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Abstract

ICS (Invariant coordinate selection) is a method aimed at dimension reduction as a preliminary step for clustering and
outlier detection. It can be applied on multivariate or functional data. This work introduces a coordinate-free definition
of ICS and extends the ICS method to distributional data. Indeed the inherent constraints of density functions imply a
necessary adaptation of functional ICS. Our first achievement is a coordinate-free version of ICS within the framework
of Hilbert spaces, assuming that the data lies almost surely in a finite dimensional subspace. Using the Bayes space
framework tailored for density functions, we express the centred log-ratio of the density curves in a subspace of
L(z)(a, b) of zero-integral spline functions and conduct ICS in this finite dimensional subspace. We describe the different
steps of the procedure for outlier detection and study the impact of some parameters of this procedure on the results.
The methodology is then illustrated on a sample of daily maximum temperatures densities recorded across northern
Vietnamese provinces between 1987 and 2016.
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1. Introduction

The invariant coordinate selection (ICS) method was introduced in a multivariate data analysis framework by Tyler
et al. [29]. ICS is one of the dimension reduction methods that extend beyond Principal Component Analysis (PCA)
and second moments. ICS seeks projection directions associated with the largest and/or smallest eigenvalues of the
simultaneous diagonalisation of two scatter matrices [see 11, 16, for recent references]. This approach enables ICS to
uncover underlying structures, such as outliers and clusters, that might be hidden in high-dimensional spaces. ICS is
termed “invariant” because it produces components, linear combinations of the original features of the data, that re-
main invariant (up to their sign and some permutation) under affine transformations of the data, including translations,
rotations and scaling. Moreover, Theorem 4 in Tyler et al. [29] demonstrates that, for a mixture of elliptical distribu-
tions, the projection directions of ICS associated with the largest or smallest eigenvalues usually generate the Fisher
discriminant subspace, regardless of the chosen pair of scatter matrices and without prior knowledge of group assign-
ments. Once the pair of scatter matrices is chosen, invariant components can be readily computed, and dimension
reduction is achieved by selecting the components that reveal the underlying structure. Recent articles have examined
in detail the implementation of ICS in a multivariate framework, focusing on objectives such as anomaly detection [6]
or clustering [2]. These studies particularly address the choice of pairs of scatter matrices and the selection of relevant
invariant components. Note that this idea of joint diagonalisation of scatter matrices is also used in the context of blind
source separation and more precisely for Independent Component Analysis (ICA) which is a model-based approach
as opposed to ICS [see 16, for more details].

A significant contribution of the present work is the formulation of a coordinate-free variant of ICS, assuming
the data almost surely resides in a Euclidean subspace. This formulation allows ICS to be defined in a very general
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framework, facilitating its adaptation to more complex data than multivariate data. Examples of complex data for
which there already exists an adaptation of ICS (or ICA) include compositional data [22], functional data [21, 10, for
ICA] or multivariate functional data Archimbaud et al. [4]. Additionally, in this paper, we also extend the multivariate
ICS method to distributional data, an application for which, to our knowledge, no adaptation of ICS currently exists.
Note that a coordinate-free version of ICS was already mentioned in [29], in the discussion by Professor Mervyn
Stone, who proposed to follow the approach by [26]. The response by Tyler and co-authors agreed that this could
offer a theoretically elegant and concise view of the topic. A coordinate-free approach of ICA is proposed in Li et al.
[10], but to our knowledge, no coordinate-free approach to ICS exists for a general Euclidean space like the one we
derive here.

As mentioned above, a possible application of ICS is outlier detection. In the context of a small proportion of
outliers, a complete detection procedure integrating a dimension reduction step based on the selection of invariant
coordinates is described in [6]. This method, which is called ICSOutlier and which flags outlying observations, has
been implemented for multivariate data in [15], and adapted to compositional data in [22], and multivariate functional
data in [4]. We propose to extend and illustrate this detection procedure for density data. Detecting outliers is
already challenging in a classical multivariate context because outliers may differ from the other observations in their
correlation pattern [see 1, for an overview on outlier detection and analysis]. [6] demonstrate how the ICS procedure
outperforms the Mahalanobis distance and PCA (non-robust and robust). For compositional data, the constraints of
positivity and constant sum of the components must be taken into account as detailed in [22] and further examined in
this paper. For univariate functional data, outliers are categorized as either magnitude or shape outliers, with shape
outliers being more challenging to detect because they are hidden among the other curves. Many existing detection
methods for functional data rely on depth measurements, including the Mahalanobis distance [see, e.g., the recent
paper 7, and the included references]. Density data are constrained function data, and thus combine the challenges
associated with both compositional and functional data. The literature on outlier detection for density data is very
sparse and recent with, as far as we know, the papers by [13], [9], [14] only. Two types of outliers exist for density
data: the horizontal-shift outliers and the shape outliers, with shape outliers being again more challenging to detect
[see 9, for details]. The procedure proposed by [13] is based on an adapted version of functional PCA to density
objects in a control chart context. [9] proposes a transformation tree approach that incorporates many different outlier
detection methods adapted to densities. The density data are generally transformed to an unconstrained data type and
functional outlier detection methods are used. The objective of the authors is to propose a robust distribution regression
method. [14] continue the work of the previously cited article by comparing more methods through simulations, and
give an application to gas transport data. ICS is not mentioned in these references. The coordinate-free definition of
ICS we propose allows to directly apply the ICSOutlier method to density data in a context of a small proportion of
outliers.

Section 2 presents the coordinate-free version of ICS and highlights its significance with examples. From Section
3, we focus on the application to density objects. After recalling some basic facts on the theory of Bayes spaces,
we detail the preprocessing method used (maximum penalized likelihood) to transform the original samples of real-
valued data into a sample of density functions. We describe the finite dimensional subspaces of densities generated
by specific spline functions adapted to density objects. Section 4 describes the ICS-based outlier detection procedure
adapted to density objects and discusses the impact of the preprocessing parameters on outlier detection through a toy
example. Section 5 provides an application of the outlier detection methodology to Vietham maximum temperature
data over 30 years. Section 6 concludes the paper and offers some perspectives. The proofs of the propositions and
corollaries are given in the appendix.

2. Coordinate-free presentation of ICS

Invariant coordinate selection (ICS) is a data exploration method that solves a simultaneous reduction problem of
two scatter operators in order to reveal interesting projections that highlight the lack of ellipticity of the distribution
of the data. ICS has been defined by Tyler et al. [29] in the Euclidean space E = R? using the coordinates in the
canonical basis. However, in order to apply ICS to more general objects such as random densities, we propose the
following generalisation to any Euclidean space E without relying on a particular choice of basis. A coordinate-free
approach to ICS was suggested by Professor Mervyn Stone in the discussion section of Tyler et al. [29] and applied
to Independent Component Analysis by Li et al. [10].



2.1. Scatter operators

Let us first discuss some definitions relative to scatter operators in the framework of a general Euclidean space
(E,{,-)). We consider E-valued random variable X : Q — E where Q is a probability space and E is a Euclidean space
equipped with the Borel o-algebra. In order to define ICS, we need at least two scatter operators, which generalise
the covariance operator defined on E by

V(x,y) € E?,(Cov[X]x,y) = E[(X — EX, x)(X — EX, )], ¢))
while keeping its affine equivariance property
VYA € GL(E),Vb € E,Cov[AX + b] = A Cov[X]A™,

where the Euclidean norm of X is assumed to be square-integrable, G £(E) denotes the group of linear automorphisms
of E and A" is the adjoint linear operator of A in the Euclidean space E, represented by the transpose of the matrix
that represents A.

Definition 1 (Scatter operators). Let (E,-,-)) be a Euclidean space of dimension p, & an affine invariant set of E-
valued random variables, i.e. that verifies:

VX e&EVAe GL(E) Vb e E,AX+be&. 2)

An operator S : & —» S*(E) (where S*(E) is the space of non-negative symmetric operators on E) is called an (affine
equivariant) scatter operator (defined on &) if it satisfies the following two properties:

1. Invariance by equality in distribution:
VX, Y)eE X ~Y = S[X]=S[Y]. 3)

2. Affine equivariance:
VX € E,YA € GL(E),Vb € E,S[AX + b] = AS[X]A", “)

where GL(E) denotes the group of linear automorphisms of E.

Let LP(Q, E) denote the space of E-valued random variables whose Euclidean norm’s p-th power is integrable. If A is
a linear operator, we denote by A'/? the unique non-negative square root of A.

Definition 2 (Weighted covariance operators). For any measurable function w : R* — R, let
E, = {X € LY(Q, E)|Cov[X] € GL(E) and w (”Cov[X]’l/z(X - EX)“) X — EX]|| € L*(Q, R)} . 5)

Note that &, is an affine invariant set of integrable E-valued random variables. For X € &, we define the w-weighted
covariance operator Cov,,[X] by

V(x,) € E%,(Cov,,[X]x,y) = E [w? (||CovIX]™2(X = EX)[[) (X — EX, x)(X - EX, y)]. (©)

When it necessary, we will also write CovZ for the w-weighted covariance operator on E to avoid any ambiguity. It is
easy to verify that weighted covariance operators are affine equivariant scatter operators.

Example 1.
o If w =1, we retrieve Cov, the usual covariance operator on L*(Q,E).

e If for x € R*, w(x) = (p + 2)"!/%x, we obtain the fourth-order moment covariance operator Covy [as in 16, for
the case E = R”] on &, = {X € LYQ, E)| Cov[X] € GL(E)}.



2.2. The ICS problem
We define a coordinate-free version of the ICS problem in a Euclidean space E. This general framework ensures
that ICS does not depend on any particular choice of basis of E to represent the E-valued random object X. Then
we prove a proposition that will allow us to relate coordinate-free ICS to multivariate ICS applied to the coordinate
vectors in a basis of E. Our practical implementation of coordinate-free ICS will be based on this result.
| ifi=
In what follows, 6, = 1 ] j is the Kronecker delta of two integers j, j'.
0 ifj#y)
Definition 3 (Coordinate-free ICS). Let (E,{-,-)) be a Euclidean space of dimension p, & € L'(Q, E) an affine
invariant set of integrable E-valued random variables, and S| and S, two scatter operators on &E.
For any X € &, any basis H = (hy, ..., hp) of E, and any finite non-increasing real sequence A = (4; > ... > 4,),
we define invariant coordinate selection (ICS) as the following problem:

<S1[X]hj,/’lj/> :6jj’ foralllSj,j’Sp

<S2[X]hj,hjr> = /ljéjj’ forall 1 < j,j’ <p. (7)

ICS(X,S],SZ) . {
Such a basis H is called an ICS(X, S |, S,) eigenbasis, whose elements are ICS(X, S, S,) eigenobjects. Such a A is
called an ICS(X, S 1, S ) spectrum, whose elements are called ICS(X, S, S») eigenvalues or generalised kurtosis.
Given an ICS(X, S, §») eigenbasis H and 1 < j < p, the real number z; = (X — [EX, h;) is called the j-th invariant
coordinate (in the eigenbasis H).

Intuitively, the objective of invariant coordinate selection is to find a basis that simplifies the comparison between
the non-negative symmetric operators S ;[X] and S,[X]. In Chapter 15 of [17], this pair (S[X], S»[X]) is called a
pencil and the problem (7) is a general (or generalised) eigenvalue problem. Because the linear operators in question
are symmetric, this is equivalent to simultaneous reduction to diagonal form.

In the ICS problem (7), the scatter operators S| and S, do not exactly play symmetrical roles. This is because in
order to prove the existence of solutions in Proposition 1, we will assume that the first scatter operator evaluated at X
is a bijection.

Remark 1 (Multivariate case). If E = R”, we identify S| and S, with their associated (pX p)-matrices in the canonical
basis, and we identify an ICS eigenbasis H with the (p X p)-matrix of its vectors stacked column-wise, so that we
retrieve the classical formulation of invariant coordinate selection by [29].

Remark 2 (Courant-Fischer variational principle). The ICS problem (7) can be stated as a maximisation problem. If
1 < j < p, the following equalities hold:

(S2[X]h, h) (S2[X]h, h)

h;= argmax ————— and 4, = ma —_—
g I heE (s [XThiy =0t 0<j<j (S 1 [X]h, h)

(3
heE (S [XIhhy)=0if 0<j<j (S 1[X]h, h)

Whenever S |[X] is an automorphism, the ICS(X, S, S») problem boils down to finding an orthonormal basis H
that diagonalises the symmetric operator S1[X17'S,[X] in the Euclidean space (E,(S1[X]-,-)). The ICS(X,S,S>)
spectrum A is unique and is simply the spectrum of S | [X]715,[X].

Proposition 1 (Existence of solutions). Let (E, (-,-)) be a Euclidean space of dimension p, & C L'(Q, E) an affine
invariant set of integrable E-valued random variables, S| and S , two scatter operators on &.

For any X € & such that S [X] is an automorphism, there exists at least one solution (H, A) to the ICS(X,S1,S32)
problem, and A is a uniquely determined non-increasing sequence of positive real numbers.

In the following reconstruction formula, we will denote H* = (hj»)ls j<p the dual basis of a basis H = (hy,...,h))
of E, i.e. the only basis of the Euclidean space E that satisfies

(hj,ly) =6,y forall 1 < j, j" < p. 9)



Proposition 2 (Reconstruction formula). Let (E, {-,-)) be a Euclidean space of dimension p, & C L'(Q, E) an affine
invariant set of integrable E-valued random variables, S| and S , two scatter operators on &.

For any X € & such that S1[X] is an automorphism and any ICS(X, S1,S») eigenbasis H = (hy,...,h),) of E, we
have

P
X=EX+ )z, (10)

=1

where H" = (h;)]gjgp = (81[X17;))1<j<p is the dual basis of H.

Another way to understand the coordinate-free nature of this ICS problem is to work with data isometrically
represented in two spaces and to understand how we can relate a given ICS problem in the first space to an ICS
problem in the second. This is the object of the following proposition.

Proposition 3. Let (E,{:,")g) 4 (F,{:,-)r) be an isometry between two Euclidean spaces of dimension p, & C
LY(Q, E) an affine invariant set of integrable E-valued random variables, S ‘Ic and S ‘; two affine equivariant scatter
operators on &E. Then:

@ F = o(&) = {p(X®), X € &)} is an affine invariant set of integrable F-valued random variables, and we denote
X7 = p(X®) € F whenever X€ € &;
(b) S;’r X eF o S‘?[XS] o @71, € €{1,2}, are two affine equivariant scatter operators on F ;
(c) H” = (p(H‘S) = (go(h‘lg), ey <p(h§)) is a basis of F whenever HE = h8,...,h8) is a basis of E.
For any E-valued random variable X6 € &, any basis H® = (h¢,...,h®) of E, and any finite non-increasing real
sequence A = (A1 > ... > A,) the following assertions are equivalent:
(i) (HE,A) solves ICS(X®, S‘lg, S?) in the space E
(i) (H”,A) solves ICS(X”,S7, Sg:) in the space F.

The following corollary is an important application to the case of weighted covariance operators S f = Cov,,,l €
{1, 2}, for which the definition of S z,: coincides with that of weighted covariance operators on F.

Corollary 1. Let (E, (-, )g) 5 (F, (-, -)r) be an isometry between two Euclidean spaces of dimension p and wyi,w, :
R* — R two measurable functions. For any integrable E-valued random variable X € &,,, N &,,, (with the notations
from Definition 2), the equality
Covf,[¢(X)] = ¢ o Cov} [X] o ¢! (11
holds for € € {1,2}, as well as the equivalence between the following assertions, for any basis H = (hy,...,h),) of E,
and any finite non-increasing real sequence A = (11 > ... > A,):
(1) (H,A) solves ICS(X, Covﬁl , Covfiz) in the space E.

(ii) (p(H), A) solves ICS(¢(X), Covl, ,Cov), ) in the space F.

In order to implement coordinate-free ICS, we will represent the elements of E by their coordinates in a basis B

of E. For a basis B = (by,...,b,) of E, let us denote by [x]z = ([x], ... [x];,p)T the coordinate vector of x € E in the
basis B and Gg = ({bj,bj))i<j <y the Gram matrix of the basis B. Then, Corollary 1, in the special case where ¢ is
the isometry
E - RP
: 12
¥B { [N G;;/Z[X]B (12)

allows one to relate the coordinate-free approach in E to the multivariate approach applied to the coordinate vectors
in any basis of E, when we consider weighted covariance operators (in R”, they correspond to weighted covariance
matrices of the coordinates). This is made clear by the following corollary.

Corollary 2. Let (E,{-,-)) be a Euclidean space of dimension p, wi,w; : R* — R two measurable functions. Let B
be any basis of E, Ggp = ({bj, b)) 1<} j<p its Gram matrix and [-]p the linear map giving the coordinates in B.

For any X € &, N &, (with the notations from Definition 2), any basis H = (hy,...,h,) of E, and any finite
non-increasing real sequence A = (A1 > ... > A,) the following assertions are equivalent:
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(1) (H,A) solves ICS(X, Covgl , Covﬁz) in the space E
(2) (GY*[H1g, A) solves ICS(G}*[X1, Cov,,, Cov,,,) in the space R?
(3) ([Hlg,A) solves ICS(Gp[X]g, Covy,, Covy,) in the space R?

(4) (Gp[H]p, A) solves ICS([X]p, Cov,,,, Cov,,) in the space R?

where [H]p denotes the non-singular p X p matrix representing the basis ([h(]g, ..., [hy]p) of RP.

In order to reconstruct the original random object, we need the coordinates of the elements of the dual ICS
eigenbasis. Identifying the basis [H]p with the matrix whose columns are its vectors, the dual basis [H*]p is the

matrix .

[H*15 = (IH1;G3) . (13)
Remark 3 (Empirical ICS and estimation). We can study the particular case of a finite £-valued random variable X
where we have a fixed sample D,, = (xy,..., x,) and we assume that X follows the empirical probability distribution
of (xi,...,x,) denoted by
.l n
Pp, == ) 04(). 14
b=~ 21] 0 (14)

In that case, the expressions (in Definition 2 for instance) of the form E f(X) for any function f are discrete and equal
to ﬁ Dy f(x0).

Now, let us assume that we observe an i.i.d. sample D, = (X,...,X,) following the distribution of an unknown
E-valued random variable X,. We can estimate solutions to the ICS(Xy, S 1, 5,) problem from Definition 3 by work-
ing conditionally on the data (Xi,...,X,) and taking the particular case where X follows the empirical probability
distribution Pp,. This defines estimates of the ICS(Xy, S, S2) eigenobjects as solutions of an ICS problem involving
empirical scatter operators.

Example 2 (Applications).

1. Compositional data [22]: Let E = (SP*!,®,0, (-, )g1) denote the simplex of dimension p in RP* with the

Aitchison structure [18].
In Section 5.1, [22] propose a first definition of ICS(X, Cov, Cov,) for a random composition X € S”*! by (i)
choosing a contrast matrix Vv, (i1) defining the problem
ICS(ilry(X), Cov, Covy) in R” using the approach of [29] and (iii) proving that this problem does not rely on V
[for a presentation of contrast matrices and ilr transformations, see 18]. We can easily retrieve and generalise
this result in the light of Corollary 1, applied to the isometry ¢ = ilry that gives the equivalence between these
two ICS problems:

(a) (H,A) solves ICS(X, Cov,,,, Cov,,) in the space SP*!

(b) (lry(H), A) solves ICS(ilry(X), Cov,, , Cov,, ) in the space R”
for any measurable functions wy, w; : R* — R.
In Section 5.2, [22] propose to work in the zero-sum hyperplane H?*! = {x € RP*!| %
the centred log-ratio isometry

1 ,
"1 xj = 0} of RP*! using

s)

1 p+1 p+1

1 (SP+1’ ®5 ®7 <" '>S’7+]) - (7—{P+1’ +9 5 <" '>R’”])
clr : T
X=X Xpe)T o (log(xl) = o 2 log(xp), -, log(xpe) — 1% I log(xj))

in order to establish a definition of ICS(X, Cov, Covy) directly in the simplex. Again, Corollary 1 applied to the
isometry ¢ = clr gives the equivalence between the two following ICS problems:

(a) (H,A) solves ICS(X, Cov,,,,Cov,,) in the space SP*!

(b) (clr(H), A) solves ICS(clr(X), Cov,,, Cov,,) in the space Valany
A third way to characterise ICS(X, Cov,,, , Cov,,) is to choose a basis of the simplex S”*! and apply Corollary
2. For a given index 1 < j < p, let B; = (by,...,b,) denote the basis of SP+! corresponding to the alr;



transformation, i.e. obtained by taking the canonical basis of R”*!, removing the j-th vector and applying the
exponential. In that case, it is easy to compute the p X p Gram matrix of B;

p+l p+l p+1
1 1 :
Gg.=1,-——1,1T =| »*! ' ) (16)
P pe Y : - . e
. : ) p+l
1 _1 S
p+1 p+1 p+1

Then, from Corollary 2 we get the equivalence between the two following ICS problems:

(a) (H, A) solves ICS(X, Cov,,,,Cov,,) in the space SP*!

(b) (alr;(H), A) solves ICS(clr(X)?, Cov,,,, Cov,, ) in the space R”
where clr(x)¥) = G, alr;(x) is centred log-ratio transformation of x € S”*! from which the j-th coordinate has
been removed. This suggests a new implementation of invariant coordinate selection for compositional data, in
an unconstrained space and only having to choose an index j instead of a full contrast matrix.

2. Functional data [4, 31]: Let B = (b;) >, be a Hilbert basis of L?*(a, b), for instance a Fourier basis or a Hermite
polynomial basis. For a given integer p, let us consider the space E spanned by the truncated orthonormal basis
B, = (by,...,bp). Then for any E-valued random variable X, we get the equivalence between the following two
conditions:

(a) (H,A) solves ICS(X, Cov,, ,Cov,,) in the space E
(b) ([H]s,A) solves ICS([X]g, Cov,,, Cov,,) in the space R”.
We could also choose a B-spline basis, but then we should take into account its Gram matrix.

3. Density data (see Section 3 for further details): Let E = CdAy(a, b) be a space of compositional splines on
(a, b) of order d + 1 and with knots Ay = (y1,...,yx). We can use either the centred log-ratio isometry between
ij(a, b) and the corresponding zero-integral spline space ij(a, b) or the CB-spline basis of ij(a, b) to obtain
characterisations of the problem ICS(X, Cov,, , Cov,,,) for a random density X € Cﬁy(a, b).

3. ICS for density objects

3.1. Reminder on Bayes spaces

The most recent and complete description of the Bayes spaces approach can be found in Van Den Boogaart et al.
[30]. For the present work, we will identify the elements of a Bayes space, as defined by Van Den Boogaart et al. [30],
with their Radon—-Nikodym derivative with respect to a reference measure A. This leads to the following framework:
let (a, b) be a given interval of the real line equipped with the Borel o-algebra, let A be a finite reference measure
on (a,b). Let B*(a,b) be the space of square-log integrable probability densities %, where u is a measure that is
equivalent to A, which means that u and A are absolutely continuous with respect to each other. Let us first briefly
remind the construction of the Hilbert space structure of B%(a,b).

For a density f in B?(a, b), the clr transformation is defined by

1 b
clr f(.) =log f(.) — ——= log f(t)dA(). (17)
/l(as b) a
The clr transformation maps an element of B(a, b) into an element of the space Lé(a, b) of functions which are square
integrable with respect to A on (a, b) and whose integral is equal to zero. The clr inverse of a function u of L(Z)(a, b) is
B?-equivalent to exp(u). More precisely, if u € L}(a, b),

exp u(.)

cr ' (w)() = —mm—.
7 exput)da)

(18)

A vector space structure on B?(a, b) is readily obtained by transporting the vector space structure of L%(a, b)to B*(a, b)
using the clr transformation and its inverse, see for example Van Den Boogaart et al. [30]. Its operations, denoted by
@ and O, are called perturbation (the “addition”) and powering (the “scalar multiplication”).
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For the definition of the inner product, we adopt a normalization different from that of Egozcue et al. [8] and of
Van Den Boogaart et al. [30] in the sense that we choose the classical definition of inner product in L(z)(a, b), for two
functions u and v in L2(a, b)

b
s = [ uonmindao, (19)

so that the corresponding inner product between two densities f and g in the Bayes space B*(a, b) is given by

1 b b
9w = 51 || (om0~ 1og F(9)Mt0g g1 ~ og g6)dAA). (20)
@b J, J,

This normalization yields an inner product which is homogeneous to the measure A4 whereas the Van Den Boogaart
et al. [30] normalization is unitless. Note that, for clarity and improved readability, the interval over which the spaces
Lg and B? are defined are omitted from some notations.

For a random density £(.) in the infinite dimensional space B*(a, b), the expectation and covariance operators can
be defined as follows, whenever they exist:

clr ' Efclr f] € B*(a, b) 1)

EP [(f o EF'[£], ) © (f O EZ[1])]

= ' E[(f, g)p clr f]
= clrr ' E[(clr £, clr @pclrfl forany g€ B*(a,b), (22)

EF[f]
Cov®’[f1g

where © is the negative perturbation defined by fog = f®[(—1)©g]. In what follows, we will focus on the restriction
Cov’ of the covariance operator to a finite dimensional subspace E of the Bayes space B%(a, b).

3.2. Densities preprocessing

We consider a framework where some random density objects D,, = {fi,..., f,} are observed through samples.
The preprocessing step consists, for each density object, in transforming its sample into a functional object using some
nonparametric estimation technique, yielding an estimated realization of this random density. Note that in the ensuing
treatment, we will forget this layer and consider that we have observed the preprocessed random density functions f;,
i=1,...,n.

To perform the estimation, we use nonparametric maximum penalized likelihood (hereafter MPL) as introduced by
Silverman [24] and implemented in the R package fda by Ramsay et al. [20]. The principle of MPL is to maximize a
penalized version of the log-likelihood over an infinite dimensional space of densities without parametric assumptions.
The penalty is the product of a smoothing parameter A by the integral over the interval of interest of the square of
the m™ derivative of the log-density. Therefore the objective functional is a functional of the log-density. Due to the
infinite dimension of the ambient space, the penalty term is necessary because the likelihood term alone is unbounded
above. As explained in Silverman [24], the value of m = 3, which we select, has an attractive property. In our case
of densities on an interval (a, b), when the smoothing parameter tends to infinity, by Theorem 2.1 of Silverman [24],
the estimated density converges to the parametric maximum likelihood estimate in the exponential family of densities
whose logarithm is a polynomial of degree less than or equal to 2, comprising the uniform density, the exponential
densities and the Gaussian densities truncated to (a, b).

We consider adapting the MPL method to a Bayes space B?(a, b) with the Lebesgue measure as reference. In order
to use MPL in B2(a, b) we need to add extra smoothness conditions and therefore we restrict attention to the densities
of B*(a,b) whose log belongs to the Sobolev-space of order m on (a, b), thus ensuring the existence of the penalty
term. With Theorem 4.1 in Silverman [24], the optimization problem has at least a solution. When implementing
MPL, one needs to solve the minimization problem in a finite-dimensional approximating space. [19] use polynomial
spline spaces (whose degree is a priori unrelated to m).



3.3. ICS in Bayes spaces

In order to apply the approach of Section 2, we need to restrict attention to a finite dimensional subspace of
B?(a, b). Following Machalov4 et al. [12], it is convenient to first construct a basis of a finite dimensional spline
subspace of L(z)(a, b), which we then transfer to B*(a, b) by the inverse clr transformation. More precisely, they propose
a basis of zero-integral splines in L%(a, b) that are called ZB-splines. The corresponding inverse images of these basis
functions by clr are called CB-splines.

A ZB-spline basis, denoted by Z = {Z, ..., Zy+4-1}, is characterized by the spline of degree less than or equal to d
(order d + 1), the number k and the positions of the so-called inside knots Ay = {yy,...,y,} in (a, b). The dimension
of the resulting subspace Zﬁy isp=k+d-1.Let Cﬁy be the subspace generated by C = {Cy,...,Cp} in B%(a, b),
where C; = cr'l(z ;) are the back-transforms in B?(a, b) of the basis functions of the subspace ij. The expansion of
a density f in B*(a, b) is then given by

P
£ = EPIAe,Ci0, 23)
j=1

so that the corresponding expansion of its clr in L(z)(a, b) is given by

p
e f(6) = ) [fle,Zi(0). 24
j=1

Note that the coordinates of f in the basis C are the same as the coordinates of clr(f) in the basis Z, for j =
1L...,p 1l f]C/. = [clr f]Z/.. Following Machalova et al. [12], the basis functions of ZdAy can be written in a B-spline
basis, see Schumaker [23], which is convenient to allow using existing code for their computation.

We follow the methodology of Section 2 for a space E = Cﬁy of compositional splines. Let us consider an E-
valued random probability density f. In order to work with two weighted covariance operators COV&I and Covﬁz,
where wi,w, : R — R are two measurable functions, we assume that f € &,, N &,,. From Definition 2, we can
write for any g € E:

EX [wi(lf* ) ) © f (25)
el Efwy(lf"llg)clr £ clr gy clr f1, - €€ (1,2}, (26)

Cov, [f1g

where f = f© EZ [f]is the centred version of f and f* = CovE[f]~'/%f is the sphered version of f.
Then, solving ICS(f, Covil , Covﬁz) is equivalent to solving ICS(clr f, Covi1 , Cov‘iz) where clr f is an F-valued

Ay

random function with F = Z It simply follows from Corollary 1 applied to the clr isometry between E and

e
F. Corollary 2 implies that solving ICS(f, Covﬁl,Covﬁz) in ij is equivalent to a multivariate ICS problem on
the coordinates of the clr of the densities in the ZB-basis which can be done using multivariate techniques. For
implementation, we will use the third formulation in Corollary 2.

For a sample of densities D,, = {fi, ..., fu}, the empirical version of ICS that will be performed in the next section

for outlier detection follows the framework described in Remark 3.

4. ICS for density outlier detection

4.1. Implementation of ICS on density data for outlier detection

As outlined in Section 3.3, for a given sample of random density objects D, = {fi, ..., f,} in a space of composi-
tional splines E = cY, solving the empirical version of ICS is equivalent to solving an ICS problem in a multivariate
framework [see 29] with the coordinates of the clr of the densities in the chosen ZB-basis. Following the three-step
procedure defined in [6], we propose to use ICS for density outlier detection in a context of a small proportion of
outliers.

The first step consists in choosing a pair of scatter matrices and calculating the eigenvalues and invariant coor-
dinates of ICS. Following the recommendation of [6], we use the empirical scatter pair Cov-Covy (see Example 1),
and compute the eigenvalues 4y > ... > A, and the invariant components z;;, j = 1,..., p, for each density f;,
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i =1,...,n. The algorithm we consider, described in [5], uses the QR decomposition. This approach enhances stabil-
ity compared to methods based on a joint diagonalization of two scatter matrices, which can be numerically unstable
in some ill-conditioned situations.

The second step of the outlier detection procedure based on ICS is the selection of the k < p relevant invariant
components and the computation of the “ICS distances.” For each of the n densities, the ICS distance is equal to the
Euclidean norm of the reconstructed data using the « selected invariant components. In the case of a small proportion
of outliers and for the scatter pair Cov-Covy, the invariant components of interest are associated with the largest

K
eigenvalues and the squared ICS distances are equal to Z z%i. As noted in [6], there exist several methods for the
=1
selection of the number of invariant components. One aplgroach is to examine the scree plot, as in PCA. This method,
recommended in [6], is not automatic. Alternative automatic selection methods apply univariate normality tests to
each component, starting with the first one, and using some Bonferroni correction [for further details see page 13 of
6]. In the present paper, we use the scree plot approach when there is no need of an automatic method, and we use
the D’ Agostino normality test for automatic selection. The level for the first test (before Bonferroni correction) is 5%.
Dimension reduction involves retaining only the first k components of ICS instead of the original p variables. Note
that when all the invariant components are retained, the ICS distance is equal to the Mahalanobis distance.

The computation of ICS distances allows to rank the observations in decreasing order, with those having the
largest distances potentially being outliers. However, in order to identify the outlying densities, we need to define a
cut-off, and this constitutes the last step of the procedure. Following [6], we derive cut-offs based on Monte Carlo
simulations from the standard Gaussian distribution. For a given sample size and number of variables, we generate
10,000 standard Gaussian samples and compute the empirical quantile of order 97.5% of the ICS-distances using the
three steps previously described. An observation with an ICS distance larger than this quantile is flagged as an outlier.

The procedure described above has been illustrated on several examples [see 6], and is implemented in the R
package ICSOutlier [see 15]. However, in the context of densities, the impact of preprocessing parameters on the
ICSOutlier procedure emerges as a crucial question that needs to be examined.

4.2. Impact of the preprocessing parameters

As a toy example, consider the densities of the maximum daily temperatures for the 26 provinces of the two
regions Red River Delta and Northern Midlands and Mountains in northern Vietnam between 2013 and 2016. We
augment this data set made of 104 densities by adding the provinces AN GIANG and BAC LIEU from southern
Vietnam in the same time period. The total number of observations is thus 112. Details on the original data and their
source are provided in Subsection 5.1. Figure 1 displays a map of Vietnam with the contours of all provinces and
colored according to their administrative region, allowing the reader to locate the 26 provinces in the North and the
two in the South. As shown on the left panel of Figure 2, the eight densities of the two provinces from the South for
the four years exhibit a very different shape (in yellow) compared to the northern provinces (in blue and green), with
much more concentrated maximum temperatures. These two provinces should be detected as outliers when applying
the ICSOutlier methodology. However, the results may vary depending on the choice of preprocessing parameters
(see Subsection 3.2). Our goal is to analyze how the detected outliers vary depending on the preprocessing when
using the maximum penalized likelihood method with splines of degree less than or equal to d = 4. Specifically, we
study the influence on the results of ICSOutlier of the smoothing parameter A, the number of inside knots k, and the
location of the knots defining the spline basis.

The number « of selected invariant components is fixed at four in all experiments to facilitate interpretation.
This value has been chosen after viewing the scree plots of the ICS eigenvalues following the recommendations in
Subsection 4.1. For each of the experimental scenarios detailed below, we compute the squared ICS distances of the
112 observations as defined in Subsection 4.1, using « = 4. Observations are classified as outliers when their squared
ICS distance exceeds the threshold defined in Subsection 4.1, using a level of 2.5%. For each experiment, we plot on
Figure 3 the indices of the observations from 1 to 112 on the y-axis, marking outlying observations with black squares.
The eight densities from southern Vietnam correspond to indices 1 to 8. We consider the following scenarios:

o the knots are either located at the quantiles of the temperature values (top panel on Figure 3) or equally spaced
(bottom panel on Figure 3),
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Figure 1: Map of Vietnam showing the 63 provinces, color-coded by region. The 28 provinces included in the toy example are labeled.
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Figure 2: Plots of the 28 densities (left panel) and clr densities (right panel), color-coded by region for the toy example.
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e from the left to the right of Figure 3, the number of knots varies from 0 to 15 by increments of 1, then from 15
to 35 by increments of 10 (overall 18 different values). Note that when increasing the number of knots beyond
35, the code returns more and more errors due to multicollinearity issues and the results are not reported.

o the base-10 logarithm of the parameter A varies from -8 to 8 with an increment of 1 on the x-axis of each plot.

Altogether we have 2 X 18 X 17 = 612 scenarios. Figure 4 is a bar plot showing the observations indices on the
x-axis and the frequency of outlier detection across scenarios on the y-axis. The eight densities from the two southern
provinces (AN GIANG and BAC LIEU) across the four years are most frequently detected as outliers, along with the
province of LAI CHAU (indices 33 to 36), which is located in a mountainous region in northwest of Vietnam. On the
original data, we can see that the LAI CHAU province corresponds to densities with low values for high maximum
temperatures (above 35°C) coupled with relatively high density values for maximum temperatures below 35°C. A few
other observations are detected several times as outliers, but less frequently: indices 53 (TUYEN QUANG in 2013),
96 (QUANG NINH in 2016), and 107 (THANH HOA in 2015).

Looking at Figure 3, we examine the impact of the preprocessing parameters on the detection of outlying observa-
tions. First, note that the ICS algorithm returns an error when the A parameter is large (shown as grey bands in some
plots). This is due to a multicollinearity problem. Even though the QR version of the ICS algorithm is quite stable,
it may still encounter problems when multicollinearity is severe. Indeed, when A is large, the estimated densities
converge to densities whose logarithm is a polynomial of degree less than or equal to 2 (see details in Subsection 3.2),
and belongs to a 3-dimensional affine subspace of the Bayes space, potentially with a dimension smaller than that of
the approximating spline space. If we compare the top and the bottom plots, we do not observe large differences in
the outlying pattern, except for a few observations rarely detected as outliers. Thus, the knot location has a rather
small impact on the ICS results for this data set. Regarding the impact of the A parameter, the outlier pattern remains
relatively stable when the number of knots is small (less than or equal to 5). For a large number of knots, the obser-
vations detected as outliers vary with A. The number of knots has more impact than their location or the A parameter.
When the number of knots is smaller than or equal to 5 (corresponding to p = 10 variables), the plots are very similar.
However, as p increases, some observations from southern Vietnam are not detected for all A values, while another
density (QUANG NINH in 2016) is detected for large A values with equally spaced knots, and to a lesser extent for
knots at temperature quantiles. In Archimbaud et al. [4], ICS is applied to multivariate functional data with B-splines
preprocessing. Based on their empirical experience, the authors recommend using a dimension p (in their case, the
number of functional components times the number of B-splines coefficients) no larger than the number of observa-
tions divided by 10. Typically in multivariate analysis, the rule of thumb is that the dimension should not exceed the
number of observations divided by 5. For functional or distributional data, it appears that even more observations per
variable are needed. The reason for this is not entirely clear, but in<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>