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Abstract

We study a situation where physicians differing in their degree of altruism exert a
diagnostic effort before deciding whether to test patients to determine the most appropriate
treatment. The diagnostic effort generates an imperfect private signal of the patient’s type,
while the test is perfect. At the laissez-faire, physicians exert insufficient diagnostic effort
and rely excessively on testing. We show that the first-best allocation (where the degree
of altruism is observable) can be decentralized by a payment scheme composed of i) a pay-
for-performance (P4P) part based on the number of correctly treated patients to ensure
the provision of the optimal diagnostic effort, and of ii) a capitation part to ensure both
the optimal testing decision and the participation of physicians. When physicians differ
in their (non-observable) degree of altruism, the optimal contract is pooling rather than
separating, an instance of non-responsiveness. Its uniform P4P component induces more
altruistic physicians to exert a larger diagnostic effort while, to incentivize the second-best
optimal testing decision, its capitation component must be contingent on the test cost.
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1 Introduction

The healthcare sector represents a substantial portion of many developed countries economies.

In 2022, for example, the OECD average for health spending was approximately 9.6% of GDP.

Notably, the United States leads OECD nations with the highest share, at over 16% of GDP,

while countries like Canada, Germany, France, and the United Kingdom consistently spend

around 10-12% of their GDP on health. These figures, obtained from OECD(2023), include both

public and private spending on health services, pharmaceuticals, and long-term care. Moreover,

the indirect economic impact of health spending is also important, encompassing lost earnings,

reduced leisure time, and diminished home production, which further amplify the sector’s overall

influence.

Given the importance of this health sector, it is crucial to consider physicians as major eco-

nomic players whose varied medical decisions, even when treating patients with observationally

similar characteristics, can significantly affect healthcare outcomes. This variability not only

impacts treatment quality but also contributes to a central concern in healthcare: diagnostic

errors. According to the World Health Organization, diagnostic errors (defined as missed, in-

correct, delayed or miscommunicated diagnoses) account for 16% of preventable patient harm,

representing a leading cause of medical malpractice cases in the United States.1 Understanding

and addressing the economic causes of these errors is essential for improving patient care and

reducing the associated financial burdens.

In that respect, the rise of precision medicine, defined as the creation of treatments highly

effective for specific patient subgroups, may help reduce diagnostic errors and improve health

outcomes. This approach requires diagnostic tests to identify if a patient will benefit from

personalized therapies. Examples include targeting specific molecular markers for optimal cancer

treatment, molecular profiling of microbes to distinguish between bacteria, fungi, or viruses,

employing diverse antibiotic families against various bacteria types or to combat resistance,

and leveraging pharmacogenomics for tailored drug prescriptions and dosages. The future of
1https://www.who.int/campaigns/world-patient-safety-day/world-patient-safety-day-2024. Accessed

November 11, 2024.
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precision medicine looks promising, especially with advancements in AI technologies, as explored

by Mullainathan and Obermeyer (2017, 2019).

The value of precision medicine relies not only on the availability of targeted treatments and

diagnostic tests but also on physicians’ incentives to prescribe these tests efficiently. While some

healthcare systems see an overuse of diagnostic tests which do not necessarily improve patient

outcomes,2 underuse of diagnostic tests, particularly for detecting pathogens like bacteria, fungi,

or viruses, can negatively impact patients’ health. Proper test utilization is crucial to ensure

that precision medicine treatments are applied appropriately. To quote Currie et al. (2024),

“these new tools can be over-used, under-used, and can lead to harmful consequences for patients

when used inappropriately. Understanding how humans can interact with the tools to produce

better outcomes is a first order question” (p.37).

The literature on physicians’ payment schemes has extensively explored the effects of models

like fee-for-service, capitation, salary, and payment-for-performance (P4P) on the quantity and

quality of medical care, using a positive approach to understand their impacts. Another branch

of the literature adopts a normative approach to design optimal payment models. We review

both strands in Section 2. Although both approaches have been studied, few works examine

these remuneration schemes in the context of diagnostic tests. This manuscript addresses that

gap by exploring the properties of payment schemes when diagnostic tools are available.

We develop a model involving two patients’ types (A and B) and two treatments (D and P ).

Consider for instance patients who suffer from bacterial infections of the urinary tract. Type-

B patients are infected by Escherichia coli (E. coli), the most common cause of urinary tract

infections (UTIs), while type-A patients suffer from Klebsiella pneumoniae, another bacteria

responsible for UTIs. These two bacteria show different patterns of antibiotic resistance. For

instance, E. coli is susceptible to ciprofloxacin, while Klebsiella could be resistant to it but

sensitive to another antibiotic, such as cefuroxime. Initially, the patient’s type is unknown to
2As pointed out by Currie et al.(2024), there is a large literature on the overuse of imaging technology– see

Felder and Kifmann (2024) for MRIs for instance. Kowalski (2003) likewise documents overuse of mammography
in Canada. Currie et al. (2024, section 4.4) surveys the recent empirical literature on the link between financial
incentives and under-/overuse of medical technology, revealing that these patterns are often driven by supply-
rather than demand-side considerations.
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both the patient and the physician, with the physician only aware of the population distribution

of types. In the absence of information about a patient’s type, the optimal approach is to treat

everyone with the less expensive, default treatment D – ciprofloxacin in our example. A type-

A (i.e. Klebsiella infection) patient should rather be treated with the personalized treatment

P (cefuroxime). A diagnostic test, such as a urine culture with an antibiotic sensitivity test

(antibiogram) is able to identify the responsible bacterium in order to determine the most

effective antibiotic.

Physicians can employ two methods to determine a patient’s type. The first is traditional

diagnostic effort, such as detailed consultations (lengthy auscultation, temperature reading,

hunt for other symptoms) or teasing out of relevant family medical history, which is costly

to the physician and produces signals with accuracy increasing in effort. The second method

consists in using a diagnostic test, which has higher accuracy and, for simplicity, is assumed to

perfectly identify the patient’s type.

However, diagnostic tests come with costs for the patient. These costs can be monetary

when subject to copayments, raising out-of-pocket expenses, or non-monetary, such as treatment

delays, invasiveness, or potential side effects. Because these costs are rather more related to

tests’ features than patients’ characteristics, we will consider regulations that may depend on

the diagnostic tests’ cost supported by patients.

Lastly, we assume that correctly matching the treatment to the patient’s type (i.e., applying

treatment D for type-B patients and treatment P for type-A) results in fewer required visits or

actions from the physician. Although our results would hold without this assumption, it reflects

the practical observation that when physicians can make more accurate diagnoses, the need

for follow-up visits or adjustments tends to decrease. This highlights the value of diagnostic

precision in reducing the overall healthcare burden for both physicians and patients.

We adopt standard medical guidelines by analyzing a scenario where physicians first decide

how much effort to exert in diagnosing a patient and then determine whether to proceed with

a diagnostic test based on the signal they receive after exerting that effort. The decision to

test follows the physicians’ evaluation of the initial diagnostic signal, which may guide them in
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identifying whether further diagnostic testing is warranted for precise treatment allocation.

In our model, physicians are assumed to be partially altruistic.3 We first characterize the

first-best allocation where a social planner observes the physicians’ altruism degree. The planner

determines the physicians’ effort level and then decides on the use of diagnostic tests based on

the signal received, while internalizing the cost borne by patients. Three cases arise depending

on the level of diagnostic test costs. For low costs, testing all patients is optimal, rendering

physician effort unnecessary. For intermediate costs levels, tests are only prescribed to patients

with signal A, aligning with common medical practice.4 When the cost of a diagnostic test

is high, it is not prescribed to any patient, regardless of the signal received. Additionally,

physicians’ effort and diagnostic tests are strategic substitutes. As more patients undergo the

test, physicians tend to reduce their effort, since the test provides more reliable information

about the patient’s condition. This makes exerting costly effort less appealing, as the test will

accurately identify the patient’s type, diminishing the need for the physicians’ diagnostic efforts.

We then look at how to decentralize this (first-best) allocation, anticipating that physicians

will choose both the effort level and whom to test based on the signal they observe and the com-

pensation they receive from the social planner. In a laissez-faire scenario, physicians tend to

exert insufficient diagnostic effort and overprescribe diagnostic tests. This occurs because physi-

cians do not fully account for the costs borne by patients. We show that when the physicians’

effort is observable and contractible, the social planner can decentralize the first-best allocation

with a transfer combining a P4P component that varies based on the physician’s testing deci-

sion, and a fixed capitation payment that remains the same across different cases, whether all

patients are tested, only those with signal A are tested, or no tests are conducted. When effort is

not observable or contractible, the social planner can still implement the first-best allocation by

linking payments to the number of well-treated patients. In this situation, capitation payments
3Altruism may be an inherent trait of the doctor or can be viewed more broadly as a simplified representation

of reputational concerns or apprehension about potential malpractice lawsuits.
4When treating bacterial infections, diagnostic tests are not always necessary for mild cases (e.g., fever), where

standard antibiotics like ciprofloxacin for UTIs are effective. However, for patients with more severe symptoms,
performing a diagnostic test to identify the specific bacteria type is warranted, as in the case of the Klebsiella
infection treated by cefuroxime described above.
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are adjusted based on the physicians’ aggregate testing decisions. Although the balance between

P4P and capitation payments changes, the total payment to physicians remains the same as in

the case where effort is observable.

In the remainder of the manuscript, we consider the more realistic scenario where the physi-

cians’ degree of altruism is their private information. We show that the optimal contract in this

context is a pooling contract offered to all physicians regardless of their altruism level. This out-

come is driven by the property of non-responsiveness. Indeed, at the laissez faire, low-altruism

physicians exert less effort than high-altruism ones, with both levels falling short of the opti-

mal effort. Incentivizing low-altruism physicians to increase more their effort is then optimal.

However, their lower concern for patients’ welfare necessitates higher compensation, leading to a

misalignment between the social planner’s objectives and physicians’ preferences. Consequently,

a separating contract that differentiates between physicians’ types becomes unattainable.

The pooling contract’s P4P component induces second-best optimal effort levels and is de-

termined by the average level of altruism among physicians, causing those who are less (resp.,

more) altruistic than average to exert less (resp., more) diagnostic effort than what would be

socially optimal under the first-best allocation. When the capitation part of the pooling con-

tract is set to satisfy the physicians’ participation constraints, it leaves rents to less altruistic

physicians. Those rents are increasing with the diagnostic effort levels, and since diagnostic

efforts and testing decisions are substitutes, they induce physicians to under-utilize the tests.

The social planner can correct this bias by increasing capitation levels when more patients are

tested. We show that the second-best allocation can be reached provided that transfers can be

conditioned on both the fraction of patients tested (all, none, or some) and the value of the test

cost.

The manuscript is organized as follows. The next section reviews the related literature.

Section 3 describes the model. In Section 4, we derive the first-best allocation, while in Section 5,

we analyze the physicians’ problem. Section 6 shows how to decentralize the first-best allocation,

first when effort is observable and contractible, and second, when it is not. In Section 7, we

relax the assumption that physicians’ altruism is observable and study the optimal second-best
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contract. Section 8 concludes.

2 Related Literature

Our paper lies at the intersection of two branches of the literature: one where physicians differ

in altruism and choose treatments, but without diagnostic tests, and one where physicians make

use of diagnostic tests but do not exhibit various altruism degrees.

Many health economics articles have studied the behavior of physicians differing in altruism

when choosing treatments for their patients, without access to a diagnostic test.5 While early

contributions assume that the degree of altruism is public information,6 more recent papers

consider that doctors are heterogeneous with respect to their altruism degree which is their pri-

vate information. For instance, while the seminal paper by Jack (2005) studies non-contractible

quality, Choné and Ma (2011) assume that health care quantities are contractible but that

physicians also have private information about their patient’s illness severity before accepting

a contract. Both papers show that it is impossible to decentralize the first-best allocation in

these cases. Liu and Ma (2013) show that the first-best allocation can be decentralized with

asymmetric information only if physicians can commit to a treatment plan before accepting a

payment contract.

In the second branch of the related literature, devoted to the study of incentives for both

diagnostic tests and treatment choices, most papers assume the existence of moral hazard (hidden

action –diagnostic effort– and hidden information –signal from diagnostic effort), but do not

consider adverse selection related to physicians’ heterogeneity.

The seminal paper by Garcia Mariñoso and Jelovac (2003) introduces a setting where an

income-maximizing physician first makes a costly diagnostic effort, receives an imperfect signal
5Currie et al. (2024) review the recent empirical economic literature on physician decision-making, highlighting

how factors such as diagnostic skills, beliefs, patient demographics, incentives, training, experience, and external
interventions (like guidelines and decision tools) influence doctors’ treatment choices. They stress that doctors
“care about patient welfare, but also about their own welfare which makes them imperfect agents. (p.36)” As is
common in the health economics literature surveyed here, we label the relative weight put on the patient’s utility
(as opposed to these other considerations) the degree of altruism of the doctor.

6See for instance Allard, Jelovac and Leger (2011), Chalkley and Malcomson (1998), Ellis and McGuire (1986,
1990) and Rochaix (1989).
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and then decides whether to treat the patient or send her to a specialist for advanced treatment.

The specialist’s advanced treatment works with certainty, but is costlier than the physician’s

treatment. As in Liu and Ma (2013), the first- and second-best allocations depend on the

nature of the physician’s participation constraint: while the first-best allocation is achieved

when the physician’s participation constraint is satisfied ex ante, the social planner has to

leave informational rents to physicians when their participation constraint has to be satisfied

in each and every state of the world. In both cases, the optimal contract offered to physicians

is composed of a capitation part, plus a bonus if they correctly treat patients themselves (as

the planner observes the return visit of any badly treated patient), and an additional fee if they

refer patients to a specialist.

Beenk and Kifmann (2024) build on the same setting in which physicians exert a costly

effort and study the optimal payment contracts for two subsequent tests in a treatment choice

problem. The first test is costly to the physician and generates an imperfect private signal while

the second test is costly to the payer but perfect. The payer can only observe whether the second

test is taken and its result. The profit-maximizing physician decides whether to use either of

both tests. The optimal contract inducing a selective use of the second test has the same flavor

as in Garcia Mariñoso and Jelovac (2003) and includes a capitation payment for performing the

diagnosis (first test), payments conditional on applying a successful treatment, and a fee for

ordering the second test.7

Our setting also borrows several elements from Adida and Dai (2024) where an imperfectly

altruistic physician decides first her diagnostic effort level and then whether to test the patient

for a severe disease. As in our model, the effort generates a symmetrical imperfect signal, while

the test is perfect. While our focus is normative (i.e. how to decentralize first- and second-best

allocations allowing for different physicians’ payment schemes), they focus on the impact of a

fee-for-service payment on the incentives for doctors to exert effort and to test their patients.
7Pignataro (2024) analyzes an adverse selection model where (egoistic) physicians differ in their unobservable

diagnostic ability. As in Beenk and Kifmann (2024), doctors first choose whether to exert a costly but imperfect
diagnostic (binary) effort and then whether to order a (perfect) genetic test. As in our paper, Pignataro (2024)
shows that diagnostic effort and test decision are substitutes. See also Brandt and Cassou (2024) for an application
to prospective payments in hospitals, resulting in optimal cross-subsidizations within care pathways.

8



Finally, Felder and Kifmann (2024), like our paper, lies at the intersection of these two

branches of the literature.8 They develop a model where patients have varying prior probabilities

p of needing major versus minor treatments. In this model, physicians differ in their levels of

altruism and have the ability to observe each patient’s p value privately and without cost.

Additionally, unlike our approach, Felder and Kifmann do not incorporate physician effort;

instead, they focus on the use of a costly and imperfect diagnostic test by physicians. In their

model, the first-best allocation consists in prescribing, without testing, the treatment for mild

(resp., severe) disease if the patient’s probability p is below (resp., above) a low (resp., high)

threshold, and to test (and follow the test recommendation for the treatment) patients with

intermediate values of p. When altruism is not observable, the social planner offers a menu

of contracts, where the physician’s cost share is below its first-best level, inducing them all to

overtreat some of their patients. This is done in order to decrease the physicians’ rents obtained

in equilibrium by all physicians except the most altruistic one.

Compared to the existing literature, and to borrow the distinction introduced by McGuire

(2000) in his survey on physician agency, we are, to the best of our knowledge, the first paper

to study a context with both moral hazard (with hidden action and hidden information) and

adverse selection problem (on the degree of altruism of physicians) and to analyze both the

first-best and second-best optimal incentive schemes for physicians who first exert a diagnostic

effort and then decide whether to prescribe a diagnostic test.

3 The model

3.1 Patients and treatments

There are two types of patients, indexed by i P tA,Bu, with a proportion λ of type A and 1´λ

of type B. As in Bardey et al. (2020), for simplicity, we fix λ “ 1{2.9 Nobody (neither the
8Ghamat et al. (2018) and Dai and Singh (2020) also introduce adverse selection in set-ups that consider

diagnostic tests. While the adverse selection is on the physician’s ability in Dai and Singh (2020), private
information concerns the patients’ characteristics in Ghamat et al. (2018).

9In Appendix 9.7, we relax this assumption and solve the model for a generic value of λ ă 1{2. While the
analysis becomes more intricate (for reasons we refer to in footnotes 10, 19 and 21), our results do not qualitatively
change.

9



patient nor the physician) knows the patient’s type at the beginning of the period.

There are two treatments available to patients, indexed by j P tP,Du, where D stands for

the “default” treatment while P stand for the “personalized” treatment, as we shall see. The

utility that a patient of type i receives from a treatment j is denoted by U j
i . It can be seen for

instance as the medical value of the treatment, minus its cost for the patient. We shall use the

following notation.

Definition 1 (i) ∆UA ” UP
A ´ UD

A , (ii) ∆UB ” UD
B ´ UP

B .

We make the following assumption.

Assumption 1 ∆UB ą ∆UA ą 0.

The assumption that ∆UA and ∆UB are both strictly positive reflects that a type-A patient

should be treated with P , while a type-B patient should be treated with D. It can be the case

that treatment P for type A patients (or D for type B) provides greater medical benefits than

the alternative treatment, or that the higher medical service rendered by the other treatment is

not worth its additional cost.

The assumption that ∆UB ą ∆UA ensures that treatment D is the default treatment,

namely the one that should be provided to all agents in the absence of any information on their

individual type. Comparing expected utility with D and with P , we obtain that D should be

given by default if

UD
B ` UD

A

2
ą
UP
B ` UP

A

2
ðñ ∆UA ă ∆UB .

This condition is equivalent to assuming that the relative gain of treating B with theD treatment

is, on average, higher than the relative loss of treating A types with D (instead of P ). Otherwise,

it would be better to prescribe the treatment P (instead of D) to everybody.

3.2 Doctors’ effort and diagnostic tests

There are two (non-exclusive) ways for physicians to obtain more information on the true type

of their patient: a diagnostic effort (or clinical assessment) measured for instance by the time
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spent with the patient, the thoroughness of examining symptoms, and the investigation into the

patient’s medical and family history; and a diagnostic test. We explain the characteristics of

the two technologies in turn.

The physician can exert an effort, ε which generates a signal about the patient’s type. The

signal σ P tA,Bu has the following precision

ε “ Pr pσ “ B |i “ B q

“ Pr pσ “ A |i “ A q

P r1{2, 1s.

So, the minimum amount of effort corresponds to 1/2 (minimum time and energy spent on a

patient) while the maximum is equal to 1. Table 1 shows the updated probabilities after having

received a signal with precision ε.

Type Ñ B A Total
Signal Ó

B ε
2

1´ε
2 1{2

false neg.
A 1´ε

2
ε
2 1{2

false pos.
1{2 1{2

Table 1: Frequencies in population

A few comments are in order. First, the minimum effort level, 1/2, gives no information

to the physician, since there is a one half ex post probability for each type whatever the signal

received. Second, the maximum effort level of one guarantees a perfectly informative signal.

Third, increasing the effort level improves the quality of the signal in a symmetrical way, reducing

by the same amount the probability of false positives and false negatives.10 This effort has a cost

to the physician, which is increasing and convex and denoted by ψpεq. We assume an Inada’s
10As we show in Appendix 9.7, with a generic proportion λ of type-A patients, the observed proportion of A

signals differs from λ and depends also on ε, with an over-representation of signals corresponding to the minority
type. The Appendix discusses the implications of these findings for our analysis.
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condition such that ψp1{2q “ 0, ψ1p1{2q “ 0 and limεÑ1 ψ
1pεq “ `8, to prevent corner solutions

in the choice of ε. Finally, while we consider in the sequel both the cases where the effort is

observable or not to the planner, we assume throughout that the signal on the patient’s type

that the physician has received remains her private information.

The other technology available to doctors consists in prescribing a diagnostic test which

reveals the type of the agent with 100% accuracy, but generating a cost z to patients. This

cost may account for different factors: direct monetary expenses, opportunity costs, or a utility

loss. For example, the utility cost may arise from an invasive test, exposition to potential

harmful radiation, or from the delay in initiating treatment, as time is required for conducting,

processing, and interpreting the diagnostic test.11

Along the paper, we assume that both the fraction of patients tested12 and the test cost

z are observable (and contractible) by the health authority, while the test result remains the

doctor’s private information.13

The timing of the game runs as follows. First, the health authority proposes a payment

scheme to physicians, who either accept or reject it.14 In the latter case, the game stops.

Second, physicians choose a diagnostic effort level, ε P r1{2, 1s, generating a private signal about

the patient’s type. Third, physicians decide whether to run a diagnostic test based on the signal

received.15 Fourth, physicians prescribe a treatment (D or P ), and the payoffs are realized.

3.3 Payoffs

Although patients do not make decisions in this model, their welfare is crucial for defining both

the social optimal outcomes and guiding physicians’ choices. We add two elements to the utilities
11We address both types of costs (treatment and diagnostic test) symmetrically by assuming that the patient

bears them both. This approach prevents our results from being influenced by any imbalance in who is responsible
for the costs, ensuring that the conclusions are not driven by such an asymmetry.

12We do not require that the test decision be observable for each individual patient.
13If this were not the case, it would necessitate the introduction of collusion-proof contracts to prevent the

patient and physician from colluding (see, for instance, Wu et al. [2021]). This approach would be impractical
in our setup, where the patient has a passive role.

14We introduce explicitly the participation constraints in Section 5.
15This sequence follows WHO(2014)’s guidelines on diagnostic tests.
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U j
i defined above. First, we allow for the possibility that treating a patient adequately (i.e. with

P if A and with D if B) allows the physician to restore the patient’s health with fewer visits. We

then define two levels for the number of visits required to treat a patient: eM (where M stands

for “matched treatment”) if the patient is correctly treated (i.e, treatment D for true type B

and P for true type A), and eNM (“non-matched” treatment) otherwise, with eM ď eNM . We

define ∆e ” eNM ´ eM ě 0 as the gain in number of visits when a patient is correctly treated.16

We further add the possibility that patients dislike seeing their doctor, with a linear cost γ ě 0

per visit (either the opportunity cost of the time spent with the doctor or a utility cost).17

The utility of a patient of type i “ tA,Bu prescribed treatment j “ tD,P u is then

Ũ j
i “ U j

i ´ γem ´ lz,

where l “ t0, 1u according to whether a diagnostic test is prescribed or not, and where m “

tM,NMu according to whether the treatment matches the patient’s type or not.

Doctors care both about their own income (i.e. any transfer T received from the planner),

minus their cost of effort, ψpεq, and about their patient’s welfare. More precisely, we assume

that the doctor puts a weight of α P r0, 1s on the patient’s utility, so that her utility is given by

V “ T ´ ψpεq ` αŨ j
i . (1)

We denote by α the degree of altruism of the doctor, and we call her imperfectly altruistic if

α ă 1.

We now proceed as follows. Next section describes the socially optimal allocation. Section 5

studies the physicians’ optimization problem, while Section 6 decentralizes the optimum. These

sections assume that the degree of altruism of physicians is observable by the planner. In

contrast, Section 7 relaxes this assumption.
16In our setting, as demonstrated below, a fee-for-service payment mechanism will never be optimal (i.e.

it cannot decentralize the optimum). Such a mechanism would decrease welfare by incentivizing doctors to
administer inappropriate treatments to patients in order to increase the number of visits.

17All our results carry through to the simplified scenario where both ∆e and γ are set to zero.
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4 The social optimum

We consider a utilitarian social planner who maximizes the total utility of individuals while

excluding the altruistic component of the physician’s utility.18 We denote W as the objective of

the social planner, which is influenced by the level of effort provided and the decision of whether

to conduct a diagnostic test. We first determine the optimal effort level before addressing the

testing decisions. We assume that the remuneration paid to the physician to guarantee her

participation is seen as a pure transfer by the planner (i.e., there is no cost of public funds),

and thus plays no role in this section.

4.1 Optimal effort levels

We have to deal with three possible cases, where we denote the first-best optimal level of a

variable with a star.

Case All: Test all patients (whatever the signal received). In such a case, welfare

as a function of effort level εAll is given by

WAllpεAllq “ ´ψpεAllq `
1

2
UP
A `

1

2
UD
B ´ z ´ γeM .

Effort is useless (i.e. ε˚
All “ 1{2 and ψpε˚

Allq “ 0), because it is costly to exert, while the test

anyway will reveal the patient’s type with certainty.

Case 0: No test is prescribed to anyone.

In such a case, the welfare function is a function of the effort level ε0,

W0pε0q “ ´ψpε0q `
ε0
2

pUD
B ` UP

A q `
1 ´ ε0

2
pUD

A ` UP
B q ´ γpε0e

M ` p1 ´ ε0qeNM q,

where the third term accounts for classification errors: false negatives occur when type A patients

are incorrectly treated with treatment D due to being mistaken for type B patients, while false

positives happen when type B patients are erroneously treated with treatment P because they
18Horizontal equity concerns make it undesirable to assign greater weight to patients fortunate enough to be

treated by physicians with higher levels of altruism. Other papers proceed in the same way, such as Beenk and
Kifmann (2024, Appendix F), Chalkley and Malcomson (1998), Liu and Ma (2013).

14



are mistaken for type A patients. The first-order condition for ε0 is:

ψ1pε˚
0 q “

∆UB ` ∆UA

2
` γ∆e. (2)

The intuition for the first term in the right-hand side is that a marginal increase in effort

decreases by one half the number of both false positives (type B patients who would otherwise

be mistakenly treated with P , with a per person gain of ∆UB) and false negatives (type A

patients who would otherwise be mistakenly treated with D, with a per person gain of ∆UA).

The intuition for the second term is that we gain ∆e visits each time the doctor makes more

effort (half of type B and half of type A).

The corresponding welfare level is given by

W0pε˚
0 q “ ´ψpε˚

0 q `
ε˚
0

2
pUD

B ` UP
A q `

1 ´ ε˚
0

2
pUD

A ` UP
B q ´ γpε˚

0e
M ` p1 ´ ε˚

0 qeNM q.

Note that if ε˚
0 is sufficiently small, the previously discussed solution may produce lower

welfare compared to a strategy where no effort is exerted, and all patients are treated with

D, regardless of their signals. In the following, we exclude this possibility and assume that ε˚
0

satisfies

W0pε˚
0 q ą

1

2
pUD

B ` UD
A ´ γpeM ` eNM qq.

Case 1: Test prescribed only if signal A is received

When the test is prescribed only after observing a signal A, welfare as a function of effort

level ε1 becomes

W1pε1q “ ´ψpε1q `
1

2
UD
B `

ε1
2
UP
A `

1 ´ ε1
2

UD
A ´

z

2
´ γr

1 ` ε1
2

eM `
1 ´ ε1

2
eNM s,

where the diagnostic test eliminates false positives, i.e., patients of type B who sent a type-A

signal. This is achieved at a cost z for half of the sample that sent an A-signal. Once the false

positives are identified through testing, they are treated with the appropriate default treatment

D.
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The first-order condition for ε1 is

ψ1pε˚
1 q “

∆UA

2
`
γ

2
∆e, (3)

with, compared to (2), a marginal gain only on false negatives (∆UA) and correspondingly only

half the marginal gain in number of visits.19

This gives the optimal welfare level

W1pε˚
1 q “ ´ψpε˚

1 q `
1

2
UD
B `

ε˚
1

2
UP
A `

p1 ´ ε˚
1 q

2
UD
A ´

z

2
´ γr

1 ` ε˚
1

2
eM `

1 ´ ε˚
1

2
eNM s.

We then obtain the following proposition:

Proposition 1 Effort and test are strategic substitutes: ε˚
All ă ε˚

1 ă ε˚
0 .

Proof. Immediate comparison of both first-order conditions, acknowledging the convexity of

the function ψp.q.

The intuition runs as follows: as explained after equation (3), when a diagnostic test is run

only for patients receiving an A-signal, the marginal benefit of the physician’s diagnostic effort

is lower compared to the scenario where no test is run at all. This is because in the test scenario,

effort only reduces false negatives, while the test itself identifies the false positives. Consequently,

physicians exert less effort when a test is used as a backup technology, allowing them to rely on

the test rather than exerting diagnostic effort upfront.20 Importantly, the optimal effort levels

are independent of the test cost z.

Finally, we must rule out the case where it would be optimal to test after receiving the signal

B (rather than A).

Lemma 1 Under Assumption 1, testing only patients with a signal B is dominated by testing

only patients who signal A, whatever the effort level.
19In Appendix 9.7, we show that, for a generic value of λ ă 1{2, the optimal level of effort when testing only

A-signals, ε˚
1 , depends on the test cost, z. This is a direct consequence of the result, mentioned in footnote 10,

that the fraction of A-signals varies with the effort level.
20This relationship is confirmed empirically by Chu et al. (2024) who show that Emergency Departments

doctors substitute testing for their time and attention.
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Proof. The welfare level reached when only signal-B agents are tested is

1

2
UP
A `

1 ´ ε

2
UP
B `

ε

2
UD
B ´ ψpεq ´

z

2
´ γr

1 ` ε

2
eM `

1 ´ ε

2
eNM s ă W1pεq,

for any ε if and only if ∆UA ă ∆UB is satisfied.

Testing only patients with a signal B (resp., A) allows to eliminate the false negatives

(resp., positive), with a per patient marginal gain of ∆UA (resp., ∆UB). Assumption 1 (which

guarantees that D, rather than P , is the default treatment) then ensures that testing only

signal-A patients is socially preferred to testing only signal-B patients.

4.2 Optimal diagnostic test decision

The planner must decide whether to test no one, only those with a signal A, or everyone,

represented by cases All, 1 or 0 respectively. This decision is influenced by the cost of the test,

z. We thus need to compare WAllp1{2q, W1pε˚
1 q and W0pε˚

0 q as a function of the value of z. More

precisely, we focus on the more interesting scenario where, as the cost of the test increases, the

optimal decision changes from testing everyone to only testing patients with an A signal, and

ultimately to not testing anyone at all. In contrast, the abrupt shift from testing everyone to

testing no one is less interesting and rarely observed in practice. Furthermore, all key insights

derived in this analysis would remain applicable in the context of this simpler framework.

We define the threshold z˚
All as the level of the test cost below which it is optimal to make

no effort and to test everyone in the population. This is the case when WAllp1{2q ě W1pε˚
1 q.

This threshold level is obtained when the above equation holds with equality, that is when

z˚
All ” p1 ´ ε˚

1 qp∆UA ` γ∆eq ` 2ψpε˚
1 q. (4)

The intuition behind this formulation of the threshold is the following. The only gain (from

a welfare perspective) from testing only patients with a A signal, rather than all patients, is that

we only test half the population, saving half the cost of the test. This gain is balanced by three

losses, corresponding to the three (positive) terms defining z˚
All: (i) a loss of correct treatments

among the A-agents (those who send signal B), (ii) an increase in the number of visits for those
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patients, and (iii) a cost of effort for the physician. The larger these three costs, the larger the

value of z below which it is socially optimal to test everyone.

We now define z˚
1 as the threshold level of test cost at which the social planner is indifferent

between treating only patients signalling A and not treating anyone, W1pε˚
1 q “ W0pε˚

0 q, so that:

z˚
1 ” 2 pψpε˚

0 q ´ ψpε˚
1 qq ` p1 ´ ε˚

0 q∆UB ´ pε˚
0 ´ ε˚

1 q∆UA ` γp1 ` ε˚
1 ´ 2ε˚

0 q∆e. (5)

The intuition behind this formulation is similar to that of z˚
All. Going from testing signal

A only to testing nobody allows to save on the test cost for half the population. This has four

consequences corresponding to the four terms above. First, more effort is needed if nobody is

tested, which is socially costly (first term). Second, not testing anyone results in fewer correctly

treated B- types (because all B types are correctly treated if we test patients with a signal A,

while this is not true in Case 0), hence a positive second term above. Third, not testing anyone

results in more correctly treated A- types. The reasons are as follows: (i) testing A signals does

not help treating correctly the true type A in Case 1, so that (ii) the proportion of type A

correctly treated only depends on effort levels ε, and (iii) effort is larger in Case 0 than in Case

1. This in turn results in a negative third term. Fourth, because effects (ii) and (iii) are of

opposite signs, the number of correctly treated patients may increase or decrease when moving

from Case 1 to 0. This last term is positive if there is a lower proportion of correctly treated

patients in Case 0 (low ε˚
0 ) than in Case 1 (high ε˚

1 ), and is twice more sensitive to ε˚
0 than to

ε˚
1 because the correct treatment of both types B and A increases with ε0, while only type-A

patients are affected by ε1.21

Note that in the following, we assume that z˚
All ă z˚

1 as the opposite relationship would

correspond to a situation where the planner should move abruptly from testing everyone to

no-one as a test cost threshold is crossed, a situation we have excluded at the beginning of this

section.
21 Since, for a generic value of λ ă 1{2, ε˚

1 depends on the cost of the test z, we face a fixed point issue when
computing z˚

1 . This additional complication, analyzed in Appendix 9.7, makes the model significantly more
complicated to solve without bringing any commensurate additional insight.
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We now turn to the analysis of the setting where the physician (rather than the social

planner) chooses both how much effort to exert and who to submit to a diagnostic test (Section

5), as a necessary prelude to the decentralization of the optimal allocation (Section 6).

5 The physicians’ problem

The physician maximizes her utility (1) with respect to both her effort level and testing decision

(i.e., who to submit to a diagnostic test). More precisely, the physician’s utility depends on

whether she tests all patients (VAll), only those with a A signal (V1) or nobody (V0):

VAll “
α

2
rUP

A ` UD
B ´ 2z ´ 2γeM s ` TAllp.q ´ ψpεAllq,

V1 “
α

2
tUD

B ` ε1U
P
A ` p1 ´ ε1qUD

A ´ z ´ γrp1 ` ε1qeM ` p1 ´ ε1qeNM su

` T1p.q ´ ψpε1q,

V0 “
α

2
tε0rUP

A ` UD
B s ` p1 ´ ε0qrUD

A ` UP
B s ´ 2γpε0e

M ` p1 ´ ε0qeNM qu

` T0p.q ´ ψpε0q,

where Tkp.q are payments received by the doctor in Case k “ tAll, 1, 0u and are functions of

effort levels assumed for the moment to be both observable and contractible.22 This yields the

following (equilibrium) levels of efforts:

ψ1pεeqAllq “ T 1
Allpε

eq
Allq, (6)

ψ1pεeq0 q “ α

ˆ

∆UB ` ∆UA

2
` γ∆e

˙

` T 1
0pεeq0 q, (7)

ψ1pεeq1 q “ α

ˆ

∆UA

2
` γ

∆e

2

˙

` T 1
1pεeq1 q. (8)

The left-hand side of the above equations measures the physician’s marginal cost of effort, while

the right-hand side represents its marginal private benefit. In equation (6), the right-hand side

term only includes the variation in the transfer received as effort varies. In equations (7) and (8),

it also accounts for the marginal social benefit of effort (equal to zero in Case All), multiplied

by the physician’s altruism parameter.
22Recall that we assume throughout the paper that the planner observes the fraction of patients’ tested, and

thus knows the Case (All, 0 or 1) in which physicians operate.
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Comparing (2) to (7), and (3) to (8), we obtain that, at the laissez faire, less-than-perfectly

altruistic physicians under-provide effort in Cases 0 and 1. Moreover, total differentiation of (7)

and (8) shows that effort is increasing in altruism, so that the lower the altruism degree α, the

more the physician under-provides effort.

We now compute the equilibrium partition of whether to test or not, namely the thresholds

zeqAll and zeq1 . The first threshold zeqAll is such that VAllpz
eq
Allq “ V1pzeqAllq, and this condition yields

zeqAll “ p1 ´ εeq1 q p∆UA ` γ∆eq `
2

α
pTAll ´ T1q `

2

α
ψpεeq1 q. (9)

Comparing (4) and (9), we see that the doctor over-emphasizes (compared to the social

planner) both her cost of effort (last term in (9)) and the difference in transfers received in

Cases All and 1 (second term). At the laissez-faire, the second term is nil and the cost of effort

drives her to test everyone for larger values of z. The less altruistic the physician is, the greater

the over-testing behavior. Note however that, once differentiated transfers are introduced (as

we shall do in the next sections), this effect may be compensated by offering physicians a larger

transfer in Case 1 than in Case All.

We proceed in the same way for zeq1 , which is such that V0pzeq1 q “ V1pzeq1 q and we obtain

that:

zeq1 “ p1´εeq0 q∆UB´pεeq0 ´εeq1 q∆UA`γp1`εeq1 ´2εeq0 q∆e`
2

α
pT1´T0q`

2

α
pψpεeq0 q´ψpεeq1 qq. (10)

Comparing (5) and (10), we see that the doctor over-emphasizes (compared to the social

planner) both the difference in effort costs and in transfers received in Cases 0 and 1. At the

laissez-faire, her larger effort in Case 0 than in Case 1 induces her to test only signal-A patients

for larger values of z. Similar to the situation for zeqAll, less altruistic physicians are more prone

to over-testing. Again, this could be counterbalanced by giving her a larger transfer in Case 0

than in Case 1.

We summarize those results in the following proposition.

Proposition 2 At the laissez-faire allocation, physicians exert too little effort (εeqk ă ε˚
k ,@k P

t0, 1u) and rely too much on testing (zeqk ą z˚
k ,@k P tAll, 1u). Moreover, the under-provision of
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effort and the tendency to over-test decrease as the physician’s altruism degree, represented by

α, increases.

We now introduce formally the physicians’ participation constraints

Tkpεeqk q ě ψpεeqk q, @k P tAll, 1, 0u, (11)

which require that the transfer received from the authority in any Case k P tAll, 0, 1u has to

compensate for the effort disutility. Note that the term αŨ j
i is absent from the participation

constraint, meaning that the planner cannot take advantage of the doctor’s altruism to reduce

the required transfer amount.23

We are now in a position to look at the decentralization of the first-best allocation.

6 First-best decentralization of the optimum (with observ-
able altruism)

We proceed as in Section 4, starting by decentralizing the effort levels and then moving to the

testing decisions. We first state the general formulas for decentralization, before looking at how

to operationalize them as a function of whether effort is observable/contractible. Recall that we

assume for the moment that the physician’s altruism degree is observable.

6.1 General formulas

In order to make the optimal and the equilibrium levels of efforts coincide, we need to set:

T 1
Allpε

eq
Allq “ 0, (12)

T 1
0pεeq0 q “ p1 ´ αq r

∆UB ` ∆UA

2
` γ∆es, (13)

T 1
1pεeq1 q “ p1 ´ αq r

∆UA

2
`
γ∆e

2
s. (14)

The intuition behind these formulas is straightforward.24 In both cases the transfer is such

that, at the margin, it complements the altruistic part of the doctor’s utility to induce her to
23These participation constraints can be interpreted as limited-liability constraints, as in, among others, Liu

and Ma (2013) and Felder and Kifmann (2024).
24This result is similar in spirit to the one obtained by Felder and Kifmann (2024).
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behave as if she were perfectly altruistic (since the term between square bracket measures the

effort’s marginal social benefit).

Moreover, in order to ensure that zeqAll and zeq1 correspond to their optimal levels (once the

effort levels have been optimally chosen), we need to set payment functions Tkp.q satisfying

T1pε˚
1 q ´ TAllpε

˚
Allq “ p1 ´ αqψpε˚

1 q, (15)

T0pε˚
0 q ´ T1pε˚

1 q “ p1 ´ αqrψpε˚
0 q ´ ψpε˚

1 qs. (16)

We have seen when comparing the equilibrium and optimal values of the thresholds that

doctors over-weigh their cost of effort when choosing who to test, and that this distortion can be

counteracted by offering them a larger transfer when the effort required is larger. Moreover, this

distortion decreases with how altruistic the doctor is. So, we obtain in both cases (eq. (15) and

(16)) that the difference in transfers between two adjacent cases is (1´α) times the difference in

(optimal) effort cost in each case. These conditions determine the difference between transfers

in adjacent cases, while the participation constraint (11) will set the (minimum) absolute level

of transfers.

It is clear from above that a fixed transfer, such as a capitation payment, cannot by itself

decentralize the first-best allocation, because it will fail to incentivize the doctor to exert the

optimal level of effort. Whether we can decentralize using a mixed payment scheme that would

combine capitation and P4P depends on what we can observe and condition the contract upon.

We treat the various possibilities, starting with the least constrained one.

6.2 Effort observable and contractible

In this section, we assume that the payment can be conditioned directly on the effort level.

While it may not be the most realistic scenario in practice, this will serve as an interesting

benchmark. We can then easily recover the simplest forms of the payment functions T0p.q and

T1p.q. Denoting from now on the part of the transfers that does not depend on effort (i.e., the

capitation component) with an upper bar, we set TAllpεAllq “ T̄ so that εeqAll “ ε˚
All “ 1{2, and
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we get that:

T1pε1q “ T̄ ` p1 ´ αqψpε1q, (17)

T0pε0q “ T̄ ` p1 ´ αqψpε0q. (18)

This means that, if the social planner could directly observe and condition transfers on

effort, it could use a payment scheme composed of a capitation payment T̄ and of a variable one

depending on effort so as to induce the doctor both to exert the first-best effort level, and to

choose the first-best testing strategies (i.e. z˚
All and z˚

1 ). The variable part of the transfer equals

the effort cost weighted by how far from perfectly altruistic the physician is. The difference in

the variable transfers obtained at equilibrium between two adjacent cases is then p1 ´ α) times

the difference in effort cost between cases, so that (15) and (16) are both satisfied provided that

the same capitation level T̄ is served in Cases 1 and 0.

In other words, as long as the social planner corrects the doctor’s incentives at the margin

(for the effort choices), there is no need for an additional correction (through the fixed –i.e,

capitation– part of the transfer) of the testing decisions. This is because our specific scenario

allows for transfers to be directly conditioned on the (observable) level of effort exerted. In the

next section, we will show that this result does not hold anymore when effort is not contractible.

The constant term, common to both (17) and (18) and denoted by T̄ , is then set to satisfy

the doctor’s participation constraint (11). With no cost of public fund, we could set T̄ arbitrarily

high. It is nevertheless interesting to look at the lowest fixed part compatible with the doctor’s

participation. It is equal to α times the cost of effort (since the variable part is p1 ´ αqψpε˚
kq,

compensating for the lack of altruism of the doctor). Note that

max r0, αψpε˚
1 q, αψpε˚

0 qs “ αψpε˚
0 q,

which then corresponds to the minimum (uniform) capitation (i.e., to be paid in all cases) T̄ to

satisfy the doctor’s participation constraint.

Note that the participation constraint is then binding in Case 0, but that physicians earn
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rents (equal to α pψpε˚
0 q ´ ψpε˚

1 qq) in Case 1, and especially in Case All (αψpε˚
0 q).25 Interestingly,

these rents levels increase with the doctor’s altruism level.26

We summarize these results in the following proposition.

Proposition 3 When effort is observable and contractible, the social planner can decentralize

the first-best allocation with a transfer composed of a capitation element together with a pay-

for-performance component, as given by (17) and (18). The capitation part has to be the same

in all cases. Its minimum level compatible with the physician’s participation leaves rent to the

latter in Cases 1 and All, rents which increase in her degree of altruism.

The intuition for why the capitation payment increases with altruism stems from the plan-

ner’s need to ensure physician participation. When physicians exhibit greater altruism, they

receive a lower variable portion of the transfer from the health authority, necessitating a higher

capitation level to adequately cover the costs associated with optimal effort, which remains

constant across all physicians in the first-best scenario.

6.3 Number of patients correctly treated observable and contractible

In this section, we assume that effort is not contractible. We show that this does not prevent the

decentralization of the optimum as long as the number of well-treated patients can be observed

(and contracted upon).27 It is due to the fact that, in both Cases 0 and 1, the number of

correctly-treated/matched patients is a monotone function of the effort levels.

We define nk as the number of correctly-treated patients in Case k P tAll, 1, 0u. We also

denote by nA1 the number of correctly-treated type-A patients in Case 1. In Case All, nAll “ 1

so that TAll is a constant denoted by T̄All. In Case 0, we obtain from Table 1 that n0 “ ε0 (half
25We define as rent, the difference between the monetary transfer received by the doctor and her cost of effort.

While this rent does not impose an explicit cost on the social planner (as it constitutes a transfer that does not
factor into social welfare in the absence of public fund costs), we still strive to minimize it.

26See Bardey and Siciliani (2021) for a similar result in a two-sided environment applied to nurses’ market.
27It is common practice to assume, as Abaluck et al. (2016) for example, that since people with a missed

diagnostic for a serious medical condition will likely return to see their health providers, whether they have been
correctly treated is observable after the treatment. In the US, the Hospital Readmissions Reduction Program
(HRRP) penalized hospitals with Medicare readmission rates that were higher than a given threshold (see Gupta,
2021). Wilding et al. (2022) study a similar English policy which imposed financial penalties on GPs when the
fraction of hypertensive patients with blood pressure under control fell below a target.
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of them being B types, the other half A types). We then obtain that condition (13) is satisfied

if we use the following contract which is linear in the number of well-treated patients:

T0pn0q “ T̄0 ` p1 ´ αqr
∆UB ` ∆UA

2
` γ∆esn0. (19)

The slope of the transfer is proportional to the marginal utility gain of better treating patients

(i.e. p∆UA ` ∆UBq{2 ` γ∆e), corrected by how egoistic the physician is.

In Case 1, we have 1{2 correctly-treated B patients (since all type-B patients are identified

either through the diagnostic effort or the diagnostic test) and nA1 “ ε1{2 correctly-treated A-

type patients, for a total of n1 “ p1 ` ε1q{2 correctly-treated patients. Thus, the contract that

allows the social planner to decentralize the optimal effort level in that case is given by

T1pn1q “ T̄1 ` p1 ´ αqr∆UA ` γ∆esn1, (20)

since differentiating it satisfies (14).

Comparing the square bracket terms in (19) and (20), we see that they only differ by the

first term, which is larger for (19) since ∆UB ą ∆UA. For any given α, the planner needs to

generate stronger incentives to exert effort in Case 0 because the marginal gains of a correct

treatment (when one more agent is well treated thanks to more effort) concerns both A and B,

while in Case 1 it only concerns type A (with a lower marginal gain ∆UA). The second part in

the square bracket is identical because the gain in number of visits does not depend on type (A

or B) but only on the treatment being correct.28

We then obtain the following proposition.
28In Case 1, the number of correctly-treated type-B patients is a constant, so alternatively the social planner

need not reward the correct treatment of these individuals. The transfer can thus be made contingent only on
nA
1 , with

T1pnA
1 q “ T̄A

1 ` p1 ´ αqr∆UA ` γ∆esnA
1 . (21)

Differentiating this function with respect to ε1 gives (14). The only difference between (21) and (20) is the value
of the capitation part (which should be determined by the participation constraint, see below in the text). The
reason the linear part is the same is simply because

Bn1

Bε1
“

BnA
1

Bε1
p“ 1{2q.

In practice, it may be difficult to reward the correct treatment of some patients (A) but not of others (B).
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Proposition 4 When the number of correctly-treated patients is observable and contractible, the

social planner can decentralize the first-best allocation with a transfer composed of a capitation

element together with a P4P component, as given by (19) and (20). The capitation part has to

be lower in Cases 0 and 1 than in Case All, with TAll set at the same level than when effort is

contractible. The rents enjoyed by physicians in Cases 1 and All increase with their degree of

altruism.

Proof. See Appendix 9.8.

The above proposition implies that the capitation levels in Cases 0 and 1 are lower than when

effort is contractible. The rationale for this is as follows. Since the number of correctly-treated

patients increases linearly with the physician’s effort, the P4P component’s slope is proportional

to the marginal cost of providing the optimal effort level. As we show in the appendix, given

that the effort cost is convex, this results in a variable portion of the transfer at equilibrium that

is higher than when effort is contractible. Therefore, to ensure the correct testing decision, the

capitation component must be reduced. In other words, while the total transfer at equilibrium

remains the same as in the previous section for all three cases, the distribution between capitation

and P4P differs (with lower capitation and higher P4P) in Cases 0 and 1 compared to the scenario

where effort is contractible.

Since the P4P component of the contract decreases with the physician’s level of altruism

(as the need to incentivize effort diminishes), a lower portion of the effort cost must be covered

through the capitation payment for less altruistic doctors. At the extreme and as we show in the

appendix, for doctors with very low altruism, the P4P component can be so substantial that the

capitation payment may even turn negative to prevent them from under-testing at equilibrium.
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7 Asymmetric information on doctors’ altruism: A second-
best analysis

In this section, we assume that the physician’s degree of altruism is her private information,

and we look at how to decentralize her optimal diagnostic effort and testing decisions.29 We

concentrate on two-part tariffs, namely payment schemes consisting of both a fixed (capitation)

level and a variable (pay-for-performance) part.

We then proceed as follows. In Section 7.1, we show that asymmetric information on the

degrees of altruism is best tackled by proposing a pooling contract. In Section 7.2, we find the

optimal levels of the P4P part of the physician’s remunerations. Finally, in Section 7.3, we find

the optimal levels of the capitation parts, which will depend on both the testing decision and

the cost of the diagnostic test.

7.1 The second-best contract is pooling

From now on, we assume for simplicity that there exist two types of physicians, type-H physicians

with a high degree of altruism, αH , and type-L physicians with a low degree of altruism, αL

such that αL ă αH .30 There is a proportion ν of low-altruism doctors. The physician’s altruism

degree is her private information, and the contract can only be conditioned on the number of

correctly-treated patients (i.e., effort is not contractible).

We index all the variables by the (non observable) physician (altruism) type i P tL,Hu and

by the (observable and contractible) Case k P tAll, 0, 1u. Note that, even under asymmetric

information, the first-best optimum can still be implemented in Case All by setting TAll “ T̄All,

inducing εi,All “ 1{2 and ψpεi,Allq “ 0. We then focus from now on Cases 0 and 1.
29Recall that physicians accept the payment scheme proposed by the planner before making their effort and

test decisions. This differentiates our model from the commitment scenario in Liu and Ma (2013), where all
doctors, except the least altruistic one, are constrained in their decisions by the binding participation constraint
they accepted when committing to their future treatment decisions.

30Our finding that the second-best contract is pooling does not hinge on the restriction to two types. In fact,
separating contracts are easier to sustain in a two-type setting, so our argument holds a fortiori with more types,
including a continuum of types.
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As before, the contract includes both a P4P component as well as a capitation part:

Ti,k “ T̄i,k ` βi,kni,k.

Recall that the number of correctly-treated patients in Cases 1 and 0 are respectively: ni,1 “

p1 ` εi,1q{2 and ni,0 “ εi,0. In such a context, the physician’s utility becomes:

αiBkpεi,kq ` T̄i,k ` βi,kni,k ´ ψpεi,kq. (22)

The first term above is the altruism term where Bkpεi,kq is the expected utility of patients

depending on the case considered and the level of effort provided by physicians. In Case 1, it

takes the following form

B1pεi,1q “
1

2
UD
B `

´εi,1
2

¯

UP
A `

ˆ

1 ´ εi,1
2

˙

UD
A ´

z

2
´
γ

2
rp1 ` εi,1qeM ` p1 ´ εi,1qeNM s,

while in Case 0, it is equal to

B0pεi,0q “

´εi,0
2

¯

pUD
B ` UP

A q `

ˆ

1 ´ εi,0
2

˙

pUD
A ` UP

B q ´ γrεi,0e
M ` p1 ´ εi,0qeNM s.

The equilibrium levels of efforts are obtained as a solution to the maximization of the physicians’

utility (22) with respect to εi,k:

ψ1pεi,kq “ αib̄k ` 1kβi,k, (23)

with 11 “ 1{2, 10 “ 1, and where B1
kpεi,kq “ b̄k are constants, differing across Cases k but

independent of εi,k:

b̄1 “
∆UA ` γ∆e

2
, (24)

b̄0 “
∆UA ` ∆UB

2
` γ∆e. (25)

Proposition 5 The Second-Best contracts in Cases 0 and 1 are pooling.

Proof. See Appendix 9.1, where we first demonstrate that any set of separating contracts

designed to increase the effort level of type L more than that of type H (by setting βL,k ą βH,k)

cannot simultaneously satisfy all incentive constraints (i.e., one of the two types of doctors will
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always want to mimic the other type). We then show that a contract where βL,k ă βH,k results

in lower welfare compared to offering the same contract (with βL,k “ βH,k) to both types.

The intuition for this result is as follows. At the laissez-faire, both physicians’ type under-

provide effort, with those with low altruism providing less effort than those with high altruism.

The social planner’s welfare function is increasing and concave in effort because the marginal

social benefit of effort is constant while the effort cost is convex. Consequently, the planner

aims to particularly incentivize the low-altruism type to increase her effort level. However, the

low-altruism physician enjoys a lower net benefit from increasing her effort, as she places less

importance on the patient’s utility. Technically, this means that while the classical single-crossing

property condition is met, the slope of the indifference curve (in the effort, transfer plane) is

steeper for the low-altruism doctor so that she has to be compensated more for increasing her

effort. This corresponds to what Laffont and Martimort (2002) call non-responsiveness, where

“the sharp conflict between the principal’s preferences and the incentive constraints (which reflect

the agent’s preferences) makes it impossible to use any information transmitted by the agent

about his type” (p.55).

In our context, this results in the same, pooling contract being proposed to all physicians:31

Ti,k “ T̄k ` βkni,k. (26)

Note that the formal proof developed in Appendix 9.1 makes use of the following assumption:

Assumption 2 The utility cost of effort takes the following quadratic form:

ψpεq “
pε´ 1{2q2

2
.

This assumption is made for simplicity (i.e. to obtain closed form solutions for the effort
31While non-responsiveness has been observed in various contexts, the specific mechanism we highlight, based

on both moral hazard and adverse selection, is novel, to the best of our knowledge. Although Choné and Ma
(2011) also achieve a similar result, their mechanism is different, relying on the limited liability constraint in a
model without hidden action. Also, an alternative to the pooling contract described here, where both types of
physicians participate, would be a “shutdown policy” (see Laffont and Martimort [2002]), where a single contract
is designed to satisfy the participation constraint of only one type of physician. However, this option is not
practical, as stressed by Currie et al. (2024): “chronic doctor shortages in many countries suggest that there will
be continuing demand for the services of even the least skilled physicians (p. 36).”
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levels), while Proposition 5 holds more generally for any convex effort cost function. We maintain

Assumption 2 in the rest of the paper.

In the following sections, we first derive the optimal levels of βk assuming that physicians

choose the optimal testing decision–i.e., that they correctly decide whether to test all, only

type-A patients, or nobody. Next, we derive the fixed components T̄k that induce the optimal

testing decisions for the second-best optimal effort levels.

7.2 The optimal second-best pay-for-performance component

We now determine the optimal levels of βk taking as given the physicians’ testing decisions.

Since we have shown that the contract is pooling, the remuneration components are identical

for all physicians but vary across the different cases.

For a given Case k “ t0, 1u, the social planner’s problem is:

max
βk,T̄k

SW “ νrBkpεL,kq ´ ψpεL,kqs ` p1 ´ νqqrBkpεH,kq ´ ψpεH,kqs, (27)

where εi,k is chosen by type i-physicians and satisfies equation (23).

We solve this program in Appendix 9.2 and obtain the following proposition.

Proposition 6 Under Assumption 2, the second-best slope of the P4P component for the pooling

contract in Case 1 and Case 0 is:

βSB
1 “ p∆UA ` γ∆eqr1 ´ ᾱs, (28)

βSB
0 “ p

∆UA ` ∆UB

2
` γ∆eqr1 ´ ᾱs, (29)

where ᾱ “ ναL ` p1´νqαH is the average physician altruism. This second-best optimal contract

generates the following ranking of efforts

εSB
L,k ă ε˚

k ă εSB
H,k @k “ t0, 1u.

As in the first-best, and for similar reasons, the slope of the optimal payment scheme is

higher in Case 0 than in Case 1 (i.e. βSB
0 ą βSB

1 ). But the second-best pooling contract induces
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different effort levels, with more altruistic physicians exerting higher effort compared to their

less altruistic counterparts. The first-best effort, which remains unaffected by the physician’s

degree of altruism, takes an intermediate value. This pattern holds in both scenarios: whether

no patients are tested or only those with signal-A are tested.

In the next section, we determine the values of the capitation payments.

7.3 The optimal capitation payments

The capitation payments must be set to encourage optimal testing decisions from both types

of physicians while ensuring their participation. We start by computing the capitation levels

that satisfy the participation constraints while minimizing rents (Section 7.3.1). We then study

how to modify those capitation levels to induce the correct testing decisions (Sections 7.3.2 and

7.3.3).

7.3.1 Feasible contracts

When the contract is pooling, there are no incentive constraints, so the set of feasible contracts

is reduced to those satisfying the participation constraints.

Definition 2 The set of transfers of the form (26) satisfying the participation constraints of

both type-H and type-L physicians, at the second-best equilibrium while minimizing rents, are

denoted by a star and given by:

T˚
All “ T̄˚

All “ 0,

T˚
H,1 “ ψpεSB

H,1q, T˚
H,0 “ ψpεSB

H,0q,

T̄˚
1 “ ψpεSB

H,1q ´ βSB
1

1 ` εSB
H,1

2
, T̄˚

0 “ ψpεSB
H,0q ´ βSB

0 εSB
H,0,

T˚
L,1 “ ψpεSB

H,1q ´ βSB
1

εSB
H,1 ´ εSB

L,1

2
, T˚

L,0 “ ψpεSB
H,0q ´ βSB

0 pεSB
H,0 ´ εSB

L,0q.

In Case All, no effort is done, and thus the minimum transfer satisfying participation is a

capitation of zero for both types of physicians. As shown in the figure in Appendix 9.3, in

both Case 1 and Case 0, a type-H physician exerts more effort than a type-L physician (see
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Proposition 6). Since the effort cost is convex while the variable part of the reimbursement

schedule is linear in effort, the participation constraint is tighter for type-H than for type-

L physicians. Minimizing rents then means a zero rent for type-H physicians (with a total

transfer equal to her cost of effort, as shown in the second line in Definition 2) while a type-L

physician obtains a positive rent. From the zero rent for type-H physicians, one deduces the

capitation level (by definition, the same for both physicians’ types) in the third line of Definition

2, and the total payment (including rent) of type-L physicians in the last line.

In the next sections, we study how we should modify the capitation levels from the levels

computed in Definition 2 in order to induce doctors to take the correct testing decisions. We

start with the choice between testing all patients or only those with an A signal. Because the

reasoning is very similar for the choice between testing A-signal patients and testing nobody,

most of the latter developments are relegated to the appendix.

7.3.2 Implementation of the second-best switching cost, zAll

We first compute the equilibrium value of the switching threshold zAll when transfers are set as

in Definition 2, and compare this equilibrium threshold with its second-best optimal value. We

then study how to adjust the capitation parts of the transfers to make sure that doctors take

the second-best testing decision, while still satisfying the participation constraints. As we show

below, the capitation transfers will be a function of the value of the test cost z. So, unlike for

the first-best decentralization, the second-best decentralization requires the test cost (and not

only the test decision) to be observable and contractible.

For generic capitation transfers TAll and Ti,1, the equilibrium level of the threshold zAll at

the second-best level of effort, for a physician with a degree of altruism of αi, is given by:

zeqAllpαi, TAll, Ti,1q “ p1 ´ εSB
i,1 q p∆UA ` γ∆eq `

2

αi
pTAll ´ Ti,1q `

2

αi
ψpεSB

i,1 q. (30)

Note that the degree of altruism of a doctor influences zeqAll both directly and indirectly

through her effort choice εSB
i,1 . The following lemma allows us to rank these thresholds zeqAll, for

the transfer levels introduced in Definition 2, according to the physicians’ altruism level.
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Lemma 2 zeqAllpαL, T
˚
All, T

˚
L,1q ă zeqAllpαH , T

˚
All, T

˚
H,1q.

Proof. See Appendix 9.4.1.

The intuition behind this lemma is that less altruistic physicians are influenced by the op-

portunity to earn a rent when they test only signal-A patients (rather than receiving no rent

when testing everyone). Consequently, they stop testing all patients at a lower threshold of test

cost z.

Let us now turn to the second-best optimal level of zAll. This level is computed given the

doctors’ second-best optimal choice of effort, and thus depends on αi only indirectly through

the individual choice of εSB
i,1 (see equation (4)):

zSB
All pαiq ” p1 ´ εSB

i,1 qp∆UA ` γ∆eq ` 2ψpεSB
i,1 q. (31)

Recall that this second-best value does not depend on the value of the transfers.

We obtain the following lemma:

Lemma 3 zSB
All pαiq ą zeqAllpαi, T

˚
All, T

˚
i,1q, i P tL,Hu.

Proof. Comparing expressions (30) and (31), we obtain that the statement holds if and only if

ψpεSB
i,1 q ą

1

αi
pTAll ´ pTi,1 ´ ψpεSB

i,1 qqq,

where the right-hand side is proportional to the difference between rents in Case All and in Case

1. The right-hand side is negative for L and zero for H when measured at pTAll “ T˚
All, Ti,1 “

T˚
i,1q so that the above inequality holds for both types of physicians.

This reveals that, compared to the second-best optimum, doctors switch too early from

testing everyone (Case All) to testing only signal-A patients (Case 1) when transfers are set

to minimize rents while satisfying participation constraints (i.e., for TAll “ T˚
All, Ti,1 “ T˚

i,1).

This applies even to type-H physicians, who do not earn any rent in either case. The higher

second-best effort in Case 1 contributes to the social cost of transitioning from Case All to Case

1, but type-H physicians do not internalize this cost since they are compensated for it through
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T˚
H,1. Additionally, type-L physicians face a second incentive to stop treating all patients at

a lower-than-second-best-optimal threshold, as the rent they gain in Case 1 is strictly positive

while it is nil in Case All.

In Appendix 9.4.2, we show that unless we make further assumptions, we cannot order

zSB
All pαiq as a function of αi. In order to avoid treating too many cases and because qualitatively

it would not modify our conclusions, we make the following assumption.32

Assumption 3 There is an equal proportion of type-H and type-L physicians: ν “ 1{2.

Lemma 4 Under Assumption 3, zSB
All pαHq “ zSB

All pαLq.

Proof. See Appendix 9.4.2

From now on, to simplify the notation, we will omit αi as an argument of zSB
All when using

Assumption 3.

Put together, Lemmas 2, 3 and 4 lead to the following proposition:

Proposition 7 Under Assumptions 2 and 3, we have:

zeqAllpαL, T
˚
All, T

˚
L,1q ă zeqAllpαH , T

˚
All, T

˚
H,1q ă zSB

All .

Figure 1 represents the different possible testing decisions as a function of the cost of the test,

z. The first two rows show, respectively, the testing decisions of type-L and type-H physicians,

while the third row compares equilibrium and optimal decisions.
32See Section 7.4 for a discussion of the consequences of lifting this assumption.

34



zzeqAllpαLq zeqAllpαHq zSB
All

type-L: All A-signal A-signal A-signal

type-H: All All A-signal A-signal

Optimal
and
equilib.
choices
coincide

Suboptimal
testing choice
for type L but
optimal choice

for type H

Suboptimal
choices
for both

[Next
subsection

7.3.3 ]

Note: For clarity reasons, we have removed the pT˚
All, T

˚
i,1q in zeqAllpαLq and zeqAllpαHq

Figure 1: Second-best equilibrium and optimal testing choices in Case All at pT˚
All, T

˚
i,1q

Figure 1 shows that there exist values of z for which at least one type of physician takes a sub-

optimal testing decision. Unfortunately, it is impossible to find a pooling contract that would

equalize the equilibrium and second-best optimum values of zAll for both types of physicians

simultaneously. However, achieving this alignment is not necessary to induce the correct second-

best testing decision for both types of physicians, as long as the (capitation) transfer can be

made conditional on the value of z, as we now demonstrate.

For low values of z, below zeqAllpαL, T
˚
All, T

˚
L,1q, all physicians, whatever their degree of altru-

ism, make the optimal testing decision by choosing to test all patients. In that case, pT˚
All, T

˚
i,1q

induces the optimal testing decisions.

For intermediate levels of z, either low-altruism physicians (if zeqAllpαL, T
˚
All, T

˚
L,1q ă z ď

zeqAllpαH , T
˚
All, T

˚
H,1q) or both types of physicians (if zeqAllpαH , T

˚
All, T

˚
H,1q ă z ď zSB

All ) do not make

the optimal testing decision when transfers are set as in Definition 2. More precisely, when

zeqAllpαi, T
˚
All, T

˚
i,1q ă z ď zSB

All , type-i physicians only test signal-A patients while they should
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test all patients. Therefore, the authority must raise the (capitation) level of the transfer received

for treating all patients in order to incentivize physicians to test everyone.33 In doing so, the

equilibrium threshold zeqAllpαi, TAll, T
˚
i,1q will be adjusted upward until it matches the observed

level z.

We denote by Ti,Allpzq the lowest transfer level that ensures that type-i physicians treat all

patients when Ti,1 is set as in Definition 2, namely such that zeqAllpαi, Ti,Allpzq, T˚
i,1q “ z. We

then obtain

Ti,Allpzq “ T˚
i,1 ´ ψpεSB

i,1 q `
αi

2
rz ´ p1 ´ εSB

i,1 q p∆UA ` γ∆eqs. (32)

Our results are summarized in the following proposition.

Proposition 8 Assume that the social planner can condition the transfers on the observed level

of the cost of the diagnostic test, z. Under Assumptions 2 and 3 and asymmetric information on

the αi’s, the rent-minimizing payment received by the physicians in the case where it is optimal

to test all agents ( i.e., z ă zSB
All ) should be set at Ti,kpzq “ T˚

i,k, for k P t1, 0u and i P tL,Hu

together with

TAllpzq “

$

’

&

’

%

T˚
All “ 0, when z ď zeqAllpαL, T

˚
All, T

˚
L,1q

TL,Allpzq, when zeqAllpαL, T
˚
All, T

˚
L,1q ă z ď zeqAllpαH , T

˚
All, T

˚
H,1q

maxtTL,Allpzq, TH,Allpzqu, when zeqAllpαH , T
˚
All, T

˚
H,1q ă z ď zSB

All

where Ti,Allpzq is defined by (32).

Since the contract is pooling and the transfers cannot be conditioned on αi, when zeqAllpαL, T
˚
All, T

˚
L,1q ă

z ă zeqAllpαH , T
˚
All, T

˚
H,1q, the capitation transfer (equal to the total transfer in Case All) will be

set for every physician to TL,Allpzq, even if type-H’s testing decision is already optimal with the

lower T˚
All.

34 Finally, to ensure that both types of physicians take the correct testing decisions

while minimizing rents, we set the capitation transfer to TAllpzq “ maxtTL,Allpzq, TH,Allpzqu

when zeqAllpαH , T
˚
All, T

˚
H,1q ă z ă zSB

All .

We now move to the next cost threshold, z1.
33Alternatively, decreasing the transfer received in Case 1 would violate the participation constraints.
34Increasing the capitation transfer above the minimum required level (as defined in Definition 2) in case All

will only reinforce the decision of a type-H physician to continue testing all patients.
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7.3.3 Implementation of the second-best switching cost, z1

As the reasoning for determining z1 and T1 is very similar to that in the previous section, most

of the mathematical developments and explanations are provided in Appendix 9.5.

First, we obtain the same ranking of equilibrium and second-best threshold values of test

costs as in the previous section.

Proposition 9 Under Assumptions 2 and 3, we have

zeq1 pαL, T
˚
L,1, T

˚
L,0q ă zeq1 pαH , T

˚
H,1, T

˚
H,0q ă zSB

1 .

Proof. See Appendix 9.5.1

Similarly to Proposition 7, the above proposition indicates that, compared to the second-

best optimum, doctors switch too readily (i.e., for lower values of z) from testing only signal-A

patients (Case 1) to testing no one (Case 0) when transfers are set to minimize rents while

satisfying participation constraints. The intuition is the same as for Lemma 3: type-H physicians

do not internalize the higher effort cost in Case 0, while type-L physicians are also biased by

the higher rents received in the latter case (see Appendix 9.5.1 where we show that type-L

physicians effectively earn a higher rent in Case 0 than in Case 1 ).

We also obtain that less altruistic physicians switch earlier than more altruistic ones to the

no-test Case 0. This result is analogous to Lemma 2 from the previous section, and holds for a

similar reason: as type-L physicians enjoy a higher rent in Case 0 than in Case 1 when transfers

are set at the rent-minimizing levels from Definition 2, they stop testing all patients at a lower

test cost z.

Figure 5 in Appendix 9.5 compares equilibrium and optimal testing decisions, and is very

similar to Figure 1 in the previous section.

Likewise, the following proposition, which summarizes the optimal capitation payments levels

when physicians should test only A-signal patients at the second-best, is similar to Proposition

8.
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Proposition 10 Assume that the government can condition the transfers on the observed level

of the cost of the diagnostic test, z. Under Assumptions 2 and 3 and asymmetric information

on the αi’s, the rent-minimizing capitation payments received by the physicians in the case

where it is optimal to test only signal-A patients ( i.e., when zSB
All ă z ă zSB

1 ), should be set at

TAllpzq “ T˚
All “ 0, Ti,0pzq “ T˚

i,0, @i P tL,Hu together with

T̄1pzq “

$

’

’

&

’

’

%

T̄˚
1 “ ψpεSB

H,1q ´ β1

ˆ

1`εSB
H,1

2

˙

, when z ď zeq1 pαL, T
˚
L,1, T

˚
L,0q

T̄L,1pzq, when zeq1 pαL, T
˚
L,1, T

˚
L,0q ă z ď zeq1 pαH , T

˚
H,1, T

˚
H,0q

maxtT̄L,1pzq, T̄H,1pzqu, when zeq1 pαH , T
˚
H,1, T

˚
H,0q ă z ď zSB

1

where T̄i,1pzq is defined by (A.11).

Proof. See Appendix 9.5.2

Finally, when z ą zSB
1 , both physicians make the optimal decision not to test anyone. The

optimal set of total transfers is then given by (T˚
All, T

˚
i,1, T

˚
i,0), set in Definition 2.

7.4 Summing-up the second-best analysis

Figure 2 summarizes what we have learned in Section 7.3, and the take-home message of this

paper in terms of capitation levels in the second-best case. The social planner should offer to

physicians the choice between three contracts, each one conditional on the fraction of patients

tested (all, only signal-A, or none) and on the value of the test cost z. Each contract should

satisfy the physicians’ participation constraint given the corresponding equilibrium effort choices,

while minimizing rents. These capitation levels correspond to the values set in Definition 2.

These values need not be distorted provided that all physicians choose the correct second-best

testing decision at equilibrium. This is the case, on Figure 2, either if z ă zeqAllpαL, T
˚
All, T

˚
L,1q (all

physicians test all patients, as should be at the second-best), if zSB
All ă z ă zeq1 pαL, T

˚
L,1, T

˚
L,0q (all

physicians test only signal-A patients, as recommended at the second-best), or if z ą zSB
1 (no

physician tests anybody, as required at the second-best). There are two situations where one of

the three capitation transfers has to be distorted, namely when at least one type of physician’s

testing decision departs from the second-best optimal one: either some physicians test only
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˚
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T˚
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1 pzq

TAll

T1

Capitation
Transfers
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1
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Note: All zeqk pαiq are evaluated at (T˚
All, T

˚
i,1, T

˚
i,0 )

Figure 2: Levels of the capitation payments
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signal-A patients while they should test everyone (if zeqAllpαL, T
˚
All, T

˚
L,1q ă z ă zSB

All ), or they

test nobody while they should test signal-A patients (if zeq1 pαL, T
˚
L,1, T

˚
L,0q ă z ă zSB

1 ). In both

cases, the second-best decision can be decentralized by increasing the corresponding capitation

(i.e., TAllpzq in the former case, and T̄1pzq in the latter), leaving the other ones unchanged. The

crucial insight is that it is not necessary (and, indeed, impossible) to equalize the equilibrium

and second-best optimal thresholds of z for both physicians’ types simultaneously, but sufficient

to find the minimum amount of the capitation transfers that induces both types of physicians

to take the second-best optimal testing decision.

Figure 2 is based on two important assumptions. First, we have assumed that zSB
All ă

zeq1 pαL, T
˚
L,1, T

˚
L,0q. This assumption has allowed us to combine the results of sections 7.3.2 and

7.3.3 into a single figure while covering the largest number of possible situations. If we rather

had zSB
All ą zeq1 pαi, T

˚
i,1, T

˚
i,0q, we would not have the configuration where a type-i physician

optimally chooses to treat only signal-A patients. Rather, for zeq1 pαi, T
˚
i,1, T

˚
i,0q ă z ă zSB

All ,

a type-i physician would choose to not test anyone, while it is optimal to test all patients.

We would then have to increase TAll above its value set in Definition 2, in order to induce

these physicians to treat all patients. While the optimal value of TAll would differ from the

one reported in Proposition 8, the gist of our argument to decentralize the second-best testing

decision would then remain unchanged.

The other important premise underlying Figure 2 is that both types of physicians should

always make the same testing decision at the second-best (i.e., that the thresholds zSB
All and zSB

1

do not vary with αi). A sufficient condition for this result is that there are as many type-L

as type-H physicians (see Lemma 4 and Proposition 9). We show in Appendix 9.6 that the

core of our argument remains valid even if this assumption is relaxed. Specifically, the only

scenario where it might be impossible to decentralize the second-best optimal testing decision

as described in Propositions 8 and 10 is when three conditions are met simultaneously: (i) the

optimal testing decision differs between the two types of physicians (i.e., zSB
k pαiq ă z ă zSB

k pαjq

for i ‰ j and k P tAll, 1u); (2) at the capitation levels set in Definition 2, one physician type
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makes her second-best optimal testing decision while the other type does not; (3) the increase

in capitation necessary to change the testing decision of the latter type is large enough to also

change the testing decision of the former type. While we cannot rule out such a scenario,

the likelihood of all three conditions being met simultaneously is rather limited. Therefore,

our conclusion that second-best testing decisions can be decentralized with test cost-dependent

capitation levels generally applies in most situations, even when Assumption 3 does not hold.

8 Conclusion

This paper has studied the diagnostic effort and testing decisions of imperfectly altruistic physi-

cians as they determine which of two treatments is more appropriate for their patients.

We first derive the first-best allocation, where the regulation authority can observe the

physicians’ degree of altruism, and compare it with the laissez-faire. In this latter case, both

physicians exert insufficient effort due to their imperfect altruism: they accurately anticipate

the marginal cost of their effort but underestimate its marginal benefit for their patients. We

also show that they rely excessively on diagnostic tests. This occurs because efforts and tests are

strategic substitutes, but effort is costly to the physician while the test is costly to the patient.

We then consider the second-best allocation, where physicians’ levels of altruism are unob-

servable. First, we demonstrate that the second-best optimal contract is a pooling contract,

offering the same P4P and capitation components to all physicians. This is a case of non-

responsiveness, where the regulation authority’s objectives are not aligned with the incentives

required to motivate the physicians. In this scenario, the slope of the P4P component of the

contract should be based on average altruism, resulting in high-altruism physicians exerting

more effort than their low-altruism counterparts. Additionally, we show that if capitation trans-

fers are set at the minimum level required for physicians participation, they will under-utilize

diagnostic tests. This occurs because the regulation authority must compensate physicians for

their increased diagnostic effort when they reduce testing, leaving rents to all except the most

altruistic. Because of the substitutability between diagnostic effort and tests, rents are higher
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when effort is higher and fewer patients are tested, leading to under-utilization of tests. This is

then corrected by providing larger capitation transfers when more patients are tested.

Interestingly, decentralizing the second-best outcome requires making (capitation) transfers

dependent on the test cost. This implies that as new technologies emerge and diagnostic test

costs vary over time, the regulation authority could adjust physicians’ remunerations accordingly.

Finally, this model relies on several assumptions. First, we have assumed that the test results

are perfect, which may not reflect reality. Second, we have assumed that the consequences of

mismatches between patient type and treatment are symmetrical, with the health authority

observing both types of mismatch. In reality, treating B-patients with P , while not cost-efficient,

might not lead to a higher number of physician visits, making it undetectable by the health

authority. In that case, the only detectable mismatch would occur when a type-A patient is

treated with the default treatment. Exploring these extensions is part of our research agenda.

Our model could also be extended to algorithmic decision-making tools, particularly AI

models, which are increasingly employed in clinical settings. While clinical AI tools currently

vary in performance (see Obermeyer et al., 2019), ongoing advancements in data quality and

machine learning techniques are likely to yield substantial improvements over time. It is essential

to understand the impacts of these tools as they evolve, including the need to establish optimal

financial incentives for their adoption and application. Ensuring that the economic environment

supports effective and beneficial AI usage should be a key focus for future research in healthcare

policy and economics.
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9 Appendix

9.1 The second-best contract is pooling

The proof of Proposition 5 follows through whatever the Case k “ t1, 0u. We proceed in two

stages. We first prove that no menu of contracts with βL,k ą βH,k can satisfy simultaneously

the incentive compatibility constraints of both types of physicians. We then show that welfare

cannot be maximized with a menu of contracts such that βL,k ă βH,k. We then obtain that the

same contract with βL,k “ βH,k has to be proposed to both physicians’ types at the second-best

equilibrium.

9.1.1 No separating contract with βL,k ą βH,k

Assume that the two following contracts pT̄L,k, βL,kq and pT̄H,k, βH,kq are designed for type L and

type H, respectively. Each physician chooses her preferred contract among the two proposed.

To specifically incentivize the effort of the low-altruism physician, we need to set βL,k ą βH,k.

This in turn implies that T̄L,k ă T̄H,k since, otherwise, both types would choose the contract

devised for L.

Figure 3 illustrates the non-responsiveness argument. Assume that type L is indifferent

between the two contracts (i.e. points X and Y are on the same indifference curve, denoted

by IL). In this situation, type H would be better off choosing the contract designed for type L

(i.e. being at point Z on indifference curve I 1
H), thereby violating the incentive constraint for

type H. To satisfy this incentive constraint, one would need to either increase T̄H,k or decrease

T̄L,k, which would then violate the incentive constraint for type L and make her strictly prefer

the contract designed for type H (since she was initially indifferent between the two contracts).

Consequently, at least one incentive constraint is always violated, indicating that a separating

equilibrium with βL,k ą βH,k cannot exist.
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Figure 3: Second-best pooling equilibrium (contradiction argument)

We now turn to a formal proof [FOR ONLINE APPENDIX ONLY].

Assume that with the pair of contracts proposed, a type-L physician is indifferent between

the contract pT̄L,k, βL,kq devised for her and the one devised for type H-physicians, pT̄H,k, βH,kq:

αLBkpεL,kq ` T̄L,k ` βL,knL,k ´ ψpεL,kq “ αLBkpε̃L,kq ` T̄H,k ` βH,kñL,k ´ ψpε̃L,kq, (A.1)

where we use a tilde to denote the allocation where a physician mimics the other type by buying
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the contract designed for the latter. More precisely, εL,k is defined by (23) while ε̃L,k refers

to the level of effort of a physician of type L claiming to be a type H and taking the contract

pT̄H,k, βH,kq, such that35

ψ1pε̃i,kq “ αib̄k ` 1kβj,k, (A.2)

with i ‰ j, b̄k defined by (24) and (25), and 11 “ 1{2 and 10 “ 1.

In turn, ñL,k refers to the number of correctly-treated patients when a type-L physician

claims to be of type H. In Cases 0 and 1, we obtain:

ñi,1 “
1 ` ε̃i,1

2
; ñi,0 “ ε̃i,0.

Rearranging equation (A.1), we have that

T̄H,k ´ T̄L,k “ αLrBkpεL,kq ´Bkpε̃L,kqs ´ rψpεL,kq ´ ψpε̃L,kqs ` βL,knL,k ´ βH,kñL,k.

Let us then show that with such contracts pT̄L,k, βL,kq and pT̄H,k, βH,kq, a type-H physician

would always want to mimic a type-L. This would be the case if and only if

αHBkpε̃H,kq ` T̄L,k ` βL,kñH,k ´ ψpε̃H,kq ą αHBkpεH,kq ` T̄H,k ` βH,knH,k ´ ψpεH,kq, (A.3)

with εH,k and ε̃H,k defined by equations (23) and (A.2). This condition can be rewritten as:

αH rBkpε̃H,kq ´BkpεH,kqs ´ rψpε̃H,kq ´ ψpεH,kqs ` βL,kñH,k ´ βH,knH,k ą T̄H,k ´ T̄L,k,

and replacing for the expression of pT̄H,k ´ T̄L,kq, we get:

αH rBkpε̃H,kq ´BkpεH,kqs ´ rψpε̃H,kq ´ ψpεH,kqs ´ tαLrBkpεL,kq ´Bkpε̃L,kqs ´ rψpεL,kq ´ ψpε̃L,kqsu

ą βL,kpnL,k ´ ñH,kq ´ βH,kpñL,k ´ nH,kq.

This condition can further be rewritten as:

αH rε̃H,k b̄k ´ εH,k b̄ks ´ rψpε̃H,kq ´ ψpεH,kqs ´ tαLrεL,k b̄k ´ ε̃L,k b̄ks ´ rψpεL,kq ´ ψpε̃L,kqsu

ą βL,kpnL,k ´ ñH,kq ´ βH,kpñL,k ´ nH,kq.(A.4)
35Recall that B1

kpεi,kq is independent of εi,k.
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Isolating b̄k in equations (23) and (A.2) and replacing for their expression in (A.4), we obtain

after some simplifications that it is equivalent to

rε̃H,kψ
1pε̃H,kq ´ ψpε̃H,kqs ´ rεH,kψ

1pεH,kq ´ ψpεH,kqs

´trεL,kψ
1pεL,kq ´ ψpεL,kqs ´ rε̃L,kψ

1pε̃L,kq ´ ψpε̃L,kqsu ą 0.

We now use the quadratic form of ψp.q (Assumption 2), which simplifies the above expression

as follows:

rε̃H,k ´ εH,ksrε̃H,k ` εH,ks ą rεL,k ´ ε̃L,ksrεL,k ` ε̃L,ks.

Replacing further for the functional form of ψp.q in the first-order conditions (23) and (A.2),

the above condition simplifies to

pβL,k ´ βH,kqp1 ` 2αH b̄k ` 1kpβL,k ` βH,kqq ą pβL,k ´ βH,kqp1 ` 2αLb̄k ` 1kpβL,k ` βH,kqq.

For αH ą αL and βL,k ą βH,k, the above condition is then always satisfied.

We have then proved that condition (A.3) always holds: a type-H physician would always

want to mimic a type-L physician if separating contracts were proposed. This is true for any

Case k. So, as soon as a pair of contracts with βL,k ą βH,k makes one individual indifferent

between her contract and mimicking the other type, the latter would strictly prefer the contract

of the former.

9.1.2 No separating contract with βL,k ă βH,k can maximize welfare

[ONLINE APPENDIX ONLY]

The proof results from two properties of the welfare function: (i) welfare is increasing and

concave in effort with a unique maximum (whatever αi) at ε “ ε˚
k as given by (2) and (3);

(ii) welfare is not affected by payments to doctors which are considered as pure transfers. This

means that we can focus on the impact of βL,k and βH,k on welfare while abstracting from the

specific values of T̄k that satisfy doctors’ incentive constraints. Moreover, we know (i) from

equation (23) that εi,k is monotonically increasing in βi,k (for i P tL,Hu), (ii) from equation

46



(A.2) that ε̃i,k is monotonically increasing in βj,k (for i ‰ j) and (iii) that εL,k ă εH,k when

βL,k “ βH,k.

Take any βL,k ă βH,k. Three situations may then occur:

(i) We have εL,k ă εH,k ď ε˚
k . This also implies that εL,k ă ε̃L,k ă εH,k ď ε˚

k . In that case,

increasing βL,k up to βH,k increases εL,k up to ε̃L,k as well as welfare since we have moved the

low-altruism physician’s effort choice closer to its first-best value.

(ii) We have ε˚
k ď εL,k ă εH,k which implies that ε˚

k ď εL,k ă ε̃H,k ă εH,k. In that case,

decreasing βH,k down to βL,k decreases εH,k down to ε̃H,k and increases welfare since we have

moved the high-altruism physician’s effort choice closer to its first-best value.

(iii) We have εL,k ă ε˚
k ă εH,k. In that case, increasing βL,k and decreasing βH,k both increase

welfare. We should stop increasing βL,k once εL,k “ ε˚
k or stop decreasing βH,k once εH,k “ ε˚

k .

Note that since εL,k ă εH,k for all βL,k “ βH,k, at most one of these two situations (where either

εL,k or εH,k equals ε˚
k) can occur. We then have βL,k “ βH,k, where both εL,k and εH,k have

been moved closer to their first-best value without overshooting it, so that welfare cannot be

maximized when βL,k ă βH,k.

9.2 The second-best optimal pay-for-performance transfer

Differentiating (27) with respect to βk yields the following first-order condition, for each Case k

BSW

Bβk
“ ν

dεL,k

dβk
rb̄k ´ ψ1pεL,kqs ` p1 ´ νq

dεH,k

dβk
rb̄k ´ ψ1pεH,kqs “ 0,

where dεi,k{dβk “ 1k is a constant (see equation (23)). Using the quadratic functional form

specified for ψp.q as well as the expression of ψ1pεi,kq in (23), we obtain that the above condition

simplifies to

BSW

Bβk
“ ν1krb̄k ´ pαLb̄k ` 1kβkqqs ` p1 ´ νq1krb̄k ´ pαH b̄k ` 1kβkqqs “ 0

which, after some simplifications, leads to

βSB
1 “ 2b̄1r1 ´ ᾱs,

βSB
0 “ b̄0r1 ´ ᾱs,
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and expressions (28) and (29).

We now find the second-best optimal levels of effort by replacing for the values of βSB
k in the

first-order condition (23):

ψ1pεi,kq “ pαi ` 1 ´ ᾱqb̄k.

Under Assumption 2, we obtain that:

εH,k “ pαH ` 1 ´ ᾱqb̄k, (A.5)

εL,k “ pαL ` 1 ´ ᾱqb̄k. (A.6)

From equation (23) and comparing it to (2) and (3), we also obtain that ε˚
k is defined by

ψ1pε˚
kq “ ε˚

k “ b̄k. Straightforward algebra then shows that εSB
L,k ă ε˚

k ă εSB
H,k @k “ t0, 1u.
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9.3 Second-best rents

T(ε)

ε

T pεq

ψpεq

εL εH

IL

IH

rent

Figure 4: Measuring rents in the second-best allocation

9.4 Implementation of the second-best switching cost, zAll

In this appendix, we abuse notation and proceed as if there were a continuum of α levels. This

shows that our approach can be generalized to a continuum of altruism types.

9.4.1 Proof of Lemma 2

We differentiate zeqAllpαi, TAll, Ti,1q with respect to αi:

dzeqAllpαi, TAll, Ti,1q

dαi
“
dεSB

i,1

dαi

„

2

αi
ψ1pεSB

i,1 q ´ p∆UA ` γ∆eq

ȷ

´
2

α2
i

pTAll ´ Ti,1 ` ψpεSB
i,1 qq ´

2

αi

dTi,1
dαi

,

(A.7)
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with Ti,1 given by (26), so that
dTi,1
dαi

“
β1
2

dεSB
i,1

dαi
,

so that together with the first-order condition (23) on effort, equation (A.7) yields

dzeqAllpαi, TAll, Ti,1q

dαi
“

2

α2
i

pTi,1 ´ ψpεSB
i,1 q ´ TAllq,

which is positive when measured at pTAll “ T˚
All, TL,1 “ T˚

L,1q.

9.4.2 Proof of Lemma 4

We differentiate the expression of zSB
All pαiq with respect with αi, and obtain

dzSB
All pαiq

dαi
“ r´p∆UA ` γ∆eq ` 2ψ1pεSB

i,1 qs
dεSB

i,1

dαi

“ 2rαi ´ ᾱs
∆UA ` γ∆e

2

dεSB
i,1

dαi
.

Hence, zSB
All pαiq is a U-shaped function of αi, with a minimum in ᾱ so that, unless we make

further assumptions, we cannot conclude whether zSB
All pαHq ż zSB

All pαLq.

Under Assumption 2, we have that the εi,k’s are defined by (A.5) and (A.6). Replacing

for these values in equation (31) and for the functional form of ψp.q, we obtain, after some

simplifications, that

zSB
All pαiq “ ∆UA ` γ∆e` b̄21p1 ` αi ´ ᾱqpαi ´ ᾱ ´ 1q,

where it is possible to show that under Assumption 3, p1 ` αi ´ ᾱqpαi ´ ᾱ ´ 1q is the same for

αH and αL. Hence, zSB
All pαHq “ zSB

All pαLq as stated in Lemma 4.

9.5 Implementation of the second-best switching cost, z1
9.5.1 Proof of Proposition 9

We have:

zeq1 pαi, Ti,1, Ti,0q “ p1 ´ εSB
i,0 q∆UB ´ pεSB

i,0 ´ εSB
i,1 q∆UA ` γp1 ` εSB

i,1 ´ 2εSB
i,0 q∆e

`
2

αi
pTi,1 ´ Ti,0q `

2

αi
pψpεSB

i,0 q ´ ψpεSB
i,1 qq. (A.8)
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Differentiating equation (A.8) with respect to αi and using the envelope theorem for εSB
i,k (i.e.

equation (23)), as well as Ti,1 given by (26) with βi,k “ β1, so that

dTi,1
dαi

“
β1
2

dεSB
i,1

dαi
,

dTi,0
dαi

“ β0
dεSB

i,0

dαi
,

we obtain after some rearrangements,

dzeq1 pαi, Ti,1, Ti,0q

dαi
“ ´

2

α2
i

rpTi,1 ´ ψpεSB
i,1 qq ´ pTi,0 ´ ψpεSB

i,0 qqs. (A.9)

In order to sign this expression, we define the square bracket in the right-hand side of equation

(A.9) as the difference in rents between Cases 1 and 0,

∆R ” pTi,1 ´ ψpεSB
i,1 qq ´ pTi,0 ´ ψpεSB

i,0 qq

” T̄1 ´ T̄0 ` β1
1 ` εSB

i,1

2
´ ψpεSB

i,1 q ´ pβ0ε
SB
i,0 ´ ψpεSB

i,0 qq

and we differentiate it with respect to αi:

d∆R

dαi
“ αib̄0

dεSB
i,0

dαi
´ αib̄1

dεSB
i,0

dαi

“ ´αipb̄
2
1 ´ b̄20q ą 0,

where the second line is obtained using equation (23) together with Assumption 2, and dεSB
i,k {dαi “

b̄k.

When measured at (αH , T
˚
H,1, T

˚
H,0) (so that the participation constraints of a type-H physi-

cian are binding in both cases), we have ∆R “ 0, leading to ∆R ă 0 when measured at

(αL, T
˚
L,1, T

˚
L,0). This implies that for type-L physicians, the rents (as set in Definition 2) are

increasing when transitioning from Case 1 to Case 0.

This in turn means that zeq1 pαL, T
˚
L,1, T

˚
L,0q ă zeq1 pαH , T

˚
H,1, T

˚
H,0q, so that the analogous of

Lemma 2 holds for zeq1 as well.

We then turn to the optimal second-best switching cost zSB
1 pαiq, given the second-best
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optimal level of effort, defined by:

zSB
1 pαiq ” 2

`

ψpεSB
i,0 q ´ ψpεSB

i,1 q
˘

`
`

1 ´ εSB
i,0

˘

∆UB ´
`

εSB
i,0 ´ εSB

i,1

˘

∆UA ` γp1 ` εSB
i,1 ´ 2εSB

i,0 q∆e.

(A.10)

Comparing equations (A.8) with (A.10), we obtain, after some rearrangements, that zeq1 pαi, T
˚
i,1, T

˚
i,0q ă

zSB
1 pαiq @i if ψpεSB

i,0 qq´ψpεSB
i,1 qq ą ∆R{αi @i. Since ∆R ď 0 and εSB

i,0 ą εSB
i,1 @i, this inequality is

satisfied at (αi, T
˚
i,1, T

˚
i,0), so that the analogous of Lemma 3 holds for the comparison between

zSB
1 pαiq and zeq1 pαi, T

˚
i,1, T

˚
i,0q as well.

Using the expressions (A.5) and (A.6) of εi,k under Assumptions 2 and 3, it is possible to

show that

zSB
1 pαiq “ p∆UA ` γ∆eq ` pb̄20 ´ b̄21qp1 ` αi ´ ᾱqpαi ´ ᾱ ´ 1q.

Since the last term is invariant to αi under Assumption 3, we obtain that zSB
1 pαHq “ zSB

1 pαLq,

so that the analogous of Lemma 4 holds for zSB
1 pαiq as well. For simplicity, in the rest of the

manuscript, we remove the argument in zSB
1 pαiq.

This completes the proof of Proposition 9.

9.5.2 Proof of Proposition 10

We now determine the levels of the capitation payments T̄1 in Case 1 which induce the optimal

testing decision. As shown in Figure 5, four cases are possible depending on the value of z.
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Optimal to test A-signals Optimal to test no one

zzeq1 pαLq zeq1 pαHq zSB
1

Type-L A-signal No test No test

Type-H A-signal A-signal No test

Both physicians
make the optimal
testing decision

Only type L makes
suboptimal

testing decision

Both types
make suboptimal
testing decision

Note: For clarity, we have removed the pT˚
i,1, T

˚
i,0q in zeq1 pαLq and zeq1 pαHq

Figure 5: Second-best equilibrium and optimal testing choices in Case 1 at pT˚
i,1, T

˚
i,0q.

When z is below zeq1 pαL, T
˚
L,1, T

˚
L,0q, both physicians make the optimal testing decision, since

z is also below zSB
1 for both. In that situation, there is no need to distort their testing choices

and the payment scheme only needs to be set so as to satisfy the participation constraints of

both type-H and type-L physicians. In that case, transfers Ti,1pzq are given by Definition 2.

For intermediate levels of z, such that zeq1 pαL, T
˚
L,1, T

˚
L,0q ă z ă zSB

1 , either only type-L

physicians (when zeq1 pαL, T
˚
L,1, T

˚
L,0q ă z ď zeq1 pαH , T

˚
H,1, T

˚
H,0q) or both types (when zeq1 pαH , T

˚
H,1, T

˚
H,0q ă

z ă zSB
1 ) make sub-optimal testing decisions. In these intervals, the planner then has to distort

the physicians’ testing decision threshold zeq1 pαi, T
˚
i,1, T

˚
i,0q to (at least) the observed cost z by

increasing the capitation transfer T̄1. We define Ti,1pzq as the minimum (total) transfer level

ensuring that, for type i, zeq1 pαi, Ti,1pzq, T˚
i,0q “ z:

Ti,1pzq “ T˚
i,0´ψpεSB

i,0 q`ψpεSB
i,1 q`

αi

2

“

z´pp1´εSB
i,0 q∆UB´pεSB

i,0 ´εSB
i,1 q∆UA`γp1`εSB

i,1 ´2εSB
i,0 q∆eq

‰

.

To provide physician i with this total transfer, the capitation payment then has to be set at the
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following level:

T̄i,1pzq ” Ti,1pzq ´ βSB
1

1 ` εSB
i,1

2

“ T˚
i,0 ´ ψpεSB

i,0 q ` ψpεSB
i,1 q ´ βSB

1

1 ` εSB
i,1

2

`
αi

2

“

z ´ pp1 ´ εSB
i,0 q∆UB ´ pεSB

i,0 ´ εSB
i,1 q∆UA ` γp1 ` εSB

i,1 ´ 2εSB
i,0 q∆eq

‰

.(A.11)

Since the contract is pooling, the capitation transfer has to be set at the same level for

both physicians’ types. When zeq1 pαL, T
˚
L,1, T

˚
L,0q ă z ă zeq1 pαH , T

˚
H,1, T

˚
H,0q, the transfer then

has to be set at T̄L,1pzq for all physicians (even though type-H physicians already make the

optimal testing decision when offered the capitation transfers set in Definition 2). When

zeq1 pαH , T
˚
H,1, T

˚
H,0q ă z ă zSB

1 , the transfer then has to be set at the maximum between T̄L,1pzq

and T̄H,1pzq to ensure the optimal test decision while minimizing rents. We then have proved

Proposition 10.

9.6 Second-Best optimal testing decisions varying with altruism de-
gree [ONLINE APPENDIX]

In this Appendix, we study the decentralization of the second-best optimal decisions when

Assumption 3 does not hold. This implies that Lemma 4 as well as zSB
1 pαHq “ zSB

1 pαLq also

do not hold anymore.

In this appendix, we focus on the choice between treating all patients or only those with an

A signal (i.e., on the threshold zSB
All pαiq), but a similar analysis applies to the choice between

treating only signal-A patients or nobody (i.e., on the threshold zSB
1 pαiq).

Since Lemmas 2 and 3 still hold while Lemma 4 does not, there are three novel potential

rankings of equilibrium and second-best optimal testing thresholds not covered in the text:

(1) zeqAllpαL, T
˚
All, T

˚
L,1q ă zeqAllpαH , T

˚
All, T

˚
L,1q ă zSB

All pαLq ă zSB
All pαHq, (2) zeqAllpαL, T

˚
All, T

˚
L,1q ă

zSB
All pαLq ă zeqAllpαH , T

˚
All, T

˚
L,1q ă zSB

All pαHq and (3) zeqAllpαL, T
˚
All, T

˚
L,1q ă zeqAllpαH , T

˚
All, T

˚
L,1q ă

zSB
All pαHq ă zSB

All pαLq.

The implementation procedure for determining the optimal levels of the capitation transfers,

as outlined in the text, can be applied to all configurations, except if z is located simultaneously
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between the two second-best thresholds (so that the optimal testing decision varies between

physicians types), and between the equilibrium and second-best threshold of the physician type

who has the larger second-best threshold. This can occur in each of the three different novel

rankings just defined, provided that: (1) zeqAllpαL, T
˚
All, T

˚
L,1q ă zeqAllpαH , T

˚
All, T

˚
L,1q ă zSB

All pαLq ă

z ă zSB
All pαHq, (2) zeqAllpαL, T

˚
All, T

˚
L,1q ă zSB

All pαLq ă zeqAllpαH , T
˚
All, T

˚
L,1q ă z ă zSB

All pαHq and (3)

zeqAllpαL, T
˚
All, T

˚
L,1q ă zeqAllpαH , T

˚
All, T

˚
L,1q ă zSB

All pαHq ă z ă zSB
All pαLq.

In these three instances, the second-best optimal testing decision can only be decentralized

by increasing the capitation level TAll for either type H (in the first and second instances) or

type L (in the last instance). If this increase is substantial enough, we then run the risk of

changing as well the testing decision of the other physician’s type, moving her away from her

second-best optimal decision (to test only A-signal). Except in these very specific circumstances,

the planner can still decentralize the second-best testing decision as described in the text when

zSB
All pαiq varies with physicians’ types.

9.7 Unequal proportions of type A and B patients. [ONLINE AP-
PENDIX]

In this section, we assume a generic proportion λ (resp. p1 ´ λq) of patients of type A (resp.

type B). We keep the assumption that the signal precision is equal to ε for both patients’ types

(as in Garcia-Mariñoso and Jelovac [2003], for instance). Table 1 reflects the result of Bayesian

updating by doctors and is now modified as follows:

Type Ñ B A Total
Signal Ó

B p1 ´ λqε λp1 ´ εq λ` εp1 ´ 2λq

false neg.
A p1 ´ λqp1 ´ εq λε p1 ´ λq ´ εp1 ´ 2λq

false pos.
p1 ´ λq λ 1

Note that the proportion of patients with a signal reflecting their type remains ε (and thus those

with an incorrect signal represent the complementary fraction 1´ ε) independently of the value

of λ. The fraction of signal-i type is now a function of ε (last column). More precisely, when λ ‰

1{2, there is an over-representation (resp. under-representation) of the signal corresponding to
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the minority (resp. majority) type, with the gap between signal- and type-frequency decreasing

with ε and disappearing when ε “ 1. In our context of precision medicine, it is assumed

that λ ă 1{2, as more people should be treated with the default treatment D than with the

personalised one.

9.7.1 Optimal effort levels

We first compute the social optimum. We proceed exactly as in the paper.

Case All: Test all patients. In such a case, welfare is given by

WAllpεAllq “ ´ψpεAllq ` λUP
A ` p1 ´ λqUD

B ´ z ´ γeM ,

because true types are revealed after the test and there is a proportion p1 ´ λq of type B and

a proportion λ of type A. As before, effort is then useless (i.e. ε˚
All “ 1{2 and ψpε˚

Allq “ 0),

because it is costly to exert, while the test anyway will reveal the patient’s type with certainty.

Case 0: No test is prescribed to anyone.

In such a case, the welfare function is:

W0pε0q “ ´ψpε0q`p1´λqε0U
D
B `λp1´ε0qUD

A `p1´λqp1´ε0qUP
B `λε0U

P
A ´γpε0e

M`p1´ε0qeNM q,

where the third and fourth terms come from the classification errors: the false negatives (A

types treated with D because mistaken for types B) and false positives (B types treated with

P because mistaken for types A). The first-order condition for ε0 (optimal effort in the absence

of a diagnostic test) is:

ψ1pε˚
0 q “ p1 ´ λq∆UB ` λ∆UA ` γ∆e. (A.12)

The intuition for the first two terms is that a marginal increase in effort decreases by 1 ´ λ the

proportion of false positives (with a per person gain of ∆UB) and by λ the false negatives (with

a per person gain of ∆UA). The intuition for the last term is that we forgo ∆e visits each time

the doctor makes more effort (p1 ´ λq of type B and λ of type A).
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Note that we exclude the possibility that a solution where no effort is made and everyone

is treated with D is preferred to a solution with no test and exerting ε˚
0 . This is equivalent to

assuming that ε˚
0 satisfies

W0pε˚
0 q ą p1 ´ λqUD

B ` λUD
A ´ γpp1 ´ λqeM ` λeNM q.

Case 1: Test prescribed (after effort ε chosen) on signal A only

When the test is prescribed only after observing a signal A, the welfare function becomes

W1pε1q “ ´ψpε1q ` p1 ´ λqUD
B ` λrε1U

P
A ` p1 ´ ε1qUD

A s ´ zpp1 ´ λqp1 ´ ε1q ` ε1λq

´ γrp1 ´ λ` λε1qeM ` p1 ´ ε1qλeNM s,

where ε1 denotes the effort level in this case, and where the test allows to get rid of the false

positives (B types who sent a A signal) at the test cost z for proportion pp1 ´ λqp1 ´ ε1q ` ε1λq

of the sample that has sent a A signal. In such a case, the initial false positives receive the D

treatment.

The first-order condition for ε1 is

ψ1pε˚
1 q “ λr∆UA ` γ∆es ` zp1 ´ 2λq. (A.13)

Note that, unlike our initial formulation (3), ε˚
1 now depends on z. As explained above, a greater

effort decreases the fraction of type-A signal when λ ă 1{2, and thus the fraction to be tested.

This provides an additional reason to exert effort in Case 1, compared to the situation where

λ “ 1{2. We highlight this point in footnote 19 in the text.

Proposition A.1 Effort and test are strategic substitutes:

ε˚
All ă ε˚

1 ă ε˚
0 ðñ zp1 ´ 2λq ă p1 ´ λqp∆UB ` γ∆eq.

Proof. This result is obtained by comparing first-order conditions (A.12) and (A.13).

Proposition A.1 generalizes Proposition 1. Intuitively, the ranking of optimal effort across

cases remains the same, provided that the additional incentive to exert effort in Case 1 (to
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decrease the fraction of patients to be tested) is small enough. This will be the case provided

that λ is not too small or z not too large.

9.7.2 Optimal diagnostic test decisions

First, we show that WAllp1{2q and W1pε˚
1 pzqq intersect (at most) only once as z increases from

zero. As in the text, the slope of the derivative of WAllp1{2q with respect to z is -1. Using the

envelope theorem, the slope of W1pε˚
1 pzqq with respect to z is,

BW1pε˚
1 pzqq

Bz
“ ´rp1 ´ λqp1 ´ ε˚

1 q ` ε˚
1λs,

which is negative, with an absolute value corresponding to the total fraction of signals A received,

and belonging to the interval r1 ´ ε˚
1 pzq, ε˚

1 pzqs, and thus lower than 1. As the proportion of

signals A increases with λ, the slope of W1pε˚
1 pzqq with respect to z increases (in absolute value)

with λ.

Assuming as in the text that it is optimal to test all if the test cost is nil (i.e., thatWAllp1{2q ą

W1pε˚
1 pzqq when z “ 0), there is a single value of z which equalizes the two, and which is such

that

z˚
All ”

λp1 ´ ε˚
1 pz˚

Allqqp∆UA ` γ∆eq ` ψpε˚
1 pz˚

Allqq

λ` p1 ´ 2λqε˚
1 pz˚

Allq
,

where the denominator is positive when λ ă 1{2.

We then move to the test cost threshold level which renders the planner indifferent between

treating only those signalling A and not treating anyone, W1pε˚
1 pzqq “ W0pε˚

0 q, and obtain that:

z˚
1 ”

pψpε˚
0 q ´ ψpε˚

1 pz˚
1 qq ` p1 ´ λq p1 ´ ε˚

0 q∆UB ´ λ pε˚
0 ´ ε˚

1 pz˚
1 qq∆UA ` γrλε˚

1 pz˚
1 q ´ ε˚

0 ` p1 ´ λqs∆e

1 ´ λ` ε˚
1 pz˚

1 qp2λ´ 1q
.

The intuition behind this formulation is similar to the one provided in Section 4.2, with

only the proportions in front of the different terms in both the numerator and the denominator

changing.
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9.7.3 The physician’s problem

The doctor’s utility now writes:

VAll “ αrλUP
A ` p1 ´ λqUD

B ´ z ´ γeM s ` TAllp.q ´ ψpεAllq,

V1 “ αtp1 ´ λqUD
B ` λrε1U

P
A ` p1 ´ ε1qUD

A s ´ zpp1 ´ λqp1 ´ ε1q ` λε1q

´γrp1 ´ λ` λε1qeM ` p1 ´ ε1qλeNM su

` T1p.q ´ ψpε1q,

V0 “ αtp1 ´ λqε0U
D
B ` λp1 ´ ε0qUD

A ` p1 ´ λqp1 ´ ε0qUP
B ` λε0U

P
A ´ γpε0e

M ` p1 ´ ε0qeNM qu

` T0p.q ´ ψpε0q.

We obtain the following (equilibrium) levels of efforts:

ψ1pεeqAllq “ T 1
Allpε

eq
Allq,

ψ1pεeq0 q “ αtp1 ´ λq∆UB ` λ∆UA ` γ∆eu ` T 1
0pεeq0 q,

ψ1pεeq1 q “ αtλr∆UA ` γ∆es ` zp1 ´ 2λqu ` T 1
1pεeq1 q.

Like the optimal level of effort, εeq1 now also depends on z. Just as in our baseline case with

equal proportions of type A and type B patients, we find that, under the laissez-faire scenario,

imperfectly altruistic physicians under-provide effort in Cases 0 and 1, and that effort increases

with altruism.

We finally compute the equilibrium partition of whether to test or not, namely the thresholds

zeqAll and zeq1 . The threshold zeqAll is such that VAllpz
eq
Allq “ V1pzeqAllq, so that

zeqAll “
λp1 ´ εeq1 pzeqAllqqp∆UA ` γ∆eq

λ` p1 ´ 2λqεeq1 pzeqAllq
`

TAll ´ T1
αpλ` p1 ´ 2λqεeq1 pzeqAllqq

`
ψpεeq1 pzeqAllqq

αpλ` p1 ´ 2λqεeq1 pzeqAllqq
.

This expression is similar to equation (9), except that the weights in front of the different terms

in the numerator and the denominator are now different from 1{2 and involve εeq1 , which is itself

measured at zeqAll.
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We proceed in the same way for zeq1 , which is such that V0pzeq1 q “ V1pzeq1 q and we obtain

that:

zeq1 “
p1 ´ λq p1 ´ εeq0 q∆UB ´ λ pεeq0 ´ εeq1 pzeq1 qq∆UA ` γrλεeq1 pzeq1 q ´ εeq0 ` p1 ´ λqs∆e

1 ´ λ` εeq1 pzeq1 qp2λ´ 1q

`
T1 ´ T0

αrp1 ´ λq ` εeq1 pzeq1 qp2λ´ 1qs
`

ψpεeq0 q ´ ψpεeq1 pzeq1 qq

αrp1 ´ λq ` εeq1 pzeq1 qp2λ´ 1qs
.

This threshold level is very similar to equation (10). However, the right-hand-side of the above

expression includes εeq1 now measured at the threshold level zeq1 .

In contrast to our baseline scenario where the proportions of type A and type B are equal,

it is now more challenging to directly compare the equilibrium levels of z with the optimal ones.

This is because both at the equilibrium and at the optimum, we can only establish a system of

two equations and two unknowns (specifically, ε1 is determined by z while both thresholds zAll

and z1 are determined in turn by ε1). We summarize this point in footnote 21.

9.8 Proof of Proposition 4

We first have to find the values of the fixed (i.e., capitation) component of the payment scheme

that align incentives for the optimal testing decisions (i.e., that zeqAll “ z˚
All and zeq1 “ z˚

1 ), and

then check that the doctors’ participation constraints are satisfied in all 3 cases.

Combining equations (15) and (20) allows us to obtain the optimal capitation value in Case

1, namely

T̄1 “ T̄All ` p1 ´ αqrψpε˚
1 q ´ p∆UA ` γ∆eqn˚

1 s, (A.14)

where n˚
1 “ p1 ` ε˚

1 q{2 is the number of correctly treated patient in Case 1 when the optimum

effort level is exerted.

Using equations (16) and (19), we obtain

T1pn˚
1 q ` p1 ´ αqrψpε˚

0 q ´ ψpε˚
1 qs “ T̄0 ` p1 ´ αqrp

∆UB ` ∆UA

2
` γ∆eqn˚

0 s.

Using equation (20) and (A.14) then allows us to find the value of the optimal capitation

level in Case 0:

T̄0 “ T̄All ` p1 ´ αqrψpε˚
0 q ´ p

∆UB ` ∆UA

2
` γ∆eqn˚

0 s, (A.15)
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where n˚
0 “ ε˚

0 is the number of correctly treated patient in Case 0 when the optimal effort level

is exerted.

Observe that using the first-order conditions for the optimum (2) and (3), the bracket term in

both equations (A.14) and (A.15) can be rewritten as ψpε˚
1 q´ψ1pε˚

1 qp1`ε˚
1 q and ψpε˚

0 q´ψ1pε˚
0 qε˚

0 .

Since the effort cost is increasing and convex (implying that ψpεq ă ψ1pεqε), we obtain that both

brackets are negative, so that both T̄0 and T̄1 are lower than T̄All.

We then have to set T̄All such as the participation constraints are satisfied in all 3 cases.

This corresponds to ensuring that

T̄All ě ψpε˚
Allq “ 0,

T1 ě ψpε˚
1 q,

T0 ě ψpε˚
0 q.

Replacing for eq. (19), (20), (A.14) and (A.15) in the above expressions, we obtain after some

rearrangements that T̄All “ maxt0, αψpε˚
0 q, αψpε˚

1 qu “ αψpε˚
0 q since ε˚

0 ą ε˚
1 .

From this, we are able to obtain the capitation part of the payment scheme doctors receive

in Cases t0, 1u:

T̄0 “ ψpε˚
0 q ´ p1 ´ αqr

∆UB ` ∆UA

2
` γ∆eqsn˚

0 ,

T̄1 “ ψpε˚
1 q ´ p∆UA ` γ∆eqn˚

1 ` αrψpε˚
0 q ´ ψpε˚

1 q ` p∆UA ` γ∆eqn˚
1 s.

Note that the capitation levels are increasing in α and are negative when α is low enough.

We also see that the rent made by doctors increases with their degree of altruism both in

Case All and Case 1 (with zero rent by construction in Case 0), with

T̄All “ αψpε˚
0 q,

T1pn˚
1 q “ αψpε˚

0 q ` p1 ´ αqψpε˚
1 q “ ψpε˚

1 q ` αpψpε˚
0 q ´ ψpε˚

1 qq,

T0pn˚
0 q “ ψpε˚

0 q.
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