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Abstract

Local housing markets differ in their liquidity, the ease of transacting. Transacting is

often easier in urban rather than rural locations, for example. To rationalize these liq-

uidity differences, we set up a model of housing search in the cross-section of multiple

interconnected local markets. Markets vary in structural characteristics, leading some to

be in higher demand than others, which in turn affects equilibrium liquidity across local

markets. Taking the model to data in Finland, we find that the housing market consists

of very heterogeneous segments, and especially the value of housing services and the

efficiency of the meeting technology matter for the cross-sectional variation in liquid-

ity. Accounting for equilibrium buyer sorting is important: characteristics like the value

of housing services affect liquidity both directly but also by attracting more prospective

buyers into the market.
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1 Introduction

Housing liquidity refers to the ease with which apartments or houses can be bought and sold.
Housing is known to be relatively illiquid, and transacting involves a costly search process.
This has importantmacroeconomic implications, since a substantial share of householdwealth
is held in housing, and holdings of illiquid assets are known to shape marginal propensities to
consume (Kaplan & Violante, 2014). Housing liquidity also plays a critical role in household
welfare. When housing transactions are less costly, households can more easily adjust their
housing consumption in response to life events. This can potentially even translate to greater
labor market mobility and higher employment (Head & Lloyd-Ellis, 2012; Karahan & Rhee,
2019).

While it is well established that housing liquidity fluctuateswith the business cycle (Krainer,
2001), it is also known to vary across locations (Genesove & Han, 2012; Piazzesi et al., 2020).
Selling residential property can be significantly more challenging in remote locations com-
pared to urban areas, for example. While better liquidity in some locations signals higher
demand, the mechanisms that explain how the characteristics of local housing housing mar-
kets affect liquidity are not yet well understood. This motivates the research presented in this
paper, where we explore the cross-sectional differences in housing liquidity using a structural
housing search model where prices, sale times, and market tightness are jointly determined
in equilibrium across various markets.

Our first contribution is the measurement of local market tightness (i.e. ratio of searchers
to sellers) using data from a real estate listing website on the seller-side of the market (e.g.
listing durations and prices) aswell as on the searcher-side of themarket (e.g. subscriptions for
email notifications about new listings). We use data from Finland where the housing market is
very heterogenous by location. We consider local markets, or segments, defined by geography
as well as by housing unit size (distinguishing between small and large units), implying 66
local markets in total. Across these segments, average listing prices range from around 50
000 euros to more than 400 000 euros and average listing times range from some weeks to
more than six months. Our measure of market tightness ranges between approximately 0.5 in
remote areas and 2.5 in large urban areas, and it has a high predictive power when trying to
understand heterogeneity in housing liquidity across local markets. Variation in our measure
of tightness explains alone more than 60% of the cross-sectional variation in housing liquidity
as measured by sale times.

In consequence, understanding how local market tightness is determined in equilibrium
withmultiple local markets is crucial for explaining variations in liquidity. As our second con-
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tribution, we set up a model of housing search in the cross-section of many interconnected
housing market segments in which households choose where to search. Thus, the model in-
tegrates a housing search model within a spatial equilibrium framework, as used in urban
and spatial economics. Segments are heterogenous in multiple dimensions. We focus in par-
ticular on three structural parameters characterizing each market segment: two parameters
describing the mean and the dispersion of the value of housing services as well as one param-
eter indexing matching efficiency. Searching households trade off shorter search times for
better matches and sellers trade off shorter sale times for higher prices. We propose a highly
tractable method for solving the equilibrium in all markets and for verifying its uniqueness,
even with a potentially large number of interconnected markets.

Endogenous segment tightness, or popularity, stemming from searchers’ location choice
has important implications for liquidity. Firstly, the interconnectedness of local markets can
amplify the direct effects of structural characteristics on liquidity. For example, better match-
ing efficiency in a given local market has not only a direct effect on sale times through higher
meeting frequency for a fixed tightness but also will increase the popularity of this segment
among prospective buyers, whichwill further increase tightness and decrease seller sale times.
Therefore, the general equilibrium effects of parameters onmarket outcomes through searcher
sorting can be larger than what is implied by the direct effects alone. Secondly, when markets
are connected, then the observed outcomes of a given segment are affected not only by the
structural primitives of that segment but also those of all other segments via searcher sort-
ing. In this case, data from a given segment is not only reflective of the characteristics of that
segment but of the entire economy, which must be accounted for when trying to empirically
understand the heterogeneity in liquidity.

As our third contribution, we follow an identification strategy that consists in recover-
ing segment-specific parameter vectors describing the distribution of housing quality and the
meeting technology from observed data on prices, sale times and market tightness. We adopt
the attractive empirical strategy of the quantitative spatial literature of inverting the link be-
tween structural parameters and data. Specifically, we invert equations that predict prices,
sale times, and value of searching as functions of observed prices, expected sale times and the
numbers of active buyers and sellers in each segment. Absent mobility frictions, the value of
searching is equal in all segments although it is not directly observable. It is therefore cali-
brated to match the meeting frequency in one specific segment. It is straightforward to report
sensitivity analysis for all estimates as a function of this single underidentified parameter.

Our segment-specific estimates are consistent with the high degree of heterogeneity across
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segments in equilibrium outcomes. For example, in the most liquid market, the estimated
seller match probability (frequency at which sellers meet buyers) is almost 10-fold more than
in the least liquid markets. The estimated average monthly value of housing services ranges
from approximately 500 to 2,000 euros. While prices in the most expensive segment are
around 8 times higher than in the least expensive segment, the value of housing services
is only four times higher, as prices are affected by other market characteristics too.

Next, we ask which characteristics of different segments contribute to higher demand,
higher local market tightness and eventually higher liquidity. This exercise bridges together
the earlier empirical and theoretical research on housing liquidity. Previous research had
demonstrated that factors such as higher population and higher incomes, among others, con-
tribute to improved local housing liquidity (Genesove & Han, 2012; Jiang et al., 2024). We
provide a structural interpretation for these findings. For example, the relationship between
higher population and improved liquidity could operate through different channels: Markets
with high population could have a more efficient matching process (for example due to thick-
market effects), more valuable housing services (and therefore a higher opportunity cost of
not being matched) or a more heterogenous housing stock (and therefore higher returns to
search). Our empirical analysis allows to disentangle between these determinants and assess
their relative importance in local housing liquidity. We find that, in particular, locations with
high population have an efficient meeting technology, and locations with high incomes also
have a high value of housing services.

Finally, we use the model and the estimated parameters to conduct two counterfactual
exercises. The first counterfactual exercise helps us understand which characteristics of lo-
cal markets matter the most for the variation in housing liquidity. We shut down different
dimensions of parameter heterogeneity across local markets one-by-one. We find that, in
particular, heterogeneity in the mean value of housing services and heterogeneity in meeting
technology parameters matter for the cross-sectional heterogeneity in liquidity. The second
counterfactual illustrates the importance of considering the spillovers between local markets
when analysing liquidity. We study what would happen in response to a 10% increase in the
value of housing services in urban areas, reflecting for example a shift in the geographic or
amenity preferences of the population, while the value of housing services is held constant
in rural areas. The increase in the value of housing services in urban areas hurts rural mar-
ket segments because of changes in relative attractiveness, and rural market segments would
experience modest negative effects on equilibrium prices and increases in sale times. The
welfare losses through these spillovers are however relatively small in absolute terms - rural
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homeowners suffer mainly relative to their urban counterparts.

Related literature The literature on housing search is vast, and Han & Strange (2015) pro-
vide a review. The majority of the empirical work on housing liquidity focuses on liquidity
at the macro level, on the strong procyclicality of the housing market or on endogenous mo-
mentum (see, for example, Novy-Marx 2009; Carrillo 2012; Carrillo & Pope 2012; Diaz & Jerez
2013; Head et al. 2014; Ngai & Tenreyro 2014; Eerola &Määttänen 2018; Smith 2020; Anenberg
& Bayer 2020; Garriga & Hedlund 2020; Moen et al. 2021; Ngai & Sheedy 2024; Badarinza et al.
2024). These papers share with ours the thematic interest on liquidity, but we are interested
in the cross-sectional variation instead of the time-series variation. Only a handful of earlier
papers study housing search in the cross-section of multiple market segments (see Head &
Lloyd-Ellis (2012), Williams (2018) and Bruneel-Zupanc et al. (2022)). For our analysis, we
take as a starting point the model by Krainer (2001), consider a version of the model with
multiple market segments that are heterogenous in multiple dimensions, and incorporate the
idea of a spatial equilibrium to model the equilibrium in the cross-section of segments.

In terms of the research question, our paper is closest to the small literature on the deter-
minants of housing liquidity in the cross-section of markets. Genesove & Han (2012) provide
some of the first evidence on the role of buyer search in shaping housing liquidity, demonstrat-
ing howmarket characteristics such as population growth and income contribute to improved
liquidity. Building on this, we offer a more structural interpretation of the data. Our findings
complement their work, as our structural parameters appear to capture heterogeneity in the
same key characteristics of local markets. Jiang et al. (2024) also provide evidence on howmar-
ket characteristics affect liquidity, including as measures of liquidity not only time-on-market
but also price dispersion. The implications of real estate illiquidity on return heterogeneity
and price dispersion are studied in Giacoletti (2021) and Sagi (2021). Other work studying
empirically the cross-sectional variation in housing market liquidity include Famiglietti et al.
(2020), Amaral et al. (2024) and Carrillo & Williams (2019). We contribute to this strand of
literature by documenting new empirical evidence about housing liquidity and search on an
online platform as well as by setting up a model where market segments are interconnected
and liquidity is determined in the equilibrium across all markets.

Regarding data, model and empirical approach, our paper is closest related to three other
papers that also use online search data to study housing markets. Piazzesi et al. (2020), as well
as Gargano et al. (2023) who use a similar approach to them, study household search behavior
with online data including information exactly where a given household searches. In these ap-
proaches, households’ choices on where to search are exogenous and observed. We contribute
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to these papers by modeling households’ choices of search location as endogenous, which al-
lows considering counterfactuals where search locations may also change. Kaas et al. (2024)
incorporate dynamics to a spatial search model in order to decompose house price changes
across local markets to variation in supply factors, demand factors and surplus sharing fac-
tors. Our approach is different and complementary in that in our model, value functions such
as the value of selling are endogenous, which allows us to study how they respond to changes
in primitives. Moreover, we complement these three papers by studying a different question
as we emphasize heterogeneity in housing liquidity across local markets.

2 Data and empirical evidence on housing liquidity

Our empirical application uses data from Finland, where there is significant variation in hous-
ing market liquidity across the metropolitan areas located mainly in the south of the country
and the rural areas in the east and the north. This section presents the main data sources and
then documents observations about the variation of equilibrium housing market liquidity in
the cross-section of market segments that motivate our analysis.

2.1 Data

A search market clears partially through prices and partially through the time on the mar-
ket, so we need data on both. While data on transaction prices and quantities is typically
available from administrative sources (tax records), data on sale times is not, so we rely on
non-administrative data. We use data on housing market liquidity from two sources.

Listing and transaction datasets Etuovi.com is an online house listings website where
individuals and real estate agencies can post listings (advertisements) of houses for sale.
Etuovi.com is the biggest such website in Finland as measured by the number of individual
listings.1 Etuovi.com has provided us information on all the listings posted on their website
between January 2017 and May 2019, but we will restrict our sample to listings posted in 2017
and 2018. For each listing, we observe characteristics like the last listing price before unlisting
and the duration of the listing period, as well as apartment characteristics such as the number
of rooms.

Most data sources on housing contain information primarily on the seller side of the mar-
ket, but in the data provided to us by Etuovi.com, we also observe some information related to

1Etuovi.com is Finland’s leading property listingswebsite asmeasured by the number of listings as of 6.3.2023.
Etuovi.com reached 1.3 million visitors on week 21 in 2020,Markkinapulssi tutkii - kyselyn tulokset (vko 21/2020).
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the searcher side. At the level of each listing, we observe three variables that are informative
about buyer-side search activity: the number of clicks that each listing gathers, the number
of times sellers are contacted by buyers via the platform, and the number of email notifica-
tions sent via the website to subscribed searchers for each new listing. When constructing
our measure of market tightness, we will focus on the email notifications as we think of them
as the least noisy signal of buyer activity (clicks can be very noisy for example in high-end
segments, and contacts can be uninformative if in some segments buyers contact sellers di-
rectly rather than via the platform). The three are, however, highly correlated at the level of
market segments with each bilateral correlation of 0.9 and above.

Secondly, we also use data from the Finnish Federation of Real Estate Agency (KVKL Hin-
taseurantapalvelu)2, who provided us with a dataset on all transactions intermediated by the
member agencies of the organization since the early 2000s. While the listing data contains
information on ask prices, and there is no certainty about whether a transaction eventually
took place, the transaction data contains information on actual transactions. This also means
that we know the final transaction price instead of the ask price. In this dataset as well, we
observe a detailed set of unit characteristics, and in particular information about compulsory
maintenance costs of the units.

Amore detailed description of the data and the sample selection as well as summary statis-
tics for both the listings data and the transaction data are available in Appendix A.1.

Market-level measures As we are interested in describing liquidity at the level of local
markets, we have to decide how to stratify the market into local markets or segments. The
division could be done based on any observable characteristics of the units, but to remain
parsimonious, we focus on two dimensions, geography and size. Starting with geography,
we treat the 15 largest cities as regions on their own. We divide the rest of Finland into 18
groups using administrative regions (maakunnat) in the 2018 classification. The geographic
classification is described in more detail in Appendix A.2. Moreover, we distinguish between
smaller apartments (2 rooms or less) and larger apartments (3 or more rooms), since smaller
apartments often have shorter sale times. As we have 33 geographic regions and 2 size groups,
we end up with 66 market segments in total.

For the purposes of our empirical exercise, we need to measure prices (pm), average sale
times (expected seller time-on-market, denoted E(TOM)m) and the numbers of searchers
and sellers, (nsearchers,m, nsellers,m), at the segment level (subscript m). In our main analysis,

2KVKLHintaseurantapalvelu, www.hintaseurantapalvelu.fi, Kiinteistönvälitysalan Keskusliitto
Ry
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we measure pm by the mean listing price in the segment in the listings data, and E(TOM)m

by the mean listing time in the segment. We also verify that our results are robust to using
transaction times and prices (as opposed to listing times and prices). Our preferred method
for the measurement of the numbers of active sellers and searchers, implying then values for
market tightness, are described below.

Market characteristics We also study the associations of our parameter estimates with
municipality characteristics. These are obtained from two different Statistics Finland open
access databases: Municipality Key Figures database and the Income Distribution database,
for details see Appendix A.3.

2.2 Measuring market tightness

Akey ingredient for our analysis is tomeasuremarket tightness, the ratio of searchers (buyers)
to sellers in a given local market (θm =

nsearchers,m

nsellers,m
), using the listings data. To do so, we

construct measures of the number of active searchers and sellers in each market segment.
Starting with the number of active sellers, we consider the number of active online listings

in a given time period. Since the number of active sellers depends both on the flow of new
sellers and on how long they stay active, we compute the number of active sellers in a given
time period in segmentm as

nsellers,m = nnew listings,m · E(TOM)m (1)

where the number of active sellers is given by the product of the flow of new sellers per period
and the expected duration of a listing. Both the number of new listings per period and the
expected duration of a listing are estimated by sample averages in the listing dataset.

To measure the number of buyers that are actively searching in a given segment, we use
the information from the listing platform on the email notifications sent to subscribers. The
email notifications operate as follows. Individuals can subscribe for email notifications about
apartments responding to pre-determined criteria that they define. Search criteria for these
email notifications include standard housing search criteria; For example, a household may
choose to be notified about all 2-bedroom units in a given municipality. Subscribed searchers
then get a daily or a weekly email containing information on all new listings matching their
search criteria. We observe howmany searchers received a notification about each new listing
in the first week after the listing is posted. The total number of email alerts received per listing
is obviously very high as individuals do receive emails about several listings - many people
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subscribe to such email alerts without necessarily having a serious intention of purchasing a
home, with the intention of following how the market evolves. However, our measurement
builds on the idea that across segments, variation in the number of emails sent is informative
about the variation in the number of searchers, even if the levels might not be informative.

Consider first the total number of notifications sent by the platform in a given period in
a given market. This corresponds to the number of new listings in the market, nnew listings,m,
multiplied by the number of email notifications sent out per each listing in that market,
nnotifications sent per new listing,m (the latter is estimated by the sample average). For example,
if there are 10 new listings in a segment in a period and for each new listing, 120 are searchers
notified, then the number of notifications sent is equal to 1200. To link this to the number of
searching households, we assume that each household only searches in one segment at a time
(this will also be true in our model), and all households searching in a given segment want to
receive as many notifications. If this is the case, then by simple accounting it has to be that
the number of emails received by searchers is given by the number of searchers, nsearcher,m
times the number of notifications per searcher, nnotifications received per searcher,m. Because the
number of notifications sent must be equal to the number of notification received, we have
that

nnotifications sent per new listing,m · nnew listing,m︸ ︷︷ ︸
total notifications sent in segment m in given period

= nsearcher,m · nnotifications received per searcher,m︸ ︷︷ ︸
total notifications received in segment m in given period

(2)

⇒ nsearcher,m =
nnotifications sent per new listing,m · nnew listing,m

nnotifications received per searcher,m
(3)

The quantities on the right-hand side of this equation are observed with the exception of
nnotifications received per searcher,m, the number of email notifications that buyers want to receive
in different segments, which is unobserved.

We proceed by making an assumption on how many emails searchers want to receive
in different segments. One alternative would be to assume that no matter in which market
segment a household searches, they will always choose to receive a constant number of new
notifications per period (for example, if there were two markets, ”urban” and ”rural”, then
households searching in either would be receiving as many emails per week). We think, how-
ever, that it is more realistic to assume that in more busy markets, searching households are
following the market more intensively. To capture this, we assume that the number of emails
that a searching household is willing to receive in segment m is proportional to the inverse
seller time-on-market (as we view a shorter seller time-on-market as indicative of a more busy
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market):

nnotifications received per searcher,m = ω E(TOM)−1
m (4)

We set ω in order to make sure that the aggregate number of selling households in a period
equals the aggregate number of searching households, implying ω ≈ 175. This means that
for example for a market segment where the seller time-on-market is 17 weeks (the average
across market segments in our sample), buyers would behave by setting their search criteria
on the website so as to receive email information about approximately 10 new listings each
week.

Local market tightness for market m follows then directly from setting θm =
nsearchers,m

nsellers,m
.

An attractive implication of the parameterization in equation (4) is that the implied tightness
measures are proportional to the observed number of email notifications only;3

θm
θm′

=
nnotifications sent per new listing,m

nnotifications sent per new listing,m′

This means that the resulting variation in the tightness measure across markets reflects only
the variation in the observed number of email notifications across markets - not, for example,
variation in listing times across markets.

In summary, we have first used the observed quantities directly to produce an estimate
about the number of active sellers in a given segment in a given time period. After that, we
have used the observed data about howmany email notifications are sent out per a new listing,
together with a behavioral assumption about how many notifications a searching household
wants to receive, to produce an estimate for how many households are searching in a given
segment in a given time period. We next summarize the variation in the resulting tighntess
measure, which ranges approximately between .5 (two times more sellers than buyers) and
2.5 (five times more buyers than sellers). Appendix A.2 summarizes our tightness measure in
more detail.

3This can be seen by reorganising equations (1) and (3) as follows:

θm =
nsearcher,m

nseller,m
=

nnotifications sent per new listing,m · E(TOM)−1
m

nnotifications received per searcher,m
=

1

ω
nnotifications sent per new listing,m
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2.3 Empirical Evidence on Housing Liquidity

Figure 1 presents the empirical evidence that is the starting point of our analysis. It depicts
the variation in three key outcomes at the level of local markets: Prices, listing times and
market tightness. The purpose of our modeling exercise that will follow is to understand how
these three variables are jointly determined in equilibrium in the cross-section of segments.

Negative correlation between prices and sale times Figure 3a summarizes the cross-
sectional correlation between mean listing prices and mean listing times. The first notable
feature in the data is that there is substantial heterogeneity in both. Prices in the most expen-
sive segments are more than 8 times higher than prices in the least expensive segments. The
longest listing durations are almost 6 times longer than the shortest ones. A second notable
feature is that there is a clear negative correlation between listing prices and listing times:
The unweighted correlation coefficient is -0.83 for small and -0.77 for large units. The nega-
tive correlation suggests that, across markets, some are better off, resulting high prices and
short listing times, while others are more disadvantaged, with lower prices and longer listing
times. As documented earlier, the time series depicts similar variation: In economic booms,
prices are high and sale times are short, and in downturns, prices drop and liquidity declines
(Krainer, 2001).

The negative association between prices and times-on-market across market segments
obviously need not be causal since it results from an equilibrium. Standard search theory
suggests that there is a tradeoff between longer sale times or lower sales prices. Moreover,
the negative association between prices and sale times is not true for all dimension by which
the housing market is segmented, such as unit size. In our data, within geographic markets,
there is an opposite relationship between mean prices and mean sale times across apartments
of different sizes: Smaller apartments have lower prices but also shorter sale times than large
ones in the same location (in Figure 3a, this is illustrated for the city of Helsinki). In other
words, there is a negative relationship between prices and sale times across locations but for
a fixed unit size, but on the other hand, within locations but across unit sizes, the relationship
is positive. This highlights that to realistically capture the cross-sectional heterogeneity in
the data by a model, markets need to differ from one another in more than one dimension of
heterogeneity.

Tightness and sale times Figure 3b describes the cross-sectional relationship between our
estimate for market tightness and listing times. By construction, the tightness measure ranges
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from below 1 to above 1 (as we require that the aggregate steady state number of searchers
equals the aggregate number of sellers). There is a clear negative association between tight-
ness and listing times (the unweighted correlation coefficient is -0.79 when pooling small and
large units together, and in a regression of listing times on tightness, R2 is above 0.62). This
suggests that our measure of tightness can alone explain a lion’s share in the variation of list-
ing times. Moreover, unlike for prices, the negative correlation between tightness and listing
times is true both within locations across unit sizes and across locations for a fixed unit size.

Since buyer search activity, as measured by the tightness, seems to be a key variable for
understanding the variation in liquidity, we next proceed to set up a model where tightness,
prices and sale times are jointly determined in equilibrium as functions of the structural char-
acteristics of different markets.
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Figure 1: Prices, sale times and tightness at the level of local markets.

Notes. The figures are based on listing data from Etuovi.com. A unit of observation is a local market as defined
in Section 2.1. The size of the circle is proportional to the number of listings.
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3 Model

To understand how sale times are associated with prices in the cross-section of market seg-
ments, we model a housing market that can be partitioned into distinct but interconnected
local markets (also called ”segments” for simplicity). Within a local market, the model struc-
ture is inspired by Krainer (2001), but we allow households to choose where they search, gen-
erating linkages between different market segments. Prices, expected sale times and market
tightness are jointly determined in the equilibrium across all segments.

All proofs for this section are presented in Appendix B.

3.1 Environment

There are Nhouses houses and Nhouseholds households in the economy. The housing market
is partitioned into M subsegments and each house in the economy can be assigned to one of
them, so each segment has nhouses,m houses. A household that is matched to a house in market
segment m receives a housing dividend, an instantaneous utility of housing consumption
every period, given by

dim = xm + σmεi

where xm is the systemic component in market m, representing the value housing services
that all households agree on, and εi is a mean-zero idiosyncratic match-specific component
for the house-household pair i, so σmεi captures households’ idiosyncratic preferences for
house-specific attributes.

Trades take place because each period, a household might receive an exogenous moving
shock and become mismatched with their current house. If a household receives a moving
shock, which happens with probability 1−π (where π is the probability that a match persists
from a time period to the next one), they stop receiving flow utility from their current house.
Once a household receives a moving shock, they immediately put their house up for sale in
the market segment m where it is located, and start searching for a new house. Selling and
buying are separate actions and can happen in any order. When a searching household meets
a seller and visits a house, an εi is drawn from a distribution characterized by a cumulative
distribution function F (ε). Because ε represents independent draws for quality, we assume
that ε ∼ N(0, 1). If the searching household chooses to buy in the current period, they start
receiving housing dividend xm+σmεi in the next period. If a buyer chooses not to buy in the
current period, they continue searching in the next period.
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Houses are tied to the segment m in which they are located. Sellers face a flow cost cm
at every period they are trying to sell their unit. Sellers wait for potential buyers to arrive to
them, and this happens with probability δm(θm) in each period. This meeting probability is
a function of market tightness, θm =

nsearchers,m

nsellers,m
. If a seller meets with a potential buyer, the

buyer draws εi. Seller does not observe εi, but observes all other information, and conditional
on meeting a buyer, makes the buyer a take-it-or-leave-it offer at price p.

The value of having a house on the market for sale in segmentm writes

qm = cm + β
{
(1− δm(θm))qm + δm(θm)max

p

[
µ(p)p+ (1− µ(p))qm)

]}
(5)

where cm is the flow cost of selling, β is the discount factor, δm(θm) is the probability of
meeting with a buyer, and p is the take-it-or-leave it price that the seller sets conditional on
havingmet a buyer. µ(p) is the belief that the seller has about the probability of the transaction
happening, given the price that they have set, and it reflects the tradeoff that sellers face
- conditional on having met a buyer, setting a higher price implies a lower probability of
transacting.4

The seller sets the price optimally to satisfy

pm = argmax
p

{
µ(p)p+ [1− µ(p)]qm

}
(6)

taking as given the value of selling in the segment. Therefore, the optimal pricing rule pm
must satisfy the necessary first-order condition,

∂µ(p)

∂p
p

∣∣∣∣
p=pm

+ µ(p)

∣∣∣∣
p=pm

− qm
∂µ(p)

∂p

∣∣∣∣
p=pm

= 0 (7)

The equilibrium price which satisfies this first-order condition also satisfies the sufficient
second-order condition (see Appendix B). The seller’s optimal decision rule is hence to sell
for the first household willing to pay the price pm.

Searching households, or buyers, are mobile. When a household has become mismatched
with their former house, they choose in which out of the M segments to search for a new
house. After they have decided where to search, matching is random, and buyers in segment
m meet with sellers with probability λm(θm). The value of searching for a new house in

4Implicitly, there could be market-makers that would purchase houses from sellers for the price qm as soon
as sellers become mismatched and that would then take care of selling the houses.
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segmentm is given by

sm = um + β
[
λm(θm)Eεmax[vm(εi)− pm, sm] + (1− λm(θm))sm

]
(8)

where um is the flow utility that households receive while they search in segment m (repre-
senting the flow utility while renting). If a searching household meets with a seller, they draw
ε from F (ε). If they choose to buy the unit, they make the transfer pm to the seller and start
receiving housing dividend xm+σmεi in the next period. If a buyer chooses not to buy in the
current period, they continue searching in the next period.

Moreover, because buyers are free to choose where they search, in equilibrum they must
be equally well off in all locations. If not, some searchers would switch to market segments
offering higher value of search, congesting that market until utilities would be equalized ev-
erywhere. Thus, the equilibrium value of search cannot depend on the location, and is denoted
by s.

vm(εi) is the value of having a match with dividend xm + σmεi. This consists of the flow
utility of a match, xm + σmεi, and the dynamic value of either remaining matched to that
house or receiving a moving shock:

vm(ε) = xm + σmε+ β
[
πvm(ε) + (1− π)(qm + s)

]
. (9)

where with probability π the match persists next period and the agent receives v again. On
the other hand, with probability 1−π the match is broken, in which case the agent no longer
receives housing utility but gains the value of selling a house qm and the value of the search
option s.

vm(ε) is increasing and linear in ε, so there exists a reservation value ε̃ such that the buyer
is indifferent between buying the house they have visited in the curret period or searching
for another period,

v(ε̃m)− p = s, (10)

ε̃m(p) =
1− βπ

σm
p− 1

σm
xm − (1− π)β

σm
qm +

1− β

σm
s. (11)

The last equation is derived from equation (9) and equation (10). The buyer’s optimal decision
rule is to purchase the first house for which they draw a match value εi > ε̃m. The probability
that the searcher trades, conditional on having met a buyer, is the probability of drawing a
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value above the threshold ε̃m,
1− Fε(ε̃m) (12)

Finally, we assume that in equilibrium, sellers have rational expectations: Their belief about
selling in a period conditional on the price they set, µ(p), will be correct so that this probability
will indeed be the probability that the buyer will purchase the house,

µ(pm) = 1− Fε(ε̃m) (13)

This gives us the derivative of µ that we need in equation (7):

∂µ(p)

∂p
= −f(ε̃(p)) ∗ ∂ε̃(p)

∂p
= −1− βπ

σm
f(ε̃(p)) (14)

3.2 Equilibrium

Flow equations The number of households in the economy, Nhouseholds, as is the number
of houses in each segment, nhouses,m, are fixed. Houses are in each period either occupied by
matched households or held by sellers trying to sell them,

nhouses,m = noccupied,m + nunoccupied,m

Households in segmentm are either matched with houses or searching for a new house,

nhouseholds,m = nmatched households,m + nsearchers,m.

Note that it may be that Nhouses ̸= Nhouseholds or that nhouses,m ̸= nhouseholds,m as there is an
implicit rental sector which can accommodate the unmatched households.

Congestion in the intersection of market segments For the value of search to balance
betweenmarkets, there needs to be a congestionmechanismwhich ensures that not all house-
holds will want to search in the same segment. This is achieved by allowing meeting prob-
abilities δm and λm (and therefore also equilibrium prices) to depend on market tightness
in segment m, the ratio of buyers to sellers in the segment. When households are allowed
to choose where to search, market tightness in each segment becomes endogenous not only
through search times but also the choice of where to search. Searchers choose where to search
by trading off expected value of a match, net of the price, relative to the match-finding rate,
and this will determine the equilibrium tightness in all segments.

Notice that when sellers make pricing decisions and buyers make purchase decisions, they
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do not internalize the effects that these decisions have on local market tightness. Since pricing
and purchasing decisions are made after the period’s meetings have realized, sellers will not
set prices so as to attract more buyers into the segment. Sellers only trade off the probability
of selling with a lower price given a level of market tightness.

Assumption 3.1. (Congestion mechanism.) The meeting probabilities δm and λm are known

functions of the market tightness θm and a meeting technology parameter αm, such that: ∂δ∂θ > 0,
∂λ
∂θ
< 0, and lim

θ→0
δ(θ) = 0, lim

θ→0
λ(θ) = 1, lim

θ→+∞
δ(θ) = 1 and lim

θ→+∞
λ(θ) = 0, and for fixed θm,

both probabilities are monotone in αm.

For our numerical and empirical exercises, we use a functional form similar to Díaz et al.
(2024), where the number of meetings in a segment is given by

nmeetings,m =
(
n−αm
sellers,m + n−αm

searchers,m

)− 1
αm

where αm > 0 is a matching technology parameter. This implies that the rate at which sellers
meet buyers and the rate at which buyers meet sellers are given by

δ(θm;αm) =
nmeetings,m
nsellers,m

= (1 + θ−αm
m )−

1
αm

λ(θm;αm) =
nmeetings,m
nsearchers,m

= (1 + θαm
m )−

1
αm =

1

θm
δ(θm;αm)

These meeting probabilities satisfy the conditions required in Assumption 3.1. Holding θm
fixed, both meeting probabilities increase with the meeting technology parameter αm.

Equilibrium in the intersection of market segments Under assumption 3.1, meeting
probabilities λm and δm are functions of an exogenous parameter αm and the market tight-
ness in segment, θm. Each market segment is now characterized by exogenous parameters
xm, um, cm, σm, αm, and nhouses,m. In equilibrium, θm adjusts such that each market segment
offers the same utility to searchers. The endogenous elements to be determined in equilibrium
are (pm, qm, sm, ε̃m, µm, nsellers,m, nsearchers,m) ∀m.
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Definition 3.1. (Stationary Spatial Equilibrium.) Given market-invariant parameters β and π,

a vector of segment characteristics (xm, um, cm, σm, αm), ∀ m, the number of houses in each

segment nhouses,m ∀m, the aggregate number of households in the economy Nhouseholds, and a

functional form governing δm(θm;αm) and λm(θm;αm), the stationary spatial equilibrium of

the economy is a vector (pm, qm, sm, ε̃m, µm, nsellers,m, nsearchers,m) ∀m such that:

1. In each segment, the price p, the value of selling q, the value of searching s, the threshold

dividend ε̃, and the sellers’ belief on the probability of selling µ, are such that they satisfy

equations (5), (7), (8), (10) and (13).

2. The value of searching is equal across all markets and denoted by s: sm = s ∀m.

3. In each market segment, the number of houses sold in a period equals the number of houses

bought,

δm(θm;αm)µmnsellers,m = λm(θm;αm)(1− F (ε̃m))nsearchers,m

⇒
δm
λm

=
nsearchers,m
nsellers,m

= θm

4. In each segment, the flow of households from the matched state into the selling state in a

period equals the flow of households away from the selling state,

(1− π) · nmatched households,m = δm · µm · nsellers,m

5. The total number of matched and unmatched houses and households are consistent with

the aggregate constant quantities,

nhouses,m = nmatched households,m + nsellers,m ∀m

nhouseholds,m = nmatched households,m + nsearchers,m ∀m∑
m∈M

nhouseholds,m = Nhouseholds.

The equilibrium is symmetric in the sense that all sellers in market m charge the same price
and all buyers in marketm adopt the same purchasing rule.

Consider next the solution to the equilibrium. We show next the structure of the equilib-
rium by which Definition 3.1 can be tranformed into a substantially simplified structure.

Lemma 3.1. Under assumption 3.1, the spatial equilibrium of the economy is characterised by

(2M + 1) equations in (2M + 1) unknowns (θm∀m, ε̃m∀m, s):
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β

1− βπ
(γ(ε̃m, θm) + λ(θm)z(ε̃m) + am) = ε̃m ∀m, (15)

σmλ(θm)z(ε̃m) =
(1− β)(1− βπ)

β

[
s− 1

1− β
um

]
∀m, (16)

M∑
m=1

1− θm

1 + δm(1−F (ε̃m))
1−π

nhouses,m = Nhouseholds −Nhouses (17)

where
z(ε̃m) = Eε((ε− ε̃m)1{ε>ε̃m)) = f(ε̃m)− ε̃m(1− F (ε̃m)) (18)

γ(ε̃m, θm) =
1− βπ

β

1− F (ε̃m)

f
(ε̃m) + δm(θm)

(1− F (ε̃m))
2

f(ε̃m)
, (19)

am = −1− βπ

βσm
(xm + um) (20)

Proof. The proof is presented in Appendix B.

Equation (15) corresponds to part 1 of Definition (3.1), and is related to market-clearing within
a single segment. Equation (16) corresponds to part 2 of Definition (3.1), requiring that the
value of search does not depend on m. Equation (17) corrresponds to parts 3-5 of Definition
(3.1) and implies aggregate market clearing in the sense that the numbers of searchers and
sellers in the equilibriummust be consistent with the exogenous aggregate numbers of houses
and households.

Proposition 3.1. (Spatial Equilibrium Existence and Uniqueness.) Given a value of search s,

which satisfies s > 0 and a feasibility constraint s ≤ smax, under assumption 3.1, a solution in

(θm, ε̃m) to equations 15 and 16 exists and is unique. A solution will not exist if s > smax.

Proof. The proof and the characterization of smax are presented in Appendix B.

Proposition 3.1 tells us that given an equilibrium value of search, s, there is a unique
possible combination of a market tightness (given by θm) and a solution to the within-segment
equilibrium (determined by ε̃m) that satisfy the equilibrium equations (15) and (16) . Thus,
given an equilibrium value of s, the equilibrium is unique. Only values of s up to an upper
bound smax that depends on the structural parameters may be considered. For example, if
the values of the structural parameters are not very favorable to searchers, then a very high
value of s is not feasible as an equilibrium outcome. The condition for existence is presented
in Appendix B.

Aggregate market clearing Consider next the general equilibrium (or aggregate market
clearing) in the sense that the endogenous numbers of searchers and sellers are consistent
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with the exogenous numbers of houses and households. From Proposition 3.1, the solution in
θm, ε̃m is unique given a value of search s. However the proposition does not make the case
that there cannot be multiple different equilibria for different feasible values of s.

However, it is possible to use equation (17) to verify that only one s satisfies the aggregate
market clearing in the equilibrium definition, which then guarantees the uniqueness of the
general equilibrium. Equation (17) establishes a link between the aggregate numbers of houses
and households, which are exogenous, and the equilibrium value of search. For given values
ofNhouses andNhouseholds, Equation (17) simply requires the equilibrium value of search must
be such that numbers of searchers and sellers which are implied by the solution characterized
by Proposition 3.1 are consistent with Nhouses and Nhouseholds.

When solving the equilibrium, it is therefore possible to proceed by making a grid on the
feasible range of possible values of s and solving the implied equilibrium from equations (15)
and (16) for each gridpoint. By Proposition 3.1, the solution for a fixed s is unique. One can
then choose the value of s among the gridpoints such that equation (17) holds. Although we
have no proof of uniqueness of the solution to this equation, uniqueness can be verified on a
case-by-case basis via this tractable procedure. Furthermore, we have never found multiple
solutions to this equation. In practice, it turns out that the left-hand side of equation (17) is
always increasing in s, and the right-hand side is fixed. Thus this equation pins down a unique
value of s on the grid and therefore pins down a unique general equilibrium.

The algorithm we used to solve the model is described in Appendix C. An attractive fea-
ture of the equilibrium characterisation and the solution algorithm is that the endogenous
quantities in segment m depend on the parameters of other market segments only via the
equilibrium value of search s. This makes the solution very quick to derive when compared
to an a strategy where equilibrium in a givenmarket would depend directly on the parameters
of all markets. With the strategy that we propose, we only need to consider market clearing
equations for one location at a time, after which we verify aggregate market clearing.
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3.3 Comparative Statics

This section reports simple numerical comparative statics from the model to illustrate the
equilibrium interconnection between different market segments. To do so, we report equilib-
rium outcomes from a 2-location quantification of the model.

In the example, the economy consists of 2 cities, m ∈ [1, 2] which are identical in the
baseline. We set x1 = x2 = 200, u1 = u2 = 0, c1 = c2 = 0, σ1 = σ2 = 2, α1 = α2 = 0.5,
and β = 0.999, π = 0.9985. Both cities have an equal number of houses and the aggregate
number of houses equals the aggregate number of households. We then vary one dimension
of heterogeneity in city 1 at a time. The characteristics that vary is x1 in Figure 2a, c1 in Figure
2b, σ1 in Figure 2c andα1 in Figure 2d. Each figure has subpanels which report the equilibrium
prices (left panel), seller expected time-on-market (middle panel) and tightness (right panel).
Through searcher mobility, changes in the characteristics of one location can also affect the
outcomes of the other location. Note that curves are intersecting at the baseline when cities
are identical.

For instance, Figure 2a illustrates how prices, sale times and market tightness vary in each
of the two cities as functions of housing quality in city 1, x1. Changes in the housing quality in
city 1 clearly have an effect on prices and sale times in city 1: More valuable housing services
translate into higher demand, which is then reflected as both higher prices and shorter sale
times (or better liquidity for sellers). Moreover, the value of housing services in city 1 also
affects the equilibrium outcomes in city 2. In particular, higher housing quality in city 1
translates all else equal to longer sale times (and lower liquidity) in city 2. Figures 2b, 2c and
2d document similar variation in outcomes when c1, σ1 and α1 vary. Qualitatively, prices are
most sensitive to x, but listing times (and thus liquidity) are also sensitive to σ and α.
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(a) x1, the average housing quality in city 1, varies.
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(b) c1, the holding cost in city 1, varies.
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(c) σ1, the dispersion of idiosyncratic housing valuations in city 1, varies.
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(d) α1, matching efficiency in city 1, varies.

Figure 2: Prices, sale times and tightness as functions of a varying characteristics in city 1.

Notes. As a baseline, we set β = 0.999, π = 0.9985, u1 = u2 = 0, c1 = c2 = 0, σ1 = σ2 = 2, α1 = α2 = 0.5,
and x1 = x2 = 200, and then vary one characteristic at a time for city 1.
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4 Identification and Estimation

The challenge for identification and estimation in spatial models or multi-segment models in
general is that the parameter space can be very large. For example, in our case, each segment is
characterised by a vector xm, um, cm, σm, αm, nhouses,m, making the parameter vector 6×M -
dimensional. Therefore, GMM-based methods using grid-search over the parameter space are
generally speaking unfeasible. We follow the spatial economics literature and take the model
to data by inverting model counterparts.

We treat as observed four market characteristics for each market segment: The price pm,
the expected seller time on the market E(TOM)m, and the number of active sellers nsellers,m
and buyers nsearchers,m. We show that under certain assumptions, these segment-level observ-
ables map to segment-level parameters, allowing us to recover a parameter vector describing
each segment.

All proofs for the propositions of this section are listed in Appendix D.

Calibrated parameters We start by fixing exogenously some of the model parameters.
We set the discount factor at β = 0.999, consistent with an annual discount factor of 0.95,
if we consider a model time period to be a week. We also fix the match persistence rate at
π = 0.9985, consistent with a household moving on average every 14 years. This is set so
that the aggregate number of houses implied by the model is approximately consistent with
the number of owner-occupied houses in Finland.5

Next, we calibrate um and cm, the flow utilities (or costs) while searching for a new house
and while selling. We set um = 0 ∀m. Implicitly, renting is competitively priced such that
rent equals the flow utility of living in a rental unit and therefore the net utility of renting is
zero. Thus, even if locations might differ in the value of housing services that they provide to
searching (renting) households, absentee landlords are able to extract that surplus fully from
households in the form of rent.

To set cm, we abstract away from costs related directly to selling units, such as the disu-
tility from orgainsing property viewings, and focus on unit maintenance costs that a seller
has to pay even when the unit is unoccupied. To estimate these costs, we use the informa-
tion available in the transaction dataset (KVKL) on building maintenance charges. In Finland,
the owners of units in multi-unit buildings have to pay monthly maintenance charges (hoito-

5The model-consistent number of houses is given below by Equation 21. The data together with this choice
of π imply Nhouses ≈ 1, 500, 000. According to Statistics Finland, there were approximately 1,700,000 owner-
occupied houses (or owner-occupier households) in Finland in 2018. We intentionally target a slightly lower
value, since our measure for the number of sellers is constructed using the listing data and therefore might
underestimate the real number of sellers.
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vastike) to building cooperatives. The building cooperative then uses the income to pay for
expenses such as unit heating, building garbage removal, building management fees, et cetera.
The owner of a unit must pay these fees even if the unit is unoccupied, and thus they do re-
flect at least to an extent the costs of holding a vacant unit for sale. We set cm as the average
maintenance charge in market m. The downside of using maintenance charges to estimate
cm is that they are only observed for units in multi-family housing (in single-family housing,
each owner makes their own arrangements for maintenance, and the costs are not reported
in sales or listings data). Thus, we assume that the cost of holding a single-family unit vacant
is not too different from the cost for units in multi-family housing (realistically, this is likely
underestimating the maintenance costs of single-family housing). The calibrated values for
cm are approximately proportional to prices and the average annualized maintenance cost is
on average 2% of the average listing prices. Appendix Table A2 summarizes these costs.

Market size One of the primitives characterizing each market is market size as measured
by the number of houses in each market; nhouses,m. To recover them, we use flow equations
and information on the number of sellers in each segment, which we treat as observed (for the
details on the measurement, please see Section 2.2). Moreover, when the number of houses
are recovered, then the aggregate number of households, Nhouseholds, follows directly from
information on the aggregate numbers of houses, searchers and sellers. (Note that we have
constructed our measure of nsearchers,m in a way that guarantees that Nsearchers = Nsellers,
which using Appendix Equation 128 implies also that Nhouses = Nhouseholds.)

Proposition 4.1. (Number of houses and households.) The segment size, asmeasured bynhouses,m,

can be recovered from observed values of nsellers,m and E(TOM)m:

nhouses,m = nsellers,m ·
[
1 +

1

(1− π)E(TOM)m

]
(21)

where the right-hand side quantities are observed. The aggregate number of houses,Nhouses, then

follows immediately. The aggregate number of households, Nhouseholds, follows from Nhouses,

Nsearchers and Nsellers.

Proof. Please see Appendix Section B.1.3. The number of sellers can be mapped to the model-
consistent market sizes (number of houses in each segment) through the flow equation 120.
Nhouseholds is directly implied by equation 128 ifNhouses,Nsearchers andNsellers are known.

Identification of parameters given s̄ and structural constraints Next, we show how
to recover xm, σm, αm from data on pm, E(TOM)m and θm =

nsearchers,m

nsellers,m
, given the value of
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search s̄. Given s̄, we have 3 ×M equations for 3 ×M unknowns, and the order condition
for identification is satisfied. We next explore if other constraints limit the degree of identi-
fication. This turns out to be the case: The model structure imposes additional requirements
on parameters, in particular from requiring that all model-implied probabilities are bounded
between 0 and 1. The implied structural constraints are developed in Appendix D.

Proposition 4.2. (Structural constraints.) Solutions to the model exists and respect that proba-

bilities are bounded between 0 and 1 if and only if

E(TOM)mθm ≥ 1. (22)

Furthermore, solutions ε̃m are well defined if and only if s̄ ≥ 0 respects the following bound:

(1− β)(1− βπ)

β
s̄ ≤ min

m
(ϖmψ(ε̄m)), (23)

in which variables ϖm and ε̄m as well as function ψ(.) are defined in the proof.

Proof. See Appendix D.

Under these conditions, we can now properly invert the model and recover segment-
specific parameters.

Proposition 4.3. (Model inversion.) If the data-generating process is the one described in Defini-

tion 3.1 and verifies Proposition 4.2 and if s is given and verifies the bound written in Proposition

4.2, then parameters describing each market segment, (xm, σm, αm) can be point identified as

nonlinear transformations of data on pm, E(TOMm), θm.

The proposition states that fixing the value of search s within proper bounds, it is possible to
back out 3×M parameters. This is straightforward using model counterparts of the observed
quantities. In other words, Proposition 4.3 allows us to back out exactly the parameters that
would generate the observed data if the data generating process was the model of section 3.

Calibrating s in the identified interval Our model inversion argument in Proposition 4.3
takes the value of s as given, but the structural constraints in Proposition 4.2 imply only a par-
tially identified interval of feasible values for s instead of a point-identified value. Therefore,
to implement the model inversion in practice, one needs to calibrate the value of search within
the partially identified set. Then, using Proposition 4.3, the remaining parameters are well-
identified. Since there is only one quantity which needs to be calibrated within the identified
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interval, and this calibration implies the full remaining parameter vector, it is straightforward
to then characterize the sensitivity of the results to the calibrated quantity.

There are multiple possible methods for calibrating s within the partially identified inter-
val: one alternative is to calibrate s directly. Another alternative is to exogenously calibrate
a single parameter in one market segment. For example, fixing σ to a constant in one market
segment would recover point identification for s. An alternative, which we follow here, is to
fix the meeting probability δ to an exogenously set constant in a single segment, which also
recovers point identification for s.

Proposition 4.4. (Fixing s.) If the data-generating process is the one described in Definition

3.1, then calibrating δ0 for a single segment 0 together with observed data p0, E(TOM)0 and θ0

implies an equilibrium value of search, s.

Proof. See Appendix D.

Fixing δ0 to an exogenously set constant implies a value of search for that segment, s0. By
Definition 3.1, this has to be the equilibrium value of search everywhere, so s is recovered.

Using constraint (23) in Proposition 4.2 and data on pm, E(TOM)m and θm ∀m implies an
upper bound for the identified interval of s given by 60,215 euros. The market segment where
the constraint of equation 23 is binding is the market for small housing units in the third-
largest metropolitan area in Finland (city of Turku). In this segment, selling units is relatively
easy: The seller time-on-market E(TOM) is the second-lowest in our sample data, market
tightness θ is high, but prices are low compared to locations such as the capital Helsinki. In
our baseline calibration, we set δ0 = 0.5 for that market. This is to reflect that on this market,
it is relatively easy for sellers to meet prospective buyers: By assumption, a seller meets a
new prospective buyer in expectation every two weeks. This implies a value of search equal
to s = 54, 429 euros. We consider alternative calibrations for s in Appendix E.1 and show
that the results are not very sensitive to the choice of δ0.

Summary We have shown that all the model primitives needed to compute the equilib-
rium, (xm, σm, αm, nhouses,m) can be recovered from data on pm, E(TOM)m and nsellers,m,
nsearchers,m and calibrated parameters β, π, um ∀m, cm ∀m and δ0.
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5 Results

This section starts by summarizing our parameter estimates, proceeds with analysing how
they are associated with market characteristics, then reports some measures for the welfare
costs of illiquidity and finally reports results from some counterfactual experiments.

5.1 Parameters

The housing market of the entire country is divided into 66 distinct but interconnected seg-
ments as described in Section 2.1. For each of these segments we are able to identify the
structural parameters of interest (xm, σm, αm) as well as the equilibrium meeting probabili-
ties (δm, λm) as nonlinear transforms of the original data, as summarized in Section 4. In our
baseline calibration, we have set δ0 = 0.5 for one segment, implying s = 54, 429.

Table 1 summarizes our baseline results for the segment-specific parameters. The common
component of the housing dividend, xm, which is reported on a monetary scale and should
be interpreted as the flow utility from housing as euros in a week, takes an average value of
approximately 200 euros. This sounds to us like a reasonable number, as it would be consistent
with a monthly housing utility in the order of magnitude of some 800 euros.6 The highest
values of x are unsurprisingly found for large apartments in the capital city Helsinki, where
the quantity corresponds to a monthly value of housing services of approximately 2000 euros.
The parameter σ, which summarizes the dispersion of the idiosyncratic component in housing
dividends, is quite small relative to x, with an average value of 1.33. Small values of σ are
consistent with the idea that households do agree on a large share of the value of housing
characteristics, and preference heterogeneity accounts for only a small proportion of flow
utilities.

Both meeting probabilities λ (e.g. for sellers) and δ (for searchers) are mostly quite small,
leading to relatively large trading probabilities conditional on meeting (µ). These endogenous
trading probabilities differ across markets - in places where the meeting probabilities are high
(mostly small apartments in large towns), the probabilities of transaction conditional onmeet-
ing are low (there is a negative correlation between µ and δ of -0.9). The estimates for α, the
matching technology parameter, are not very heterogenous by segment in levels. However,
even small differences in α can generate important differences in meeting probabilities (for
example, the exercise in Figure 2d illustrates how sensitive seller time-on-market can be with

6Recall that this number should be interpreted as the utility from living in owner-occupied housing, when
living in the rental sector is normalized to give zero net utility to households - if renting and owning are not
very different in terms of utility, we would expect to find quantities in the same order of magnitude as rents.
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Mean p25 p50 p75
x 203.0 144.9 196.3 238.1
σ 1.33 0.98 1.12 1.53
α 0.28 0.24 0.27 0.28
δ 0.08 0.05 0.06 0.09
λ 0.09 0.07 0.08 0.10
Observations 66

Table 1: Summary statistics for the parameters obtained as nonlinear transforms of the original data.

Notes. x, σ and α are model primitives; δ and λ are equilibrium objects, as they also depend on the equilibrium
value of market tightness θ.

respect to α). As we will document below, despite α having a relatively small range, it plays
a significant role in driving differences in liquidity.

We report parameter estimates implied by alternative calibrations of δ0 in Appendix Table
A3. While, of course, the exact numbers are sensitive to the calibration of δ0 and the implied
value of s, we note that qualitatively our results are surprisingly little affected by the calibra-
tion. Our baseline calibration had fixed δ0 = 0.5 for a given location, but when we consider
alternatives ranging from δ0 = 0.3 to δ0 = 0.7, the distributions of the parameter estimates
move very little. For example, the mean values of the parameters are at most modestly af-
fected by the different possible calibrations. To verify that our results are also robust to using
data on transaction prices and times (as opposed to listing times and prices), Appendix Table
A4 reports parameter results when the inversion is implemented using transaction prices and
times. The results are overall similar to our baseline findings.
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5.2 Association with market characteristics

Next we use linear regressions to study how our structural parameter estimates are associated
with different market-level characteristics: population, income and population growth. These
variables are chosen to follow Genesove & Han (2012) who study the associations of these
variables with buyer and seller times on market as well as market tightness. They show, for
example, that higher population at the local market level is associated with shorter seller sale
times. We are interested interpreting these findings through the lens of our model: through
which structural parameter would higher population affect liquidity. For example, locations
with higher population could have better liquidity because they have an efficient meeting
technology (high α) or high housing quality (high x). However, instead of giving these re-
gressions a structural interpretation, we view this as exercise as a means to understand in a
reduced-form sense what kind of variation the structural parameters are capturing.

To have an interpretation for the relative magnitudes of the coefficients, we standardise
both dependent and independent variables to have a mean zero and a variance of 1 in the
sample of market segments. Since we defined a segment by the size of the unit and by the
geography, but themarket characteristics are observed only at the geography level, we include
an indicator that takes value 1 if the observation reflects the small apartments in the location.

Tables 2 and 3 describe these regressions for the housing quality parameter x as well as
for the meeting technology parameter α, which illustrates how easy it is for sellers to meet
potential buyers and vice versa. For the remaining parameters (σm as well as the meeting
probabilities δm and λm), similar regression results are displayed in Appendix E.2. For trans-
parency, Appendix Figure A2 also plots some scatterplots of the raw data to illustrate that the
significance commented in the text is also visible in the raw data.

As one can expect, in Table 2, a larger value of α (associated with faster meetings) is posi-
tively correlated with the average municipality size in the segment. This is possibly related to
thick-market effects, which are not explicitlymodeled. Furthermore, although in the third col-
umn, population growth (average municipality income) is positively (negatively) associated
with α, the coefficients are not significant, which is consistent with α indeed capturingmainly
factors which affect the matching efficiency. Across the different columns, the coefficient for
”small” is positive, indicating that meeting buyers and sellers of small apartment is generally
speaking easier than meeting buyers and sellers of large apartments. This is consistent with
smaller matching frictions for smaller units.

On the other hand, market size, population growth and average incomes are all associated
with higher housing quality parameter x, as illustrated in table 3. In particular, higher average
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(1) (2) (3) (4)
α α α α

Municipality size 0.403 0.244
(0.137) (0.0980)

Population growth 0.426 0.355
(0.139) (0.200)

Household income 0.0646 -0.211
(0.0788) (0.154)

small 0.889 0.889 0.889 0.889
(0.200) (0.197) (0.223) (0.191)

Observations 66 66 66 66

Table 2: Associations of the meeting technology parameter with market segment characteristics.

Notes. The table documents coefficients from an unweighted linear regression of the outcome on indicated
dependent variables. Municipality size refers to average municipality population in the market segment, apart
from single-municipality market segments where it is the actual population in 2018. Population growth refers
to total region population change from 2016 to 2018 relative to 2016 population. Household income refers to
average household disposable income in the region in 2018. Both the independent and the three continuous
dependent variables are standardised to have mean 0 and variance of 1. ”small” is an indicator variable which
takes value 1 for the market segments of apartments of two rooms or less. Heteroscedasticity-robust standard
errors are in parentheses.

incomes are associated with higher x. This is consistent with the idea that the value of housing
services is higher in locations with higher incomes (where, often, also rents would be higher,
for example). The value of housing services is also larger on average in large apartments, as
we would expect, as indicated by the negative coefficient of ”small”.
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(1) (2) (3) (4)
x x x x

Municipality size 0.639 0.427
(0.0852) (0.111)

Population growth 0.564 0.132
(0.0876) (0.0700)

Household income 0.523 0.275
(0.104) (0.0716)

small -1.300 -1.300 -1.300 -1.300
(0.101) (0.126) (0.136) (0.0720)

Observations 66 66 66 66

Table 3: Associations of the housing quality parameter with some market segment characteristics.

Notes. Notes. The table documents coefficients from an unweighted linear regression of the outcome on indicated
dependent variables. Municipality size refers to average municipality population in the market segment, apart
from single-municipality market segments where it is the actual population in 2018. Population growth refers
to total region population change from 2016 to 2018 relative to 2016 population. Household income refers to
average household disposable income in the region in 2018. Both the independent and the three continuous
dependent variables are standardised to have mean 0 and variance of 1. ”small” is an indicator variable which
takes value 1 for the market segments of apartments of two rooms or less. Heteroscedasticity-robust standard
errors are in parentheses.
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5.3 Costs of illiquidity

The model equips us with different ways to measure the costs of illiquidity. The first measure
follows Krainer (2001): If housing is a very liquid asset, then succesfully selling a unit should
not imply a significant change to the seller’s welfare relative to the value of having a unit to
sell. This implies that on a very liquid market, the value of having a unit for sale, qm, should
be close to the sales price, pm. Our first measure of illiquidity is therefore

Discount 1 =
qm
pm
. (24)

The first measure does not take into account the fact that housing illiquidity affects welfare
not only through higher costs of selling but also through a costly search for a new unit. To
account for this, we also consider the disutility when a match is severed. Again, on a very
liquid market, both selling the current home and finding a new one should happen easily,
and so the value one gets when becoming mismatched, qm + s, should not be too far from
the net present value of holding the current match forever. To measure the value of holding
the current match forever, we consider the match value of someone with the lowest possible
equilibrium housing dividend, given by xm + σmε̃m (implying that the discount is a lower
bound for real costs). The second measure for the costs of illiquidity is

Discount 2 =
qm + s

1
1−β

{
xm + σmε̃m

} . (25)

Figure 3 summarizes the two different measures of illiquidity in every segment as a func-
tion of the average listing times. The complement (to 1) of Discount 1, which measures the
gains from a succesful transaction, ranges from 0.5% to 4.3% across local market segments.
The complement (to 1) of Discount 2, which measures the disutility of becoming mismatched
relative to the value of holding current match forever, ranges from 1.2% to 6.8%. Both are,
almost by construction, strongly associated with sale times.7 These are, at least for the less
liquid locations, substantial welfare costs.

7Jiang et al. (2024) note that sale times alone can be a weak measure of liquidity if sales times are short
because holding costs (cm) are high: in this case, transacting happens quickly not because transacting is partic-
ularly easy but because not transacting is very costly. However, since transacting costs are modest and fairly
homogenous across segments, it seems that in our context, using time-on-market as a proxy for illiquidity is
relatively inconsequential.
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Figure 3: Illiquidity discounts from the model and listing times in the data.

Notes. The illiquidity discount measures are given by equations 24 and 25. Each symbol represents a different
local market. Circle size indicates the model-consistent number of houses in each segment.
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5.4 Counterfactual experiments

Counterfactual I The aim of our first counterfactual exercise is to understand which char-
acteristics of markets are the most important drivers of the heterogeneity in liquidity. To do
so, we proceed by setting different parameters (x, c, σ, α) to estimated medians, one at a time,
and after that recomputing the equilibrium and measuring the heterogeneity in sale times as
a measure of illiquidity.

The resulting variation in liquidity is summarized in Table 4. The first line indicates the
distribution of sale times in the data (these are exactly matched in the baseline estimation).
The last line indicates equilibrium sale times when all parameters are constants across markets
- by construction, there is no heterogeneity in sale times left in this scenario. Line 2 shows the
case where c is set to the same value in all markets. Since heterogeneity in c contributes very
little to differences in liquidity, on each of the following lines, c is held at median and, and the
remaining parameters (x, σ, α) are varied one at a time. Lines 3-8 indicate these intermediate
cases where we shut down heterogeneity in two or three parameters at a time.

The first observation from Table 4 is that on rows 3-5, substantial heterogeneity in liquidity
remains when the heterogeneity in the different parameters (x, σ, α) is shut down one-by-
one. This indicates that none of the three parameters alone drive the variation in liquidity
across markets. The variation in α is highly impactful, even though the parameters were
not particularly heterogeneous to begin with. Zooming in on rows 6 and 9 we see that after
shutting down heterogeneity in both x and in α, only little heterogeneity remains in expected
sale times. We interpret this as evidence that in our calibration of the model, housing quality
(x) andmatching technology efficiency (α) are together themost important drivers of liquidity.

Counterfactual II In a second counterfactual, we highlight the importance of accounting
for spillovers between market segments. To illustrate the linkages between segments, we
consider what would happen if some segments, but not all, were to face a demand shock. We
consider an increase in the demand for apartments in urban areas, measured by a 10 % increase
in x, absent changes in the valuation of housing services in rural areas. This could reflect for
example a shift in preferences towards consumption amenities provided by urban markets.
We consider urban areas as the 15 large cities which form their own markets, as listed in
Appendix A.

Table 5 reports changes in equilibrium outcomes from our second counterfactual exper-
iment, relative to the baseline equilibrium (data). As we would expect, prices increase and
sale times decrease in urban areas following the demand shock. Across different urban areas,
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the equilibrium changes are quite heterogenous: Prices are not inceasing by 10% in all urban
segments, but instead they increase by 11-17% depending on the segment. Simultaneously
some of the demand shock translates to improved liquidity in urban areas. These changes
illustrate how endogenous buyer sorting can reinforce the intial effect of the quality change.
The spillovers on rural markets, where there were no exogenous parameter changes, indicate
how they became less attractive in relative terms. Rural prices adjust to the new equilibrium
by declining as θ decreases. Thus, lower relative demand in rural areas is reflected in lower
prices and worse liquidity, although the changes are modest in size. We interpret this as rural
sellers suffering but mainly relative to their urban counterparts.
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E(TOM)
Scenario p25 p50 p75 Mean SD
Baseline (data) 13.3 18.4 21.7 17.7 5.4
Set c to median 13.0 18.2 21.2 17.5 5.5
Set x, c to medians 13.1 16.0 20.1 16.5 5.2
Set α, c to medians 15.4 16.9 19.6 17.3 3.2
Set σ, c to medians 12.2 16.5 19.7 16.0 5.1
Set x, α, c to medians 14.9 16.2 17.0 16.2 1.4
Set x, σ, c to medians 12.3 14.4 19.5 15.2 5.2
Set α, σ, c to medians 14.5 15.4 17.1 15.7 1.8
Set x, α, σ, c to medians 14.8 14.8 14.8 14.8 0.0

Table 4: Counterfactual I: Dispersion in E(TOM) across local markets in different scenarios after shut-
ting down parameter heterogeneity across markets.

Notes. In counterfactual I, parameters are set to medians, as indicated one or multiple at a time, and the equilib-
rium is re-computed. The relevant medians are reported in Table 1 and Appendix Table A2. The table documents
the resulting variation in E(TOM) across market segments.

Urban market segments Rural market segments
mean min max mean min max

Price change, % 13.4 11.1 17.3 -0.9 -1.7 -0.4
Sales time change, % -2.9 -6.8 -1.0 1.4 1.1 1.5
θ change, % 3.6 1.4 7.6 -2.7 -2.8 -2.4

Table 5: Counterfactual II: Changes in the counterfactual equilibrium compared to the baseline.

Notes. In counterfactual II, urban markets experience a 10% increase in mean housing quality x. Rural markets
don’t experience changes in structural parameters. The table documents resulting changes in equilibrium out-
comes relative to the baseline equilibrium.
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6 Conclusions

In this paper, we develop a tractable model of housing search and liquidity in the cross-section
of interconnected market segments. The model is tailored to match key empirical observa-
tions related to the variation of housing liquidity in the cross-section of market segments.
Housing market liquidity can be high if housing quality is high (so that the opportunity cost
of not being matched to a house is high), if there is little idiosyncratic variation in preferences
for housing (so that most buyers do not want to search for a long time before purchasing), if
the matching technology is efficient (meeting probabilities are high), or if the market segment
is endogenously popular (so that there are relatively many potential buyers). Different char-
acteristics of markets affect the local equilibrium directly, by affecting the behavior of agents
in a given segment, but also indirectly by governing where households choose to search and
changing local market tightness.

The model gives us a structured way of interpreting the outcome data on prices, sale times
and tightness, since we can partially identify the parameters of the model as nonlinear trans-
forms of observable data. In our empirical application, we study the housing market in Fin-
land. We show that the mean value of housing services and the efficiency of matching are
key parameters governing the variation in liquidity across markets. Markets where housing
services are valuable are also markets where incomes are high, and markets where matching
is efficient are ones where population is high. These findings allow us to re-interpret some of
the earlier findings on housing liquidity. We then show that in our context, the heterogeneity
in the welfare costs of housing illiquidity are substantial and are in the order of magnitude of
multiple percentage points of sale prices.

One limitation of our setup is that we build on a setup where households are fully mo-
bile across locations. Thus, the framework can be seen as suitable for the analysis of long-
run steady states, and is limited in understanding the role of different frictions such as for
example the role of moving costs in the propagation of shocks. Recent work from Kaas et
al. (2024) makes important steps towards thinking about nonstationary dynamics in spatial
search. Finally, our setup improves on the earlier work on search in the cross-section of mar-
ket segments by endogenizing households’ choice of where to search, but this comes with
some important limitations. For example, as highlighted in the work of Piazzesi et al. (2020),
in reality some households may search across multiple segments, and considering too little or
too much spatial aggregation is not empirically inconsequential.
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Appendices

A Data appendix

A.1 Listing and transaction data

Etuovi.com have provided us with microdata on the listings which are published between
January 2017 and May 2019. Our data is drawn from the database on 16 June 2019. To avoid
issues related to flow and stock sampling, we restrict the sample to the subset of the listings
data that have been published in January 2017 - December 2018. For the houses that had
been listed before 31 December 2018 but not unlisted before June 2019, we do not observe the
actual listing time, only a lower bound of it. However, as this is only a small proportion of
our sample, we abstract away from the related censoring issue, and use the observed lower
bound as an estimate for the sale times of the censored units.

The transaction dataset is provided to us by The Finnish Federation of Real Estate Agency
(KVKL). While we observe transactions intermediated by the member agencies over a longer
time period than for the listings data, we focus on transactions that took place in 2017 or 2018
to be consistent with the listings data. Although the first dataset contains information on
listings (which might be different from eventual transactions) and the second one on transac-
tions, both datasets indicate qualitatively similar findings about the cross-sectional variation
in housing market liquidity (at the segment level, the correlation of prices and sale times in
both datasets is above 0.9).

For both datasets, we exclude new apartments, as the sales strategies of real estate devel-
opers could differ from those of households. We also remove outliers in terms of the price,
apartment size, and sale time, and observations with missing price or sale time information.
Throughout, we exclude Aland islands from the analysis. To measure prices, we consider the
price net of any housing cooperative debt whenever this information is available.

Table A1 provides summary statistics for the microdata from Etuovi.com and KVKL. The
listing dataset contains more than 229 000 observations and the transaction dataset more than
117 000 observations.
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Listing data Transaction data
mean p50 sd mean p50 sd

Time on the market (days) 111 77 121 92 57 109
Price (1000 euros) 189 154 150 178 150 128
N 229462 117206

Table A1: Summary statistics for listing and transaction microdata.

Notes. Listing data from Etuovi.com and transaction data from KVKL. In the listings data, the price refers to the
listing price and the time on the market to the time for which the listing was online. In the transaction data,
the price refers to the final transaction price and the time on the market refers to the time between the sales
start date and the transaction date. For both datasets, prices are indicated net of any cooperative debt when
applicable. p50 refers to the median.

References:

Listing data: Etuovi.com, Alma Mediapartners Oy

Transaction data: KVKL Hintaseurantapalvelu, www.hintaseurantapalvelu.fi, Kiinteistönväl-
itysalan Keskusliitto Ry
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A.2 Summary statistics of market segment-level data

The main empirical analysis is conducted in a cross-section of 66 market segments, where
the segmentation is based on geography and apartment size. For the geographic divisions,
wee treat the 15 largest cities as regions on their own. These cities are Helsinki, Espoo, Tam-
pere, Vantaa, Oulu, Turku, Jyväskylä, Kuopio, Lahti, Pori, Kouvola, Joensuu, Lappeenranta,
Hämeenlinna and Vaasa. We divide the rest of Finland to 18 groups using administrative re-
gions (maakunnat) in the 2018 classification (we exclude Aland islands from the analysis).
Figure A1 summarizes the geographic divisions. Further, within each geographic unit, small
and large apartments are treated separately.

Table A2 summarizes listing data for each apartment size category separately. As illus-
trated in section 2, sale times tend to be longer for larger apartments. Market tightness, that
is the number of buyers divided by the number of sellers, in particular, has an interquartile
range of .5 to 1.1 in small apartments and .6 to 1.2 in large apartments.

Figure A1: Geographic segmentation of markets.

Notes. Different colors indicate different local markets, and don’t have an ordinal interpretation.

43



Small apartments Large apartments
min p25 p50 p75 max min p25 p50 p75 max

Mean price (1000 euros) 52 68 86 105 243 129 144 167 195 434
Mean time (days) 35 90 109 135 181 68 122 145 161 194
Mean emails 75 94 127 196 442 93 110 127 205 396
Mean maint. cost (euros/month) 135 160 167 177 200 199 230 249 269 349
Tightness 0.4 0.5 0.7 1.1 2.5 0.5 0.6 0.7 1.2 2.3
N 33 33

Table A2: Summary statistics for market-segment-level averages in the data.

Notes. Listing data from Etuovi.com for all other variables and from KVKL for maintenance costs. p50 refers to
the median, and p25 and p75 to the 25th and 75th percentiles. Mean emails refers to the number of email alerts
sent per listing in the first week after the listing was posted. Tightness refers to our measure of market tightness,
see section 2.2.
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A.3 Other data sources

Municipality characteristics Weuse data on regional characteristics in the exercisewhere
we compare segment-level parameters to observable segment-level characteristics. The infor-
mation on population and population growth is obtained from Statistics Finland Municipal
Key Figures. The information on municipality-level incomes is obtained via the Statistics Fin-
land Income Distribution statistics (in part administrative, in part survey data).

References:

Official Statistics of Finland: 118w – Number, income and income structure of household-
dwelling units by municipality, 1995-2021, referred 3.3.2023.
Statistics Finland, Municipal Key Figures 1987-2018 with 2019 regional classifications, referred
3.3.2023.

Maps The shapefile for the map of Finland is obtained from Statistics Finland.

References:

Municipality area boundaries, Statistics Finland, obtained 17.6.2022. The material can also be
downloaded from Statistics Finland’s interface service with the licence CC BY 4.0.
https://tilastokeskuskartta.swgis.fi/#
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B Proofs

B.1 Model Solution (Proof of Lemma 3.1)

B.1.1 Part 1: Equation 15

To simplify expression, in this Appendix section we denote δ(θm;αm) simply by δm and re-
spectively for λm. However δm and λm are functions of θm throughout.

Price setting Start from the sellers’ price setting equation, 6. When setting the price, seller
considers only the effect of p on µ(p), taking as given the value of selling, qm. Denoting by p
the decision variable of the seller and by p∗m the price which solves

p∗m = argmax
p
µ(p)p+ (1− µ(p))qm (26)

The necessary FOC gives

∂µ(p)

∂p
· p
∣∣∣∣
p=p∗m

+ µ(p)

∣∣∣∣
p=p∗m

− qm · ∂µ(p)
∂p

∣∣∣∣
p=p∗m

= 0 (27)

implying

p∗m = qm − µ(p∗m)
∂µ
∂p
(p∗m)

(28)

Denote the equilibrium price which will be charged by all sellers inm by pm = p∗m.

Value of selling The equilibrium value of selling is given by equation 5,

qm = cm + β
{
(1− δm)qm + δmmax

p

[
µ(p)p+ (1− µ(p))qm)

]}
(29)
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Substituting in pm = p∗m, we get

qm = cm + β
{
(1− δm)qm + δm

[
µ(pm)pm + (1− µ(pm))qm)

]}
(30)

= cm + β
{
qm − δmqm + δmµ(pm)pm + δmqm − δmµ(pm)qm

}
(31)

= cm + β
{
qm + δmµ(pm)pm − δmµ(pm)qm

}
(32)

= cm + β(1− δmµ(pm))qm + βδmµ(pm)pm (33)[
1− β + βδmµ(pm)

]
qm = cm + βδmµ(pm)pm (34)

qm =
1

1− β + βδmµ(pm)

[
cm + βδmµ(pm)pm

]
(35)

Equating this with qm = pm + µ(pm)
∂µ
∂p

(pm)
from the FOC, we find

pm +
µ(pm)
∂µ
∂p
(pm)

=
1

1− β + βδmµ(pm)

[
cm + βδmµ(pm)pm

]
(36)

[
1− β + βδmµ(pm)

][
pm +

µ(pm)
∂µ
∂p
(pm)

]
= cm + βδmµ(pm)pm (37)

(1− β)pm +
[
1− β + βδmµ(pm)

] µ(pm)
∂µ
∂p
(pm)

= cm (38)

pm =
1

1− β
cm − 1− β + βδmµ(pm)

1− β

µ(pm)
∂µ
∂p
(pm)

(39)

We will shortly substitute for µ and ∂µ
∂p

.

Match values The value of a match v given an idiosyncratic dividend ε can be rewritten as

v(ε) = xm + σmε+ β
[
π v(ε) + (1− π)

(
qm + s

)]
(40)

(1− βπ) v(εi) = xm + σmεi + β(1− π)
(
qm + s

)
(41)

v(ε) =
1

1− βπ

[
xm + σmε+ β(1− π)

(
qm + s

)]
(42)

Buyer indifference The buyer decides on a threshold ε̃ such that they will purchase the
unit if εi ≥ ε̃m. When deciding on the threshold, they only consider the effect that the
threshold has on their utility, taking as given the values of selling qm and searching s. The
threshold value of the dividend such that the household is indifferent between searching in
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the next period or purchasing in this period is, given that the seller is charging price p,

v(ε̃)− p = s (43)
1

1− βπ

[
xm + σmε̃+ β(1− π)

(
qm + s

)]
− p = s (44)

xm + σmε̃+ β(1− π)
(
qm + s

)
= (1− βπ)[s+ p] (45)

σmε̃ = (1− βπ)[s+ p]− xm − β(1− π)
(
qm + s

)
(46)

σmε̃ = (1− βπ)p− xm − β(1− π)qm +
[
(1− βπ)s− β(1− π)s

]
(47)

σmε̃ = (1− βπ)p− xm − β(1− π)qm + (1− β) s (48)

Probability of selling From the seller’s price setting view, they consider the effect that the
price they set, p, has on their probability of transacting, µ(p), taking as given the values qm
and s:

µ(p) = P(σmε > σmε̃(p)) = P(ε > ε̃(p)) = 1− F (ε̃(p)) (49)

where

ε̃(p) =
1− βπ

σm
p− 1

σm
xm − (1− π)β

σm
qm +

1− β

σm
s (50)

So

∂ε̃(p)

∂p
=

1− βπ

σm
(51)

Since ε ∼ N(0, 1),

∂µ(p)

∂p
= −f(ε̃(p)) ∗ ∂ε̃

∂p
= −f(ε̃(p))1− βπ

σm
(52)

Prices Substituting µ(pm) = 1−F (ε̃m) and ∂µ(p)
∂p

= −1−βπ
σm

f(ε̃m) into the pricing equation,
we find the equilibrium value of p, which is the price that all sellers inm will set,
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pm =
1

1− β
cm − 1− β + βδm(1− F (ε̃m))

1− β

1− F (ε̃m)

−1−βπ
σm

f(ε̃m)
(53)

=
1

1− β
cm + σm

1

(1− β)(1− βπ)

(
1− β + βδm(1− F (ε̃m))

)1− F (ε̃m)

f(ε̃m)
(54)

=
1

1− β
cm +

σm
(1− βπ)

1− F (ε̃m)

f(ε̃m)
+

σmβδm
(1− β)(1− βπ)

(1− F (ε̃m))
2

f(ε̃m)
(55)

and using pm to find qm,

qm = pm +
µ(pm)
∂µ
∂p
(pm)

(56)

= pm +
1− F (ε̃m)

−1−βπ
σm

f(ε̃m)
(57)

= pm − σm
1− βπ

1− F (ε̃m)

f(ε̃m)
(58)

=
1

1− β
cm +

σmβδm
(1− β)(1− βπ)

(1− F (ε̃m))
2

f(ε̃m)
(59)

Value of searching From the definition of the value of search in segmentm, using that in
equilibrium, sn=sm=s ∀ n,m, we can write

sm = um + β (λmEmax(vm(εi)− pm, sm) + (1− λm) sm) , (60)

= um + βλmEmax(vm(εi)− pm − sm, 0) + βsm (61)

=
1

1− β

[
um + βλmEmax(vm(εi)− pm − sm, 0)

]
(62)

s =
1

1− β

[
um + βλmEmax(vm(εi)− pm − s, 0)

]
(63)

(64)
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Noting that

vm(εi)− pm − s (65)

=
1

1− βπ

[
xm + σmεi + β(1− π)

(
qm + s

)]
− pm − s (66)

=
1

1− βπ
σmεi +

1

1− βπ

[
xm + β(1− π) qm

]
− pm − [1− 1

1− βπ
β(1− π)]s (67)

=
1

1− βπ
σmεi +

1

1− βπ

[
xm + β(1− π) qm

]
− pm − 1− β

1− βπ
s︸ ︷︷ ︸

1
1−βπ

σmε̃m

(68)

=
1

1− βπ
σm

(
εi − ε̃m

)
(69)

We can rewrite

Eεmax
[
vm(εi)− pm − s, 0

]
= Eεmax

[ 1

1− βπ
σm(εi − ε̃m), 0

]
(70)

=
1

1− βπ
σmEε

(
(ε− ε̃m)1ε≥ε̃m

)
(71)

And so s rewrites

sm =
1

1− β

[
um +

βλm
1− βπ

σmEε
(
(ε− ε̃m)1ε≥ε̃m

)]
(72)

and Eε
(
(ε− ε̃)1ε≥ε̃

)
= f(ε̃)− ε̃

(
1− F (ε̃)

)
since

Eε
(
(ε− ε̃)1ε≥ε̃

)
= Eε

(
ε 1ε≥ε̃

)
− Eε

(
ε̃ 1ε≥ε̃

)
(73)

= Eε(ε|ε > ε̃)P(1ε≥ε̃)− Eε(ε̃)P(1ε≥ε̃) (74)

=
( f(ε̃)

1− F (ε̃)

)
(1− F (ε̃))− ε̃

(
1− F (ε̃)

)
(75)

= f(ε̃)− ε̃
(
1− F (ε̃)

)
(76)

where the second-to-last line uses that for a truncated standard normal distribution, E(x|x >
a) = ϕ(a)/(1 − Φ(a)) where ϕ(·) denotes the probability density function and Φ the cumu-
lative density function.

Denote
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z(ε̃m) = Eε
(
(ε− ε̃m)1ε≥ε̃m

)
= f(ε̃m)− ε̃m

(
1− F (ε̃m)

)
(77)

Solution The above equations show that equilibrium values pm, qm, sm and µ(pm) can be
expressed as functions of the (unknown) equilibrium elements ε̃m, δm(θm) and λm(θm), where
δm and λm are known functions of θm.

It remains to find equilibrium values of ε̃m and θm, which must satisfy the buyer indifference
equation.

Rewriting the buyer indifference equation gives

v(ε̃m)− pm = s (78)

⇐⇒ σmε̃m = (1− βπ)pm − xm − β(1− π)qm + (1− β)s (79)

Notice first that

(1− βπ)pm − β(1− π)qm = (1− βπ)pm − β(1− π)
(
pm +

µ(pm)
∂µ
∂p
(pm)

)
(80)

= (1− β)pm − β(1− π)
µ(pm)
∂µ
∂p
(pm)

(81)

= (1− β)pm + β(1− π)
σm

1− βπ

(1− F (ε̃m)

f(ε̃m)
(82)

Substituting this and the expressions for pm and sm = s:

σmε̃m = −xm + (1− β)s+ (1− β)pm + β(1− π)
σm

1− βπ

(1− F (ε̃m)

f(ε̃m)
(83)

= −xm +
[
um +

βλm
1− βπ

σmz(ε̃m)
]

(84)

+ cm +
σm(1− β)

(1− βπ)

1− F (ε̃m)

f(ε̃m)
+

σmβδm
(1− βπ)

(1− F (ε̃m))
2

f(ε̃m)
(85)

+ β(1− π)
σm

1− βπ

1− F (ε̃m)

f(ε̃m)
(86)

= −xm + um + cm +
βσm

1− βπ
λmz(ε̃m) + σm

1− F (ε̃m)

f(ε̃m)
+

σmβ

(1− βπ)

(1− F (ε̃m))
2

f(ε̃m)
δm

(87)
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ε̃m =
−xm + um + cm

σm
+

1− F (ε̃m)

f(ε̃m)
+

β

1− βπ

(
λm(θm)z(ε̃m) + δm(θm)

(1− F (ε̃m))
2

f(ε̃m)

)
(88)

Finally, introducing some additional notation, we can express this as

ε̃m =
β

1− βπ

[
γ(ε̃m, θm) + λm(θm)z(ε̃m) + am

]
(89)

where

z(ε̃m) = Eε
(
(ε− ε̃m)1ε≥ε̃m

)
= f(ε̃m)− ε̃m

(
1− F (ε̃m)

)
(90)

γ(ε̃m, θm) =
1− βπ

β

1− F (ε̃m)

f(ε̃m)
+ δm(θm)

(1− F (ε̃m))
2

f(ε̃m)
, (91)

am = −1− βπ

βσm
(xm − um − cm). (92)

Thus, we have rewritten equations 5, 7, 8, 10 and 13 concisely in a single equation, corre-
sponding to equation 15 in the main text, in 2 ×M unknowns, θm and ε̃m ∀m. If there is
a soluton to equation 15, then we can use equations 49 , 53, 56, 72 and to find endogenous
values pm, sm, qm as well as µm.

Verifying the second-order condition The equilibrium pricing rule must satisfy the nec-
essary FOC

∂µ(p)

∂p
p

∣∣∣∣
p=p(zm)

+ µ(p)

∣∣∣∣
p=p(zm)

− q(x)
∂µ(p)

∂p

∣∣∣∣
p=p(zm)

= 0 (93)

⇐⇒ (94)
∂µ(p)

∂p

∣∣∣∣
p=p(zm)

∗
(
p(zm)− q(x)

)
+ µ(p)

∣∣∣∣
p=p(zm)

= 0 (95)
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The second order condition for the pricing rule to be a maximum writes

∂2µ(p)

∂p2
p

∣∣∣∣
p=p(zm)

+
∂µ(p)

∂p

∣∣∣∣
p=p(zm)

+
∂µ(p)

∂p

∣∣∣∣
p=p(zm)

− q(x)
∂2µ(p)

∂p2

∣∣∣∣
p=p(zm)

< 0 (96)

⇐⇒ (97)
∂2µ(p)

∂p2

∣∣∣∣
p=p(zm)

[
p(zm)− q(x)

]
︸ ︷︷ ︸

in equilibrium − µ(p)
∂µ(p)/∂(p)

|p=p(zm)

+2
∂µ(p)

∂p

∣∣∣∣
p=p(zm)

< 0 (98)

We can use the fact that in equilibrium, the following relations hold:

∂ε̃(p)

∂p
=

1− βπ

σm
(99)

µ(p) = 1− F (ε̃) (100)
∂µ(p)

∂p
= −1− βπ

σm
fε(ε̃(p)) ̸= 0 if f(ε̃(p)) ̸= 0 (101)

∂2µ(p)

∂p2
= −

(1− βπ

σm

)2

f ′
ε(ε̃(p)) (102)

And ε ∼ N (0, 1), we have

f(ε̃) =
1√
2π

exp
(
− ε̃2

2

)
(103)

f ′(ε̃) =
∂fε(ε̃)

∂ε̃
= −ε̃f(ε̃) = −ε̃ 1√

2π
exp

(
− ε̃2

2

)
(104)

We may therefore replace in the second order condition to find:

∂2µ(p)

∂p2

∣∣∣∣
p=p(zm)

(
− µ(p)

∂µ(p)/∂(p)
|p=p(zm)

)
+ 2

∂µ(p)

∂p

∣∣∣∣
p=p(zm)

(105)

= −
(1− βπ

σm

)2

f ′(ε̃(p))
(
− 1− F (ε̃(p))

−1−βπ
σm

fε(ε̃(p))

)
− 2

1− βπ

σm
f(ε̃(p)) (106)

= ε̃(p)
(1− βπ

σm

)2

f(ε̃(p))
( 1− F (ε̃(p))

1−βπ
σm

fε(ε̃(p))

)
− 2

1− βπ

σm
f(ε̃(p)) (107)

= ε̃(p)
1− βπ

σm

(
1− F (ε̃(p))

)
− 2

1− βπ

σm
f(ε̃(p)) (108)

=
1− βπ

βσm

[
ε̃(p)

(
1− F (ε̃(p))

)
− 2f(ε̃(p))

]
(109)
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And this is less than zero whenever

ε̃(p)
(
1− F (ε̃(p))

)
− 2f(ε̃(p)) < 0 (110)

ε̃(p)
(
1− F (ε̃(p))

)
< 2f(ε̃(p)) (111)

ε̃(p) < 2
f(ε̃(p))

1− F (ε̃(p))
(112)

For ε ∼ N(0, 1), we know that it is true that ε < f(ε)
1−F (ε)

∀ε. This is because

ε <
f(ε)

1− F (ε)
(113)

f(ε)− ε ∗ (1− F (ε)) > 0 (114)

z(ε) > 0 (115)

and we know that z is a declining function in ε between∞ and 0 (see Appendix section B.2.1).

Since the right-hand side of Equation 113 is positive, it then follows that ε̃(p) < 2 f(ε̃(p))
1−F (ε̃(p))

also always holds. Thus, the second-order condition is always satisfied.

B.1.2 Part 2: Equation 16

This part of the proof argues that equation 8, together with the equilibrium conditions in
Definition 3.1, implies equation 16. Start from equation 72:

sm(ε̃m, θm) =
1

1− β

[
um +

β

1− βπ
σmλm(θm)Eε

(
(ε− ε̃m)1ε≥ε̃

)]
(116)

Moreover, the following relationship holds in equilibrium:

sm(ε̃m, θm) = s (117)

Without loss of generality, when u does not depend on m, for example if um = 0 ∀m, this
becomes

σmλm(θm)z(ε̃m) =
(1− β)(1− βπ)

β

[
s− 1

1− β
u
]
= z (118)

(If um depends onm, we can carry on indexing zm.) z (or s) is an equilibrium quantity which
depends on all exogenous parameters in all markets.
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B.1.3 Part 3: Equation 17 (Houses, sellers and buyers)

Nhouses indicates the aggregate number of houses and Nhouseholds the aggregate number of
households, which are both fixed. Since there is an implicit rental sector, the case where
Nhouseholds ̸= Nhouses can also be accommodated. Let nhouses = (nhouses,1, ..., nhouses,M ) be
the vector of the number of houses in each segment. We assume it to be fixed. The vector of
households in each segment nhouseholds = (nhouseholds,1, ..., nhouseholds,M ) is endogenous.

Housing flows There are ”occupied” houses (with an owner who likes the house) and un-
occupied houses (houses for sale, waiting for a buyer):

nhouses,m = noccupied,m + nunoccupied,m

With probability 1−π a house moves from noccupied,m to nunoccupied,m. With probability δm(1−
F (ε̃m)) a house is bought and moves from nunoccupied,m to noccupied,m.

We thus have at the stationary equilibrium:

noccupied,m = πnoccupied,m + δm(1− F (ε̃m))nunoccupied,m,

nunoccupied,m = (1− δm(1− F (ε̃m))nunoccupied,m + (1− π)noccupied,m

which implies that:
noccupied,m =

δm(1− F (ε̃m))

1− π
nunoccupied,m (119)

and:

nhouses,m = noccupied,m + nunoccupied,m = (1 +
δm(1− F (ε̃m))

1− π
)nunoccupied,m.

In consequence:

nunoccupied,m =
1

1 + δm(1−F (ε̃m))
1−π

nhouses,m; noccupied,m =

δm(1−F (ε̃m))
1−π

1 + δm(1−F (ε̃m))
1−π

nhouses,m. (120)
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Householdflows There arematched households (happy owners) and searching households
(renters, waiting for a seller):

nhouseholds,m = nmatched households,m + nsearchers,m

With probability π a household in nmatched household,m remains in that state, and with the com-
plement probability 1 − π becomes a searcher in (some) segment. With probability λm(1 −
F (ε̃m)) a searching household buys and moves from nsearcher,m to nmatched household,m. As all
matched households live in occupied units, we note nmatched household,m = noccupied,m.

We thus have at the stationary equilibrium:

noccupied,m = πnoccupied,m + λm(1− F (ε̃m))nsearcher,m,

which implies that:
noccupied,m =

λm(1− F (ε̃m))

1− π
nsearcher,m. (121)

In consequence, with together with equation 120:

nsearcher,m =
1− π

λm(1− F (ε̃m))
noccupied,m =

1−π
λm(1−F (ε̃m))

δm(1−F (ε̃m))
1−π

1 + δm(1−F (ε̃m))
1−π

nhouses,m (122)

=
δm
λm

1 + δm(1−F (ε̃m))
1−π

nhouses,m (123)

Market tightness Using that the number of matched houses and matched households are
equal, equations (119) and (121) yield:

noccupied,m =
δm(1− F (ε̃m))

1− π
nunoccupied,m =

λm(1− F (ε̃m))

1− π
nsearcher,m

so that:
θm =

δm
λm

=
nsearcher,m
nunoccupied,m

, (124)

the number of searchers divided by the number of unmatched houses. This can be related to
exogenous nhouses,m using equations (123) and (120).

Aggregate quantities The number of houses in each segment, nhouses, is fixed by assump-
tion, implying also that the aggregate number of housesNhouses is fixed. The aggregate num-
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ber of households, Nhouseholds, is fixed.

Denote any possible difference between these quantities by a constant ν:

ν = Nhouseholds −Nhouses. (125)

The aggregate quantities can also be expressed as

∑
m∈M

nhousesm =
∑
m∈M

noccupied,m +
∑
m∈M

nunoccupied,m = Nhouses (126)

∑
m∈M

nhouseholds,m =
∑
m∈M

nmatched households,m +
∑
m∈M

nsearchers,m = Nhouseholds (127)

Because noccupied,m = nmatched households,m, this implies that

∑
m∈M

nsearchers,m −
∑
m∈M

nunoccupied,m = ν. (128)

The general equilibrium of the spatial economy is such that the difference between the
aggregate number of searchers and aggregate number of sellers is given by ν, an exogenous
constant. We can further express this as

ν =
∑
m∈M

nsearchers,m −
∑
m∈M

nunoccupied,m (129)

=
∑
m∈M

(
(θm − 1)nunoccupied,m

)
(130)

=
∑
m∈M

( θm − 1

1 + δm(1−F (ε̃m))
1−π

nhouses,m

)
(131)
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B.2 Proof of Proposition 3.1

B.2.1 Partial Derivatives and Limits of z and γ

Consider first z:

z(ε̃m) = Eε
(
(ε− ε̃m)1ε≥ε̃m

)
= f(ε̃m)− ε̃m

(
1− F (ε̃m)

)
(132)

Derivative w.r.t ε̃ Using that ε ∼ N(0, 1), so that f ′(ε) = −εf(ε), the derivative of z w.r.t.
ε̃m is given by

∂z

∂ε̃m
= −ε̃mf(ε̃m)− 1 + F (ε̃m) + ε̃m ∗ f(ε̃m) (133)

= −(1− F (ε̃m)) (134)

which is always negative.

Limit of z when ε̃m → +∞. Let us look at the limits when ε̃→ +∞.

Look first at intermediate objects. Note that lim
ε̃→+∞

1 − F (ε̃) = 0, lim
ε̃→+∞

(1 − F (ε̃))2 = 0,
lim

ε̃→+∞
f(ε̃) = 0, so we can apply l’Hopital’s rule. Applying l’Hopital’s rule:

lim
ε̃→+∞

1− F (ε̃)

f(ε̃)
= lim

ε̃→+∞

−f(ε̃)
f ′(ε̃)

= lim
ε̃→+∞

−f(ε̃)
−ε̃f(ε̃)

= lim
ε̃→+∞

1

ε̃
= 0

lim
ε̃→+∞

(1− F (ε̃))2

f(ε̃)
= lim

ε̃→+∞

2(1− F (ε̃))(−f(ε̃))
f ′(ε̃)

= lim
ε̃→+∞

−2(1− F (ε̃))f(ε̃)

−ε̃f(ε̃)

= lim
ε̃→+∞

2(1− F (ε̃))

ε̃
= 0

Next, to find the limit of z, we can use the following trick: x(1 − F (x)) can be rewritten
as x

1
1−F (x)

=
x

(1− F (x))−1
. Now, both the numerator and the denominator go to +∞ as
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x→ +∞, so we may apply the l’Hopital’s rule:

lim
ε̃m→+∞

ε̃m(1− F (ε̃m)) = lim
ε̃m→∞

ε̃m
(1− F (ε̃m))−1

= lim
ε̃m→∞

1

−1 ∗ (1− F (ε̃m))−2 ∗ −f(ε̃m)

= lim
ε̃m→∞

(1− F (ε̃m))
2

f(ε̃m)
= 0

Thus,

lim
ε̃m→+∞

z(ε̃m) = lim
ε̃m→+∞

[
f(ε̃m)− ε̃m(1− F (ε̃m))

]
(135)

= 0 (136)

Limit of z when ε̃m → −∞. Start by using the same trick as above: Rewrite

−ε̃mF (ε̃m) =
−ε̃m

1
F (ε̃m)

=
−ε̃m

F (ε̃m)−1

and now −ε̃m → ∞ as well as F (ε̃m)−1 → ∞ as x → −∞. Therefore we may apply
l’Hopital’s rule to −ε̃m

F (ε̃m)−1 :

lim
ε̃m→−∞

−ε̃m
F (ε̃m)−1

= lim
ε̃m→−∞

−1

−1F (ε̃m)−2f(ε̃m)
= lim

ε̃m→−∞

F (ε̃m)
2

f(ε̃m)
= 0

Which shows that ε̃F (ε̃) → 0 as ε̃→ −∞.

Thus,

lim
ε̃m→−∞

z(ε̃m) = lim
ε̃m→−∞

[
f(ε̃m)− ε̃m(1− F (ε̃m))

]
(137)

= lim
ε̃m→−∞

[
f(ε̃m)− ε̃m1 + ε̃mF (ε̃m))

]
(138)

= ∞ (139)

In summary, z(ε̃m) decreases between +∞ and 0 when ε̃m varies between −∞ and +∞.
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Consider next γ.

γ(ε̃m, θm) =
1− βπ

β

1− F (ε̃m)

f(ε̃m)
+ δm(θm)

(1− F (ε̃m))
2

f(ε̃m)
(140)

Derivative of γ w.r.t ε̃m. Consider first 1−F (ε̃m)
f(ε̃m)

.

∂ 1−F (ε̃m)
f(ε̃m)

∂ε̃m
=

1

f(ε̃m)
· (−f(ε̃m)) + (1− F (ε̃m)) · (−1)f(ε̃m)

−2 · (−ε̃mf(ε̃m)) (141)

= −1 +
(1− F (ε̃m))

f(ε̃m)
ε̃m (142)

which is always less than zero. This is because ε ∼ N(0, 1), we know that it is true that
ε < f(ε)

1−F (ε)
∀ε, so it is also true that ε1−F (ε)

f(ε)
< 1.

Consider next (1−F (ε̃m))2

f(ε̃m)
.

∂ (1−F (ε̃m))2

f(ε̃m)

∂ε̃m
=

1

f(ε̃m)
2(1− F (ε̃m)) ∗ (−f(ε̃m)) (143)

+ (1− F (ε̃m))
2 · (−1)f(ε̃m)

−2(−ε̃mf(ε̃m)) (144)

= −2(1− F (ε̃m)) + ε̃m
(1− F (ε̃m))

2

f(ε̃m)
(145)

= (1− F (ε̃m))
{
− 2 + ε̃m

1− F (ε̃m)

f(ε̃m)

}
(146)

which is also always negative.

Now, the partial derivative of γ w.r.t. ε̃m, holding constant θm, is given by:

∂γ(ε̃m, θm)

∂ε̃m
=

1− βπ

β

∂ 1−F (ε̃m)
f(ε̃m)

∂ε̃m
+ δ(θm)

∂ (1−F (ε̃m))2

f(ε̃m)

∂ε̃m
(147)

Which is negative since 1−βπ
β

> 0, δ(θ) ≥ 0.

Limit of γ when ε̃→ +∞. From above arguments it follows directly that

lim
ε̃m→+∞

γ(ε̃m, θm) = 0
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Limit of γ when ε̃→ −∞. Start by rewriting γ as

γ(ε̃m, θm) =
1− βπ

β

1− F (ε̃m)

f(ε̃m)
+ δm(θm)

(1− F (ε̃m))
2

f(ε̃m)
(148)

=
1− βπ

β

[ 1

f(ε̃m)
− F (ε̃m)

f(ε̃m)

]
+ δm(θm)

[ 1

f(ε̃m)
− 2F (ε̃m)

f(ε̃m)
+

(F (ε̃m))
2

f(ε̃m)

]
(149)

Again, we notice that lim
ε̃→−∞

F (ε̃) = 0, lim
ε̃→−∞

(F (ε̃))2 = 0, lim
ε̃→−∞

f(ε̃) = 0, so we may apply
the l’Hopital’s rule. Applying it gives

lim
ε̃→−∞

F (ε̃)

f(ε̃)
= lim

ε̃→−∞

f(ε̃)

−ε̃f(ε̃)
= − lim

ε̃→−∞

1

ε̃
= 0

lim
ε̃→−∞

F (ε̃)2

f(ε̃)
= 0

Thus,

lim
ε̃m→−∞

γ(ε̃m, θm) = lim
ε̃m→−∞

{1− βπ

β

[ 1

f(ε̃m)

]
+ δm(θm)

[ 1

f(ε̃m)

]}
(150)

= +∞ (151)

In summary, γ(ε̃m, θm) decreases between +∞ and 0 when ε̃m varies between−∞ and +∞.
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B.2.2 Existence and uniqueness of solution (Proposition3.1)

To simplify notation and without loss of generality, assume we are in the case where um = 0

and therefore z̄m = z̄ for allm as in Equation 118 (otherwise continue to index z̄ withm and
treat s̄ constant acrossm). Start from equations 89 and 118:

λ(θm)z(ε̃m) = z̄/σm, (152)

g(ε̃m, θm) =
β

1− βπ
(γ(ε̃m, θm) + λ(θm)z(ε̃m) + am) = ε̃m

in which:

z(ε̃m) = Eε((ε− ε̃m)1{ε > ε̃m}),

γ(ε̃m, θm) =
1− βπ

β

1− F (ε̃m)

f(ε̃m)
+ δ(θm)

(1− F (ε̃m))
2

f(ε̃m)
,

am = −1− βπ

βσm

[
xm − um − cm

]
.

And we know from above section that

∂z

∂ε̃m
< 0,

∂γ

∂ε̃m
< 0, (153)

and that z(ε̃m) and γ(ε̃m, θm) are both decreasing between+∞ and 0when ε̃m varies between
−∞ and +∞. By assumption 3.1,

∂δm
∂θm

> 0,
∂λm
∂θm

< 0, (154)

Consider thefirst equation in system (152). For any z̄ > 0 and θm > 0, as z̄/(σmλ(θm)) >
0, and z(ε̃m) is decreasing between +∞ (when ε̃m → −∞) and 0 (when ε̃m → +∞), there
is a unique solution ε̃m = ϕ1(θm, z̄) for any θm > 0. Using equations (153) , we obtain that
∂ϕ1
∂θm

< 0 and ∂ϕ1
∂z̄

< 0. In addition, the limits on the right and left of the domain of ϕ1(θm, z̄)

as a function of θm are obtained using the follwing argument. When θm = 0, λ(θm) = 1

and ϕ1(θm, z̄) = z−1(z̄/σm) where z−1 is the inverse of z(ε̃m). On the other hand, when
θm → +∞, λ(θm) → 0 and z(ε̃m) = z̄/σm

λ(θm)
→ +∞ for all z̄ > 0 and thus ϕ1(θm, z̄) → −∞.
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Consider the second equation in (152). Substituting in the first one,

γ(ε̃m, θm)−
1− βπ

β
ε̃m + am = − z̄

σm
.

For any z̄ > 0 and θm > 0, as the LHS is decreasing in ε̃m and varying between +∞ (when
ε̃m → −∞) and−∞ (when ε̃m → +∞), there is a unique solution ε̃m = ϕ2(θm, z̄). It is direct
to show from equations (153) that ∂ϕ2

∂θm
> 0 (since ∂δ

∂θm
> 0) and ∂ϕ2

∂z̄
> 0 (since ∂γ

∂ε̃m
< 0). In

addition the limits on the right and left of ϕ2(θm, z̄) as a function of θm can be obtained easily.

When θm = 0, δ(θm) = 0 and ϕ2(θm, z̄) is equal to the unique solution ϕ2(0, z̄):

1− βπ

β

1− F (ε̃m)

f(ε̃m)
− 1− βπ

β
ε̃m + am = − z̄

σm
,

On the other hand, when θm → +∞, δ(θm) → 1 and ϕ2(θm, z̄) is the unique solution
ϕ2(+∞, z̄) of

1− βπ

β

1− F (ε̃m)

f(ε̃m)
+

(1− F (ε̃m))
2

f(ε̃m)
− 1− βπ

β
ε̃m + am = − z̄

σm
.

In consequence, the solution continuously increases betweenϕ2(0, z̄) andϕ2(∞, z̄). Asϕ1(θm, z̄)

decreases continuously between z−1(z̄/σm) and −∞, the condition for existence is that

z−1(z̄/σm) ≥ ϕ2(0, z̄).

Note that the LHS decreases with z̄ while the RHS is increasing in z̄. Moreover, the LHS is
tending to +∞ when z̄ → 0 and tending to −∞ when z̄ → +∞. In addition, the RHS is
tending to a constant when z̄ → 0 and tending to +∞ when z̄ → +∞. Thus there are values
of z̄ such that the solution does not exist.

If the solution exists, denote the full solution as the zero in θm of function:

ψ(θm, z̄) = ϕ1(θm, z̄)− ϕ2(θm, z̄).

As ∂ϕ1
∂θm

< 0 and ∂ϕ2
∂θm

> 0, then ∂ψ
∂θm

< 0 and the solution is unique. Furthermore, as ∂ϕ1
∂z̄

< 0

and ∂ϕ2
∂z̄

> 0, we have ∂ψ
∂z̄
< 0. The solution is differentiable in z̄ and ∂θ

∂z̄
< 0.
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C Solution Algorithm

Notation The equilibrium is characterized by equations 89 and 118:

s(ε̃m, θm) =
1

1− β

β

1− βπ
σmλ(θm)z(ε̃m) = s,

g(ε̃m, θm) =
β

1− βπ
(γ(ε̃m, θm) + λ(θm)z(ε̃m) + am) = ε̃m.

where:

z(ε̃m) = Eε((ε− ε̃m)1{ε > ε̃m}),

γ(ε̃m, θm) =
1− βπ

β

1− F (ε̃m)

f(ε̃m)
+ δ(θm)

(1− F (ε̃m))
2

f(ε̃m)
,

as well as the aggregate market clearing given by equation (17). Moreover, we may write the
first equation as :

(1− β)(1− βπ)

β
s(ε̃m, θm) = σmλ(θm)z(ε̃m) = z ⇒ λ(θm) =

z

z(ε̃m)σm

(where we are assuming that we are in the case of equation 118 where um does not depend
onm and so z does not depend onm either).

Solution algorithm First use the parameters of each location together with Appendix sec-
tion B.2.2 to determine the highest feasible value for s (or z) in each location such that the
model equations 89 and 118 can have a solution (as discussed in section B.2.2, there is no solu-
tion to the relevant system of equations for very high values of z). In the spatial equilibrium,
the highest possible value of z̄ such that the model equations can have a solution in all loca-
tions must be the smallest of these. Next, make a grid over the possible values of z̄ (consider
z̄ strictly positive and up to this highest possible value).

For each point zi on the grid, for each location m, find the values of θm and ε̃m that are
consistent with zi. Note that this can be done location-by-location, as all dependencies across
locations go through z̄.

1. Take an initial guess for the vector of θ’s (for example, θ(0) = (1, 1, ..., 1))
2. Use g(ε̃m, θm) = ε̃m to solve ε̃(0)m = ε̃m(θ

(0)
m ) ∀m.

There is a unique solution for a fixed θ since ∂γ
∂ε̃
< 0 and ∂z

∂ε̃
< 0 both decrease between
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+∞ and 0, so g(ε̃m, θm)− ε̃m = 0 decreases in ε̃ between +∞ and −∞.

Compute implied z(0)m = z(ε̃
(0)
m ).

3. [a] Consider first the case where 0 < z

z
(0)
m σm

< 1.

We know that
λ(z(0)m , z, σm) =

z

z
(0)
m σm

and
λ(θm)

is a monotone function of θ giving values between 0 and 1 so we can invert the rela-
tionship

λ(θm) =
zi

z
(0)
m σm

and this inversion will imply a value θ.

Inverting λ(θ) w.r.t. θ and equating given z and given z(0)m , implies

θm(zi, z
(0)
m ) = λ−1(zi, z

(0)
m )

Update the guess for θ using this final expression,

θ(1)m = θm(zi, z
(0)
m )

[b] Consider next the case where zi

z
(0)
m σm

> 1, and therefore the expression for λ cannot
be inverted. If λ(θ(0)m ) · z(0)m > z̄

σ
, update the guess for θ upwards. If λ(θ(0)m ) · z(0)m < z̄

σ
,

update the guess for θ downwards.

[c] Consider finally the case where z

z
(0)
m σm

≈ 0. Update the guess for θ upwards.
4. Go back to step 2. Repeat until convergence.
5. If it would happen that the algorithm did not converge using steps 3a-3c for some lo-

cation m, it is possible also to do a grid for θm and search for the gridpoint on which
equations 89 and 118 are satisfied. The solution exists (as we are considering the feasi-
ble range of z̄) and is unique (by Proposition 3.1). However, it is more efficient to use
the iterative procedure of steps 3a-3c to see if the algorith converges before doing a grid
search.

Now we have computed the θm(zi) , ε̃m(zi) for all m that are consistent with each possible
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value of zi on the grid.

Use the equation
M∑
m=1

1− θm(zi)

1 + δ(θm(zi))·(1−F (ε̃m(zi)))
1−π

nhouses,m = ν.

to find the correct zi. Verify that only 1 value of zi on the grid satisfies the equality (the
left-hand side of the summation is increasing in z).
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D Identification

For eachm, we observe pm, E(TOM)m and θm. π and β are fixed. um is set to 0 by assumption
and cm to pre-specified values.

The question of identification is to assess whether primitives xm, σm and αm are identified
using that for anym, we have the set of equilibrium equations:

1− F (ε̃m)

f(ε̃m)
= (pm − cm

1− β
)
1

σm

(1− βπ)(1− β)

1− β + βE(TOM)−1
m

(155)

sm =
1

1− β

[ βλm
1− βπ

σmEε
(
(ε− ε̃m)1ε≥ε̃m

)]
(156)

in which:
λm =

δm
θm

and δm =
1

E(TOM)m(1− F (ε̃m))
. (157)

We first investigate the structural constraints derived from this setting.

D.1 Structural constraints

Fix σm to an arbitrary value. Use Equation (155) and derive ε̃m. We also have:

δm =
1

E(TOM)m(1− F (ε̃m))

Because δm, µm, λm and δmµm, λmµm are probabilities, and λm = δm
θm

, we must impose that

µ(ε̃m) < 1 (158)

δm < 1 (159)

λm < 1 ⇐⇒ δm < θm (160)

µ(ε̃m)δm < 1 (161)

µ(ε̃m)λm < 1 ⇐⇒ µ(ε̃m)δm < θm (162)

The first equation in the system is always satisfied as long as ε̃m > −∞. For the second
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equation to be satisfied, we can only consider ϵ̃m < ϵ̄1,m where ϵ̄1,m is given by

ϵ̄1,m = F−1(1− 1

E(TOM)m
)

For the 3rd equation to be satisfied, we can only consider ϵ̃m < ϵ̄2,m where ϵ̄2,m is given by

ϵ̄2,m = F−1(1− 1

E(TOM)m · θm
)

This condition is only binding when θ < 1. The 4th equation is satisfied whenever the 1st and
the 2nd equations are. The 5th equation is satisfied whenever

1

E(TOM)
< θ (163)

This is a condition that only concerns the data and is independent of the choice of σm. This
is a second restriction on the data, together with the requirement that E(TOM)m > 1 (as
selling in the model always takes at least one period).

Concisely, ε̃m exists if and only if E(TOM)mmin(1, θm) > 1 and this constraint does not
depend on σm. Moreover, values of ϵ̃m are possible only if they satisfy

ϵ̃m < ϵ̄m = min
[
F−1(1− 1

E(TOM)m
), F−1(1− 1

E(TOM)m · θm
)
]

(164)

All solutions ε̃m < ε̄m can be considered.

Consequences for σm Retruning to the value of σm, Equation (155) can be written as:

1− F (ε̃m)

f(ε̃m)
σm = (pm − cm

1− β
)

(1− βπ)(1− β)

1− β + βE(TOM)−1
m

(165)

in which the RHS is a function of β, π and observables pm andE(TOM)m. Taking derivatives:

d
1− F (ε̃m)

f(ε̃m)
σm +

1− F (ε̃m)

f(ε̃m)
dσm = 0.

which proves that σm is a function of ε̃m written as σm(ε̃m). Use:

d
1− F

f
=

−f 2 + (1− F )ε̃mf

f 2
dε̃m = −z(ε̃m)

f
dε̃m,
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in which z(ε̃m) = Eε((ε− ε̃m)1{ε > ε̃m}) =f(ε̃m)− ε̃m(1− F (ε̃m)). We thus get:

−σm
z(ε̃m)

f(ε̃m)
dε̃m +

1− F (ε̃m)

f(ε̃m)
dσm = 0,

or:
1

σm

dσm
dε̃m

=
z(ε̃m)

1− F (ε̃m)
> 0.

Furthermore, limε̃m→−∞ σm(ε̃m) = 0, limε̃m→∞ σm(ε̃m) = +∞.

This means that there exists σ̄m = σm(ε̄m) and all solutions σm < σ̄m are admissible. We can
write:

σ̄m = (pm − cm
1− β

)
(1− βπ)(1− β)

1− β + βE(TOM)−1
m

f(ε̄m)

1− F (ε̄m)

in which ε̄m is defined in equation (164).

The value of search Rewrite equation (156) uisng the expression for z(ε̃m) as:

(1− β)(1− βπ)

β
sm = λmσmz(ε̃m). (166)

and use equation (157) to replace λm as a function of ε̃m. From equation (165), derive that the
value of search is proportional to:

λmσmz(ε̃m) =
1

E(TOM)m(1− F (ε̃m))θm
(pm − cm

1− β
)

(1− βπ)(1− β)

1− β + βE(TOM)−1
m

f(ε̃m)

1− F (ε̃m)
z(ε̃m)

= ϖm
f(ε̃m)

(1− F (ε̃m))2
z(ε̃m), (167)

in which ϖm can be derived from data pm, cm, θm, and E(TOM)m:

ϖm = (pm − cm
1− β

)
(1− βπ)(1− β)

E(TOM)mθm(1− β + βE(TOM)−1
m )

.

Define further

ψ(ε̃m) =
f(ε̃m)

(1− F (ε̃m))2
z(ε̃m) =

f(ε̃m)

(1− F (ε̃m))2
(f(ε̃m)− ε̃m(1− F (ε̃m)),
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by replacing z(ε̃m) by its value. We thus get:

ψ(ε̃m) =
f(ε̃m)

(1− F (ε̃m))
(

f(ε̃m)

(1− F (ε̃m))
− ε̃m) = hm(hm − ε̃m),

in which the hazard rate hm = f(ε̃m)
(1−F (ε̃m))

.

It is now easy to show that :

d

dε̃m
(

f

1− F
) =

−εf(1− F ) + f 2

(1− F )2
= ψ > 0,

and that
d2

d(ε̃m)2
(

f

1− F
) = ψ′ > 0,

since the hazard rate for a normal distribution e.g. h = f
1−F is convex (e.g. see

https://math.stackexchange.com/questions/1349555/standard-normal-distribution-hazard-rate).

The range of admissible values We now impose that the value of search given by (167) is
the same in all segments and for instance equal to constant K :

ϖmψ(ε̃m) = K . (168)

We now have to impose that ε̃m ≤ ε̄m for allm and this limits the range of possible values of
K , since ψ′ > 0. Specifically, the admissible range for K is given by:

K < min
m

(ϖmψ(ε̄m)),

in which ε̄m is defined in equation (164). This delivers the maximum value for s̄ ≥ 0 which is
given by:

(1− β)(1− βπ)

β
s̄ < min

m
(ϖmψ(ε̄m)). (169)

The reciprocal is straightforward and developed in the next section.
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D.2 Inverting the model, given s

Suppose from now on that s̄ is arbirtrarily fixed within bounds (169). Then, the following
quantities are fixed or can be estimated from data: pm, E(TOM)m, θm and s̄ and we want to
recover xm, σm and αm.

Identification proceeds in four steps:

1. Use value K = β
(1−β)(1−βπ) s̄ in equation (168) and derive ε̃m = ψ−1(K/ϖm) for all m

which is well defined and identified.

2. Use equation (157) to write that δm = 1
E(TOM)m(1−F (ε̃m))

and λm = δm
θm

to identify δm
and λm.

3. Then use Equation (155) to identify σm.

4. Finish by observing that αm will follow immediately from δm or λm.

D.3 Calibrating s

Since the value of s is unobserved, one parameter in the system needs to be calibrated or
fixed in order to recover a calibrated value for s. There are different possible strategies for
calibrating s. We proceed by setting δ to a constant in a given market segment.

Consider a market indexed by 0. Use

E(TOM)0 =
1

(1− F (ε̃0))δ0

to recover
ε̃0 = F−1(1− 1

E(TOM)0δ0
)

Now, using ϵ̃0 as well as p0 and E(TOM)0, Equation 155 pins down σ0. ϵ̃0, E(TOM)0 and θ0
pin down λ0. Then, using λ0, σ0 and ϵ̃0, Equation 156 pins down s0. Finally, by Definition 3.1,
s = s0.
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E Additional Tables and Figures

E.1 Robustness
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Mean p25 p50 p75
x 190.4 143.4 183.6 219.6
σ 1.19 0.81 0.94 1.27
α 0.30 0.26 0.28 0.31
δ 0.09 0.06 0.07 0.09
λ 0.10 0.08 0.10 0.13
Observations 66

Table A4: Parameter estimates using transaction prices and times.

Notes. This table documents parameter estimates from an analysis which is similar to our baseline model inver-
sion (see Table 1), but instead of measuring pm by the average listing price in the segment and E(TOM)m by
the average listing time in the segment, pm is measured using the average transaction price in the segment and
E(TOM)m is measured using the average sale time in the segment, both in the transactions dataset (KVKL).
Other variables and calibrations correspond to out baseline model inversion.
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E.2 Additional tables and figures related to parameters and market

characteristics
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Figure A2: Scatterplots summarizing the relationship between two of the model parameters (x and α)
and segment characteristics.

Notes. Municipality size refers to average municipality population in the market segment, apart from single-
municipality market segments where it is the actual population in 2018. Household income refers to average
household disposable income in the region in 2018. Both x- and y-scales are in natural logarithms. Urban
segments refer to the 15 locationswhere the segment is a given city. Non-urban segments refer to the 18 locations
where the remaining areas (outside of the 15 largest cities) are classified into grous based on administrative
regions. Circle size indicates the model-consistent number of houses in each segment.
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(1) (2) (3) (4)
σ σ σ σ

Municipality size 0.430 0.127
(0.178) (0.0734)

Population growth 0.580 0.697
(0.161) (0.192)

Household income -0.0457 -0.434
(0.0788) (0.124)

small -0.0270 -0.0270 -0.0270 -0.0270
(0.226) (0.204) (0.250) (0.183)

Observations 66 66 66 66

Table A5: Associations of the housing quality parameter with some market segment characteristics.

Notes. The table documents coefficients from an unweighted linear regression of the outcome on indicated
dependent variables. Municipality size refers to average municipality population in the market segment, apart
from single-municipality market segments where it is the actual population in 2018. Population growth refers
to total region population change from 2016 to 2018 relative to 2016 population. Household income refers to
average household disposable income in the region in 2018. Both the independent and the three continuous
dependent variables are standardised to have mean 0 and variance of 1. ”small” is an indicator variable which
takes value 1 for the market segments of apartments of two rooms or less. Heteroscedasticity-robust standard
errors are in parentheses.

(1) (2) (3) (4)
δ δ δ δ

Municipality size 0.525 0.333
(0.148) (0.123)

Population growth 0.538 0.408
(0.142) (0.203)

Household income 0.120 -0.219
(0.0904) (0.150)

small 0.612 0.612 0.612 0.612
(0.198) (0.196) (0.236) (0.186)

Observations 66 66 66 66

Table A6: Associations of the housing quality parameter with some market segment characteristics.

Notes. The table documents coefficients from an unweighted linear regression of the outcome on indicated
dependent variables. Municipality size refers to average municipality population in the market segment, apart
from single-municipality market segments where it is the actual population in 2018. Population growth refers
to total region population change from 2016 to 2018 relative to 2016 population. Household income refers to
average household disposable income in the region in 2018. Both the independent and the three continuous
dependent variables are standardised to have mean 0 and variance of 1. ”small” is an indicator variable which
takes value 1 for the market segments of apartments of two rooms or less. Heteroscedasticity-robust standard
errors are in parentheses.
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(1) (2) (3) (4)
λ λ λ λ

Municipality size 0.0351 0.0705
(0.0809) (0.0800)

Population growth 0.0161 0.0244
(0.110) (0.168)

Household income -0.0793 -0.121
(0.0548) (0.126)

small 1.429 1.429 1.429 1.429
(0.173) (0.174) (0.172) (0.174)

Observations 66 66 66 66

Table A7: Associations of the housing quality parameter with some market segment characteristics.

Notes. The table documents coefficients from an unweighted linear regression of the outcome on indicated
dependent variables. Municipality size refers to average municipality population in the market segment, apart
from single-municipality market segments where it is the actual population in 2018. Population growth refers
to total region population change from 2016 to 2018 relative to 2016 population. Household income refers to
average household disposable income in the region in 2018. Both the independent and the three continuous
dependent variables are standardised to have mean 0 and variance of 1. ”small” is an indicator variable which
takes value 1 for the market segments of apartments of two rooms or less. Heteroscedasticity-robust standard
errors are in parentheses.
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