSS, NPFSS methods, for the variable Maximum consecutive 5-days
precipitation (in mm), in Pakistan.
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4.2.4. Heat wave days frequency in Venezuela
Heat wave Data in Venezuela. The impacts of climate change in Venezuela are evident through
rising air temperatures, melting glaciers, shrinking polar ice caps, and increased desertifica-
tion. Additionally, the country is experiencing more frequent extreme weather events, including
heat waves, droughts, floods, and storms. According to Feron et al. (2019), the proportion
of extremely warm days in Northern South America during the austral summer (December to
February) has more than doubled in recent decades. Here, the country is divided into 304 cells,
covering approximately 916 445 km2 (Fig. S23, left panel). We analyze the number of heat wave
days per year from 2010 to 2023 (Fig. S23, right panel). A heat wave is defined as a period of at
least three consecutive days when the daily mean temperature exceeds the 90th percentile (or
falls below the 10th percentile) for a 15-day running window during the baseline period (1981–
2010). The average spatial distribution of heat waves across the observation period (Fig. S25)
varied considerably, with the northwestern and eastern regions of the country being notably
vulnerable. In Fig. S24 in online supplementary material, we present a three-year average of
heat waves. This mapping shows that before 2018, the southeastern region was somewhat more
affected. Between 2018 and 2020, the northwestern region also began experiencing significant
heat waves. In the most recent period, heat waves were widespread, with the northwestern re-
gion facing the greatest impact. Therefore, we use scan statistics to investigate whether climate
change affects some regions more than others.

Cluster detection results. In this example, the size of S is n2 = 3042 = 92416, and after removing
duplicates, the size of S̃ is Ñ = 71153. For the HFSS method, we selected K = 6 based on the
CPV criteria (see Fig. S26 in online supplementary material for CPV¯ plots), which accounts
for approximately 90% of the total variance. The MLCs and 2MLCs identified by all methods
are significant at the 1o/oo level (see Table 5 in online supplementary material). Figure 7 shows
that the MLCs and 2MLCs detected by NPFSS, PFSS, and DFFSS are highly comparable.
However, the MLCs found by NPFSS are notably larger, covering 105 out of 304 cells, while
those identified by the other methods cover 73 out of 304 cells each. In contrast, the HFSS
method detects clusters that are both smaller and differently located. The MLC identified
by HFSS corresponds to the Amazon rainforest in southeastern Venezuela and covers a more
modest area of 35 out of 304 cells (see Table 5 in online supplementary material). According
to Flores et al. (2024), this region is increasingly vulnerable to stress from rising temperatures,
extreme droughts, deforestation, and fires. The curves corresponding to this MLC show that
this region experienced a higher frequency of heat wave days between 2010 and 2020 compared
to the rest of the country. In addition, the HFSS method also identifies a 2MLC in the Apure
region of northwestern Venezuela. Covering 71 cells, this area has been notably impacted by
severe heat waves in recent years, with some cells recording over 200 heat wave days in both
2020 and 2021.

In this final example, all methods successfully identified two regions affected by climate
change: one with consistently high heat waves over several years (the Amazon), and another
that experienced a rapid increase in heat waves over the past four years.
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Figure 7: Clusters for the HFSS, DFFSS, PFSS, NPFSS methods, for the variable Heat wave duration (in
number of days), in Venezuela.
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5. Discussion

In this article, we developed a HFSS scan statistic, for analyzing spatially indexed functional
data. It is based on the Hotelling T 2

FH test statistic (Joseph et al., 2015) (or Horváth et al.,
2013) and utilizes a concentration index with a known distribution. As Kulldorff (2006) noted,
the main goal of cluster detection is to raise an alarm, prompting scientists to investigate areas
with unusual values. The proposed HFSS method is particularly effective for this when dealing
with complex, infinite-dimensional data.

The proposed scan statistic HFSS extends the Gaussian spatial scan statistic introduced by
Kulldorff et al. (2009) for univariate data and later adapted for multivariate data by Cucala
(2017). Both of these methods rely on a concentration index based on the Gaussian likelihood
ratio. As noted by Cucala et al. (2017) and Cucala (2022), the multivariate Gaussian concentra-
tion index is equivalent to the T 2

H test statistic introduced by Hotelling (1931), as elaborated by
Anderson (2003). This equivalence is demonstrated and detailed separately for both univariate
and multivariate cases within the context of scan statistics in this article. Additionally, the
advantage of using the Hotelling test, as mentioned by Johnson and Wichern (2002), is that it
remains remarkably unaffected by slight departures from normality and the presence of a few
outliers when the sample size is moderate to large.

We employed simulations and real-world datasets (economic and climate) to compare our
HFSS method with the DFFSS and PFSS methods introduced by Frévent et al. (2021) and the
NPFSS method proposed by Smida et al. (2022b). When applying the HFSS method, selecting
the number of functional principal components is crucial. We suggest using the cumulative
percentage of total variance for this purpose, as discussed in detail in this work.

The simulation study results demonstrated that all methods maintained the nominal type I
error. However, the HFSS method outperformed the others in terms of power, true positive rate,
and false positive rate, regardless of the true cluster size, distribution nature (Gaussian or other),
or shift type. Notably, HFSS showed significantly better power in detecting spatial clusters
that appear over short periods, particularly in cases of quadratic and exponential shifts. It also
proved especially effective when dealing with functions exhibiting extremely high values from
light-tailed distributions, such as the exponential distribution. Given that many real datasets,
such as those from economics, climate, environmental studies, epidemiology, etc., often deviate
from a Gaussian distribution, HFSS may be particularly effective for cluster detection. This
method is capable of identifying abrupt changes in functions that other techniques might miss.

In our applications, the HFSS method performed well in identifying significant clusters.
These clusters were usually moderate in size compared to those found by the NPFSS method,
making them easier to interpret. They usually aligned with the clusters found by the DFFSS
and PFSS methods. However, our new HFFS method allowed us to discover different clusters
that displayed specific behaviors in their curves. Notably, it was able to detect sudden changes,
like shocks, which isn’t always the case with other functional scan methods. In particular, it can
detect sudden ruptures, such as shocks, which does not appear to be the case for all functional
scan methods.

From the perspective of this work, several key considerations arise. Our use of the spatial
scan statistic relies on the assumption that observations are independent, a standard approach
also adopted by Smida et al. (2022b) and Frévent et al. (2021). However, this assumption may be
violated in the presence of spatial autocorrelation, potentially leading to an inflated Type I error
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rate in the random permutation process, as noted by Ahmed et al. (2021), Lee et al. (2020), and
Loh and Zhu (2007). Therefore, addressing the impact of spatial autocorrelation in univariate
functional scan statistics is a complex area that requires further exploration. Moreover, while
our method, like those of Smida et al. (2022b) and Frévent et al. (2021), is specifically designed
for circular clusters, it can also be adapted to other shapes, such as elliptical Kulldorff (2006)
and graph-based clusters Cucala et al. (2013). Finally, since multiple curves may be observed
at each spatial location, another approach could be to develop a functional Hotelling spatial
scan for functional data. Comparing this method with the multivariate extensions of DFFSS,
PFSS, and NPFSS proposed by Frévent et al. (2023) and implemented in the HDSpatialScan
R package Frévent et al. (2022) could provide valuable insights.
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