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Abstract

Data combination and analytics can generate valuable insights for firms and society as
a whole. Firms can seize these opportunities by joining platforms that either allow
them to access the data contributed by other firms or provide the result of the analytics
performed on such data, depending on whether the platform adopts ”data sharing” or
“analytics sharing” technologies. The former technology enables firms to exploit their
data endowment together with the data contributed by others, whereas the latter offers
advantages in terms of privacy and security by reducing data transmission. We present
a model that allows us to study the economic and managerial incentives generated
by these technologies for both firms and a platform. First, we find that the platform
chooses analytics sharing only when the security advantage of this technology is
sufficiently large. Second, we show that analytics sharing results in a higher total data
contribution than data sharing under general and reasonable conditions. Third, we
determine the optimal data-combination technology from the perspective of consumers
and discuss potential misalignments between the platform’s and consumers’ preferred
technology. Our findings carry relevant policy and managerial implications, offering a
pathway to enhance both data provision and security.
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1 Introduction

The data generated by businesses, individuals and other actors holds significant economic
and societal value. Given the proliferation of data sources, many applications, such as
improving cancer predictions or designing better products, require data from multiple
firms. Consequently, policymakers are setting up policies and experimenting with tech-
nologies to encourage and facilitate inter-firm data combination (Farrell et al., 2023). For
instance, the European Commission is developing Common European Data Spaces to
facilitate data combination in several strategic sectors such as healthcare, energy, mobility,
finance, manufacturing, and agriculture (European Commission, 2024).

In practice, data can be combined in several ways, and specialized platforms have emerged
to help firms in this endeavor. We focus on two classes of technologies that data-combination
platforms may adopt, depending on whether they prioritize providing access to data or
delivering analytics services. In our setting, when the platform chooses a data sharing
technology, firms use the platform to access the data contributed by other firms while
conducting data analytics in-house. Alternatively, when the platform opts for an analytics
sharing technology, firms contribute their data to the platform and, in return, receive an-
alytics or insights generated from the combined dataset. Importantly, under this model,
firms do not have direct access to the data contributed by others.

As an illustrative example, Snowflake is a cloud-based platform primarily focused on data
sharing and warehousing, whereas Databricks’ core services include big data analytics,
machine learning, and advanced analytics workflows.1 Compatible with our distinction,
Snowflake emphasizes sharing and querying data directly, enabling firms to access and
utilize data contributed by others. In contrast, Databricks focuses on providing analytics
outputs, where firms contribute data and receive insights or processed results without
direct access to the underlying data. This distinction highlights the fundamental difference
in how these platforms manage access to data and analytics services.

Despite the growing importance of these two types of data-combination technologies, they
have received little attention in the management and economics literature. In particular,
the economic drivers and managerial implications of choosing a technology where firms
share data with each other (data sharing) over one where they share data-driven analytics
but not the data (analytics sharing), remain understudied. In this article, we contribute to
this research area by addressing three main questions: What are the incentives driving a
platform to choose one technology over the other? Does one of these technologies prompt
firms to contribute more data than the other? And finally, under what conditions does
the data combination technology chosen by the platform differ from the one preferred by
consumers?

1For more details, see https://www.snowflake.com and https://www.databricks.com/. We further discuss
these examples in Section 2.
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To address these questions, we build a model in which a platform can facilitate inter-firm
data combination and analytics by relying on either a data sharing or an analytics sharing
technology. Firms, with possibly heterogeneous data endowments, decide whether to
join the platform and, if so, how much data to contribute to it. Data contribution entails a
potential security cost due to the risk of data leakages. In the baseline model, we assume
that the platform has complete information about the firms’ data endowments and offers
them personalized and public two-part tariff contracts. We also extend our analysis to
alternative contractual arrangements that may arise due to incomplete information or firms’
taste for anonymity.

Under data sharing, firms obtain direct access to the contributed data, which is made
available to all participating firms. They conduct in-house analytics, deriving value from
the combined dataset as well as from any data they choose not to contribute to the platform.
In contrast, under analytics sharing, firms are not granted access to the contributed data
and derive value exclusively from the platform’s analytics, with the value of these insights
increasing as the amount of data they contribute grows.

Additionally, if firms can store the contributed data in-house under data sharing, the
number of potential access points for a cyberattack increases compared to analytics sharing.
Consequently, analytics sharing enhances data security by restricting both the transfer and
the access to data, thereby offering a “security advantage” that translates into a reduced
likelihood of data breaches. This security benefit provides analytics sharing with a cost
advantage over data sharing from the perspective of firms.

The analysis of the model delivers three main findings. First, the platform opts for analytics
sharing only if it guarantees a sufficiently higher level of data security than data sharing.
Moreover, the critical level of security advantage above which analytics sharing is preferred
by the platform is increasing in the firms’ data endowments. This finding derives from the
balance of two effects: the endowment effect, which favors data sharing, as firms can use
all the data they possess to extract analytics in-house, and the data security effect, which
favors analytics sharing. Similar findings hold when considering alternative contractual
agreements. We further show that analytics sharing is more likely to be adopted in the
presence of uniform public contracts, while the opposite holds for secret personalized
contracts.

Second, we compare data contributions under data sharing and analytics sharing. We
find that analytics sharing leads to higher equilibrium data contributions under general
conditions that appear to be consistent with recent studies investigating economies of scale
and scope in data combination. A key mechanism behind this finding is that, under data
sharing, firms can benefit from the data contributed by other firms even if they do not
contribute data themselves. In contrast, analytics sharing requires firms to contribute data
in order to benefit from the combined data. This results in a lower marginal benefit from
contributing data under data sharing compared to analytics sharing.
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Third, we determine the optimal data-combination technology from the perspective of
consumers to evaluate whether it aligns with the technology chosen by the platform. To
do this, we analyze how the choice of a data-combination technology affects the consumer
surplus generated by the consumption of a product sold by a given firm when it can
combine its own data with that of all other firms that also join the platform. We find
situations where the platform’s and consumers’ choices are aligned, and others where
they are not. The technology preferred by consumers depends on how their surplus from
consuming a specific product is affected by the producing firm’s own data and the data
contributed by other firms.

To enhance the economic intuition behind our findings, we provide a microfoundation
where non-competing firms can use data for both quality enhancement and price person-
alization, each having opposite effects on consumer surplus. As a result, multiple cases
are possible. When data is mostly used to enhance product quality, both a firm’s own data
and that of other firms positively impact consumer surplus. Under these conditions, both
the platform and consumers prefer analytics sharing when this technology is sufficiently
more secure than data sharing. However, this no longer holds when data is primarily
used to profile consumers and implement personalized pricing. In this case, consumers
are harmed by the availability of more data from the firm selling the product, as well as
from other firms contributing to the platform. As a result, consumers prefer data sharing,
whereas the platform prefers analytics sharing when it offers significantly greater security
than data sharing.

Structure. Section 2 offers examples of platforms whose business model is centered
around either data sharing or analytics sharing, illustrating the practical relevance of
these two data-combination technologies. Section 3 discusses how the article relates to
the existing literature. Section 4 develops a baseline model of data combination with data
sharing and analytics sharing technologies. Section 5 analyzes the platform’s optimal data-
combination technology and compares total data contribution under the two technologies.
Section 6 studies the data-combination technology preferred by consumers and compares
it with the one chosen by the platform. Section 7 extends the baseline model to analyze
alternative contractual arrangements between the platform and firms. Section 8 discusses
some policy and managerial implications of our findings and concludes.

2 Data-combination platforms and technologies

Data-combination platforms have become increasingly important in helping firms unlock
the value of their data by enabling efficient collaboration and integration. As firms in-
creasingly rely on data-driven strategies, the role of these platforms in supporting diverse
business needs has grown significantly. Among the various technologies these platforms
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employ, two key approaches, exemplified in our distinction between data sharing and
analytics sharing, have emerged, each offering distinct ways to harness the power of data.
This distinction underscores the trade-off between direct data access and analytics-driven
value, shaping the roles and incentives of firms and platforms in data-driven markets.

Our driving example relates to the distinction between Snowflake and Databricks intro-
duced in the previous section. The Snowflake platform allows organizations to share and
access data across multiple clouds and data providers, enabling firms to perform their
own data analytics. Figure A.1 further illustrates these features of the Snowflake business
model. The figure identifies the central role of the platform in a typical data pipeline,
which is to provide solutions for sharing the data that clients can then access and exploit.

Conversely, Databricks’ core business model focuses on providing multiple organizations
with a unified analytics platform that provides data engineering, collaborative data science,
and machine learning services. The platform offers scalable cloud-based solutions for
processing and analyzing large datasets, enabling organizations to derive insights and
build data-driven applications efficiently using internal and external data. Figure A.2, with
reference to their flagship Lakehouse Platform, showcases the various analytics services it
offers to clients.

However, it is important to note that both platforms offer features that may blur this
distinction to some extent. For instance, Snowflake provides basic analytics services, such
as SQL-based analytics, while Databricks also supports some limited direct data access.
The key difference lies in their primary focus and approach to data sharing and analytics.
Snowflake is primarily a data warehouse that excels in storing, querying, and sharing
structured and semi-structured data, whereas Databricks offers a unified analytics platform
designed for data engineering, big data, and machine learning tasks.

While acknowledging that platforms may offer both services, albeit to varying extents,
this paper focuses on the platform’s decision regarding which mechanism to adopt, as
this choice can have significant implications for data provision and the welfare of market
participants. To further illustrate this distinction, several additional examples demon-
strate how data-combination platforms prioritize either data sharing or analytics sharing
technologies.

For data sharing, SAP Data Intelligence allows organizations to share data across systems
and integrate various data sources for advanced analytics.2 Similarly, Palantir Foundry in-
tegrates, analyzes, and visualizes data from multiple sources, with data sharing capabilities
that allow organizations to share data across departments or with external partners, while
still maintaining control over access.3 These platforms support sharing datasets between
organizations or departments, providing direct access to data for in-house analytics.

2Additional information is available at: https://www.sap.com/products/technology-platform/data-
intelligence.html.

3See also: https://www.palantir.com/platforms/foundry/.
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In terms of analytics sharing, Salesforce Einstein Analytics collects data from different
sources and provides firms with analytics and insights, typically without granting them
access to the underlying data.4 IBM Watson Studio, designed for data science tasks such as
model training and AI application development, enables businesses to contribute data for
processing, generating predictive analytics, machine learning insights, or other outputs.5
However, firms do not have direct access to the data contributed by others; instead, they
contribute data and receive insights or models based on it.

Data-combination solutions are often tailored to specific sectors. For example, in healthcare
both the potential benefits and the challenges of data combination are extremely large. The
Health-X platform, part of the Gaia-X consortium, is primarily a data-sharing initiative,
although it also provides the infrastructure and standards necessary for stakeholders to
derive insights from shared data, potentially facilitating both independent and collaborative
analytics efforts.6 Moreover, the Observational Health Data Sciences and Informatics
(OHDSI) platform, while enabling analytics, has a primary emphasis on sharing and
standardizing observational health data for collaborative research.7

On the other hand, a number of platforms offer data combination through analytics
sharing. The US Patient-Centered Outcomes Research Institute (PCORI), through its
PCORnet and PScanner platforms, allows health researchers to query health data from
hundreds of hospital and clinics to perform national-level health studies. The PCORnet-
enabled approach shares only the minimum necessary information needed to answer a
question. Researchers’ queries are sent to the data — and answers, not data, are sent back
to researchers.8 Similarly, Flatiron offers health facilities analytics services to conduct
oncology studies, but does not give access to third-party data.9

In the agricultural sector, Farmers Edge offers tools for precision agriculture, including
soil, climate, and field performance data. It emphasizes enabling farmers to share their
data (such as yield, soil health, and weather data) with agricultural service providers or
technology partners.10 Conversely, on platforms like Bayer’s Climate FieldView, farmers
usually share data collected by sensors on their devices.11 The data from multiple farms
is then processed, and analytics are returned to help each farmer optimize irrigation
schedules, adjust fertilizer application rates, and detect pests.

4See: https://www.salesforce.com/news/press-releases/salesforce-launches-einstein-analytics.
5See: https://www.ibm.com/products/watson-studio.
6See also: https://gaia-x.eu/news-press/health-x-a-common-data-space-for-the-health-sector.
7See: https://www.ohdsi.org/data-standardization/.
8See, for example: https://pcornet.org/data/.
9See also: https://flatiron.com/about-us.

10See: https://farmersedge.ca/about-us/.
11See: https://climate.com/.
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3 Related literature

Our article focuses on the economic incentives that firms face when deciding whether
to combine (some of) their data to exploit a joint dataset through a platform that can
opt for different data-combination technologies. In that respect, it connects to several
papers that have studied related problems, although without focusing on the choice of a
data-combination technology.

In this vein, a seminal contribution and the work most closely related to ours is Calzolari
et al. (2024). Both their baseline model and ours feature an aggregator that has to create
incentives for firms to combine their data. Firms must then decide how much data to
contribute. Despite these similarities, their article differs significantly from ours in both
focus and research questions. More precisely, Calzolari et al. (2024) focus on a single
data-combination technology —analytics sharing— while exploring various inefficiencies,
related to ownership rights, information asymmetry, contracting, and competition at both
downstream and upstream levels. By contrast, we investigate the economic incentives
driving a data platform’s choice between two data-combination technologies, and the
implications of this choice. In doing so, we identify an additional source of inefficiency:
the potential misalignment between the data-combination technology preferred by the
platform and the one preferred by consumers.

There is a vast literature comparing the technical properties and performances of alter-
native data-combination technologies in the computer science and engineering fields
(AbdulRahman et al., 2020; Drainakis et al., 2023; Ramı́rez et al., 2023). In technology
law, Mattioli (2017) has posed the “data pooling problem”, and has shown that potential
pooling contributors may be impeded by reputational and professional concerns, even
if the goal is as high and socially valuable as optimizing cancer treatment. At the same
time, there are fewer studies on multi-firm data combination from an economics and
management perspective.

At a more general level, our work is also connected to the broader literature on data
sharing between firms. Data sharing can be “vertical” or “horizontal”. It is vertical when
it occurs through sales by data brokers to downstream firms. Ichihashi (2021), Bergemann
et al. (2022), Gu et al. (2022) and Abrardi et al. (2024b), among others, study upstream
competition, or lack thereof, between data brokers. Data can be optimally partitioned
before being sold to downstream firms (Bounie et al., 2021), and need not to be sold to
only one or to all the firms in the market (Abrardi et al., 2024a; Delbono et al., 2024).

Horizontal sharing takes instead place at the same market level. Information sharing
between competing firms has been studied, for example, in duopoly retail markets (Liu and
Serfes, 2006; Jentzsch et al., 2013, inter alios), in credit markets where data are exchanged
through a “credit bureau” (Padilla and Pagano, 1997; Pagano and Jappelli, 1993; Gehrig
and Stenbacka, 2007, inter alios) and in the transport sector through mobility-as-a-service
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(MaaS) platforms (Carballa Smichowski, 2018). Large hybrid platforms can also enjoy a
huge data advantage (Gu et al., 2024): as a possible solution, Martens et al. (2021) propose
“in-situ” data sharing between sellers and a platform that also operates as a retailer.

Furthermore, our article assumes that firms’ benefits from data analytics increase when
they combine their datasets. Hagiu and Wright (2023) provide a microfoundation to
anchor these benefits, as they study how firms can improve their products by learning
from customer data. In doing so, they distinguish between within-user learning (learning
from a user’s repeated usage of a product) and across-user learning (learning from pooling
multiple users’ data).

Firms can benefit from data analytics through economies of scale and scope in data ag-
gregation. Our article relates to a recent empirical literature that studies the impact of
dataset size on prediction accuracy across various settings, such as search engines (Ullrich
et al., 2024; Schäfer and Sapi, 2023; Klein et al., 2022; Chiou and Tucker, 2017; McAfee
et al., 2015), sales forecast (Bajari et al., 2019), user jokes rating (Lee and Wright, 2023),
consumer profiling (Neumann et al., 2019), news recommendations (Peukert et al., 2023)
and advertisement (Agrawal et al., 2018). Additionally, Hocuk et al. (2022) empirically
measure “economies of scope in data aggregation”, showing that adding socio-economic
variables to a dataset improves health outcome predictions, even with a constant number
of observations.

To a lesser extent, our article is also related to an earlier literature that has studied informa-
tion sharing in oligopoly. In these models, each firm receives a private signal containing
information about the intercept of a stochastic demand function or a stochastic marginal
cost. They can decide whether to reveal (part of) this information to other firms, and
then they compete in the final market. This literature has studied the incentives to share
information and its impact on prices, quantities and profits in various settings: Cournot
competition and demand uncertainty (Novshek and Sonnenschein, 1982; Clarke, 1983;
Vives, 1984; Li, 1985; Sakai, 1986; Kirby, 1988; Hviid, 1989), Bertrand competition and
demand uncertainty (Vives, 1984; Sakai, 1986), Cournot competition and cost uncertainty
(Fried, 1984; Li, 1985; Gal-Or, 1985; Shapiro, 1986) and Bertrand competition and cost
uncertainty (Gal-Or, 1986), among others.12 Our model focuses on data, from which
the various types of information studied by that literature can potentially be extracted.
However, we study the properties of two data-combination technologies and the economic
incentives of a platform to adopt one or the other.

12In Vives (1990) monopolistic competition à la Chamberlin is introduced. Moreover, these models also
differ in other important aspects such as whether there is product differentiation or whether private signals
are noisy. See Raith (1996) for a general model.
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4 A model of data combination with data sharing and analytics
sharing

In this section we present a model in which a platform allows firms to combine data
using either a data sharing or an analytics sharing technology. The model is general
enough to encompass different business models (e.g., business-to-consumers or business-
to-business), industries and types of data (e.g., personal and non-personal data).

We consider a setting with N(≥ 2) firms and one data platform. A primary goal of our
analysis is to determine the platform’s choice between alternative and technically feasible
options for combining data and extracting valuable insights from it. To this end, we
focus on the previously introduced two technologies for data combination, data sharing and
analytics sharing. We index them as t = D,A, and describe each of them in detail in what
follows.

Firms. The firms, i = 1, . . . , N are heterogeneous in their data endowments, yi. The vector
of data endowments is y. Define as x = (x1, . . . , xN ) the vector of data contributed by
all firms to the platform, and as x−i the vector of data contributed by all firms but firm
i. Firms joining the platform benefit from insights from the application of analytics on
the combined data. We capture these benefits through the function Bt

i(·), increasing in all
its arguments, which we discuss below when introducing the two technology options for
data combination.

All firms incur a cost associated with contributing data to the platform, which depends on
the extent of their data contribution. We interpret this cost as an expected security cost,
stemming from the potential risks of data leakages due to security breaches or other vul-
nerabilities. For example, under the European Union’ General Data Protection Regulation
(GDPR), firms are held accountable as data controllers and processors for any damage
related to personal data. Hence, in our setting, the cost of a breach would be borne by
the data contributor. Alternatively, for non-personal data, the expected damage may be
linked to the risk of industrial secrets being revealed. In the model, this cost is captured
by the function gti(xi), which is increasing in xi. In principle, the technology can affect
both the effectiveness and the costs of each firm, which explains the superscript t.13 The
profit of a firm deciding not to join the platform is normalized to 0 (regardless of its data
endowment).14.

Platform. The platform aims to maximize its profits. In our baseline model we assume that
the platform perfectly knows the firms’ characteristics and can offer each firm a two-part

13We note that there are other costs for firms that are related to the amount of data shared, xi, such as
data handling, homogenization, and storage costs. However, since these costs are likely to be similar across
technologies, we do not explicitly model them.

14The assumption that firms’ outside options are independent of their data endowments is primarily made
for the sake of exposition. It only plays a role—by simplifying the analysis—in the extension discussed in
Section 7.2
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tariff contract. Under the chosen data-combination technology t, this involves offering
each firm: (i) a fixed fee f ti to join the platform, and (ii) a transfer mt

i (which, a priori, can
be positive or negative) per unit of data contributed to the platform. Denote as f t and mt

the vectors of the fixed fees and per-unit transfers, respectively.

The platform faces an operational cost to manage the data contributed by the firms, captured
by the function Gt(x), which is increasing in all its arguments.

Technologies. We consider the two data-combination technologies introduced above. Both
technologies allow to combine data and obtain insights from it, but they have distinct
characteristics and give rise to different business models.

Let us first consider data sharing. Through this technology, the platform provides a data-
combination service (i.e., access to the contributed data from other firms) to firms. The
characterizing feature is that, since firms can access the contributed data from other firms,
they can do data analytics in-house with it. Hence, firm i can gain insights from the
combination of its full data endowment yi and the data contributed by other firms x−i, which
generates a benefit BD

i (yi,x−i). The cost of performing data analytics is incurred by the
firms and is denoted by CD

i (yi,x−i) where CD
i (·) is increasing in all its arguments.

Bringing it all together, in presence of the data sharing technology, the firms’ profit functions
are:

πDi (yi,x, f
D
i ,m

D
i ) ≡ BD

i (yi,x−i)− CD
i (yi,x−i)− gDi (xi) +mD

i xi − fDi . (1)

Second, let us consider analytics sharing. Under this technology, the platform provides
a centralized data analytics service that is performed on the data contributed by the firms.
A firm joining the platform thus benefits from the platform’s analytics, which improves
with the total amount of data contributed to the platform, including the data the firm
itself has provided. The benefit function associated with analytics sharing can therefore be
expressed as: BA

i (xi,x−i). Importantly, it is the platform that bears the cost of performing
data analytics, which we denote by CA(x) =

∑
iC

A
i (xi,x−i), where CA

i (xi,x−i) is the
cost of analytics to generate insights for firm i. As in the case of data sharing, we assume
that CA

i (·) is increasing in all its arguments. It follows that, when the platform adopts an
analytics-sharing technology, the firms’ profit functions are:

πAi (x, fAi ,m
A
i ) ≡ BA

i (xi,x−i)− gAi (xi) +mA
i xi − fAi . (2)

The profits of the platform under data sharing and analytics sharing are therefore respec-
tively given by:

πD0 (x, f ,m) ≡
∑
i

[
fDi −mD

i xi
]
−GD(x),

and:
πA0 (x, f ,m) ≡

∑
i

[
fAi −mA

i xi − CA
i (xi,x−i)

]
−GA(x).
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The industry profits (i.e., the sum of the profit of the platform and of the firms) under
data sharing and analytics sharing are respectively given by:

ΠD(y,x) ≡
∑
i

[
BD

i (yi,x−i)− CD
i (yi,x−i)− gDi (xi)

]
−GD(x),

ΠA(x) ≡
∑
i

[
BA

i (xi,x−i)− CA
i (xi,x−i)− gAi (xi)

]
−GA(x).

Timing. The game unfolds as follows.

1. The platform chooses the data-combination technology t, t = D,A.

2. The platform chooses the terms of its contracts, i.e., (f t,mt).

3. The firms simultaneously decide whether to join the platform or not and, if they do,
the amount of data to contribute xti.

5 Analysis

We begin by analyzing stage 3. Under the data sharing technology, recall that the firms’
profits are as in Equation (1). Conditional on joining the platform, firm i contributes an
amount xDi (mD

i )—independent of x−i—which solves the following first order condition
(henceforth, FOC)

mD
i = gD

′
i (xi), (3)

whenever it is interior. Firm i participates if and only if:

πDi (yi, x
D
i (mD

i ),x−i, f
D
i ,m

D
i ) ≥ 0.

Consider now the analytics sharing technology. The firms’ profits are as in Equation (2).
Conditional on joining the platform, firm i contributes an amount xi = BRA

i (x−i,m
A
i ),

which solves the following FOC:

∂BA
i

∂xi
(xi,x−i) +mA

i = gA
′

i (xi), (4)

whenever it is interior. Assume that the system of equations xi = BRA
i (x−i,m

A
i ), i =

1, . . . , N has a unique solution (xAi (mA
i ))1≤i≤N .

Comparing FOCs (3) and (4) reveals that, for a given per-unit transfer mD
i = mA

i = mi,
a firm’s marginal benefit from contributing data (i.e., the left-hand side of the FOC) is
higher under analytics sharing than under data sharing (whenever the data contributions
are interior). The intuition behind this is as follows. Under data sharing, the only benefit
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that a firm derives from contributing data is the payment received from the platform.
Under analytics sharing, there is a second benefit stemming from the fact that a necessary
condition for a firm’s own data to be combined with other firms’ data is that this data is
contributed to the platform. This makes the benefit from an additional unit of contributed
data greater under analytics sharing.

Consider now stage 2. Let us assume that the industry profit function Πt is concave in x

and denote xt∗ the unique vector of data contributions that maximizes Πt under technology
t = D,A. We assume that this vector is interior, that is, 0 < xt∗i < yi for all i = 1, ..., N .
Note that the inequalities xt∗i < yi are satisfied if and only if the data endowments yi are
sufficiently large.15

Under complete information, it is straightforward that the optimal two-part contract (f t∗,
mt∗) is such that: xti(mt∗

i ) = xt∗i , and the participation constraints of all firms are binding.
The two-part contract chosen by the platform induces data contributions that maximize
the industry profits, and such profits are fully captured by the platform.

At stage 1, the platform compares

ΠD(y,xD∗) = max
x

ΠD(y,x)

with
ΠA(xA∗) = max

x
ΠA(x).

This boils down to determining the sign of

ΠD(y,xD∗)−ΠA(xA∗) =
∑
i

[
BD

i (y,xD∗)− CD
i (y,xD∗)−

(
BA

i (xA∗)− CA
i (xA∗)

)]
−
∑
i

[
gDi (xD∗i )− gAi (xA∗i )

]
−
[
GD(xD∗)−GA(xA∗)

]
. (5)

In the following analysis, we emphasize the role of asymmetric (data-related) costs and,
to that end, we assume that analytics sharing is more cost-efficient from the perspective of
the firms than data sharing:

Assumption 1 (Security advantage). gAi (·) = gi(·) and gDi (·) = (1 + γD)gi(·) where γD > 0.

As per the benefits related to the two different technologies, as well as platform and
analytics costs, we posit symmetry between both technologies. Specifically, we assume
that:

15This holds because xt∗
i does not depend on yi whenever it is interior, which immediately follows from the

first-order condition defining xt∗
i .
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Assumption 2 (Symmetry). (i) Analytics benefits: BD
i (·) = BA

i (·) = Bi(·);

(ii) Analytics costs: CD
i (·) = CA

i (·) = Ci(·);

(iii) Platform costs: GD(·) = GA(·) = G(·).

In Assumption 1, we assume that, from the perspective of the firms, the two technologies
differ in their security-related expected costs. In particular, the parameter γD can be
interpreted as a measure of the security advantage of analytics sharing relative to data
sharing.

This assumption builds on the fact that, in data sharing, as firms access the contributed
data directly, data transfers may take place between the platforms and all the contributing
firms. In contrast, under analytics sharing, the platform gives firms access to analytics, not
data. Additionally, under data sharing, if firms can store the contributed data in-house,
the number of potential access points for a cyberattack increases compared to analytics
sharing. Therefore, data sharing is more vulnerable to data breaches than analytics sharing.
It follows that the (expected) security-related costs for firms are higher under data sharing
than under analytics sharing.

Assumption 2 improves the tractability of our analysis by allowing us to focus on the role
of the heterogeneity in the security-related costs of different technologies.

Under Assumptions 1 and 2, we can express (5) as:

ΠD(y,xD∗)−ΠA(xA∗) = ΠD(y,xD∗)−ΠD(xD∗,xD∗)︸ ︷︷ ︸
data endowment effect>0

+ ΠD(xD∗,xD∗)−ΠA(xA∗)︸ ︷︷ ︸
data security effect<0

.

The data endowment effect captures the fact that the data sharing technology allows firms
to combine the data shared by other firms with all their data endowment, while the
analytics sharing technology does not. This effect is positive (i.e., it favors data sharing)
and increasing in the data endowments yi.16 The data security effect captures the superiority
of analytics sharing, driven by its lower data-related security costs. This effect is negative
(i.e., it favors analytics sharing) and, in absolute value, it is increasing in γD. To see why it
is negative, note that:

ΠD(xD∗,xD∗) =
∑
i

[
Bi(x

D∗
i ,xD∗

−i )− Ci(x
D∗,xD∗)− (1 + γD)gi(x

D∗
i )
]
−G(xD∗)

<
∑
i

[
Bi(x

D∗
i ,xD∗

−i )− Ci(x
D∗,xD∗)− gi(xD∗i )

]
−G(xD∗) ≤ max

x
ΠA(x) = ΠA(xA∗).

16Note that this effect would not exist if all firms contributed all their data under the analytics sharing
technology (i.e., xD∗ = y). This would require the firms’ data endowments to be sufficiently small, which we
ruled out.
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The next proposition shows that analytics sharing is chosen if and only if it is sufficiently
more secure than data sharing, and that this condition is more stringent the greater firms’
data endowments are.

Proposition 1 (Technological Choice). There exists a threshold γ̃D(y) > 0 such that the
platform prefers the data sharing technology (resp. analytics sharing) technology if γD is below
(resp. above) γ̃D(y). Moreover, γ̃D(y) is increasing in firms’ data endowments yi.

Proof: See Appendix B.1.

Proposition 1 implies that the mere existence of a security advantage for the analytics
sharing technology is not sufficient for this technology to be chosen by the platform. It
is only if that security advantage is strong enough that the platform prefers the analytics
sharing technology.

Data contributions. Under Assumption 2, the marginal benefits (net of all costs) of
increasing data contribution respectively under data sharing and under analytics sharing
are given by:

∂ΠD(y,x)

∂xi
=
∑
j 6=i

∂ [Bj(yj ,x−j)− Cj(yj ,x−j)]

∂xi︸ ︷︷ ︸
>0

−g′Di (xi)−
∂G

∂xi
(x); (6)

∂ΠA(x)

∂xi
=
∂[Bi(xi,x−i)− Ci(xi,x−i)]

∂xi︸ ︷︷ ︸
>0

+
∑
j 6=i

∂ [Bj(xj ,x−j)− Cj(xj ,x−j)]

∂xi︸ ︷︷ ︸
>0

− g′Ai (xi)−
∂G

∂xi
(x). (7)

Denote NBi(·) ≡ Bi(·) − Ci(·) the net benefit of analytics for firm i, and assume that it is
increasing in all its arguments.17

Then, by subtracting the two marginal benefits, (6) and (7), we obtain:

∂ΠA(x)

∂xi
− ∂ΠD(y,x)

∂xi
=
∂NBi(xi,x−i)

∂xi︸ ︷︷ ︸
>0

+
∑
j 6=i

∂NBj(xj ,x−j)

∂xi
−
∂NBj(yj ,x−j)

∂xi︸ ︷︷ ︸
≷0


+ g

′D
i (xi)− g

′A
i (xi).

17We note that under data sharing, the firm both reaps the benefits and bears the costs of analytics, whereas
in the case of analytics sharing the costs of conducting analytics are borne by the platform. Still, for the
industry profits (which is full captured by the platform in equilibrium), it is the net benefits of analytics, as
defined above, that play an important role.

13



Under Assumption 1, it follows that:

∂ΠA(x)

∂xi
− ∂ΠD(y,x)

∂xi
=
∂NBi(xi,x−i)

∂xi︸ ︷︷ ︸
>0

+
∑
j 6=i

∂NBj(xj ,x−j)

∂xi
−
∂NBj(yj ,x−j)

∂xi︸ ︷︷ ︸
≷0

+ γDg
′
i(xi)︸ ︷︷ ︸

>0

.

The above equation shows that the difference between the marginal benefits of increas-
ing data contribution under analytics sharing and data sharing can be decomposed into
three terms. The first term, which is positive, is the net benefit of a marginal increase
in a firm’s own data on the benefit it derives from analytics under the analytics sharing
technology. The third term is also positive and captures the marginal gain induced by the
security advantage of analytics sharing. The second term represents the difference in the
marginal cross-data effects between analytics sharing and data sharing and has a generally
ambiguous sign. However, notice that:

∑
j 6=i

[
∂NBj(xj ,x−j)

∂xi
−
∂NBj(yj ,x−j)

∂xi

]
> 0(< 0) if ∂2NBj

∂xj∂xi
< 0(> 0) for any i 6= j.

This means that the difference in the marginal cross-data effects between analytics sharing
and data sharing is negative when the net benefit of analyticsNBj is submodular in (xi, xj),
and positive when it is supermodular in (xi, xj). As a consequence, if γD > 0 and NBj is
weakly submodular for all j, then ∂ΠA(x)

∂xi
≥ ∂ΠD(y,x)

∂xi
. This, combined with the fact that Πt

is concave in x for t = D,A, implies that, for a given x−i, the optimal data contribution for
firm i under analytics sharing xAi (x−i) is greater than its counterpart under data sharing
xDi (y,x−i). It can easily be shown that this property also holds if the net benefit functions
are supermodular as long as they are not “too supermodular”.

The following proposition goes one step beyond the above analysis by showing that
analytics sharing leads to more equilibrium data contributions than data sharing under two
relatively mild assumptions on the profit and net benefit functions.

Proposition 2 (Data Contributions). Analytics sharing generates more equilibrium data con-
tributions than data sharing (i.e., xA∗i > xD∗i for any i) under the following conditions: (i) ΠA(x)

and ΠD(y,x) are supermodular in (xi, xj) for any i 6= j, i.e., ∂2ΠA(x)
∂xj∂xi

> 0 and ∂2ΠD(y,x)
∂xj∂xi

> 0,

(ii) NBj is not “too supermodular” in (xi, xj), i.e., ∂2NBj

∂xj∂xi
< k̃ =

mini minx
∂NBi
∂xi

(xi,x−i)∑
j yj

for any
x and any i and j such that i 6= j.

Proof: See Appendix B.2.

Proposition 2 provides conditions under which the intuition that contributing a unit of
data is more valuable under analytics sharing than under data sharing discussed in the
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analysis of stage 3 (for a given per-unit transfer) remains true in equilibrium when the per-
unit transfer is endogenized under both regimes. The reasoning behind this proposition
proceeds in two steps.

First, as shown in the analysis preceding the proposition, the condition that the benefit
functions are not too supermodular (i.e., there are no strong returns to data combination)
ensures that contributing an additional unit of data leads to a higher increase in profits
under analytics sharing than under data sharing for given contributions by the other firms.
The requirement that the benefit function is not too supermodular appears to be in line
with recent empirical evidence on data combination and the returns to machine learning
analytics. Several studies find returns to scale and scope in data combination to be either
decreasing or increasing only up to a certain amount of data contributed (Schäfer and
Sapi, 2023; Hocuk et al., 2022; Lee and Wright, 2023; Yoganarasimhan, 2020; Azevedo et al.,
2020; Peukert et al., 2023; Junqué de Fortuny et al., 2013).

Once it is established that the marginal increase in profits from contributing data is higher
under analytics sharing than data sharing, it remains to show that this leads to higher
equilibrium data contributions. A sufficient condition for this to be true is that the profit
functions satisfy the supermodularity property.

We assume in the remainder of the paper that conditions (i) and (ii) of Proposition 2 hold.

6 Implications for consumer surplus

In this section we characterize the data-combination technology preferred by consumers
and compare it with the one chosen by the platform.

6.1 Reduced-form setting

For the sake of simplicity, we assume that the consumers of products sold by firms i =

1, ..., N do not suffer any harm in case of data leakages. This is the case, for instance, if the
liability regime is such that consumers are fully compensated by the firms sharing their
data in case they are harmed due to a data leakage. Consistent with this, we suppose that
the consumer surplus generated by the consumption of the product of firm i is given by
CSi(zi,x−i) where zi is the amount of firm i’s combined data: zi = yi under data sharing
and zi = xi under analytics sharing.

To compare the consumer surplus generated by the consumption of product i under the
two data-combination technologies in equilibrium, denote CSD∗

i = CSi(yi,x
D∗
−i ), and
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CSA∗
i = CSi(x

A∗
i ,xA∗

−i ). We have

CSD∗
i − CSA∗

i =
[
CSi(yi,x

D∗
−i )− CSi(x

A∗
i ,xD∗

−i )
]

︸ ︷︷ ︸
Firm’s own data effect

+
[
CSi(x

A∗
i ,xD∗

−i )− CSi(x
A∗
i ,xA∗

−i )
]

︸ ︷︷ ︸
Other firms’ data effect

.

The above equation shows that the difference between consumer surplus under data
sharing and under analytics sharing can be decomposed into a term that captures the
impact of the difference in firm i’s combined data under the two technologies on consumer
surplus (i.e., CSi(yi,x

D∗
−i ) − CSi(x

A∗
i ,xD∗

−i )), and a term that captures the effect of the
difference in other firms’ combined data under the two technologies on consumer surplus
(i.e., CSi(x

A∗
i ,xD∗

−i )− CSi(x
A∗
i ,xA∗

−i )). We call the former the firm’s own data effect and the
latter the other firms’ data effect.

Notice that the firm’s own data effect is weakly positive (resp. negative) if CSi(zi,x−i)
is increasing (resp. decreasing) in zi because yi ≥ xA

∗
i , whereas the other firms’ data

effect is positive (resp. negative) if CSi(zi,x−i) is decreasing (resp. increasing) in all the
components of x−i because xD∗−i < xA

∗
−i . Using the above decomposition, we establish the

following result:

Proposition 3. The preferred technology from the perspective of consumers of product i depends
on the monotonicity properties of CSi(zi,x−i) in the following way:

(i) If CSi(zi,x−i) is increasing in zi and decreasing in x−i, then data sharing always dominates
analytics sharing;

(ii) If CSi(zi,x−i) is decreasing in zi and increasing in x−i, then analytics sharing always
dominates data sharing;

(iii) IfCSi(zi,x−i) is decreasing in both zi and x−i, then there exists γ̃CS(yi) ∈ [0,+∞[∪{+∞}
(weakly) increasing in yi such that data sharing (weakly) dominates analytics sharing if and
only if γ ≥ γ̃CS(yi);

(iv) IfCSi(zi,x−i) is increasing in both zi and x−i, then there exists γ̂CS(yi) ∈ [0,+∞[∪{+∞}
(weakly) decreasing in yi such that analytics sharing (weakly) dominates data sharing if and
only if γ ≥ γ̂CS(yi).

Proof: See Appendix B.3.

In cases (i) and (ii), the way consumer surplus generated by the consumption of product i
is affected by the amount of firm i’s data that gets combined (zi) is opposite to the way it
is affected by the amounts of other firms’ data that get combined (x−i). This implies that
the firm’s own data effect and the other firms’ data effect have the same sign. This sign is
positive in case (i) and negative in case (ii), which implies that data sharing is preferred
by consumers in case (i), whereas analytics sharing is preferred by consumers in case (ii).
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In cases (iii) and (iv), the monotonicity of consumer surplus generated by the consumption
of product i with respect firm i’s data is the same as its monotonicity with respect to other
firms’ data. This implies that the firm’s own data effect and the other firms’ data effect
have opposite signs and, therefore, the comparison between consumer surplus under the
two technologies is a priori ambiguous.

However, it is possible to show that there exists a (potentially infinite) threshold of the
security advantage parameter γ above which data sharing is preferred in case (iii), and
another threshold above which analytics sharing is preferred in case (iv). The statement
regarding case (iii) follows from the fact that consumer surplus under data sharing in-
creases with γ if consumer surplus is decreasing in other firms’ amounts of contributed
data because the latter are decreasing in γ. Similarly, the statement in case (iv) follows
from the fact that consumer surplus under data sharing decreases with γ if consumer
surplus is increasing in other firms’ amounts of contributed data because the latter are
decreasing in γ.

Propositions 1 and 3 show that there are several cases in which the technology chosen by
the platform is not the one that is preferred by consumers. The potential misalignment
stems from the fact that an increase in the amount of combined data may benefit the
platform while harming consumers. We further clarify this in the next section.

6.2 Microfoundation

We now present a microfoundation for our reduced-form setting. This microfoundation is
simple but rich enough to generate all four scenarios arising in Proposition 3. Suppose
that firms operate in separate markets and that each firm i is a monopolist in its market
(also denoted i). We assume that firm i produces at a constant marginal cost ci. The use of
insights from combined data allows a given firm to (i) offer a product of higher quality to
its customers and/or (ii) profile some of its customers and engage in price discrimination
by charging the profiled customers personalized prices (see, e.g., de Cornière and Taylor,
2025).

In each market i, there is a unit mass of consumers who have heterogeneous valuations for
the good sold by firm i. Specifically, a consumer’s gross utility from consuming product i
is given by:

ui(zi,x−i) = vi + qi(zi,x−i),

where vi, the stand-alone valuation for the good, is distributed over an interval [vi; vi]

with a c.d.f. Fi(·) and a p.d.f. fi(·), and qi(zi,x−i), the data-driven quality, is (weakly)
increasing in all its arguments. This implies that the quality of firm i’s product is (weakly)
increasing in the amount of combined data, which can be justified by the ability of firms to
improve their products by learning from their and other firms’ customer data (see, e.g.,
Hagiu and Wright, 2023).
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Moreover, firm i can find out the valuation of a consumer by using data. The probability
that a consumer is profiled and her valuation becomes known to firm i is λi(zi,x−i).
Profiled consumers are charged personalized prices equal to their valuations, while non-
profiled consumers are charged a non-personalized (uniform) price. We assume that the
function λi(·) is (weakly) increasing in both its arguments, that is, greater amounts of
combined data improve the firm’s ability to profile consumers. Note that the probability
of a consumer being profiled is independent of her valuation.

The demand from non-profiled consumers for a given non-personalized price pi is

Di(pi, zi,x−i) = [1− λi(zi,x−i)][1− Fi(pi − qi(zi,x−i))].

Assuming that the profit [1− λi(zi,x−i)](pi − ci)[1− Fi(pi − qi(zi,x−i))] derived from the
non-profiled segment of the market is quasi-concave in pi and denoting p̃i(zi,x−i) the
non-personalized price that maximizes it, i.e.,

p̃i(zi,x−i) = arg max
pi

(pi − ci)[1− Fi(pi − qi(zi,x−i))],

firm i’s benefit function (i.e., gross profits) can be written as:

Bi(zi,x−i) = λi(zi,x−i)

∫ vi

vi

vidFi(vi)︸ ︷︷ ︸
Profiled segment

+

[1− λi(zi,x−i)] (p̃i(zi,x−i)− ci)[1− Fi(p̃i(zi,x−i)− qi(zi,x−i))]︸ ︷︷ ︸
Non-profiled segment

.

In this setting, profiled consumers do not get any surplus from consuming the product,
while non-profiled infra-marginal consumers do. Specifically, consumer surplus in market
i is given by:

CSi(zi,x−i) = [1− λi(zi,x−i)]
∫ vi

p̃i(zi,x−i)−qi(zi,x−i)
[vi + qi(zi,x−i)− p̃i(zi,x−i)]dFi(vi),

where the term p̃i(zi,x−i) − qi(zi,x−i) can be interpreted as the quality-adjusted price
set by firm i for non-profiled consumers. It is easy to check that this term is decreasing
in all the components of (zi,x−i) under the assumption that the profit derived from the
non-profiled segment is quasi-concave. This implies that, if firms are not able to use data
to profile consumers (i.e., λi(zi,x−i) = 0), consumer surplus is (weakly) increasing in the
amounts of combined data, i.e.,∫ vi

p̃i(zi,x−i)−qi(zi,x−i)
[vi + qi(zi,x−i)− p̃i(zi,x−i)]dFi(vi)

is (weakly) increasing in all its arguments. This, combined with the fact that profiling has a
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negative effect on consumer surplus (i.e., the term 1−λi(zi,x−i) is weakly decreasing in its
arguments), shows that CSi(zi,x−i) could be either increasing or decreasing in each of its
arguments depending on how an increase in this argument affects the relative magnitudes
of the two forces at play (higher quality vs more first-degree price discrimination). In other
words, all scenarios in Proposition 3 can arise. For instance, if both own data and other
firms’ data are mostly used to offer higher-quality products (resp., to price discriminate)
then scenario (iv) (resp., (iii)) is likely to arise . If own data (resp., other firms’ data) is
mostly used for the purpose of offering higher quality product, while other firms’ data
(resp,. own data) is mostly used for the purpose of price discrimination then scenario (i)
(resp., (ii)) is likely to arise.

7 Extension: Technological choice under alternative contracts

In the baseline model, the platform uses personalized and public contracts. However, firms
may require the platform to use secret contracts18 or the platform may lack the necessary
information to offer personalized contracts. This extension investigates the platform’s
choice of data-combination technology in these two scenarios and compares it to its choice
in the baseline model.

7.1 Secret personalized contracts

Assume that the platform offers secret personalized contracts, and firms hold passive
beliefs (i.e., if they receive an off-equilibrium contract offer, they believe that the platform
did not change the offers made to the other firms).

Note first that assuming that contracts are secret does not affect the outcomes of stages 2
and 3 under data sharing. The reason is that, under this technology, firms’ optimal data
contributions in stage 3 do not depend on other firms’ data contributions. This implies that,
under data sharing, the platform is still able to induce data contributions that maximize
industry profits (and capture these profits). Thus, the platform’s profit under data sharing
remains the same as in the baseline model.

In contrast, if the platform offers secret personalized contracts, its profits under analytics
sharing are (strictly) lower than its counterpart in the baseline model. The reason is that
firms’ optimal data contributions now depend on other firms’ data contributions, which
prevents the platform from inducing industry-profit-maximizing data contributions. This
is due to a classic opportunism problem in vertical contracting with multiple firms (see,
e.g., McAfee and Schwartz, 1994) and has been illustrated in the case of data transactions

18As discussed by Calzolari et al. (2024), firms producing data may value anonymity over whether they have
joined the platform and the contractual details.
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by Calzolari et al. (2024). In our setting, if we denote xe
−i firm i’s beliefs about other firms’

data contributions, the first-order condition determining firm i’s optimal data contribution
under analytics sharing for a given mA

i is given by

∂Bi

∂xi
(xi,x

e
−i) +mA

i = g′i(xi).

Denoting x̂Ai (xe
−i,m

A
i ) the solution to the equation above, and assuming that the platform

still finds it optimal to induce participation of all firms, the platform’s maximization
program can be written as

max
(fA,mA)

∑
i

[fAi −mA
i x̂

A
i (xe

−i,m
A
i )]−

∑
i

Ci(x̂
A
i (xe

−i,m
A
i ), x̂−i)−G((x̂Ai (xe

−i,m
A
i ))1≤i≤n)

subject to the participation constraints

Bi(x̂
A
i (xe

−i,m
A
i ),xe

−i)− gi(x̂Ai (xe
−i,m

A
i )) +mA

i x̂
A
i (xe

−i,m
A
i )− fAi ≥ 0,

i = 1, ..., N . Since the participation constraints must be binding at the optimum, i.e., the
fixed fees must be given by fAi = Bi(x̂

A
i (xe

−i,m
A
i ),xe

−i)−gi(x̂Ai (xe
−i,m

A
i ))+mA

i x̂
A
i (xe

−i,m
A
i ),

the platform’s maximization program with respect to mA can be rewritten as

max
mA

∑
i

[Bi(x̂
A
i (xe

−i,m
A
i ),xe

−i)− gi(x̂Ai (xe
−i,m

A
i ))]

−
∑
i

Ci(x̂
A
i (xe

−i,m
A
i ), x̂−i)−G((x̂Ai (xe

−i,m
A
i ))1≤i≤n).

The first-order condition with respect to mA
i yields

∂x̂Ai
∂mA

i

{
∂Bi

∂xi
(x̂Ai (xe

−i,m
A
i ),xe

−i)−
∂gi
∂xi

(x̂Ai (xe
−i,m

A
i ))

−∂Ci

∂xi
(x̂Ai (xe

−i,m
A
i ), x̂−i)−

∂G

∂xi
((x̂Ai (xe

−i,m
A
i ),mA

i ))1≤i≤n)

}
= 0

or, equivalently,

∂Bi

∂xi
(x̂Ai (xe

−i,m
A
i ),xe

−i)−
∂gi
∂xi

(x̂Ai (xe
−i,m

A
i ))

− ∂Ci

∂xi
(x̂Ai (xe

−i,m
A
i ), x̂−i)−

∂G

∂xi
((x̂Ai (xe

−i,m
A
i ),mA

i ))1≤i≤n) = 0.

This first-order condition is different from the one that maximizes industry profits with
respect to data contributions. More specifically, the terms capturing the effect of a firm’s
data endowments on other firms in the first-order condition associated to industry-profit
maximization are missing. This shows that the platform’s profit under analytics sharing
are (strictly) lower than in the baseline model. Note, however, that it is still the case that
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the platform’s profits under data sharing are (strictly) decreasing in γD and goes to zero
as γD grows large. It is also still the case that the platform’s profit under data sharing is
increasing in data endowments yi. Therefore, we have the following result.

Proposition 4. Assume that the platform offers secret personalized contracts. There exists a thresh-
old γ̂D(y) increasing in data endowments yi such that the platform chooses analytics sharing if
and only if γ ≥ γ̂D(y). However, analytics sharing is less likely to be chosen than in the baseline
model with public personalized contracts, i.e., γ̂D(y) > γ̃D(y).

7.2 Uniform public contract

Let us now assume that the platform offers a uniform public contract to all firms (i.e.,
f ti = f tj and mt

i = mt
j for all i 6= j). In this case, the result obtained in the previous section

can be reversed, i.e., analytics sharing can become more likely to be chosen than in the
baseline model.

We show this in a stark way, by assuming that all firms have the same benefit and cost
functions under a given technology, i.e.,Bi(·) = Bj(·),Ci(·) = Cj(·), and gi(·) = gj(·) for all
i 6= j. It follows that firms are heterogeneous only with respect to their data endowments.
This heterogeneity is payoff-relevant in the case of data sharing but is not in the case of
analytics sharing. This in turn implies that the platform’s profit under analytics sharing
remains the same whether contracts are personalized and public (as in the baseline model)
or uniform and public.

However, if contracts are uniform and public, the platform’s profit under data sharing is
lower than with personalized and public contracts because the platform is no longer able
to capture the whole industry profit as soon as there is some heterogeneity in firms’ data
endowments. This, combined with the fact that the platform’s profit under data sharing
increases with data endowments yi, decreases with γD, and it goes to zero as γD grows
large, leads to the following result.

Proposition 5. Assume that the platform offers a uniform public contract to all firms and that all
firms have the same benefit and cost functions under a given technology. There exists a threshold
γ̌D(y) increasing in data endowments yi such that the platform chooses analytics sharing if and
only if γ ≥ γ̌D(y). Moreover, analytics sharing is more likely to be chosen than in the baseline
model with public personalized contracts, i.e., γ̌D(y) < γ̃D(y).

8 Concluding remarks

In this article, we have studied a platform’s choice of a data-combination technology and its
implications for firms’ incentives to combine data as well as for consumers. To investigate
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these issues, we have considered a setting in which a platform facilitating inter-firm data
combination chooses between data sharing and analytics sharing technologies. Data
sharing enables firms to exploit the joint dataset along with all their own data, whereas
analytics sharing offers a security advantage by reducing the amount of data transmission
and points of data access.

We have demonstrated that the choice between the two technologies depends on how
the platform navigates the above trade-off. In particular, since data sharing inherently
benefits from a data endowment advantage over analytics sharing, the platform prefers
analytics sharing only if its security advantage is sufficiently large. Moreover, our analysis
has shown that analytics sharing leads to higher equilibrium data contributions than data
sharing. This holds under relatively general conditions that appear to be consistent with
recent empirical studies investigating economies of scale and scope in data combination.

We have also highlighted a potential misalignment between the platform’s and consumers’
preferred technology, which stems from the fact that an increase in the amount of combined
data may harm consumers while benefiting the platform. This occurs because consumers’
preferred technology results from how the consumer surplus generated by the consumption
of the product of a firm depends on data contributions. This effect can be either positive
(e.g., if data is used to provide higher-quality products) or negative (e.g., if data enables
price discrimination). The platform, in turn, prefers analytics sharing if and only if its
security advantage over data sharing is sufficiently strong.

Our findings have a number of relevant implications. To begin with, extensive literature
shows that, in many different contexts,there is a trade-off between privacy and the efficiency
gains stemming from (consumer) data combination. In our model, there is a potential to
invert the standard causality of the privacy-efficiency trade-offs. In particular, an increase
in the security advantage of analytics sharing over data sharing raises the likelihood
of adopting a more secure technology, and leads to an increase in the amount of data
being combined. This is in line with the observation that the advent of privacy-enhancing
technologies has the potential of relaxing and even eliminating this trade-off (Acquisti
et al., 2016; Johnson, 2022).

From a policy perspective, these findings suggest that policymakers aiming to strengthen
privacy protection while fostering data contribution for societal benefits should design
policies aimed at promoting improvements in the data security of analytics sharing tech-
nologies. While this would increase the probability of analytics sharing being the privately
chosen technology, its impact on consumers depends on how data combination influences
their surplus. When security-enhancing technologies fail to benefit consumers, policies
supporting analytics-sharing should be complemented by measures to prevent data leaks
and price discrimination.

From a managerial perspective, the choice of data combination technology is delicate and
potentially hard to reverse. This holds true for both the platforms and for firms seeking to
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extract insights from their data. While data sharing offers the possibility of exploiting in-
house, non-shared data, it also requires firms to invest in adequate capabilities to perform
their own data analytics. This can be particularly costly for firms with limited ICT skills
and experience, reinforcing arguments in favor of adopting analytics sharing, beyond its
increased data security.

A further managerial insight of our analysis is that the nature of the contractual arrange-
ments between the platform and the firms can affect the choice between data sharing and
analytics sharing. If the platform uses secret personalized contracts, analytics sharing
becomes less attractive than when it uses public personalized contracts. By contrast, if the
platform uses a uniform public contract, analytics sharing becomes more attractive to the
platform compared to the scenario where it uses public personalized contracts.

Finally, since analytics sharing can lead to higher equilibrium data contributions, platform
managers might prefer this option to maximize the amount of data available for analysis.
This is particularly relevant if the platform’s business model benefits significantly from the
volume of data that it holds and processes.

Our setting can be extended to investigate other interesting issues related to multi-firm data-
combination technologies. First, we could provide a microfoundation for our reduced-form
model in which data-holding firms compete in the same final market. This would enable us
to explore the competitive implications of selecting a data-combination technology and the
potential tensions between privacy and security protection on one hand and competition
on the other.

Finally, the model could also be extended to encompass competition between platforms
offering data-combination services. As analytics sharing technologies mature and become
widespread, incumbent data combination platforms based on data sharing (e.g., Caruso19

in the connected car industry, the NINDS Parkinson’s Disease Biomarkers Program20 in
the health sector), will likely face the threat of entry using analytics sharing technologies.

19See: https://www.caruso-dataplace.com/.
20See: NINDS boosts research for biomarkers in Parkinson’s disease.
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A Data sharing vs analytics sharing: motivating examples

Figure A.1: Data pipeline with Snowflake technology as part of it.

Source: snowflake.com

Figure A.2: Data pipeline and Databricks services.

Source: databricks.com
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B Proofs

B.1 Proof of Proposition 1

Given that: (i) ΠD(y,xD∗) is continuous and decreasing in γD; (ii) ΠA(xA∗) < ΠD(y,xD∗)

when γD goes to 0 because in this case ΠA(x) < ΠD(y,x) for any x (which implies that
maxx ΠA(x) < maxx ΠD(y,x)); (iii) ΠD(y,xD∗) goes to 0 as γD grows large (because xD∗

goes to 0), while ΠA(xA∗) is positive and does not depend on γ. Then ∃ γ̃D(y) > 0 such
that ΠA(xA∗) ≥ ΠD(y,xD∗)⇔ γD ≥ γ̃D. Since ΠD(y,x) increases with yi, it follows that
ΠD(y,xD∗) also increases with yi, which implies that γ̃D(y) is increasing in yi. Q.E.D.

B.2 Proof of Proposition 2

We proceed in two steps.

Step 1: Let us show that ∂ΠA(x)
∂xi

> ∂ΠD(y,x)
∂xi

if condition (ii) holds.

Denote ki = maxj 6=i maxx
∂2NBj

∂xi∂xj
(xj ,x−i). Notice that

∂NBj

∂xi
(yj ,x−j)−

∂NBj

∂xi
(xj ,x−j) ≤ (yj − xj)ki ≤ yjki.

Therefore,
∑
j 6=i

[
∂NBj

∂xi
(xj ,x−j)−

∂NBj

∂xi
(yj ,x−j)

]
> −ki

∑
j 6=i

yj > −ki
∑
j

yj .

Hence,

∂NBi

∂xi
(xi,x−i) +

∑
j 6=i

[
∂NBj

∂xi
(xj ,x−j)−

∂NBj

∂xi
(yj ,x−j)

]
+ γDg′i(xi)

≥ ∂NBi

∂xi
(xi,x−i)− ki

∑
j

yj + γDg′i(xi).

If γD > 0, then

∂ΠA(x)

∂xi
− ∂ΠD(y,x)

∂xi
≥ ∂NBi

∂xi
(xi,x−i)− ki

∑
j

yj .

because ∂NBj

∂xi
(xi,x−i) > 0 and ∂NBj

∂xi
(xj ,x−j) > 0. Hence, a sufficient condition for

∂ΠA(x)
∂xi

> ∂ΠD(y,x)
∂xi

is ki ≤
∂NBi
∂xi

(xi,x−i)∑
j yj

, which holds if ki ≤
mini minx

∂NBj
∂xj

(xj ,x−j)∑
j yj

≡ k̃,
which completes the first step.
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Step 2: Let us now show that, under condition (i), the set of inequalities ∂ΠA(x)
∂xi

> ∂ΠD(y,x)
∂xi

for any x and any y implies that xA∗i > xD∗i for any i. Notice that the supermodularity
of ΠA(x) and ΠD(y,x) with respect to (xi, xj) for any i 6= j implies that xAi (x−i) and
xDi (y,x−i) are increasing in all xj ’s. To see why, recall that the first order condition defining
xAi (x−i) is:

∂ΠA

∂xi
(xAi (x−i),x−i) = 0.

Differentiating the above equation with respect to xj and rearranging terms, we obtain:

∂xAi
∂xj

=

∂2ΠA

∂xi∂xj

−∂2ΠA

∂x2
i

> 0

because the numerator is positive due to supermodularity of ΠA and the denominator is
positive due to the concavity of ΠA. A similar reasoning applies to xDi (y,x−i).

We establish Step 2 recursively, that is, we show that the result holds for N = 2 and,
whenever it holds for a given N ≥ 2, it holds for N + 1 too.

Let us first show that the result holds for N = 2. Define HA
2 (·) and HD

2 (y, ·) as follows:

HA
2 (x2) = xA2 (xA1 (x2))− x2 and HD

2 (y, x2) = xD2 (y2, x
D
1 (y1, x2))− x2.

Since xA∗2 = xA2 (xA∗1 ) = xA2 (xA1 (xA∗2 )) and xD∗2 = xD2 (y2, x
D∗
1 ) = xD2 (y2, x

D
1 (y1, x

D∗
2 )) we

have that:
HA

2 (xA∗2 ) = 0 and HD
2 (y, xD∗2 ) = 0.

Since HA
2 (0) > 0, the uniqueness of (xA∗1 , xA∗2 ) as a maximizer of ΠA(x1, x2) ensures that

HA
2 (x2) > 0 for any x2 < xA∗2 and HA

2 (x2) < 0 for any x2 > xA∗2 . Similarly, HD
2 (y, x2) > 0

for any x2 < xD∗2 and HD
2 (y, x2) < 0 for any x2 > xD∗2 .

Let us now show that xA∗2 > xD∗2 . In order to do so, assume that the reverse holds, i.e.
xA∗2 ≤ xD∗2 . Then, this implies that HA

2 (xs∗2 ) ≤ 0. Moreover,

HD
2 (y, xD∗2 )−HA

2 (xD∗2 ) = xD2 (y2, x
D
1 (y1, x

D∗
2 ))− xA2 (xA1 (xD∗2 ))

< xD2 (y2, x
D
1 (y1, x

D∗
2 ))− xD2 (y2, x

A
1 (xD∗2 )) < 0.

The first inequality results from xA2 (xA1 (xD∗2 )) > xD2 (y2, x
A
1 (xD∗2 )) (which itself results

from ∂ΠA

∂x2
> ∂ΠD

∂x2
and the concavity of ΠA and ΠD). The second inequality results from

xA1 (xD∗2 ) > xD1 (y1, x
D∗
2 ) (which results itself from ∂ΠA

∂x1
> ∂ΠD

∂x1
and the concavity of ΠA

and ΠD) and the fact that xD2 (y2, x1) is increasing in x1 (which results itself from the
supermodularity of ΠD, as shown before). Therefore, we haveHD

2 (y, xD∗2 ) < HA
2 (xD∗2 ) ≤ 0

which leads to a contradiction because HD
2 (y, xD∗2 ) = 0. This proves that xA∗2 > xD∗2 . We

can show that xA∗1 > xD∗1 in a similar way, which completes the proof for N = 2.

Let us now assume that the result stated in Step 2 holds for a given N and show that it
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holds for N + 1 too. Denote

(x̃1
A(xN+1), x̃2

A(xN+1), ..., x̃N
A(xN+1)) = arg max

(x1,...,xN )
ΠA(x1, ..., xN , xN+1)

and

(x̃1
D(y1, xN+1), x̃2

D(y2, xN+1), ..., x̃N
D(yN , xN+1)) = arg max

(x1,...,xN )
ΠD(y, x1, ..., xN , xN+1).

The fact that the result holds for N implies that x̃iA(xN+1) > x̃i
D(yi, xN+1) for any i =

1, ..., N and any xN+1.

Now define HA
N+1(·) and HD

N+1(·) as follows:

HA
N+1(xN+1) = xAN+1(x̃1

A(xN+1), x̃2
A(xN+1), ..., x̃N

A(xN+1))− xN+1

and

HD
N+1(y, xN+1) = xDN+1(yN+1, x̃1

D(y1xN+1), x̃2
D(y2, xN+1), ..., x̃N

D(yN , xN+1))− xN+1.

From
(xA∗1 , xA∗2 , ..., xA∗N , xA∗N+1) = arg max

(x1,...,xN ,xN+1)
ΠA(x1, ..., xN , xN+1)

it follows that

(xA∗1 , xA∗2 , ..., xA∗N ) = arg max
(x1,...,xN )

ΠA(x1, ..., xN , xN+1),

which implies (by uniqueness of the maximizer) that xA∗i = x̃i
A(xA∗N+1) for all i = 1, 2, ..., N.

Using this we obtain the following:

HA
N+1(xA∗N+1) = xA∗N+1(xA∗1 , xA∗2 , ..., xA∗N )− xA∗N+1 = 0.

Similarly, we get that HD
N+1(y, xD∗N+1) = 0. As in the proof for N = 2, the uniqueness of

the maximizer ensures that HA
N+1(xN+1) > 0 if xN+1 < xA∗N+1 and HA

N+1(xN+1) < 0 if
xN+1 > xA∗N+1, and, similarly, HD

N+1(y, xN+1) > 0 if xN+1 < xD∗N+1 and HD
N+1(y, xN+1) > 0

if xN+1 > xD∗N+1.

Using a reasoning by contradiction, similar to the one used in the proof of the case N = 2,
we can show that xA∗N+1 > xD∗N+1. Moreover, for any i = 1, 2, ..., N,

xA∗i = x̃i
A(xA∗N+1) > xDi (yi, x

A∗
N+1) > x̃i

D(yi, x
D∗
N+1) = xD∗i ,

where the first inequality follows from the fact that the result we want to show for N + 1 is
assumed to hold for N , and the second inequality follows from xA∗N+1 > xD∗N+1 and the fact
that x̃iD(yi, xN+1) is increasing in xN+1 (due to supermodularity of ΠD in (xi, xj)).

Thus, we have shown that xA∗i > xD∗i for all i = 1, 2, ..., N,N + 1 which completes the
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proof of Step 2. Q.E.D.

B.3 Proof of Proposition 3

Recall that we have the following decomposition:

CSD∗
i − CSA∗

i =
[
CSi(yi,x

D∗
−i )− CSi(x

A∗
i ,xD∗

−i )
]

+
[
CSi(x

A∗
i ,xD∗

−i )− CSi(x
A∗
i ,xA∗

−i )
]
.

Cases (i) and (ii) are straightforward because both terms in the above decomposition have
the same sign.

Consider now case (iii). In this case, CSi(yi,x
D
−i) is increasing in γD because CSi(yi,x−i)

is decreasing in xj for all j 6= i and xDj is decreasing in γD for all j 6= i. This implies
that CSD∗

i − CSA∗
i = CSi(yi,x

D∗
−i )− CSi(x

A∗
i ,xA∗

−i ) is increasing in γD. Therefore, there
exists γ̂CS(yi) ∈ [0,+∞[∪{+∞} such that CSD∗

i ≤ CSA∗
i if and only if γ ≤ γ̂CS . Moreover,

γ̂CS(yi) is (weakly) decreasing in yi because CSD∗
i − CSA∗

i is (weakly) increasing in yi.

Finally consider case (iv). In this case, CSi(yi,x
D∗
−i ) is decreasing in γD because xD∗j is

decreasing in γD for all j 6= i, and CSi(yi,x−i) is increasing in xj for all j 6= i. This implies
that CSD∗

i − CSA∗
i = CSi(yi,x

D∗
−i )− CSi(x

A∗
i is decreasing in γD. Therefore, there exists

γ̃CS(yi) ∈ [0,+∞[∪{+∞} such that CSD∗
i ≤ CSA∗

i if and only if γ ≥ γ̃CS . Moreover,
γ̃CS(yi) is (weakly) increasing in yi because CSD∗

i − CSA∗
i is (weakly) increasing in yi.

Q.E.D.

32


	modele_tse_wp1615
	Data_sharing_or_analytics_sharing_Feb_2025
	Introduction
	Data-combination platforms and technologies
	Related literature
	A model of data combination with data sharing and analytics sharing
	Analysis
	Implications for consumer surplus
	Reduced-form setting
	Microfoundation

	Extension: Technological choice under alternative contracts 
	Secret personalized contracts
	Uniform public contract

	Concluding remarks
	Data sharing vs analytics sharing: motivating examples
	Proofs
	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Proposition 3



