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Abstract

Motivated by finding a way to deal with Compositional Data (CoDa)
with or without zeroes in a unified way, we build upon the previous pro-
jective geometry viewpoint of Faugeras (2023) and use the tools provided
by the exterior product and Grassmann’s algebra. These allow to repre-
sent higher dimensional subspaces as linear objects, called multi-vectors,
on which the usual Euclidean scalar product can be extended. Applied
to CoDa seen as equivalence classes, this allows to define a pseudo-scalar
product and pseudo-norm. Depending on the normalization chosen, it is
remarkable that the pseudo-norm obtained is either the same barycentric
divergence which was derived in Faugeras (2024a) from the affine geome-
try viewpoint, or becomes a new, orthogonally invariant, genuine distance
on the full non-negative CoDa space.

These tools are then used to lay the foundations for further statistical
analysis of CoDa: we show how the relative position of a pair of CoDa
around their means can be decomposed along its components to form ex-
terior covariance, variance and correlation matrices, along with their cor-
responding global scalar measure of (co)variation. Gaussian distributions,
Mahalanobis distance, Fréchet means, etc.. can then be introduced and
we sketch their potential statistical applications. Eventually, we establish
some connections with various notions encountered in the literature, like
divergences based on quantifying inequalities, or canonical angles between
subspaces. The paper is preceded by a tutorial on the exterior product,
based on intuitive geometric visualization and familiar linear algebra, in
order to make the ideas of the paper accessible to non-specialists.
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1 Introduction

1.1 Aims and scope

The present article is a continuation of the geometric approach to compositional
data (CoDa), initiated in Faugeras (2023) and Faugeras (2024a). These papers
were motivated by i) finding a unified way to reconcile several viewpoints on
CoDa analysis and ii) proposing log-free divergence and covariance matrices
allowing to effectively handle CoDa with zeroes.

More precisely, we proposed in Faugeras (2023) to view CoDa as projective
points [x]+ in the space Pd

+ obtained by projectivization of the non-negative

orthant cone Rd+1
+ := {x ∈ Rd+1,x ≥ 0}: CoDa elements [x]+ are equiva-

lence classes of non-negative vectors x ≥ 0, x ∈ Rd+1, where [.]+ denotes the
equivalence class for the positive scaling relation, viz.

y ∈ [x]+ ⇐⇒ ∃λ > 0, y = λx,

with homogeneous coordinates [x0 : x1 : . . . : xd]. Geometrically, a pro-
jective CoDa point [x]+ corresponds to a ray in the non-negative orthant.
Faugeras (2024a) studied the simplex,

∆d
+ := {x ∈ Rd+1 : xT1 = 1,x ≥ 0} (1)

as a particular affine model of Pd
+, where simplex representatives x ∈ ∆d

+ of
[x]+ ∈ Pd

+ are affine points expressed in (normalized) barycentric coordinates
(and not Cartesian coordinates). This affine geometric perspective lead us to
define, among others, i) a novel family of log-free barycentric divergences, to
measure the proximity of pairs of CoDa points, and also ii) corresponding
barycentric variance matrices, to measure the proportionality of CoDa com-
ponents. These constructs were based on formulating the displacement vector
between two points, in terms of barycentric coordinates.
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In the projective viewpoint, the notion of displacement vector between two
equivalence classes [x]+, [y]+ does not exist. What is meaningful is to consider
the pair ([x]+, [y]+) as a projective line passing between these two points, which
corresponds to the vector plane span(x,y) in the ambient space Rd+1. Given
mean points [µx]+, [µ

y]+ of, respectively, [x]+, [y]+, the (average) relative ori-
entation between the planes span(x,µx) and span(y,µy) can serve as a basis
upon which one can define a notion of covariance and correlation between pro-
jective points. Grassmann’s exterior (wedge) product ∧ is the key fundamental
algebraic tool which allows to synthetically construct projective lines from pairs
of projective points and to decompose the orientations of a pair of planes into
components. This results in (simple) bi-vectors, x ∧ µx and y ∧ µx, which in-
terprets geometrically as oriented parallelograms. Their components and scalar
product serve as analogues upon which one can construct notions of distance,
and covariance matrix for CoDa.

Remarkably, both approaches, the affine one based on barycentric coordi-
nates of Faugeras (2024a) and the projective one based on the exterior product
of the present article, lead to closely related notions of distance/divergence and
covariance matrices. Together, both approaches give a twin framework for the
analysis of CoDa in a direct, log-free, unified way, effectively handling zeroes.
Each setting capitalizes on an underlying linear structure, that of an affine
space in Faugeras (2024a), and that of the exterior algebra of multi-vectors in
the present paper.

In spite of its power, the exterior product and Grassmann’s algebra appears
to be relatively unknown to statisticians1, partly due to its inherent abstract
nature. Therefore, the main objective of this paper is to try to bridge the gap
between the abstract theory and its practical application towards statistical
analysis of CoDa. Hence, some parts of the paper are expository, intended
to explain the basics of the exterior product and Grassmann’s algebra in a
geometrically intuitive way so that its statistical application to CoDa be made
understandable to the widest possible audience.

1.2 Outline

More precisely, the paper is organized as follows: in Section 2, we provide a
limited tutorial on the exterior product and bi-vectors. It is based on geometric
intuition, envisioning simple bi-vectors as oriented parallelograms, and linear
algebra, defining bi-vectors through their linear representations as matrices.
We show how the usual Euclidean scalar product and norm extends to these
bi-vectors. Alternatively to Section 2, the reader can find in Appendix A a
short recap of the exterior product and Grassmann’s algebra from the abstract
algebraic viewpoint.

Section 3 applies the above constructs to a pair of equivalence classes of vec-
tors, i.e. to a pair of directions [x], [y], or a pair of CoDa [x]+, [y]+. They are
represented algebraically by homogeneous bi-vectors, which can be reduced to a

1See e.g. Dieudonne (1979).
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single bi-vector by choosing suitable normalized representatives. This allows to
transfer the scalar product and norm of bi-vectors into a pseudo scalar product
and pseudo-norm for pairs of equivalence classes. For CoDa, the pseudo-norm
obtained interprets as a divergence or even a distance, depending on the norm
chosen to standardize CoDa. For the ℓ1 normalization, one obtains the same 2-
barycentric divergence of Faugeras (2024a), which was obtained from the affine
geometry viewpoint, with a reasoning based on barycentric coordinates. For
the ℓ2 normalization, one obtains a genuine, log-free, bounded distance (i.e.
satisfying the triangle inequality) on the full CoDa space (hence, allowing for
zeroes in the components), which has the additional property of being orthogo-
nally invariant. A variant using a square root transform on the simplex is also
suggested.

Section 4 introduces the main statistical objects of the paper for a CoDa
analysis based on such projective viewpoint aided with the exterior product.
By applying the pseudo-scalar product and norms of section 3 to homogeneous
bi-vectors [x]+ ∧ [µx]+, [y]+ ∧ [µy]+, where [µx]+ and [µy]+ are determinis-
tic means of random [x]+, [y]+, one defines exterior covariance, variance and
correlation matrices, in a fashion similar to the barycentric covariance and vari-
ance matrices of Faugeras (2024a). These matrices give orthogonally invariant
decomposition of the variation/covariation of CoDa along its pairs of compo-
nents. We briefly show in Section 5 how these measures of statistical variation
can be used for further CoDa analysis, e.g., for defining Fréchet means and their
variants (useful for clustering and regression), Mahalanobis distances, Gaussian-
type distributions, and Wasserstein type distance of CoDa distributions.

At last, Section 6 draws some connections between the norm and scalar
product of multi-vectors and various notions encountered in the literature. In
particular, we show how the norm of bi-vectors is related to divergences based
on quantifications, either of the Cauchy-Schwarz inequality, or of the likelihood
ratio order. Next is the relation between the bi-vector norm and the polar
sine, a generalization of the sine function to ratio of volumes. At last, we
explain how the scalar product and norm of multi-vectors are related to the
relative position between subspaces, expressed either via their canonical angles,
or via their projection matrices. This gives additional geometrical insight on the
newly defined exterior covariance, exterior correlation and pseudo-norm between
CoDa. We eventually conclude in Section 7.

We follow the notations of Faugeras (2023) and Faugeras (2024a), with the
exception of simply2 denoting by ||.|| the usual Euclidean ℓ2 norm of vectors. A
list of the main notations and conventions is collected in Appendix B.

2instead of ||.||2.
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2 A primer on the exterior product and Grass-
mann algebra

2.1 Introduction

The exterior (or wedge) product ∧ is one of Grassmann’s (Hermann Grass-
mann (1878), H. Grassmann (1995)) genial contribution to geometry. It is de-
fined as a multilinear and antisymmetric product of any number of vectors, and
thus can be thought of as a sort of a multivariate “rectangular determinant”3.
The exterior product algebraicizes the notion of linear independence as vectors
are linearly dependent if and only if their exterior product is zero. It provides
a fundamental product operation for elements of a linear space V , of dimension
n, which allows to represent algebraically vector subspaces as the ”product” of
their lower-dimensional parts (e.g. a vector plane is represented by the product

of two vectors). It generates a series of new linear spaces,
∧k

(V ), 0 ≤ k ≤ n,
whose elements are called k-vectors4 and whose direct sum defines a (closed) al-
gebra of multi-vectors, the exterior power

∧
(V ). If the linear space V possesses

a metric, the measure or magnitude of such multi-vectors may be interpreted as
a length, area, volume, or hyper-volume according to the grade of the product.
The exterior product is also closely related to other algebraic products like the
tensor and the Clifford (geometric) products, and to matrix notions like minors,
Gram and compound matrices. It underpins geometric and conformal algebra
and gives a coordinate free, unified treatment of vector calculus and differential
forms (à la Cartan).

There are several ways to introduce the exterior product and Grassmann’s
algebra, based on algebra alone, (see e.g. Kung, Rota, and Yan (2009), Chap-
ter 6.6, Spivak (1965) or Federer (1969)), geometry (Khosravi and Michael
D. Taylor (2008), Mikusinski and Michael D Taylor (2012), Postnikov (1988)
Chapter 7), a mixed of those (Browne (2012), Winitzki (2009), Rosén (2019)
Chapter 2), or even from the geometric (Clifford) product (see e.g. Doran and
Lasenby (2003), Hestenes and Sobczyk (1984), Dorst, Fontijne, and Mann (2009),
Perwass (2009)). A difficulty of the topic, in addition to its variety of approaches
and ramifications, is the inherent abstract nature, both in the definition of the
exterior product as a formal combination of symbols, and in the exterior al-
gebra as a formal sum of elements of disparate nature5, scalars, vectors, bi-
vectors, tri-vectors, etc. More fundamentally, as we will explain thereafter, not
all k−vectors6 can be given a geometric meaning.

Fortunately, we will only require basic facts about simple bi-vectors obtained
from the exterior product of two vectors and the extension of the scalar product
to those simple bi-vectors (which do have a geometric interpretation). Although

3i.e. determinant of fewer than n vectors in an n−dimensional space.
40-vectors are identified with scalars.
5i.e. elements of different grade.
6This is the important distinction between simple k-vectors x1 ∧ . . . ∧ xk ∈

∧k(V ), built
from the exterior product of k (usual) vectors x1, . . . ,xk ∈ V and indecomposable or compound
k−vectors made of irreducible sums of at least two simple k-vectors.
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the whole construction of the general exterior product between elements of dif-
ferent grades and the full algebra of the exterior power space gives better insight
and understanding, what is essential for our purposes of defining distance and
covariance for CoDa is the geometric intuition of simple bi-vectors as oriented
parallelograms and the scalar product between them. Our aim in this section is
thus to make the exterior product geometrically intuitive so that its application
to CoDa be made understandable to the widest possible audience.

2.2 An intuitive geometric approach to simple bi-vectors
as oriented parallelograms

We thus proceed to give an inductive, concrete, geometric tutorial on the exterior
product and algebra of bi-vectors, whose ideas are mainly inspired by Mikusinski
and Michael D Taylor (2012) and Khosravi and Michael D. Taylor (2008). The
general philosophy is similar to the idea that in linear algebra, the abstract
definition of a vector space, based solely on algebraic properties, as a set V , with
the two familiar operations (+,×), is better grasped after one is accustomed to
manipulating the primitive high-school geometrical/intuitive notion of vector as
an “arrow” in space.

Indeed, when one first encounters the concept of a vector x, it is usually
described in purely geometric/physical/sensory terms, as an “arrow”, i.e. as
(an equivalence class7 of) a directed line segment, free “floating” in space: it
has geometric predicates,

i) a direction (determined by the line span(x) starting from the origin and
parallel to x),

ii) a sense or orientation (so that the line is divided into two rays, one in the
sense of x, and the opposite one in the sense of −x),

iii) and a magnitude (the length ||x|| of the segment),

but is located nowhere in space (two directed line segments having same direc-
tion, orientation and magnitude, i.e. forming a parallelogram, are considered
equal). An algebraic description is obtained by associating to the vector x a
sequence of real numbers xi ∈ R, i = 1, . . . , n, called the components, relative to
an (orthogonal) coordinate system: each coordinate component xi corresponds
to the (signed) length of the projection of x on the coordinate axis span(ei),
where (e1, . . . , en) is the canonical basis of Rn. Pythagoras’s theorem ensure
that the squared length of the vector is the sum of the squared length of its
projected components.

Such a geometric-to-analytic-to-abstract-algebraic approach to the linear al-
gebra of vectors can similarly be employed for bi-vectors: we first apprehend a
pair (x,y) ∈ Rn × Rn of vectors as a single geometric object, to which one can
similarly associate notions of magnitude and coordinate components. In order
to take into account that a pair of vectors is a bivariate object, we will have to

7i.e. equipollent.
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replace the concepts of “arrow”, (signed) length, and components w.r.t. the co-
ordinate axis, with their suitable 2−dimensional generalizations: parallelogram,
(signed) area, coordinates w.r.t. to planes made of pairs of coordinate axis.

We thus conceives geometrically a pair of vectors (x,y) as the parallelogram
{sx+ ty, 0 ≤ s, t ≤ 1} induced by them, with one vertex at the origin. We will
denote by

x ∧ y

such a parallelogram, for reasons which will become clear below and will call it
a simple bi-vector. Geometrically, x ∧ y has

i) a direction, the plane span(x,y) corresponding to the subspace spanned
by the vectors (x,y),

ii) an orientation, from x to y (which can be symbolically represented as a
turning arrow from x to y),

iii) a magnitude, ||x ∧ y||, defined as the area of the parallelogram (it will be
defined precisely below.)

Components to this parallelogram/ simple bi-vector are attached as follows:
for each ordered pair i < j of indices, the coordinate axis span(ei, ej) determines
an (i, j)-plane. For x = (x1, . . . , xn), y = (y1, . . . , yn), the projection of the
parallelogram into this plane is the parallelogram(

xi

xj

)
∧
(
yi
yj

)
,

generated by the two dimensional projected vectors (xi, xj) and (yi, yj) on this
(i, j)−plane. The (i, j) component of the pair x ∧ y will be defined as the
oriented8 area of this orthogonal projection. Since (xi, xj) and (yi, yj) are two
vectors in the plane R2, the oriented area of the parallelogram (xi, xj)∧ (yi, yj)
is given by the determinant

pij := pij(x ∧ y) := det

∣∣∣∣xi yi
xj yj

∣∣∣∣ = xiyj − xjyi. (2)

This yields
(
n
2

)
components, which we call Plücker components.

2.3 Matrix descriptions of x ∧ y

2.3.1 Plücker matrix

These Plücker components can be arranged in an n× n anti-symmetric matrix,
which we call the Plücker matrix:

8We consider oriented areas in order to allow for negative components.
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Definition 2.1. The Plücker matrix of the simple bi-vector x ∧ y is the n × n
anti-symmetric matrix

P := P (x ∧ y) := (pij)n×n, (3)

with pij = −pji, given by (2).

Note that the Plücker matrix also writes as

P = xyT − yxT .

Remark 1. The matrix xyT corresponds to the linear application x⊗y : V→
V, given by u 7→ x⟨y|u⟩, which is the outer product of the two vectors x,y.
x ⊗ y is bilinear w.r.t. to each components x,y. Its generalization to tensors,
i.e. multidimensional arrays, gives the tensor product of two tensors and the
general construction of tensor algebra. Hence, x∧ y, identified with its Plücker
matrix representation P (x ∧ y), corresponds to the anti-symmetrization of the
outer product, formally9, x ∧ y = x ⊗ y − y ⊗ x. This is one possible abstract
algebraic definition of the exterior product, as found e.g. in Spivak (1965).
Closely related to the outer product is the Kronecker product, defined as the
vectorization (i.e. stacking of the matrix components in a single long vector) of
the outer product.

2.3.2 Compound matrix

Another way to describe matricially this coordonatization of x ∧ y is via what
is known in the literature as compound matrices, see Aitken (1956) Chapter 5,
Prells, Friswell, and Garvey (2003), Boutin, Gleeson, and Williams (1996). The
general description of compound matrices is as follows: for a matrix A = [aij ] ∈
Rn×m and subsets I ⊂ {1, . . . , n}, J ⊂ {1, . . . ,m}, denote by AI,J the sub-
matrix of A with rows and columns taken from I, J , respectively. For I and J of
same cardinality p ≤ min(n,m), recall that the I, J-minor of order p of A is the
number detAI,J . Then, the compound matrix Cp(A) of order p of A is defined
as the matrix of minors of order p of A, where the different subsets I, resp. J ,
are indexed in lexicographic order ≺, so that one can enumerate these subsets
in increasing order, viz. I1 ≺ I2 ≺ . . . ≺ I(np)

, resp. J1 ≺ J2 ≺ . . . ≺ J(mp )
:

Cp(A) :=
(
detAI,J

)
, I ⊂ {1, . . . , n}, J ⊂ {1, . . . ,m},

card I = card J = p. (4)

When m = p, the p−compound of the matrix A ∈ Rn×p reduces to a vector of
size

(
n
p

)
, since in this case the subsets J reduce to the single set J = {1, . . . , p}.

In our case, the connection with Plücker matrices of simple bi-vectors is as
follows: for a simple bi-vector x ∧ y, with x,y ∈ Rn, define its A−matrix as

A := A(x ∧ y) := (x y), (5)

9usually with a factor 1/2 added.
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i.e. the n × 2 matrix whose column vectors are x,y. Then, the 2, 2−minors
of A are precisely the Plücker components (2): for I = {i, j}, i < j, in (4),
detA{i,j},{1,2} = xiyj − xjyi. Hence, the 2-compound matrix/vector of A,

C2(A) =


...

detA{i,j},{1,2}
...

 =


...

xiyj − xjyi
...

 . (6)

of size
(
n
2

)
× 1 corresponds to the vectorization of the Plücker components (2),

equivalently, the vectorization of the upper triangle of the Plücker matrix (3).
Let us formalize this in a definition.

Definition 2.2. The compound vector representation of x ∧ y is the vector

C2(A(x ∧ y)) ∈ R(
n
2), given by (6).

2.4 The vector space
∧2(V ) of bi-vectors and the exterior

product.

2.4.1 Vectorization of parallelograms from their linear representa-
tions and the exterior product

So far, we have just defined x∧y as geometric objects, oriented parallelograms,
with attributes like direction, orientation, magnitude and components. In par-
ticular, these objects do not possess yet a vector space structure (which would
make possible to add simple bi-vectors together). However, since the compo-
nents of simple bi-vectors are represented by linear objects, either antisymmetric
(Plücker) matrices (3) or (compound) vectors (6), which are elements of vector
spaces, it is natural to endow the set of simple bi-vectors with the correspond-
ing addition and scalar multiplication of their components: we simply define
the addition + and scalar multiplication . on simple bi-vectors, as the addition
and scalar multiplication of their Plücker matrices, equivalently their compound
vectors. Formally, we set, for i < j, x,y, r, s ∈ Rn, and λ ∈ R,

pij(x ∧ y + r ∧ s) := pij(x ∧ y) + pij(r ∧ s)

pij(λ(x ∧ y)) := λpij(x ∧ y)

The set of objects thus obtained by finite linear combination of simple bi-vectors
by these operations are called bi-vectors and belong, by definition, to a vector
space, the exterior power

∧2
(Rn), of dimension

(
n
2

)
.

This extension of simple bi-vectors into elements of a linear space10 allows to
turn the formal symbol ∧ into an operation between vectors: by bilinearity and
antisymmetry of the 2 × 2 determinant defining pij (or by direct verification),

10The vector space structure of
∧2(V ) explains the terminology bi-vectors for x ∧ y and

linear combinations therereof.
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one has that

pij((x+ y) ∧ z)) = pij(x ∧ z) + pij(y ∧ z))

pij(x ∧ (y + z)) = pij(x ∧ y) + pij(x ∧ z)

pij(λ(x ∧ y)) = pij((λx) ∧ y) = pij(x ∧ (λy))

pij(y ∧ x) = −pij(x ∧ y)

Thus, ∧ amounts to a product on V ,

∧ : V × V →
∧2

(V )

called the exterior product, which is bilinear and antisymmetric on V .
As explained in the introduction, an important distinction is between simple

bi-vectors, i.e. bi-vectors which can be reduced to a single expression x1 ∧ x2,
where each x1, x2 are two (regular) vectors in Rn, and general indecomposable
or compound11 bi-vectors, made of sums (or linear combinations) of at least two
simple bi-vectors: only simple bi-vectors have a geometric interpretation12 as
oriented parallelograms, with corresponding attributes. This is the unavoidable
abstraction in the construction of the vector space

∧2
(V ): in general, parallel-

ograms can not be “added” together to give a parallelogram. They only give
bi-vectors. Algebraically speaking, not every antisymmetric matrix, resp. vec-
tor of size

(
n
2

)
, can be obtained from a Plücker matrix P (x ∧ y) of two vectors

x,y ∈ Rn, resp. as the compound vector of an A−matrix A(x ∧ y).

Remark 2. i) In a three-dimensional space, i.e. for n = 3,
(
n
2

)
= 3. Hence,

C2(A) ∈ R3 identifies with a vector13 of the original space V . This allows
to view ∧ as a binary operation V ×V → V . Then, x∧y corresponds, up to
some sign change and permutation of the components14, to the well-known
cross-product x× y of three-dimensional vectors.

ii) In addition, for n = 3, every nonzero bi-vector of
∧2

(R3) reduces to a
simple bi-vector: by bilinearity and antisymmetry of ∧, one can write any
bi-vector x ∈

∧2
(R3) on the basis (e1 ∧ e2, e1 ∧ e3, e2 ∧ e3) of

∧2
(R3) as

x = x1e1 ∧ e2 + x2e1 ∧ e3 + x3e2 ∧ e3,

where x1, x2, x3 ∈ R. Assume w.l.o.g. that x1 ̸= 0 (otherwise pick another
component which is nonzero). Then, again by bilinearity and antisymme-
try, x writes as the simple bi-vector

x = x1

(
e1 −

x3

x1
e3

)
∧
(
e2 +

x2

x1
e3

)
.

11One should not confuse the notion of compound bi-vectors with the compound vector
(6) derived from the compound matrix (4). The terminology is somehow unfortunate but
well-established in the literature.

12This is in contrast with classical linear algebra where all abstract vector elements can be
given geometric meaning as an “arrow” in space.

13often called a pseudo-vector in physics.
14corresponding to Hodge dualization of the bi-vector, i.e. x × y := ⋆(x ∧ y), see e.g.

Kanatani (2015) Proposition 5.7 p. 71. for details.
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2.4.2 Geometric implications for simple bi-vectors

For simple bi-vectors, the algebraic properties of ∧ have geometric implications:
let λ ∈ R, then,

(x+ λy) ∧ y = x ∧ y + λy ∧ y = x ∧ y,

and for λ ̸= 0,

(λx) ∧
(
1

λ
y

)
=

λ

λ
x ∧ y = x ∧ y.

The geometric meaning is that simple bi-vectors remain the same under shear
mappings (x,x) 7→ (x + λy,y), and squeeze mappings (x,x) 7→ (λx) ∧

(
1
λy
)

(which both preserve the area of the parallelogram): this corresponds to defining
simple bi-vectors as equivalence classes of parallelograms, where the equivalence
relation is defined by a set of elementary transformations composed of shear and
squeeze mappings, see Postnikov (1988) Chapter 7. One thus has an analogue
for simple bi-vectors of the definition of vectors as equivalence class of directed
line segments under translations. In other words, the shape of the parallelogram
does not matter, only its direction, orientation and area-magnitude (yet to be
precisely defined). In particular, one can reshape the parallelogram x ∧ y in
order to make it rectangular. Another way of saying the same thing is that only
the part y⊥ of y perpendicular to x is involved in the exterior product, i.e.

x ∧ y = x ∧ y⊥, with y⊥ := y − ⟨y|x⟩
||x||2

x.

At last, changing the order of the terms in the product, i.e. the identity

y ∧ x = −x ∧ y

interprets as reversing the orientation of the parallelogram (from y to x).

2.5 Norm and scalar product of bi-vectors

2.5.1 Geometric approach to the magnitude of simple bi-vectors via
Gram matrices

Following our general philosophy, we first define an intuitive notion of magnitude
for simple bi-vectors from geometric intuition, before proceeding to show it
corresponds to a norm derived from a scalar product on bi-vectors.

Recall that for two rectangular matrices A ∈ Rm×n, B ∈ Rn×m, with m ≤ n,
the Cauchy-Binet formula yields

det(AB) =
∑
S

det(A{1,...,m},S) det(BS,{1,...,m}), (7)

where S is a subset of {1, . . . , n} withm-elements, det(A{1,...,m},S), resp., det(BS,{1,...,m})
are the m−minors of A, resp. B, and the sum is over all subsets S (see e.g.
Gantmacher (1998)).

12



Now, let A = A(x ∧ y) be the A−matrix of (5). From A, one can construct

G := G(x ∧ y) := ATA =

(
⟨x|x⟩ ⟨x|y⟩
⟨x|y⟩ ⟨y|y⟩

)
(8)

the symmetric, positive semi-definite, Gram matrix of size 2 × 2 associated
with the pair of vectors x ∧ y. Then, as is well-known (see e.g. Mikusinski
and Michael D Taylor (2012) p. 36), det(G) is the square of the area (the
2-dimensional volume or measure of magnitude) of the parallelogram x ∧ y.

Applied to the Gram matrix G = ATA, the Cauchy-Binet formula (7), to-
gether with (2), yields

det(G) =
∑

1≤i<j≤n

det

(
xi yi
xj yj

)T

det

(
xi yi
xj yj

)

=
∑

1≤i<j≤n

detG

((
xi

xj

)
∧
(
yi
yj

))
=

∑
1≤i<j≤n

p2ij =
∑

1≤i<j≤n

(xiyj − xjyi)
2 (9)

The geometric meaning of (9) is that the squared area of the parallelogram x∧y
is equal to the sum of the squares of the areas of its projections on all coordinate
planes. One thus have a generalization of Pythagoras’s theorem for length of
vectors to areas of parallelogram, via Plücker components.

2.5.2 Scalar product and norms of parallelograms from Froebenius
scalar product of Plücker matrices

Having linear representations of bi-vectors as Plücker matrices (3), or as com-
pound vectors (6), it is natural to use the classical scalar product for matrices

or vectors and corresponding norms to endow
∧2

(V ) with a scalar product,

effectively turning
∧2

(V ) into a finite dimensional Hilbert space. In particular,
the geometric interpretation of (9) suggest to use the Froebenius inner product
between 2 matrices A = (aij), B = (bij) of the same size,

⟨A|B⟩F := Trace(ATB) =
∑
i,j

aijbij ,

which is the usual generalization to matrices of the Euclidean scalar product of
vectors. We thus define:

Definition 2.3. The Plücker scalar product between two pairs of simple bi-
vectors x ∧ y, r ∧ s is defined as the Froebenius scalar product of their Plücker

13



matrices, viz.

⟨x ∧ y|r ∧ s⟩ := 1

2
⟨P (x ∧ y)|P (r ∧ s)⟩F (10)

=
∑
i<j

pij(x,y)pij(r, s)

= det
(
A(x ∧ y)TA(r ∧ s)

)
(11)

= det

∣∣∣∣⟨x|r⟩ ⟨x|s⟩⟨y|r⟩ ⟨y|s⟩

∣∣∣∣ = ⟨x|r⟩⟨y|s⟩ − ⟨x|s⟩⟨y|r⟩, (12)

where we have normalized the Froebenius product by 1/2, so that (11) follows
from the Cauchy-Binet-Formula (7). It is then extended by linearity to a genuine

scalar product on (possibly indecomposable) bi-vectors of
∧2

(V ).

Obviously, this gives the same scalar product on
∧2

(V ) which would have

resulted from using the usual Euclidean scalar product ⟨.|.⟩ of R(
n
2) and the

representation of bi-vectors via compound matrices, i.e.

⟨x ∧ y|r ∧ s⟩ = ⟨C2(A(x ∧ y))|C2(A(r ∧ s))⟩,

where A(x ∧ y), resp., A(r ∧ s) are the A−matrices (5) for x ∧ y, resp. r ∧ s.

Definition 2.3 yields a corresponding norm on
∧2

(V ), which we call the
Plücker norm:

||x ∧ y|| :=
√
⟨x ∧ y|x ∧ y⟩ (13)

=
√

det G(x ∧ y) =
√
||x||2||y||2 − ⟨x|y⟩2 (14)

=

√
1

2
trace(P (x ∧ y)TP (x ∧ y)) =

√
1

2
||P (x ∧ y)||2F

=

√ ∑
1≤i<j≤n

p2ij =

√ ∑
1≤i<j≤n

(xiyj − xjyi)2 (15)

= ||C2(A(x ∧ y))|| (16)

where the norm in (16) is the Euclidean norm on R(
n
2). Equation (14) shows

that one obtains by linear algebra the same norm for simple bi-vectors as the
one derived in (9) from the geometric standpoint. Hence, the Plücker norm of
simple bi-vectors interprets geometrically as the area of the parallelogram, as
explained before. Such geometric interpretation is also clear from (14): if one
introduces the angle θ = θ(x,y) ∈ [0, π] between x and y, defined via

⟨x|y⟩ = ||x||.||y||. cos(θ),

then, (14) gives
||x ∧ y|| = ||x||.||y||. sin(θ) (17)

and one recovers the familiar formula of the area of a parallelogram, base length
times height.
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Obviously, it is readily seen from the linear representation of bi-vectors that
Cauchy-Schwarz’s inequality for vectors extends to bi-vectors, viz.

|⟨x ∧ y|r ∧ s⟩| ≤ ||x ∧ y|| ||r ∧ s||.

In addition, the definition of the Plücker norm is consistent in the sense that
it is invariant w.r.t. orthogonal transformation: if U is an orthogonal matrix,
then

||Ux ∧ Uy|| = ||x ∧ y|| (18)

This follows from the expression (14) and the orthogonal invariance of the Eu-
clidean norm and scalar product. It can also be seen directly from the definition
of the Plücker norm in terms of A-matrix (5): if x′ := Ux, y′ := Uy, then
A(x′ ∧ y′) = UA(x ∧ y). Thus, by (14)

||Ux ∧ Uy|| =
√

detG((x′ ∧ y′) =
√
det(AT (x′ ∧ y′)A(x′ ∧ y′))

=
√
det(AT (x ∧ y)UTUA(x ∧ y)) =

√
detG(x ∧ y)

Remark 3. For a single vector x, its Plücker norm, understood from its def-
inition (14) in terms of A−matrix, yields the usual Euclidean ℓ2 norm of x,
as

||x|| :=
√
det(A(x)TA(x)) =

√
xTx =

√
⟨x|x⟩ = ||x||.

This explains why we use the same notation ||.|| for the Plücker norm of bi-
vectors and for the Euclidean norm of vectors. Similar comments apply to the
scalar product of bi-vectors.

Remark 4. These very basic parts of the theory are sufficient for our purposes
of using the exterior product to CoDa analysis. Nevertheless, it is possible to
generalize, first to the construction of simple k−vectors, x1∧ . . .∧xk, geometri-
cally interpreted as k−dimensional parallelotopes, then extended by linearity to
the corresponding exterior powers vector space ∧kV , and eventually to the exte-
rior algebra

∧
V , so that ∧ becomes a genuine multi-linear and anti-symmetric

operation between multi-vectors. The interested reader may consult Mikusinski
and Michael D Taylor (2012) and/or Khosravi and Michael D. Taylor (2008)
for details. Alternatively, we summarize, for the convenience and comparison
purposes of the interested reader, the abstract algebraic approach to Grassmann’s
algebra in Appendix A.

3 From pairs of vectors to pairs of directions
and CoDa

3.1 Plücker coordinates for pairs of directions and CoDa

For the application of the exterior product to CoDa, we first need to homogenize
vectors and bi-vectors. Indeed, in the projective viewpoint of Faugeras (2023),
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owing to the scale invariance, a CoDa element [x]+, with vector representative15

x ∈ Rd+1
+ , is an equivalence class for the positive scaling relation, as explained

in the introduction. Hence, [x]+ represents a direction (in the non-negative
orthant), stripped of its magnitude content. Similarly, for a vector x ∈ Rd+1,
the equivalence class [x] = {λx, λ ∈ R∗} for the collinearity equivalence relation
∼,

x ∼ y⇔ ∃λ ∈ R∗ s.t. x = λy,

represents the directional part span(x) attached to the vector x and is pictured
geometrically as the (two-sided) line through the origin parallel to x.

For simple bi-vectors, the Plücker coordinates pij of x ∧ y induces homoge-
neous coordinates for the homogenized versions of (ordered) pairs ([x], [y]) of
directions, resp. ([x]+, [y]+) of pairs of CoDa. Indeed, if x,y are replaced by
λx, µy, λ, µ ̸= 0, then

pij(λx, µy) = λµ.pij(x,y),

i.e. pij(λx, µy) is a scalar multiple of pij(x,y). Considering the set of homoge-
neous coordinates

[P ] := {λP, λ ∈ R∗},
i.e. scalar multiples of the Plücker matrix (3), gives a coordonatization of a
pair of directions [x]∧ [y]. Equivalently, one can take as coordonatization scalar
multiples of the compound vector (6), i.e.

[C2(A(x ∧ y))] := {λC2(A(x ∧ y)), λ ∈ R∗},

Here, [x] ∧ [y] interprets as the set of parallelogram (λx) ∧ (µy) obtained from
x,y by changing their amplitudes (and orientation for λµ < 0) and thus can
be identified with the whole vector subspace span(x,y). Taking (non-zero)
scalar multiple of elements of a vector space corresponds to the operation of
projectivization of a vector space in projective geometry. We have just described
what is known in the literature as the Plücker embedding of the Grassmannian
G(2, d+ 1) into the projectivization of the exterior algebra, here P(

∧2 Rd+1).
For compositional data, taking the non-negativity constraint into account,

one obtains
[P ]+ = {λP, λ > 0},

with P the Plücker matrix (3), or, equivalently,

[C2(A)]+ = {λC2(A), λ > 0},

with C2(A) the compound vector (6), as homogeneous coordinates for the pair
[x]+∧ [y]+. The latter pair identifies geometrically with the convex (polyhedral)
cone cone(x,y) = {λx+ µy, λ, µ > 0}.

Summarizing, one has the formal statement on pairs of directions and CoDa:

[x] ∧ [y] = [x ∧ y], and [x]+ ∧ [y]+ = [x ∧ y]+.
15From now on, we set the dimension n = d + 1, in order to match the notations of

Faugeras (2023) and Faugeras (2024a).
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3.2 Non-homogeneous coordinates of pairs of directions
and CoDa

Homogeneous systems of coordinates, being scalar multiples, do not associate to
a direction [x], resp. a CoDa point [x]+, a unique set of numbers. One can de-
homogenize, i.e. get a single set of coordinate numbers by taking a representative
of the equivalence class [x], resp. [x]+, obtained by standardizing the vector x
by a norm N . Indeed, by the property of a norm, for any scalar λ ̸= 0, and
x ̸= 0,

λx

N(λx)
=

λx

|λ|N(x)
= sign(λ)

x

N(x)
= ± x

N(x)
,

so that the vector x/N(x) is stripped of the magnitude content of x, retaining
only its direction (up to sign).

In turn, one obtains non-homogeneous coordinates of pairs of directions
[x] ∧ [y] by taking as representative the single 2−vector obtained by taking
the exterior product of the normalized representatives of [x], [y], viz.

x

N(x)
∧ y

N(y)
.

For directional data, it makes sense to take as norm the usual Euclidean ℓ2
norm N(.) = ||.||, i.e. to consider the radial projection S on the unit sphere,
viz.

S(x) := x

||x||
, x ̸= 0. (19)

Thus, a direction [x] is represented by the opposite pair {x/||x||,−x/||x||} of
unit-norm vectors, i.e. a pair of antipodal points on the unit sphere. This yields
as normalized representative of the pair of directions [x]∧ [y], the pair of simple
bi-vectors with opposite orientation{

x

||x||
∧ y

||y||
,− x

||x||
∧ y

||y||

}
=

{
x

||x||
∧ y

||y||
,

y

||y||
∧ x

||x||

}
. (20)

For compositional data, the traditional view of CoDa as points on the prob-
ability simplex suggests to take as norm the ℓ1 norm, N(.) = ||.||1. The non-
negativity constraint x ≥ 0 imposed on CoDa points entails that such ℓ1 nor-
malization corresponds to taking as representative of the (positively oriented)
direction [x]+ the radial projection x/||x||1 on the unit-sum affine hyperplane∑

i xi = 1. Such an operation is called “closure” in the CoDa literature, and is
denoted by

C(x) := x

||x||1
.

This yields, as normalized representative of the pair of CoDa [x]+ ∧ [y]+, the
sole bi-vector

C(x) ∧ C(y) = x ∧ y

||x||1||y||1
, (21)
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However, the choice of the norm in the normalization is somehow conventional.
Thus, an interesting alternative is to normalize by the usual ℓ2 norm, i.e. to
consider the bi-vector

S(x) ∧ S(y) = x ∧ y

||x||||y||
, (22)

where S corresponds to (19). This choice corresponds to a spherical repre-
sentation of CoDA, see Faugeras (2023). Both choices will lead to interesting
distance/divergences and measures of variation, as we will see.

3.3 Pseudo scalar product and norm for pairs of direc-
tions/CoDa

Having associated normalized representatives (20), resp., (21) or (22), to pairs of
directions, resp., pairs of CoDa, one can then apply the Plücker scalar product
(10) and norm (13) defined for bi-vectors to these normalized simple bi-vectors.
This allows to partially transfer16 the concepts of scalar product and norm
to pairs of directions/CoDa. These will prove useful to define quantities of
statistical interest, like divergences, means and variance/covariance measures
for directional data/CoDa.

For directional data, in view of the sign indeterminacy of the normalized
representatives of [x]∧ [y] in (20), only the absolute value of the Plücker scalar
product (10) makes sense between them. For compositional data, there is no
sign ambiguity, but choosing between normalizations (21) by the ℓ1 norm, or
(22) by the ℓ2 norm, leads to two different pseudo-scalar products. We thus
define:

Definition 3.1. i) For directional data, the pseudo-scalar product S between
pairs of directions [x]∧ [y] and [r]∧ [s], i.e. between the planes span(x,y)
and span(r, s), is defined as

S(span(x,y)), span(r, s)) :=
|⟨x ∧ y|r ∧ s⟩|
||x|| ||y|| ||r|| ||s||

(23)

ii) For CoDa, the pseudo scalar product ⟨.|.⟩1 between pairs [x]+ ∧ [y]+ and
[r]+∧[s]+ of CoDa, based on normalization (21) by the ℓ1 norm, is defined
as

⟨[x]+ ∧ [y]+|[r]+ ∧ [s]+⟩1 := ⟨C(x) ∧ C(y)|C(r) ∧ C(s)⟩,

=
⟨x ∧ y|r ∧ s⟩

||x||1 ||y||1 ||r||1 ||s||1
(24)

and the pseudo scalar product ⟨.|.⟩2, based on normalization (22) by the ℓ2
norm, is defined as

⟨[x]+ ∧ [y]+|[r]+ ∧ [s]+⟩2 :=
⟨x ∧ y|r ∧ s⟩
||x|| ||y|| ||r|| ||s||

(25)

16The spaces of pairs of CoDa or directions do not have a global vector space structure.
(The Grassmannian G(2, d+ 1) is a manifold).
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Correspondingly, a pseudo-norm of a pair of equivalence classes can be de-
fined classically as the pseudo- scalar product of such a pair of equivalence
classes with itself. This gives, for directional data, in view of (23),

||[x] ∧ [y]|| :=
√
S(span(x,y)), span(x,y)) =

||x ∧ y||
||x|| ||y||

(26)

where ||.|| in the numerator is the Plücker norm (13). For CoDa, applying (24),
resp. (25), yields two pseudo-norms N1, resp. N2, defined as follows:

Definition 3.2. For two CoDa elements [x]+, [y]+ ∈ Pd
+,

i) the pseudo-norm N1 of [x]+ ∧ [y]+, obtained from the ℓ1 normalization of
the pseudo-scalar product (24), is defined as

N1([x]+ ∧ [y]+) :=
√
⟨[x]+ ∧ [y]+|[x]+ ∧ [y]+⟩1

= ||C(x) ∧ C(y)|| = ||x ∧ y||
||x||1 ||y||1

, (27)

ii) the pseudo-norm N2 of [x]+ ∧ [y]+, obtained from the ℓ2 normalization of
the pseudo-scalar product (25), is defined as

N2([x]+ ∧ [y]+) :=
√
⟨[x]+ ∧ [y]+|[x]+ ∧ [y]+⟩2 =

||x ∧ y||
||x|| ||y||

(28)

Note that (28) for CoDa is the same as (26) for directional data17.

3.4 Interpretation of the norm of pairs of equivalence classes
as a divergence/distance between directions/CoDa

The pseudo norms ||.||, resp. N1, N2 of the higher dimensional object [x] ∧
[y], resp. [x]+ ∧ [y]+, is a scalar quantity which interprets geometrically as
a proximity measure or divergence between the lower dimensional objects, i.e.
directions [x], [y], resp., CoDa [x]+, [y]+.

This is clear for directional data: in view of (17), Equation (26) simply writes

||[x] ∧ [y]|| = sin θ(x,y) ∈ [0, 1].

Thus, pseudo-norm depends explicitly on the angle between x and y, via the
sin function and thus quantifies the spread of the angular separation in the sine
distance (see Theorem 3.4 below for detailed properties). Note that on can
recover the (acute) angular/spherical distance between lines [x], [y],

dangular([x], [y]) := θ([x], [y]) := arcsin(||[x] ∧ [y]||) ∈ [0, π/2]

17This explains why we treat simultaneously directional and compositional data, although
we are primarily interested in CoDa.
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from such a exterior product approach, thus in a manner dual to the classical
scalar product definition of the angle.

For CoDa, it is remarkable that the N1 pseudo-norm (27) of simple bi-vectors
gives the same 2−barycentric divergence d2 of Faugeras (2024a) (see Definition
4.1 and Lemma 4.3 in Faugeras (2024a)),

N1([x]+ ∧ [y]+) = ||C(x) ∧ C(y)|| =
√
||x||2||y||2 − ⟨x|y⟩2
||x||1||y||1

=
||x|| ||y||
||x||1||y||1

sin θ(x,y) = d2([x]+, [y]+). (29)

The family of α−barycentric divergence was derived from an affine geometry
perspective, using completely different arguments. Thus, N1 satisfy all proper-
ties of Theorem 4.2 in Faugeras (2024a): it is a well-defined, bounded, symmet-
ric, permutation invariant, divergence on the full CoDa space Pd

+, able to deal
with zeroes. In addition, one has the following property on the attainment of
the upper bound:

Lemma 3.3. N1([x]+ ∧ [y]+) = 1 iff C(x) = ei, C(y) = ej for some i ̸= j.

Proof. From (29), N1([x]+ ∧ [y]+) writes as a product of three numbers ||x||
||x||1 ,

||y||
||y||1 , sin θ(x,y), bounded between zero and one. Thus, N1 attains the upper

bound 1 iff 
||x|| = ||x||1,
||y|| = ||y||1,
θ(x,y) = π/2.

(30)

Note that

||x|| = ||x||1 ⇔
∑
i

x2
i =

(∑
i

xi

)2

=
∑
i

x2
i + 2

∑
i<j

xixj

⇔
∑
i<j

xixj = 0.

Combined with x ≥ 0 and x ̸= 0, this is equivalent to x = λei for some
λ ̸= 0, and some 1 ≤ i ≤ n, where ei is the canonical basis vector ei =
(0, . . . , 0, 1, 0 . . . , 0) of Rd+1. As a result, (30) is equivalent to C(x) = ei, C(y) =
ej for some i ̸= j. Geometrically, C(x) and C(y) are two different points on the
intersection of the unit sphere and the unit-sum hyperplane.

The interpretation of Lemma 3.3 is as follows: the N1 norm, equivalently the
2-barycentric divergence, is maximal for CoDa which reduces to two different
single-component CoDa, i.e. for CoDa points that are maximally spread apart
and maximally sparse.
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Remark 5. The N1 norm involves the ratio of norms ℓ2/ℓ1. Its inverse ℓ1/ℓ2
is widely used in machine learning as a nonconvex but scale-invariant surrogate
of the ℓ0 penalty for encouraging sparsity, see e.g. Yin, Esser, and Xin (2014)

or Xu et al. (2021). Since maxx ̸=0
||x||
||x||1 = (minx̸=0

||x||1
||x|| )

−1, this explains why

maximizing N1 in Lemma 3.3 makes appears the sparsity property induced by
the minimization of the ratio ℓ1/ℓ2.

This sparsity property of N1 is in contrast with the N2 pseudo-norm. For
example, N1([1 : 0 : 0]+∧[0 : 1 : 0]+) = 1, and N1([1 : 0 : 0]+∧[0 : 1/2 : 1/2]+) =
1/
√
2, while N2([1 : 0 : 0]+∧ [0 : 1 : 0]+) = N2([1 : 0 : 0]+∧ [0 : 1/2 : 1/2]+) = 1:

it suffices for two CoDa to be orthogonal to be maximally separated in the N2

pseudo-norm.

Remark 3 in Faugeras (2024a) hinted at the possibility of removing the ratio
of ℓ2/ℓ1 norms by normalizing CoDa with the ℓ2 norm instead. This is precisely
achieved by the N2 pseudo-norm (28) of simple bi-vectors. By (17), the pseudo
norm N2 of formula (28) writes

N2([x]+ ∧ [y]+) = sin θ(x,y), (31)

where the non-negativity constraint of CoDa now entails that θ(x,y) ∈ [0, π/2]:
θ(x,y) is equal to the acute angle θ([x]+, [y]+) ∈ [0, π/2] between the rays
[x]+, [y]+ in the non-negative orthant. Compared to the 2−barycentric diver-
gence/ pseudo-norm N1, N2 enjoys improved properties: N2 is a genuine dis-
tance, i.e. it satisfies the triangle inequality, is defined on the full CoDa space
(thus allowing for zeroes), and is also orthogonally invariant, as shown in the
next theorem.

Theorem 3.4. N2 is a bounded, orthogonally invariant distance on the full
CoDa space Pd

+: it satisfies the following properties:

i) scale-invariance: N2([x]+ ∧ [y]+)=N2([λx]+ ∧ [µy]+), λ, µ > 0.

ii) symmetry: N2([x]+ ∧ [y]+) = N2([y]+ ∧ [x]+).

iii) boundedness: 0 ≤ N2([x]+ ∧ [y]+) ≤ 1.

iv) Positive-definiteness: N2([x]+ ∧ [y]+) = 0⇔ [x]+ = [y]+.

v) Triangle inequality: for all [x]+, [y]+[z]+ ∈ Pd
+,

N2([x]+ ∧ [z]+) ≤ N2([x]+ ∧ [y]+) +N2([y]+ ∧ [z]+).

vi) Orthogonal invariance. Let U be an orthogonal matrix. Then,

N2([Ux]+ ∧ [Uy]+) = N2([x]+ ∧ [y]+).

vii) In particular, vi) entails permutation invariance: let σ be a permutation
of {0, 1, . . . , d} and xσ be the vector obtained by permuting the coordinates
of x by σ. Then, N2([xσ]+ ∧ [yσ]+) = N2([x]+ ∧ [y]+).
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Proof. The proofs of i)-iv) are direct consequences of the definition (28) and
formulas (14) and (17). See also Faugeras (2024a) Theorem 4.2. vi) follows
from the orthogonal invariance of the Euclidean and Plucker norms, see (18).
Only the triangle inequality v) deserves a more detailed proof. We provide two
proofs.

1. first proof of v): w.l.o.g. consider normalized representatives x,y, z s.t.
||x|| = ||y|| = ||z|| = 1. Let projx := xxT be the orthogonal projection
matrix on x. Then, in view of (14), one has, by expanding the square,

1

2
||projx − projy||2F =

1

2

∑
i,j

(xixj − yiyj)
2 =

1

2

∑
i,j

x2
ix

2
j + y2i y

2
j − 2xiyixjyj

= 1− ⟨x|y⟩2 = N2
2 ([x]+ ∧ [y]+)

Thus, N2([x]+ ∧ [y]+) = 1√
2
||projx − projy||F , and the triangle inequality

for N2 follows from the triangle inequality for the Froebenius distance,
viz.

||projx − projz||F ≤ ||projx − projy||F + ||projy − projz||F .

2. second proof of v): By (31), the triangle inequality follows from the tri-
angle inequality for the angular (i.e. spherical) distance. Indeed, one has:

(a) Case 1: if 0 ≤ θ(x,y) + θ(y, z) ≤ π/2, then, by the triangle in-
equality for the spherical/angular distance (e.g. corollary 18.6.10 in
Berger (1987)) in the spherical triangle,

θ(x, z) ≤ θ(x,y) + θ(y, z).

Therefore, since sin is non-decreasing on [0, π/2],

sin θ(x, z) ≤ sin (θ(x,y) + θ(y, z))

= sin θ(x,y) cos θ(y, z) + cos θ(x,y) sin θ(y, z)

≤ sin θ(x,y) + sin θ(y, z).

(b) Case 2: if π ≥ θ(x,y) + θ(y, z) > π/2. It is easy to see (e.g. via
KKT conditions) that the function

[0, π/2]× [0, π/2]→ R

(x1, x2) 7→ sinx1 + sinx2 −
2

π
(x1 + x2)

attains its minimum value 0 on [0, π/2]× [0, π/2] at the four corners
(0, 0), (0, π/2), (π/2, 0), (π/2, π/2). Therefore, θ(x,y) + θ(y, z) >
π/2 entails

sin θ(x,y) + sin θ(y, z) ≥ 2

π
(θ(x,y) + θ(y, z)) > 1 ≥ sin θ(x, z).
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Remark 6 (On the tightness of the triangle inequality). Let z = λ x
||x|| + (1−

λ) y
||y|| , with 0 ≤ λ ≤ 1. Then, by anti-symmetry of ∧, x ∧ x = y ∧ y = 0.

Therefore, ∥∥∥z ∧ y

||y||

∥∥∥ = λ
∥∥∥ x

||x||
∧ y

||y||

∥∥∥,∥∥∥ x

||x||
∧ z
∥∥∥ = (1− λ)

∥∥∥ x

||x||
∧ y

||y||

∥∥∥.
Thus, ∥∥∥ x

||x||
∧ y

||y||

∥∥∥ =
∥∥∥z ∧ y

||y||

∥∥∥+ ∥∥∥ x

||x||
∧ z
∥∥∥

= ||z||
(∥∥∥ x

||x||
∧ z

||z||

∥∥∥+ ∥∥∥ z

||z||
∧ y

||y||

∥∥∥) ,

which is

N2([x]+ ∧ [y]+) = ||z|| (N2([x]+ ∧ [z]+) +N2([z]+ ∧ [y]+))

Since z lies on the chord of the sphere, ||z|| < 1, unless [x]+ = [y]+, so that the
triangle inequality does not reduce to an equality when x,y, z are on the same
plane, i.e. when [x]+, [y]+, [z]+ are aligned on the same projective line. In other
words, N2 is not a projective metric, contrary to Hilbert’s projective metric (see
Faugeras (2023)) or the spherical distance.

3.5 A variant via square root transform

3.5.1 Spherical representation of CoDa via square root transform

In Faugeras (2023) Appendix A, we explained that CoDa admits (at least) two
normalized representatives on the (non-negative pat of the) Euclidean (ℓ2) unit
sphere Sd

+ := Sd ∩Rd+1
+ : given some vector x ∈ Rd+1

+ of raw amounts, its CoDa
part [x]+ can be represented on Sd

+, either as

S([x]+) = S(x) :=
x

||x||
, or as R([x]+) = R(x) :=

√
C(x) =

√
x

||x||1
, (32)

see Figure 1. The commutative diagram expresses that C ◦S = C and S ◦C = S.
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x ∈ Rd
+ \ {0}

non-negative vector
of raw amounts

[x]+ ∈ Pd
+

CoDa as
equivalence class

C(x) = x
||x||1 ∈ ∆d

+

Simplex representative

S(x) = x
||x|| ∈ Sd

+

Spherical representative
R(x) =

√
C(x) ∈ Sd

+

Spherical representative

projectivization

C

S
S √C

(.)2

Figure 1: Normalized spherical representations S(x) or R(x) on the non-
negative unit Euclidean sphere Sd

+ of a CoDa [x]+.

In the classical CoDa literature, where CoDa elements (equivalence classes
[x]+ ∈ Pd

+) are identified with their simplex representative x ∈ ∆d
+, the transfor-

mation R simply corresponds to the square-root transform of e.g. Watson and
Philip (1989). Generalizations of such transforms to a power (i.e. a Box-Cox)
give the α-transform of Tsagris, Preston, and Wood (2011), and their variants.

The following (toy) example illustrates the differences between the R and S
spherical representatives.

Example 1. For d = 1, let x = (0.5, 1.5) be a bivariate vector of raw amounts.
Its simplex representative is C(x) = (1/4, 3/4), and the spherical ones S(x) =(
1/
√
10, 3/

√
10
)
, and R(x) =

(
1/2,
√
3/2
)
, as illustrated in Figure 2. The pic-

ture clearly shows the effect of such power transformation: whereas the sim-
plex representative C(x) and spherical one S(x) remain on the same ray [x]+,
the spherical R(x) is moved toward the central direction π/4. R modifies the
directional/compositional content of x as the square root largely increases the
component values close to zero (here, for the first component). The angular
distance from the x0 axis thus decreases from arccos(1/

√
10) ≈ 71.6 degrees to

arccos(1/2) = π/3 = 60 degrees. To the contrary, for the vector y = (1, 1),
corresponding to C(y) = (.5, .5) ∈ ∆d

+, both spherical representations coincide,
i.e. S(y) = R(y).

Remark 7. The fact that R modifies the compositional part of the data can
be regarded either as an advantage, or as a drawback. On the positive side,
by moving the CoDa components away from small values, it allows to reduce
the influence of outliers (in particular for CoDa close to zeroes), or make the
transformed data more Normally distributed. Gaussian models are then easier
to fit or Gaussian assumptions are more likely to be met in statistical tests, in
a way similar to the classical Box Cox transforms for Euclidean data. In addi-
tion, the R transform (the square root) acts component-wise from the simplex
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x

C (x)

S (x)
R (x)

y

S (y)=R (y)

C (y)

[x]+

[y]+

0.2 0.4 0.6 0.8 1.0
x0

0.5

1.0

1.5

x1

Figure 2: Comparison of the R and S spherical representations of CoDa, for
d = 1. The S transform does not change the directional/CoDa part [x]+ (blue
dotted ray) of x, as it remains on the ray [x]+ where the simplex (blue dashed
line) representative C(x) (blue point) also sits, whereas R(x) (blue point) is
moved on the unit circle (blue solid line) towards the first diagonal. For y
on the first diagonal, S(x) and R(x) (red point) coincide, and also match the
directional/compositional content [y]+ (red dotted line).
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representative and thus does not bring the influence of other components in the
transformed data. On the negative side, by possibly changing the directions, its
distort the geometrical configuration of points. Thus, measures of distances and
variations in the transformed data do not reflect those of the original data.

3.5.2 Sine square root distance

As explained above, the R transform thus gives another way to obtain a normal-
ized representative of a CoDa [x]+ on the non-negative Euclidean unit sphere.
In turn, this R transform induces R(x) ∧ R(y) as normalized simple bi-vector
representative for the pair of equivalence classes [x]+∧ [y]+. One can then apply
the bi-vector norm to such representative to obtain the following variant of the
N2 pseudo-norm:

Definition 3.5. The sine square-root distance N1/2 between two CoDa [x]+ and
[y]+ is defined as the norm of the bi-vector R(x) ∧R(y), i.e.

N1/2([x]+ ∧ [y]+) := ||R(x) ∧R(y)||

where x,y ∈ Rd+1
+ are any vector representative of [x]+ and [y]+. In particular,

for simplex representatives x,y ∈ ∆d
+, it writes, in coordinates, as

N1/2([x]+ ∧ [y]+) =

√ ∑
0≤i<j≤d

(
√
xi

√
yj −

√
xj

√
yi)

2.

This approach differs from the ones obtained in Section 3.2, where we nor-
malized x by its ℓ1 or ℓ2 norm. Properties of such a distance are similar to those
of Theorem 3.4, and are thus omitted.

4 Covariance, variance and correlation for CoDa

4.1 Basic principle

Having now at our disposal measures of distance/divergence and pseudo-scalar
product on the full CoDa space, we can now proceed to define measures of
statistical dispersion and covariation, in a manner similar to Faugeras (2024a),
but now from the projective viewpoint with the exterior product.

Indeed, let ([x]+, [y]+) ∈ Pd
+ × Pd

+ be a pair of random CoDa (projective)
points. Given some deterministic mean points [µx]+, resp. [µ

y]+, of [x]+, resp.
[y]+, what is meaningful in the projective viewpoint is to consider the pair of
homogeneous bi-vectors [x]+ ∧ [µx]+ and [y]+ ∧ [µy]+. Following Section 3,
[x]+ ∧ [µx]+, resp. [y]+ ∧ [µy]+, represent a (convex) cone included in the
vector plane span(x,µx), resp. span(y,µy), in the ambient space Rd+1. The
(average) relative orientation between these planes can serve as a basis upon
which one can define a notion of covariance and correlation between random
CoDa points. This is accomplished by taking the expectation of the pseudo-
scalar products ⟨.|.⟩1 and ⟨.|.⟩2 of (24) and (25), that is to say by taking the
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expected scalar product (10) for ℓ1 or ℓ2-normalized bi-vectors (21) or (22). In
view of the linear structure of bi-vectors and its corresponding scalar-product,
such expected scalar product between pairs of normalized bi-vectors decomposes
along its Plücker components pij , which allows to define a whole matrix of co-
variations along the d(d + 1)/2 pairs i < j of Coda parts. Indeed, for the ℓ2
normalization, one has

E (⟨[x]+ ∧ [µx]+|[y]+ ∧ [µy]+⟩2) = E

(
⟨x ∧ µx|y ∧ µy⟩
||x|| ||µx|| ||y|| ||µy||

)

= E

∑
i<j

pij(x ∧ µx)pij(y ∧ µy)

||x|| ||µx|| ||y|| ||µy||

 =
∑
i<j

E

(
pij(x ∧ µx)pij(y ∧ µy)

||x|| ||µx|| ||y|| ||µy||

)

=
∑
i<j

E

det

∣∣∣∣xi µx
i

xj µx
j

∣∣∣∣det ∣∣∣∣yi µy
i

yj µy
j

∣∣∣∣
||x|| ||µx|| ||y|| ||µy||

 .

We only treat the ℓ2-normalized pseudo-scalar product ⟨.|.⟩2 of (25), since,
for the ℓ1-normalized pseudo scalar product ⟨.|.⟩1 of (24), the construction coin-
cide with the 2−barycentric divergence in Faugeras (2024a), which was obtained
in that paper from the affine barycentric viewpoint. (We leave the case of the
square root spherical representative R of Section 3.5 to the reader.)

A priori, one could use any kind of mean points [µx]+, [µ
y]+, like Aitchi-

son’s geometric mean, the arithmetic mean, or Fréchet means based on var-
ious distances/divergences (see Section 5 of Faugeras (2024a)). However, as
in Faugeras (2024a), the most interesting properties occur with the arithmetic
mean, which corresponds to the barycenter (centroid) obtained by affine addi-
tion of points, see Faugeras (2024a). Such centroid also has a natural interpre-
tation as mixing CoDa, see Scealy and Welsh (2014), and corresponds to the
m− affine connection of information geometry (see Faugeras (2023)). Hence,
we set thereafter

[µx]+ := [Ex]+, [µy]+ := [Ey]+. (33)

Note that for CoDa with some zeroes components, Aitchison’s component-wise
geometric mean is ill-suited as it suffices that a CoDa has a zero in one of its
components to make the corresponding component of the geometric mean also
zero.

4.2 Exterior covariance and variance matrices for CoDa

For a pair of random CoDa, we thus define the following quantities of statistical
interest:

Definition 4.1 (Exterior Covariance). i) Exterior covariance matrix for a
pair of CoDa:

Let ([x]+, [y]+) ∈ Pd
+ × Pd

+ be a pair of random CoDa, with corresponding
deterministic barycenter mean points [µx]+, [µ

y]+ ∈ Pd
+, defined by (33).
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The exterior covariance matrix of ([x]+, [y]+), based on the ℓ2 normalized
pseudo-scalar product ⟨.|.⟩2 of (25), is defined as the following symmetric
matrix (with null diagonal) of size d+ 1,

Cov2([x]+, [y]+) =
(
Cov2([x]+, [y]+)i,j

)
∈ R(d+1)×(d+1),

where the (i, j) component is set as

Cov2([x]+, [y]+)i,j := E

(
pij(x ∧ µx)pij(y ∧ µy)

||x|| ||µx|| ||y|| ||µy||

)

= E

det

∣∣∣∣xi µx
i

xj µx
j

∣∣∣∣det ∣∣∣∣yi µy
i

yj µy
j

∣∣∣∣
||x|| ||µx|| ||y|| ||µy||

 . (34)

ii) Total exterior covariance: The total exterior covariance of ([x]+, [y]+) is
the scalar

TCov2([x]+, [y]+) =
∑
i<j

Cov2([x]+, [y]+)i,j (35)

= E

(
⟨x ∧ µx|y ∧ µy⟩
||x|| ||µx|| ||y|| ||µy||

)
. (36)

TCov2 gives a global (scalar) measure of the covariation of two random
CoDa around their respective means, while Cov2 decomposes the latter along
its (i, j) components and organizes it into a matrix. It is worth remarking that
TCov2 can be computed at once, via (36), without the need to summing all its
d(d+ 1)/2 components.

Definition 4.2 (Exterior Variance). i) Log-free exterior variance matrix of
a CoDa:

The exterior variance matrix of [x]+ is defined as

Var2([x]+) := Cov2([x]+, [x]+) =
(
Var2([x]+)ij

)
∈ R(d+1)×(d+1), (37)

whose (i, j) component is

Var2([x]+)ij := E

(
p2ij(x ∧ µx)

||x||2 ||µx||2

)
= E

det2
∣∣∣∣xi µx

i

xj µx
j

∣∣∣∣
||x||2 ||µx||2

 .

ii) Total exterior variance:

The total exterior variance of ([x]+ is the scalar

TVar2([x]+) :=
∑
i<j

Var2([x]+)i,j (38)

= EN2
2 ([x]+ ∧ [µx]+) = E

(
||x ∧ µx||2

||x||2 ||µx||2

)
. (39)
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Compared to the barycentric covariance and variance matrices (Definitions
7.1, 7.2, 7.3 of Faugeras (2024a)), it is striking that the exterior covariance
(34) and variance matrices (37) only differ by the normalization, i.e. the ℓ2
norm instead of the ℓ1 norm. This change allows to remove the ratio of ℓ2/ℓ1
norm mentioned in Remark 5 and Remark 3 of Faugeras (2024a), and yields
the improved properties of N2 as an orthogonally invariant, genuine distance
between CoDa (see Theorem 3.4). Indeed, one has the analogue of Proposition
7.6 and Theorem 7.7 in Faugeras (2024a):

Proposition 4.3 (Properties of the exterior variance). i) Measure of propor-
tionality:

At the level of components, Var2([x]+)i,j = 0, for some i < j, iff xi and
xj are proportional or one of them is zero a.s.

ii) Global orthogonal invariance:

TVar2([x]+) = TVar2([U
Tx]+), for any orthogonal matrix U .

At the level of components, the components of the transformed exterior
variance matrix writes

Var2([U
Tx]+)i,j = E

(
⟨x ∧ µx|ui ∧ uj⟩2

||x||2||µx||2

)
.

Proof. i) As in Proposition 7.6 of Faugeras (2024a).

ii) Orthogonal invariance of TVar2 follows from orthogonal invariance of N2,
Theorem 3.4 vi).

Let U be an orthogonal matrix with column vectors ui, i = 0, . . . , d, and
x′ = UTx be the coordinates of x in the new basis (ui). Then, by linearity,
Ex′ = UTµx. Hence,

det

∣∣∣∣x′
i Ex′

i

x′
j Ex′

j

∣∣∣∣ = det

∣∣∣∣⟨ui|x⟩ ⟨ui|µx⟩
⟨uj |x⟩ ⟨uj |µx⟩

∣∣∣∣ = ⟨x ∧ µx|ui ∧ uj⟩

by the Binet-Cauchy identity (12) (or the definition of the scalar product
of bi-vectors). Thus, by invariance of the Euclidean norm by an orthogonal
transformation,

Var2([U
Tx]+)i,j = E

(
⟨x ∧ µx|ui ∧ uj⟩2

||x||2||µx||2

)

Proposition 4.4 (Properties of the exterior covariance). i) Boundedness:

One has
Cov22([x]+, [y]+)i,j ≤ Var2([x]+)i,jVar2([y]+)i,j

ii) Assume x,y are spherical representatives of [x]+, [y]+, i.e. ||x|| = ||y|| =
1. If (xi, xj), i ̸= j, is independent of (yi, yj), then

Cov2([x]+, [y]+)i,j = 0.

Proof. As Theorem 7.7 in Faugeras (2024a).
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4.3 Exterior correlation matrix

Eventually, as in Faugeras (2024a), a part-by-part measure of correlation is
obtained by combining Definitions 4.1 and 4.2.

Definition 4.5 (Exterior correlation matrix). The exterior correlation matrix
of ([x]+, [y]+) is the matrix defined as

Cor2([x]+, [y]+) :=
(
Cor2([x]+, [y]+)ij

)
∈ R(d+1)×(d+1)

with (i, j) component set, for i ̸= j, as

Cor2([x]+, [y]+)ij :=
Cov2([x]+, [y]+)i,j√

Var2([x]+)i,jVar2([y]+)i,j
(40)

Definition 4.5 corresponds to the barycentric correlation matrix, Definition
7.4 in Faugeras (2024a), but with the ℓ2 normalization instead of the ℓ1 one.
In (40), both the numerator and denominator are normalized inside the ex-
pectations. As in Faugeras (2024a), one can dispense with this simultaneous

normalization, by defining a modified correlation matrix r =
(
rij
)
∈ R(d+1)2 as

r([x]+, [y]+)ij :=
E (pij(x ∧ µx)pij(y ∧ µy))√
Ep2ij(x ∧ µx)

√
Ep2ij(y ∧ µy)

(41)

=

E

〈(
xi

xj

)
∧
(
µx
i

µx
j

) ∣∣∣∣ (yiyj
)
∧
(
µy
i

µy
j

)〉
√
E

∥∥∥∥(xi

xj

)
∧
(
µx
i

µx
j

)∥∥∥∥2
√

E

∥∥∥∥(yiyj
)
∧
(
µy
i

µy
j

)∥∥∥∥2

=

E

(
det

∣∣∣∣xi µx
i

xj µx
j

∣∣∣∣det ∣∣∣∣yi µy
i

yj µy
j

∣∣∣∣)√
E

(
det2

∣∣∣∣xi µx
i

xj µx
j

∣∣∣∣)
√
E

(
det2

∣∣∣∣yi µy
i

yj µy
j

∣∣∣∣)
which corresponds exactly to the modified barycentric correlation matrix r,
Definition 7.5 of Faugeras (2024a). The exterior correlation matrices (40) and
(41) have properties similar to their barycentric analogue and their statements
are thus omitted, see Theorem 7.7 in Faugeras (2024a). In particular, these
exterior correlation matrices are conceived to be a standardization between −1
and 1 of the exterior covariance matrix (34), in the same way that Pearson’s
correlation coefficient standardizes the usual covariance in the Euclidean setting.

A total (scalar) measure of correlation between two CoDa [x]+ and [y]+ can
be obtained by summing the components of (40) or (41). Alternatively, one
can define a total scalar measure of correlation Tcor, directly from the exterior
scalar product and norm as follows:
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Definition 4.6. The total exterior correlation between [x]+ and [y]+ in Pd
+ is

defined as

Tcor([x]+, [y]+) :=
E⟨x ∧ µx|y ∧ µy⟩√

E ∥x ∧ µx∥2
√

E ∥y ∧ µy∥2
(42)

Further discussion, in particular, the relation with canonical angles, is to be
found in Section 6.4.

5 Sketch of other statistical applications

Summarizing the results so far, we have introduced a distance and a pseudo-
scalar product between pairs of CoDa, along with covariance and variance ma-
trices. One can further define statistical notions like Fréchet means, Gaus-
sian distributions, etc. together with corresponding statistical applications like
clustering or regression for random CoDa. We can mimic the constructs of
Faugeras (2024a) obtained with an affine barycentric approach. In order not
to repeat ourselves, we refer the reader to Faugeras (2024a) for more details
and briefly sketch the difference and some possible new statistical applications
derived from the exterior product approach.

5.1 Fréchet means and regression based on the exterior
pseudo-norm N2

As in Faugeras (2024a) Section 5, one can define Fréchet mean/median and
variance based on the minimization of the expected (squared or elevated to
some power) pseudonorm N2, i.e. metric notions of center and dispersion. The
Fréchet mean corresponds to minimizing the total exterior variance TVar2 of
(39). Several useful variants (medoid, clustering,. . .) are discussed in Remark
4 of Faugeras (2024a). In particular, weighted versions yield nonparametric
estimators of the regression function of a CoDa given covariates: given a sample
([x1]+, z

1), . . . , ([xn]+, z
n) ∈ Pd

+ ×Rk, where z1, . . . , zn are the observed values
of some covariate ζ ∈ Rk, a Nadaraya-Watson nonparametric estimator [m]+
of the regression function E([x]+|ζ = z) is obtained by minimizing the the
empirical weighted version of the Tvar,

min
[m]+∈Pd

+

∑
k

wkN
2
2 ([x

k]+, [m]+),

where (wk) are kernel weights measuring the proximity of the covariates ζ to
a fixed covariate value z, see e.g. Faugeras (2023) Section 7.3 for an example
using Hilbert’s projective metric. Assuming the data is normalized on the unit
sphere, this amounts to minimizing a quadratic function with the unit sphere
constraint, i.e. with a quadratic constraint, and thus is computationally rel-
atively straightforward. As in Faugeras (2024a), we stress the interest of the
proposed approach in the ability of the distance N2 to handle CoDa with zeroes,
which is useful in some applications.
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5.2 Weighted distance, Mahalanobis distance and classifi-
cation

As a further generalization, one can define a weighted version of the N2 pseudo-
norm (28) between CoDa: given W =

(
wij

)
∈ R(d+1)2 some symmetric matrix

with positive components, the W -weighted pseudo-norm N2,W between [r]+ and
[s]+ is defined as

N2
2,W ([r]+ ∧ [s]+) :=

∑
i<j w

−1
ij p2ij([r]+ ∧ [s]+])

||r||2 ||s||2
=

∑
i<j w

−1
ij det2

∣∣∣∣ri si
rj sj

∣∣∣∣
||r||2 ||s||2

,

(43)
which is the analogue of the W -weighted 2-barycentric divergence, Definition
6.2, Equation (22), of Faugeras (2024a), but with the ℓ2 normalization. This
allows to define anisotropic Gaussian distributions, similar to Definition 6.3 in
Faugeras (2024a).

In particular, it is interesting to use, as weight matrix in (43), the exterior
variance matrix (37), i.e. W = Var2([x]+). This allows to define an analogue of
the Mahalanobis distance for CoDa as

N2,Var2([x]+)([r]+ ∧ [s]+).

It measures the distance between pairs of component of [r]+ and [s]+ relatively
to the scale of variation of the corresponding pairs of components of [x]+. Such
Mahalanobis distance should be useful for measuring the outlyingness of a CoDa
point and identifying outliers in a sample. In addition, it could also be applied
for clustering and classification of CoDa: for classification into k classes, one es-
timates the variance matrix Wk and mean [µk]+ of each class, based on samples
known to belong to each class, and then one classify a test point [y]+ as belong-
ing to the class for which the CoDa Mahalanobis distance N2,Wk

([y]+, [µk]+) is
minimal.

5.3 Gaussian distributions

As in Faugeras (2023) and Faugeras (2024a), one can define families of Gaussian-
type distributions based on the N2 distance (28). This amounts to defining the
density f[X]+ of the exterior (isotropic) Gaussian distribution with parameters
([m]+, σ) as

f[X]+([x]+; [m]+, σ) := Z−1([m]+, σ) exp
(
−N2

2 ([x]+ ∧ [m]+)/σ
2
)

where Z is a normalizing constant. Variants including anisotropic versions can
be defined similarly to Faugeras (2024a), by using the W -weighted version (43)
of the N2 pseudo-norm. Details are omitted. We simply content ourselves
with giving an illustration with [m]+ = [1 : 0.5 : 0]+, σ = 1 in Figure 3:
one gets similar level sets as the isotropic 2-Barycentric Gaussian distribution
(Definition 6.1 in Faugeras (2024a)), but with a different normalizing constant,
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owing to the ℓ2 rescaling instead of the ℓ1 one. Note that in Figure 3, we chose
a mean parameter on the boundary of the simplex, illustrating the ability of
these distributions based on log-free divergences/distance to represent CoDa
with zeroes.
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Figure 3: Isotropic Gaussian distribution based on the N2 norm. [m]+ = [1 :
0.5 : 0]+, σ = 1.

5.4 Wasserstein exterior distance between CoDa distribu-
tions via optimal transportation

TheN2 norm defines a bounded distance on the space of random CoDa variables,

EN2([x]+ ∧ [y]+) = E

(
||x ∧ y||
||x|| ||y||

)
,

which depends on the joint distribution P [x]+,[y]+ of the pair ([x]+, [y]+) of
CoDa. It can be turned into a Wasserstein-Kantotovich type probability metric
(see e.g. Rachev (1991)), i.e. a distance N2 on the space of CoDa probability
measures between the (marginal) distributions P [x]+ , P [y]+ , via optimal trans-
portation,

N2(P
[x]+ , P [y]+) := inf EN2([x]+ ∧ [y]+),

where the infimum is over all joint distribution P [x]+,[y]+ with given marginals
P [x]+ , P [y]+ . The latter metricizes weak convergence18, see e.g. Rachev and
Rüschendorf (1998) or Villani (2009). Interpreting CoDa as a (discrete) proba-
bility distribution (see Faugeras (2024b)), this yields a genuine distance between
distributions of distributions, with possibly unequal supports.

18Moment convergence is automatically implied since the distance is bounded.
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6 Related notions and approaches

6.1 The norm of a simple bi-vector as a quantification of
Cauchy-Schwarz inequality and relation with inequal-
ity divergences

Nielsen, K. Sun, and Marchand-Maillet (2017) show how one can build diver-
gences and proximity measures by quantifying an inequality, in particular the
Cauchy-Schwarz inequality (see also Budka, Gabrys, and Musial (2011)). The
general principle is as follows: given an inequality

lhs(x,y) ≤ rhs(x,y),

where lhs, resp. rhs, denote the left-hand side, resp. right-hand side, of the
inequality, a divergence can be built by measuring the tightness in the inequality.
Such measure of tightness can be performed either on an interval scale, through
the difference gap

diff(x,y) := rhs(x,y)− lhs(x,y) ≥ 0,

(or any monotone strictly increasing function thereof), or, when lhs > 0, on the
ratio scale, via the log-ratio gap

lr(x,y) := − log

(
lhs(x,y)

rhs(x,y)

)
. (44)

If lhs(x,y) < rhs(x,y) for x ̸= y, and lhs(x,x) = rhs(x,x), then either diff or
lr gives a divergence, i.e. a measure of proximity, between x and y. In addition,
if the inequality is homogeneous, i.e. invariant through rescalings x ← λx,
y← µy, with λ, µ ̸= 0, then lhs > 0 entails, as sister inequality,

0 <
lhs(x,y)

rhs(x,y)
≤ 1,

which is dimensionless and scale-invariant. In turn, the latter can be quantified,
either via the difference gap, which gives as variant of diff its rational version,

diff′(x,y) := 1− lhs(x,y)

rhs(x,y)

or via the log-ratio gap, the latter giving the same divergence lr as (44). Both
the rational difference gap, diff′(x,y), and the log-ratio gap, lr(x,y), give a
projective divergence, i.e. a divergence which is invariant w.r.t. to rescaling of
x,y. The log transformation is simply for stretching the range of value to [0,∞]
(thus with a possible infinite value if lhs = 0.)

Applied to the the Cauchy-Schwarz inequality,

|⟨x|y⟩| ≤ ||x||.||y|| ⇔ ||x||2.||y||2 − ⟨x|y⟩2 ≥ 0,
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this gives

diff(x,y) = ||x||2.||y||2 − ⟨x|y⟩2

diff′(x,y) = 1− ⟨x|y⟩2

||x||2.||y||2

D(x,y) = − ln

(
⟨x|y⟩2

||x||2.||y||2

)
In view of (14), the (squared) norm of simple bi-vectors, resp. pseudo-norm N2

of equivalence classes, writes,

||x ∧ y||2 = diff(x,y),

N2
2 ([x]+ ∧ [y]+) = diff′(x,y).

Thus, one gets an algebraic interpretation of the Plücker norm ||x ∧ y|| of the
parallelogram x∧y and of the N2 pseudo-norm of equivalence classes [x]∧ [y] of
planes, resp. [x]+ ∧ [y]+ of CoDa pairs: they both represent a quantification of
the Cauchy-Schwarz inequality, either on the interval scale for the square of the
Plücker Norm ||x ∧ y||2, or on the ratio scale for N2

2 ([x]+ ∧ [y]+). Conversely,
in view of their expression in terms of the sine distance (17), one gets geometric
insight and interpretation of the divergences based on the Cauchy-Schwarz in-
equality of Nielsen, K. Sun, and Marchand-Maillet (2017) and Budka, Gabrys,
and Musial (2011).

Remark 8. i) The quantification of the Cauchy-Schwarz inequality in (14)
is also known in the matrix algebra literature as Lagrange’s identity,

||x||2||y||2 − ⟨x|y⟩2 =
∑
i<j

(xiyj − xjyi)
2.

It is a special case, for x = r and y = s, of the so-called Binet-Cauchy
identity,(

n∑
i=1

xiri

) n∑
j=1

yjsj

−( n∑
i=1

xisi

) n∑
j=1

yjrj


=

∑
1≤i<j≤n

(xiyj − xjyi)(risj − rjsi),

which itself is a special case of the Cauchy-Binet formula (7). The exterior
algebra approach thus gives geometric insight on these algebraic identities,
as the latter equation simply corresponds to the definition (12) of the scalar
product of bi-vectors.

ii) Note that an elementary proof of Cauchy-Schwarz’s inequality follows from
Lagrange identity, or equivalently from the semi-positive-definiteness of the
Gram Matrix of two vectors.
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6.2 Barycentric divergence as a two-sided quantification
of the likelihood ratio order

Let X,Y be continuous univariate real-valued random variables with densities
fX , fY . The likelihood ratio order is defined on the set of univariate absolutely
continuous distributions as

X ≤lr Y ⇐⇒
fY
fX

is non-decreasing. (45)

Such a concept is useful for constructing Uniformly Most Powerful tests or
Median-Unbiased estimates on families of distributions having a monotone like-
lihood ratio, see Pfanzagl (1979), Brown, Cohen, and Strawderman (1976). To
dispense with the cases where the ratios of densities are undefined, condition
(45) can be rewritten more generally as: for s, t ∈ R, s ≤ t implies

fX(t)fY (s) ≤ fX(s)fY (t)⇐⇒ g(s, t) := det

∣∣∣∣fX(s) fY (s)
fX(t) fY (t)

∣∣∣∣ ≥ 0,

The implication s ≤ t⇒ g(s, t) ≥ 0 can further be written as a single inequality

1s≤tg(s, t) ≥ 0, ∀s, t ∈ R, (46)

Following Faugeras and Rüschendorf (2018), one can build a one-sided risk
excess measure, i.e. a quantitative measure encoding the likelihood ratio order,
by setting

D≤lr
+ (X,Y ) :=

∫∫
1s≤t(g(s, t))

+dsdt. (47)

where x+ = max(x, 0) is the positive part of x. (D≤lr
+ (X,Y ) is finite since, by

the triangle inequality, 0 ≤ D≤lr
+ (X,Y ) ≤ 2.) Indeed, taking the integral of the

positive part of the l.h.s. of the inequality (46) gives a cumulative quantification
of the strength of the (qualitative) likelihood ratio order relation: if X ≤lr Y ,

the higher D≤lr
+ (X,Y ), the more Y dominates X in the likelihood ratio order.

On the other hand, if Y ≤lr X, then D≤lr
+ (X,Y ) = 0, so that D≤lr is one-sided,

in the terminology introduced by Faugeras and Rüschendorf (2018): the zero

value of D≤lr
+ (X,Y ) encodes when the order relation Y ≤lr X occurs.

Similarly, one can quantify the extent to which the reverse relation Y ≤lr X
occurs. Indeed, since g(t, s) = −g(s, t),

Y ≤lr X ⇐⇒ {s ≤ t⇒ fY (s)fX(t)− fY (t)fX(s) ≥ 0}
⇐⇒ 1s≤tg(t, s) ≥ 0⇐⇒ 1s≤tg(s, t) ≤ 0.

By setting

D≤lr
− (X,Y ) :=

∫∫
1s≤t(g(s, t))

−dsdt ≥ 0, (48)

where x− := max(−x, 0) ≥ 0 is the negative part of x, one obtains a one-sided
risk excess measure of X ≥lr Y . Since |x| = x++x−, one can combine (47) and
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(48) into a single measure by setting

D≤lr(X,Y ) := D≤lr
+ (X,Y ) +D≤lr

− (X,Y ) =

∫∫
1s≤t|g(s, t)|dsdt ≥ 0.

This yields a quantification of the likelihood ratio order “in both directions”.
In view of the expression of the N1 divergence (27) via the determinant

(15), resp. the determinantal expression of the α-barycentric divergence of
Faugeras (2024a) Definition 4.1 and 4.4, it appears that the N1 divergence,
resp. the α−barycentric divergence, is such a two-sided quantification in the
L2 norm, resp. the Lα norm, of how much two probability measures PX , PY

differ, where the measure of difference is based on the twin quantification of
the likelihood ratio order: N1 tells how much PX and PY differ, either from
quantifying one side X ≤lr Y , or from quantifying the other side Y ≤lr X. In
other words, as in Definition 4.4 in Faugeras (2024a), one can extend the notion
of N1 divergence from CoDa, i.e. probability measures on a finite set of atoms,
to probability measures on R, as

N1(PX ∧ PY ) :=

√∫∫
1s≤t|g(s, t)|2dsdt,

where PX ∧ PY is here understood as a formal expression19.

Remark 9. By integrating (46), X ≤lr Y implies X ≤hr Y , i.e. comparison in
the hazard rate order, and the latter is equivalent to X|X > t ≥st Y |Y > t for
all t, i.e. stochastic dominance of the conditional distributions over a threshold,
see e.g. Müller and Stoyan (2002). The latter property is key in defining the
concept of neutrality of Connor and Mosimann (1969), which is an analogue of
intra-independence of components for CoDa (see also Faugeras (2024b)). Thus,
N1 also appears as a quantification of neutrality.

6.3 Relation to generalized sine functions

Related to the exterior product approach are several generalizations of the sine
function of a planar angle to the solid angle of multi-vectors and corresponding
subspaces. Since the planar sine is a ratio of length, the natural extension of
the sine to solid angle is to consider the generalization of the sine as a ratio of
volumes. Hence, Euler (1781), Eriksson (1978), Lerman and Whitehouse (2009),
were lead to define the polar sine (originally defined for d+1 vectors x0, . . . ,xd

in Rd+1), as the ratio of the signed volume of the parallellotope represented by
x0 ∧ . . .∧xd w.r.t the volume of the rectangular parallellotope with edges equal
to the magnitudes of the vectors x0, . . . ,xd,

psin(x0, . . . ,xd) :=
detA(x0 ∧ . . . ∧ xd)

||x0|| . . . ||xd||
,

19It could be defined mathematically as the product signed measure PX ∧ PY := PX ⊗
PY − PY ⊗ PX , with zero total mass.
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where A(x0∧ . . .∧xd) is the A−matrix (5) with columns the vectors x0, . . . ,xd,
see20, e.g., Section 2.4 in Lerman and Whitehouse (2009). A non-negative ver-
sion of the polar sine, which works also for k vectors x1, . . . ,xk in Rd+1, is
defined as

psin+(x1, . . . ,xk) =

√
det G

||x1|| . . . ||xk||
=
||x1 ∧ . . . ∧ xk||
||x1|| . . . ||xk||

,

where G = G(x1, . . . ,xk) is the Gram matrix (8) associated with x1, . . . ,xk.
Hadamard’s inequality yields 0 ≤ psin+(x1, . . . ,xk) ≤ 1 and in the case k =
d + 1, psin+(x0, . . . ,xd) = |psin(x0, . . . ,xd)|. The polar sine can also be un-
derstood as a quantification of Hadamard’s inequality (in the spirit of Section
6.1) to obtain a standardized/dimensionless measure of linear dependence, be-
ing zero if the vectors are dependent and one if they are orthogonal (“maximally
independent”).

As a consequence, it appears that the spherical/ℓ2 normalized representation
(22) of homogeneous simple bi-vectors [x]∧ [y] and pair of CoDa [x]+ ∧ [y]+ of
Section 3 is the particular case, for k = 2, of a more general possible “spherical”
representation of homogeneous k-vectors [x1]∧ . . .∧ [xk] = [x1 ∧ . . .∧ xk], resp.
of k CoDa [x1]+∧ . . .∧ [xk]+ = [x1∧ . . .∧xk]+, as the ratio of a simple k−vector
to the product of the norms of its 1−vectors components

x1 ∧ . . . ∧ xk

||x1|| . . . ||xk||
.

The norm of this representative of a homogeneous simple k CoDa thus corre-
sponds to the polar sine, viz.

psin+(x1, . . . ,xk) = ||[x1 ∧ . . . ∧ xk]+||.

6.4 Relation to canonical angles of subspaces and projec-
tion matrices

Being an algebraization of geometric notions, the exterior product naturally
expresses in geometric language. In particular, the scalar product between mul-
tivectors is related to Jordan (1875)’s canonical/principal angles between sub-
spaces and Hotelling (1936)’s canonical correlations. Since subspaces are in one
to one correspondence with orthogonal projection matrices, relations between
subspaces can also be studied via their analogue between projection matrices,
see e.g. Afriat (1957), A. Galántai (2008).

6.4.1 Canonical angles from Grassmann’s viewpoint

Let us recall the definition of principal angles: let V,W be nonzero subspaces,
p = dimV, q = dimW, with respective basis (v1, . . . ,vp) and (w1, . . . ,wq).
These subspaces are represented by matrices V ∈ R(d+1)×p, W ∈ R(d+1)×q of

20psin is denoted pd sin0 in Lerman and Whitehouse (2009) and polsin in Eriksson (1978)
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full rank formed by the column vectors of the corresponding basis. Then, the
relative position of V,W is given by m = min(p, q) principal angles 0 ≤ θ1 ≤
. . . ≤ θm ≤ π/2 and associated principal orthonormal basis (ṽ1, . . . , ṽp) and
(w̃1, . . . , w̃q) of V and W resp. s.t. for 1 ≤ i, j ≤ m, ⟨ṽi|w̃j⟩ = δij cos θi,
where δij stands for the Kronecker symbol, and ⟨ṽi|w̃j⟩ = 0 for i > m or
j > m. The principal angles and basis can be obtained iteratively, by solving
an eigensystem (Zassenhaus (1964)), or by the singular value decomposition
of an oblique projection matrix or of a difference of projection (Björck and
Golub (1973), Stewart and J. G. Sun (1990)).

Gluck (1967), Jiang (1996), Mandolesi (2021b), Mandolesi (2021a), Man-
dolesi (2020) have studied the relation between canonical angles and the scalar
product and norm of multi-vectors (see also Miao and Ben-Israel (1992), Gu-
nawan, Neswan, and Setya-Budhi (2005)). In particular, given a simple p-vector
v1 ∧ . . . ∧ vp representing V and PW the orthogonal projection matrix on W,
Mandolesi (2021a) defines the Grassmann (asymmetric) angle θV,W ∈ [0, π/2]
between V and W via its cosine as

cos θV,W :=
||PWv1 ∧ . . . ∧ PWvp||
||v1 ∧ . . . ∧ vp||

, (49)

and the complementary Grassmann angle as θ⊥V,W := θV,W⊥ . Since the Plücker

embedding represents multi-dimensional subspaces of Rd+1 as one dimensional
subspaces of

∧
(Rd+1), θV,W corresponds to a genuine angle between lines of∧

(Rd+1). θV,W is an asymmetric measure of partial orthogonality: θV,W = π/2
if p > q or if V is partially orthogonal to W, i.e. if a nonzero vector of V is
orthogonal to all vectors of W, see e.g. Mandolesi (2020).

The relation with the canonical angles is (Proposition 2.6 in Mandolesi (2020))
that, if m = p ≤ q, then

cos θV,W =

m∏
i=1

cos θi, cos θ⊥V,W =

m∏
i=1

sin θi,

and the connection with the scalar product and norm of multi-vectors is that,
if m = p ≤ q, then

|⟨v1 ∧ . . . ∧ vp|w1 ∧ . . . ∧wq⟩| = ||v1 ∧ . . . ∧ vp|| ||w1 ∧ . . . ∧wq|| cos θV,W

||v1 ∧ . . . ∧ vp ∧w1 ∧ . . . ∧wq|| = ||v1 ∧ . . . ∧ vp|| ||w1 ∧ . . . ∧wq|| cos θ⊥V,W

These relations are multi-dimensional generalizations of the one-dimensional
(symmetric) acute angle θ([x], [y]) ∈ [0, π/2] between lines [x] = span(x) and
[y] = span(y):

|⟨x|y⟩| = ||x|| ||y|| cos θ([x], [y])
||x ∧ y|| = ||x|| ||y|| sin θ([x], [y]) (50)

Note that an oriented version θ̃V,W ∈ [0, π] of the Grassmann angle θV,W ∈
[0, π/2] can be defined by (see equation (8) of Mandolesi (2020))

cos θ̃V,W := sign(⟨v1 ∧ . . . ∧ vp|w1 ∧ . . . ∧wq⟩) cos θV,W , (51)
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so that the scalar product between multi-vectors writes

⟨v1 ∧ . . . ∧ vp|w1 ∧ . . . ∧wq⟩ = ||v1 ∧ . . . ∧ vp|| ||w1 ∧ . . . ∧wq|| cos θ̃V,W (52)

6.4.2 Relation to the exterior covariance of CoDa

Applied to the bi-vectors x ∧ µx and y ∧ µy of Section 4, these formulas give
the following geometrical interpretation of TCov2 of Definition 4.1: by (52) and
(50), (36) writes

TCov2([x]+, [y]+) := E

(
⟨x ∧ µx|y ∧ µy⟩
||x|| ||µx|| ||y|| ||µy||

)
= E

(
sin θ(x,µx) sin θ(y,µy) cos θ̃span(x,µx),span(y,µy)

)
(53)

Such formula is the analogue for CoDa of the total covariance for Euclidean
vectors. Indeed, for Euclidean vectors x,y ∈ Rd+1, with covariance matrix
Σxy = E((x− Ex)(y − Ey)T ), let us define the total covariance of x,y as

TCov(x,y) := trace(Σxy) = E

(∑
i

(xi − Exi)(yi − Eyi)

)
= E(⟨x− Ex|y − Ey⟩)
= E(||x− Ex|| ||y − Ey|| cos θ(x− Ex,y − Ey)). (54)

TCov writes as the expected product of the distances between x,y and their
respective means Ex, Ey, times the angle between these displacement vectors.
Thus, it gives a valid global scalar measure, summarizing the covariation be-
tween two random vectors, while the full picture, i.e. the covariation components
by components, is given by the covariance matrix Σxy.

Formula (53) is the homogenized version of (54): sin θ(x,µx), sin θ(y,µy)
now measures the scale invariant sine distance between CoDa [x]+, [y]+ and
their respective means [µx]+ and [µy]+, and θ̃span(x,µx),span(y,µy) is the cosine
of the oriented Grassmann angle (49), i.e. the product of the cosines (up to
sign) of the two canonical angles between the projective lines corresponding to
the planes span(x,µx), and span(y,µy).

For the components Cov2([x]+, [y]+)i,j of the exterior covariance matrix
of Definition 4.1 i), such geometrical interpretation breaks down, as the ratio
in (34) involves in the numerator the scalar product of the projection on the
(i, j) plane of the two bi-vectors, whereas the denominator is the norm of the
(non-projected) vectors. Still, the concept of the exterior covariance matrix
remains meaningful: first, its construction is analogous to the Euclidean vector
case. Second, it allows to decompose the total exterior covariance along its
components, as the sum of the components of the exterior covariance matrix is
the total exterior covariance.
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6.4.3 Relation to exterior correlation of CoDa

Similar discussion can be carried on for the exterior correlation matrices, Def-
inition 4.5. Regarding the exterior total correlation coefficient, Definition 4.6
mimics in equation (42) the definition of the correlation coefficient of Euclidean
vectors, i.e. as a ratio of the total exterior covariance by the square root of
the total exterior variances: one takes the expectation of the expected scalar
product of bi-vectors, divided by the square root of the product of the expected
norm of the bi-vectors. In view of (52), it also makes sense to consider directly
the average of the Grassmann angle as a measure of correlation for CoDa. We
are thus lead to the following definition.

Definition 6.1. The Grassmann total correlation coefficient between [x]+ and
[y]+ is defined as

TCorG([x]+, [y]+) := E

(
⟨x ∧ µx|y ∧ µy⟩
∥x ∧ µx∥ ∥y ∧ µy∥

)
= E cos θ̃span(x,µx),span(y,µy),

where θ̃span(x,µx),span(y,µy) is the oriented Grassmann angle (51) between the
projective lines corresponding to the planes span(x,µx), and span(y,µy).

6.4.4 Relation to the gap distance of projection matrices

Eventually, we hinted in the Appendix of Faugeras (2023), at the possibility of
representing a CoDa point [x]+ as a projection matrix projx := xxT /(xTx).
Such representation was used in the first proof of the triangle inequality in
Theorem 3.4 v), where we expressed the N2 norm in term of the Froebenius
distance between projection matrices

N2([x]+ ∧ [y]+) =
1√
2
||projx − projy||F .

For a unit norm x, ||projx−projy||F corresponds to d(x, span(y)) = infλ∈R ||x−
λy||, see e.g. Qiu, Zhang, and Li (2005), Aurél Galántai (2004).

Let us mention that, more generally, the gap distance (used, notably in
functional analysis, see e.g. Kato (1995), Aurél Galántai (2004)) between equi-
dimensional subspaces U ,V is defined as

gap(U ,V) := ||projU − projV ||F = sin θm

where projU , resp. projV , is the orthogonal projection matrix on U , resp. V and
is equal to the sine of their largest principal angle.

7 Conclusion

We have thus tried to give a guided tour on the projective geometry viewpoint to
CoDa analysis based on the exterior product and Grassmann’s algebra, so that
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these powerful tools can be made available to the CoDa community. We sup-
plied a gentle, intuitive approach to these abstract objects, interpreting geomet-
rically bi-vectors as oriented parallelograms, which admit linear representations
as Plücker or Compound matrices. A scalar product and norm on bi-vectors,
extending the usual ones, can be defined and transferred to equivalence classes.
For CoDa, this results in a pseudo-scalar product and pseudo-norm. It is re-
markable that the pseudo-norm obtained with the ℓ1 normalization yields the
2-barycentric divergence of Faugeras (2024a), which was obtained in that pa-
per from the affine geometry viewpoint, with a somehow heuristic reasoning
based on barycentric coordinates. The present paper thus gives a theoretical
justification to the constructs of Faugeras (2024a).

The ℓ2 normalization of the pseudo-norm yields added benefits for measur-
ing the closeness of CoDa: one gets a log-free, orthogonally invariant, bounded
distance satisfying the triangle inequality on the full CoDa space (hence, allow-
ing for zeroes). Elaborating further, we introduced key statistical constructs for
measuring the dispersion and covariation of Coda, both at the level of pairs of
components, and globally. We described the connections with related notions
of the literature, like divergences based on quantifying the Cauchy-Schwarz in-
equality or the likelihood ratio order, the polar sine, canonical angles between
subspaces and projections matrices.

In turn, the exterior distance and variance/covariance/correlation matrices
introduced in the paper can serve as the backbone for further statistical analysis.
For length reasons, we have barely scratched the surface of potential statisti-
cal applications and only sketched possible statistical analysis based on Fréchet
means, weighted and Mahalanobis-type distances, Gaussian distributions, Op-
timal Transportation distances, etc. Our objective was to lay the theoretical
foundations for a unified statistical analysis from the projective viewpoint aided
with the exterior product. The main message is that the exterior product yields
an underlying linear structure and a powerful algebraic tool for the analysis of
CoDa in a geometric way. More detailed and applied statistical applications
will be pursued elsewhere.

Appendix A: The exterior product and Grass-
mann’s algebra in a nutshell by the abstract al-
gebraic approach

It is instructive to look how the general, abstract algebraic, top-bottom, con-
struction of the exterior product and Grassmann’s algebra traditionally found
in the literature is in agreement with the bottom-up, based on geometric in-
tuition, approach of Section 2. We thus give a very quick introduction to the
general theory, following Kung, Rota, and Yan (2009) Chapter 6.6. Let V be
a n-dimensional real vector space. For u1, . . . ,uk ∈ V , their exterior product
is the formal expression u1 ∧ . . . ∧ uk, and the k-th exterior power Λk(V ) of V
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is the vector space of all linear combination of such expressions, modulo21 the
following relations

u1 ∧ . . . ∧ aui + bvi ∧ . . . ∧ uk = au1 ∧ . . . ∧ ui ∧ . . . ∧ uk

+ bu1 ∧ . . . ∧ vi ∧ . . . ∧ uk

u1 ∧ . . . ∧ ui ∧ . . . ∧ uj ∧ . . . ∧ uk = −u1 ∧ . . . ∧ uj ∧ . . . ∧ ui ∧ . . . ∧ uk

expressing the multi-linearity of the product and its anti-symmetry. If e1, . . . , en
is a basis of V , then the set of multi-vectors ei1∧ei2∧. . .∧eik with 1 ≤ i1 < i2 <
. . . ik ≤ n form a basis of Λk(V ). The exterior algebra Λ(V ) is the algebra on
the direct sum Λ(V ) =

⊕n
k=1 Λ

k(V ) with (associative) multiplication ∧ defined
formally on exterior products by

(u1 ∧ . . . ∧ uk) ∧ (v1 ∧ . . . ∧ vj) := u1 ∧ . . . ∧ uk ∧ v1 ∧ . . . ∧ vj

and extended by linearity.
For two vectors x =

∑n
i=1 xiei, y =

∑n
i=1 yiei, their exterior product gives,

by bilinearity and antisymmetry,

x ∧ y =

(
n∑

i=1

xiei

)
∧

 n∑
j=1

yjej


=

n∑
i=1

n∑
j=1

xiyjei ∧ ej

=
∑

1≤i<j≤n

xiyjei ∧ ej +
∑

1≤j<i≤n

xiyjei ∧ ej

=
∑

1≤i<j≤n

xiyjei ∧ ej +
∑

1≤i<j≤n

xjyiej ∧ ei

=
∑

1≤i<j≤n

(xiyj − yjxi)ei ∧ ej ,

where we used the fact that ei ∧ ei = 0 and ej ∧ ei = −ei ∧ ej . Thus, the
simple bi-vector x∧y decomposes onto the bi-vector basis (ei ∧ ej)i<j , into the
n(n− 1)/2 components

det

(
xi yi
xj yj

)
= pij(x,y),

in agreement with our definition of Plücker components (2).

Appendix B: Notations

• (Column) vectors x = (x0, x1, . . . , xd) ∈ Rd+1 are written in bold let-
ters, and operations on vector are interpreted component wise. span(x,y)
vector subspace spanned by x,y.

21This corresponds to defining the exterior power as a quotient space of the tensor product
space by these relations, see e.g. Bhatia (1997) and Federer (1969).
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• ||.|| = ||.||2 denotes the usual norm (Euclidean/ℓ2), ||x||1 =
∑d

i=0 |xi| the
ℓ1 norm..

• R+ = {x ∈ R, x ≥ 0} stands for the non-negative part of R, R++ = {x ∈
R, x > 0} for the positive part.

• ∆d
+ the d-dimensional (unit or probability) simplex of Rd+1, ∆d

++ = ∆̊d
+

the positive simplex, Sd = {x ∈ Rd+1 : ||x|| = 1} the unit sphere.
• Pd real projective space of dimension d induced by Rd+1, Pd

+ the space of
(non-negative) CoDa vectors as equivalence classes [.]+, Pd

++ the space of
positive CoDa vectors.

• [x] ∈ Pd, [x]+ ∈ Pd
+ are projective, resp. CoDa, equivalence classes of x.

• C(x) = x/||x||1 closure operation/normalization by the ℓ1 norm. S(x) =
x/||x|| spherical projection/normalization by the ℓ2 norm. R(x) square
root transformation.

• x∧y parallelogram/exterior product of two vectors/simple bi-vector.
∧k

(V )
kth exterior power of V ,

∧
(V ) exterior algebra of V .

• A(x∧y) A-matrix of x∧y, P (x∧y) Plücker P -matrix of x∧y, Cp(A) p-th
Compound matrix of A. G(x ∧ y) Gram matrix of the A(x ∧ y) matrix.

• ⟨x ∧ y|r ∧ s⟩ scalar product of two simple bi-vectors, ||x ∧ y|| norm of a
simple bi-vector.

• ⟨[x]+ ∧ [y]+|[r]+ ∧ [s]+⟩1, resp. ⟨[x]+ ∧ [y]+|[r]+ ∧ [s]+⟩2 pseudo-scalar
product between pairs of CoDa based on the ℓ1, resp. ℓ2 normalization.
N1([x]+ ∧ [y]+), resp. N2([x]+ ∧ [y]+) corresponding pseudo-norm of a
pair of CoDa. N1/2([x]+ ∧ [y]+) pseudo-norm based on the square root
transform R. N2,W ([x]+ ∧ [y]+) weighted N2 pseudo-norm with weight
matrix W .

• Cov2([x]+, [y]+), Var2([x]+), Cor2([x]+, [y]+) exterior covariance, vari-
ance, correlation matrices based on the ℓ2 normalization. TCov2([x]+, [y]+),
TVar2([x]+), TCor2([x]+, [y]+) corresponding total (scalar) measure of ex-
terior covariance, variance and correlation. TCorG([x]+, [y]+) Grassmann
total correlation coefficient.

• θ(x,y) ∈ [0, π] (symmetric) angle between vectors, θ([x], [y]) ∈ [0, π/2],
θ([x]+, [y]+) ∈ [0, π/2] acute angle between lines/rays, θV,W ∈ [0, π/2]

Grassmann angle between subspaces, θ̃V,W ∈ [0, π] oriented Grassmann
angle between subspaces, θ⊥V,W ∈ [0, π/2] complementary Grassmann an-
gle between subspaces.
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