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Abstract

Recent scientific research suggests that the environment represents an important pathway

for the spread of antimicrobial resistance (AMR). This paper is the first to provide causal

estimates of the impact of fine particulate matter (PM2.5) on AMR diffusion. I focus on EU

countries and the period 2002 to 2019. To pin down causal effects, I use an instrumental

variable approach that exploits temperature inversions as a source of exogenous shocks to

air pollution. I find that a 1% increase in PM2.5 leads to about a 0.7% increase in average

antibiotic resistance, but there is significant heterogeneity across pathogen-antibiotic combi-

nations in their responsiveness to changes in pollution. I then separately estimate the direct

impact of pollution on resistance, as well as the impact of an indirect channel via antibiotic

consumption. When antibiotic use is accounted for, the direct influence of air pollution on

AMR remains sizable and significant. Finally, I provide a counterfactual analysis assessing

the impact of alternative air pollution control policies on resistance and compare their effec-

tiveness vis-à-vis interventions aimed at reducing antibiotic use in humans. Findings imply

that air pollution policies can be fruitfully leveraged in the fight against AMR propagation.

JEL Codes: I12, I18, Q51, Q53.
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1 Introduction

Antimicrobial resistance (AMR) is currently one of the most pressing public health chal-

lenges, imposing immense societal costs and cumbersome pressure on economic systems world-

wide. Likely to reach the magnitude of a pandemic in the near future, it is currently causing

around 35,000 deaths every year among EU patients only (ECDC (2022)). This figure stands

at 700,000 annual deaths globally and could reach 10 million in the absence of adequate policies

(O’Neill (2016)). The economic burden attributable to antibiotic-resistant bacteria is estimated

to be 1.5 billion annually in the EU alone (ECDC/EMEA (2009)). These costs are related to

longer hospital stay, more complex treatment, as well as reduced productivity at work and labor

force participation. The World Bank considers AMR as a threat to the global economy that

could cause the global annual GDP to fall by up to 3.8% by 2050 (WorldBank (2017)). While

overprescribing and overconsumption of antibiotics are deemed to be the main responsible for

rising AMR rates,1 little is known about other potential risk factors. However, recent scientific

research suggests that the environment represents an important pathway for AMR propagation.

This paper studies the causal relationship between air quality and the spread of antimicrobial

resistance (AMR) in EU countries during the period 2002 to 2019. My identification strategy

allows me to estimate both the total impact of air pollution on resistance and to disentangle

the direct and indirect channels through which air pollution affects antimicrobial resistance.

I further provide a counterfactual analysis estimating the impact of alternative air pollution

control policies, and I compare the effectiveness of these policies with that of interventions aimed

at regulating antibiotic consumption in humans.

I focus on fine particulate matter, or PM2.5 (airborne particulate matter with a diameter of

less than 2.5 µm), as a proxy for air quality since this pollutant is found to be the most detrimental

to human health and a significant contributor to morbidity and mortality. Concentration levels

for this pollutant are considered as a general measure of exposure to air pollution (WHO (2016)),

they are extensively used for air-quality assessments and in research evaluating the impact of air
1Antimicrobial resistance (AMR) is defined as the ability of bacteria to resist the drugs meant to kill them.

Large consumption of antibiotics imposes selective pressure on bacteria that develop resistance as a result of
adaptation and natural evolution. AMR implies that even routine hospital procedure may become dangerous and
potentially deadly.
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pollution on health and economic outcomes.2 Moreover, the particularly small size of airborne

PM2.5 particles allows them to easily penetrate the human body. This may also permit the entry

of antibiotic-resistant strains via inhalation, facilitating the dissemination of AMR.

To establish causality, I exploit an instrumental variables approach that uses temperature

inversions as excluded instruments. Temperature (or thermal) inversions are atmospheric phe-

nomena that occur when a layer of cooler air remains trapped under a layer of warmer air. Under

normal atmospheric conditions, there is an inverse monotonic relationship between altitude and

temperatures: within the troposphere (the lowest layer of the atmosphere), temperatures de-

crease as we move up to lower pressure levels at higher altitudes. When a temperature inversion

occurs, this relationship is reversed so that the mass of warmer air keeps pollution near the

surface, significantly worsening the quality of the air. The relationship between thermal inver-

sions and pollution has been widely documented in the literature. Figures 2 and 3 in Appendix

A provide a graphical representation of these phenomena. Because this is a purely atmospheric

phenomenon, an inversion can be thought of as producing random (non-anthropogenic) variation

in air quality levels. As discussed later in the paper, temperature inversions are among the best

meteorological predictors for air quality. Moreover, they do not directly affect health and can

only influence resistance via increases in air pollution once the effect of other weather conditions

has been appropriately netted out.

The analysis proceeds in a few steps. I first estimate the causal effect of air pollution on

average antibiotic resistance. After providing these baseline results, I perform a heterogeneity

analysis to investigate whether different pathogen-antibiotic combinations exhibit different sen-

sitivities to exogenous changes in air pollution. In a third step, I distinguish between direct and

indirect channels through which air pollution influences antibiotic resistance. Indeed, the positive

shock in air pollution induced by temperature inversions may cause a contemporaneous negative

shock in individual health and lead people to use more antibiotics. If this is the case, the baseline

estimates capture the total impact of pollution on resistance, which encompasses both the direct

influence of pollution on AMR and the impact of an indirect channel through increases in antibi-

otic use.3 Since antibiotic consumption in humans is observed, I can introduce this variable into
2See literature review below.
3In the reminder of the paper, I will use the terms antibiotic consumption, antibiotic sales, and antibiotic use

interchangeably, although actual consumption by individuals cannot be observed.
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the analysis and separately estimate the contributions of these two (direct and indirect) channels.

To address potential endogeneity in antibiotic consumption, I exploit the exogenous variation in

air pollution generated by lagged temperature inversions. Introducing antibiotic consumption

allows me to compare the importance of air pollution versus antibiotic consumption in affecting

AMR patterns, and it is useful for the counterfactual analysis in the following step. In this final

step, I perform a counterfactual analysis focusing on three important EU objectives. First, the

EU is currently planning to set the annual limit value for PM2.5 concentration at 10 µg/m
3

to be achieved by 2030. These new rules are meant to make existing standards more closely

aligned with the latest World Health Organization (WHO) recommendations that set the limit

at 5 µg/m
3 (WHO (2021)). I consider, therefore, capping PM2.5 concentration at 5 µg/m

3 as

the second EU objective under study. Third, another objective the EU is currently trying to

achieve is to reduce antibiotic consumption in humans in each Member State by 20% by 2030.

I find that air pollution is an important contributor to the spread of AMR in the EU. Results

from the baseline analysis show that a one percent increase in air pollution leads to about a 0.7%

increase in the prevalence of AMR. Equivalently, a one µg/m
3 increase in PM2.5 concentration

causes average antibiotic resistance to increase by about 0.94 percentage points in the most

conservative estimate. However, there is significant heterogeneity across pathogen-antibiotic

combinations in their responsiveness to changes in pollution. When introducing antibiotics

consumption in the analysis, I find that the coefficient associated with PM2.5 concentration

decreases, but the direct influence of air pollution on AMR remains sizable and significant. Es-

timated coefficients for pollution now range between 0.24 and 0.34, meaning that a one percent

increase in PM2.5 causes antimicrobial resistance to increase by 0.24 to 0.34%. Results from

the counterfactual analysis show that antibiotic resistance would have been approximately 2.33

percentage points lower, had the EU regulation capped PM2.5 concentration at 10 µg/m
3 dur-

ing the period under study. An equivalent reduction in resistance would have been obtained by

reducing antibiotic use by about 22.6% on average in each country.

The contribution of this paper is two-fold. First, this paper contributes to the growing health

economics literature on antibiotics and antibiotic resistance by identifying potential risk factors

(other than antibiotic use) driving AMR diffusion. Although research in the medical literature

shows a positive and significant relationship between air pollution and resistance, causal evidence
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has never been provided before. The IV estimation procedure allows to correct for a number

of potential threats to identification related to measurement error in air pollution and omitted

variables (Graff Zivin & Neidell (2013)) and provide the first causal estimates of the impact of

air pollution on AMR. Second, to the best of my knowledge, the impact of specific environmental

policies on the evolution of AMR in the EU has never been previously assessed. This is a timely

question to be addressed in light of the EU’s recent commitment to reduce both pollution and

antibiotics use.

This analysis highlights the critical importance of considering the adverse effects of air pollu-

tion on AMR diffusion in cost-benefit evaluations of air pollution reduction policies. Any analysis

in this sense would severely underestimate the benefits of imposing stricter pollution standards

by overlooking their role in curbing AMR. Establishing causality is essential to accurately inform

the cost-benefit assessments of air quality policies based on these estimates.

Related Literature. This paper contributes to a few strands of the health economics

literature. First, there exists a well-developed literature on the environmental determinants

of health, where the association between air pollution and poor health conditions is widely

recognized. Prior work has shown that exposure to air pollution leads to significant increases in

mortality rates as well as in the incidence of respiratory infections and cardiovascular diseases

(Deryugina et al. (2019); Hicks et al. (2016); Schlenker & Walker (2016); Heutel & Ruhm (2016)).

There is also a rich literature focusing specifically on the adverse consequences of air pollution

on infant health, as reflected in rates of infant and neonatal mortality and hospitalizations in

the US and the developing world (Currie & Neidell (2005); Currie, Neidell & Schmieder (2009);

Chay & Greenstone (2003); Arceo et al. (2016); Lleras-Muney (2010)). Jans et al. (2018) show

how this association is more important for children in disadvantaged socioeconomic status, while

Knittel et al. (2016) show that the presence of suspended particles has a more significant impact

on premature and low-birth-weight infants. Moreover, recent studies indicate that air pollution

has notably contributed to the diffusion of the COVID-19 pandemic (Austin et al. (2023); Persico

& Johnson (2021); Travaglio et al. (2021)).

This paper is also related to extensive research documenting the harmful effects of pollution

on economic and labor market outcomes. Several papers explore how poor air quality impacts
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productivity, with effects on both low- (Adhvaryu et al. (2022); Chang et al. (2016); Chang et al.

(2019); He et al. (2019); Zivin & Neidell (2012)) and high-skilled workers (Holub & Thies (2023);

Sarmiento (2022); Heyes et al. (2016); Heyes et al. (2019)). Other studies examine its effects on

educational attainment (Ebenstein et al. (2016)) and absenteeism at school (Currie, Hanushek,

Kahn, Neidell & Rivkin (2009); Ransom & Pope III (1992)) and at the workplace (Holub et al.

(2021); Aragón et al. (2017); Hanna & Oliva (2015)). Some researchers evaluate the impact of

air pollution control policies on the labor market (Walker (2013)).

This study further contributes to the emerging literature on antibiotics and antibiotic resis-

tance. Much of the existing research so far focuses on physicians’ prescribing and antibiotics

consumption (Adda (2020), Huang & Ullrich (2024), Bennett et al. (2014)), on the effectiveness

of policies aimed at influencing antibiotic prescriptions (Gökkoca (2022), Ellegård et al. (2018),

Bokhari et al. (2024)), and on incentives to spur innovation of novel antibiotics (Majewska (2022),

Dubois et al. (2022), Simpkin et al. (2017)), as well on the appropriate size of these incentives

(Outterson (2021)). Other studies investigate how physicians’ awareness of AMR influences their

prescribing behavior (Dubois & Gökkoca (2023), Filippini et al. (2009), Howard (2004)). How-

ever, as far as I know, understanding of potential factors determining antimicrobial resistance

(other than antibiotic use) is still extremely limited.

Recently, it has been suggested that antibiotics consumption control and stewardship pro-

grams alone will not be enough to curb AMR in the future, as the transmission of resistant

bacteria and genes through the environment represents a primary driver of AMR (Collignon

et al. (2018), Merlin (2020)). One potential environmental pathway is given by the air. Some

recent research shows that PM2.5 can carry significant quantities of antibiotic-resistant bac-

teria and antibiotic-resistant genes (Li et al. (2018)).4 This can be due to the emission of

antibiotic-resistant genes (ARGs) from several sources as a result of evaporation or aerosoliza-

tion (McEachran et al. (2015)).5 Traffic exhaust can also favor the horizontal transmission of

ARGs between bacteria (Zhang et al. (2018)).6 Hu et al. (2018) find that antibiotic-resistant
4Antibiotic resistant genes are genetic sequences enabling bacteria to resist the effects of antibiotics.
5Aerosolization is defined as the process through which some physical substance is transformed into small and

light particles that can be carried on the air.
6Horizontal gene transfer (HGT) is defined as the movement of genetic information between organisms, a pro-

cess that includes the spread of antibiotic resistance genes among bacteria, fueling pathogen evolution (Burmeister
(2015)).
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genes were more abundant in PM2.5 during days with high smog concentration in Beijing and

suggest that this may be because suspended particles provide more adhesion sites for bacteria to

remain more stably suspended in the air. Jin et al. (2022) offer a comprehensive overview of these

recent findings. Although important, these papers mostly rely on samples of pollutants collected

in specific locations at a specific point in time. As a consequence, they cannot quantify the im-

pact of increasing pollution on resistance at a more aggregate level, and nothing can be concluded

on the evolution of this relationship over time. One attempt in this direction is given by Zhou

et al. (2023). This paper represents the first large-scale study providing correlational evidence

on the relationship between pollution and AMR. Besides this, the literature on this topic is still

incredibly thin and, to the best of my knowledge, no causal estimates have been provided thus far.

Outline. The rest of the paper proceeds as follows. Section 2 provides background informa-

tion on PM2.5 and its relationship with temperature inversions, as well as a brief description of

the EU regulations on air pollution. Section 3 provides an overview of the data collected for this

study. In Section 4, I provide descriptive statistics, while in Section 5, I introduce the research

design. Baseline results are provided in Section 6, while a heterogeneity analysis across differ-

ent pathogen-antibiotic combinations is provided in Section 7. Section F first introduces and

discusses the role of antibiotic consumption and then discusses results from the counterfactual

policy analysis. Section 9 concludes.
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2 Background Information

2.1 Fine Particulate Matter (PM2.5)

Air pollution is currently the leading environmental threat to human health, causing numerous

premature deaths as well as a wide range of diseases in Europe and worldwide. Enhancing air

quality standards and reducing pollution levels are priority objectives under the United Nations

Sustainable Development Goals (SDGs) that target to substantially reduce pollution-related

mortality by 2030.7 In the calculation of its Air Quality Index, the European Environmental

Agency includes pollutants such as ozone (O3), nitrogen dioxide (NO2), sulfur dioxide (SO2),

particulate matter with diameter of less than ten µm (PM10), and particulate matter with

diameter of less than 2.5 µm (PM2.5). Among these, PM2.5 is predominantly responsible for the

adverse health effects associated with air pollution, and no concentration level of this pollutant

can be considered safe (WHO (2016)). In 2021, 97% of the EU’s urban population was still

exposed to concentration levels of fine particulate matter above the WHO recommended limits,

with an estimated 240,000 premature deaths attributed to this pollutant alone each year.8 PM2.5

is a complex combination of solid and liquid components with a varied chemical structure that

remain suspended in the air. These fine particles can originate from primary (e.g., combustion of

fossil fuels or wood, dust from roads and constructions, wildfires) or secondary sources (through

chemical reactions of other gaseous pollutants, such as sulfur dioxide, that are produced by power

plants or industries). Because these particles are extremely thin (about 1/40th the diameter of

a human hair), they have the ability to penetrate deep into the lungs and even enter buildings

through doors, windows, and cracks/gaps in building structures.9 For this reason, particulate

matter is a major cause of respiratory and cardiovascular diseases, asthma, acute and chronic

bronchitis, and, more in general, physical and cognitive impairment.10 Due to their exceptionally

small size, PM2.5 particles are also likely to transport antibiotic resistant elements from the

environment into the human body.
7See https://www.un.org/sustainabledevelopment/health/.

8
https://www.consilium.europa.eu/en/policies/air-quality/

9Hoek et al. (2008) find significant correlation between outdoor and indoor PM2.5 concentrations in four
European cities.

10
https://ww2.arb.ca.gov/resources/inhalable-particulate-matter-and-health.
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2.2 Pollution & Temperature Inversions

Temperature inversions are meteorological phenomena driven primarily by the (vertical and

horizontal) large-scale movement of air masses. They also commonly occur overnight as the

Earth’s surface cools more rapidly than the air above it, resulting in cooler air near the ground

being trapped beneath a warmer layer above. This inversion layer limits vertical air circulation,

trapping pollutants close to the ground and contributing to poor air quality. The relation-

ship between temperature inversions and poor air quality is well established in the literature.

For instance, Gramsch et al. (2014) find significant correlations between thermal inversions and

concentrations of black carbon and PM2.5. Similarly, Kukkonen et al. (2005) study PM10 con-

centrations in four European cities and identify temperature inversions as the best meteorological

predictors for air quality. As a matter of fact, temperature inversions are considered to be co-

responsible for some of the most catastrophic pollution events in human history, such as the

Great Smog of 1952 in London, the 1948 Donora Smog, or the extreme PM2.5 concentration

levels observed in Cache Valley in January 2004 (Malek et al. (2006)). Approximately 12,000

excess deaths are attributed to the lethal London fog (Bell & Davis (2001)), while the Donora

smoke event led to 20 deaths and left around 6,000 individuals seriously ill (Jacobs et al. (2018)).

The Donora incident directly influenced the establishment of the first US Clean Air Act in 1963

(Kuklinska et al. (2015)).

In the analysis of this paper, I will distinguish between winter and summer inversions since

these phenomena exhibit high seasonality. Winter inversions are typically more frequent, in-

tense, and persistent than those in summer.11 Consequently, winter inversions tend to have a

more substantial impact on pollution levels and health outcomes than summer inversions. For

example, Wallace & Kanaroglou (2009) find that both daytime and nighttime inversions sig-

nificantly increase concentration levels for PM2.5 and NO2, but this effect is more pronounced

during the winter. Silva et al. (2007) also report that strong winter inversions were responsible

for the severe air quality deterioration in Utah in 2004.
11
https://en.ilmatieteenlaitos.fi/temperature-inversions.
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2.3 EU pollution control policies

The European Union has made efforts to address air quality issues for more than 40 years

now, with the first directive on air quality dating back to 1980 (Directive 80/779/EEC). During

the following years, additional directives have been approved to regulate and pose limits to the

emissions of several pollutants (Kuklinska et al. (2015)). The most recent piece of regulation is

the 2008 directive on ambient air quality and cleaner air for Europe (Directive 2008/50/EC),

which came into force in June 2010. Regulating levels of particulate matter in the air was one

crucial priority of this directive. This regulation imposes a limit value for PM2.5 concentration

of 25 µg/m
3 as an annual average to be met as of 2015 (January 1st) and proposes an indicative

limit value of 20 µg/m
3 to be met as of 2020 (January 1st).12 More recently, in October 2022,

the European Commission presented a proposal to merge and revise the previous directives,

while in February 2024, the Council and the European Parliament reached a provisional political

agreement on this proposal.13 Among others, the main goal of this revision consists of updating

and strengthening the existing standards (target and limit values) to make them more closely

aligned with the latest WHO recommendations and the zero-pollution action plan adopted by

the EU in May 2021. Indeed, the 2021 World Health Organization (WHO (2021)) air quality

guidelines suggest a level of PM2.5 concentration not exceeding 5 µg/m
3, while the zero-pollution

action plan aims at significantly reducing air, water, and soil pollution by 2050 to create a

toxic-free environment, thus impeding pollution to cause harm to human health and natural

ecosystems. For PM2.5, the new rules would set the annual limit value at 10 µg/m
3 to be

achieved by 2030.

12
https://eur-lex.europa.eu/eli/dir/2008/50/oj

13
https://www.consilium.europa.eu/en/press/press-releases/2024/02/20/air-quality-council-and-

parliament-strike-deal-to-strengthen-standards-in-the-eu/
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3 Data

The analysis in this paper exploits several sets of national-level data covering 24 European

countries for the period 2002 to 2019.14 The data can be broadly classified into four groups:

data on antimicrobial resistance, pollution data, weather data, and information on additional

control variables. This information is collected from various sources, with details provided in the

following subsections.

3.1 Resistance Data

Antibiotic resistance data are obtained from ResistanceMap (OneHealthTrust (2024a)). Re-

sistanceMap is an open-source web-based database providing comprehensive information on an-

timicrobial resistance (AMR) across various countries globally and spanning the years 1999-

2021.15 These data are sourced from public and private laboratory networks that routinely

collect results from AMR tests. Resistance data are presented as percentages, calculated by

dividing the number of tested isolates (from blood, cerebrospinal fluid, or both) exhibiting non-

susceptibility (intermediate or resistant) to a specific antibiotic class by the total number of tested

isolates.16 The information is harmonized to facilitate comparison across countries.17 I select

data for the 24 European countries and the time period under study, and for 5 bacterial species

(Enterococcus faecalis, Enterococcus faecium, Klebsiella pneumoniae, Pseudomonas aeruginosa,

Staphylococcus aureus). In most of the analysis, I consider an aggregate measure of resistance

as my outcome variable, given by the average resistance rate across all pathogens and antibiotic

classes in each country and year. In the heterogeneity analysis, instead, I consider resistance

rates for each pathogen-antibiotic pair.
14The dataset covers a total of 24 countries: Austria, Belgium, Bulgaria, Croatia, Czech Republic, Denmark,

Estonia, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Latvia, Lithuania, Luxembourg, Netherlands,
Poland, Portugal, Romania, Slovenia, Spain, and Sweden.

15The website is made available by One Health Trust, a public health research organization, and, currently, a
WHO Collaborating Center for antimicrobial resistance.

16Tested isolates are bacteria isolated from samples of blood, cerebrospinal fluid or both. These bacteria are
subject to antibiotic susceptibility testing to find out whether they are susceptible (and, hence, can be treated
using antibiotics), intermediate (can be treated with antibiotics but may require adjusted dosages) or resistant
(and, hence, cannot be treated with antibiotics). Notice that resistance is defined as non-susceptibility to at least
one antimicrobial agent in a class, although not all isolates were tested against every antibiotic in that class.

17Additional information can be found at https://resistancemap.onehealthtrust.org/Methodology.php.
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3.2 Pollution Data

Fine Particulate Matter (PM2.5). I focus on PM2.5 as the primary pollutant of interest.

High-quality PM2.5 concentration data are made available by van Donkelaar et al. (2021) for

the period 1998-2022.18 This dataset provides PM2.5 concentration measures by employing a

’hybrid’ approach that combines satellite aerosol optical depth (AOD) retrievals and chemical

transport modeling with ground monitor-based calibration. This methodology is used to com-

pensate for the relative paucity of ground-based monitors and guarantees the high quality of

PM2.5 global estimates. The dataset provided by these researchers is among the most accurate

currently available. I retrieve information on PM2.5 annual concentration for European countries

from the Annual Global country-level mean PM2.5 summary files.

Other Pollutants. To account for other ’criteria’ pollutants, I use air quality monitoring

station data from the European Environmental Agency’s (EEA) database, AirBase. The EEA

provides information on readings from a network of monitoring stations. These stations are

located in both urban and rural settings to capture concentrations across diverse environments.

The World Health Organization (WHO (2021)) identifies particulate matter (PM2.5 and PM10),

ozone (O3), nitrogen dioxide (NO2), and sulfur dioxide (SO2) as the most critical pollutants

from a public health perspective. These are also the key criteria pollutants the EU considers in

calculating its air quality index and the five main pollutants regulated by European air quality

legislation. For this reason, I focus on these pollutants for my analysis. Information is aggregated

by considering average concentrations across all monitoring stations for each pollutant in each

country and year.

3.3 Weather Data

Temperature Inversions. Gridded data for temperature inversions are collected from

NASA’s MERRA database (Global Modeling & Assimilation Office (2015)). This database pro-

vides information on daily air temperature for 42 pressure levels and each grid cell, with spatial

resolution 0.5° x 0.625° (corresponding to about 50 kilometers). I select data for all grid cells
18I use version V6.GL.02.
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covering Europe and for all altitude levels between the surface (usually 1000 hPa) and 600 hPa.

This is because the normal monotonic inverse relationship between temperatures and altitude

holds within the troposphere. Beyond that limit, temperatures remain constant or even increase

with altitude.19 I consider two alternative definitions of temperature inversions. First, I say that

a temperature inversion occurs if the temperature at the second lowest level of the atmosphere

is higher than at the surface (henceforth called surface inversions). In a second definition, I say

that a temperature inversion occurs if the temperature at any level above the surface is higher

than at the surface. It is important to note that surface pressure typically corresponds to 1000

hPa. However, in some cases, MERRA does not report temperature measures at this pressure

level. This is because, in some areas, the land surface may be elevated, or the area may be char-

acterized by a low-pressure system. In these cases, I consider the temperature difference between

the lowest level for which the information is available and the level(s) above that one. To build

the inversion instruments, I proceed in several steps. First, I aggregate temperature data for

each altitude at the NUTS3-region level.20 Despite being very granular, the resolution of these

data does not allow to cover all NUTS3 regions in Europe. When no gridded data point overlies

a NUTS3 region, I consider the closest point to the region’s centroid for which information is

available. When, instead, more than one gridded data point overlies a NUTS 3 region, I consider

the average temperature across these points for each pressure level. I then count the number of

days during a year in which an inversion has occurred for each NUTS 3 region. I also consider

the inversion intensity, defined as magnitude of the temperature difference between different

pressure levels. To derive an annual measure of population exposure to temperature inversions

(and, hence, to poor-quality air), I aggregate the information by considering a weighted average,

where the weights are given by the ratio between the population of each NUTS 3 region and the

total country population. This approach allows to capture variation in local population exposure

to temperature inversions while ensuring accurate aggregation to the national level. The sets of

instruments used in the analysis exploit all the information collected and described above, and

is reported in Table 4.
19The threshold of 600 hPa has been chosen based on the previous literature (Dechezleprêtre et al. (2019)).
20NUTS means Nomenclature of territorial units for statistics, and divides the territory of the EU into regions

at three different levels. Hence, NUTS 3 represent the smallest geographical units. There are 1166 NUTS 3
regions in Europe.
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Weather Controls. To control for weather conditions, I exploit gridded meteorological

data made available by the Joint Research Center of the European Commission, covering all

EU member states for a period of 30 years. I extract monthly data for mean air temperatures

(�C), max temperature (�C), cumulated daily precipitations (mm/day), and mean wind speed

at 10 m (m/s). The spatial resolution for these data is 0.31° x 0.31°, corresponding to 25km x

25 km. Moreover, I include information on specific humidity (g/kg) from the NASA’s MERRA

database (Global Modeling & Assimilation Office (2015)), with spatial resolution 0.5° x 0.625°.21

The aggregation is done in a similar fashion as for the temperature inversion data. That is, I

first aggregate the information at the NUTS3-region and year level. To measure the country’s

population exposure to different weather conditions, I then consider weighted averages, where

the weights are given by the ratio between the population of each NUTS 3 region and the total

country population.

3.3.1 Antibiotics Consumption

Antibiotic consumption data are also obtained from ResistanceMap (OneHealthTrust (2024b))

and sourced from the IQVIA MIDAS database. These data provide information on antibiotic

sales in 76 countries and from 2000 to 2015. Due to this limitation, the analysis in Section F

is constrained to the years 2002-2015. Information is provided in terms of Defined Daily Doses

(DDDs) per 1,000 inhabitants22 and refers to both the retail and hospital sectors. I consider

data on consumption for all antibiotics. This includes 18 antibiotic classes: aminoglycosides,

broad-spectrum penicillins, carbapenems, cephalosporins, chloramphenicols, glycopeptides, gly-

cylcyclines, lipopeptides, macrolides, monobactams, narrow-spectrum penicillins, oxazolidinones,

phosphonics, polymyxins, quinolones, tetracyclines, trimethoprim and combinations, other an-

tibiotics.23
21Specific humidity is a measure of the moisture content in the air and it is calculated as the mass of water

vapor in a given mass of air. It is expressed here in terms of g/kg, that is, the amount of grams of water vapor
in a kilogram of air.

22A DDD represents the daily dosage of a drug for its main indication in adults.
23The interested reader can refer to https://resistancemap.onehealthtrust.org/MethodologyAU.php for fur-

ther information on data and methods used to calculate antibiotic consumption, and on the allocation of specific
antibiotic molecules into each class.
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3.4 Other Controls

Data for the remaining control variables are downloaded from the World Bank database. I

consider the following demographic and health-related variables: population density (people per

square kilometer of land area), rural population, population aged 65 and above (percentage over

total population), number of international tourism arrivals, per capita healthcare expenditure

(in current US dollars), and physicians’ density (number of doctors per 1,000 people).

4 Descriptive Statistics

Tables 1 to 3 report descriptive statistics for all the variables used in the analysis of this paper,

where the unit of observation is country-year. Our main variables of interest are antibiotic resis-

tance, PM2.5 concentration, and antibiotic consumption. Table 1 presents summary statistics for

these variables, as well as all covariates and instrumental variables. Table 2 displays the average

resistance, pollution, and antibiotic use during the sample period for each country separately.

Finally, Table 3 provides resistance figures for each pathogen-antibiotic class combination.

Table 1 shows that the average resistance across all the pathogen-antibiotics combinations

under study is 24.4%, even though there is substantial variations across countries and time peri-

ods, going from a minimum of zero to a maximum of 71%. From Table 2, we see that resistance

rates for some countries, such as Romania and Greece, are exceptionally high. Resistance in

Romania equals 48.14%, meaning that about half of the tested bacteria are non-susceptible to

antibiotic treatment. This figure is double the average over the whole sample and more than

four times larger than the country with the lowest resistance level (i.e, Denmark). As for PM2.5

concentration, the average at the EU level equals 13.4 µg/m
3, but, again, there is substantial

variation across countries and years. Most countries in Western Europe (e.g., Germany, France,

Austria, Belgium) exhibit concentration levels just above the 10 µg/m
3 limit that the EU regu-

lation wants to impose in the near future. For Northern European countries plus Spain, instead,

the EU policy would be barely binding, while for Sweden and Finland not even the WHO’s cap

at 5 µg/m
3 represents a constraint. On the other hand, Eastern European countries, such as

Poland, Bulgaria, Romania, and Hungary, represent the high polluters in Europe. The new EU

rules would force these countries to reduce pollution concentrations by about half.
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Table 1: Descriptive Statistics - All Variables

Obs Mean SD Min Max

Main Variables
Resistance (%) 426 24.40 10.64 0 71
Pollution (PM2.5 in µg/m

3) 432 13.39 4.852 3.600 26.20
Antibiotics Consumption (DDDs per 1,000 inh.) 330 8,646 2,995 3,930 15,908

Covariates
Population 65+ (%) 432 17.42 2.412 10.68 23.06
Population Density (people per sq. Km) 432 127.8 107.4 17.07 515.1
Rural Population (in 100,000) 432 4.832 5.869 0.0544 20.31
(per capita) Health Expenditure (current US$) 432 2,736 1,942 96.58 7,671
PM10 (µg/m3) 424 26.58 9.641 5.765 95.85
SO2 (µg/m3) 426 5.119 3.927 0.264 25.40
NO2 (µg/m3) 426 22.77 6.318 4.229 44.65
O3 (µg/m3) 426 51.48 6.431 8.036 73.57
(mean) Temperature (�C) 432 10.51 2.885 2.938 16.92
(mean) Max Temperature (�C) 432 14.68 3.397 6.366 22.25
(mean) Precipitation (mm/day) 432 57.18 15.45 27.45 128.6
(mean) Wind Speed (m/s) 432 3.089 0.770 1.524 5.321
(mean) Specific Humidity (g/Kg) 432 5.084 1.276 1.003 8.189
Physicians (per 1,000 inh.) 432 3.494 0.800 2.115 6.247
Tourism Arrivals (in 100,000) 432 30.98 43.03 0.805 217.9
Total Population (in 100,000) 432 18.07 22.13 0.446 83.09

Instruments
# Surface Inversions 432 71.63 27.04 12.31 143.9
# Inversions at any Altitude 432 83.01 30.88 13.57 172.0
# Winter Inversions at any Altitude 432 57.85 24.16 6.29 118.54
Intensity of Inversions at any Altitude 432 1.184 0.301 0.477 2.331

Number of Countries 24 24 24 24 24
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Table 2: Descriptive Statistics - Main Variables

Country Resistance (%) Pollution (PM2.5) Antibiotic Use (DDDs)

AUSTRIA 17.25 12.95 6,820
BELGIUM 18.02 13.20 11,759
BULGARIA 33.39 22.13 7,929
CROATIA 30.84 17.16 10,009
CZECH REPUBLIC 31.24 16.88 6,965
DENMARK 11.08 10.41 6,134
ESTONIA 15.18 9.08 4,360
FINLAND 11.59 4.99 6,990
FRANCE 19.27 11.31 12,941
GERMANY 22.27 13.17 6,391
GREECE 42.85 16.25 14,114
HUNGARY 28.65 19.26 7,611
IRELAND 23.57 8.11 10,752
ITALY 32.43 14.17 10,972
LATVIA 28.69 13.00 4,673
LITHUANIA 27.66 15.08 7,927
LUXEMBOURG 16.14 12.11 10,892
NETHERLANDS 14.68 13.92 4,290
POLAND 30.83 21.07 9,204
PORTUGAL 29.65 8.97 9,772
ROMANIA 48.14 18.32 11,955
SLOVENIA 21.60 15.72 6,346
SPAIN 20.39 9.82 12,767
SWEDEN 11.30 4.38 5,280

To conclude the discussion about the main variables of interest, EU countries consumed an

average of 8,646 DDDs for every 1,000 inhabitants during the time period under analysis, going

from a minimum of 3,930 to a maximum of 15,908 DDDs per 1,000 people. Once again, antibiotic

consumption across European countries is highly heterogeneous. The largest use of antibiotics is

observed in Greece, Spain, and France, with about 14/13,000 DDDs every 1,000 people. Instead,

the most moderated use of antibiotics is observed in the Netherlands. The former consume, on

average, about three times more antibiotics that the latter.

Table 1 also shows that thermal inversions vary widely in frequency and intensity across loca-

tions and years. This is important to ensure that the instruments have strong predictive power

and well identify exogenous changes in pollution. European countries experience, on average, 83

temperature inversions per year. Among these, 72 occur near the surface. The minimum number
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Table 3: Descriptive Statistics - Pathogen-Anntibiotic Pairs

PATHOGEN

ANTIBIOTIC E. Faecalis E. Faecium K. Pneumoniae P. Aeruginosa S. Aureus

Aminoglycosides 27.50 19.48
Aminoglycosides (High-Level) 34.43 46.23
Aminopenicillins 3.30 86.52
Carbapenems 5.42 23.17
Ceftazidime 17.90
Cephalosporins (3rd gen) 32.80
Fluoroquinolones 31.98 24.34
Oxacillin (MRSA) 18.77
Piperacillin-Tazobactam 20.76
Vancomycin 1.30 10.57

Total 13.01 47.77 24.43 21.13 18.77

of inversions is 14 a year, while the maximum equals 172, revealing substantial spatial and tem-

poral variation. This can also be observed from Figure 4 in Appendix A. Each graph reports the

number of thermal inversions at the NUTS 3 level for the most recent year in my dataset (that

is, 2019) based on altitude and seasonality. The geographical distribution for the frequency of

thermal inversions at any altitude closely mirrors the distribution for surface inversions. There

are significant differences in the occurrence of these phenomena across countries, with Scandi-

navian and Eastern European countries experiencing inversions more frequently than Southern

European countries (i.e., Italy and Greece). Due to the seasonal nature of thermal inversions,

in the analysis that follows, I distinguish between winter and summer inversions. As mentioned,

winter and summer inversions have different characteristics and may affect pollution differently.

The two bottom graphs of Figure 4 in Appendix A, highlight differences in the distribution of

winter and summer inversions across countries. Winter inversions are more frequent in Northern

and Eastern countries, while summer inversions are more frequent in countries such as Spain and

France. Moreover, inversions are more likely to take place during the winter than during the

summer. This is evident from Figure 1, which reports the average number of winter and summer

inversions across countries and for each year. The average number of winter inversions at any

altitude is around 58 per year, whereas the average number of summer inversions is 25 per year.
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Figure 1: Winter & Summer Inversions
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Finally, Table 3 reveals that there is substantial heterogeneity in resistance rates across

pathogen-antibiotic pairs in the EU. Among the pathogens under study, Enterococcus faecium

and Klebsiella pneumonia exhibit the largest resistance rates, followed by Pseudomonas aerug-

inosa. Notice that, in the data, a distinction is made between aminoglycoside resistance and

high-level aminoglycoside resistance (HLAR). This is because the two bacteria Enterococcus fae-

calis and Enterococcus faecium are usually resistant to low levels of aminoglycosides, implying

that aminoglycosides alone are ineffective in treating infections caused by these pathogens and,

hence, they must be used in combination with other antibiotics. High-level aminoglycoside re-

sistance (HLAR) implies that aminoglycosides are ineffective even when used in combination.

As can be seen from Table 3, high-level resistance to aminoglycosides is more prevalent in En-

terococcus faecium than in Enterococcus faecalis. Moreover, since methicillin is no longer used

due to the emergence of resistance, oxacillin (a beta-lactam antibiotic) is rather used to test for

methicillin resistance in Staphylococcus aureus strains. This is because the two antibiotics act
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in a similar fashion. If the Staphylococcus aureus strain is resistant to oxacillin, then it is said

to be Methicillin-resistant Staphylococcus aureus (MRSA). This means that the pathogen is re-

sistant to all beta-lactam antibiotics. Finally, Piperacillin-Tazobactam is a combination between

a broad-spectrum penicillin (Piperacillin) and a beta-lactamase inhibitor (Tazobactam). Addi-

tional information on each antibiotic and pathogen is given in Table 11 of Appendix B. Due to

differences in the prevalence of resistance and in the specific characteristics of each pathogen and

antibiotic, causal estimates from my baseline analysis may be hiding important heterogeneity in

the sensibility of different pathogen-antibiotic combinations to air pollution. Hence, in Section

7, I study each pair in isolation.

Descriptive statistics for the remaining covariates are also provided in Table 1.

5 Research Design

This section presents the baseline regression model used for the analysis in the rest of the

paper, discusses potential endogeneity issues, and describes the IV estimation procedure.

Baseline Regression Model. As my outcome variable takes on nonnegative values and to

model non-linearities in the relationship between outcome and regressors, I estimate the following

Poisson model:

E (Rct) = exp(↵+ �1log(PM2.5)ct +D
0
ct�2 +OP

0
ct�3 +W

0
ct�4 + �5Rct�1 + �c + ⌘t) (1)

where Rct is the average antibiotic resistance level in country c and year t expressed in percentage

terms, while (PM2.5)ct is the average particulate matter concentration, measured in µg/m
3. The

coefficient of interest is �1, and since (PM2.5)ct is taken in logarithmic terms, this coefficient can

be interpreted in terms of elasticity. Vector D0
ct contains a set of demographic and health-related

variables, such as population density, rural population, percentage of population aged 65 and

above, number of tourism arrivals, physicians density, and per capita healthcare expenditure.

These variables are likely to affect, positively or negatively, resistance rates, and they are of

interest per se. For instance, international traveling is recognized to favor the spread of antimi-
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crobial resistance, while investment in infection prevention policies is considered an important

action to be undertaken to fight AMR.24 Vector OP
0
ct includes other important pollutants that

may be correlated with PM2.5 concentration and have their own impact on resistance. I consider

PM10, NO2, SO2, and O3 concentration levels to encompass all the criteria pollutants included

in the European Environmental Agency’s Air Quality Index. Vector W
0
ct considers a set of

weather controls including mean air temperatures, maximum temperatures, precipitations, wind

speed, and specific humidity that might correlate with air quality and affect resistance at the

same time. For instance, precipitations are know to influence both air pollution and the spread

of pathogens (Wu et al. (2016)). For the baseline results in Section 6, I progressively add sets

of control variables, and, in the most complete specification, I also include lagged resistance,

Rct�1, on the right-hand side to account for the strong time dependence of resistance. In each

regression, I further include a set of country and year fixed effects, �c and ⌘t, which allow to con-

trol, respectively, for time-invariant country characteristics and for shock or unexpected events

common to all EU countries. For example, new air pollution policies have been applied to all

EU countries starting from 2010.

In Tables 12 and 13 of Appendix D, I test the robustness of results across different specifica-

tions. I first fit the following linear model:

E (Rct) = ↵+ �1(PM2.5)ct +C
0
ct�2 +OP

0
ct�3 +W

0
ct�4 + �5Rct�1 + �c + ⌘t (2)

Given the specification of equation (2), the magnitude of the coefficient �1 should be interpreted

here as the percentage point increase in resistance induced by a one unit increase (that is, a one

µg/m
3 increase) in the level of PM2.5. Moreover, since the dependent variable Rct is expressed

in percentage terms, and hence bounded between zero and 100, I also consider a fractional logit

model as:

E

log

✓
Rct

100�Rct

◆�
= ↵+�1log(PM2.5)ct+C

0
ct�2+OP

0
ct�3+W

0
ct�4+�5Rct�1+�c+⌘t (3)

This specification allows to account for non-linearities in the relationship between antibiotic
24
https://www.cdc.gov/antimicrobial-resistance/causes/
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resistance and any of the predictors, as well as for the bounded nature of the outcome variable.25

In equations (2) and (3), all the remaining right-hand side variables are defined as before, and

standard errors are clustered at the country level. All regressions are weighted by the country

population (Solon et al. (2015)).

When performing the heterogeneity analysis of Subsection 7, the dependent variable is given

by resistance levels for each antibiotic-pathogen combination. The rest remains unchanged.

Instrumental Variable Estimation and Identification. Although the set of covariates

in equations (1), (2), and (3) above allows me to control for a large pool of potential confounding

factors, the estimated values for �1 cannot be interpreted as causal due to the potential for

omitted-variable bias and measurement error. Indeed, air quality is not randomly assigned across

geographical areas, and hence, population exposure to pollution is likely to be endogenous. A

number of unobservables related to residential sorting and individual behavior may bias the

estimation in this resistance equation. Due to residential sorting, individuals with worse baseline

health conditions may live in more polluted areas (e.g., people with lower socioeconomic status

may live in more polluted countries). These individuals would be more vulnerable and more prone

to infections or catching healthcare-associated germs while being treated for other conditions.

They are also more likely to consume antibiotics and develop resistance. As a result, some

geographical areas may feature higher air pollution and resistance rates due to these underlying

mechanisms. By contrast, people living in less polluted areas may be more educated and better

informed about the threats posed by antibiotic resistance. This could lead them to be more

careful about antibiotic consumption26 and more likely to adopt preventive measures aimed at

curbing AMR, such as improving personal hygiene or paying extra attention to avoid infections.27

Individual behavior also plays a role. If pollution concentration is predictable, individuals may
25To correct for the fact that resistance may equal zero, the left-hand side expression above is adjusted by

augmenting both the numerator and denominator by one unit.
26Even when controlling for antibiotic sales, individuals may still consume antibiotics without a prescription,

for example, because they get it from a friend or family or because they have some spared pills from previous
prescription. Moreover, they could be doctor- or pharmacy-shopping. Controlling for this type of phenomena is
a regression setting is a challenging task.

27According to the US Centers for Disease Control and Prevention, anti-microbial resistant germs can spread not
only through antibiotic consumption, but also within healthcare facilities, through the food and the environment,
as well as through international traveling. Measures to limit and eradicate AMR include improving personal
hygiene, reducing the occurrence of infections, strengthening infection control systems at the national level, as
well as enhancing information and awareness about infection prevention and control. See https://www.cdc.gov/

antimicrobial-resistance/causes/ for additional information.
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adopt some defensive or avoidance behavior, such as reducing the time they spend outside (thus

limiting social interactions).

To address these endogeneity concerns, I implement an instrumental variable approach that

exploits random variation in air quality induced by the occurrence of temperature inversions.

This type of instruments is widely used in the literature since temperature inversions are found

to be excellent predictors of pollution. Since they are purely atmospheric phenomena, they

produce non-anthropogenic and unpredictable shocks in air quality. Therefore, they are likely to

be orthogonal to long and short-run determinants of health. In other words, thermal inversions

determine positive random shocks in pollution that affect AMR while keeping residential sorting

and individual compensatory behavior constant. Finally, temperature inversions do not directly

affect health, but they can influence resistance through their impact on PM2.5 concentration

once the effect of other pollutants and weather conditions are netted out.

Weather conditions represent important factors to control for to satisfy the exclusion restric-

tions as thermal inversions exhibit seasonality, and weather has been shown to directly affect

health (e.g., Deschenes & Moretti (2009) and Deschênes & Greenstone (2011)). In the spe-

cific context of antibiotic resistance, recent studies find a positive and significant association

between temperatures and resistance for several classes of antibiotics and pathogens, both in the

US and Europe (MacFadden et al. (2018), McGough et al. (2020)). This is because increasing

temperatures facilitate the reproduction of bacteria, the exchange of resistance genes, and the

proliferation of infectious diseases. Research also finds that the presence of antibiotic-resistant

genes in waters (e.g., rivers and lakes) increases after rainfall episodes (Di Cesare et al. (2017)).

Finally, humidity facilitates the spread of bacteria and the occurrence of respiratory infections

(Wu et al. (2016)). To isolate the impact of PM2.5 on AMR, I further control for other impor-

tant pollutants that may have their own impact on resistance rates and be themselves affected

by temperature inversions.

For the analysis that follows, I build a rich set of instruments, which allows me to exploit

all the information at my disposal. In particular, I consider measures of population exposure

to inversions near the surface and at any altitude between the surface and 600 hPa. I take into

account the seasonality of these phenomena by considering the population exposure to winter

inversions, as well as their intensity/strength. The sets of instruments used are displayed in
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Table 4: Sets of Instruments

Instruments

Group A # of surface inversions, interacted with country dummies
Group B # of inversions at any altitude, interacted with country dummies
Group C # of winter inversions, interacted with country dummies
Group D # of inversions at any altitude and their intensity/strength,

interacted with country dummies

Group A’ # of surface inversions and their lags, interacted with country dummies
Group B’ # of inversions at any altitude and their lags, interacted with country dummies
Group C’ # of winter inversions and their lags, interacted with country dummies
Group D’ Intensity/strength of inversions at any altitude and their lags,

interacted with country dummies

the upper panel of Table 4. These sets of instruments always include interactions with country

dummies to account for potential heterogeneity in the impact of inversions on pollution across

countries.28

Consumption. Causal estimates from the baseline analysis represent the total impact of

pollution on antibiotic resistance. However, this total causal impact may manifest through dif-

ferent channels. As the positive shock in air pollution induced by temperature inversions may

cause a contemporaneous negative shock in individual health, the pollution effect on AMR may

partly capture an indirect effect through antibiotic use. That is, the unexpected increase in pol-

lution may make some people sicker and lead them to use more antibiotics.29 If this is the case,

the coefficient associated with pollution will encompass both the direct influence of pollution on

AMR and the impact of an indirect channel through increases in antibiotic consumption. Since

we observe antibiotic consumption in humans, I can introduce this variable into the resistance

equation to disentangle the influence of the two (direct and indirect) channels. However, the

resistance equation would then suffer from endogeneity in the antibiotic use variable. To see this

better, it is useful to exploit a graphical representation. Figures 5 in Appendix C illustrate my
28This approach allows the impact of inversions on air quality to vary across countries, rather than assuming

that the impact is the same across geographical units.
29Antibiotics are commonly used for treatment of respiratory disorders such as asthma and bronchitis. Prior

research (i.e., Rohlf et al. (2020)) finds that the introduction of low emission zones in Germany reduced air
pollution, as well as expenditure in pharmaceuticals for respiratory and heart diseases.
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identification strategy. Suppose there exists an omitted variable correlated with both pollution

and antibiotic consumption and that also directly affects antibiotic resistance, as depicted in

Figure 5 panel (a). Moreover, antibiotic consumption may respond to changes in pollution as

explained above. In the baseline analysis (when not explicitly accounting for antibiotic use),

the use of temperature inversions as instruments allows me to isolate causal effects, because the

exogenous/random nature of these phenomena breaks the correlation between the omitted vari-

able and our variables of interest. However, because antibiotic use is not explicitly taken into

account, the estimated coefficient will reflect the impact of both the direct and indirect channels,

as shown in panel (b) of Figure 5. To separate these two effects, it is necessary to introduce

antibiotic consumption explicitly into equation (1). Simply controlling for consumption, though,

would not be enough since the coefficient for antibiotic use would now pick up the effect of any

residual endogenous variation in pollution (that is, any change in pollution that is not related

to the temperature inversion shock), as shown in panel (c). To correct for this and separate the

two channels, I also instrument for antibiotic consumption by exploiting the exogenous variation

created by lagged and twice-lagged inversions. The mechanism, depicted in panel (d), goes as

follows. Lagged temperature inversions generate a random shock that affects lagged pollution

and, through lagged pollution, lagged AMR. As shown in prior research (Dubois & Gökkoca

(2023)), physicians react to increases in past levels of AMR by reducing antibiotics prescriptions.

Hence, lagged thermal inversions generate exogenous variation in variables that ultimately affect

antibiotic use at time t. The sets of instruments used in this case are similar to those used for the

baseline results, and interacted with country dummies. These sets of instruments are displayed

in the second panel of Table 4.

Counterfactual Policy. Separating the impact of pollution and antibiotic consumption

in humans on AMR allows me to study and compare the role of two major determinants of

antibiotic resistance at the EU level. By employing the Poisson model in equation (1), augmented

with antibiotic use, I provide, in Section F, a counterfactual analysis considering the evolution

of antibiotic resistance under alternative EU pollution control policies during the last couple of

decades. I first study a scenario in which the regulator acts by exclusively modifying the pollution

policy. I then consider the joint impact of reducing both PM2.5 and antibiotic consumption.
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Finally, I directly compare pollution and consumption control policies by providing estimates of

the reduction in antibiotic use required to obtain the same reduction in resistance induced by

the pollution policy. I also compare estimates across EU countries.

6 Baseline Results

Table 5 below shows the baseline results from the Poisson model, while Tables 12 and 13 in

Appendix D refer to the linear and fractional logit models, respectively. In each table, columns

(1) to (3) employ instrument group A, columns (4) to (6) use instrument group B, and columns

(7) to (9) refer to instrument group C. I progressively add controls, and, hence, the most complete

specifications are in columns (3), (6) and (9).

In each model and for each instrument group, controlling for weather conditions (mean tem-

perature, max temperature, precipitations, wind speed, and specific humidity) increases the

magnitude of the coefficient estimate associated to pollution while accounting for the time de-

pendence of resistance reduces its magnitude. However, the estimated impact of pollution on

resistance remains statistically significant and sizable in most specifications. For the Poisson

model, estimates in columns (3) and (6) are significant at 5% confidence level and imply that a 1

percent increase in PM2.5 concentration leads to approximately a 0.7% increase in antibiotic re-

sistance. Estimates from the linear model, instead, imply that a one-unit increase, corresponding

to a one µg/m
3 increase in PM2.5 concentration, causes antibiotic resistance to increase by 0.94

to 1.23 percentage points. For the linear and fractional logit model, results from the Kleibergen-

Paap rk Wald F and Hansen J tests are also reported. Each instruments group strongly predicts

pollution and widely passes the test of overidentifying restrictions, thus confirming the validity

of the instruments.

As for the other controls, the share of individuals over 65 years old in the population is posi-

tively and significantly associated with the prevalence of antibiotic resistance. This is consistent

with prior research indicating that individuals above 65 years old are among the most vulnerable

populations and experience a disproportionate share of AMR-related mortality (OECD (2023)).

The elderly are more susceptible to infections as the responsiveness of the immune system tends

to decline with age (Montecino-Rodriguez et al. (2013), Keilich et al. (2019)). Moreover, they are
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often affected by multiple comorbidities that may require invasive procedures, further increas-

ing infection risks. Diagnosis is also more uncertain in older age groups, complicating timely

and accurate treatment (Beckett et al. (2015)). As a consequence, resistance rates are typically

higher among geriatric patients (Adam et al. (2013)). The coefficient associated with the number

of tourist arrivals is positive and statistically significant, consistent with the idea that tourism

and, more in general, international movement of people contributes to the dissemination of AMR

at the global level (Bokhary et al. (2021)). There is also a positive and significant relationship

between AMR and the size of the rural population. One reason may be that the rural popula-

tion is more exposed to high quantities of antibiotics used in agriculture and livestock farming

(Medina-Pizzali et al. (2021)). Some previous research also shows that individuals in rural areas

are substantially more likely to be inappropriately prescribed antibiotics (Yau et al. (2021)).

Intuitively, the coefficient for the population density is positive and significant. More densely

populated areas mean more and closer contacts and social interactions, favoring the spread of

bacteria. Estimates for per-capita health expenditure and physicians’ density are negative and

significant. This suggests that the quality and efficiency of the healthcare infrastructures, as well

as additional investments in infection prevention and control and in stewardship programs, may

play an important role in containing the spread of AMR. Finally, the estimated coefficient for

past resistance is always positive and significant at 1 % level, confirming the strong time pattern

of resistance. This is consistent with epidemiological models (Laxminarayan & Brown (2001))

and with existing empirical evidence (Dubois & Gökkoca (2023)).

Table 14 in Appendix D additionally reports coefficient estimates for the year fixed effects.

To conserve space, I exclusively report these estimates for the specification of column (2) of each

model in Tables 5, 12, and 13. Estimated coefficients are positive and statistically significant,

confirming that antibiotic resistance has increased during the 18 years under study. Table 15

in Appendix D shows results from the three models where pollution is taken as exogenous.

Coefficient estimates for these regressions are always smaller than those in the corresponding

specifications in Tables 5, 12, and 13. Finally, Tables 16 to 18 in Appendix D report the first-

stage results for the linear model in Table 12. Each table refers to one instrument group. The

coefficients associated with each instrument, interacted with the country dummies, are mostly

positive and significant, confirming the crucial role of thermal inversions in worsening air quality.
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Table 5: The Effect of Pollution on Resistance - Poisson Model

Poisson Model

Dependent Variable (1) (2) (3) (4) (5) (6) (7) (8) (9)
Resistance

(log) Pollution 0.7653** 1.3065*** 0.7167** 0.7427** 1.0660*** 0.6728** 0.7145** 0.8141** 0.5296
(0.3117) (0.4260) (0.3317) (0.3083) (0.4113) (0.3192) (0.2787) (0.3643) (0.3358)

Lagged Resistance 0.0140*** 0.0135*** 0.0128***
(0.0023) (0.0023) (0.0026)

(per capita) Health Expenditure -0.0001*** -0.0001*** -0.0001*** -0.0001*** -0.0001*** -0.0001*** -0.0001*** -0.0002*** -0.0001***
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

Population Density 0.0051** 0.0070*** 0.0045** 0.0060** 0.0070*** 0.0051** 0.0061*** 0.0065*** 0.0060***
(0.0024) (0.0026) (0.0020) (0.0024) (0.0026) (0.0021) (0.0024) (0.0025) (0.0023)

Rural Population 0.1497*** 0.1349*** 0.0828*** 0.1562*** 0.1445*** 0.0958*** 0.1648*** 0.1603*** 0.1094***
(0.0246) (0.0299) (0.0259) (0.0257) (0.0294) (0.0266) (0.0279) (0.0305) (0.0296)

Population 65+ 0.0600*** 0.0601*** 0.0343** 0.0614*** 0.0566*** 0.0349** 0.0612*** 0.0537*** 0.0374**
(0.0169) (0.0171) (0.0149) (0.0172) (0.0169) (0.0152) (0.0171) (0.0166) (0.0166)

Tourism Arrivals 0.0040*** 0.0042*** 0.0046*** 0.0042*** 0.0042*** 0.0046*** 0.0041*** 0.0043*** 0.0051***
(0.0014) (0.0014) (0.0013) (0.0014) (0.0014) (0.0014) (0.0014) (0.0013) (0.0014)

Physicians -0.2327*** -0.1814*** -0.1114*** -0.2236*** -0.1790*** -0.1071*** -0.2173*** -0.1893*** -0.1075***
(0.0439) (0.0458) (0.0345) (0.0437) (0.0449) (0.0352) (0.0420) (0.0436) (0.0385)

PM10 0.0005 -0.0005 -0.0030 0.0002 -0.0001 -0.0023 0.0008 0.0005 -0.0009
(0.0024) (0.0028) (0.0027) (0.0025) (0.0026) (0.0027) (0.0023) (0.0023) (0.0026)

SO2 -0.0191*** -0.0196*** -0.0167** -0.0197*** -0.0191*** -0.0163** -0.0185** -0.0189*** -0.0154**
(0.0073) (0.0075) (0.0070) (0.0073) (0.0074) (0.0068) (0.0074) (0.0071) (0.0069)

NO2 -0.0011 0.0005 -0.0039 0.0005 0.0022 -0.0024 0.0021 0.0045 0.0002
(0.0036) (0.0038) (0.0033) (0.0038) (0.0038) (0.0033) (0.0037) (0.0036) (0.0036)

O3 -0.0019 0.0007 0.0010 -0.0018 0.0004 0.0011 -0.0017 0.0001 0.0018
(0.0013) (0.0017) (0.0015) (0.0013) (0.0017) (0.0014) (0.0014) (0.0017) (0.0016)

(mean) Temperature 0.1946** 0.1052 0.1604* 0.0958 0.1108 0.0909
(0.0860) (0.0686) (0.0871) (0.0678) (0.0851) (0.0749)

(mean) Precipitation 0.0031** 0.0017 0.0025* 0.0016 0.0020 0.0014
(0.0015) (0.0013) (0.0014) (0.0012) (0.0013) (0.0013)

(mean) Wind Speed -0.0457 -0.0570 -0.0380 -0.0490 -0.0061 -0.0265
(0.0651) (0.0528) (0.0625) (0.0531) (0.0622) (0.0584)

(mean) Max Temperature -0.1575** -0.0871 -0.1404* -0.0833 -0.1105 -0.0815
(0.0714) (0.0570) (0.0723) (0.0575) (0.0704) (0.0631)

(mean) Specific Humidity -0.0195 -0.0255* -0.0168 -0.0246* -0.0192 -0.0309**
(0.0169) (0.0140) (0.0171) (0.0145) (0.0175) (0.0151)

Observations 419 419 398 419 419 398 419 419 398
Instruments Group A Group A Group A Group B Group B Group B Group C Group C Group C
All regressions include country and year fixed effects and are weighted by the country population. Standard errors in parenthesis.
*** p<0.01, ** p<0.05, * p<0.1
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7 Heterogeneity Analysis

Tables 6 and 7 report the results of the heterogeneity analysis. Each column refers to one

instrument group, while each panel considers a different pathogen-antibiotic class combination.

Table 6: Heterogeneity Analysis

Dependent Variable (1) (2) (3) (4)
Resistance

(a) E. Faecalis - Aminoglycosides

(log) Pollution 0.6009 0.5155 0.9163** 0.1571
(0.5417) (0.4849) (0.4571) (0.3122)

Lagged Resistance 0.0087*** 0.0077*** 0.0078*** 0.0080***
(0.0022) (0.0021) (0.0021) (0.0019)

(b) E. Faecium - Aminoglycosides

(log) Pollution 0.9194** 1.2419*** 0.9340** 0.9379***
(0.4524) (0.4137) (0.3705) (0.2974)

Lagged Resistance 0.0122*** 0.0119*** 0.0120*** 0.0117***
(0.0018) (0.0018) (0.0018) (0.0015)

(c) K. Pneumoniae - Aminoglycosides

(log) Pollution 0.9047 1.1116* 0.0313 0.6011
(0.6711) (0.6458) (0.3847) (0.3935)

Lagged Resistance 0.0121*** 0.0117*** 0.0117*** 0.0111***
(0.0023) (0.0024) (0.0019) (0.0017)

(d) K. Pneumoniae - Fluoriquinolones

(log) Pollution 1.0507* 0.7337 -0.5586 0.1704
(0.6004) (0.5499) (0.4751) (0.3371)

Lagged Resistance 0.0122*** 0.0126*** 0.0145*** 0.0129***
(0.0025) (0.0023) (0.0019) (0.0017)

Instruments Group A Group B Group C Group D
Controls include demographic, pollution and weather variables, as described in equation (1).
Regressions are weighted by the country population. Standard errors in parenthesis.
*** p<0.01, ** p<0.05, * p<0.1

I find significant heterogeneity across pathogen-antibiotic pairs in their sensitivity to PM2.5

concentration. Aminoglycoside antibiotics, in combination with any pathogen, seem to be the

most responsive to changes in fine particulate matter concentration. In particular, estimated
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coefficients for combinations of aminoglycosides with Enterococcus faecium and Pseudomonas

aeruginosa are all positive and statistically significant, with values ranging between 0.92 and

1.24 for the first pathogen (panel (b)) and between 0.65 and 1.81 for the second pathogen (panel

(e)). Combinations with other pathogens are less responsive but still positive and significant for

Enterococcus faecalis (panel (a)) and Klebsiella pneumoniae (panel (c)) in some specifications.

This is consistent with prior findings by Hu et al. (2018), who show that aminoglycoside-resistant

genes are among the most abundant in samples of particulate matter during days with intense

smog. One reason why aminoglycoside antibiotics are so responsive to air pollution may be that

these antibiotics are non-biodegradable and, hence, they can persist longer in the environment

(Chen et al. (2023)).

Changes in pollution levels also cause significant increases in resistance rates for Staphylo-

coccus aureus in combination with Oxacillin (panel (h)). Coefficients are positive and range

between 0.61 and 1.03. This result is also consistent with prior studies in the literature. For

example, in a recent paper, Psoter et al. (2017) find that increased exposure to PM2.5 is associ-

ated with larger increases in the risk of acquiring MRSA in young patients with cystic fibrosis.

This is worrisome since Methicillin-resistant Staphylococcus aureus (MRSA) is considered one

of the top killer pathogens, deemed to be responsible for most AMR-related deaths. According

to Murray et al. (2022), methicillin-resistant Staphylococcus aureus alone caused 100,000 deaths

worldwide in 2019.

I also find positive and significant coefficients for Pseudomonas aeruginosa in combination

with Ceftazimide (panel (f)). The most conservative estimate here equals 0.71, while the largest

estimate equals 1.13. Ceftazimide is a third-generation cephalosporine used to treat Pseudomonas

aeruginosa because particularly effective in treating this pathogen. Ceftazimide is included in the

Watch group by the WHO AWaRe classification, meaning that the use of this antibiotic entails

a high risk of promoting bacterial resistance. For this reason, it is generally considered as a

second or third-line treatment option, and growing resistance to this antibiotic presents significant

challenges. Fluoroquinolones in combination with Klebsiella pneumoniae (panel (d)) and with

Pseudomonas aeruginosa (panel (g)) exhibit smaller coefficients, but they are still positive and

significant in some specifications. Finally, for other pathogen-antibiotic combinations (not shown

to conserve space), I do not find a significant causal relationship with PM2.5 concentration.
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Table 7: Heterogeneity Analysis (cont’d)

Dependent Variable (1) (2) (3) (4)
Resistance

(e) P. Aeruginosa - Aminoglycosides

(log) Pollution 1.7802*** 1.8121*** 1.7488*** 0.6543*
(0.5801) (0.6393) (0.6698) (0.3859)

Lagged Resistance 0.0153*** 0.0158*** 0.0152*** 0.0166***
(0.0039) (0.0041) (0.0042) (0.0036)

(f) P. Aeruginosa - Ceftazimide

(log) Pollution 1.1285** 0.9151* 0.0285 0.7124*
(0.5476) (0.4810) (0.5875) (0.3689)

Lagged Resistance 0.0032 0.0035 0.0045 0.0034
(0.0029) (0.0029) (0.0029) (0.0025)

(g) P. Aeruginosa - Fluoroquinolones

(log) Pollution 0.1057 0.3475 0.4300 0.4565*
(0.4252) (0.4003) (0.3427) (0.2681)

Lagged Resistance 0.0080*** 0.0079*** 0.0069*** 0.0079***
(0.0023) (0.0023) (0.0020) (0.0023)

(h) S. Aereus - Oxacillin (MRSA)

(log) Pollution 0.8074** 0.4562 1.0267*** 0.6118**
(0.3462) (0.3353) (0.3900) (0.2726)

Lagged Resistance 0.0180*** 0.0176*** 0.0183*** 0.0190***
(0.0026) (0.0024) (0.0025) (0.0020)

Instruments Group A Group B Group C Group D
Controls include demographic, pollution and weather variables, as described in equation (1).
Regressions are weighted by the country population. Standard errors in parenthesis.
*** p<0.01, ** p<0.05, * p<0.1
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8 Counterfactual Analysis

Table 8 displays results from the model in equation (1), where I also add antibiotic con-

sumption, expressed in terms of DDDs per 1,000 inhabitants. Estimates are reported for each

instrument group, both with and without the inclusion of lagged resistance. Both the coefficient

associated with pollution and antibiotic use are positive and significant in the most complete

specifications of columns (2), (4), (6) and (8). As expected, including antibiotic use in the

analysis reduces the magnitude of the coefficient associated with pollution compared to the base-

line. This confirms that causal estimates from the baseline encompass the direct and indirect

(through antibiotic consumption) effect of pollution on AMR. Most importantly, we see that,

as intuitive, the coefficient associated to antibiotic use in columns (2), (4), (6) and (8) is larger

than the one associated with pollution. However, the impact of PM2.5 concentration on AMR

spread remains sizable. A one percent increase in PM2.5 concentration increases resistance rates

by 0.24 to 0.0.34 percent, while a one percent increase in the number of DDDs consumed per

1,000 inhabitants increases resistance by 0.30 to 0.34 percent. These results show that pollution

represents an important driver of AMR diffusion and a key factor to be leveraged in the fight

against antimicrobial resistance.

Table 8: The Effect of Consumption

Poisson Model

Dependent Variable (1) (2) (3) (4) (5) (6) (7) (8)
Resistance

(log) Pollution 0.3392** 0.2456* 0.3652** 0.2397* 0.2722* 0.2697** 0.3051** 0.3398**
(0.1526) (0.1343) (0.1552) (0.1324) (0.1469) (0.1249) (0.1502) (0.1475)

(log) DDDs 0.3527** 0.3427*** 0.2971* 0.3179*** 0.2629 0.3016** 0.0044 0.3438**
(0.1634) (0.1157) (0.1643) (0.1217) (0.1677) (0.1208) (0.1753) (0.1366)

Lagged Resistance 0.0138*** 0.0145*** 0.0138*** 0.0160***
(0.0019) (0.0019) (0.0018) (0.0020)

Observations 283 281 283 281 283 281 283 281
Instruments Group A’ Group A’ Group B’ Group B’ Group C’ Group C’ Group D’ Group D’
Controls include demographic, pollution and weather variables, as described in equation (1). Regressions are weighted
by the country population. Standard errors in parenthesis. *** p<0.01, ** p<0.05, * p<0.1
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Due to the transboundary nature of pollution, that is the ability of pollution to travel long

distances, I also test for the presence and importance of spillovers effects. This is done by following

a three-step procedure. First, for each country c, I consider the mean PM2.5 concentration

across all countries sharing a border with c. Second, I regress this measure over the PM2.5

concentration in country c and I take the residuals. This allows me to isolate the portion of

pollution in the neighboring countries that are not affected by pollution in the country c and,

hence, to avoid potential collinearity due to the presence of both pollution measures in the final

regression. Finally, I run the same regressions as in Table (8) by also including the residuals

from the previous step. Each instrument group is used here to instrument for both pollution,

antibiotic consumption, and the residuals. Results are shown in Table 19 in Appendix E. The

coefficient associated with the spillover variables (Residuals) is mostly not significant, and the

introduction of this variable leaves the remaining coefficients largely unchanged. The reason may

be that spillovers do not play a major role at this level of aggregation.

Table 9 reports the first set of results for the counterfactual analysis. For this counterfactual

analysis, I exploit estimates for air pollution and antibiotic consumption from column (6) in

Table 8. For each country, the first column displays the resistance rates at the observed levels

of pollution, antibiotic consumption, and all the remaining covariates. In the following couple of

columns, I consider two specific objectives based on the discussion in Subsection 2.3. That is, I

estimate the counterfactual resistance rate, had the EU regulation capped PM2.5 concentration

at 10 µg/m
3 or at 5 µg/m

3 during the period under analysis. Hence, the first counterfactual

reflects the EU objective for the year 2030, while the second corresponds to the latest WHO

recommendations. The next column, instead, considers a regulation that reduces antibiotic

consumption by 20%. The rationale for this is that, in June 2023, the Council of the European

Union set a few targets to reduce AMR. Among others, one objective is to reduce antibiotic

consumption (in terms of DDDs per 1,000 inhabitants per day) by 20 % in each Member State

by 2030.30 Finally, in the last two columns, I consider the joint impact of each of the two

pollution policies together with the consumption policy.

Of course, the impact of the policies under consideration differs across countries, depending

on the situation of each specific country. For example, France is a relatively low polluter but a
30
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32023H0622(01)

33

https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32023H0622(01)


Table 9: Comparison across Counterfactuals

Pollution Consumption Pollution &
Policy only Policy only Consumption Policy

PM2.5 = 10, PM2.5 = 5,
Country Resistance (R̂) PM2.5 = 10 PM2.5 = 5 �C = �20% �C = �20% �C = �20%
AUSTRIA 16.97 15.79 13.41 15.87 14.91 12.66
BELGIUM 18.49 17.01 14.45 17.29 16.03 13.61
BULGARIA 32.69 26.56 22.55 30.56 25.17 21.38
CROATIA 32.40 28.36 24.08 30.29 26.52 22.52
CZECH REPUBLIC 31.59 27.55 23.39 29.53 25.87 21.97
DENMARK 13.49 13.20 11.27 12.61 12.44 10.62
ESTONIA 16.00 15.93 13.80 14.96 14.88 12.88
FINLAND 10.94 10.94 10.79 10.23 10.25 10.11
FRANCE 20.38 19.48 16.55 19.06 18.19 15.46
GERMANY 24.42 22.52 19.12 22.83 21.20 18.00
GREECE 45.66 40.12 34.07 42.69 37.76 32.06
HUNGARY 29.85 25.19 21.39 27.91 23.46 19.92
IRELAND 24.07 24.06 21.36 22.51 22.54 20.01
ITALY 31.87 29.05 24.67 29.80 27.31 23.19
LATVIA 28.35 26.33 22.36 26.51 24.73 21.00
LITHUANIA 27.32 24.26 20.60 25.54 22.68 19.26
LUXEMBOURG 16.22 15.27 12.97 15.16 14.28 12.13
NETHERLANDS 15.42 14.10 11.97 14.41 13.03 11.07
POLAND 31.41 25.92 22.01 29.36 24.34 20.67
PORTUGAL 31.83 31.56 27.51 29.76 29.57 25.78
ROMANIA 49.09 41.94 35.62 45.89 39.56 33.59
SLOVENIA 23.52 20.87 17.72 21.99 19.54 16.60
SPAIN 19.80 19.53 16.77 18.51 18.38 15.78
SWEDEN 11.09 11.09 11.06 10.37 10.37 10.33
Total 25.09 22.76 19.56 23.46 21.39 18.38
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relatively high antibiotic consumer, as can be seen also from the descriptive statistics in Table 2 of

Section 4. Hence, while capping pollution at 10 would reduce resistance by 0.9 percentage points

(from 20.38 to 19.48), reducing consumption by 20% has a more important effect, as resistance

would be reduced by 1.32 percentage points. If we consider, instead, a high polluter, such as

Bulgaria, the impact of the pollution policy is more important than the effect of the consumption

policy, with a four percentage points differential impact (the counterfactual level of resistance

under the pollution policy is 26.56, while under the consumption policy, it is 30.56). Notice also

that, in some countries, such as Sweden, Ireland, Portugal, and Finland, the pollution policy has

a very limited impact, if any. This is because the cap at 10 is never binding, or it is only binding

in a few time periods. Moreover, for countries like Sweden or Finland, even capping at 5 has a

minimal impact. As intuitive, the most beneficial effect (that is, the largest reduction in AMR)

is obtained when both the pollution and antibiotic consumption policies are applied. Figure 7

in Appendix F plots resistance and counterfactual resistance when PM2.5 is capped at 5 µg/m
3

and antibiotic use is reduced by 20%.

Table 10 reports the same results as Table 9 in the first three columns. In the last couple of

columns, I estimate the reduction in antibiotic use that would be required to achieve the same

level of resistance as under each of the two pollution policies. On average, capping PM2.5 con-

centration at 10 µg/m
3 reduces pollution by 2.33 percentage points in the EU, which corresponds

to about a 22.6% reduction in antibiotics use. Capping PM2.5 at the same level as recommended

by the WHO would, instead, be equivalent to reducing antibiotic use by about 51%.
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Table 10: Comparison across Counterfactuals (cont’d)

Pollution Corresponding
Policy only Consumption Policy

% Reduction % Reduction
Country Resistance (R̂) PM2.5 = 10 PM2.5 = 5 (PM2.5 = 10) (PM2.5 = 5)
AUSTRIA 16.97 15.79 13.41 -21.38 -54.34
BELGIUM 18.49 17.01 14.45 -24.20 -56.01
BULGARIA 32.69 26.56 22.55 -49.83 -70.78
CROATIA 32.40 28.36 24.08 -35.75 -62.63
CZECH REPUBLIC 31.59 27.55 23.39 -36.65 -63.20
DENMARK 13.49 13.20 11.27 -6.86 -45.06
ESTONIA 16.00 15.93 13.80 -1.40 -38.95
FINLAND 10.94 10.94 10.79 0 -4.52
FRANCE 20.38 19.48 16.55 -14.10 -50.07
GERMANY 24.42 22.52 19.12 -24.52 -57.09
GREECE 45.66 40.12 34.07 -35.06 -62.35
HUNGARY 29.85 25.19 21.39 -43.35 -67.10
IRELAND 24.07 24.06 21.36 -0.20 -33.66
ITALY 31.87 29.05 24.67 -26.60 -57.40
LATVIA 28.35 26.33 22.36 -21.99 -54.85
LITHUANIA 27.32 24.26 20.60 -33.11 -61.39
LUXEMBOURG 16.22 15.27 12.97 -18.20 -52.65
NETHERLANDS 15.42 14.10 11.97 -25.70 -56.84
POLAND 31.41 25.92 22.01 -47.83 -69.81
PORTUGAL 31.83 31.56 27.51 -2.87 -38.89
ROMANIA 49.09 41.94 35.62 -41.61 -66.48
SLOVENIA 23.52 20.87 17.72 -32.80 -60.94
SPAIN 19.80 19.53 16.77 -4.50 -42.49
SWEDEN 11.09 11.09 11.06 0 -1.09
Total 25.09 22.76 19.56 -22.59 -50.87
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9 Conclusion

This paper is the first to provide causal estimates of the impact of air quality on the propa-

gation of antimicrobial resistance (AMR). Results show that air pollution is an important driver

of increasing AMR rates in the EU, with an influence comparable to antibiotic consumption

in humans. Additionally, I find substantial heterogeneity across pathogen-antibiotic combina-

tions in their responsiveness to exogenous changes in PM2.5 concentration. Stricter pollution

standards would help contain the spread of resistance to some second and third-line antibiotics,

thereby preserving their efficacy. Moreover, air pollution control would contribute to limiting

the diffusion of some top killer resistant bacteria, such as MRSA.

These findings suggest that pollution reduction policies could be effectively leveraged in the

fight against antimicrobial resistance. They also emphasize the need to account for the causal

impact of pollution on AMR in cost-benefit analyses of air quality improvement policies. Ignoring

this impact would likely result in an underestimation of both the health and economic benefits

associated with cleaner air.

In terms of future extensions, this paper does not consider yet the impact of antibiotic use in

animal farming and agricultural activities. Although prior research in the US identifies human

antibiotic use as the main driver of resistance (Adda (2020)), veterinary use still accounts for

approximately 60% of total antibiotic consumption in European countries. Future versions of this

paper will incorporate veterinary usage data into the analysis. Another valuable extension would

involve estimating the economic costs and benefits of alternative pollution reduction strategies.

Finally, while this paper focuses exclusively on environmental policies through stricter pollution

standards, future research could explore the impact of other types of environmental policies.
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A Temperature Inversions

Figure 2: Inversions: Example 1

Figure 3: Inversions: Example 2
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Figure 4: Temperature Inversions in NUTS3 Regions
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B Heterogeneity Analysis - Glossary

Useful definitions:

• Beta-lactam Antibiotics: these represent a broad class of antibiotics, including several

classes under analysis in this paper. These include penicillins, amonipenicillins (amoxicillin,

commonly used for respiratory infections, ampicillin), penicillinase-Resistant penicillins

(methicillin, nafcillin, oxacillin), broad-spectrum penicillins, cephalosporins, carbapenems,

monobactam.

• Gram-positive and Gram-negative Bacteria: the distinction between gram-positive and

gram-negative bacteria depends on the cell wall structure of the pathogens. This distinction

is important because it determines antibiotic susceptibility and pathogenic behavior and it

allows to identify the most appropriate antibiotic treatment option. Among the pathogens

under study, the Enterococcus faecalis, Enterococcus faecium and Staphylococcus aureus

are gram-positive bacteria, while Klebsiella pneumoniae and Pseudomonas aeruginosa are

gram-negative bacteria.
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Table 11: Antibiotics

Antibiotic Class Sub-class Spectrum

Aminoglycosides (second-
line)

Aminoglycosides - Primarly effective against Gram-
negative bacteria, and used in combi-
nation for Gram-positive bacteria.

Aminopenicillins (first-
line)

Beta-lactams Penicillins Broad-spectrum. Effective against
Gram-positive bacteria (e.g., Ente-
rococcus faecalis) and some Gram-
negative bacteria.

Carbapenems (third-line) Beta-lactams Carbapenems Broad-spectrum. Effective against
Gram-positive, Gram-negative, and
anaerobic bacteria. Used for resistant
infections.

Ceftazidime (third-line) Beta-lactams Cephalosporines
(3rd generation)

Broad-spectrum. Particularly effective
against Gram-negative bacteria, such
as Pseudomonas aeruginosa.

Cephalosporines (first-
line)

Beta-lactams Cephalosporines Gram-positive and Gram-negative bac-
teria (depending on generation),

Fluoroquinolones (second-
line)

Fluoroquinolones - Broad-spectrum. Effective against
Gram-negative and some Gram-
positivebacteria.

Oxacillin (second-line) Beta-lactams Penicillins Narrow-spectrum. Mainly used to treat
penicillinase-producing Staphylococcus
aureus.

Piperacillin-Tazobactam
(second, third line)

Beta-lactams - Broad-spectrum. Effective against
Gram-positive, Gram-negative, and
anaerobic bacteria.

Vancomycin (third-line) Glycopeptides - Narrow-spectrum. Effective against
Gram-positive bacteria.
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C Instrumental Variable Estimation
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Figure 5: Instrumental Variables

(a) Omitted-variable bias

(b) Total impact of pollution
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Figure 5 (cont’d): Instrumental Variables

(c) Antibiotic consumption

(d) Causal impact of pollution and antibiotic use
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D Baseline Results
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Table 12: The Effect of Pollution on Resistance - Linear Model

Linear Model

Dependent Variable (1) (2) (3) (4) (5) (6) (7) (8) (9)
Resistance

Pollution 1.3624** 1.7164** 1.2284* 1.0537* 1.3227* 0.9350* 1.0871** 1.2422* 0.9573**
(0.5593) (0.7717) (0.6085) (0.5270) (0.7278) (0.5036) (0.4501) (0.6558) (0.4452)

Lagged Resistance 0.4473*** 0.4540*** 0.4535***
(0.0839) (0.0810) (0.0789)

(per capita) Health Expenditure -0.0039*** -0.0041*** -0.0017* -0.0038*** -0.0040*** -0.0016* -0.0038*** -0.0040*** -0.0016**
(0.0013) (0.0012) (0.0008) (0.0013) (0.0012) (0.0008) (0.0013) (0.0012) (0.0008)

Population Density 0.1237 0.1428 0.1146 0.1238 0.1347 0.1049 0.1237 0.1331 0.1056
(0.1397) (0.1468) (0.0969) (0.1388) (0.1460) (0.0948) (0.1388) (0.1455) (0.0931)

Rural Population 5.2535*** 5.2753*** 3.5175*** 5.2138*** 5.2811*** 3.5235*** 5.2181*** 5.2822*** 3.5230***
(1.1413) (1.1803) (0.7461) (1.1487) (1.1869) (0.7509) (1.1367) (1.1907) (0.7519)

Population 65+ 1.7770** 1.6095* 0.7247 1.6846* 1.5387* 0.6563 1.6946* 1.5242* 0.6615
(0.8173) (0.8312) (0.4407) (0.8580) (0.8592) (0.4537) (0.8711) (0.8777) (0.4724)

Tourism Arrivals 0.0899* 0.0924* 0.1044** 0.0899* 0.0918* 0.1017** 0.0899* 0.0917* 0.1019**
(0.0493) (0.0481) (0.0406) (0.0488) (0.0475) (0.0405) (0.0489) (0.0475) (0.0410)

Physicians -4.7692*** -4.4535*** -1.6194 -4.7201*** -4.4906*** -1.7010 -4.7254*** -4.4982*** -1.6948
(1.5926) (1.4882) (1.1490) (1.5796) (1.4801) (1.1741) (1.5651) (1.4919) (1.2175)

PM10 0.0301 0.0193 0.0002 0.0545 0.0423 0.0134 0.0518 0.0470 0.0124
(0.1464) (0.1147) (0.0539) (0.1325) (0.1027) (0.0474) (0.1283) (0.1004) (0.0476)

SO2 -0.6141* -0.7054* -0.4787 -0.5739 -0.6586* -0.4387 -0.5783 -0.6491* -0.4417
(0.3497) (0.3666) (0.3022) (0.3538) (0.3722) (0.2932) (0.3559) (0.3713) (0.2852)

NO2 0.1476 0.1953 0.0217 0.1418 0.1854 0.0213 0.1425 0.1834 0.0213
(0.1327) (0.1520) (0.1069) (0.1298) (0.1471) (0.1052) (0.1275) (0.1431) (0.1051)

O3 -0.0761 -0.0451 -0.0239 -0.0776 -0.0492 -0.0261 -0.0774 -0.0500 -0.0259
(0.0481) (0.0473) (0.0334) (0.0490) (0.0482) (0.0329) (0.0493) (0.0491) (0.0330)

(mean) Temperature 3.0485 3.0300 2.2019 2.3659 2.0289 2.4165
(3.6282) (2.4646) (3.5162) (2.6798) (3.4916) (2.8242)

(mean) Precipitation 0.0358 0.0181 0.0313 0.0135 0.0304 0.0138
(0.0514) (0.0464) (0.0490) (0.0433) (0.0487) (0.0430)

(mean) Wind Speed 1.1906 0.0999 1.2124 0.1894 1.2169 0.1826
(1.8040) (1.6656) (1.7681) (1.6735) (1.7618) (1.7034)

(mean) Max Temperature -2.8730 -2.6956 -2.3543 -2.3164 -2.2483 -2.3453
(3.4790) (2.4666) (3.3616) (2.5905) (3.3062) (2.6532)

(mean) Specific Humidity -0.0788 -0.4119 -0.1416 -0.4321 -0.1544 -0.4305
(0.6786) (0.4946) (0.6594) (0.4680) (0.6577) (0.4669)

Observations 419 419 398 419 419 398 419 419 398
Instruments Group A Group A Group A Group B Group B Group B Group C Group C Group C
Kleibergen-Paap rk Wald F 5.8e+04 1.6e+05 1.4e+06 2.9e+06 1.7e+06 1.1e+05 3.9e+04 2.6e+04 1.0e+05
Hansen J 0.4897 0.3718 0.4772 0.3886 0.5049 0.4422 0.6081 0.4302 0.3724
All regressions include country and year fixed effects and are weighted by the country population. Standard errors are clustered at the country level in
parenthesis. *** p<0.01, ** p<0.05, * p<0.1
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Table 13: The Effect of Pollution on Resistance - Fractional Logit Model

Fractional Logit Model

Dependent Variable (1) (2) (3) (4) (5) (6) (7) (8) (9)
(log) Resistance

(log) Pollution 1.1603** 1.3171 0.5544 0.9484* 1.0329 0.4294 1.0173** 1.0460 0.5677
(0.5543) (0.8336) (0.6754) (0.4937) (0.7424) (0.5873) (0.4463) (0.6741) (0.6543)

Lagged Resistance 0.0263*** 0.0266*** 0.0262***
(0.0072) (0.0071) (0.0071)

(per capita) Health Expenditure -0.0002 -0.0002 -0.0000 -0.0002 -0.0002 -0.0000 -0.0002* -0.0002 -0.0000
(0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)

Population Density 0.0070 0.0070 0.0044 0.0068 0.0064 0.0040 0.0062 0.0064 0.0044
(0.0072) (0.0077) (0.0054) (0.0074) (0.0078) (0.0052) (0.0076) (0.0077) (0.0051)

Rural Population 0.2567*** 0.2522*** 0.1586*** 0.2601*** 0.2592*** 0.1611*** 0.2698*** 0.2589*** 0.1583***
(0.0757) (0.0803) (0.0418) (0.0763) (0.0797) (0.0404) (0.0784) (0.0799) (0.0404)

Population 65+ 0.1034* 0.1010* 0.0510 0.1014* 0.0998 0.0503 0.1013* 0.0999 0.0511
(0.0569) (0.0583) (0.0313) (0.0583) (0.0594) (0.0319) (0.0574) (0.0598) (0.0320)

Tourism Arrivals 0.0054** 0.0052** 0.0055** 0.0055** 0.0052** 0.0054** 0.0054** 0.0052** 0.0055**
(0.0026) (0.0025) (0.0024) (0.0026) (0.0025) (0.0024) (0.0025) (0.0025) (0.0024)

Physicians -0.2832*** -0.2461*** -0.0873 -0.2803*** -0.2493*** -0.0885 -0.2759*** -0.2491*** -0.0872
(0.0922) (0.0819) (0.0745) (0.0911) (0.0831) (0.0752) (0.0872) (0.0846) (0.0758)

PM10 -0.0022 -0.0020 -0.0015 -0.0012 -0.0011 -0.0012 -0.0025 -0.0011 -0.0015
(0.0084) (0.0076) (0.0032) (0.0075) (0.0066) (0.0030) (0.0066) (0.0064) (0.0029)

SO2 -0.0163 -0.0195 -0.0120 -0.0161 -0.0194 -0.0118 -0.0187 -0.0194 -0.0120
(0.0184) (0.0190) (0.0141) (0.0183) (0.0188) (0.0140) (0.0191) (0.0188) (0.0142)

NO2 0.0041 0.0056 -0.0025 0.0043 0.0058 -0.0024 0.0052 0.0057 -0.0025
(0.0093) (0.0099) (0.0070) (0.0093) (0.0098) (0.0070) (0.0099) (0.0099) (0.0071)

O3 -0.0006 0.0014 0.0011 -0.0010 0.0006 0.0008 -0.0003 0.0006 0.0012
(0.0033) (0.0036) (0.0024) (0.0033) (0.0036) (0.0023) (0.0035) (0.0040) (0.0027)

(mean) Temperature 0.0531 0.0283 0.0158 0.0119 0.0175 0.0301
(0.1972) (0.1362) (0.1948) (0.1505) (0.2011) (0.1665)

(mean) Precipitation 0.0047 0.0020 0.0042 0.0017 0.0043 0.0020
(0.0032) (0.0028) (0.0031) (0.0025) (0.0031) (0.0025)

(mean) Wind Speed -0.0426 -0.0440 -0.0312 -0.0383 -0.0317 -0.0446
(0.0876) (0.0742) (0.0922) (0.0799) (0.0933) (0.0859)

(mean) Max Temperature -0.0672 -0.0464 -0.0429 -0.0363 -0.0560 -0.0440 -0.0474
(0.1682) (0.1148) (0.1674) (0.1266) (0.0464) (0.1731) (0.1373)

(mean) Specific Humidity -0.0107 -0.0204 -0.0109 -0.0199 -0.0005 -0.0109 -0.0204
(0.0311) (0.0207) (0.0306) (0.0211) (0.0312) (0.0306) (0.0213)

Observations 419 419 398 419 419 398 419 419 398
Instruments Group A Group A Group A Group B Group B Group B Group C Group C Group C
Kleibergen-Paap rk Wald F 6.4e+04 1.3e+04 2.3e+05 2.2e+04 2.7e+04 4.4e+05 3.2e+05 2.1e+04 7933.323
Hansen J 0.3491 0.3576 0.3783 0.4875 0.4178 0.3812 0.4391 0.3844 0.4646
All regressions include country and year fixed effects and are weighted by the country population. Standard errors are clustered at the country level in
parenthesis. *** p<0.01, ** p<0.05, * p<0.1
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Table 14: Baseline Results - Year Fixed Effects

Linear Model Fractional Logit Model Poisson Model

(1) (2) (3)
Dependent Variable: Resistance (log) Resistance Resistance

Year 2003 5.9572*** 0.2688** 0.2231***
(2.0151) (0.1253) (0.0750)

Year 2004 8.9282*** 0.4186** 0.3798***
(3.0382) (0.1831) (0.0770)

Year 2005 6.9316** 0.3112 0.2584***
(3.1586) (0.2042) (0.0799)

Year 2006 6.6471** 0.3141 0.2308***
(2.9553) (0.1893) (0.0772)

Year 2007 10.5001** 0.5006* 0.3907***
(4.1208) (0.2685) (0.1023)

Year 2008 9.7886** 0.4477 0.3226***
(4.2363) (0.2869) (0.0988)

Year 2009 10.1867** 0.4554 0.3444***
(4.2526) (0.2793) (0.0978)

Year 2010 8.7809** 0.3574 0.2701***
(4.1976) (0.2662) (0.0965)

Year 2011 13.1625** 0.5992* 0.4294***
(4.8410) (0.3150) (0.1050)

Year 2012 14.2211** 0.6234 0.4814***
(5.7408) (0.3752) (0.1191)

Year 2013 14.0779** 0.5983 0.4604***
(6.0729) (0.3991) (0.1244)

Year 2014 14.9230** 0.6343 0.4607***
(6.7916) (0.4437) (0.1352)

Year 2015 13.2366* 0.5736 0.4555***
(7.0292) (0.4429) (0.1413)

Year 2016 13.1953* 0.5520 0.4449***
(7.1075) (0.4699) (0.1516)

Year 2017 13.3710* 0.5543 0.4559***
(7.4723) (0.4958) (0.1548)

Year 2018 15.5192* 0.6608 0.5215***
(8.4359) (0.5755) (0.1756)

Year 2019 15.5642 0.6627 0.5136***
(9.5473) (0.6268) (0.1944)

Observations 419 419 419
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Table 15: Baseline Results - Pollution Exogenous

Linear Model Fractional Logit Model Poisson Model

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Dependent Variable Resistance Resistance Resistance (log) Resistance (log) Resistance (log) Resistance Resistance Resistance Resistance

Pollution 0.5555** 0.5883 0.5006*
(0.2660) (0.3492) (0.2444)

(log) Pollution 0.5409*** 0.6139*** 0.3890** 0.3862*** 0.4661*** 0.3844***
(0.1739) (0.2129) (0.1434) (0.1412) (0.1587) (0.1392)

Lagged Resistance 0.4639*** 0.0266*** 0.0169***
(0.0761) (0.0061) (0.0026)

(per capita) Health Expenditure -0.0037** -0.0037*** -0.0015* -0.0002 -0.0002 -0.0000 -0.0001** -0.0001*** -0.0000
(0.0013) (0.0012) (0.0008) (0.0001) (0.0001) (0.0001) (0.0000) (0.0000) (0.0000)

Population Density 0.1239 0.1198 0.0905 0.0063 0.0055 0.0039 -0.0012 -0.0005 0.0010
(0.1379) (0.1462) (0.0953) (0.0076) (0.0078) (0.0046) (0.0022) (0.0022) (0.0018)

Rural Population 5.1497*** 5.2918*** 3.5324*** 0.2666*** 0.2697*** 0.1619*** 0.1420*** 0.1370*** 0.0921**
(1.1495) (1.2185) (0.7706) (0.0814) (0.0837) (0.0443) (0.0407) (0.0410) (0.0377)

Population 65+ 1.5354 1.4064 0.5550 0.0975 0.0981 0.0501 0.0363* 0.0369* 0.0141
(0.9000) (0.9044) (0.4634) (0.0594) (0.0610) (0.0327) (0.0210) (0.0209) (0.0167)

Tourism Arrivals 0.0898* 0.0909* 0.0977** 0.0055** 0.0053** 0.0054** 0.0020 0.0022 0.0027
(0.0486) (0.0478) (0.0437) (0.0026) (0.0025) (0.0024) (0.0018) (0.0017) (0.0018)

Physicians -4.6410*** -4.5599*** -1.8218 -0.2748*** -0.2539*** -0.0889 -0.1566*** -0.1388*** -0.0421
(1.5538) (1.5142) (1.2506) (0.0881) (0.0879) (0.0786) (0.0457) (0.0473) (0.0355)

PM10 0.0939 0.0851 0.0330 0.0007 0.0003 -0.0011 0.0016 0.0019 0.0002
(0.1326) (0.1022) (0.0480) (0.0070) (0.0061) (0.0029) (0.0020) (0.0020) (0.0017)

SO2 -0.5091 -0.5715 -0.3794 -0.0158 -0.0192 -0.0117 -0.0045 -0.0056 -0.0004
(0.3252) (0.3363) (0.2566) (0.0180) (0.0185) (0.0136) (0.0073) (0.0073) (0.0071)

NO2 0.1326 0.1669 0.0207 0.0045 0.0059 -0.0024 -0.0030 -0.0026 -0.0042
(0.1271) (0.1417) (0.1043) (0.0091) (0.0097) (0.0072) (0.0034) (0.0034) (0.0031)

O3 -0.0800 -0.0569 -0.0292 -0.0019 -0.0006 0.0006 0.0002 0.0008 0.0006
(0.0506) (0.0502) (0.0337) (0.0032) (0.0033) (0.0022) (0.0022) (0.0022) (0.0020)

(mean) Temperature 0.6227 1.3824 -0.0393 0.0066 0.1312* 0.0989
(3.0628) (2.4911) (0.1748) (0.1384) (0.0780) (0.0624)

(mean) Precipitation 0.0231 0.0067 0.0036 0.0017 0.0006 0.0008
(0.0469) (0.0425) (0.0029) (0.0022) (0.0013) (0.0013)

(mean) Wind Speed 1.2531 0.3219 -0.0144 -0.0365 -0.0643 -0.0304
(1.7207) (1.5934) (0.0974) (0.0826) (0.0787) (0.0606)

(mean) Max Temperature -1.3867 -1.7549 -0.0071 -0.0331 -0.1155* -0.0775
(2.8523) (2.3012) (0.1526) (0.1165) (0.0655) (0.0544)

(mean) Specific Humidity -0.2587 -0.4619 -0.0112 -0.0197 -0.0255* -0.0191
(0.6121) (0.4450) (0.0300) (0.0210) (0.0148) (0.0130)

Observations 419 419 398 419 419 398 419 419 398
R-squared 0.8779 0.8806 0.9202 0.8389 0.8421 0.9032
All regressions include country and year fixed effects and are weighted by the country population. Standard errors parenthesis. *** p<0.01, ** p<0.05, * p<0.1.
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Table 16: Baseline Results - First Stage (Group A)

Controls Instruments

Dependent Variable (1) (2) (3) (1’) (2’) (3’)
Pollution

(percapita) Health Expenditure 0.0004 0.0005* 0.0003 Inversions*AUS 0.0684*** 0.0449*** 0.0320***
(0.0003) (0.0003) (0.0003) (0.0129) (0.0113) (0.0106)

Population Density 0.0011 -0.0149 -0.0284** Inversions*BEL -0.0161** -0.0122 -0.0059
(0.0164) (0.0149) (0.0129) (0.0065) (0.0075) (0.0072)

Rural Population -0.1159 0.0645 0.0471 Inversions*BUL -0.0344 -0.0622** -0.0890***
(0.2246) (0.2025) (0.1780) (0.0241) (0.0245) (0.0293)

Population 65+ -0.2174 -0.1405 -0.1924 Inversions*CRO 0.1045*** 0.0486* 0.0327
(0.1503) (0.1479) (0.1188) (0.0210) (0.0282) (0.0275)

Tourism Arrivals -0.0042 -0.0007 -0.0119 Inversions*CZE 0.0469*** 0.0346*** -0.0004
(0.0115) (0.0114) (0.0146) (0.0092) (0.0100) (0.0084)

Physicians -0.1205 -0.2183 -0.3977 Inversions*DEN 0.0427*** 0.0401*** 0.0376***
(0.3865) (0.3449) (0.2947) (0.0066) (0.0060) (0.0053)

PM10 0.0816* 0.0579 0.0479 Inversions*EST -0.0373*** -0.0511*** -0.0513***
(0.0471) (0.0423) (0.0401) (0.0066) (0.0072) (0.0068)

SO2 0.0655 0.0468 0.0758 Inversions*FIN -0.0296*** -0.0521*** -0.0509***
(0.0647) (0.0595) (0.0552) (0.0079) (0.0113) (0.0092)

NO2 -0.0244 -0.0205 -0.0026 Inversions*FRA 0.0121 0.0272** 0.0120
(0.0347) (0.0390) (0.0375) (0.0158) (0.0138) (0.0133)

O3 -0.0149 -0.0180* -0.0117 Inversions*GER 0.0376*** 0.0246** 0.0152
(0.0116) (0.0106) (0.0127) (0.0097) (0.0100) (0.0093)

(mean) Temperature -1.4959* -1.8957*** Inversions*GRE 0.0146 0.0044 -0.0088
(0.7760) (0.6788) (0.0117) (0.0172) (0.0161)

(mean) Precipitation -0.0156 -0.0164 Inversions*HUN 0.0948*** 0.0719*** 0.0769***
(0.0146) (0.0147) (0.0075) (0.0097) (0.0112)

(mean) Wind Speed -0.0154 0.2089 Inversions*IRE 0.0548*** 0.0435** 0.0240
(0.3987) (0.3437) (0.0187) (0.0190) (0.0191)

(mean) Max Temperature 0.6744 0.9270 Inversions*ITA 0.0244*** 0.0298*** 0.0219**
(0.7342) (0.6430) (0.0090) (0.0115) (0.0107)

(mean) Specific Humidity -0.1731 -0.0815 Inversions*LAT -0.0077 -0.0172** -0.0220***
(0.1185) (0.0992) (0.0074) (0.0081) (0.0082)

Lagged Resistance 0.0183 Inversions*LUX -0.0136 -0.0084 -0.0153
(0.0150) (0.0138) (0.0159) (0.0161)

Inversions*NET 0.0258*** 0.0157** 0.0193**
(0.0066) (0.0076) (0.0085)

Inversions*POL 0.1167*** 0.1069*** 0.0665***
(0.0142) (0.0134) (0.0119)

Inversions*POR 0.0570*** 0.0417*** 0.0337***
(0.0117) (0.0122) (0.0093)

Inversions*ROM 0.0968*** 0.0936*** 0.0861***
(0.0298) (0.0267) (0.0222)

Inversions*SLO 0.0602*** 0.0303** 0.0080
(0.0106) (0.0150) (0.0126)

Inversions*SPA 0.0718*** 0.0670*** 0.0590***
(0.0170) (0.0203) (0.0188)

Inversions*SWE -0.0064 -0.0234** -0.0341***
(0.0092) (0.0098) (0.0088)

Observations 419 419 398
Kleibergen-Paap rk Wald F 5.8e+04 1.6e+05 1.4e+06
Instruments Group A Group A Group A
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Table 17: Baseline Results - First Stage (Group B)

Controls Instruments

Dependent Variable (1) (2) (3) (1’) (2’) (3’)
Pollution

(per capita) Health Expenditure 0.0004 0.0005* 0.0003 AnyInversion*AUS 0.0722*** 0.0482*** 0.0307***
(0.0003) (0.0003) (0.0003) (0.0091) (0.0094) (0.0074)

Population Density 0.0016 -0.0156 -0.0277** AnyInversion*BEL 0.0082 0.0080 0.0099
(0.0155) (0.0148) (0.0134) (0.0064) (0.0070) (0.0063)

Rural Population -0.0607 0.0813 0.0625 AnyInversion*BUL -0.0271 -0.0516*** -0.0714***
(0.2299) (0.2071) (0.1784) (0.0167) (0.0174) (0.0206)

Population 65+ -0.1861 -0.1150 -0.1702 AnyInversion*CRO 0.0688*** 0.0310* 0.0177
(0.1428) (0.1459) (0.1233) (0.0119) (0.0177) (0.0167)

Tourism Arrivals -0.0039 -0.0016 -0.0111 AnyInversion*CZE 0.0533*** 0.0437*** 0.0210***
(0.0110) (0.0112) (0.0147) (0.0072) (0.0073) (0.0066)

Physicians -0.1645 -0.2391 -0.3991 AnyInversion*DEN 0.0342*** 0.0336*** 0.0299***
(0.3763) (0.3362) (0.2957) (0.0056) (0.0051) (0.0040)

PM10 0.0763* 0.0549 0.0462 AnyInversion*EST -0.0318*** -0.0444*** -0.0450***
(0.0445) (0.0405) (0.0392) (0.0052) (0.0055) (0.0052)

SO2 0.0525 0.0341 0.0636 AnyInversion*FIN -0.0252*** -0.0473*** -0.0482***
(0.0622) (0.0572) (0.0532) (0.0070) (0.0096) (0.0081)

NO2 -0.0184 -0.0181 0.0009 AnyInversion*FRA 0.0164 0.0268** 0.0127
(0.0368) (0.0394) (0.0388) (0.0128) (0.0106) (0.0110)

O3 -0.0138 -0.0170 -0.0115 AnyInversion*GER 0.0377*** 0.0241*** 0.0153**
(0.0112) (0.0107) (0.0129) (0.0070) (0.0076) (0.0069)

(mean) Temperature -1.4799** -1.8482*** AnyInversion*GRE 0.0075 -0.0003 -0.0099
(0.7035) (0.6281) (0.0112) (0.0161) (0.0162)

(mean) Precipitation -0.0123 -0.0142 AnyInversion*HUN 0.1068*** 0.0805*** 0.0740***
(0.0145) (0.0148) (0.0079) (0.0080) (0.0094)

(mean) Wind Speed -0.0481 0.1672 AnyInversion*IRE 0.0477*** 0.0399*** 0.0237*
(0.3837) (0.3282) (0.0154) (0.0150) (0.0143)

(mean) Max Temperature 0.7263 0.9365 AnyInversion*ITA 0.0260*** 0.0319*** 0.0240**
(0.6703) (0.6018) (0.0099) (0.0110) (0.0104)

(mean) Specific Humidity -0.1760 -0.0759 AnyInversion*LAT 0.0047 -0.0057 -0.0152***
(0.1193) (0.1037) (0.0045) (0.0055) (0.0055)

Lagged Resistance 0.0159 AnyInversion*LUX 0.0078 0.0102 0.0020
(0.0152) (0.0105) (0.0109) (0.0111)

AnyInversion*NET 0.0248*** 0.0165** 0.0150**
(0.0064) (0.0072) (0.0068)

AnyInversion*POL 0.0955*** 0.0849*** 0.0545***
(0.0106) (0.0091) (0.0080)

AnyInversion*POR 0.0497*** 0.0357*** 0.0295***
(0.0105) (0.0109) (0.0084)

AnyInversion*ROM 0.0939*** 0.0657*** 0.0579***
(0.0247) (0.0228) (0.0197)

AnyInversion*SLO 0.0751*** 0.0498*** 0.0279**
(0.0093) (0.0134) (0.0112)

AnyInversion*SPA 0.0618*** 0.0561*** 0.0499***
(0.0140) (0.0178) (0.0171)

AnyInversion*SWE -0.0029 -0.0127* -0.0216***
(0.0074) (0.0076) (0.0068)

Observations 419 419 398
Kleibergen-Paap rk Wald F 2.9e+06 1.7e+06 1.1e+05
Instruments Group B Group B Group B
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Table 18: Baseline Results - First Stage (Group C)

Controls Instruments

Dependent Variable (1) (2) (3) (1’) (2’) (3’)
Pollution

(percapita) Health Expenditure 0.0005** 0.0005** 0.0003 WinterInverions*AUS 0.0754*** 0.0516*** 0.0343***
(0.0002) (0.0002) (0.0002) (0.0069) (0.0069) (0.0067)

Population Density -0.0037 -0.0176 -0.0297** WinterInverions*BEL -0.0087 -0.0086 -0.0012
(0.0138) (0.0138) (0.0115) (0.0066) (0.0081) (0.0069)

Rural Population -0.0082 0.0941 0.0873 WinterInverions*BUL -0.0202 -0.0497** -0.0928***
(0.2154) (0.1940) (0.1730) (0.0193) (0.0233) (0.0255)

Population 65+ -0.1320 -0.0722 -0.1206 WinterInverions*CRO 0.1094*** 0.0666*** 0.0511**
(0.1425) (0.1427) (0.1241) (0.0207) (0.0247) (0.0233)

Tourism Arrivals -0.0060 -0.0031 -0.0147 WinterInverions*CZE 0.0626*** 0.0538*** 0.0339***
(0.0100) (0.0100) (0.0119) (0.0071) (0.0082) (0.0076)

Physicians -0.2234 -0.2756 -0.3969 WinterInverions*DEN 0.0279*** 0.0305*** 0.0260***
(0.3721) (0.3510) (0.3165) (0.0060) (0.0054) (0.0049)

PM10 0.0702* 0.0522 0.0454 WinterInverions*EST -0.0418*** -0.0570*** -0.0516***
(0.0419) (0.0400) (0.0391) (0.0063) (0.0071) (0.0064)

SO2 0.0546 0.0381 0.0562 WinterInverions*FIN -0.0334*** -0.0639*** -0.0618***
(0.0621) (0.0566) (0.0531) (0.0085) (0.0126) (0.0104)

NO2 -0.0063 -0.0107 0.0056 WinterInverions*FRA 0.0105 0.0229* 0.0043
(0.0306) (0.0328) (0.0317) (0.0167) (0.0132) (0.0127)

O3 -0.0120 -0.0167 -0.0116 WinterInverions*GER 0.0478*** 0.0321*** 0.0222***
(0.0118) (0.0110) (0.0141) (0.0066) (0.0060) (0.0061)

(mean) Temperature -1.3454** -1.6769*** WinterInverions*GRE -0.2052*** -0.1477*** -0.0690***
(0.6387) (0.5935) (0.0369) (0.0376) (0.0257)

(mean) Precipitation -0.0146 -0.0154 WinterInverions*HUN 0.1412*** 0.1136*** 0.1019***
(0.0141) (0.0143) (0.0105) (0.0105) (0.0139)

(mean) Wind Speed -0.0567 0.1843 WinterInverions*IRE 0.0513*** 0.0250 0.0112
(0.4094) (0.3500) (0.0149) (0.0169) (0.0178)

(mean) Max Temperature 0.6993 0.8552 WinterInverions*ITA 0.0767*** 0.0894*** 0.0790***
(0.5820) (0.5391) (0.0213) (0.0206) (0.0163)

(mean) Specific Humidity -0.1815 -0.1081 WinterInverions*LAT -0.0038 -0.0167** -0.0210***
(0.1106) (0.0961) (0.0100) (0.0080) (0.0080)

Lagged Resistance 0.0132 WinterInverions*LUX 0.0254*** 0.0119 0.0102
(0.0144) (0.0089) (0.0097) (0.0104)

WinterInverions*NET 0.0244*** 0.0126* 0.0125*
(0.0048) (0.0067) (0.0069)

WinterInverions*POL 0.0907*** 0.0824*** 0.0558***
(0.0112) (0.0101) (0.0085)

WinterInverions*POR 0.0855*** 0.0468** 0.0344**
(0.0191) (0.0203) (0.0174)

WinterInverions*ROM 0.0719*** 0.0365* 0.0277
(0.0204) (0.0214) (0.0200)

WinterInverions*SLO 0.0747*** 0.0510*** 0.0307***
(0.0079) (0.0127) (0.0111)

WinterInverions*SPA 0.1536*** 0.1264*** 0.1253***
(0.0268) (0.0302) (0.0266)

WinterInverions*SWE -0.0245** -0.0341*** -0.0445***
(0.0108) (0.0108) (0.0102)

Observations 419 419 398
Kleibergen-Paap rk Wald F 3.9e+04 2.6e+04 1.0e+05
Instruments Group C Group C Group C
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E Spillovers

Table 19: The Effect of Spillovers

Poisson Model

Dependent Variable (1) (2) (3) (4) (5) (6) (7) (8)
Resistance

(log) Pollution 0.3334** 0.2480* 0.3366** 0.2371* 0.2624* 0.2659** 0.2243 0.2273
(0.1523) (0.1362) (0.1516) (0.1323) (0.1502) (0.1280) (0.1663) (0.1470)

(log) DDDs 0.2919* 0.3673*** 0.2136 0.3167*** 0.2238 0.3241*** -0.1362 0.1521
(0.1748) (0.1221) (0.1739) (0.1222) (0.1890) (0.1204) (0.1820) (0.1423)

Residulas -0.0100 0.0072 -0.0230 -0.0009 -0.0053 0.0116 -0.0339** -0.0297**
(0.0185) (0.0146) (0.0216) (0.0165) (0.0192) (0.0150) (0.0169) (0.0149)

Lagged Resistance 0.0139*** 0.0145*** 0.0138*** 0.0150***
(0.0019) (0.0019) (0.0018) (0.0021)

Observations 283 281 283 281 283 281 283 281
Instruments Group A’ Group A’ Group B’ Group B’ Group C’ Group C’ Group D’ Group D’
Controls include demographic, pollution and weather variables, as described in equation (1). Regressions are weighted
by the country population. Standard errors in parenthesis. *** p<0.01, ** p<0.05, * p<0.1
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F Counterfactual

Figure 7: Counterfactual Graph
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