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Abstract. We study menu auction games in which several principals influence the choice of

a privately-informed agent by simultaneously offering action-contingent payments; the agent

is free to accept any subset of the offers. Building on tools from non-smooth optimal control

with type-dependent participation constraints, we provide necessary conditions for any equi-

librium allocation as the (constrained) maximizer of an endogenous aggregate virtual-surplus

program. The aggregate maximand includes an information-rent component which captures

how the principals’ rent-extraction motives combine. Although there is a large set of equilibria,

including equilibrium allocations with discontinuities, we isolate one particular equilibrium

allocation, the maximal allocation, which is the solution to an unconstrained maximization

program. Under weak conditions, necessary conditions for a maximal allocation are also suffi-

cient, and the corresponding equilibrium tariff offers are easily constructed. We illustrate our

findings and derive some economic implications in several applications, with principals having

either congruent interests (e.g., public goods collective action games), opposed interests (e.g.,

pork barrel politics, lobbying), and protection for sale in an international trade context.

Keywords. Menu auctions, delegated common agency, screening contracts, non-smooth

optimization problems, public goods games, collective action, pork barrel politics, positive

theory of regulation, protection for sale.

1. INTRODUCTION

Motivation. Economists have long been interested in strategic settings in which several

interested parties (with either congruent or conflicting interests) attempt to influence

a common agent through contribution schedules. In the almost four decades that have

passed since the seminal strategic analysis by Bernheim and Whinston (1986), the truthful

equilibrium of their complete-information model of menu auctions and influence games

has become a workhorse in a wide range of settings. Applications include international

trade (Grossman and Helpman, 1994 and 1995; Dixit, Grossman and Helpman, 1997),

political economy (Grossman and Helpman, 1996; Aidt, 1998; Besley and Coate, 2001;

Persson, 1998; Bellettini and Ottaviano, 2005; Felli and Merlo, 2006), public finance

(Persson and Tabellini, 1994 and 2002), combinatorial auction design (Milgrom, 2007),

1We thank numerous seminar participants for their thoughtful comments on this project especially,
participants to the Workshop in honor of Mike Whinston held at Toulouse School of Economics, October
2024, and of course Mike Whinston himself. We are especially indebted to John Birge, Philippe Jehiel,
Michel Le Breton, Stephano Lovo, David Rahman, Aggey Semenov and Richard van Weelden. The Editor
Dimitri Vayanos and three referees were instrumental in helping to shape this version of our work. This
paper has also been funded by the Agence Nationale de la Recherche under grant ANR-17-EURE-0010
(Investissements d’Avenir program).

aToulouse School of Economics, david.martimort@tse-fr.eu
bUniversity of Chicago Booth School of Business,lars.stole@chicagobooth.edu
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industrial organization (Bernheim and Whinston, 1998; Inderst and Wey, 2008), and

environmental economics (Aidt, 1998).

The menu auction game of Bernheim and Whinston (1986) owes its success, in part,

to the simplicity and robustness of its equilibrium characterization, even in what may

at first glance appear to be very complicated strategic settings. To review, the basic

game consists of n principals and a single common agent. The agent chooses some action,

q ∈ Q, that has payoff consequences for each of the principals. Prior to taking an action,

however, the principals may each offer the agent enforceable payment schedules – menus

of promised payment-action pairs (possibly subject to constraints on feasible payments).

After receiving a menu offer from each principal, the agent chooses which contracts to

accept, selects an action to maximize his own utility, and the corresponding payments

are enforced. Bernheim and Whinston (1986) show that there are a large number of

equilibria to this influence game, but there is always an equilibrium in which the agent

chooses an action which maximizes the collective surplus of the principals and the agent.

Such a surplus-maximizing equilibrium can be supported with “truthful’’ menus in which

each principal offers a transfer schedule whose margin is equal to the principal’s marginal

benefit of action. This focal property (together with the robustness of this allocation

to a reasonable class of renegotiations) leads Bernheim and Whinston (1986) to argue

that this collective surplus-maximizing allocation is a reasonable equilibrium to use for

predicting outcomes in general menu auction games with complete information.

The novel contribution of this paper is to reconsider menu auction games under the

assumption that the agent has private information. Our paper provides the first general

analysis of this class of influence games. Here also, we will be interested in which alloca-

tions are candidates for an equilibrium and what kind of contribution schedules sustain

those equilibrium allocations. The first concern leads us to establish a set of general

necessary conditions. The second construction provides sufficient conditions.

Computing Best-Responses in Non-Smooth Environments. Characterizing the

set of equilibria in our incomplete-information game of common agency raises a range of

difficulties. The first one, although it appears purely technical, has far reaching economic

consequences. Most previous research in common agency has imposed a refinement (some-

times implicitly) that principals offer continuously differentiable contribution schedules.

Examples abound. In the scenario where common agency is intrinsic (i.e., the agent must

choose between participating and accepting all principal offers, and not participating and

rejecting all offers), Laffont and Tirole (1991), Martimort (1992, 1996), Stole (1991), Ivaldi

and Martimort (1994), Mezetti (1997), Biais et al. (2000), Calzolari (2001), Olsen and

Osmudsen (2003, 2011), Laffont and Pouyet (2004), Martimort and Stole (2009a) made

this differentiability assumption in various contexts. In models where common agency
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is delegated (i.e., the agent is allowed to accept any subset of principal offers) and the

principals contract on different actions, contributions by Martimort and Stole (2009b),

Martimort and Semenov (2008) and Calzolari and De Nicolo (2013, 2015), also take this

restrictive approach. To understand how restrictive these differentiability assumptions

are on the set of equilibria requires us to allow principals to choose from the larger set of

upper semicontinuous transfer functions. Note that in this case, if principal i expects prin-

cipal j to offer a discontinuous payment schedule, principal i’s objective function (which

includes the surplus of the agent as a function of her action) is discontinuous and non-

differentiable. One can no longer apply standard textbook control-theoretic tools which

assume continuity and piecewise differentiability to study this problem. Fortunately, we

are able to import results from our earlier work on non-smooth optimal control for con-

tract theory (Martimort and Stole, 2022) to characterize each principal’s best response

function, providing the first step of our analysis (which culminates in Proposition 1).

Roughly speaking, this approach generalizes the seminal work of Jullien (2000) on type-

dependent participation constraints by concavifying each principal’s objective for a given

set of (possibly discontinuous) contributions of other principals. At a best response, the

bilateral contract that each principal offers exhibits the familiar tradeoff between bilateral

efficiency and information rent extraction. However, rent extraction is further limited by

the possibility that the agent rejects the offer and obtains a type-dependent reservation

payoff by contracting with only the other principals. All together, the familiar textbook

distortions from the screening literature4 are modified by taking into account the shadow

value of the agent’s type-dependent participation constraint.

A second difficulty introduced by asymmetric information is that an individual principal

may only choose to actively influence a strict subset of types in equilibrium. By influence,

we mean that the principal’s offer induces an agent to choose an action that the type

would not have chosen otherwise. The sets of types for which each principal is active must

be determined in order to construct equilibrium tariffs, but the equilibrium tariffs, in turn,

determine the regions of activity. In short, the equilibrium activity sets must be jointly

determined as part of a fixed point of the principals’ best-response correspondences. To

obtain a straightforward characterization of the relevant type-dependent participation

constraint and to better understand the structure of the influence areas of principals,

we focus our attention on economic environments and equilibria that that satisfy a mild

active-interval property. If the preferences of principals are linear in the agent’s action, we

will see the agent’s type-dependent participation constraint for principal i will always bind

on a single interval of types (possibly degenerate). For more general nonlinear principal

preferences, we will focus on equilibria with this property; such equilibria always exist.5

4Laffont and Martimort (2002, Chapter 3).
5It is an open question as to whether or not the requirement of an active-interval is an equilibrium

refinement with nonlinear principal preferences that are independent of type. We have failed to find any
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To put this into a more economic context, principals are classified into two subsets: those

principals who like more of the agent’s action and those principals who like less. We

demonstrate that the influence of a given principal can be summarized by means of a

virtual surplus function that includes the preferences of the principal, an information

rent term, and the impact of the agent’s outside option when rejecting the principal’s

offer. Intuitively, whenever the marginal virtual surplus of a principal’s virtual surplus

is positive (resp. negative), the principal pays the agent to increase (resp. decrease) his

action relative to the outcome in which principal i does not make any offer. In active-

interval equilibria, a principal who values more agent action offers nonnegative marginal

transfers and a principal who values less agent action offers nonpositive marginal transfers.

Equilibrium Necessary Conditions. Our menu auction game is an aggregate game6

because the agent’s choice depends only upon the aggregate payment he receives from

all principals, and each principal’s preferences over strategy profiles can be reduced to

preferences over the aggregate payment function and her own payments. Although the

menu auction game has infinite-dimensional strategies and asymmetric information, it

also has the convenient property that it is quasi-linear in strategies (i.e., payoffs are linear

in payments). Following Martimort and Stole (2012), we can thus apply the Aggregate

Concurrence Principle. In a nutshell, this principle states that if an equilibrium action

solves the best-response problems for each principal, it must also solve the sum of those

objectives. This leads us to show that any possible equilibrium allocations must satisfy a

simpler optimization problem that conflates the influence of all principals. Roughly, such

an allocation should maximize the sum of the virtual valuations of all principals together

with the agent’s surplus. We identify this objective with that of a surrogate principal

whose choice replicates the non-cooperative decision process. Because virtual valuations

for each principal are computed with respect to the agent’s outside option when not

dealing with that principal, this objective still depends on the allocation itself and the

surrogate principal’s optimization problem still features a fixed-point.

As in Bernheim and Whinston’s (1986) complete information game, there are multiple

equilibrium allocations in our incomplete information setting. We provide necessary con-

ditions satisfied by every such equilibrium allocation. Our main theoretical contribution

(Theorem 1) and its corollary demonstrates that all equilibria exhibit the same kind of

informational-rent distortion with differences in equilibria characterized by action domain

restrictions in the surrogate maximization problem.

Maximal Equilibrium and Sufficient Conditions. We begin by characterizing

and focusing on a particular allocation – what we call the maximal allocation. The adjec-

example of equilibria which fails to satisfy this active-interval property.
6See Jensen (2018) for an overview of the literature.
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tive maximal is used here because this allocation is the solution to the surrogate program

with no constraints on the action domain (i.e., the domain is maximal). Beyond this

aesthetic feature, this allocation has also many desirable properties. Under weak condi-

tions, it alway exists (Theorem 2). It is easy to compute, continuous in type, and exhibits

maximal separation across types compared to all equilibria. In contrast, discontinuous

equilibrium allocations exhibit bunching around discontinuities. Furthermore, any equi-

librium allocation that is fully separating over an open interval of types must equal the

maximal allocation over that interval (Corollary 1). Lastly, the maximal allocation is an

equilibrium allocation which is implemented with continuously-differentiable schedules

(Theorem 3). These smooth equilibrium transfer functions are reminiscent of the truth-

ful equilibria found in complete information settings but now, the schedules account for

informational distortions. Generalizing a well-known property of truthful schedules to a

world of asymmetric information, the marginal maximal contribution of a given principal

perfectly reflects her marginal virtual surplus.

Discontinuous Equilibria.Our general approach also allows us to characterize discon-

tinuous equilibria. Because in any equilibrium of the game, the solution to the surrogate

program is a subset of the actions induced by the maximal allocation, the characterization

of the solution bears similarities with the allocations found in the mechanism design lit-

erature on delegation without transfers (Holmström, 1984; Melumad and Shibano, 1991;

Martimort and Semenov, 2006; Alonso and Matouschek, 2008; Amador and Bagwell,

2013). We borrow from this literature techniques that allow us to characterize necessary

conditions for any discontinuous equilibrium (Theorem 4), and we provide sufficient con-

ditions that ensure that allocations satisfying these necessary conditions arise as equilibria

(Theorem 5). Roughly, the ranges of these equilibria are obtained by introducing gaps in

the range of the maximal equilibrium and having principals not paying if the agent were

to choose actions in those gaps. Importantly, among all such discontuous equilibria, the

maximal equilibrium maximizes the agent’s payoff.

Maximal Equilibrium at Work. We consider several applications below that reflect

many of the settings to which the menu auction literature has been applied. Although

we focus much of our attention on the maximal equilibrium allocation for the reasons

enumerated above, we will also illustrate the importance of discontinuous equilibria in

one setting.

Public Good Games and Collective Action. We first consider a public good game where

principals are contracting with an agent with privately-known marginal cost of provid-

ing a public good. Principals have linear surplus functions, possibly heterogeneous in

marginal values. From a technical viewpoint, linearity brings a significant simplification

of our analysis: virtual surplus functions become independent of the agent’s outside op-
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tion and the maximal allocation becomes a simple solution to an unconstrained surrogate

optimization problem.

In a world with a single principal, this setting is analogous to the government regulation

of a monopolist with unknown marginal cost; a workhorse model in regulatory economics

since Baron and Myerson (1982). With multiple principals, however, we will see that there

are additional effects that generates an allocation considerably different from either the

first-best allocation (which is also the truthful equilibrium of Bernheim and Whinston’s

(1986) complete information game) or the Baron and Myerson (1982) optimal allocation.

Instead, the maximal equilibrium allocaation is a solution to a virtual version of the

Lindahl-Samuelson conditions for public good provision.

The maximal allocation is simple to characterize and provides a number of interesting

comparative statics. Among others, the equilibrium outcome features non-neutrality. In

contrast with the scenario of complete information, the equilibrium allocation is now

sensitive to ex ante redistributions of the marginal surplus across principals. This result

is analogous to a result found in the public finance literature (Bergstrom, Blume and

Varian (1986)), that a set of neutral taxes and subsidies on Cournot competitors will

have a non-neutral aggregate price effect whenever the public intervention impacts the

set of active firms. We extend this insight to a setting of incomplete information. We find

that although a mean-preserving spread of the principal’s marginal preferences does not

affect the efficient amount of public provision, it leads to an increase the provision of the

public good.

Collective Action. The Olsonian collective action problem can also be viewed as a menu

auction game. Consider several individuals, with heterogenous (and possibly opposed)

linear preferences for agent action, each of whom wants to influence the agent to take

an action. Under complete information, the truthful equilibrium allocation is efficient,

maximizing the sum of the player’s payoffs. Under asymmetric information, however, a

version of the “tragedy of the commons” arises. Each principal maximizes the virtual

bilateral surplus between the principal and the agent, given the other principals’ offers.

The principal introduces inefficiencies to extract the agent’s information rents on the

margin, ignoring the impact that harvesting the information rent has on the other prin-

cipals. In the maximal equilibrium, there is over harvesting of the agent’s rents leading

to greater distortions relative to the setting in which all principals could cooperate. We

demonstrate that although a mean-preserving spread of the principal’s marginal prefer-

ences does not affect the efficient policy choice, it leads to a mean-preserving spread in

the distribution of equilibrium policies. We also consider discontinuous equilibria in this

setting with two opposed principals, and characterize an equilibrium with a gap in the

middle of the agent’s action space. Over this gap, each principal is inactive, with zero
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payment for these actions; a positive mass of agent types choose actions on the boundary

of the gap. Thinking of the principal’s as opposed lobbyists and the agent as a politician,

the effect of competition in this equilibrium is extreme polarization with middle-of-the

policies abandoned by legislators in favor of extreme policies to the left and the right

which are well remunerated.

Pork Barrel Politics and Lobbying for Influence. We next consider a simplified model

of decision-making within a legislature. A legislator (the agent) allocates a fixed budget

between two opposing interest groups. Each group has the same constant marginal value

of receiving funds from the legislator who as an unknown bias in favor of one of the groups,

but also values any campaign contributions the groups may provide. With complete

information, the truthful equilibrium is efficient and maximizes social welfare (the sum

of the groups and legislator’s preferences). Under incomplete information, however, the

maximal allocation is more polarized. This comes from the interaction of each principal’s

virtual surplus. To extract information rent from legislator’s types on their own side of

the political spectrum, a principal is less eager to influence types on the other side. As a

result, asymmetric information weakens competition between interest groups and reduces

the legislator’s payoffs.

Protection for Sale. Finally, we adapt Grossman and Helpman (1994)’s celebrated model

of protection for sale to a context where the domestic government is privately informed

on how it evaluates the trade-off between social welfare and the private contributions

it receives from lobbying groups. In this setting, domestic producers of an intermediate

good are heterogenous in terms of their productivity. They compete with foreign pro-

ducers and may lobby the government for an import tariff. We derive the optimal tariff

implemented in this context when domestic groups collectively determine influence the

government and compare it to the setting in which the lobbying groups individually exert

their influence. While there would not be any difference between these two settings in the

truthful equilibrium under complete information, under incomplete information produc-

ers who cooperate exert greater influence and induce larger tariffs than when producers

cannot cooperate. The structure of protection is shown to depend on the more or less

dispersed nature of lobbying groups.

Organization. The basic menu auction game with asymmetric information is presented

in Section 2. Section 3 analyzes the best-response of a given principal to other principals’

offers. The key building block of our analysis is the characterization of best responses us-

ing non-smooth optimal control techniques. Necessary conditions that are satisfied by any

candidate equilibrium allocation are presented in Section 4. Section 5 focuses on the prop-

erties of the maximal allocation and provides sufficient conditions for such allocation to be

an equilibrium. Justifying our concern for non-smooth optimization techniques, Section 6
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also characterizes a class of discontinuous equilibria. We also show that the maximal equi-

librium has attractive welfare properties. Section 7 compares the equilibrium of delegated

agency games to alternative outcomes, including the case where principals cooperate, the

scenario of intrinsic agency and the scenario of ex ante contracting. Section 8 provides

the analysis of several applications of our framework to highlight the economic insights

that are now available. Proofs are relegated to three different appendices: non-smooth

optimal control techniques are adapted for our contracting problem in Appendix A; the

proofs of main theorems of the paper are in Appendix B; the proofs and computations

for the applied results are presented in Appendix C.

2. A MODEL OF MENU AUCTIONS WITH INCOMPLETE INFORMATION

Preferences and Information. Our menu auction game is a setting in which n

principals (pronouns “she/they”) simultaneously offer individual non-negative payment

schedules to influence a common agent (pronoun “he”) for the choice of an action.

Each principal has preferences that are concave in the agent’s choice of q and linear in

monetary transfers. Given a transfer ti to the agent and a choice of q by the agent, we

denote principal i’s payoff simply as

Si(q)− ti

where, in full generality, Si is upper semi-continuous on the set of feasible actions q ∈ Q,

which is a closed and bounded interval. Throughout, we assume that principals have

strictly monotonic preferences (i.e., Si is either strictly increasing or decreasing); we

denote the former principals who prefer more action as i ∈ A and the latter principals

who prefer less action i ∈ B, where A∪B = N . Below for applications we will sometimes

specialize these assumptions to require that Si is also continuously differentiable and

concave, and for other applications we will further assume that each principal’s preferences

are linear, Si(q) = siq.

The agent has heterogeneous preferences over actions and monetary transfers, indexed

by a type parameter θ ∈ Θ = [θ, θ]. Agent preferences are quasi-linear in transfers and

represented by

S(θ, q) + t,

where S(θ, q) is upper semi-continuous on Q and t is the aggregate payment the agent

receives from the principals. For ease of presentation, we further assume that S is linear

in θ,

S(θ, q) = S0(q)− θq,
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where S0 is an upper-semicontinuous function of action q. Assuming linearity in type

allows a crisp characterization of incentive compatibility by means of convexity arguments

which are familiar, at least since Rochet (1986).7 Examples 1 to 4 below show that

the type linearity restriction is readily satisfied in a rich set of economic settings, many

of which have become standard models in applied theory.

The type parameter θ is drawn from a commonly-known distribution function, F , with

an associated positive, atomless and differentiable density function f . To guarantee that

the solutions to a relaxed optimization problem satisfy the standard monotonicity con-

dition of screening models, we assume the familiar Monotone Hazard Rate Condition

(thereafter MHRC), requiring that the distribution function, F , and its complement,

1 − F , are log-concave.8 For future reference, we define the agent’s stand-alone action

q0(θ) and payoff U0(θ) in the absence of any principal influence as

(2.1) q0(θ) ≡ argmax
q∈Q

S(θ, q) and U0(θ) ≡ max
q∈Q

S(θ, q).

Contracts. Each principal i may present to the agent any upper semi-continuous func-

tion, ti : Q → R+, as her contract offer. Requiring the schedules to be non-negative

is without loss of generality if the agent has the option to reject any subset of the of-

fered schedules, which is the scenario of delegated common agency and the setting of

this paper.9 Let T denote the set of non-negative, upper semi-continuous functions on

Q. Requiring that ti only be upper semi-continuous allows for possible discontinuities in

transfers, possibly supporting equilibria with discontinuities in action.

Timing and Equilibrium Concept. The timing of our delegated common agency

game has three stages. First, nature chooses the agent’s type. Second, each principal i

chooses a transfer function, ti ∈ T . We will denote T (q) ≡
∑n

i=1 ti(q) as the associated

aggregate transfers of the principals from this stage and define T−i(q) ≡
∑

j ̸=i tj(q) when

this aggregate is taken over all principals except i. Third, the agent chooses an optimal

action given the aggregate transfers offered in the second stage. We will denote such a

best response as q(θ |T ) but sometimes omit the dependency on the aggregate T when

obvious. Finally, payments are made by the principals in accord with their contractual

7It is straightforward to extend our analysis to the case where S(θ, q) = S0(q) − θc(q), for some
function c increasing and convex. A simple change of variables (letting q′ = c(q) and Si(q

′) = Si(c
−1(q′)))

would allow us to again apply our methodology mutatis mutandis. Beyond, our arguments could also be
easily extended to more general functional forms with the notion of S-convexity and S-differentiability
developed in Carlier (2001) but at the cost of added complexity in the characterization of incentive
compatibility.

8Bagnoli and Bergstrom (2005).
9“Contracts on contracts” are ruled out for verifiability reasons. For instance, in a lobbying context a

given interest group may not have all the relevant information on other groups’ offers to condition her
own contributions. Szentes (2015) analyzes such settings.
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obligations.

Our solution concept is pure-strategy Perfect Bayesian equilibria. We say that the

strategy profile {q, t1, . . . , tn} is an equilibrium of the influence game if and only if

(2.2) q(θ |T ) ∈ argmax
q∈Q

S(θ, q) + T (q) ∀θ ∈ Θ,

(2.3) ti ∈ argmax
ti∈T

∫ θ

θ

(
Si(q(θ |T−i + ti))− ti(q(θ |T−i + ti))

)
f(θ)dθ ∀i ∈ N .

Condition (2.2) is the agent’s optimality condition. That ti (and thus T ) is upper semi-

continuous ensures existence of such best response q(θ |T ) for the agent’s optimization

problem over the compact set of actions Q. Condition (2.3) is principal i’s optimality

condition given the agent’s best response.

For any aggregate transfer function, T , we will refer to the allocation (U, q), as defined

by q(θ) ≡ q(θ |T ) and U(θ) = S(θ, q(θ)) + T (q(θ)) for all θ ∈ θ. The equilibrium range

of agent’s choices is defined by q(Θ) ≡ {q ∈ Q | ∃θ ∈ Θs.t. q = q(θ)} which we will

sometimes refer to more succinctly as Q.

2.1. Illustrations

Our general framework covers a number of economic settings of interest.

Example 1: Public Good Games. Consider the following public good game inspired

by the seminal work of Bergstrom, Blume and Varian (1986), and its later developments

in a complete information common agency context by Bernheim and Whinston (1986),

Laussel and Le Breton (2001) and Le Breton and Salanié (2003). There are n principal-

citizens and a privately-informed supplier of a public good. Each principal values the

public good, but the principals may differ in terms of the intensities of their preferences.

Principals have linear surplus functions for the public good of the form Si(q) = siq.
10

We also order the n principals such that s1 ≥ ... ≥ sn and denote a configuration of

principals’ preferences by the vector s ≡ (s1, . . . , sn).

In this context, we take the agent’s type to be an unknown, positive marginal cost of

production, θ ∈ Θ, and the domain of possible public goods to be Q = [0, qmax], with

qmax being sufficiently large to avoid boundary solutions at q = qmax. The agent’s cost

of production contains a known component, C(q), which is continuously differentiable,

increasing, convex, and C(0) = 0, and a private component depending upon type, θq.

10This linearity assumption is standard in the mechanism design literature on public good provision
(Mailath and Postlewaite, 1990; Ledyard and Palfrey, 1999, among others).
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Thus, we have

S(θ, q) = −θq − C(q),

and the stand-alone action and payoffs are q0(θ) = U0(θ) = 0.

Example 2: Collective Action. Example 1 can be recast mutatis mutandis as a

model of collective action in the spirit of Olson (1965). A decision-maker, the common

agent, chooses a policy q from the domain Q. Absent any influence, this agent would

maximize S(θ, q) = S0(q) − θq and choose a stand-alone action q0(θ) (his bliss point)

that, for simplicity, is assumed to be interior (i.e., q0(θ) ∈ Q̊ for all θ ∈ Θ) and thus

uniquely defined by the first-order condition,

(2.4) S ′
0(q0(θ)) = θ,

with the corresponding stand-alone payoff U0(θ) = S0(q0(θ))− θq0(θ).

In this setting, the principals are lobbyists with preferences that are linear in action,

Si(q) = siq, but unlike the public goods case preferences are not congruent: some subset

of principals prefers higher actions while the complement prefers lower ones. Each princi-

pal non-cooperatively promises the agent a payment as a function of the action the agent

chooses.

Example 3: Pork Barrel Politics. Consider a legislator who has to allocate a

budget of unit size between two socio-economic groups, represented by principals 1 and

2 respectively. Principals compete for shares of the overall budget by means of offering

campaign contributions to the legislator as a function of his chosen budget allocation. To

model a possible bias towards either group, we assume that the legislator (the common

agent) has preferences of the form

S0(θ, q) =

(
1

2
− θ

)
q − q2

2
,

where q ∈ Q = [0, 1] denotes the share of the budget captured by group 1. The bias

parameter θ is uniformly distributed on Θ =
[
−1

2
, 1
2

]
. A positive (resp. negative) value

of θ thus means a bias towards principal 2 (resp. 1). Groups have the same constant

marginal benefit for money, b > 0. Because they split a constant pie, principals have

conflicting interests with their preferences being expressed as

S1(q) = bq and S2(q) = b(1− q).



12 D. MARTIMORT, L. STOLE

To illustrate, the complete information collective surplus maximizing budget share for

principal 1, which is also the agent’s stand-alone action here, would be given by

qfb(θ) = q0(θ) =
1

2
− θ.

In particular, the legislator with the strongest bias towards group 1 (i.e., θ = −1
2
) allocates

all the budget to that group.

Up to a change of variable, this simple model can be interpreted mutatis mutandis as a

model of split award auctions in lines with Anton and Yao (1989, 1992). There, a buyer

wants to procure one unit of the good and might split that unit between two providers.

This simple setting can also be useful to think about models of competitive nonlinear

pricing when the buyer has some taste for diversity as in Hoernig and Valletti (2011)

and optimally splits his purchase between two sellers. Additionally, this reinterpreta-

tion could also be viewed as a model of market-share pricing where sellers offer discounts

to their customers based on their consumption mix, as in Calzolari and Denicolo (2013).

Example 4: Protection for Sale. Grossman and Helpman (1994) have applied

Bernheim and Whinston (1986)’s methodology to successfully explain the design of trade

policy, arguing that the choice of trade instruments reflects the influence of various interest

groups. To cast this approach into the framework of our model, consider a small country

that trades a good with the rest of the world and takes as given the world price p.

The domestic policy maker, here the common agent in the setting, may set an import

tariff γ on the traded good. The policy maker cares about domestic welfare (the sum

of domestic producer and consumer surpluses), tariff revenue, and transfers from the

protected industries. Let domestic demand at price p be D(p). We focus on the setting in

which the country is a net importer with domestic price determined by p+γ. Preferences

of domestic consumers are quasi-linear in money and thus consumer surplus with tariff γ

and world price p is given by∫ D(p+γ)

0

D−1(x)dx− (p+ γ)D(p+ γ).

On the supply side, domestic producers are endowed with two different kinds of technology

indexed by the subscript i = 1, 2. Producing y units of the traded good requires, for

producers of type i, Ci(y) units of the numeraire, with C ′
i(y) ≥ 0 and C ′′

i (y) > 0. We

assume that producers in group 1 are more efficient, i.e., C ′
2(y) > C ′

1(y) > 0 for all y > 0.

Domestic producers are competitive and earn profits πi(γ) = (p+γ)yi(p+γ)−Ci(yi(p+γ))

where producer i’s supply curve is yi(p + γ) = C−1′

i (p + γ). We denote domestic supply

as S(p + γ) ≡
∑2

i=1 yi(p + γ) and imports as M(p + γ) ≡ D(p + γ) − S(p + γ), which
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we assume is positive at γ = 0. Producers are organized as two interest groups with

congruent interests; they both enjoy greater profits from higher import tariffs, but with

different intensities.

The policy maker cares about the contributions he receives from each protected industry

as well as domestic social welfare (including tariff revenue). We shall use the level of

domestic social welfare as the variable under control of the policy maker and, with some

awkwardness, denote this action by q as in other examples:

q =

∫ D(p+γ)

0

D−1(x)dx− (p+ γ)D(p+ γ) + γM(p+ γ) +
∑
i

πi(γ),

which defines implicitly a tariff function of welfare level, Γ(q). Note that q ranges from the

lowest surplus which is generated by a tariff that chokes off all imports, to the maximum

surplus which is generated by no tariff, γ = 0, which we denote qC . The policy-maker

cares directly about the received monetary contributions from the protected industries,

but also places a welfare weight of α ∈ [0, 1] on domestic welfare (including tariff revenue),

where α is private information. Redefining θ = −α, we can again write the agent’s direct

payoff function as

(2.5) S(θ, q) = −θq

where θ is distributed on Θ = [−1, 0]. With regard to the principals’ objectives, we

assume that they maximize profits less transfers to the policy maker, but further assume

that transfers are inefficient with each transferred Euro costing (1 + λ) Euros; λ > 0

is symmetric across principals. Thus, the payoff of principal i as a function of q can be

compactly written as

Si(q) =
πi(Γ(q))

1 + λ
.

Because the tariff function Γ(q) is non-increasing, we have S ′
i(q) < 0; i.e., producers

prefer higher tariffs. In the absence of any lobbying, the policy-maker would maximize

welfare by opting for free trade, Γ(qC) = 0 for all θ ∈ [0, 1). The stand-alone action and

payoffs are thus q0(θ) = qC and U0(θ) = −θqC .

3. PRELIMINARIES

3.1. Statement of the Best-Response Problem

We begin with a consideration of principal i’s best response under the belief that the

other principals offer the aggregate tariff schedule T−i. From principal i’s vantage point,
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it is as if she is designing a contract for an agent with residual preferences given by

S(θ, q) + T−i(q).

Absent principal i, the agent can secure the following payoff when contracting with the

remaining n− 1 principals:

U−i(θ) ≡ max
q∈Q

S(θ, q) + T−i(q)

by choosing an action

q−i(θ) ∈ argmax
q∈Q

S(θ, q) + T−i(q).

When principal i offers a non-negative transfer schedule ti, the agent obtains utility

U(θ) ≡ max
q∈Q

S(θ, q) + ti(q) + T−i(q),

with an optimal action satisfying

q(θ) ∈ argmax
q∈Q

S(θ, q) + ti(q) + T−i(q).

If the agent is offered a non-negative schedule by principal i, it necessarily follows that

the agent’s indirect utility of contracting with principal i weakly exceeds U−i. Similarly,

if the agent’s indirect utility exceeds U−i, then the agent must choose an action for which

principal i has offered a positive payment. Hence, we can replace the requirement that

ti ≥ 0 with the following individual rationality requirement for each principal i:

(3.1) U(θ) ≥ U−i(θ) ∀θ ∈ Θ.

Because the agent’s preferences are bilinear in q and θ, U(θ) so defined is a maximum of

linear functions of θ. Following Rochet (1987), incentive compatibility can be expressed

as the tandem requirements

(3.2) −q(θ) ∈ ∂U(θ),

(3.3) U(θ) convex.
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Condition (3.2) is a general statement of the agent’s first-order envelope condition.11 The

requirement in (3.3) that U is convex is equivalent to the requirement that q is a non-

increasing selection in the agent’s best-response correspondence. Of course, conditions

analogous to (3.2) and (3.3) apply to the allocation (U−i, q−i) absent principal i.

Framed in this manner, principal i’s problem of choosing an optimal ti can be reformu-

lated as choosing an allocation (U, q) that is individually rational and incentive compatible

for the agent relative to some outside option, U−i, and that solves the following program:

(Pi): max
(U,q)

∫ θ

θ

{
Si(q(θ)) + S(θ, q(θ)) + T−i(q(θ))− U(θ)

}
f(θ)dθ

s.t. (3.1)-(3.2)-(3.3).

If T−i were known to be continuous and piecewise differentiable, and if the integrand were

known to be concave, we could apply standard optimal control techniques to characterize

the optimal contract. Assuming that T−i is continuous and almost everywhere differen-

tiable, however, imposes an equilibrium refinement that is worth explicit consideration.

To provide a general solution to (Pi) that requires only that T−i be upper semi-

continuous, we utilize necessary and sufficient conditions for non-smooth control pro-

grams with type-dependent participation constraints developed in Martimort and Stole

(2022). Intuitively, one can show that the solution to the program in which the objective

function is replaced with its concavification is also a solution to the original program.

The concavification, while continuous, is possibly non-differentiable at some points, and

so tools from non-smooth optimal control may be applied. These tools, fortunately, allow

us to state necessary and sufficient conditions using a distribution of Lagrange multipliers

that is reminiscent of the work of Jullien (2000) for the smooth scenario.12

3.2. Monotonic Common Agency Games

Because U and U−i are two implementable rent profiles, they are both convex. The

type-dependent participation constraint (3.1) thus amounts to comparing two convex

functions – a scenario which might lead to a variety of patterns for the set of types

11Here, ∂U represents the sub-differential of a convex function, allowing for the possibility that, at
a countable number of values of θ, U may fail to be differentiable. If U is differentiable at θ, then
∂U(θ) = {U̇(θ)} and thus U̇(θ) = −q(θ). At any point θ of non-differentiability, an incentive-compatible
allocation q must nonetheless lie between the right and left derivatives of U at this point.

12Jullien (2000) provides necessary and sufficient conditions for control problems with pure type-
dependent state constraints under the assumption that the objective function is continuous and piecewise
differentiable. Martimort and Stole (2022) demonstrate that a variation of Jullien (2000)’s conditions
can be applied to discontinuous models as well. It is worth noting that the simplicity of these conditions
is a consequence of the assumption that the objective function is linear in the state variable. Because the
preferences of the players are quasi-linear in money, this assumption is satisfied in the present setting.
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where the constraint binds for principal i which, recall, we denote Ωi.
13 As we will see

below, when principal payoffs are linear in agent action as in Examples 1-3, the binding

set of types for principal i must be either Ωi = [θ̂i, θ] for principals who prefer higher

action (i ∈ A), or Ωi = [θ, θ̂i] for principals who prefer lower action (i ∈ B). More

generally, it is intuitive that a principal i ∈ A who prefers greater agent actions would offer

nondecreasing payments in q. With such monotone payments, it follows that the set of

inactive types for this principal is an upper interval (possibly degenerate), [θ̂i, θ] as in the

linear case. A symmetric intuition holds for principals who prefer lower actions. Indeed,

as we will show below, when principal preferences are nonlinear (as in Example 4), there

always exist equilibria with each Ωi characterized as either an upper and lower partition

of the type space. That said, when principal payoffs are nonlinear, we are unable to show

that Ωi necessarily has this property. We have also been unable to find an example of an

equilibrium with more complex binding type sets. For this reason, we restrict our attention

to equilibria which have the following monotonicity property, where it is understood that

this is might be restrictive for the case of nonlinear principal preferences:

Definition 1 Let {Ωi}i∈N be a collection of equilibrium inactive-type sets where

Ωi = {θ ∈ Θ | U(θ) = U−i(θ)}.

An equilibrium to the common agency game satisfies the Monotonicity Property (hereafter

MP ) if for each i there is a θ̂i ∈ [θ, θ] such that

Ωi =

[θ̂i, θ] for i ∈ A,

[θ, θ̂i] for i ∈ B.

To the extent that (MP ) is restrictive in a nonlinear environment, this refinement

selects equilibria in which differences of payments across alternatives reflect the ranking

of the alternatives for each principal. Conveniently, when MP holds, there is a clear

segmentation of the principals’ areas of influence and we can refer to Ω
c

i (the complement

of Ωi) as the set of types for whom principal i is active and influences the agent’s choice.

3.3. Virtual Surplus: Definition, Properties

While valuation functions are the object of interest to analyze how a principal influences

the agent under complete information, virtual surplus turns out to play the same role

under asymmetric information. When constructing best-responses for principal i given

T−i, the principal’s virtual surplus will largely determine the principal’s best response. In

what follows, we introduce some standard notation from nonsmooth analysis. Consider

13This point is well-known from the literature on countervailing incentives (see, for example, Lewis
and Sappington (1989), Maggi and Rodriguez (1995), Jullien (2000)).
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any upper-semicontinuous function H(·) on domain X . Define co(H) as the concave en-

velope of the function H over X and co(H)(x) as the value of this concave function at x.

Lastly define ∂co(H)(x) as the sup-differential of co(H). Because co(H)(·) is concave, it
is almost everywhere differentiable, and thus sup-differential is equal to the derivative of

co(H)(·) almost everywhere. At points of non-differentiability, the sup-differential is an

interval with endpoints equal to the right and left derivatives. We are now prepared to

define principal i’s virtual bilateral surplus. We motivate its construction below.

Definition 2 Principal i’s virtual surplus relative to an allocation (U−i, q−i) is de-

fined, for q−i(θ) ∈ Q̊,14 as

(3.4) Vi(θ, q)[q−i] ≡

Si(q)−min
{

F (θ)
f(θ)

, ∂co(Si)(q−i(θ))
}
q if i ∈ A,

Si(q)−max
{
∂co(Si)(q−i(θ)),−

1−F (θ)
f(θ)

}
q if i ∈ B.15

Note that the above expression can be written more succinctly as

Si(q)−min

{
F (θ)

f(θ)
,max

{
∂co(Si)(q−i(θ)),

F (θ)− 1

f(θ)

}}
q,

which we will often use to economize on notation in proofs.

Several remarks are in order. First, in many applications it is reasonable to assume that

Si is concave and continuously differentiable (Example 4), in which case our expression

for virtual surplus simplifies to

Vi(θ, q)[q−i] =

Si(q)−min
{

F (θ)
f(θ)

, S ′
i(q−i(θ))

}
q if i ∈ A,

Si(q)−max
{
S ′
i(q−i(θ)),−

1−F (θ)
f(θ)

}
q if i ∈ B.

Differentiating (3.4) with respect to q yields

(3.5) Viq(θ, q)[q−i] = S ′
i(q)−min

{
F (θ)

f(θ)
,max

{
S ′
i(q−i(θ)),

F (θ)− 1

f(θ)

}}
, a.e..

Observe that Si being concave and q−i non-increasing (due to incentive compatibility), the

function S ′
i(q−i(θ)) is itself non-decreasing in θ. Moreover, MHRC ensures that F (θ)

f(θ)
and

F (θ)−1
f(θ)

are also non-decreasing in θ. Since the min and max operators preserve mono-

tonicity, it immediately follows that Vi(θ, q)[q−i] exhibits decreasing differences. That

14If q−i(θ) lies on the boundary of Q, the precise statement of the virtual surplus needs to be amended.
Lemma A.1 deals with the case where 0 ∈ ∂co

(
S(θ, q−i(θ))− θq−i(θ)

)
and q−i(θ) ∈ bdQ.

15At points where ∂co(Si)(q−i(θ)) is a correspondence, the definition above should be intended as
meaning a selection within this correspondence. From a remark in the text, the definition is almost
everywhere non-ambiguous.
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said, while decreasing differences is an important property, the difficulty remains that

that principal i’s virtual surplus depends on the action q−i that is chosen in its absence,

which in turn is an equilibrium object dependent on the tariffs offered by other principals.

In other applications (e.g., Examples 1-3), it is reasonable to assume that Si is a linear

function of q, say Si(q) = siq. In this special case, Vi(θ, q) is independent of q−i and

simplifies to

Vi(θ, q) =

max
{
si − F (θ)

f(θ)
, 0
}
q, if i ∈ A,

min
{
si +

1−F (θ)
f(θ)

, 0
}
q, if i ∈ B.

Here we can see that MHRC implies principal i ∈ A will have non-increasing virtual

surplus in θ, and therefore will choose to influence the agent for types in a lower interval; a

symmetric argument applies to the case of i ∈ B. It is this simple property that guarantees

all equilibria to a common agency game with linear principal preferences must exhibit

the monotonicity property discussed above.

Returning to our concave, differentiable Si setting we can illustrate why (3.4) is the

correct notion of virtual surplus for constructing best responses. Suppose that principal

i values the agent’s action (i.e., i ∈ A, S ′
i(q) > 0). Since S ′

i(q−i(θ)) is bounded below by

some positive number, there always exists an interval of the form [θ, θ̂i), for which

(3.6) Viq(θ, q−i(θ))[q−i] = S ′
i(q−i(θ))−

F (θ)

f(θ)
> 0.

In other words, principal i would like to expand the agent’s output beyond q−i(θ) for those

types. To foster intuition, suppose that principal i expands output above q−i(θ) over a

small neighborhood [θ, θ + dθ] by a small amount dq. Principal i’s expected marginal ben-

efit of doing so would be f(θ)S ′
i(q−i(θ))dqdθ while the expected extra information rent left

to all inframarginal types so that they accept such deal would equal to F (θ)dqdθ. Condi-

tion (3.6) says that, for θ small enough, such a marginal change benefits principal i.16 In

contrast, suppose that S ′
i(q−i(θ)) ≤

F (θ)
f(θ)

. Inserting into (3.5) yields Viq(θ, q−i(θ))[q−i] = 0

and principal i would not like to marginally increase the agent’s output in that case.

The intuition is even simpler in the case of linear principal preferences. Consider again

Example 1. In that case, the marginal valuation si of principal i is independent of which

16Suppose now that principal i dislikes the agent’s output, i.e., S′
i < 0. For θ in an interval of the form[

θ̂i, θ
]
, we thus have

Viq(θ, q−i(θ))[q−i] = S′
i(q−i(θ)) +

1− F (θ)

f(θ)
< 0.

Principal i would like to reduce the agent’s output below q−i(θ) for those types. Whether i ∈ A or

i ∈ B, principal i always influence the agent by increasing the latter’s information rent U beyond his
reservation payoff U−i absent this principal and she does by rewarding the agent for changing his action
in the direction she likes.
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action is taken with the remaining n− 1 other principals. To illustrate, consider the case

si > 0.17 Then the existence of an interval of the form
[
θ̂i, θ

]
over which Viq(θ, q−i(θ)) = 0

directly follows from MHRC. Because MHRC holds, there is indeed a unique solution θ̂i

to sif(θ̂i) = F (θ̂i) provided that 1 > sif(θ) and, moreover, (θ̂i, θ] = {θ | F (θ)− sif(θ) >

0}. MHRC also implies f ′(θ)/f(θ) ≤ f(θ)/F (θ), from which it follows that F (θ)−sif(θ)

is increasing if F (θ)/f(θ) > si. Hence, F (θ) − sif(θ) is strictly increasing on (θ̂i, θ] and

Viq(θ, q−i(θ)) = 0 on that interval.

3.4. Best-Responses: Characterization

With multiple principals, the equilibrium may depend upon the virtual surplus of every

principal. One contribution of this paper is in determining the precise manner in which

all Vis combine to determine the equilibrium allocation. We now present a key building

block of our analysis.

Proposition 1 Given the aggregate transfer function T−i offered by other principals,

and the agent’s corresponding outside option U−i and output q−i, the allocation (U, q) is

a solution to principal i’s program if and only if it satisfies (3.1)-(3.2)-(3.3), and

(3.7) q(θ) ∈ argmax
q∈Q

S(θ, q) + Vi(θ, q)[q−i] + T−i(q), a.e.

where Vi(θ, q)[q−i] satisfies (3.4).

Moreover, if Ω̊i ̸= ∅, the following property holds:

(3.8) Viq(θ, q(θ))[q−i] = 0 ⇐⇒ U(θ) = U−i(θ) and q(θ) = q−i(θ), ∀θ ∈ Ω̊i.

If instead Ω̊i = ∅,

(3.9)

ti(q(θ)) ≥ 0 if i ∈ A,

ti(q(θ)) ≥ 0 if i ∈ B.

Proposition 1 informs us that for any type for which Viq(θ, q(θ))[q−i] = 0, principal

i finds it optimal not to influence the agent’s choice and thus q(θ) = q−i(θ) for such a

type. The optimal transfer ti which implements (U, q) above will have the property that

ti(q(θ)) = 0 for all such θ. For these types, we say that principal i is inactive and (3.1) is

binding over an interval Ωi with non-empty interior. Instead, for any θ for which principal

i is active, Viq(θ, q(θ))[q−i] ̸= 0, we have U(θ) > U−i(θ). Note principal i can be active

and offer a positive payment to the agent even when (3.1) is binding if it arises at extreme

points.

17The case si < 0 can be treated similarly.
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Proposition 1 characterizes best-responses to any incentive compatible allocation (U−i, q−i).

Its conclusions are particularly striking when we consider best-responses at equilibrium.

Principal i will not induce a deviation away from such an equilibrium allocation q, when-

ever Viq(θ, q(θ))[q−i] = 0 where the virtual surplus is now relative to this equilibrium

allocation. This condition can be written as

∂co(Si)(q(θ)) ≤
F (θ)

f(θ)
for i ∈ A and ∂co(Si)(q(θ)) ≥

F (θ)− 1

f(θ)
for i ∈ B.

If principal i does not influence the agent in equilibrium at θ, then q(θ) = q−i(θ) and thus

Viq(θ, q(θ))[q] = 0. If, at equilibrium, principal i chooses to influence the agent, it must

instead be that the reverse of the inequalities above hold. In such a case, Vi(θ, q(θ))[q−i]

is independent of q−i, and we may again consider virtual surplus relative to q instead of

q−i. We may therefore use Proposition 1 to characterize equilibrium behavior where the

virtual surplus is computed relative to the equilibrium allocation itself; for q(θ) interior,

the virtual surplus is

(3.10) V i(θ, q(θ))[q] = Si(q)−min

{
F (θ)

f(θ)
;max

{
∂co(Si)(q(θ)),

F (θ)− 1

f(θ)

}}
q a.e..

4. EQUILIBRIA: NECESSARY CONDITIONS

Our menu auction game is an aggregative game since the agent’s choice depends on the

aggregate payment T he receives, and principal i’s preferences over strategy profiles can

be reduced to preferences over her own tariff ti and this aggregate payment T . Although

the common agency game has infinite-dimensional strategies and incomplete information,

it also has the convenient property that it is quasi-linear in strategies (i.e., payoffs are

linear in payments). This allows us to aggregate the best response conditions given in

Proposition 1. In the present context, the corresponding necessary conditions are obtained

simply noting that q must solve (3.7) for each principal i. Hence, q must also maximize

the sum of the objectives from these individual programs:

(4.1) q(θ) ∈ argmax
q∈Q

S(θ, q) + V(θ, q)[q] + (n− 1)
(
S(θ, q) + T (q)

)
,

where T implements q and V(θ, q)[q] ≡
∑n

i=1 V i(θ, q)[q] is the aggregate virtual preferences

of the principals relative to the equilibrium allocation itself.18

Because T appears in the objective in (4.1) and it must also implement q, this necessary

condition contains a fixed point. For a given equilibrium aggregate T , there exists a q,

which in turn must be a solution to the program in (4.1). As we will demonstrate, there

18The second line follows from
∑n

i=1 T−i(q) =
∑n

i=1(T (q)− ti(q)) = (n− 1)T (q).
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might be an infinite number of solutions (equilibria) to this self-referencing program. A

first theoretical contribution of this paper is to provide necessary conditions satisfied by

all such allocations.

Theorem 1 Any equilibrium allocation q must satisfy the necessary conditions19

(4.2) q(θ) ∈ argmax
q∈Q

S(θ, q) + V(θ, q)[q], ∀θ ∈ Θ

where Q = q(Θ) ⊆ Q is the equilibrium range.

Condition (4.2) represents a simplified, pointwise program that embeds the strategic

interactions of the principals. Indeed, the fixed-point problem (4.1) has been transformed

into what is apparently a simpler maximization problem. The comparison of (4.1) and

(4.2) shows in fact a remarkable simplification. The extra term (n − 1)
(
S(θ, q) + T (q)

)
that corresponds to n − 1 times the agent’s payoff has now disappeared in the final

formulation (4.2). Intuitively, q(θ) is also a maximizer for this last term since it has to

be the agent’s equilibrium choice. Although no assumption on differentiability of the

aggregate tariff T (q) is made in the first place, an Envelope Condition can be used to

simplify the optimality requirement.

Everything happens is as if a surrogate representative of the principals, whose decisions

reflect their non-cooperative behavior, is now optimizing on their behalf an objective func-

tion, namely S(θ, q) + V(θ, q)[q], which conflates the various influences of the principals.

At any type θ, this surrogate principal should prefer to choose the equilibrium action q(θ)

rather than the action that would have been chosen by another type. This explains why

in the maximand of (4.2), the maximization domain is over all possible actions that lie in

the equilibrium range Q. This maximization thus brings a set of incentive constraints for

the surrogate principal that require a careful investigation provided in Theorem 4 below.

Notice that the stand-alone action may lie in the equilibrium range Q.

In the surrogate’s objective, each principal’s surplus function Si(q) is now replaced by

its virtual surplus Vi(θ, q)[q] relative to the equilibrium allocation itself. Therefore, this

maximization problem still contains a fixed-point requirement because the aggregate vir-

tual surplus is relative to the equilibrium allocation itself. This aggregate virtual surplus

reflects in which direction principals would like collectively to push the agent’s action.

Depending on whether the marginal aggregate Vq(θ, q(θ))[q] at that equilibrium alloca-

tion is positive or negative, the overall influence of principals pushes action up (resp.

19From a technical point of view, the fact that V(θ, q) depends on the equilibrium allocation implies
a careful use of Proposition 1. There, we showed that the best-response allocation q to a non-increasing
allocation q−i was itself non-increasing. When using this Proposition at equilibrium, and taking into
account a fixed-point requirement, we thus have to make this monotonicity requirement explicit.
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down) with respect to the stand-alone benchmark q0(θ).

5. MAXIMAL EQUILIBRIA

To make progresses on the characterization of the equilibrium set, we first observe that

a solution to Condition (4.2) stands out for special consideration. Define thus the maximal

allocation qm(θ) as a solution to

(5.1) qm(θ) ∈ argmax
q∈Q

S(θ, q) + V(θ, q)[qm].

The allocation qm(θ) in (5.1) is said to be maximal because, in contrast with the more

general Condition (4.2), the optimization domain Q is now left unrestricted. Note that qm

as defined is a fixed point; it is immediate to show that such a fixed point always exists.20

While there may be more than one solution in our most general setting, we now impose

concavity and differentiability on our principals’ and agent’s preferences: preferences are

continuously differentiable, Si is concave for i = 1, . . . , n, and S0 is strictly concave. Under

these minimal restrictions which are satisfied in all of our applications, a unique solution

exists and we can speak of the maximal equilibrium allocation.

Theorem 2 Suppose that Si(q) (resp. S0(q)) is (resp. strictly) concave and differentiable

for all i ∈ N . Any interior maximal allocation is uniquely defined as

(5.2) S ′
0(q

m(θ)) +
∑
i∈A

max

{
S ′
i(q

m(θ))− F (θ)

f(θ)
; 0

}
+
∑
i∈B

min

{
S ′
i(q

m(θ)) +
1− F (θ)

f(θ)
; 0

}
= θ.

Furthermore, qm(θ) so defined is non-increasing and continuous.

Section 8 below highlights how the conditions of Theorem 2 are relatively weak and

readily satisfied in various economic settings.

For future reference, we define Ωm
i =

{
θ ∈ Θ s.t. F (θ)−1

f(θ)
≤ S ′

i(q
m(θ)) ≤ F (θ)

f(θ)

}
. It is the

subset of types for which principal i has no influence at the maximal allocation. In general,

the influence area of this principal is thus determined by a joint condition on her own

20Consider the correspondence

Ψ(x) = argmax
q∈Q

S(θ, q) +

n∑
i=1

Si(q)−min

{
F (θ)

f(θ)
;max

{
∂co(Si)(x),

F (θ)− 1

f(θ)

}}
q.

Because Q is compact and the above maximand is continuous in (q, x), we can apply Berge’s Theorem
of the Maximum which states that the correspondence Ψ is upper hemi-continuous, non-empty and
compact. Because

∑n
i=0 Si(q) is concave, Ψ is convex-valued. By Kakutani’s Fixed-Point Theorem, Ψ

admits a fixed-point qm(θ).
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preferences and the equilibrium action. This difficulty renders the characterization of

influence areas rather difficult. Section 8 nevertheless shows that this difficulty can be

overcome in structured economic environments.

5.1. Sufficient Conditions

Theorem 2 highlights conditions that ensure existence of a maximal allocation. To com-

plete our analysis, Theorem 3 below now provides sufficient conditions for existence of a

maximal equilibrium. The important step on that route is to construct equilibrium tariffs.

To this end, we must define the assignment correspondence ϑm(q) = {θ ∈ Θ|q = qm(θ)}.
Under the assumptions of Theorem 2, Item 2., this correspondence is single-valued and

continuous on Qm ⊆ Q since qm is decreasing and continuous.21

Theorem 3 Suppose that Si(q) (resp. S0(q)) is (resp. strictly) concave and differentiable

for all i ∈ N . The maximal allocation qm(θ) satisfying (5.2) is an equilibrium allocation

induced by the following equilibrium maximal tariffs tmi :

• When Ω̊m
i ̸= ∅,

(5.3) tmi (q) =

∫ q

q̂i

Vm
iq (ϑ

m(x), x)dx ∀q ∈ Qm, ∀i ∈ N

where q̂i ∈ qm(Ωm
i ) is arbitrary.

• When Ω̊m
i = ∅,

(5.4) tmi (q) =

tmi (q
m(θ)) +

∫ q

qm(θ)
Vm
iq (ϑ

m(x), x)dx ∀i ∈ A,

tmi (q
m(θ)) +

∫ q

qm(θ)
Vm
iq (ϑ

m(x), x)dx ∀i ∈ B.

where tmi (q
m(θ)) ≥ 0 for i ∈ A and tmi (q

m(θ)) ≥ 0 for i ∈ B.

The expressions of the tariffs in (5.3)-(5.4) are reminiscent of the truthful tariffs pro-

posed by Bernheim and Whinston (1986) in their analysis of delegated common agency

games under complete information. Remember that, in that setting, truthful tariffs are

actually of the form

ti(q) = max {Si(q)− Ci; 0}
21The correspondence would not be single-valued whenever qm(θ) is constant. Thanks to MHRC, this

scenario might only arise when qm(θ) lies on the boundaries of Q. This possibility of a corner solution is
ruled out in the sequel by making extra assumptions (explicit in the economic examples under scrutiny)
and we shall thus focus on interior solutions. Yet, modulo changes in the expression of the virtual surplus
functions that handle that possibility of a corner solution, these technicalities can easily be dealt with.
(See Lemma A.1 for details.)
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for some constants Ci.
22 When positive, these schedules reflect the preferences of prin-

cipals between alternatives. Under asymmetric information, informational distortions re-

duce (resp. increase) the marginal contribution of a principal i ∈ A (resp. i ∈ B) below
(resp. above) her marginal valuation. The maximal contribution schedules (5.3)-(5.4) re-

flect the virtual surplus of principals between alternatives.

6. DISCONTINUOUS EQUILIBRIA

We now demonstrate that there are (candidate) equilibrium allocations which satisfy

the necessary conditions (4.2) but do not satisfy (5.1) when Q ⊊ Qm, and so Condition

(5.1) implicitly refines the equilibrium set. To investigate the possibility of such equilibria

and get a clear characterization, we now adopt the set of assumptions made in Theorem

2. Recall that under these circumstances, an interior maximal allocation exists, uniquely

defined as (5.2), and is continuous and decreasing.

The restriction Q ⊊ Qm on the equilibrium range of actions of course only matters

when binding. When not so, the equilibrium action is necessarily the maximal allocation.

Candidate equilibrium allocations are thus identical to the maximal allocation on Q̊.

Accordingly, we now rewrite (4.2) as

(6.1) q(θ) ∈ argmax
q∈Q

S(θ, q) + Vm(θ, q), ∀θ ∈ Θ.

Instead, Condition (4.2) is a priori compatible with the existence of a countable number

of downward discontinuities in the action profile when the range of equilibrium values Q

is not connected. As already noticed in the intrinsic common agency scenario by Marti-

mort, Semenov and Stole (2018), the characterization of equilibrium allocations by means

of the surrogate principal’s incentive constraints (4.2) bears strong similarities with the

characterization of implementable allocations found in the mechanism design literature

on delegation as in Holmström (1984), Melumad and Shibano (1991), Martimort and

Semenov (2006), Alonso and Matouschek (2008) and Amador and Bagwell (2013). Bor-

rowing techniques that were developed in the aforementioned literature provides a sharp

requirement for all equilibrium allocations.

Theorem 4 Suppose that Si(q) (resp. S0(q)) is (resp. strictly) concave and differentiable

for all i ∈ N .

1. Any candidate equilibrium allocation q satisfying (6.1) is non-increasing.

22The possible values of those constants are found at equilibrium from the binding participation con-
straints of the agent’s in each principal’s best-response problem. In contrast with the case of incomplete
information analyzed here, those participation constraints are always binding.
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2. At any point of differentiability, the following condition holds:

(6.2) q̇(θ)
(
S ′
0(q(θ))− θ + Vm

q (θ, q(θ))
)
= 0.

3. At any isolated point of discontinuity, θ0 ∈ (θ, θ), bunching arises on both sides of

θ0 with

q(θ) = qm(θ1) ∀θ ∈ [θ1, θ0) and q(θ) = qm(θ2) ∀θ ∈ (θ0, θ2]

for some θ1 and θ2 such that θ1 < θ0 < θ2.
23 The surrogate surplus is continuous at

θ0:

(6.3) [S0(θ0, q) + Vm(θ0, q)]
qm(θ1)
qm(θ2)

= 0.

To prove that allocations that satisfy the above necessary properties are actually part of

an equilibrium, an important step, much like in Theorem 1 above, consists in construct-

ing tariffs that implement these allocations. The difficulty is that, the delegated common

agency game under consideration being an aggregate game which is not bijective, not

all discontinuities can be given consideration. Of course, an easy way to handle discon-

tinuity would be to have principals coordinate on large punishments if the agent would

choose actions in any discontinuity gap. This coordination is feasible under intrinsic com-

mon agency as shown in Martimort, Semenov and Stole (2018). In a delegated common

agency game, the so constructed tariffs must remain non-negative for all principals. This

requirement constrains what sort of discontinuities are sustainable in equilibrium. Our

next theorem provides one such construction and exhibits an important class of equi-

libria whose tariffs are simply truncated version of maximal contribution schedules. For

simplicity, we consider the case where all principals have congruent interests.

Theorem 5 Suppose that, A = N , and that Si(q) (resp. S0(q)) is (resp. strictly) con-

cave and differentiable for all i ∈ N . Consider a triplet (θ0, θ1, θ2) ∈ Θ3 with θ1 < θ0 < θ2,

(6.4) [S0(θ0, q) + Vm(θ0, q)]
qm(θ1)
qm(θ2)

= 0,

(6.5) Vm
iq (θ,q

m(θ) > 0 ∀θ ∈ [θ1, θ2] ,∀i ∈ N ,

and

(6.6)
F (θ0)

f(θ0)
=

1

qm(θ1)− qm(θ2)

∫ qm(θ1)

qm(θ2)

F (ϑm(x))

f(ϑm(x))
dx.

23q can be made either right-continuous (q(θ0) = qm(θ2)) or left-continuous (q(θ0) = qm(θ1)) with, of
course, no consequences on payoffs for any player.
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The allocation q defined as

(6.7) q(θ) =


qm(θ) if θ ∈ [θ, θ1]

⋃[
θ2, θ

]
,

qm(θ1) if θ ∈ [θ1, θ0],

qm(θ2) if θ ∈ (θ0, θ].

is an equilibrium allocation with θ0 as a downward jump discontinuity. It is implemented

by means of truncated maximal tariffs defined as

(6.8) ti(q) =

tmi (q) if q ∈ Qm/ [qm(θ2), q
m(θ1)],

0 otherwise.

Collective Action (Continued). To exhibit such discontinuous equilibria, consider

the simple case where S0 is quadratic and, more specifically S0(q) = λq − q2

2
where λ

is a non-negative parameter which is large enough such that output remains positive

under all circumstances below. We also assume that θ is uniformly distributed over [0, 1].

For simplicity, we also take n = 2 and s1 = s2 > 0. Inserting into (8.6), the maximal

allocation is shown to satisfy

(6.9) qm(θ) = λ− θ + 2max {s− θ; 0} .

Fix now θ0 ∈ [0, 1] and take θ2 = θ0 +
∆
2
< s and θ1 = θ0 − ∆

2
> 0. It is straightforward

to check that conditions (6.4), (6.5) and (6.6) hold altogether for any such ∆. In other

words, there are a continuum of discontinuous equilibria. The discontinuity is always at

θ0 and the downward jump discontinuity is from qm(θ1) to qm(θ2).

Equilibrium Selection. Because equilibrium tariffs (6.8) are now truncated versions

of maximal contribution schedules, the agent’s possible choices are de facto restricted.

The next proposition, whose proof is thus immediate, provides thus a strong reason to

focus on maximal allocations nevertheless.

Proposition 2 Compared to the class of discontinuous equilibria characterized in The-

orem 5, the agent’s payoff is greater in the maximal equilibrium.

More generally, when the maximal allocation is unique (as in the concave-differentiable

setting), we have an immediate corollary to Theorem 2:

Corollary 1 Let q(·) be an equilibrium allocation that is fully separating over the open

interval (θ1, θ2). Then

q(θ) = qm(θ) for all θ ∈ (θ1, θ2).



MENU AUCTIONS UNDER ASYMMETRIC INFORMATION 27

Thus even discontinuous equilibrium allocations correspond to the maximal allocation

over regions where there is full separation, suggesting the economic forces operating in

the maximal equilibrium are more universally relevant.

7. ALTERNATIVE SCENARIOS

This section discusses alternative scenarios for the collective actions of principals. It

shows how our results might be modified.

7.1. Cooperative Principals

This first benchmark allows us to better understand the nature of the distortions in-

duced by the principals’ non-cooperative behavior. Suppose that there is a single principal

who has preferences given by
∑n

i=1 Si(q). Alternatively, one can think of a cooperative

formed with all principals designing their compensation schedule to maximize their col-

lective surplus. In this case, the agent’s sole outside option is the stand-alone solution.

To fix ideas, suppose that Si(q) is strictly concave, differentiable for all i ∈ N , and that

all principals enjoy the good (A = N ). The virtual surplus of that cooperative principal

relative to the agent’s stand-alone allocation (assuming its interiority) is simply expressed

as

(7.1) V(θ, q)[q0] =
n∑

i=1

Si(q)−min

{
F (θ)

f(θ)
;max

{
n∑

i=1

S ′
i(q0(θ)),

F (θ)− 1

f(θ)

}}
q.

The optimal cooperative solution then solves

qcoop(θ) = argmax
q∈Q

S(θ, q) + V(θ, q)[q0].

The comparison of V(θ, q)[q0] and V(θ, q)[q] highlights two effects. On the one hand,

by acting cooperatively, principals are able to lessen the agent’s participation constraint

which is now given by the stand-alone action rather than, for each principal, the next-best

option absent that principal. This effect tends to make principals more willing to modify

the agent’s action than in the non-cooperative scenario. On the other hand, when non-

cooperating, each principal is now concerned with rent extraction; an effect that appears

as a lower impact of information distortions on the right-hand side of (7.1). Depending on

whether this principal likes or dislikes the agent’s action, this might end up in more or less

distortion compared with the cooperative scenario. Section 8 below will show how those

different effects interact and will provide more complete comparative statics between the

cooperative and the non-cooperative settings.
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7.2. Intrinsic versus Delegated Common Agency

When the agent must either accept of reject the entire set of the n offers, common

agency is intrinsic. The set of equilibria for this simpler setting is explored in Martimort,

Semenov and Stole (2018). Intrinsic common agency is the appropriate setting if the

principals have some control of the agent’s choice as in the case of public regulation by

different government agencies. When common agency is intrinsic, the principals’ activity

sets always coincide, so the equilibrium analysis of these games avoids the difficulties in

the present paper. Nonetheless, intrinsic common agency with public contracts provides

an interesting comparison for the influence games in the current paper, which we discuss

in Section 4 below.

Martimort, Semenov and Stole (2018) have studied intrinsic common agency games and

showed that all equilibria of such games can also be expressed as optimization problems

for a surrogate principal. There are three noticeable differences between the intrinsic

and delegate scenarios and these differences significantly complicate the analysis of this

paper. First, under intrinsic common agency, all principals consider the same participation

constraint for the agent with the latter’s sole outside option being now his stand-alone

payoff:

(7.2) U(θ) ≥ U0(θ).

Second, and because all principals consider the same set of incentive-feasible allocations,

intrinsic common agency games are bijective aggregate games in the vocabulary of Mar-

timort and Stole (2012). Any incentive-compatible allocation can be achieved by a given

principal provided that she undoes the aggregate offers made by her rivals, possibly with

negative payments. This property aligns the preferences of principals who all achieve the

same equilibrium net payoff. Under these circumstances, it is straightforward to demon-

strate that the necessary conditions that pertain to a solution to the surrogate principal’s

problem are also sufficient. Our delegated common agency game is not bijective for the

simple reason that a given principal might not be able to undo others’ offers when re-

stricted to offer positive payments.

Third, and again because all principals consider the same participation constraint, they

all agree on the identity of the worst type. All informational distortions due to their non-

cooperative behavior thus go in the same direction. Provided that Si(q) is concave and

differentiable for all i ∈ N and q0(θ) is interior, it can be shown that the aggregate virtual
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surplus can now be expressed as24

(7.3) VI(θ, q) =
n∑

i=1

Si(q)−
n∑

i=1

min

{
F (θ)

f(θ)
;max

{
S ′
i(q0(θ)),

F (θ)− 1

f(θ)

}}
q.

In comparison with the cooperative scenario, this expression leads to an overall n-fold

informational distortion whose consequences are studied in more details in Martimort,

Semenov and Stole (2018). For the sake of the present paper, we may just observe that,

when evaluated at the stand-alone action, the marginal aggregate virtual surplus under

intrinsic agency is worth

VI
q (θ, q0(θ)) =

n∑
i=1

max

{
S ′
i(q0(θ))−

F (θ)

f(θ)
;min

{
S ′
i(q0(θ)) +

1− F (θ)

f(θ)
; 0

}}
.

while, under delegated common agency, the marginal aggregate virtual surplus evaluated

at the same point is

Vq(θ, q0(θ)) =
n∑

i=1

max

{
S ′
i(q0(θ))−

F (θ)

f(θ)
;

min

{
S ′
i(q0(θ)) +

1− F (θ)

f(θ)
;S ′

i(q0(θ))− S ′
i(q(θ))

}}
.

Whenever the collective action of principals pushes the equilibrium action q(θ) above the

stand-alone action q0(θ), we have by concavity of Si, S
′
i(q0(θ)) ≥ S ′

i(q(θ)). It immediately

follows that Vq(θ, q0(θ)) ≥ VI
q (θ, q0(θ)) and all principals have more incentives to expand

output beyond that stand-alone action under delegated common agency than under in-

trinsic common agency. The reverse holds when the equilibrium action q(θ) lies below the

stand-alone action q0(θ). Again, Section 8 below will provide more precise comparisons

in structured environments.

7.3. Ex Ante Contracting

Consider a scenario where the principals and their common agent contract under sym-

metric but incomplete information at the ex ante stage; i.e., before the agent learns his

type. With this timing, the agent’s ex post participation constraint (3.1) is now replaced

by

(7.4)

∫ θ

θ

U(θ)f(θ)dθ ≥
∫ θ

θ

U−i(θ)f(θ)dθ.

24The proof is similar to those in Lemma A.1 and are thus omitted.
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Of course, this constraint is binding at the best response for each principal. Because

contracting takes place ex ante, there is no longer any friction coming from asymmetric

information and each principal maximizes the bilateral surplus of her relationship with

the common agent, shifting surplus within this bilateral coalition with a fee in order

to ensure the agent’s participation. Virtual surpluses are now replaced by true surplus

functions in expressing best responses for each principal. We could further proceed as

above and aggregate those best-response conditions to get

(7.5) qea(θ) ∈ argmax
q∈Q

S(θ, q) +
n∑

i=1

Si(q), ∀θ ∈ Θ

When the domain of maximization Q is left unrestricted, this optimality condition just

states that qea should be efficient. This scenario has already been studied by Laussel and

Le Breton (1998) who study efficient equilibria. As they show, this efficient allocation is

implemented by means of truthful schedules which, under ex ante contracting takes the

form

(7.6) Ti(q) = Si(q)− Ci, ∀i ∈ N

where Ci is a constant which is actually principal i’s payoff. These constants (Ci)1≤i≤n

are then obtained from the binding participation constraints (7.4) as the solutions to

(7.7) max
q∈Q

Eθ

(
S(θ, q) +

n∑
i=1

Si(q)

)
− Ci

= max
J

⋃
{0}

(
max
q∈Q

Eθ

(
S(θ, q) +

∑
i∈J

Si(q)

)
− Ci

)
, ∀i ∈ N .

It should be stressed that here also Q may be a strict subset of Q and efficiency may not

be reached everywhere. The techniques we develop in Section 6 below could be used here

also to describe the whole class of such discontinuous equilibria. The one that maximizes

aggregate surplus, of course, has Q = Q and output is first-best.

8. MAXIMAL EQUILIBRIA AT WORK

We now show how our characterization of maximal equilibria helps to derive important

insights for structured economic environments that are of much interest for applications.
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8.1. Public Good Games

Example 1 offers a particularly striking example of our general approach. Using (3.4),

we first observe that principal i’s virtual surplus at the maximal allocation is linear:

(8.1) Vm
i (θ, q) =

max
{
si − F (θ)

f(θ)
; 0
}
q for i ∈ A,

min
{
si +

1−F (θ)
f(θ)

; 0
}
q for i ∈ B,

and the marginal virtual surplus for a given principal does not depend on actions that

might be taken in her absence. As a result, the surrogate principal’s problem becomes a

simple optimization problem. This property is the source of many sharp results in what

follows. In particular, the influence area of each principal is now entirely determined by

her own preferences.

Proposition 3 Suppose that principals have linear surplus functions, i.e., Si(q) = siq

for all i ∈ N , and that C(q) is strictly convex with

(8.2)
∑
i∈N

si ≥ θ + C ′(0) +
|A|
f(θ)

.

Suppose also that

(8.3) 1 ≥ f(θ)si if i ∈ A and 1 ≤ −f(θ)si if i ∈ B.

An interior maximal equilibrium exists and is unique.

This maximal allocation qm solves

(8.4)
∑
i∈A

max

{
si −

F (θ)

f(θ)
; 0

}
+
∑
i∈B

min

{
si +

1− F (θ)

f(θ)
; 0

}
= θ + C ′(qm(θ)).

Virtual Lindahl-Samuelson Conditions. Condition (8.4) is a virtual version of

Lindahl-Samuelson conditions. The sum of the principals’ marginal virtual surplus bal-

ances the agent’s marginal cost of producing the public good at a maximal equilibrium

allocation. A principal i who enjoys (resp. dislikes) the public good, i ∈ A (resp. i ∈ B),
influences the agent with a type θ ≤ θ̂i (resp. θ ≥ θ̂i). Thanks to (8.3), the cut-off θ̂i is

defined as si =
F (θ̂i)

f(θ̂i)
for i ∈ A (resp. si =

F (θ̂i)−1

f(θ̂i)
for i ∈ B).

Maximal Contributions. Turning to the expression of these payments and using (5.3),
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the maximal allocation is implemented by means of the following maximal contributions:

(8.5) tmi (q) =


∫ q

qm(θ̂i)
max

{
si − F (ϑm(x))

f(ϑm(x))
; 0
}
dx for i ∈ A,∫ q

qm(θ̂i)
min

{
si +

1−F (ϑm(x))
f(ϑm(x))

; 0
}
dx for i ∈ B

where ϑm(q) is the assignment rule for the maximal allocation. Confirming our earlier

findings, it can be readily checked that a principal i ∈ A (resp. i ∈ B) who enjoys (resp.

dislikes) the public good wants to increase (resp. decrease) its level, and thus tm
′

i (q) ≥ 0

(resp. tm
′

i (q) ≤ 0) at all q ∈ Q.

Comparative Statics. An interesting comparative static is to ask how a constant-sum

redistribution of the principals’ marginal payoffs impacts the maximal equilibrium allo-

cation even though such a redistribution would have no impact on the efficient allocation.

To this end, arrange the principals from highest to lowest marginal payoff, s1 ≥ · · · ≥ sn

and denote the payoff vector as s = (s1, . . . , sn). If principals are not congruent and

A = {1, . . . , j}, define sA = (s1, . . . , sj) and sB = (sj+1, . . . , sn), allowing us to write

with some abuse of notation the payoff vector as s = (sA, sb). We have the following

proposition.

Proposition 4 Consider two configurations of principal preferences, s = (sA, sB) and

s̃ = (s̃A, s̃B). If s̃A is a mean-preserving spread25 of sA and s̃B = sB, then the associated

maximal allocations in each game have the property that for all θ

qms̃ (θ) ≥ qms (θ),

with a strict inequality for some positive measure. Similarly, if s̃A = sA and s̃B is a

mean-preserving spread of sB, then

qms̃ (θ) ≤ qms (θ),

with a strict inequality for some positive measure.

The result follows from noting that the lefthand side of (8.4) is convex in si for i ∈ A
and concave in si for i ∈ B. Applying Jensen’s inequality finishes the proof. Several

remarks follow from this simple comparative static.

Cooperative Principals. As a first illustration of Proposition 4, consider the case of

cooperating principals in a setting where preferences are congruent, say si > 0 for all

25Given two configurations s and s̃ with the same mean (i.e.,
∑n

i=1 si =
∑n

i=1 s̃i), we define the
associated discrete distributions on the combined domain ∪isi ∪j s̃j . If the distribution for s second-
order stochastically dominates the distribution for s̃, then we say that s̃ is a mean-preserving spread of
s.
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i ∈ N . This is equivalent to one principal having now preferences s̃1 =
∑n

i=1 si > 0 and

the other n − 1 principals having now preferences s̃j = 0 (for j ̸= 1) with contributions

as defined in (8.5) identically zero. It follows that s̃ is more disperse than s. From Propo-

sition 4, we deduce that the Baron and Myerson (1982)’s outcome with principals are

cooperating entails a higher allocation in comparison with the noncooperative scenario:

qcoop(θ) ≥ qm(θ) ∀θ ∈ Θ.

Output is inefficiently low in the noncooperative setting relative to the cooperative Baron

and Myerson (1982). We should emphasize that the source of this free-riding problem

among principals is asymmetric information. If information were complete or if contract-

ing takes place ex ante (which is tantamount to eliminating the inverse-hazard terms from

the equation as discussed in Section 7.3), the maximal equilibrium leads to full efficiency.

Each principal would offer the marginal truthful tariff t′i(q) = si as in Bernheim and

Whinston’s (1986). Thus, free riding does not arise in complete-information public good

games if principals have the ability to offer nonlinear tariffs to a common agent rather

than making direct, one-dimensional contributions to the public good. With asymmetric

information, however, each principal has private incentives to distort the agent’s output

choice to extract additional information rent. Because each principal ignores the negative

externality that doing so imposes on others, from a collective viewpoint, the principals

inefficiently extract too much rent. The free-riding problem present in our setting more

closely fits the narrative of a “tragedy of the commons” in which each principal over-

harvests a common resource – here the agent’s information rent.26

Non-Neutrality. As a second illustration of Proposition 4, consider now the case of

two principals. A unit tax on principal 1’s use of the public good that is exactly offset by

a unit subsidy on principal 2’s use could have a real impact on the equilibrium allocation

of public goods if this policy changes the set of active principals for some types.27 The

fact that mean-preserving variations in the principals’ preferences can have real impacts

in the final allocation is reminiscent of findings in the public finance literature on volun-

tary contribution games (see, e.g., Bergstrom, Blume and Varian, 1986). This literature,

which has focused on complete information games in which players’ strategies are scalar

contributions (as opposed to nonlinear schedules under asymmetric information as con-

sidered here), demonstrates that neutrality arises in simple public goods games precisely

26Similar findings arise in the private common agency settings analyzed in Stole (1991), Martimort
(1992) and Martimort and Stole (2009) where the former papers consider intrinsic common agency games
while the later discusses also the scenario of delegated common agency. When different principals control
different activities undertaken by their agent which are complements, each of them extracts too much of
the agent’s information rent; inducing excessively low levels of activities.

27This is not the case in models of intrinsic common agency, as shown in Martimort and Stole (2012),
because in such games all principals are active on the same type set and the allocation is unchanged by
mean-preserving variations in the principals’ preferences.
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when the set of contributors is unaffected by a variation in preferences or incomes. When

the set of contributors changes, however, the level of public good provision is typically al-

tered. Similarly, we find in our richer asymmetric-information setting that the key source

of non-neutrality is that an underlying variation can impact the set of active principals.

8.2. Collective Action

The analysis for Example 2 follows mutatis mutandis from Proposition 3. The only

change being that the maximal allocation qm(θ), when interior, now solves

(8.6) S ′
0(q

m(θ)) +
∑
i∈A

max

{
si −

F (θ)

f(θ)
; 0

}
+
∑
i∈B

min

{
si +

1− F (θ)

f(θ)
; 0

}
= θ.28

Several sharp economic insights emerge for this specific political economy context.

The Free-Riding Problem. Consider the case in which n symmetric principals have

the same marginal benefit s1 = S/n so that the aggregate principal benefit Sq taken as

a group is fixed independent of n. Using (8.5), it follows that an increase in the number

of principals, holding S fixed, reduces collective action. Specifically, we have

S ′
0(q

m
n (θ)) + nmax

{
S

n
− F (θ)

f(θ)
; 0

}
= θ.

For n → ∞, qmn (θ) now converges pointwise towards the stand-alone action q0(θ). This

asymptotic inefficiency result is reminiscent of the asymptotic inefficiency result found in

public good games by Mailath and Postlewaite (1990) but its source is quite different. In

Mailath and Postlewaite (1990)’s setting, the agent’s cost function is common knowledge,

the agent’s decision is binary, and each contributing principal has private information

about his own willingness to pay. Their result follows because the probability that any

contributing pricinpal is pivotal goes to zero as the number of players increases. In con-

trast, in our setting inefficiency arises because each (uninformed) principal attempts to

extract the (privately informed) agent’s marginal rent, ignoring the externality she exerts

on others when doing so.

Heterogeneity. In the context of group formation, the finding in Proposition 4 formal-

izes the ideas put forward by Olson (1965) and Stigler (1974) that a group is more likely

to be influential if members’ preferences are heterogeneous (e.g., a combination of small

and large stakeholders, rather than a group of equal stakeholders). This idea has also

been formalized in a simple setting of binary actions and preferences by Le Breton and

Salanié (2003). The present paper shows that this result remains prominent in a richer

setting.

28Remember that, for the sake of Example 2, we assumed that S0 is strictly concave, differentiable
and that the stand-alone action q0(θ) satisfies (2.4).
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Crowding-Out. Another political effect noted by Olson (1965) is that an increase in

the stake of one interest group member raises that person’s contribution, possibly lowers

the contribution of others, but on net raises the total contribution (i.e., crowding out

may arise, but it is never complete). We can find a similar result in the case of public

good provision where the increase in stake is modeled by an increase in si, and we can

ask what happens to the maximal equilibrium allocation (and the marginal transfers of

all principals) in this case.

Corollary 2 Suppose that preferences are congruent, A = N . Consider two configu-

rations of the principals’ preferences, s and s̃, in which s̃i = si + ui, ui > 0, but s̃j = sj

for j ̸= i. Then the associated maximal equilibrium allocations satisfy

qms̃ (θ) ≥ qms (θ) ∀θ ∈ Θ

with strict inequality for some positive measure of types.

Furthermore, both the marginal aggregate payment function and the marginal payment

function of principal i weakly increase over the set of equilibrium choices (and strictly

so for a subset of outputs), while the marginal payment functions of the other principals,

j ̸= i, weakly decrease over the set of equilibrium choices (and strictly so for a subset of

outputs). Crowding-out is less than perfect.

Intensive and Extensive Margins. To unveil the nature of distortions in delegated

common agency games, we consider now the simple case n = 2 with both principals being

congruent, with s1 > s2 > 0. The optimality condition (8.6) now rewrites as

(8.7) S ′
0(q

m(θ)) +
2∑

i=1

max

{
si −

F (θ)

f(θ)
; 0

}
= θ.

Suppose also that 1 ≥ f(θ)s1. Together with MHRC, this condition implies that there

always exists a unique interior solution θ̂i to

si =
F (θ̂i)

f(θ̂i)
i = 1, 2.

Observe that θ̂1 > θ̂2, so that the stronger principal 1 has a greater activity set than the

weaker principal 2. (i.e.,
[
θ, θ̂2

]
⊂
[
θ, θ̂1

]
).

The optimality condition (8.7) clearly shows how distortions manifest themselves along

two dimensions. First, because each active principal contributes less than her marginal

valuation, inefficient provision arises at the intensive margin. The equilibrium action is
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lower than the cooperative solution and, eventually, features the same two-fold distortion

that is present in intrinsic common-agency games. It is the case when both principals

are active, i.e., for θ ∈
[
θ, θ̂2

]
. A second distortion, novel to delegated common agency

games, emerges from limited participation by the weaker principal 2. The agent’s action

is now also distorted at the extensive margin.

Exclusive Contracting. Another interpretation of the limited participation that may

arise under asymmetric information is that some form of exclusive contracting emerges

endogenously even if exclusivity clauses cannot be enforced at the outset. This is so even

if both principals would otherwise have contracted with the agent under complete infor-

mation. This finding is reminiscent of an important insight developed by Bernheim and

Whinston (1998) in their study of vertical relationships between manufacturers and retail-

ers. They showed that exclusive dealing in marketing practices arises when the agency

costs of a common representation are too large compared with those under exclusive

dealing. There is, however, an important difference between their result and ours. They

assume that the possibility of exclusive representation arises ex ante, i.e., before the real-

ization of uncertainty. Although their general contracting model is thus consistent with

hidden actions or hidden information, it cannot account for the possibility of exclusivity

arising for some realizations of shocks and not for others. In this regard, our model, where

contracting takes place ex post, i.e., once the agent is already informed, generates richer

patterns of behavior.29

8.3. Pork Barrel Politics

As argued above, Example 3 is an instance where principals have conflicting interests.

The marginal virtual surplus for principals 1 and 2 have actually opposite signs, namely

V1q(θ, q) = max

{
b− θ − 1

2
; 0

}
≥ 0 ≥ min

{
−b− θ +

1

2
; 0

}
= V2q(θ, q).

For simplicity, suppose that b > 1, the optimality condition (8.6) then yields

(8.8) qm(θ) =


1 if θ ∈

[
−1

2
,−1

6

]
,

1
2
− 3θ θ ∈

[
−1

6
, 1
6
,
]
,

0 if θ ∈
[
1
6
, 1
2

]
.

29Calzolari and Denicolo (2015) develop a theory of exclusive dealing in manufacturer-retailer rela-
tionships based on the premise that, under asymmetric information, a dominant firm may exclude less
efficient upstream competitors. One key difference with our framework is that their model has competing
principals contracting on different outputs available to a common retailer. In other words, their model
is a model of private common agency while ours has principals contracting on the same variable (public
common agency).
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While the complete information benchmark offers a rather balanced distribution of budget

across groups, the maximal equilibrium above is more sensitive to the decision-maker’s

preferences and may end up in extreme allocations with one group getting the entire

budget while the other obtains nothing. In other words, there is more polarization at

that equilibrium than under complete information. The intuition is straightforward. Each

principal wants to influence types who are more inclined to grant favors while, for incentive

compatibility reasons, she also eschews contributions to types less willing to do so.

Note that these allocations lie on the boundaries of the feasible set for the most extreme

types and, as such, fail to be strictly monotonic. We may nevertheless still define an

assignment function that applies on the interior of the feasible set as

(8.9) ϑm(q) =
1

6
− q

3
∀q ∈ [0, 1] .

Using the general formula (8.5) yields then the expression of the maximal contribution

of each principal respectively as

tm1 (q) =

∫ q

0

max

{
b− 1

2
− ϑm(q̃), 0

}
dq̃ =

(
b− 2

3

)
q +

q2

6

and

tm2 (q) =

∫ q

1

min

{
−b+

1

2
− ϑm(q̃), 0

}
dq̃ = tm1 (1− q).

With such maximal contributions, types whose choice lies on the boundaries of the feasible

set receive payments from only one principal. For instance, if θ ∈
[
−1

2
,−1

6

]
, the agent

only receives a positive payment from principal 1.

It is interesting to investigate whether ex post contracting makes head-to-head com-

petition for the agent’s services fiercer than the scenario where principals have more

commitment ability and can design contribution schedules ex ante, i.e, before the agent

learns his type, and the efficient allocation qea(θ) = qfb(θ) is implemented by means of

truthful tariffs of the form (7.6). To this end, we compare the agent’s expected payoff

under both scenarios.

Proposition 5 Suppose that b > 1 and θ is uniformly distributed on Θ =
[
−1

2
, 1
2

]
,

then the agent’s expected payoff is less in the maximal equilibrium reached under ex post

contracting than in the truthful equilibrium achieved under ex ante contracting.

To understand this result, it is useful to decompose the impact of moving from ex ante

contracting to ex post contracting first on the agent’s gross surplus S0(θ, q) =
(
1
2
− θ
)
q− q2

2

and, second on his payments under both scenarios. In terms of gross surplus, since qm(θ)
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fluctuates more than qea(θ) and the gross surplus function is strictly concave, the expected

gross surplus diminishes with ex post contracting. In terms of payments, it can be proved

that, under ex ante contracting,30 the total contribution received the agent at the (unique)

truthful equilibrium is higher than that reached at the maximal equilibrium under ex post

contracting.31 Intuitively, under ex post contracting, both principals reduce payments to

extract the agent’s rent; this also makes this scenario less attractive for the agent.

8.4. Protection for Sale

Our international trade Example 5 features a case with two congruent principals, the

producers in group 1 and 2 respectively, who both want to push for an import tariff/export

subsidy. Next proposition summarizes a few findings of our analysis.

Proposition 6 The import tariff/export subsidy at the maximal equilibrium γm(θ) =

Γ(qm(θ)) reflects the influence of producers.

1. Both groups are active when θ is close enough to zero. The import tariff/export

subsidy then satisfies

(8.10)
γm(θ)

p+ γm(θ)
=

1

(1 + λ)
(
21−F (θ)

f(θ)
− θ
) S(p+γm(θ))

M(p+γm(θ))

ε(p+ γm(θ))

where ε(p) = −pM′(p)
M(p)

is the elasticity of imports, M(p) = D(p)− S(p).

2. Activity sets are nested with principal 1, the most efficient producers, being always

active. If only principal 1 is active, the import tariff/export subsidy satisfies

(8.11)
γm(θ)

p+ γm(θ)
=

1

(1 + λ)
(

1−F (θ)
f(θ)

− θ
) S1(p+γm(θ))

M(p+γm(θ))

ε(p+ γm(θ))
.

Strikingly, our model generates simple comparative statics much alike those in Gross-

man and Helpman (1994). This is the reason why we chose to express optimality condi-

tions in a very similar way. Here also, it is true that, as groups find it easier to self-organize

(i.e., λ lower) or as the policy-maker cares less about social welfare (i.e., θ lower), the

30See the Proof of Proposition 5 in the Appendix.
31Formally, we have

Eθ (t
ea
1 (qea(θ)) + tea2 (qea(θ))) = b− 1

3
.

Under the maximal equilibrium reached under ex post contracting, we instead have

Eθ (t
m
1 (qm(θ)) + tm2 (qm(θ))) = b− 14

27
.
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import tariff/export subsidy increases (decreases) to reflect the groups’ greater influence.

At the extreme, if the policy-maker only cares about lobbying contributions (i.e., θ = 0),

he sets an infinite import tariff/export subsidy.32

The import tariff (resp. export subsidy) is also greater as influencing groups are pro-

ducing a greater fraction of imports (resp. exports). Interestingly, a positive productivity

shock that would allow producers to expand output would increase their joint influence,

up to the point where even low-productivity producers might find it optimal to influence

the decision-makers. As a result, greater trade barriers are erected.

In Grossman and Helpman (1994), the structure of interested groups susceptible to

influence the decision-maker is given at the outset. Since the influence game takes place

under complete information, a Coasian outcome always arises. Whether principals coop-

erate or not does not change the implemented policy that maximizes the overall payoff

or the coalition made of those groups and the policy-maker. This neutrality results fails

here. Had the two groups merge, they would induce a cooperative trade policy γcoop(θ)

that would satisfy

(8.12)
γcoop(θ)

p+ γcoop(θ)
=

1

(1 + λ)
(

1−F (θ)
f(θ)

− θ
) S(p+γcoop(θ))

M(p+γcoop(θ))

ε(p+ γcoop(θ))
.

The difference with (8.10) is that, because cooperative principals now harvest the policy-

maker’s rent only once, the choice of the trade instrument is less tilted towards free trade.

Cooperative producers are better able to push for an import tariff (resp. export subsidy)

when the country is a net importer (resp. exporter).
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ONLINE APPENDIX A: PROOF OF PROPOSITION 1

The proof of Proposition 1 proceeds in three steps. First, using a result in Martimort and

Stole (2022), we provide a set of conditions that are necessary and sufficient for the solution to

principal i’s relaxed program (ignoring the convexity constraint on U). Second, we demonstrate

the adjoint equations in these conditions can be further simplified given that the principal’s

preferences are linear in q. Third, we show that the solution to the relaxed and simplified

program is a solution to the original program.

Step 0: Statement of the Problem. For the sake of completeness, we now briefly present

Theorem 1 in Martimort and Stole (2022). This latter paper considers general control problems

(beyond the class of principal-agent models) in which the state variable, u, is restricted to be an

absolutely continuous function on the interval Θ = [θ, θ]. Let AC(Θ,R) denote the set of such

functions. In the present context, the state variable is the agent’s information rent as a function

of his type, absolute continuity then follows from incentive compatibility.33 Martimort and Stole

(2022) focus attention on problems in which that state variable must satisfy a non-negativity

participation constraint constraint:

(A.1) u(θ) ≥ 0 ∀θ ∈ Θ.

When the state variable u is both absolutely continuous and non-negative, it is said admissible.

We are interested in the following pure-state control program:

(P) : Maximizeu∈AC(Θ,R) R
∫ θ

θ
(s(θ,−u̇(θ))− u(θ)) f(θ)dθ s.t. (A.1).

Step 1 below shows how this general formalism applies to our common agency context. Read-

ers already familiar with the work of Jullien (2001) have certainly recognized the well-known

framework developed with type-dependent participation constraints. The key novelty in Marti-

mort and Stole (2022) is that similar results are obtained with substantially weaker assumptions

on the primitive function s. In particular, s(θ, v) is not necessarily concave nor continuously

differentiable. Accordingly, let co(s)(θ, v) denote the v-concave envelope of s(θ, v). We denote

the sup-differential of co(s) as ∂vco(s)(θ, v)
34 Because co(s) is concave, it is a.e. differentiable

(Rockafellar, 1997, Theorem 25.5.). Henceforth, the correspondence ∂vco(s) is a.e. single-valued.

Theorem 1 in Martimort and Stole (2022) is the main result for this class of problems. Nec-

essary and sufficient conditions are stated in terms of a probability measure which serves to

express a complementary slackness condition (A.2) and a first-order optimality condition (A.4).

Theorem A.1 (Martimort and Stole, 2022): u is a solution to program (P) if and only if u

is admissible and there exists a probability measure µ defined over the Borel subsets of Θ with

33See Milgrom and Segal (2002).
34Remember that ∂vco(s)(θ, v) = {p s.t. co(s)(θ, w) ≤ co(s)(θ, v) + p(w − v) ∀w} .
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an associated adjoint function, M : Θ → [0, 1], defined by M(θ) = 0 and

M(θ) =

∫
[θ,θ)

µ(dθ̃) for θ > θ,

such that the following conditions are satisfied:

(A.2)

∫ θ

θ
u(θ̃)µ(dθ̃) = 0,

(A.3) co(s)(θ,−u̇(θ)) = s(θ,−u̇(θ)) for a.e. θ ∈ Θ,

(A.4) M(θ) ∈ F (θ)− f(θ)∂vco(s)(θ,−u̇(θ)) for a.e. θ ∈ Θ.

Heuristic Proof. Before proceeding, it is useful to give an heuristic proof of this Theorem.35

First, observe that the cone u ≥ u with v ∈ AC(Θ,R) and u̇(θ) = −v(θ) a.e. defines a set of

allocations which are admissible deviations. Second, for any such deviation, we necessarily have

∫ θ

θ
(u(θ)− u(θ))dµ(θ) ≥ 0

since µ is positive. Integrating by parts the left-hand side yields

0 ≤
[
(u(θ)− u(θ))M(θ)

]θ
θ
+

∫ θ

θ
M(θ)(v(θ)−v(θ))dθ = u(θ)−u(θ)+

∫ θ

θ
M(θ)(v(θ)−v(θ))dθ

where the last equality follows from M(θ) = 0 and M(θ) = 1. Similarly, another integration by

parts yields

∫ θ

θ
(u(θ)− u(θ))f(θ)dθ = u(θ)− u(θ) +

∫ θ

θ
F (θ)(v(θ)− v(θ))dθ

Inserting above yields

0 ≤
∫ θ

θ
(u(θ)− u(θ))f(θ)dθ +

∫ θ

θ
(M(θ)− F (θ))(v(θ)− v(θ))dθ

It immediately follows from a simple convexity argument that, if M(θ) satisfies (A.4),

0 ≤
∫ θ

θ
(u(θ)− u(θ))f(θ)dθ +

∫ θ

θ
f(θ)(co(s)(θ,−u̇(θ))− co(s)(θ,−u̇(θ)))dθ

or ∫ θ

θ
(co(s)(θ, v(θ))− u(θ)) f(θ)dθ ≥

∫ θ

θ
(co(s)(θ, v(θ))− u(θ)) f(θ)dθ

35The complete proof is omitted for the sake of keeping the present paper at reasonable length.
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Using that co(s) ≥ s, the right-hand side above is greater than

∫ θ

θ
(s(θ, v(θ))− u(θ)) f(θ)dθ

for any admissible pair (u, v). Using (A.3) then yields

∫ θ

θ
(s(θ, v(θ))− u(θ)) f(θ)dθ ≥

∫ θ

θ
(s(θ, v(θ))− u(θ)) f(θ)dθ

i.e., (u, q) is an optimal allocation, as requested. Q.E.D.

To prepare for the rest of our analysis, it is also useful to consider the case where admissible

profiles u(θ) are either monotonically increasing or decreasing respectively, and draw from this

assumption further properties for the adjoint function M(θ). First, notice that the support of

the probability measure µ, i.e., the set of points θ such that u(θ) = 0, is necessarily non-empty,

and closed, and thus either of the form [θ̂, θ] or of the form [θ, θ̂]. From this observation, we get,

for u non-increasing, that

(A.5) M(θ)

∈ F (θ)− f(θ)∂vco(s)(θ, 0) a.e., if θ ∈ [θ̂, θ],

= 0 if θ ∈ [θ, θ̂).

In the case where u is non-decreasing, we instead have

(A.6) M(θ)

∈ F (θ)− f(θ)∂vco(s)(θ, 0) a.e, if θ ∈ [θ, θ̂)

= 1 if θ ∈ [θ̂, θ].

Some remarks are in order. First, remember that ∂vco(s)(θ, 0) is a.e. single-valued so that M

is a.e. defined without any ambiguity. At a point θ where ∂vco(s)(θ, 0) is multivalued, M(θ) is

a selection within the correspondence F (θ)− f(θ)∂vco(s)(θ, 0). Second, M(θ) must necessarily

be non-decreasing. From this, we deduce that F (θ) − f(θ)∂vco(s)(θ, 0) is non-decreasing on

supp {µ}. This condition implicitly puts some restriction on the support supp {µ} where u(θ) =

0. Third, when u is non-increasing and supp {µ} = {θ}, µ puts mass one at θ. Similarly, when

u is non-decreasing and supp {µ} = {θ}, µ puts mass one at θ.

Step 1: The relaxed program. Let us now come back to our more specific optimiza-

tion program (Pr
i ). Because the domain of (U, q) is the set of incentive compatible, indi-

vidually rational allocations, U is convex on a compact set and q is non-increasing. It fol-

lows that q is measurable, U is absolutely continuous and thus a.e. differentiable. The same

applies to the pair (U−i, q−i). As such, we may focus our attention on the domain D =

{(U, q) satisfying (3.1)-(3.2) with q non-increasing } . Consider thus the relaxed program (Pr
i )

taken over this set of admissible allocations, but that ignores the convexity constraint (3.3):

(Pr
i ) : max

(U,q)∈D

∫ θ

θ

(
Si(θ, q(θ)) + S(θ, q(θ)) + T−i(q(θ))− U(θ)

)
f(θ)dθ s.t. (3.1)-(3.2).



4 D. MARTIMORT, L. STOLE

Note that, in the above description of (Pr
i ), we have implicitly allowed principal i to resolve

the agent’s indifference in her favor if the agent’s best-response set is multi-valued. Because

incentive compatibility requires that the agent’s indirect utility function is convex, and because

a convex function has at most a countable number of kinks, the set of types who do not have a

unique optimal choice is necessarily of measure zero. Thus, we may arbitrarily assign the agent’s

choice in case of indifference (i.e., we may take any selection satisfying (2.2)) without any impact

on the best-responses of the players in (2.3). By the same token, (3.2) can be replaced by the

requirement

(A.7) U̇(θ) = −q(θ), a.e.

without changing the value of the program (Pr
i ).

We now rewrite (Pr
i ) using a change of variables in order to get a more useful format amenable

to applying Theorem A.1 above. Specifically, define the net utility that principal i’s contract

provides to the agent as ui = U − U−i. We use ui as the state variable and vi = q − q−i as

the control variable in our new optimal control problem. It follows that (3.1) rewrites in this

context as

(A.8) ui(θ) ≥ 0.

It also follows from (A.7) that ui(θ) is absolutely continuous and a.e. differentiable with

(A.9) u̇i(θ) = −vi(θ) a.e..

Now define principal i’s incremental surplus as

si(θ, vi) = Si(vi + q−i(θ))− Si(q−i(θ)) + S(θ, vi + q−i(θ)) + T−i(vi + q−i(θ))− U−i(θ)

or, using the definition of U−i(θ) as U−i(θ) = S(θ, q−i(θ)) + T−i(q−i(θ)),

(A.10) si(θ, vi) =
[
Si(x+ q−i(θ)) + S(θ, x+ q−i(θ)) + T−i(x+ q−i(θ))

]vi
0
.36

Using (A.9), we can now state principal i’s relaxed program in terms of net payoffs in a form

which is comparable to the generic form (P) above as

(Pr
i ) : max

ui∈AC(Θ,R)

∫ θ

θ
(si(θ,−u̇i(θ))− ui(θ)) f(θ)dθ s.t. (A.8).

We now apply Theorem A.1 and conclude that for any transfer T−i offered by rival principals,

the rent-output profile (U, q) is a solution to (Pr
i ) if and only if (ui, vi) satisfies (A.8) and (A.9)

and there exists a probability measure µi defined over the Borel subsets of θ with an associated

36Here, we use the notation [f(x)]
x1

x2
= f(x1)− f(x2).
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adjoint function, M i : θ → [0, 1], defined by M i(θ) = 0 and for θ > θ,

M i(θ) ≡
∫
[θ,θ)

µi(dθ),

such that the following two conditions are satisfied:

(A.11) supp {µi} ⊆ {θ |ui(θ) = 0} ,

(A.12) co(si)(θ, vi(θ)) = si(θ, vi(θ)) for a.e. θ ∈ Θ,

(A.13) M i(θ) ∈ F (θ)− f(θ)∂vico(si)(θ, vi(θ)) for a.e. θ ∈ Θ.

Step 2: Characterization of the adjoint function, M i, for monotonic common-

agency games. We prove the following simplifying lemma that characterizes adjoint functions

such that the optimality conditions (A.11)-(A.12)-(A.13) hold.

Lemma A.1 Consider a monotonic common-agency game, and let (q, U) be an equilibrium

allocation which solves (Pr
i ) for each principal i. The adjoint function M i for this problem

satisfies first M i(θ) = 0 and second the following properties.

1. When q−i(θ) is interior

(A.14) M i(θ) =

max
{
0, F (θ)− f(θ)∂co(Si)(q−i(θ))

}
a.e.for i ∈ A,

min
{
1, F (θ)− f(θ)∂co(Si)(q−i(θ))

}
a.e. or i ∈ B.

In particular, when Si is concave and differentiable, (A.14) becomes

(A.15) M i(θ) =

max
{
0, F (θ)− f(θ)S′

i(q−i(θ))
}

a.e. for i ∈ A,

min
{
1, F (θ)− f(θ)S′

i(q−i(θ))
}

a.e. for i ∈ B.

2. When q−i(θ) lies on the boundary of Q,

(A.16)

M i(θ) =

max
{
0, F (θ)− f(θ)(∂co(Si)(q−i(θ)) + ∂co(T−i + S0)(q−i(θ))− θ)

}
a.e. for i ∈ A,

min
{
1, F (θ)− f(θ)(∂co(Si)(q−i(θ)) + ∂co(T−i + S0)(q−i(θ))− θ)

}
a.e. for i ∈ B.

In particular, if q−i(θ) ≡ q0(θ) on the boundary of Q, (A.16) becomes

(A.17)

M i(θ) =

max {0, F (θ)− f(θ)(∂co(Si)(q0(θ)) + ∂co(S0)(q0(θ))− θ)} a.e. for i ∈ A,

min {1, F (θ)− f(θ)(∂co(Si)(q0(θ)) + ∂co(S0)(q0(θ))− θ)} a.e. for i ∈ B.
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Proof of Lemma A.1: For a monotonic common-agency game, ui = U − U−i is decreasing

(resp. increasing) when i ∈ A (resp. when i ∈ B) and the characterization of M i follows from

(A.5) and (A.6) respectively. We obtain, for i ∈ A

(A.18) M i(θ)

∈ F (θ)− f(θ)∂vco(si)(θ, 0) a.e., if θ ∈ supp {µi} = [θ̂i, θ],

= 0 if θ ∈ [θ, θ̂i)

and, for i ∈ B,

(A.19) M i(θ)

= 1 if θ ∈ (θ̂i, θ],

∈ F (θ)− f(θ)∂vco(si)(θ, 0) a.e., if θ ∈ supp {µi} = [θ, θ̂i].

We can further refine this characterization. Denote the set of perturbations vi which are ad-

missible in the relaxed problem (Pr
i ) as Di =

{
vi s.t. vi + q−i ∈ Q

}
. Observe that both sides of

(A.10) are equal for vi = 0, i.e., si(θ, 0) = 0. Taking concave envelopes of both sides of (A.10)

and using the fact that the concavification operator is subadditive yields, for all vi ∈ Di,

(A.20) co(si)(θ, vi) ≤ co(Si(vi + q−i(θ)))− Si(q−i(θ))

+co(T−i(vi + q−i(θ))− T−i(q−i(θ)) + S0(vi + q−i(θ))− S0(q−i(θ))− θvi).

Since, si(θ, 0) = co(si)(θ, 0) = 0, we immediately deduce from the inequality (A.20) between

two concave functions that take the same value at vi = 0 the following inclusion for their

sup-differentials,

(A.21) ∂co(Si)(q−i(θ)) + ∂co(T−i + S0)(q−i(θ))− θ ⊆ ∂vico(si)(θ, 0).

By definition, we have

(A.22) q−i(θ) ∈ argmax
q∈Q

T−i(q) + S0(q)− θq.

We know distinguish two cases:

1. When q−i(θ) is an interior solution to the agent’s problem, we have

(A.23) 0 ∈ ∂co(T−i + S0)(q−i(θ))− θ.

Inserting into (A.21) implies that

(A.24) ∂co(Si)(q−i(θ)) ⊆ ∂vico(si)(θ, 0), a.e.

Because ∂vico(si)(θ, 0) is a.e. single valued, we thus have

(A.25) ∂co(Si)(q−i(θ)) = ∂vico(si)(θ, 0) a.e..
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Inserting into (A.18) (resp. (A.19)) gives (A.14).

Suppose now that Si is concave and differentiable. Concavity implies co(Si) = Si. Dif-

ferentiability thus implies ∂co(Si) = S′
i. Observe that q−i(θ) is non-decreasing and thus

a.e. differentiable and continuous. Therefore, S′
i(q−i(θ)) is defined a.e.. 37 Then, (A.14)

becomes (A.15).

2. When q−i(θ) lies on the boundary of Q, i.e., q−i(θ) = qmin or q−i(θ) = qmax, we directly

insert (A.21) into (A.18) to get (A.16). In particular, if q−i(θ) ≡ q0(θ) on the boundary

of Q, T−i = 0 and (A.16) writes as (A.17).

Q.E.D.

Step 3: Transformation by means of Vi(θ, q)[q−i]. From (A.13), we deduce

vi(θ) ∈ argmax
v

co(si)(θ, v)−
F (θ)−M i(θ)

f(θ)
v.

From (A.12) and the fact that co(si) ≥ si, we can rewrite

vi(θ) ∈ argmax
v

si(θ, v)−
F (θ)−M i(θ)

f(θ)
v

or, expressed in terms of q,

(A.26) q(θ) ∈ argmax
q∈Q

[
Si(x) + S0(θ, x) + T−i(x)−

F (θ)−M i(θ)

f(θ)
x

]q
q−i(θ)

.

Consider thus Vi(θ, q)[q−i] defined as

(A.27) Vi(θ, q)[q−i] = Si(q)−
F (θ)−M i(θ)

f(θ)
q

where M i(θ) is given by (A.14). The optimality condition (A.26) finally rewrites as (3.7).

Since U(θ) = U−i(θ) for θ ∈ Ωi and both U(θ) and U−i(θ) are a.e. differentiable, we have

q(θ) = q−i(θ)) a.e. θ ∈ intΩi. Therefore, (3.8) follows.

Step 4: The solution to the relaxed program (Pr
i ) is convex. Simple revealed prefer-

ence arguments show that q(θ) is necessarily non-decreasing since Vi(θ, q)[q−i] and S(θ, q) both

have decreasing differences. Q.E.D.

37At a point θ where q−i(θ) has a downward-jump discontinuity, we take the convention that q−i(θ) =

limθ̃→θ+ q−i(θ̃).
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ONLINE APPENDIX B: PROOFS OF THE THEOREMS

Proof of Theorem 1: Proposition 1 must hold for any equilibrium allocation. Adding up

(3.7) across all n principals, we obtain the following condition:

(B.1) q(θ) ∈ argmax
q∈Q

S(θ, q) + V(θ, q) + (n− 1)(S(θ, q) + T (q)), a.e. θ

where T implements (U, q). Simple revealed preference arguments show that q(θ) is necessarily

non-decreasing since V(θ, q) and S(θ, q) both have decreasing differences.

Define the value function for the above program as

(B.2) V (θ) ≡ max
q∈Q

S(θ, q) + V(θ, q) + (n− 1)(S(θ, q) + T (q)).

Remember that M i, as a distribution function, has bounded variation. Therefore, Vi(θ, q)[q−i]

and thus V(θ, q) have also bounded variation. From that, and the fact that the above maximand

is upper semi-continuous in q and Q is compact, it follows that V is itself absolutely continuous

(Milgrom and Segal, 2002). Moreover, given that (U, q) is an incentive-compatible allocation

which solves this program, we have

(B.3) V (θ) = S(θ, q(θ)) + V(θ, q(θ)) + (n− 1)U(θ).

Because V is absolutely continuous, it is almost everywhere differentiable. Applying the Enve-

lope Theorem (Milgrom and Segal, 2002), we get

V̇ (θ) = Vθ(θ, q(θ))− nq(θ), a.e.

From absolute continuity, we then deduce the integral representation

V (θ)− V (θ′) =

∫ θ

θ′
(Vθ(x, q(x))− nq(x))dx ∀(θ, θ′) ∈ Θ2.

Because U is also absolutely continuous, we thus have for any pair (θ, θ′)

U(θ)− U(θ′) = −
∫ θ

θ′
q(x)dx

Note that[
S0(θ̃, q(θ̃)) + V(θ̃, q(θ̃))

]θ
θ′
=
[
V (θ̃)− (n− 1)U(θ̃)

]θ
θ′
,

or more simply

(B.4)
[
S0(θ̃, q(θ̃)) + V(θ̃, q(θ̃))

]θ
θ′
=

∫ θ

θ′
(Vθ(x, q(x))− q(x))dx.
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Using the relationship

[
S0(θ̃, q(θ

′)) + V(θ̃, q(θ′))
]θ
θ′
=

∫ θ

θ′
(Vθ(x, q(θ

′))− q(θ′))dx

that Vi(θ, q)[q−i] has decreasing differences and that q is non-increasing, we obtain:

[
S0(θ, q(θ̃) + V(θ, q(θ̃))

]θ
θ′
=

∫ θ

θ′

∫ q(x)

q(θ′)
(Vθq(x, q̃)− 1) dq̃dx ≥ 0.

Because any q′ ∈ Q(Θ) can be identified with some θ′ ∈ θ such that q′ = q(θ′), the inequality

implies that q(θ) satisfies (4.2) pointwise in θ.

By definition, the maximal allocation qm(θ) defined as (5.1) also satisfies (4.2). Moreover, any

putative equilibrium with range q = q(Θ) is such that q ⊆ qm(Θ).

Q.E.D.

Proof of Theorem 2: When Si is concave and differentiable and the maximal allocation is

interior, the virtual surplus as defined V(θ, q)[qm] can be expressed as

(B.5) Vm
i (θ, q) = Si(q)−min

{
F (θ)

f(θ)
;max

{
S′
i(q

m(θ)),
F (θ)− 1

f(θ)

}}
q.

The maximand in (5.1) is strictly concave when S0 is strictly so and any interior solution qm(θ)

is thus given by the first-order condition

(B.6)

n∑
i=0

S′
i(q

m(θ)) = θ +
n∑

i=1

min

{
F (θ)

f(θ)
;max

{
S′
i(q

m(θ)),
F (θ)− 1

f(θ)

}}
.

Decomposing for i ∈ A and i ∈ B yields (5.2). Because of strict concavity of S0 and concavity

of Si,

(B.7) S′
0(q) +

∑
i∈A

max

{
S′
i(q)−

F (θ)

f(θ)
; 0

}
+
∑
i∈B

min

{
S′
i(q) +

1− F (θ)

f(θ)
; 0

}

is a decreasing function of q and thus qm(θ) as defined in (5.2) is unique. Because MHRC

holds, (B.7) is a non-increasing function of θ. It is then routine to check that qm(θ) is itself non-

increasing. Because of that, qm is almost everywhere differentiable and thus almost everywhere

continuous. Moreover, it cannot have a jump discontinuity at any point since then (5.2) would

have two solutions at this point. Hence, qm is continuous. Q.E.D.

Proof of Theorem 3: To prove that the necessary conditions (5.1) satisfied by qm are also

sufficient, we construct individual tariffs that implement this allocation at equilibrium.
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Preliminaries. For a maximal allocation, the marginal virtual surplus (3.5) relative to that

allocation itself now writes as

(B.8) Vm
iq (θ, q) = S′

i(q)−min

{
F (θ)

f(θ)
;max

{
S′
i(q

m(θ)),
F (θ)− 1

f(θ)

}}
.

Since Vm
iq (θ, q) so defined is uniformly bounded in θ, tmi (q) as defined in (5.3) or (5.4) is abso-

lutely continuous and, in fact, differentiable at all q ∈ Q̊m since ϑ(q) is single-valued under the

conditions of the Theorem. Its derivative is

(B.9) tm
′

i (q) = Vm
iq (ϑ

m(q), q).

Suppose now that Ω̊m
i ̸= ∅. The definition (5.3) is independent of the choice q̂i ∈ qm−i(Ω

m
i ).

This comes from applying Proposition 1 for the allocation q−i = qm itself, together with the fact

that Vm
iq (θ, q

m(θ)) = 0 for all θ ∈ Ωm
i . This condition can also be written as Vm

iq (ϑ
m(q), q) = 0

for all q ∈ qm(Ωm
i ). Hence, for (q̂i, q̂

′
i) ∈ qm(Ωi) × qm(Ωi), we have

∫ q̂′i
q̂i

Vm
iq (ϑ

m(x), x)dx = 0; so

the result.

Suppose instead that Ω̊m
i = ∅. The definition (5.4) again follows from Proposition 1 and, more

specially, (3.9).

Non-Negative Tariffs. Observe that Vm
iq (θ, q

m(θ)) ≥ 0 (resp. ≤) for θ ∈ Ωmc
i and i ∈ A

(resp. i ∈ B).From this, it follows that Vm
iq (ϑ

m(q), q) ≥ 0 (resp. ≤) for q ≥ q̂i (resp. q ≤ q̂i)

and thus, using (5.3) (resp. (5.4)) and the fact that tmi (q̂i) = 0 (resp. either tmi (qm(θ)) ≥ 0 or

tmi (qm(θ)) ≥ 0) immediately gives us that tmi (q) is non-negative.

Denote now the aggregate by Tm =
∑

i∈N tmi where tmi (q) satisfies (5.3) or (5.4). What

remains to be shown is (i) Tm induces the agent with type θ to choose qm(θ), and (ii) each

principal i, facing the rivals’ aggregate Tm
−i, finds it optimal to implement qm(θ) as well.

Incentive Compatibility. Consider the agent’s problem when facing the aggregate payment

Tm so constructed. Note that Tm is differentiable and its derivative is

(B.10) Tm′
(q) = Vm

q (ϑm(q), q).

Incentive compatibility requires

(B.11) qm(θ) ∈ argmax
q∈Q

S(θ, q) + Tm(q) ∀θ ∈ Θ.

The necessary and conditions for an interior maximum is thus

(B.12) S′
0(q

m(θ)) + Vm
q (ϑm(qm(θ)), qm(θ)) = θ.

Now, observe that, for qm(θ) ∈ Q̊, Vm
q (ϑm(qm(θ)), qm(θ)) = Vm

q (θ, qm(θ)) and (B.12) writes as

(5.2).
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We now check that the necessary conditions (B.12) that define qm(θ) are also sufficient for

incentive compatibility. Consider now the rent profile

Um(θ) = max
q∈Qm

S(θ, q) + Tm(q).

It is routine to prove that Um so defined is absolutely continuous and admits the following

integral representation

(B.13) Um(θ)− Um(θ̂) =

∫ θ̂

θ
qm(θ̃)dθ̃

where qm(θ) satisfies (5.2). We thus rewrite the incentive compatibility conditions (B.25) in

terms of Um as

(B.14) Um(θ) ≥ Um(θ̂) + S(θ, qm(θ̂))− S(θ̂, qm(θ̂)) ∀(θ, θ̂) ∈ Θ2.

From the fact that qm(θ) is non-increasing, (B.13) implies

Um(θ)− Um(θ̂) ≥ (θ̂ − θ)qm(θ̂) = S0(θ, q
m(θ̂))− S0(θ̂, q

m(θ̂))

and the incentive compatibility conditions (B.14) hold.

Principals’ Optimality. Consider principal i’s program. In light of Theorem 1 and Lemma

A.1, we need to check that qm(θ) is a best response allocation for principal i, i.e., it satisfies

(B.15) qm(θ) ∈ argmax
q∈Q

S(θ, q) + Vm
i (θ, q) + Tm

−i(q), a.e.

where again Tm
−i is the aggregate for all principal except i obtained from individual tariffs

satisfying (5.3)/(5.4).

Mimicking what we did above for the agent’s incentive compatibility problem, we write the

corresponding necessary conditions for optimality as

(B.16) S′
0(q

m(θ)) + Vm
iq (θ, q

m(θ)) + Tm′
−i (q

m(θ)) = θ.

Proceeding again as for the agent’s incentive compatibility problem, it is straightforward to

check that (B.16) again boils down to (5.2) as requested.

Turning now to sufficiency for the principals’ optimality problem, let us define

V m
i (θ) = max

q∈Qm
S(θ, q) + Vm

i (θ, q) + Tm
−i(q).

It is routine to prove that V m
i so defined is absolutely continuous with the following integral
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representation

(B.17) V m
i (θ)− V m

i (θ̂) =

∫ θ̂

θ
(qm(θ̃)− Vm

iθ
(θ̃, qm(θ̃)))dθ̃ (θ, θ̂) ∈ Θ2.

where qm(θ) satisfies (5.2). We may rewrite the incentive compatibility conditions (B.15) in

terms of V m
i as

(B.18) V m
i (θ) ≥ V m

i (θ̂)+S(θ, qm(θ̂))+Vm
i (θ, qm(θ̂))−S(θ̂, qm(θ̂))−Vm

i (θ̂, qm(θ̂)) ∀(θ, θ̂) ∈ Θ2.

The fact that qm(θ) is non-increasing and Vm
i has decreasing differences implies that

V m
i (θ)− V m

i (θ̂) ≥ (θ − θ̂)qm(θ̂)− (Vm
i (θ̂, qm(θ̂))− Vm

i (θ, qm(θ̂))).

It follows that the principal’s optimality conditions (B.15) necessarily hold.

Q.E.D.

Proof of Theorem 4 : That q is non-increasing follows from observing that both S0 and Vm

have decreasing differences. Thus, q is a.e. differentiable with a countable number of downward-

jump discontinuities. Observing that, for any q ∈ Q there exists θ̂ such that q = q(θ̂); the

surrogate principal’s incentive problem can be written as

θ ∈ argmax
θ̂∈Θ

S(θ, q(θ̂)) + Vm(θ, q(θ̂)) ∀θ ∈ Θ.

The corresponding first-order necessary condition for optimality with respect to θ̂, at any point

θ where q is differentiable, writes as (6.2).

Consider now the value function V as defined in (B.2). We already know that V is absolutely

continuous. At any point of discontinuity θ0 for q, continuity of V still implies:

(B.19) lim
θ→θ−0

V (θ) = lim
θ→θ+0

V (θ).

Consider a discontinuity at θ0 which is isolated. On the right- and the left-neighborhoods of θ0,

(6.2) thus applies and either q̇(θ) = 0 or q(θ) = qm(θ) defined as (5.2). Moreover, at a point

at which q is continuous but not differentiable, it must be that either the right- or the left-

derivative is zero. Taking stock of those remarks, we are now proving that bunching arises both

on a right- and a left-neighborhood of θ0. We proceed by contradiction. To this end, suppose

first that bunching arises on the left-neighborhood only and call thus q(θ−0 ) = limθ→θ−0
q(θ)

with q(θ−0 ) > qm(θ0) because θ0 must be a downward-jump discontinuity. Observe that q(θ−0 ) =

qm(θ1) for some type θ1 < θ0 such that θ1 = max{θ s.t. qm(θ) ≥ q(θ−0 )} and that q(θ) = qm(θ1)

for all θ ∈ [θ1, θ0).
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Because the agent’s information rent U is also absolutely continuous at θ0, we also have:

U(θ0) = lim
θ→θ−0

S(θ, q(θ)) + T (q(θ)) = S(θ0, q(θ
−
0 )) + T (q(θ−0 ))

and

U(θ0) = lim
θ→θ+0

S(θ, q(θ) + T (q(θ)) = S(θ0, q
m(θ0)) + T (qm(θ0)).

Therefore, we get:

S(θ0, q(θ
−
0 )) + T (q(θ−0 )) = S(θ0, q

m(θ0)) + T (qm(θ0)).

Inserting this equality into (B.19), taking into account the definition (B.3) and simplifying

yields:

lim
θ→θ−0

S(θ0, q(θ)) + V(θ0, q(θ)) = lim
θ→θ+0

S(θ0, q
m(θ)) + V(θ0, qm(θ)).

Expressing those right- and left-hand side limits gives us:

(B.20) S(θ0, q(θ
−
0 )) + Vm(θ0, q(θ

−
0 )) = S(θ0, q

m(θ0)) + Vm(θ0, q
m(θ0)).

Because S(θ0, q)+Vm(θ0, q) is strictly concave in q, it has a unique maximizer qm(θ0) that is sup-

posed to be interior. Therefore, (B.20) necessarily implies that q(θ−0 ) = qm(θ0). A contradiction

with our starting premise that q(θ−0 ) > qm(θ0) at the discontinuity θ0.

Similarly, we could also rule out the case where bunching only arises on the right-neighborhood

of θ0 at a value q(θ+0 ) = limθ→θ+0
q(θ).

Taking stock of these findings, we necessarily have q(θ−0 ) > q(θ+0 ) at a discontinuity point θ0.

Moreover, bunching arises on both sides of θ0 which means q(θ) = q(θ−0 ) (resp. q(θ) = q(θ+0 ))

for θ on this left- (resp. right-) neighborhood. Because qm(θ) is strictly decreasing, there thus

exist θ1 < θ0 < θ2 such that q(θ−0 ) = qm(θ1) and q(θ+0 ) = qm(θ2). In fact q(θ) = qm(θ1) for all

θ ∈ [θ1, θ0). Suppose not. Then, q would have a downward discontinuity at some θ′0 ∈ (θ1, θ0).

The same argument as above shows that at any such putative discontinuity, we should have

q(θ
′−
0 ) > qm(θ

′
0) > q(θ

′+
0 ) and q(θ

′+
0 ) ≥ qm(θ0). Since q

m(θ) is decreasing, this is a contradiction

with the definition of θ
′
0.

Because the agent’s rent U is continuous at θ0, we also have:

U(θ0) = lim
θ→θ−0

S(θ, q(θ)) + T (q(θ)) = S(θ0, q
m(θ1)) + T (qm(θ1))

and

U(θ0) = lim
θ→θ+0

S(θ, q(θ)) + T (q(θ)) = S(θ0, q
m(θ2)) + T (qm(θ2)).
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It follows that:

S(θ0, q
m(θ1)) + T (qm(θ1)) = S(θ0, q

m(θ2)) + T (qm(θ2)).

Inserting this equality into (B.19), taking into account the definition (B.3) and simplifying now

yields:

lim
θ→θ−0

S(θ, q(θ)) + V(θ, q(θ)) = lim
θ→θ+0

S(θ, q(θ)) + V(θ, q(θ))

or, expressing those right- and left-hand side limits,

S(θ0, q
m(θ1)) + V(θ0, qm(θ1)) = S(θ0, q

m(θ2)) + V(θ0, qm(θ2))

which is (6.3). Q.E.D.

Proof of Theorem 5 : Observe that q as defined in (6.5) satisfies the necessary conditions

(6.2) and (6.3). To prove that q is actually an equilibrium allocation, we construct individual

tariffs that implement this allocation at equilibrium.

Preliminaries. Because A = N , the marginal virtual surplus (3.5) relative to the maximal

allocation writes as

(B.21) Vm
iq (θ, q) = S′

i(q)−min

{
F (θ)

f(θ)
;S′

i(q
m(θ))

}
∀i ∈ N

When evaluated at the maximal allocation itself, this marginal virtual surplus becomes

(B.22) Vm
iq (θ, q

m(θ)) = max

{
S′
i(q

m(θ))− F (θ)

f(θ)
; 0

}
∀i ∈ N .

An interior maximal allocation qm is then defined as

(B.23) S′
0(q

m(θ)) +
∑
i∈N

max

{
S′
i(q

m(θ))− F (θ)

f(θ)
; 0

}
= θ.

From Theorem 3, this maximal allocation is actually an equilibrium sustained with the non-

negative tariffs t
m
i (q) as defined in (5.3) and/or (5.4).

Tariffs. Observe that the tariff ti(q) as defined in (6.8) is non-negative, so is the aggregate

payment T (q) =
∑

i∈N ti(q).

By construction, we have

[
ti(q)

]qm(θ1)

qm(θ2)
= [tmi (q)]

qm(θ1)
qm(θ2)

=

∫ qm(θ1)

qm(θ2)
Viq(ϑ

m(q), q)dq.
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Because (6.5) holds, (B.22) implies that

[tmi (q)]
qm(θ1)
qm(θ2)

=

∫ qm(θ1)

qm(θ2)

(
S′
i(q)−

F (ϑm(q))

f(ϑm(q))

)
dq = [Si(q)]

qm(θ1)
qm(θ2)

−
∫ qm(θ1)

qm(θ2)

F (ϑm(q))

f(ϑm(q))
dq

= [Si(q)]
qm(θ1)
qm(θ2)

− F (θ0)

f(θ0)
(qm(θ1)− qm(θ2))

where the last equality follows from (6.6).

Summing over i ∈ N , we get

(B.24)
[
T (q)

]qm(θ1)

qm(θ2)
=

[∑
i∈N

Si(q)

]qm(θ1)

qm(θ2)

− F (θ0)

f(θ0)
(qm(θ1)− qm(θ2)).

Incentive Compatibility. Incentive compatibility can be expressed as

(B.25) q(θ) ∈ argmax
q∈Q

S(θ, q) + T (q) = arg max
q∈Qm/[qm(θ2),qm(θ1)]

S(θ, q) + Tm(q) ∀θ ∈ Θ.

For θ ∈ [θ, θ1]
⋃[

θ2, θ
]
, the argmax above is of course achieved for qm(θ) since, for such θ, we

have qm(θ) ∈ Qm/ [qm(θ2), q
m(θ1)].

Consider now θ0. Using (B.24), we observe that

(B.26)
[
S(θ0, q) + T (q)

]qm(θ1)

qm(θ2)
= [S0(θ0, q) + Vm(θ0, q)]

qm(θ1)
qm(θ2)

= 0

where the last equality follows from (6.4); which proves that an agent with type θ0 is indifferent

between choosing qm(θ2) or q
m(θ1).

Consider now θ ∈ [θ1, θ0) (resp. θ ∈ (θ0, θ2]). Because of increasing differences, we thus have

(B.27)
[
S(θ, q) + T (q)

]qm(θ1)

qm(θ2)
≥ 0.

Because qm(θ) satisfies (B.23), Si and S0 are concave, we necessarily have

(B.28) [S(θ, q) + Vm(θ, q)]qqm(θ1)
≤ 0 ∀q ≥ qm(θ1)

and

(B.29) [S(θ, q) + Vm(θ, q)]q
m(θ2)

q ≤ 0 ∀q ≤ qm(θ2).

Gathering (B.27), (B.28) and (B.29) yields that q(θ) = qm(θ1) for θ ∈ [θ1, θ0).

The case θ ∈ (θ0, θ2] can be treated similarly to obtain that q(θ) = qm(θ2) for such θ. Finally,

the output q(θ) so obtained satisfies in (6.7).
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By construction, this action profile is non-increasing. Following the same steps as in the Proof

of Theorem 3, we can prove sufficiency.

Principals’ Optimality. Consider principal i’s program. In light of Theorem 1 and Lemma

A.1, we need to check that q(θ) is a best response allocation for principal i, i.e., it satisfies

q(θ) ∈ arg max
q∈Qm/[qm(θ2),qm(θ1)]

S(θ, q) + Vm
i (θ, q) + T−i(q), a.e.

where again T−i is the aggregate for all principals except i obtained from individual tariffs

satisfying (6.8). Hence, we rewrite this optimality condition as

(B.30) q(θ) ∈ arg max
q∈Qm/[qm(θ2),qm(θ1)]

S(θ, q) + Vm
i (θ, q) + Tm

−i(q), a.e.

For θ ∈ [θ, θ1]
⋃[

θ2, θ
]
, the argmax above is of course achieved for qm(θ) since, for such θ, we

have qm(θ) ∈ Qm/ [qm(θ2), q
m(θ1)].

Consider now θ0. Using (B.24), we observe that

(B.31)
[
S(θ0, q) + Vm

i (θ0, q) + Tm
−i(q)

]qm(θ1)

qm(θ2)
= [S0(θ0, q) + Vm(θ0, q)]

qm(θ1)
qm(θ2)

= 0

where the last equality again follows from (6.4); which proves that, at θ0, principal i is indifferent

between choosing qm(θ2) or q
m(θ1).

Consider now θ ∈ [θ1, θ0) (resp. θ ∈ (θ0, θ2]). Because of increasing differences, we thus have

(B.32)
[
S(θ, q) + Vm

i (θ0, q) + Tm
−i(q)

]qm(θ1)

qm(θ2)
≥ 0.

Because qm(θ) satisfies (B.23), Si and S0 are concave, we necessarily have

(B.33) [S(θ, q) + Vm(θ, q)]qqm(θ1)
≤ 0 ∀q ≥ qm(θ1)

and

(B.34) [S(θ, q) + Vm(θ, q)]q
m(θ2)

q ≤ 0 ∀q ≤ qm(θ2).

Gathering (B.32), (B.33) and (B.34) yields that q(θ) = qm(θ1) for θ ∈ [θ1, θ0).

The case θ ∈ (θ0, θ2] can be treated similarly to obtain that q(θ) = qm(θ2) for such θ.

Finally, sufficiency for the principals’ optimality problem can be proved as Proof of Theorem

3. Q.E.D.
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ONLINE APPENDIX C: OTHER PROOFS

Proof of Proposition 3: Preliminaries. From (8.3) and MHRC, there always exists a

unique interior solution θ̂i to

(C.1) si =


F (θ̂i)

f(θ̂i)
if i ∈ A,

F (θ̂i)−1

f(θ̂i)
if i ∈ B.

From there, it follows that principal i’s inactivity sets are non-empty and of the form

(C.2) Ωm
i =


[
θ̂i, θ

]
if i ∈ A,[

θ, θ̂i

]
if i ∈ B.

Characterization. Inserting the expression of the virtual surplus (8.1) into (5.2), qm(θ),

when interior, satisfies (8.4). The condition for having an interior solution (i.e., qm(θ) ≥ 0) is

that ∑
i∈A

max

{
si −

F (θ)

f(θ)
; 0

}
+
∑
i∈B

min

{
si +

1− F (θ)

f(θ)
; 0

}
≥ θ + C ′(0) ∀θ ∈ Θ.

Because of MHRC, this condition holds when

∑
i∈A

max

{
si −

1

f(θ)
; 0

}
+
∑
i∈B

si ≥ θ + C ′(0)

and a sufficient condition is then (8.2).

Following the same steps as in Theorem 3, we thus define a set of transfers tmi (q) as in (8.5).

Q.E.D.

Proof of Corollary 1: Obvious from the text. Q.E.D.

Proof of Corollary 2: This result follows directly from an application of (8.4). Because

qm(θ) is weakly increasing in si (and strictly increasing in si for some positive measure of types),

it follows that the maximal equilibrium allocation must weakly increase (and strictly so over

the same measure of types). Hence, the aggregate marginal contribution schedule Tm′
(q) cannot

decrease for any q ∈ qm(Θ) and must strictly increase for at least some range of q that are chosen

in equilibrium by the agent. Next consider the marginal payments made by principals j ̸= i

(whose stakes have remained constant). For any region of types for which qm(θ) is decreasing and

strictly higher, it follows that ϑm(q) is also decreasing and strictly higher. From the marginal

payment equation obtained in (8.5), tm
′

j (q) must be lower following the change in principal i’s

preferences for these q. Of course, we know that Tm′
(q) is strictly higher for this q, so it follows
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that tm
′

i (q) must be increase more than the reduction of
∑

j ̸=i t
m′
j (q). Hence, crowd out occurs,

but it is less than perfect. Q.E.D.

Proof of Proposition 4: Recall from (8.4) that

qm(θ) = argmax
q∈Q

S0(q)− θq +

(
n∑

i=1

max

{
si −

F (θ)

f(θ)
, 0

})
q

Because
∑n

i=1max
{
si − F (θ)

f(θ) , 0
}
is convex in si, it weakly higher under s̃ compared to s. Define

θ̂i by sif(θ̂i) = F (θ̂i) and define θ̃i by s̃if(θ̃i) = F (θ̃i). Choose i such that si < s̃i, and thus

θ̂i < θ̃i . Then for any θ ∈ (θ̂i, θ̃i), the argmax above is strictly higher under s̃ compared to

s. It follows that the maximal allocation under s̃ is weakly higher than that under s (and it is

strictly higher for some types). Q.E.D.

Proof of Proposition 5: Consider first the scenario with ex ante contracting as depicted

in Section 7.3. From (7.5), the efficient allocation is

(C.3) qea(θ) ∈ argmax
q∈Q

(
1

2
− θ

)
q − q2

2
+ b ≡ 1

2
− θ ∈ [0, 1] , ∀θ ∈ Θ.

Define also qi(θ) as the optimal action when the agent contracts only with principal i. Provided

that b > 1, we actually have

(C.4) q1(θ) ∈ argmax
q∈Q

(
1

2
− θ

)
q − q2

2
+ bq ≡ 1, ∀θ ∈ Θ.

and

(C.5) q2(θ) ∈ argmax
q∈Q

(
1

2
− θ

)
q − q2

2
+ b(1− q) ≡ 0, ∀θ ∈ Θ.

From there and using symmetry, it follows that the constant C1 = C2 = C∗ which is defined in

(7.6) and solves the system (7.7), writes here as

(C.6) Eθ

(
1

2

(
1

2
− θ

)2

+ b

)
− 2C∗ = max

{
Eθ

(
1

2

(
1

2
− θ

)2
)
;Eθ (b− θ)− C∗

}
.

Because Eθ

(
1
2

(
1
2 − θ

)2)
= 1

6 and b > 1, (C.6) rewrites as

(C.7) b+
1

6
− 2C∗ = max

{
1

6
; b− C∗

}
.

The solution to (C.7) is reached when the max on the right-hand side has the agent contract-

ing with a single principal. It is thus C∗ = 1
6 and the agent’s expected payoff under ex ante
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contracting is

(C.8) U ea = b+
1

6
− 2C∗ = b− 1

6
.

Under ex post contracting, the agent’s expected payoff in the maximal equilibrium (8.8) is

(C.9) Um = Eθ

((
1

2
− θ

)
qm(θ)− (qm(θ))2

2
+ tm1 (qm(θ)) + tm2 (qm(θ))

)
.

Tedious computations yields

(C.10) Um = b− 7

12
.

Comparing (C.8) and (C.10) yields the result. Q.E.D.

Proof of Proposition 6: Our general formula (5.2) applies in this setting and the maximal

equilibrium import tariff should satisfy

(C.11)

2∑
i=1

min

{
S′
i(q

m(θ)) +
1− F (θ)

f(θ)
; 0

}
= θ

where

(C.12) S′
i(q) =

Si(p+ γ(q))

(1 + λ)Γ(q)M′(p+ γ(q)))
< 0 for i = 1, 2.

For θ close enough to zero, we have

min

{
S′
i(q

m(θ)) +
1− F (θ)

f(θ)
; 0

}
< 0.

This condition means that both principals are active on such neighborhood. Item 1. follows.

Inserting (C.12) into (C.11) yields

γm(θ) =
S(p+ γm(θ))

(1 + λ)
(
θ − 21−F (θ)

f(θ)

)
(D′(p+ γm(θ))− S ′(p+ γm(θ)))

.

Setting γm(θ) = Γ(qm(θ)) and manipulating yields (8.10).

Item 2. follows from observing that S′
1(q) < S′

2(q) < 0 and thus the activity sets for principal

i are necessarily nested, i.e., Ωcm
2 ⊂ Ωcm

1 . Because the right-hand sides in (8.10) and (8.11) are

non zero, group 1 is always active with Ωcm
1 = Θ. Using (C.11) when only group 1 is active

yields

(C.13) γm(θ) =
S1(p+ γm(θ))

(1 + λ)
(
θ − 1−F (θ)

f(θ)

)
(D′(p+ γm(θ))− S ′(p+ γm(θ)))

.
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After manipulations, we obtain Condition (8.11). Finally, observe that γm(θ) as defined in (C.13)

is always positive so that group 1 is actually always active. Q.E.D.


