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1. Introduction

Understanding the macroeconomic effects of aggregate shocks and their transmission
mechanisms lies at the core of dynamic macroeconomic analysis. While much of the
literature has focused on identifying the channels through which these shocks operate,
their persistence emerges as a critical factor in shaping their overall impact. This is es-
pecially true in forward-looking rational expectations models, where, provided agents
value the future positively, the persistence of shocks significantly amplifies their effects.

For instance, in Hall’s (1978) partial equilibrium permanent income model with
a constant real interest rate, agents’ willingness to smooth their consumption pro-
file prompt only modest adjustments in consumption following temporary fluctua-
tions in labor income. In contrast, highly persistent or permanent changes lead to
far greater consumption responses. This amplification mechanism is foundational in
modern macroeconomic theory (see, e.g. Lucas, 1976, Sargent, 1978, for similar effects
in other settings) and manifests itself because, in a forward-looking rational expecta-
tions model, agents front-load the expected present value of the future effects of the
shocks. This mechanism operates purely through a permanent income channel, which
is the sole transmission mechanism in the partial equilibrium framework of Hall’s (1978)
model. In a general equilibrium version of the model —one of the backbone of mod-
ern macroeconomics, the real interest rate responds to the shock and ought to coun-
teract the permanent income channel. However, in standard one sector Real Business
Cycle (RBC) models (e.g. Kydland and Prescott, 1982, King et al., 1988, King and Rebelo,
1999), real interest rate adjustments are typically insufficient (see Beaudry and Guay,
1996, Boldrin et al., 2001) to offset the effects of the permanent income channel on con-
sumption decisions, and the result remains robust: greater persistence leads to larger
responses. This conclusion extends to a broader class of models that fail to generate
sufficient volatility in real interest rates.

In the New Keynesian (NK) model (e.g. Woodford, 2003, Galí, 2015), the interplay
between nominal rigidities and an interest rate rule amplifies the volatility of both the
nominal and real interest rates, which ought to curb the relative importance of the per-
manent income channel and therefore alter the positive relationship between persis-
tence and volatility —in particular in face of demand and monetary policy shocks which
play a key role in driving fluctuations in these models. Despite the extensive literature on
the NK framework —encompassing the role of nominal rigidities, fiscal and monetary
policy, and exogenous shocks— there remains a gap in understanding how the persis-
tence of shocks shapes short-term economic fluctuations. This oversight is striking given
the critical role of persistence in amplifying or dampening the effects of shocks, whether
they originate from demand, supply, or monetary policy. This paper is an attempt to fill
this gap. More specifically, we ask: How does the persistence of demand shocks —more
particularly those affecting the dynamic IS curve— (DIS shocks) interact with monetary
policy to influence the short run aggregate fluctuations? A key insight from our analysis is
that the relationship between the persistence of demand shocks and their short-run im-
pact on output (hereafter referred to as the output multiplier) is far from straightforward.
It hinges fundamentally —and in a non trivial way— on the aggressiveness of monetary
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policy. Our study provides a useful decomposition to understand the key transmission
mechanisms that mediate the effects of persistence under different monetary regimes.
This framework helps to clarify why persistent shocks do not always lead to amplified
economic effects. It also underscores the importance of tailoring monetary policy to the
nature and persistence of shocks, also offering valuable insights for policymakers.

We start by exploring the link between short-term output fluctuations and shock
persistence within the baseline Representative Agent New Keynesian (RANK) model
(see, e.g. Galí, 2015). A key advantage of this version of the NK model, in its log-linear
formulation, is its purely forward-looking structure, which allows for a straightforward
closed-form solution. This feature makes it possible to analytically examine how the out-
put multiplier responds to the persistence of a demand shock shifting the dynamic IS
equation—a DIS demand shock. Crucially, we show that this relationship is tied to the
stance of monetary policy.

When a demand shock hits the economy, its propagation and impact on output
are shaped by two competing channels. The first, which we call the permanent income
channel, reflects how the net present value of future income flows affects households
consumption and savings decisions. Closely related to the permanent income effect de-
scribed by Hall (1978), this channel amplifies the response of consumption and output
as the persistence of the demand shock increases, holding all else equal. The second
channel, which we call the real interest rate channel, works in the opposite direction. As
inflation rises in response to the shock, the central bank raises nominal interest rates
to maintain price stability, which drives up real interest rates discouraging current con-
sumption. This channel acts through intertemporal substitution motives and gives more
traction to less persistent shocks. The dynamic interplay between these two forces—the
permanent income channel, which amplifies the effects of persistence, and the real in-
terest rate channel, which dampens them—ultimately shapes the impact of the persis-
tence of demand shocks on short-run economic outcomes.

Crucially, we show that, depending on how strongly the central bank reacts to infla-
tion, one of these forces dominates, giving rise to distinct policy regimes. More specifi-
cally, we identify three regimes of monetary policy, each defined by how aggressively the
central bank responds to inflation. In an accommodative regime, in which the central
bank reacts weakly to inflation, the permanent income channel dominates. Persistent
shocks are particularly powerful in this environment because the central bank is not
too aggressive towards inflation, not raising the nominal interest rate, and hence the
real interest rate too forcefully. By doing so, it restrains intertemporal substitution mo-
tives, which leave the permanent income channel dominate. Greater persistence leads
to greater output gains. On the other side of the spectrum, in an aggressive regime, the
central bank responds very strongly to inflation, prioritizing price stability above all else.
The real interest rate channel dominates completely, overshadowing the permanent in-
come channel. Persistent shocks, which might otherwise have stimulated the economy,
are counteracted by the higher real interest rates. The output multiplier decreases with
the degree of persistence of demand shocks. Importantly, when monetary policy lies
in an intermediate regime, the relationship between persistence and output becomes
more complex. At first, the permanent income channel remains strong, and the effects

2



of persistence on output continue to grow. However, as persistence increases further, the
real interest rate channel starts to counteract the permanent income channel. We then
characterize a degree of persistence, which we call the ρ-max, above which the output
multiplier starts to decline. In other words, in this intermediate regime, the relationship
between the persistence of demand shocks and the output multiplier exhibits a hump-
shaped pattern. This regime captures the delicate balance between the two channels
and highlights the non-linear nature of persistence effects.

We then show that these findings extend to other settings. They straightforwardly
extend to monetary policy shocks, for the same reasons, as they play a similar role to
DIS demand shock in the baseline NK model. To some extent, they also carry to sup-
ply shocks, but, while demand shocks generate a hump-shaped relationship between
persistence and the output multiplier, the hump-shaped pattern shows up in the infla-
tion multiplier. Likewise, they also extend to other monetary policy rules, reacting to
both current inflation and the output gap, or their forecasts. Importantly, we show that
the presence of the hump in the intermediate regime does not hinge on specific micro-
foundations. In particular, we set up a general, though still analytically tractable, model
emcompassing models featuring, among others, heterogeneous agents, behavioral fric-
tions and cognitive biases, life cycle dynamics, financial frictions, preference for wealth.
We then show that our main result remains valid in all these versions and is actually a
generic feature of the NK model.

We finally assess the quantitative relevance of our analytical results by evaluat-
ing their robustness within a medium-scale Dynamic Stochastic General Equilibrium
(DSGE) model featuring capital accumulation.1 The model relaxes some of the strict
assumptions of the purely forward-looking baseline framework by incorporating addi-
tional propagation mechanisms widely used in the literature. More precisely, the model
builds on Christiano et al. (2005), Gabaix (2020) and Bilbiie et al. (2022), thereby cre-
ating a rich framework that includes heterogeneous households, working capital, in-
troducing a monetary cost channel in the New Keynesian Phillips Curve (NKPC), both
price and wage nominal rigidities. Importantly, it incorporates cognitive discounting,
where households and firms form expectations imperfectly, introducing discounting
into the dynamic IS equation and the NKPC. Our main findings highlight the robustness
of the hump-shaped relationship between the persistence of the demand shock and the
output multiplier observed in simpler models. The introduction of backward-looking
components—such as capital accumulation, price and wage indexation, and working
capital—does not overturn the analytical predictions but instead refines them. Specif-
ically, the findings show that under accommodative monetary policy, the permanent
income channel dominates, amplifying the effects of persistence. Conversely, under ag-
gressive policy stances, the real interest rate channel becomes the primary force, sup-
pressing the output response as persistence increases. The intermediate regime, where
both channels interact more equally, gives rise to a hump-shaped relationship between
persistence and output, reinforcing the non-linear dynamics suggested by the theory.

1Rupert and Šustek (2019) insist on the importance of capital accumulation for some key properties of
the NK model, as, compared to Galí’s (2015) textbook three-equation NK model, it introduces a disconnect
between consumption and output.

3



Our results highlight the critical role of structural features, such as nominal rigidities
and behavioral frictions, in shaping these dynamics. It emphasizes the importance of
understanding these mechanisms for crafting effective monetary policy in economies
facing persistent demand shocks.

Related Literature: This paper contributes to the extensive literature that studies the
transmission of demand shocks in New Keynesian models. We relate foremost to four
strands of the literature.

First, our theoretical analysis is rooted in the canonical RANK framework of Wood-
ford (2003) and Galí (2015). However, our insights apply to a larger class of tractable New
Keynesian models that extend the RANK model by incorporating household heterogene-
ity through cyclical income inequality (Bilbiie, 2008, Broer et al., 2020, Bilbiie, 2020, Can-
tore and Freund, 2021, Debortoli and Galí, 2024) or cyclical income risk (Werning, 2015,
Acharya and Dogra, 2020, Ravn and Sterk, 2020, Bilbiie, Forthcoming), a departure from
the full information rational expectation assumption (Angeletos and Lian, 2018, Farhi
and Werning, 2019, Gabaix, 2020, Pfäuti and Seyrich, 2023, Meichtry, 2023, Gallegos,
2024), wealth in the utility and preferences over liquidity (Campbell et al., 2017, Michail-
lat and Saez, 2021), life cycle dynamics through a Blanchard-Yaari perpetual youth struc-
ture (Del Negro et al., 2023), household debt and default premia (Beaudry and Portier,
2018), or a marginal cost channel of monetary policy (Ravenna and Walsh, 2006, Surico,
2008, Beaudry et al., 2024). To the extent that tractable heterogeneous agent NK mod-
els (THANK) models are capable of approximating the dynamics of more quantitative
incomplete market models, our results also extend to these environments (see, among
many others, McKay et al. (2016), Kaplan et al. (2018), Auclert (2019), Bayer et al. (2019),
Hagedorn et al. (2019a,b), Auclert and Rognlie (2018)).

Second, our decomposition of the propagation of demand shocks into a permanent
income channel and a real interest rate channel connects to a strand of the literature
questioning whether the transmission mechanisms in NK models genuinely operate
through the real interest rate channel. Some argue that observed consistency between
output and real interest rate responses could be a result of specific parameterizations
rather than structural properties (Barsky et al., 2007, Rupert and Šustek, 2019, Brault
and Khan, 2022). Relative to this literature, we show that the real interest rate channel
is indeed present in a wide class of NK models, but its sign and strength are heavily
influenced by the interaction between monetary policy and the persistence of shocks.

Third, our quantitative analysis is based on a medium-scale DSGE model that builds
upon Christiano et al. (2005), Galí et al. (2007) and Bilbiie et al. (2022). This model in-
corporates essential features identified in the literature as critical for shaping monetary
policy transmission, such as those highlighted in Christiano et al. (2005) and Smets and
Wouters (2003, 2007). By using both sticky prices and sticky wages, our framework also
relates to Colciago (2011) and Ascari et al. (2017), which extend Erceg et al. (2000) to
model sticky wages in the context of heterogeneous households and limited asset mar-
ket participation.

Finally, we contribute to the growing body of research examining how systematic
monetary policy affects the propagation of macroeconomic shocks (Barnichon and
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Mesters, 2023, McKay and Wolf, 2023, Hack et al., 2024). Unlike these empirical stud-
ies, though, we adopt both a theoretical and quantitative perspective, focusing on the
role of time-invariant monetary policy in shaping macroeconomic dynamics.

Paper Outline: The paper proceeds as follows. Section 2 provides analytical insights
from the Representative Agent New Keynesian model and lays out our main result in
this simple framework. Section 3 offers a discussion of the results, showing how they ex-
tend to other shocks and qualifying further the role of monetary policy. This section also
discusses how our results extend to a more general New Keynesian framework. Section 4
offers a quantitative analysis and further decomposes the role of various standard mech-
anisms for the results. A last section concludes. For expositional purposes, all proofs and
additional insights are reported in the online appendix to this paper.

2. Demand Shock Persistence in the RANK Model

In this section, we examine the macroeconomic effects of an expansionary demand
shock using the textbook three-equation New Keynesian model. We show that the per-
sistence of demand shocks influences the response of output —the output multiplier—
through two key propagation channels. The first is a permanent income channel, which
amplifies the multiplier and strengthens as persistence increases. The second is a real
interest rate channel, which dampens the multiplier and increases in magnitude as per-
sistence rises. We identify three monetary policy regimes that navigate this trade-off
and derive, in closed form, a persistence threshold that maximizes the short-run output
stimulus as a weighted combination of both channels.

2.1 The Economic Environment

Consider the standard discrete time sticky price RANK economy (see e.g. Woodford,
2003, Galí, 2015), whose equilibrium dynamics are summarized by the following four
(log-)linear equations

yt = Et [yt+1]− (it −Et [πt+1]− r̄) + ξt , (1)

πt = βEt [πt+1] + κyyt , (2)

it = r̄+ ϕππt , (3)

ξt = ρξt−1 + εξ,t , (4)

where y, π and i denote respectively output, the inflation rate and the nominal interest
rate. ξ is a demand shock. Et[·] is the expectation operator conditional on the informa-
tion set available at period t.

Equation (1) specifies the dynamic IS equation (DIS) and captures intertemporal
consumption-saving decisions, that fundamentally depend on the real interest rate gap
rt − r̄ ≡ it −Et[πt+1]− r̄, where r̄ > 0 is the natural rate of interest.2 Equation (2) defines

2Implicit in this specification is that household’s preferences are represented by a time-separable loga-
rithmic utility function and output is used for consumption purposes only. In the absence of technology
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the New Keynesian Phillips Curve (NKPC), which describes the price-setting behavior
of intermediary firms. The sensitivity of current inflation to expected future inflation is
governed by the discount factor β ∈ (0,1), while a marginal cost channel links current
inflation to output via κy ≥ 0. The exact micro-foundations of the NKPC are immate-
rial for our main results, although, in some instances, we will find it convenient to refer
explicitly to specific micro-foundations (e.g. Rotemberg, 1982, Calvo, 1983) to put per-
spective on some results.3 Equation (3) describes the behavior of a Central Bank, which
follows a simple interest rate rule à la Taylor (1993) and adjusts the nominal interest rate
to stabilize current inflation. Importantly, the equilibrium path of the economy is locally
determinate if the Taylor principle applies, i.e., ϕπ > 1. Finally, Equation (4) specifies the
stochastic process for the exogenous DIS-demand shock ξt, modeled as an autoregressive
process of order one, AR(1), with a positive auto-correlation coefficient ρ ∈ [0,1).4

The following proposition reports the solution of the model at the rational expecta-
tions equilibrium.

PROPOSITION 1. Under the Taylor principle (ϕπ > 1), the locally determinate solution of
the model writes

yt =My(ρ)ξt , πt =Mπ(ρ)ξt , it = r̄+Mi(ρ)ξt , and rt = r̄+Mr(ρ)ξt ,

where My(ρ), Mπ(ρ), Mi(ρ) and Mr(ρ) are given by

My(ρ) =
1− βρ

(1− ρ)(1− βρ) + (ϕπ − ρ)κy
> 0 , Mπ(ρ) =

κy
(1− ρ)(1− βρ) + (ϕπ − ρ)κy

> 0 ,

Mi(ρ) =
ϕπκy

(1− ρ)(1− βρ) + (ϕπ − ρ)κy
> 0 , Mr(ρ) =

(ϕπ − ρ)κy
(1− ρ)(1− βρ) + (ϕπ − ρ)κy

> 0 .

The impact multipliers Mx(ρ), for x ∈ {y,π, i, r}, are such that the proposed deci-
sion rules solve system (1)-(3). In the sequel, particular attention will be devoted to the
behavior of the output multiplier, My(ρ) —the impact effect of a DIS-demand shock on
output— as the degree of persistence of the shock, ρ, varies.

2.2 Main Results

It is widely understood that, in rational expectations forward-looking models, more per-
sistent shocks have larger effects on macroeconomic outcomes, particularly output.

shocks, the natural rate, rnt , is equal to the discount rate r̄ ≡− lnβ > 0, where β ∈ (0,1) is the household’s
discount factor.

3In the case of state contingent pricing à la Rotemberg (1982), and assuming quadratic price adjustment
costs, κy = ε−1

ψ
1+φ
1−α where φ > 0 is the inverse Frisch labor supply elasticity, α ∈ [0,1) is the degree of

decreasing returns to scale, ε > 1 is the demand elasticity and ψ > 0 is the price adjustment cost parameter
controlling for the degree of price stickiness. In the case of time dependent pricing à la Calvo (1983), κy =

Θ
(1−θ)(1−βθ)

θ
where Θ= 1−α

1−α+αϵ

(
1 + φ+α

1−α

)
and θ ∈ (0,1) is the probability of not resetting the price in a

given period. The key difference for our results is the role played by β in determining the slope of the NKPC.
4A rationale for this shock can be found in Fisher (2015). An alternative is to follow Smets and Wouters

(2007) who interpret e−ξtRt as the effective nominal return on bonds, resulting in a nominal bond pre-
mium of (e−ξt − 1)Rt or a real bond premium of (e−ξt − 1)Rt/πt+1, where lnRt = it. In that case, ξt is
referred to as a bond premium shock.
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This occurs because agents front-load their reactions based on the expected discounted
future effects of the shock, with greater persistence increasing its present value and trig-
gering a stronger response. However, the following proposition shows that, even in this
baseline model, this relationship may break down depending on the extent to which
monetary authorities respond to inflation.

PROPOSITION 2. Consider a forward-looking and upward-sloped NKPC, i.e., β > 0 and
κy > 0. There exist two cut-off values, ϕ

π
and ϕπ , of the central bank’s degree of reaction

to the inflation gap

ϕ
π
≡ β−1

(
1 + (1− β)2κ−1

y

)
and ϕπ ≡ β−1

(
1 + κ−1

y

)
, where ϕπ > ϕ

π
> 1 ,

such that the impact multiplier of output to a DIS-demand shock satisfies:

(a) If ϕπ ≤ ϕ
π

, My increases monotonously in ρ.

(b) If ϕ
π
< ϕπ < ϕπ , My is hump-shaped in ρ, i.e.,

∃ρ∗ ≡ β−1

(
1−

√
(ϕπβ − 1)κy

)
such that M′

y(ρ)⋛ 0 if ρ⋚ ρ∗.

(c) If ϕπ ≥ ϕ
π

, My decreases monotonously in ρ.

Proposition 2 identifies three regimes arising from the interaction between mone-
tary policy —the Taylor rule— and a persistent discretionary DIS-demand shock. Part
(a) of the proposition shows that under a sufficiently accommodative monetary policy
— e.g., ϕπ ≤ ϕ

π
— increasing the persistence of the DIS-demand shock unambiguously

amplifies the impact response of output. In contrast, Part (c) demonstrates that when
the central bank is sufficiently aggressive towards inflation — e.g., ϕπ ≥ ϕπ — greater
persistence unambiguously dampens the response of output. In the intermediate case,
where ϕ

π
< ϕπ < ϕπ , an increase in persistence initially amplifies output before reducing

it beyond a threshold ρ∗. Hence, contrary to the common wisdom, beyond a given per-
sistence level, ρ∗, increasing persistence reduces the impact effect of a demand shock.
Hereafter, to ease exposition, we will dub this threshold level of persistence the ρ-max.

Figures 1 and 2 provide a numerical illustration of Proposition 2. For illustrative pur-
poses, we set β = 0.99, κy = 0.15 and use, following Taylor (1993), a degree of aggressive-
ness with respect to the inflation gap of ϕπ = 1.5. Given these numbers, the two policy
thresholds, ϕ

π
and ϕπ , take the values ϕ

π
= 1.011 and ϕπ = 7.744, implying that the Tay-

lor rule coefficient lies in the middle regime.
Figure 1 reports the relationship between the output impact multiplier and the per-

sistence of the DIS-demand shock. In line with the common wisdom, the more persis-
tent the shock, the larger the response of output on impact for levels of persistence be-
low ρ∗ = 0.737. Above this value, the impact multiplier decreases with the level of per-
sistence. Interestingly, the impact response of output for a white noise shock is larger,
My(0) = 0.2, than for a random walk shock, My(1) = 0.03.5

5See Section 3.1 for a more detailed analysis of this result.
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FIGURE 1. Impact Output Multiplier and Persistence
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Note: The impact multiplier is expressed in percentage deviation from steady
state. This figure is obtained assuming β = 0.99, κy = 0.15, ϕπ = 1.5 and a shock
of 25 basis points.

FIGURE 2. Impact Multipliers and Persistence
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Figure 2 reports the impact effect of a positive 25 basis points DIS-demand shock
on output, the inflation rate, the nominal and real interest rate as the persistence of the
shock is varied. To illustrate the three regimes from Proposition 2, beyond the bench-
mark case ϕπ = 1.5, we also consider the cases ϕπ = 1.01 and ϕπ = 7.75. The latter two
values lie, respectively, below and above the thresholds ϕ

π
and ϕπ , implying that, as
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stated in Proposition 2, the output multiplier is strictly increasing for ϕπ = 1.01 and
strictly decreasing for ϕπ = 7.75. The hump-shaped pattern we find on output is not
present for the inflation rate, and the interest rates. In fact, the annualized responses of
inflation and the nominal interest strongly increases in ρ when output monotonously
increases.

What are the driving forces at play in this result? The hump-shaped behavior of the
short-run output multiplier is the outcome of two competing forces: (i) a permanent
income (PI) channel increasing the multiplier as the persistence of the shock rises and
(ii) a real interest rate (RIR) channel that plays in the opposite direction. To see this more
clearly, it is useful to consider the dynamic IS equation (1) at the general equilibrium
solution to get:

My(ρ) = ρMy(ρ)−Mr(ρ) + 1 .

Rearranging term, we obtain:

My(ρ) =
1

1− ρ
− Mr(ρ)

1− ρ
= My(ρ)︸ ︷︷ ︸

PI Channel

− Mr(ρ)︸ ︷︷ ︸
RIR Channel

. (5)

The PI channel, My(ρ)≡ 1/(1− ρ), captures the expected discounted impact of the de-
mand shock on agent’s income. This is similar to the permanent income effect of a shock
in the standard Hall’s (1978) consumption-savings model, assuming a constant real in-
terest rate. Therefore, it encapsulates the partial equilibrium effects of the shock. As such
it is totally independent from monetary policy aspects and nominal rigidities, and, as
in the standard permanent income model, is strictly increasing in the degree of persis-
tence, i.e., M′

y(ρ)> 0.
The RIR channel, Mr(ρ)≡Mr(ρ)/(1− ρ), captures the expected discounted sum of

the reaction of the real interest rate to the shock. This term is fundamentally determined
by the interplay between persistence, monetary policy and the degree of nominal rigidi-
ties. As such, it encapsulates all the general equilibrium effects of the shock. To the ex-
tent that Mr(ρ) increases with the degree of persistence, ρ, the RIR channel plays in the
opposite direction to the PI channel. Proposition 3 confirms that, as soon as the Taylor
principle holds in this economy, this condition is met in the baseline RANK economy.

PROPOSITION 3. The real interest rate increases monotonously in the persistence of a DIS-
demand shock, i.e., M′

r(ρ)> 0, if and only if the Taylor principle holds.

In light of Proposition 3, the rationale behind the three regimes can be explained as
follows. A higher persistence, on the one hand, increases the real interest rate multiplier,
thereby reducing output, ceteris paribus. On the other hand, higher persistence raises
the expected present value of future income, ceteris paribus, prompting an even larger
increase in current consumption, and therefore output, due to the forward-looking be-
havior of agents. When monetary policy is not too aggressive (ϕπ ≤ ϕ

π
), the weak re-

sponse of the nominal interest to the increase in the inflation rate mitigates the RIR
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channel, allowing the PI channel to dominate. As a result, the output multiplier in-
creases with persistence. In contrast, when monetary policy aggressively targets infla-
tion (ϕπ ≥ ϕπ), the stronger response of the nominal interest rate amplifies the RIR chan-
nel, causing it to outweigh the PI channel. Consequently, the output multiplier decreases
as persistence rises. In the intermediate regime, both forces interact, giving rise to the
hump-shaped pattern. At low persistence levels, the PI channel dominates, whereas the
RIR channel becomes the dominant force at high persistence levels.

To better understand the role of the NKPC structure in shaping the real interest rate
response and monetary policy regimes, it is useful to consider two extreme cases. First, if
prices are fully rigid,6 the NKPC is flat (κy = 0), resulting in an impact output multiplier
of My = 1/(1− ρ) and a real interest rate multiplier of Mr = 0. In this case, only the PI
channel is active, and the output impact multiplier increases monotonically with shock
persistence:

M′
y(ρ) =M′

y(ρ) =
1

(1− ρ)2
> 0 .

Second, consider the extreme case of a static NKPC (πt = κyyt), the output impact mul-
tiplier reduces to My = [1− ρ+ (ϕπ − ρ)κy]

−1 and the real interest rate multiplier to
Mr = (ϕπ − ρ)κy [1− ρ+ (ϕπ − ρ)κy]

−1. In this case, it is easy to check that persistence
increases both channels, but the PI channel remains dominant, ensuring monotonicity
as seen from the decomposition:

M′
y(ρ) =

1

(1− ρ)2︸ ︷︷ ︸
M′

y(ρ)>0

−
(1− ρ+ κy(ϕπ − ρ))2 − (1 + κy)(1− ρ)2

(1− ρ)2(1− ρ+ κy(ϕπ − ρ))2︸ ︷︷ ︸
M′

r(ρ)>0

=
1+κy

(1−ρ+κy(ϕπ−ρ))2
> 0 .

In the baseline model, the interplay between the PI and RIR explains the thresholds
in persistence. Parameters such as κy and ϕπ reinforce the RIR channel, lowering regime
thresholds and ρ-max. A higher discount factor, β, increases the sensitivity of current to
future inflation, thus strengthening the real interest rate channel but, in the Calvo (1983)
case, lowers the slope of the NKPC, κy , thus weakening the RIR channel. This creates
a trade-off that impacts regime thresholds and persistence cutoffs depending on the
initial NKPC slope.

How prevalent is the hump-shaped regime? This can be simply measured by the size
of the intermediate regime, ∆π ≡ ϕπ − ϕ

π
= κ−1

y (2− β), which depends fundamentally
on the discount factor, β, and the slope of the NKPC, κy , that is inversely related to the
degree of price stickiness.

COROLLARY 1. The size of the hump-shaped region, ∆π , satisfies the following compara-
tive statics:

1.
∂∆π

∂κy
=−2− β

κ2y
< 0 ,

6This obtains when θ = 1 in Calvo (1983), or ψ→+∞ in Rotemberg (1982).
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2.
∂∆π

∂β
=−

κy + (2− β)
∂κy
∂β

κ2y
.

The first part of Corollary 1 indicates that a flatter NKPC – identically greater
price stickiness – makes the intermediate monetary policy regime unambiguously more
prevalent. The second part of the corollary calls for more discussion. Let us first con-
sider state dependent pricing à la Rotemberg (1982), in this case the slope of the NKPC
is independent from β and ∂κy/∂β = 0. Accordingly, the size of the intermediate region
decreases with the discount factor. The Calvo (1983) case is slightly more intricate as the
slope of the NKPC depends, negatively, on the discount factor. Using the specification
laid out in footnote 3, we have

∂∆π

∂β
=− 1− 2θ

κy(1− βθ)
⋚ 0 if θ ⋚ 1

2
.

Hence the intermediate region widens with the discount factor when prices are suffi-
ciently sticky.

3. Discussion and Extensions

This section provides a broader perspective on our main findings. First, we emphasize
their connection to the demand-side nature of the shocks. Specifically, we examine the
dynamics that arise in response to monetary policy shocks and supply shocks. Addi-
tionally, this section qualifies the extent to which these results depend on the type of
monetary policy rule adopted by the central bank. Finally, it shows how these insights
extend to a broader class of New Keynesian models.

3.1 Shocks

So far, our main focus has been placed on DIS–demand shocks. This section investigates
the extent with which our results extend to other usual shocks in the literature.

3.1.1 Monetary Policy Shocks: All preceding results naturally extend to the case of a
standard monetary policy shock —a shock to the Taylor rule. We opt to focus on the
DIS-demand shock for the sake of clarity of the exposition only. The output and infla-
tion multipliers associated with monetary policy shocks are identical to those obtained
with the DIS-demand shock. They however differ for the interest rates. In New Keyne-
sian models, the nominal interest rate increases on impact if the persistence of the ex-
pansionary monetary policy shock is sufficiently high. However, our findings regarding
monetary regimes and the ρ-max are independent of this observation, as they are driven
by the response of the real interest rate, not the response of the nominal interest rate.
This distinction is critical because the ρ-max can differ from the threshold at which the
nominal interest rate response changes sign. By contrast, the DIS-demand shock avoids
this issue entirely: the nominal interest rate increases monotonically with persistence
and does not reverse its sign. Consequently, the DIS-demand shock provides a cleaner
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framework to analyze the opposing roles of the PI and RIR channels, even though de-
composition (5) applies in essentially the same way.

Monetary policy shocks, interpreted as discretionary deviation from the rule, are
useful to consider though as they help to put perspective on some policy implications of
our results. The results of Proposition 2 indeed indicate that a central bank with the dual
mandate of stabilizing both inflation and output, will face no trade-off when it relies on
discretionary interventions that are weakly persistent (M′

y > 0 and M′
π > 0 for ρ < ρ∗).

In contrast, when it relies on highly persistent discretionary interventions (ρ > ρ∗), a
trade-off emerges between stabilizing output and inflation (M′

y < 0 and M′
π > 0). The

next proposition strengthens this result.

PROPOSITION 4. If ϕπ > β−1
(
1 + (1− β)κ−1

y

)
> ϕ

π
, the impact output multiplier to a

monetary policy shock satisfies lim
ρ→0

My(ρ)> lim
ρ→1

My(ρ).

This proposition shows that when the central bank adopts a sufficiently aggressive
policy against inflation, output reacts more strongly to a purely transient shock than to a
permanent one. In contrast, inflation’s response increases consistently with the persis-
tence of the shock. In this context, a central bank aiming to implement a negative dis-
cretionary intervention to stabilize inflation while limiting the impact on output would
benefit more from choosing a permanent intervention rather than a purely transient
one.

3.1.2 Cost-Push Shocks: We now consider a version of the model (1)–(4) in which we
replace the DIS-demand shock with a cost-push shock

yt = Et [yt+1]− (it −Et [πt+1]− r̄) , (6)

πt = βEt [πt+1] + κyyt + νt , (7)

it = r̄+ ϕππt , (8)

νt = ρννt−1 + εν,t , (9)

where νt is a cost-push shock with corresponding AR(1) persistence ρν ∈ [0,1). In that
case, the following proposition obtains.

PROPOSITION 5. Under the Taylor principle, the impact multipliers of output, My(ρν),
and inflation, Mπ(ρν) to a cost-push shock are given by

My(ρν) =
−(ϕπ−ρν)

(1−ρν)(1−βρν)+(ϕπ−ρν)κy
, and Mπ(ρν) =

1−ρν
(1−ρν)(1−βρν)+(ϕπ−ρν)κy

.

We have:

(a) The output impact multiplier, My(ρν), decreases monotonically with ρν .

(b) The inflation impact multiplier, Mπ(ρν), satisfies:

12



(b.1) If 1< ϕπ < 1 + β
κy

, Mπ(ρν) is humped-shaped in ρν , i.e.

∃ ρ∗ν ≡ 1−

√
κy(ϕπ − 1)

β
such that M′

π(ρν)⋛ 0 for ρν ⋚ ρ∗ν .

(b.2) If ϕπ ≥ 1 + β
κy

, Mπ(ρν) decreases monotonically in ρν .

The first statement of Proposition 5 establishes that, unlike the DIS-demand shock,
a cost-push shock does not lead to the emergence of three monetary policy regimes or
a hump-shaped relationship between shock persistence and the output impact mul-
tiplier. Instead, the output impact multiplier decreases monotonically with the per-
sistence of the shock. The focus shifts to the inflation impact multiplier, where non-
monotonic behavior arises. A decomposition similar to (5) applied on the NKPC helps
shedding light on the forces at work. Evaluating the NKPC at the general equilibrium
yields:

Mπ(ρν) = βρνMπ(ρν) + κyMy(ρν) + 1 .

Rearranging the term, we get

Mπ(ρν) =
1

1− βρν︸ ︷︷ ︸
PE

+
κyMy(ρν)

1− βρν︸ ︷︷ ︸
GE

.

As with a DIS-demand shock, monetary policy balances two opposing channels. The
first pertains to a partial equilibrium (PE) effect, which corresponds to the present value
of future expected effects of the cost-push shock assuming a constant marginal cost.
Hence, the more persistent the shock, the larger the effect of the shock on inflation.
The second component, GE, corresponds to the present value of future expected ef-
fects of the cost-push shock encapsulating all the general equilibrium effects affecting
the marginal cost. A positive cost-push shock puts upward pressure on prices, which
depresses demand —as witnessed by the presence of the output multiplier in the GE
term— production and hence the labor demand. This puts downward pressure on wages
and so on the marginal cost. Accordingly, this GE effect goes in the opposite direction to
the PE effect, creating the hump-shaped relationship between persistence and the re-
sponse of inflation. When monetary policy becomes extremely aggressive, the central
bank is hiking the interest to such an extent that the recession it triggers makes the GE
effect fully dominate the determination of the inflation multiplier.

3.1.3 Technology Shocks: We now consider a version of the model (1)–(4) in which we
replace the DIS-demand shock with a technology shock

ŷt = Et [ŷt+1]− (it −Et [πt+1]− rnt ) , (10)

πt = βEt [πt+1] + κy ŷt , (11)

it = r̄+ ϕππt , (12)

at = ρaat−1 + εa,t , (13)
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where ŷt ≡ yt − ynt denotes the output gap between actual output yt and the level of
output, ynt , attained in the flexible price allocation. Moreover, rnt ≡ r̄ + Et [∆at+1] de-
notes the natural interest rate, where at is a technology shock with corresponding AR(1)
persistence ρa ∈ [0,1). In that case, the following proposition obtains.

PROPOSITION 6. Under the Taylor principle, the impact multipliers of output, My(ρa),
and inflation, Mπ(ρa) to a technology shock are given by

My(ρa) =
κy(ϕπ−ρa)

(1−βρa)(1−ρa)+κy(ϕπ−ρa)
+ ϑy , and Mπ(ρa) =

−κy(1−ρa)
(1−βρa)(1−ρa)+κy(ϕπ−ρa)

,

where ϑy is a constant collecting terms independent of ρa. We have:

(a) The output impact multiplier, My(ρa), increases monotonically with ρa.

(b) The inflation impact multiplier, Mπ(ρa), satisfies:

(b.1) If 1< ϕπ < 1 + β
κy

, Mπ(ρa) is U-shaped in ρa, i.e.

∃ ρ∗a ≡ 1−

√
κy(ϕπ − 1)

β
such that M′

π(ρa)⋚ 0 for ρa ⋚ ρ∗a.

(b.2) If ϕπ > 1 + β
κy

, Mπ(ρa) increases monotonically in ρa.

The first statement of Proposition 6 establishes that, unlike the DIS-demand shock,
a technology shock does not lead to the emergence of three monetary policy regimes
or a hump-shaped relationship between shock persistence and the output impact mul-
tiplier. Instead, the output impact multiplier increases monotonically with the persis-
tence of the shock. The focus shifts again to the inflation impact multiplier, where non-
monotonic behavior arises. As with a DIS-demand shock, monetary policy balances two
opposing channels. A positive technology shock reduces the output gap, lowering in-
flation. Since the output gap exhibits similar comparative statics to output in response
to shock persistence, the output gap channel increases inflation with persistence. Con-
versely, with forward-looking inflation (β > 0), a more persistent technology shock am-
plifies the drop in inflation via an inflation expectation channel. If monetary authorities
adopt a moderately aggressive stance toward inflation (Part b.1 of the proposition), a
U-shaped relationship in the inflation impact multiplier emerges. However, under suf-
ficiently aggressive policy (Part b.2 of the proposition), the inflation expectation chan-
nel weakens, and inflation increases monotonically with shock persistence, driven by
stronger feedback effects on the output gap.

3.2 The Role of Monetary Policy

The previous section highlighted the interaction between a simple monetary policy
rule involving solely the objective of inflation stabilization and the persistence of DIS-
demand shocks in shaping their impact effect on output dynamics. This section consid-
ers rules that extend the benchmark monetary policy rule along three dimensions. First,
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we jointly allow for inflation and output feedback. Second, we study forward-looking
rules. Third, we consider a real interest rate rule. Proposition 7 summarizes our findings
in the case of ϕπ > 1.7

PROPOSITION 7. Under the Taylor principle, the following results apply:

(a) Assume the monetary authorities react to both the current inflation rate and the
current output gap, i.e. it = r̄ + ϕππt + ϕyyt. Then, Proposition 2 continues to hold
identically.

(b) Assume the monetary authorities react to the one-step ahead expected inflation and
output gap, i.e. it = r̄+ ϕπEt [πt+1] + ϕyEt [yt+1], with ϕπ > 1.8

• If 0 ≤ ϕy < min{1,2 − ϕπ−1
1+β κy}, there exist two regime thresholds given by

ϕ
π
≡ 1 + (1 − ϕy)(1 − β)2κ−1

y and ϕπ ≡ 1 + (1 − ϕy)κ
−1
y such that the rela-

tionship between the output impact multiplier and the degree of persistence
ρ (i) is increasing if ϕπ ≤ ϕ

π
, (ii) is decreasing if ϕπ ≥ ϕπ , and (iii) displays a

hump-shaped pattern if ϕ
π
< ϕπ < ϕπ . In this latter case, the ρ-max is given by

ρ∗ = β−1
(
1−

√
ϕπ−1
1−ϕy

κy

)
.

• If 1 ≤ ϕy <min{1 + β−1,2 − ϕπ−1
1+β κy}, only the upper regime survives and the

output multiplier decreases monotonically with ρ.

(c) Assume the monetary authorities follow a real interest rate rule, i.e. it = rt +

Et [πt+1], where rt = r̄. Then, only the lower monetary policy regime survives and
the output impact multiplier increases monotonically with ρ.

Part (a) of Proposition 7 shows that when monetary authorities stabilize current
inflation, output stabilization concerns do not alter the monetary policy thresholds
(ϕ

π
, ϕπ) or the ρ–max (ρ∗), as established in Proposition 2. This obtains from the fact that

ϕy > 0 affects symmetrically the PI and the RIR channels in the DIS equation. However,
increasing ϕy reduces the impact multipliers of output and inflation.

In contrast, Part (b) reveals that when monetary policy reacts to one-step-ahead ex-
pectations of inflation and the output gap, with ϕπ > 1, output stabilization plays a sig-
nificant role in determining how persistence shapes the short-run output response to
a DIS-demand shock. Three monetary policy regimes still obtain as long as the cen-
tral bank’s output gap response remains moderate, i.e., 0 ≤ ϕy < min{1,2 − ϕπ−1

1+β κy}.
Within the hump-shaped regime, the ρ-max decreases with ϕy as stronger output sta-
bilization weakens the PI channel. When ϕy becomes sufficiently large, i.e. 1 ≤ ϕy <

7The assumption ϕπ > 1 is made only for expositional purposes, to guarantee the local determinacy of
the equilibrium and to ease comparison with the results of Proposition 2. However, in the case of a forward-
looking rule, determinacy can also occur with ϕπ ≤ 1 and Section A.1 in the online appendix offers a full
statement of the proposition, allowing for ϕπ ≤ 1.

8See Proposition 4 in Bullard and Mitra (2002) for a discussion of local determinacy of the equilibrium
path for this particular rule.
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min{1 + β−1,2 − ϕπ−1
1+β κy}, the hump-shaped regime disappears and output declines

monotonically with ρ. In this case, the RIR channel dominates strictly the PI channel.
Finally, Part (c) emphasizes the critical role of the RIR channel in moderating the

trade-off between the PI and RIR channels. When the central bank controls the real in-
terest rate directly – holding it constant as in Hall’s (1978) model – this trade-off vanishes.
Consequently, the impact of a DIS-demand shock on output increases monotonically
with ρ, as only the PI channel remains active.9

Recently, robust real rate rules (see Holden, 2024) of the form it = rt + ϕππt, with
ϕπ > 1, have gained attention. These rules are particularly compelling because they re-
main robust to key features of modern monetary theory, such as household heterogene-
ity or departure from strict rationality, while ensuring equilibrium stability. This robust-
ness arises because inflation dynamics obtain from the monetary policy rule and the
Fisher equation rather than the dynamic IS equation. In other words, this class of rules
effectively eliminates both the PI and RIR channels. As a result, they represent an ex-
treme case compared to the dynamics discussed in Proposition 7, bypassing the tension
between these two channels.10

This observation highlights that our conclusions regarding the hump-shaped behav-
ior of persistent DIS shocks depend fundamentally on how simple policy rules balance
the PI and RIR channels. Specifically, under robust real rate rules, DIS demand shocks
are entirely absorbed by adjustments in the nominal interest rate, leaving output and
inflation completely unaffected. Conversely, loose monetary policy shocks result in ex-
pansions of both output and inflation. Interestingly, the output response to such shocks
is non-monotonic in persistence, depending on whether ϕπ is greater or less than the
inverse of the sensitivity of current to expected inflation within the NKPC.

3.3 A General New Keynesian Model

In this section, we extend the analytical results of the previous section to a more gen-
eral tractable model and show that the insights related to the three output regimes of
monetary policy carry over to a larger class of New Keynesian models.

3.3.1 A General Tractable Framework In Section 2, we outlined the trade-offs inherent
to the parsimonious benchmark RANK economy. Here, we extend the analysis to a more
general, although tractable, formulation of the NK model:11

yt = ζfEt [yt+1]− ζr (it −Et [πt+1]− r̄) + ξt , (14)

πt = βfEt [πt+1] + κyyt, (15)

9This result also applies for rules of the form it = r̄+Et [πt+1]+ϕyyt, where the sign of output feedback
parameter (ϕy) captures the cyclicality of the real interest rate (see Angeletos et al., 2024a,b).

10In a related vein, Rupert and Šustek (2019) question whether monetary policy shocks propagate via the
RIR channel in a broad class of New Keynesian models with physical capital. Compared to their analysis,
our findings emphasize that the presence of a RIR channel critically hinges on the feedback rule adopted
by the central bank.

11The online appendix considers an even more general version of the model in which we introduce a
cost channel of monetary policy in the NKPC.
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it = r̄+ ϕππt + ϕyyt , (16)

ξt = ρξt−1 + εξ,t . (17)

This representation differs from the benchmark logarithmic RANK model in several
ways. First, we introduce two new parameters within the DIS equation (14), ζf and ζr .
The parameter ζf > 0 denotes the elasticity of current aggregate demand to expected
income. We refer to a compounded DIS equation in the case of ζf > 1, whereas we re-
fer to a discounted DIS equation in the case of ζf < 1. The parameter ζr > 0 denotes
the elasticity of aggregate demand to the real interest rate, which depends in practice,
among others, on the elasticity of intertemporal substitution (EIS). Second, we alter the
NKPC equation (15) by allowing the elasticity of current inflation to future inflation, i.e.,
βf ∈ [0,1), to differ from the discount factor β. Importantly, this representation nests
the benchmark RANK model with logarithmic preferences from Section 2 if ζf = ζr = 1,
βf = β and ϕy = 0.12. Importantly, in Section 3.3.2 we will discuss how many extensions
of the baseline RANK economy admit a representation of the form (14)-(17) in terms of
deep structural parameters for (ζf , ζr, βf , κy). In this sense, we consider the former pa-
rameters as sufficient statistics, i.e., their exact structural composition is irrelevant for
the derivation of the following analytical results.

Throughout this section, we will assume βf ∈ (0,1) and κy > 0, which amounts to
impose a forward-looking behavior of the NKPC and ensures it is upward slopping. The
following proposition follows.

PROPOSITION 8. Under local determinacy, i.e.

ϕπ > ϕ̃≡max

(
1 +

(1− βf )(ζf − 1− ζrϕy)

ζrκy
,
ζfβf − 1− ζrϕy

ζrκy

)
the solution of the model takes the form

yt =My(ρ)ξt, πt =Mπ(ρ)ξt, it = r̄+Mi(ρ)ξt, and rt = r̄+Mr(ρ)ξt ,

where My , Mπ , Mi and Mr are given by:

My(ρ) =
1− βfρ

Γξ
> 0 , and Mπ(ρ) =

κy
Γξ

> 0 ,

Mi(ρ) =
ϕπκy + ϕy(1− βfρ)

Γξ
> 0 , and Mr(ρ) =

(ϕπ − ρ)κy + ϕy(1− βfρ)

Γξ
⋛ 0 ,

with Γξ ≡ (1−βfρ)(1−ρζf +ζrϕy)+(ϕπ−ρ)ζrκy . Finally, the sign of Mr(ρ) is determined
by ϕπ ⋛ ρ− ϕy(1− βfρ)/κy .

12As general as it is, this version does not introduce additional sources of endogenous persistence like
capital accumulation, price indexation or interest rate smoothing. Doing so would expand the state space
and would considerably complicates the analytics without adding substantial analytical insights. We will
consider such extensions in our quantitative exercise of Section 4.
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In the lines of Bilbiie (Forthcoming) for a tractable HANK model and Gabaix (2020)
for a behavioral version of the RANK model, Proposition 8 first extends the Taylor prin-
ciple to environments featuring a compounded or discounted DIS equation and/or a
behavioral NKPC.13 Specifically, in the presence of a discounted DIS equation (ζf < 1),
determinacy does not necessarily require the Taylor principle to hold—i.e. local de-
terminacy can obtain under ϕ̃ < 1.14 Conversely, in the case of compounding (ζf > 1),
the Taylor principle is reinforced, as ϕ̃≫ 1. The proposition then establishes that, pro-
vided the equilibrium is locally determinate, a positive DIS shock generates a demand-
driven boom (My > 0 and Mπ > 0), that commands an increase in the nominal interest
rate. The real interest rate necessarily rises with the shock when the DIS equation is ei-
ther standard (ζf = 1) or exhibits compounding (ζf > 1) since in those cases we have
ϕπ > ϕ̃ > 1> ρ− ϕy(1− βfρ)/κy . However, when the DIS equation features discounting
(ζf < 1), ϕ̃ is not necessarily greater than 1, and a positive response of the real interest
rate requires monetary policy to be sufficiently aggressive with respect to inflation. We
then get the following proposition.

PROPOSITION 9. Proposition 2 still holds in the general model, replacing β by βf and κy
by κgy ≡ (ζr/ζf ) · κy .

Proposition 9 generalizes Proposition 2 with respect to the monetary policy regime
thresholds ϕ

π
and ϕπ , as well as the output-maximizing persistence ρ∗. In the sequel,

we will denote these quantities ϕg
π

and ϕ
g
π and ρg∗ to indicate they pertain to the general

formulation of the model. Notably, the proposition establishes that their formal expres-
sions share an identical analytical structure when β is replaced by βf and κy is scaled by
ζr/ζf . If ζr increases relative to ζf , the RIR channel gains in importance relative to the
PI channel. As such, regime thresholds and output-maximizing persistence fall. In other
words, the results obtained in Proposition 2 are not the outcome of particular assump-
tions placed on the primitives of the model, or on the micro-foundations underlying
it, but are fundamentally related to the generic structure of the NK model. Note that,
similarly, Proposition 7 generalizes in the same manner as κy is replaced by κgy .

Note that, just like Proposition 2 holds in this economy, so does decomposition (5),
which is, in fact, a generic property of the (log-linear) Euler equation:

My(ρ) =
1

1− ζfρ
− ζrMr(ρ)

1− ζfρ
= My(ρ)︸ ︷︷ ︸

PI Channel

− Mr(ρ)︸ ︷︷ ︸
RIR Channel

. (18)

The decomposition needs to be adjusted for discounting, ζf , and the interest rate elas-
ticity, ζr , but its interpretation remains identical to that obtained in the baseline model.

13The condition actually reduces to the RANK Taylor principle, i.e., (1− β)ϕy + (ϕπ − 1)κy > 0 if ζf =

ζr = 1 and βf = β.
14In that case, the condition for the real interest rate multiplier to increase monotonically with persis-

tence is more stringent.
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3.3.2 Towards a Structural Interpretation The results presented in Proposition 9 are
derived from a general formulation of the New Keynesian framework deliberately silent
about the structural micro-foundations of the key sufficient statistics (ζf , ζr, βf , κy).
While this abstraction highlights the broad applicability of the reduced-form represen-
tation, it forbids a structural interpretation of our results. Therefore, the primary objec-
tive of this section is twofold. First, we establish that a wide range of NK models can be
represented in the form of equations (14)-(17). Second, we illustrate how specific mech-
anisms influence the thresholds for systematic monetary policy regimes and the ρ-max.
In particular, the recent macroeconomic literature increasingly recognizes the impor-
tance of heterogeneity across households, behavioral frictions, and life-cycle dynamics
in shaping economic outcomes and policy effectiveness. We explore how these factors
interact with monetary policy and aggregate dynamics, emphasizing their role in modi-
fying equilibrium thresholds and persistence measures within NK frameworks.15

Household Preferences and Consumption Smoothing: Household preferences play a
central role in determining the responsiveness of consumption to interest rates and in-
flation. A natural starting point is the standard constant relative risk aversion (CRRA)
framework, where the elasticity of inter-temporal substitution (EIS) affects both the elas-
ticity of the real interest rate in the DIS equation and the slope of the NKPC. A higher EIS
strengthens the RIR channel through greater consumption smoothing but simultane-
ously flattens the NKPC. This interaction highlights a fundamental trade-off: monetary
policy must balance its influence on demand with its impact on inflation expectations.
In practice, the dominance of the RIR channel suggests that economies with higher EIS
require less aggressive policy responses to stabilize inflation and output in the short-run.
In other words, a higher EIS decreases ϕg

π
, ϕ

g
π , and ρg∗.

Recent extensions of CRRA preferences introduce wealth dependence, reflecting the
idea that relative wealth influences utility. For instance, Michaillat and Saez (2021) ad-
dresses anomalies observed at the zero lower bound by incorporating wealth in the util-
ity function into a RANK framework. In this setup, a discounted DIS equation emerges
when the marginal utility of wealth is positive, effectively dampening the PI channel.
Hence, just like a higher EIS, wealth in the utility function decreases ϕg

π
, ϕ

g
π , and ρg∗.

Household Heterogeneity and Income Inequality: Empirical evidence (see, e.g., Camp-
bell and Mankiw, 1989, 1991) indicates that consumption-saving behavior deviates from
the predictions of the standard Euler equation. Models incorporating household het-
erogeneity – such as the two-agent New Keynesian (TANK) framework of Bilbiie (2008,
2020) – provide insights into these deviations, particularly through cyclical variations
in income inequality. In these economies, cyclical income inequality between savers
and hand-to-mouth households significantly alters the transmission of monetary pol-
icy. Counter-cyclical income inequality, by increasing the real interest rate elasticity, ζr ,
amplifies the impact of monetary policy while pro-cyclical inequality dampens it. No-
tably, as cyclical inequality approaches some critical thresholds, the ρ-max approaches
zero, underscoring the destabilizing potential of income disparities.

15Formal statements and proofs of the following intuitions are reported to the technical appendix for
exposition purposes.

19



In addition to cyclical inequality, cyclical income risk alters household consumption-
saving behavior as well. For instance, in the pseudo-representative agent New Keyne-
sian (PRANK) framework of Acharya and Dogra (2020), pro-cyclical income risk gener-
ates discounted dynamic IS (DIS) behavior, whereas counter-cyclical income risk pro-
duces compounded DIS dynamics. Models that integrate both cyclical inequality and
income risk, such as the tractable heterogeneous agent New Keynesian (THANK) model
(see, e.g., Bilbiie, Forthcoming), show that counter-cyclical inequality amplifies the RIR
channel relative to PI channels. This effect is particularly pronounced when a specific
condition on the share of hand-to-mouth households (λ) and the persistence of saver
status (s) is met (λ+ s > 1). Under these conditions, counter-cyclical (and, conversely,
pro-cyclical) income inequality reduces (or increases) ϕg

π
, ϕ

g
π , and ρg∗.

Importantly, contemporaneous income risk has a limited impact, as it affects uni-
formly the PI and RIR channels. In contrast, expectations of future income risk play a
much more significant role, altering the relative strength of these channels and thereby
shaping dynamic responses. Specifically, future counter-cyclical (or pro-cyclical) in-
come risk raises (or lowers) ϕg

π
, ϕ

g
π , and ρg∗.

Behavioral Frictions and Cognitive Biases: Models that depart from the Full Informa-
tion Rational Expectation (FIRE) assumption by introducing limited foresight through
cognitive discounting (see, e.g., Gabaix, 2020) reduce the sensitivity of the allocation to
both the PI and inflation expectation channels. This framework modifies policy dynam-
ics in two ways. First, by introducing discounting into the dynamic IS equation (ζf < 1),
it weakens the PI channel. Second, by reducing inflation persistence (βf < β), it damp-
ens the RIR channel, diminishing the role of inflation expectations in the NKPC. Interest-
ingly, the latter effect typically dominates, calling for a more aggressive monetary policy
to stabilize inflation. As a result, cognitive discounting increases ϕg

π
, ϕ

g
π , and ρg∗.

Further research, such as Angeletos and Lian (2018), extends these findings by ex-
ploring the role of incomplete information and higher-order beliefs. These frameworks
yield dynamics akin to those generated by discounted Euler equations, strengthen-
ing the link between cognitive frictions and monetary non-neutrality. Hybrid models
that combine household heterogeneity with deviations from FIRE (see, e.g., Pfäuti and
Seyrich, 2023, Meichtry, 2023, Gallegos, 2024) reveal how market incompleteness and
cognitive frictions, sticky or dispersed information jointly influence monetary policy
transmission. Specifically, these elements amplify the RIR channel while dampening the
PI channel. Consequently, they lead to a reduction in ϕg

π
, ϕ

g
π , and ρg∗.

Life-Cycle Dynamics and Stochastic Mortality: Recent studies (see, e.g., Del Negro
et al., 2023) incorporate perpetual youth structures (Blanchard, 1985, Yaari, 1965) into
medium-scale DSGE models, primarily to address the forward guidance puzzle. In these
frameworks, stochastic death probabilities act on three key margins. First, they lead
to discounted DIS equations (ζf < 1), reflecting households’ shorter effective planning
horizons. Second, they reduce the sensitivity of current inflation to inflation expecta-
tions (βf < β). Third, they steepen the slope of the NKPC. These findings align with in-
sights from Eggertsson et al. (2019), which highlight how life-cycle effects reduce the
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persistence of expectations, thereby weakening the efficacy of forward guidance poli-
cies. Demographic considerations in these models generally increase ϕg

π
, while their ef-

fects on ϕ
g
π and ρg∗ depend heavily on the degree of price stickiness.

Debt, Default, and Borrowing Constraints: Borrowing constraints and default risk offer
another mechanism through which household heterogeneity affects macroeconomic
dynamics. Models such as Beaudry and Portier (2018) introduce information asym-
metries between borrowers and lenders, resulting in borrowing costs that depend on
debt levels. These costs impact both the PI channel and the RIR channel. Specifically,
borrowing constraints cause ζf < 1 and bound ζr from above —strictly below the EIS.
While these dynamics alter household consumption behavior, they leave monetary pol-
icy thresholds and the ρ-max essentially unchanged compared to standard CRRA mod-
els, as the ratio ζf/ζr is independent of the sensitivity of borrowing rates to debt.

Overall, these findings highlight the pivotal role of household preferences, hetero-
geneity, and frictions in shaping macroeconomic responses. Whether through cyclical
income inequality and risk, behavioral biases, life-cycle dynamics, or borrowing con-
straints, these factors reshape the transmission channels of monetary policy and influ-
ence policy regimes and the ρ-max.

4. Quantitative Insights from a Medium-Scale DSGE Model

The previous sections provided analytical insights into the interplay between the per-
sistence of DIS-demand shocks and monetary policy within a purely forward-looking
framework. While this approach offers sharp intuition, it abstracts from several empiri-
cally relevant features of modern economies. In this section, we complement the analyt-
ical results by assessing their robustness in a medium-scale DSGE model that relaxes the
purely forward-looking structure and incorporates additional propagation mechanisms
commonly used in the DSGE literature.16 Specifically, we build upon Christiano et al.
(2005), Gabaix (2020), and Bilbiie et al. (2022) to extend the standard RANK framework
and provide a flexible and empirically relevant environment for analyzing the dynamic
effects of persistence and monetary policy. By bridging analytical and quantitative ap-
proaches, this extension not only validates the theoretical predictions but also uncovers
new mechanisms shaping short-run trade-offs.

4.1 The Model Economy

The economy is populated by infinitely-lived heterogeneous households, final and in-
termediate good firms, a financial intermediary, a government, and a central bank.
Throughout, we depart from the classical full information rational expectation (FIRE)
assumption and introduce cognitive discounting in the DIS and NKPC equations of the
model (see the generalized analytical model of Section 3.3.1).

16For expositional purposes, this section totally focuses on DIS-demand shocks. We also experimented
with monetary policy shocks, cost-push shocks and technology shocks and recovered results inline with
those obtained in the previous section.
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4.1.1 Households The economy features a unit mass of infinitely-lived households, in-
dexed by i ∈ [0,1], with preferences over consumption Ci

t and labor Li
t represented by

the following utility function:

U(Ci
t ,L

i
t) =

Ci
t
1−σ

1− σ
− υ

Li
t
1+φ

1 +φ
,

where σ−1 is the inter-temporal elasticity of substitution (EIS), υ > 0 is a labor disutil-
ity parameter, and φ−1 is the Frisch elasticity. Households discount the future at the
constant rate β ∈ (0,1). Finally, households supply a variety of differentiated labor input
Li(l). Importantly, wage-setting decisions are made by labor type specific unions in-
dexed by l ∈ (0,1), detailed below. While household share the same preferences, they are
heterogeneous with respect to their access to financial markets. Households are subject
to idiosyncratic shocks that make them switch between two states — saver, S, and hand-
to-mouth,H , households. Savers participate in asset markets on which they hold a port-
folio consisting of three types of assets: (i) liquid bonds, (ii) shares of illiquid real stocks
of intermediary good firms, and (iii) illiquid physical capital. Hand-to-mouth house-
holds cannot participate in asset markets and insure against income risk by holding liq-
uid bonds. Transitions between states are modeled as a Markov process with probabili-
ties P(Ht+1 | St) = 1− s and P(St+1 |Ht) = 1− h, where s,h ∈ (0,1) govern persistence.
The stationary equilibrium ensures the unconditional mass of hand-to-mouth house-
holds is λ= 1−s

2−h−s .17

At the beginning of period t, all households of a given group (S orH) pool resources,
hence fully insuring each other and observe the aggregate shock prior to making their
consumption and saving decisions. At the end of the period, they observe their period
t+ 1 state on the asset market, and pool their liquid assets only with their peers. For in-
stance, let BS

t+1 (resp. BH
t+1) denote the aggregate real bond holdings by all savers (resp.

hand-to-mouth households) at the beginning of period t+ 1. BS
t+1 comprises all the in-

dividual liquid assets holdings, bSt+1 of the (1− λ)× s period t savers that remain savers
in t + 1, to which add all the individual liquid assets holdings, bHt+1 of the λ × (1 − h)

period t hand-to-mouth households that become savers in t+ 1. Accordingly, we have

BS
t+1 = (1− λ)sbSt+1 + λ(1− h)bHt+1 . (19)

Similarly, BH
t+1 comprises all the individual liquid assets holdings, bht+1 of the λ× h pe-

riod t hand-to-mouth households that remain hand-to-mouth in t+ 1, to which add all
the individual liquid assets holdings, bst+1 of the (1 − λ) × (1 − s) period t savers that
become hand-to-mouth households in t+ 1,

BH
t+1 = λhbHt+1 + (1− λ)(1− s)bSt+1 . (20)

Physical capital is illiquid, cannot be transferred across states and accumulates as

KS
t+1 = (1− δ)KS

t +Φ

(
ISt

KS
t

)
KS

t , (21)

17In this setup, transition probabilities also represent the proportion of households switching states.
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where δ ∈ (0,1] denotes the constant capital depreciation rate and Φ(·) describes how in-
vestment in final goods is turned into capital goods. This technology is increasing with
investment intensity (Φ′(·) > 0) and exhibits decreasing returns to scale (Φ′′(·) ≤ 0), a
manifestation of capital adjustment costs. We further impose Φ(δ) = δ and Φ′(δ) = 1

such that these costs are not operative in the deterministic steady state. Note that, since
only savers have access to capital markets, we have Kt = (1− λ)KS

t and It = (1− λ)ISt .

Saver: Saver households enter period t with the bond holdings, BS
t /(1 − λ), carried

from period t− 1 and which yield a real return ξt−1Rt−1/πt, where R is the gross nom-
inal interest rate, π is the inflation rate between t − 1 and t, and ξ is our DIS demand
shock. In the sequel, we will refer to it as the DIS demand shock, rather than to a bond
premium shock, to insure consistency with Section 2. The shock is assumed to follow an
exogenous AR(1) process defined in Equation (4). On top of these liquid assets, savers
also carry physical capitalKS

t that yield an after tax return (1−τK)RK
t , where τK ∈ [0,1)

denotes the constant capital income tax and RK
t is the real return on capital. Finally,

their capital income also comprises ωS
t /(1−λ) stocks each yielding an after tax dividend

(1− τD)Dt, with τD ∈ [0,1), and that resell at price qt. The savers also receive a transfer
FS
t from a financial intermediary and pay a lump sum tax TS

t to the government. Fi-
nally, they supply a variety of differentiated labor inputs LS

t (l) at a nominal wage Wt(l),
which generates a labor income ySt =

∫ 1
0 Wt(l)L

S
t (l)dl/Pt. These revenues finance con-

sumption and investment expenditures, CS
t and ISt , and savers’ financial investment in

the form of liquid bonds, bSt+1 and stocks, ωS
t+1, so as to maximize their intertemporal

utility. Accordingly, the optimal plan of a saver solves the Bellman equation

V S(BS
t , ω

S
t ,K

S
t ) = max

{CSt , ISt , bSt+1, ω
S
t+1}

U(CS
t ,L

S
t ) + βẼt

[
V S(BS

t+1, ω
S
t+1,K

S
t+1) +

λ

1− λ
V H(BH

t+1)

]
subject to

CS
t + bSt+1 + qt

ωS
t+1

1− λ
+ ISt = ySt +

ξt−1Rt−1

πt

BS
t

1− λ
+
(
qt + (1− τD)Dt

) ωS
t

1− λ

+ (1− τK)RK
t K

S
t − TS

t + FS
t , (22)

bSt+1 ≥ 0 and (19) − (21) ,

where the value function accounts for the possibility that, in period t+ 1, the saver may
become a hand-to-mouth household.18 Ẽt denotes the expectation operator that may
deviate from the full information rational expectation operator as discussed below.

Hand-to-mouth: The problem of hand-to-mouth households is similar to that of
savers, to the notable exception that they do not have access to capital markets, imply-
ing that they cannot accumulate neither capital nor stocks and receive transfers from the

18The next period hand-to-mouth value function is scaled by λ
1−λ as the state variable is written in terms

of total island bond holdings. As such, the relative transition probability λ
1−λ maps into the corresponding

individual transitions probabilities (s,1− s).
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government (TH
t ≤ 0). Just like savers, hand-to-mouth households decide consumption

expenditures, CH
t , their liquid bond holdings, bHt+1, so as to maximize their intertempo-

ral utility. Accordingly, the optimal plan of a saver solves the Bellman equation

V H(BH
t ) = max

{CHt , bHt+1}
U(CH

t ,L
H
t ) + βẼt

[
V H(BH

t+1) +
1− λ

λ
V S(BS

t+1, ω
S
t+1,K

S
t+1)

]
subject to

CH
t + bHt+1 = yHt +

ξt−1Rt−1

πt

BH
t

λ
− TH

t , (23)

bHt+1 ≥ 0 and (19) − (20) ,

where yHt ≡
∫ 1
0 Wt(l)L

H
t (l)dl/Pt denotes real labor income of hand-to-mouth agents.

Finally, we select an equilibrium on the financial market by placing the following
assumptions on asset holdings.

ASSUMPTION 1.

(A1.a) There is perfect insurance across households in the same state, but not across states.

(A1.b) Stocks and physical capital are illiquid and cannot be transferred across states.

(A1.c) Liquid bond holdings are weakly positive and the positivity constraint of hand-to-
mouth households binds in each period.

(A1.d) No bonds are traded in equilibrium.

(A1.a)–(A1.d) jointly apply and ensure a tractable representation of the bond mar-
ket equilibrium. Under (A1.a)–(A1.b), all savers (resp. hand-to-mouths) make equiva-
lent consumption and saving decisions. (A1.c) guarantees thatH households are strictly
hand-to-mouth, while (A1.d) imposes a zero liquidity limit (see e.g. Krusell et al., 2011).

4.1.2 Expectation Formation: We follow Gabaix (2014, 2020) and introduce cognitive
discounting on the effects of aggregate shocks.19 Consider a random variable Xt and
let Xt be the default value that agents assign to this variable in a given period t.20 Let
X̂t+1 ≡Xt+1 −Xt be the deviation of the future realization Xt+1 from the default value
as of period t. The behavioral expectation operator, Ẽt[·], is then defined as

Ẽt [Xt+1] = Ẽt

[
Xt + X̂t+1

]
=Xt + µEt

[
X̂t+1

]
, (24)

19Notice that saver households have positive wealth holdings due to the two asset structure, even under
the zero liquidity limit. To ensure comparability of the cognitive discounting across a larger class of models,
we differ from Gabaix (2020) by assuming that the behavioral expectation operator (24) is defined with
respect to the state comprising only the aggregate shock, not individual wealth. In mathematical terms, we

assume Ẽt
[
XS
t+1(St+1,KS

t+1)
]
= Ẽt

[
XS
t+1(St+1,0)

]
for some exogenous aggregate state vector St. This

assumption is innocuous in the sense that it maps into the same counterparts of the sufficient statistics
(ζf , βf ) and only changes their values without affecting their expression.

20For example, agents may have in mind the steady value ofXt as a default value, in which caseXt =X .
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where Et is the standard conditional expectation operator used under FIRE and µ ∈ [0,1]

is the cognitive discounting parameter. If µ= 1 then Ẽt [Xt+1] = Et [Xt+1] and expecta-
tions are rational. In contrast, if µ= 0 then expectations are fully anchored to the default
value Xt. Subsequently, we follow Gabaix (2020) and assume that households correctly
perceive the contemporaneous real interest rate on bond holdings and physical capital.
We denote the cognitive discounting parameter of the self-insurance equation by µb and
the one of the physical capital investment equation accordingly by µk.21

4.1.3 Firms The economy comprises a continuum j ∈ [0,1] of intermediary and a con-
tinuum of completely identical final good firms.

Final Good Sector: The final good sector is populated by a continuum of identical firms
that act in a competitive environment. They purchase intermediate goods, Xt(j), at
price Pt(j) on a competitive market and produce a homogeneous good, Yt, that is sold
for consumption and investment purposes at a price Pt and produced with the constant
return technology

Yt =

(∫ 1

0
Xt(j)

ϵp
ϵp−1 dj

) ϵp
ϵp−1

, with ϵp > 1 .

Profit maximization leads to the constant elasticity demand for intermediate good j

Xt(j) =

(
Pt(j)

Pt

)−ϵp

Yt ,

where Pt =
(∫ 1

0 Pt(j)
1−ϵpdj

) 1
1−ϵp denotes the aggregate price level.

Intermediate Good Sector: Each intermediate good j is produced by means of capital,
Kt(j), and labor Lt(j) according to a constant returns to scale technology described by
the production function

Xt(j) =AKt(j)
αLt(j)

1−α , with A> 0 and α ∈ (0,1) .

The labor input used by firm j is a composite of differentiated labor types and defined

by Lt(j) =
(∫ 1

0 Lt(j, l)
ϵw
ϵw−1 dl

) ϵw
ϵw−1

.

Intermediary good firms rent capital and labor in perfectly competitive factor mar-
kets. However, the firm is subject to working capital and workers must be paid ahead
of production. Consequently, every intermediate firm j borrows its nominal wage bill
WtLt(j) =

∫ 1
0 Wt(l)Lt(j, l)dl from a financial intermediary and repays the loan at the

end of period at a interest rate Rt. For simplicity, we assume that the financial inter-
mediary has access to an inexhaustible credit line with the central bank at no interest

21Heterogeneity in cognitive discount factors is meant to capture a combination of heterogeneous at-
tention to specific variables and a uniform cognitive discounting of the state, leading to a term structure of
attention, see Gabaix (2020), Section V.A.
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payments, and that it redistributes its aggregate profits at the end of period to savers
—i.e., FS

t = (Rt − 1)WtLt.
Intermediary goods firms behave under monopolistic competition, i.e., firm j has

local monopoly power and sets its price as in Calvo (1983). For instance, only a fraction
1−θp can adjust their price in each period. The remaining firms cannot re-optimize their
price and instead partially adjust their prices to past inflation according to Pt+τ |t(j) =

Pt+τ−1|t(j)Ξ
χp
t+τ−1, where Ξt = πt−1Ξt−1 ∀t ≥ 1 with Ξ0 = 1, and χp ∈ [0,1] reflects the

degree of indexation to past inflation. The firms that are allowed to re-adjust their price
do so by maximizing their discounted expected profits

max
P ∗
t

Ẽp
t

[ ∞∑
τ=0

θτpΨt,t+τYt+τ |τ (j)

(
P ∗
t Ξ

χp
t+τ−1

Pt+τ
−MCt+τ

)]
s.t. Yt+τ |τ (j) =

(
P ∗
t Ξ

χp
t+τ−1

Pt+τ

)−ϵp

Yt+τ ,

where Ψt,t+τ ≡ βτ
(
CS
t+τ/C

S
t

)−σ
is the savers’ stochastic discount factor, MCt+τ is the

marginal cost of each intermediate firm and Ẽp
t [·] denotes the behavioral expectation

operator of intermediate firms with cognitive discounting parameter µp.22 Finally, ag-
gregating across firms and using the Poisson process associated with the Calvo fairy, the
aggregate price index satisfies

P
1−ϵp
t = θp

(
Pt−1π

χp
t−1

)1−ϵp
+ (1− θp)(P

∗
t )

1−ϵp .

4.1.4 Nominal Wage Rigidities: Just like prices, nominal wages are subject to nomi-
nal rigidities. Following Colciago (2011), we assume that each variety (or skill) of la-
bor, l ∈ [0,1], supplied by households is represented by a labor union. Households are
uniformly distributed across these unions.23 Each skill-specific union aggregates labor
across households and sets nominal wages subject to Calvo (1983)–type nominal rigidi-
ties. In any given period, only a fraction 1 − θw of labor skill-specific unions can re-
optimize their wages. The remaining fraction adjusts wages based on past price infla-
tion, such that Wt+τ |t(l) =Wt+τ−1|t(l)Ξ

χw
t+τ−1, where χw ∈ [0,1] reflects the degree of

wage indexation to inflation, and Ξt was defined earlier. When allowed to re-optimize,
the union sets wages to maximize the utilitarian expected welfare of its members – both
savers and hand-to-mouth workers – subject to the aggregate demand for labor of type
l.24 The union’s optimization problem is:

max
W ∗
t (l)

Ẽw
t

[ ∞∑
τ=0

(βθw)
τ
(
λU(CH

t+τ ,L
H
t+τ ) + (1− λ)U(CS

t+τ ,L
S
t+τ )

)]

22Cost minimization of intermediary firms implies that Kt(j)
Lt(j)

= α
1−α

WtRt

PtR
K
t

. As all firms are symmetric,

real marginal costs are MCt(j) =MCt =Ψ(Rkt )
α ((Wt/Pt)Rt)

1−α, where Ψ≡ α−α(1− α)−(1−α)A−1.
23This assumption implies that the individual quantity of hours worked is equally distributed across

households, i.e., Lit = LHt = LSt = Lt. Note that the aggregate hours worked of a given individual are given
by Lit ≡

∫ 1
0 L

i
t(l)dl =

∫ 1
0 (Wt(l)/Wt)−ϵwLdt dl. The common labor market income of each household is

therefore given by
∫ 1
0 Wt(l)Lit(l)dl= Ldt

∫ 1
0 Wt(l)1−ϵw/W

−ϵw
t dl.

24The aggregate demand for labor of type l is given by Lt(l) =
∫ 1
0 Lt(j, l)dj. Using the fact that Lt(j, l) =

(Wt(l)/Wt)−ϵwLt(j), we have Lt(l) = (Wt(l)/Wt)−ϵw
∫ 1
0 Lt(j)dj = (Wt(l)/Wt)−ϵwLt.
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s.t. Lt+τ (l) =

(
W ∗

t (l)Ξt+τ−1

Wt+τ

)−ϵw

Lt+τ , (22) & (23) .

where Ẽw
t [·] denotes the behavioral expectation operator of unions with a cognitive dis-

counting factor µw , and Wt is the aggregate wage given by Wt ≡
(∫ 1

0 Wt(l)
1−ϵwdl

) 1
1−ϵw .

In a symmetric equilibrium where all unions set the same wage, Wt(l) =Wt, and apply-
ing the Calvo fairy, nominal wage dynamics simplify to:

W 1−ϵw
t = θw

(
Wt−1π

χw
t−1

)1−ϵw + (1− θw) (W
∗
t )

1−ϵw .

4.1.5 Policy Authorities The fiscal authority redistributes tax revenues across house-
holds, while maintaining a balanced budget without resorting to debt issuance:

λTH
t + (1− λ)TS

t = τDDt + τKRK
t Kt .

In addition, the monetary authority follows a simple Taylor rule of the form:

Rt =R
(πt
π

)ϕπ (Yt
Y

)ϕy

,

where ϕπ > 1 and ϕy > 0.

4.1.6 Aggregation and Market Clearing Finally, goods and input markets clear in all
periods such that

Lt = LH
t = LS

t =

∫ 1

0
Lt(l)dl , Kt =

∫ 1

0
Kt(j)dj , Yt(j) =Xt(j)∀ j , Yt =Ct + It .

4.2 Parametrization

We parametrize the model to match some key features of the US economy. Table 1 sum-
marizes the baseline parameters used in the calibration.

Parameters pertaining to household preferences are set to reflect standard values
used in the literature. The discount factor is set to β = 0.99, implying an annual real
interest rate of 4%. Agents are assumed to have logarithmic preferences over consump-
tion (σ = 1.00), as in Christiano et al. (2005).25 The inverse Frisch labor supply elasticity
is fixed at φ = 1.00, a value consistent with the meta-analysis of Chetty et al. (2013). To
match a steady-state share of work time at one-third of available time, we set the labor
disutility parameter to υ = 5.00.

Following Bilbiie et al. (2022), we assume that saver households transition to the
hand-to-mouth state with a 2% probability each quarter (s = 0.98). The share of hand-
to-mouth households is calibrated at λ = 0.30, closely aligning with the time-series av-
erage reported by Kaplan et al. (2014) based on SCF data from 1989-2010. This implies a
value for the probability of remaining a hand-to-mouth household of h= 0.95.

25Recent studies, such as Jakobsen et al. (2020) and Holm et al. (2024), suggest a higher EIS in the range
of 2− 3, i.e., σ ∈ [0.33,0.50], while Heathcote et al. (2010) specifies σ = 1.50 (EIS of 0.67). A value of 1.00 is
therefore in the middle of the range of commonly used values.
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TABLE 1. Parameters in the Benchmark US Economy

PARAMETER SYMBOL VALUE SOURCE/TARGET

Household Preferences
Discount factor β 0.99 annual nominal interest rate of 4%
Elasticity of inter-temporal substitution σ 1.00 logarithmic utility
Labor dis-utility υ 5.00 calibrated to match 1/3 time at work
Frisch elasticity φ 1.00 Meta-analysis Chetty et al. (2013)

Household Heterogeneity
Idiosyncratic risk s 0.98 Bilbiie et al. (2022)
Hand-to-mouth share λ 0.30 Kaplan et al. (2014)

Expectation Formation
Cognitive discounting HH’s bond DIS µb 0.85 Gabaix (2020)
Cognitive discounting HH’s capital DIS µk 1.00 benchmark value
Cognitive discounting firm’s price setting µp 0.85 Gabaix (2020)
Cognitive discounting unions’s wage setting µw 0.85 Gabaix (2020)

Intermediate Good Production
TFP A 1.00 benchmark value
Capital share α 0.33 US capital income share

Investment
Depreciation δ 0.025 Christiano and Eichenbaum (1992)
Jermann (1998) auxiliary parameter 1 aJ 0.500 benchmark value to match η = 2.00

Jermann (1998) auxiliary parameter 2 bJ 0.158 benchmark value to match Φ′(δ) = 1

Jermann (1998) auxiliary parameter 3 cJ −0.025 benchmark value to match Φ(δ) = δ

Price and Wage Setting
Price markup ϵp 6.00 price markup of 20%
Wage markup ϵw 6.00 wage markup of 20%
Calvo price reset probability θp 0.65 three quarter average price duration
Calvo wage reset probability θw 0.75 annual average wage duration
Price indexation χp 0.30 Smets and Wouters (2007)
Wage indexation χw 0.30 Smets and Wouters (2007)

Government Policy
Capital income tax τK 0.20 US marginal long-term capital gains tax
Dividend tax τD 0.20 US federal corporate income tax

Systematic Monetary Policy
Taylor rule inflation ϕπ 1.50 benchmark value
Taylor rule output ϕy 0.125 benchmark value

The physical capital accumulated by savers depreciates at a rate of δ = 0.025 per
quarter, consistent with a 10% annual depreciation estimated by Christiano and Eichen-
baum (1992). Following Jermann (1998), capital adjustment costs are modeled as

Φ(It/Kt) = bJ (1− aJ )
−1(It/Kt)

1−aJ + cJ .

The elasticity of Tobins Q with respect to investment, denoted by η, determines the ad-
justment cost parameters. We set η = 2.00, close to the unit elasticity assumed by Galí
et al. (2007). The remaining parameters are calibrated to insure that capital adjustment
costs are inoperative in the deterministic steady state (Φ′(δ) = 1 and Φ(δ) = δ), implying
aJ = η−1, bJ = δaJ , and cJ = δ− bJ (1− aJ )

−1δ1−aJ .
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Consistently with the values used in Gabaix (2020) and Pfäuti and Seyrich (2023),
saver households and firms are assigned a uniform cognitive discounting factor of
µb = µp = µw = 0.85, governing consumption-saving decisions, as well as price and wage
setting. However, we assume no cognitive discounting in the accumulation of physical
capital by savers, setting µk = 1.00. This assumption implies that capital decisions are
consistent with rational expectations.

On the firm side, and without loss of generality, we normalize steady-state total fac-
tor productivity (TFP) to A = 1. The capital elasticity of intermediate production func-
tion is set to α= 0.33.

Price and wage markups are set at 20%, implying ϵp = ϵw = 6. These values align with
Christiano et al. (2005) and Galí (2015), although the wage markup is slightly lower than
the ϵw = 21 used by Christiano et al. (2005).

Nominal rigidities in price and wage adjustments are captured through Calvo prob-
abilities. Following Galí (2015), we set θp = 0.65 and θw = 0.75, reflecting greater wage
stickiness relative to prices. These values are slightly higher than those in Christiano
et al. (2005), who use θp = 0.60 and θw = 0.65, but preserve the same ranking. Partial in-
dexation to past inflation is calibrated conservatively, with χp = χw = 0.30 —the level of
price indexation estimated for the US economy by Smets and Wouters (2007).

We calibrate fiscal parameters to align with U.S. tax policies. The capital income tax
rate is set at τK = 0.20, approximating the marginal long-term capital gains tax for high-
income brackets. Dividend taxes are also set at τD = 0.20, reflecting the U.S. federal
corporate income tax rate. We choose a time-invariant lump-sum transfer from saver
to hand-to-mouth households, i.e., TS

t = TS , such that the steady state consumption
of both household types is equalized given the capital and dividend taxes in place, i.e.,
CS =CH . The monetary policy uses in the Taylor rule a feedback to inflation of ϕπ = 1.50

and a feedback to output of ϕy = 0.125.
Finally, the persistence of the DIS shock is set to ρ = 0.60 to reflect a moderately

persistent shock.
Given this calibration, the equilibrium is locally determinate.26

4.3 Multipliers and Persistence

Figure 3 depicts the relationship between the impact multipliers and the persistence of
the DIS demand shock.27 As is clear from the figure, the multiplier of output, consump-
tion, investment, hours worked, and asset prices (Tobin’s Q) display a hump-shaped
pattern with respect to shock persistence, confirming that the analytical findings from
Section 2 extend to more complex environments. In particular, the introduction of a
backward looking component (capital accumulation, price and nominal wage indexa-
tion) or a cost channel in the NKPC does not affect our main result qualitatively.

Figure 4 illustrates the existence of the various monetary policy regimes, as deter-
mined by the thresholds ϕq

π
and ϕ

q
π , where the superscript q indicates that these thresh-

olds pertain to the quantitative model. Panel (a) of the figure reports the ρ-max as a func-
tion of the degree of aggressiveness towards inflation. It clearly shows that for weakly

26Section B.1 of the online appendix reports a detailed determinacy analysis of the equilibrium path.
27The interested reader is referred to the online appendix for impulse response functions.
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FIGURE 3. Impact Multipliers and the Persistence of DIS Demand Shocks
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Legend: The impact IRFs are denoted in terms of percentage deviation from steady state. Impact IRFs of
the nominal interest rate, inflation, and the real interest rate are expressed in annual terms.

aggressive policies (ϕπ < ϕq
π
= 1.25), the degree of persistence maximizing the output

impact multiplier is 1, as, in that regime, the PI channel dominates and the multiplier
increases with persistence (see Panel (b) of the figure, ϕπ = 1.2). Conversely, when the
central bank becomes very aggressive towards inflation (ϕπ > ϕ

q
π = 3.4), the RIR chan-

nel dominates, the degree of persistence maximizing the output impact multiplier is 0
and the output impact multiplier is decreasing in ρ (see Panel (b) of the figure, ϕπ = 3.5).
In between these values, the multiplier exhibits a hump-shared pattern as the relative
weight of the two channels varies with the degree of persistence of the shock.

FIGURE 4. Output Impact Multipliers and the Persistence of DIS Demand Shocks
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Figure 4 only gives a partial picture of the various monetary policy regimes that can
exist in this economy.

A positive DIS shock increases both output and inflation, prompting the central bank
to respond by raising the nominal interest rate. This, in turn, increases the marginal costs
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of monetary policy within the NKPC, exerting additional upward pressure on inflation.
When monetary policy reacts aggressively enough to inflation (ϕπ > 7.95), the resulting
increase in the real interest rate becomes so pronounced that the initially positive DIS
shock exerts a contractionary effect on output. In this scenario, where the RIR chan-
nel strictly dominates, the reversal in the output response introduces a fourth regime in
which the relationship between persistence and the multiplier is U-shaped, with ρ-max
reaching either 0 or 1 depending on the skewness of the U-shape. When monetary pol-
icy is even more aggressive (ϕπ > 15.60), closely approximating strict inflation targeting,
a fifth regime emerges. In this regime, inflation and output become almost unrespon-
sive to shocks, resulting in a ρ-max of 0.28 These two additional regimes are not reported
in Figure 4 for two main reasons. First, such extreme levels of monetary policy respon-
siveness to inflation are not observed empirically. Second, at such high values of ϕπ , the
economy closely approximates strict inflation targeting, diminishing the significance of
demand shocks to a negligible level.29

4.4 Quantitative Drivers of Monetary Policy-Persistence Regimes

This section tries to shed light on the mechanisms underlying the emergence of distinct
monetary policy-persistence regimes. To this end, we systematically re-compute regime
thresholds, as well as the ρ-max and impact multipliers, while selectively deactivating
specific model features. Our findings underscore the remarkable robustness of multiple
regimes across model variants. The results, are presented in Table 2 and are organized
around three types of experiments. First, we shut down the working capital, that in turn
switches off the marginal monetary cost channel in the NKPC. Then, we vary structural
parameters that directly determine the parameters in the DIS and NKPC equations —
the equivalent to βf , ζf and ζr in our analytical model of Section 3.3.1. Finally, we inves-
tigate the role played by the type of nominal rigidities for our results.

The working capital assumption implies that firms’ marginal costs are affected di-
rectly by interest rates, introducing a monetary policy cost channel. In equilibrium, this
channel, in combination with the Taylor rule, increases the sensitivity of the NKPC to
output, effectively steepening it. When the working capital assumption is removed, this
monetary policy cost channel is eliminated, leading to a flattening of the NKPC, which
is akin to an increase in price stickiness. As a result, as discussed in Section 2, the PI
channel becomes relatively stronger than the RIR channel. This shift has two immediate
implications. First, it raises the intermediate regime in which the output multiplier ex-
hibits a hump-shaped relationship with persistence, as the threshold ϕq

π
increases from

1.25 in the benchmark model to 1.95 in the version without working capital. Second,
it expands the range of this regime, with ϕ

q
π increasing significantly from 3.4 to nearly

15. Given the central bank’s inflation response coefficient of 1.5 in our parametrization,

28It is important to note that these extreme regimes do not occur in response to a monetary policy shock.
In this case, the response of the nominal interest rate—and by extension, the real interest rate—is subdued,
ensuring that output always remains expansionary regardless of the aggressiveness of monetary policy.

29For a complete picture, readers can refer to Figure B.3 in the online appendix.
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TABLE 2. Monetary Policy Regimes, Impact Multipliers and ρ−max

MODEL VARIANT PARAMETER REGIME IMPACT IRF

ϕq
π

ϕ
q
π ρ∗ M∗

y

Benchmark Model 1.25 3.40 0.86 0.38

Cost Channel of Monetary Policy

No Working Capital 1.95 14.90 0.99 0.65

Behavioral Parameters

Rational Expectations µb,p,w = 1.00 – 3.25 0.74 0.39

Higher EIS σ = 0.33 1.30 2.75 0.78 0.51

Less HtM Households λ= 0.01 1.15 3.15 0.78 0.37

No Idiosyncratic Risk s= 1.00 1.25 3.40 0.87 0.39

No Capital Redistribution τK = 0.00 1.25 3.40 0.86 0.37

No Dividend Redistribution τD = 0.00 1.30 3.40 0.88 0.43

Nominal Rigidities

No Price/Wage Indexation χp,w = 0.00 1.20 3.60 0.85 0.38

No Wage Indexation χw = 0.00 1.25 3.55 0.89 0.41

No Price Indexation χp = 0.00 1.20 3.40 0.81 0.36

Flexible Wages (only) θw = 0.00 1.15 1.80 0.31 0.13

Flexible Prices (only) θp = 0.00 0.70 0.95 0.00 -0.27

the economy without working capital falls within the lower regime, where the PI channel
strictly dominates the RIR channel, causing ρ-max to reach 1. Additionally, the flattening
of the NKPC implies an increase in the output impact multiplier when working capital
is removed, nearly doubling from 0.38 to 0.65.

Behavioral expectations significantly dampen the inflation expectation channel in
the NKPC —a drop in βf in the analytical version of Section 3.3.1— and reduce the PI
channel in the DIS equation —a drop in ζf in the analytical version of Section 3.3.1.
Therefore, shifting to rational expectations has two direct consequences. First, it sub-
stantially strengthens the PI channel in the DIS equation. Second, it amplifies the role of
inflation expectations in the NKPC, thereby strengthening the RIR channel —the same
response of monetary policy exerts a larger effect on consumption and output. In our
parameterization, the latter effect dominates, hence requiring a less aggressive mone-
tary policy stance to stabilize inflation. Thus, the lower threshold ϕq

π
decreases so much

that the lower monetary policy regime effectively disappears. The relatively stronger RIR
channel also causes ρ-max to decline from 0.86 in the benchmark model to 0.74.
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In the lines of Jakobsen et al. (2020) and Holm et al. (2024), we increase the intertem-
poral elasticity of substitution. This variation in the IES strengthens the RIR channel
in the DIS equation —an increase in ζr in the analytical version of Section 3.3.1—and
reduces the sensitivity of the NKPC to output —κy in the analytical model, thereby
strengthening the role of inflation expectations. As discussed above, both effects call
for a less aggressive monetary policy. Consequently, ceteris paribus, the monetary pol-
icy regime thresholds ϕq

π
and ϕ

q
π decrease. However, this decline is partially offset by the

monetary policy cost channel in the NKPC, which, as formally analyzed, increases the
sensitivity of the NKPC to output in equilibrium and plays in the opposite direction. Un-
der our parametrization, this results in a slight increase in the lower threshold ϕq

π
, while

the upper threshold, ϕ
q
π , decreases. This adjustment narrows the range of values over

which the output multiplier exhibits a hump-shaped relationship with respect to persis-
tence. The dominance of the RIR channel leads to a lower ρ-max, 0.78, together with a
larger impact multiplier, 0.5.

The direct effect of the presence of hand-to-mouth households is to diminish the
influence of both the PI and RIR channels. However, among others Werning (2015) and
Bilbiie (Forthcoming) showed that, when income risk and inequality are countercyclical,
indirect general equilibrium effects lead to a departure from the "as if" representative
agent benchmark and reverse this statement: both channels are reinforced. By nearly
eliminating these households and the associated indirect effect of hand-to-mouth be-
havior, permanent income effects regain prominence and both channels recede. For our
calibration, the PI channel weakens relatively more than the RIR channel. As previously
discussed, a less aggressive monetary policy is required to achieve the same level of sta-
bilization, resulting in a reduction in both monetary policy regime thresholds ϕq

π
and ϕ

q
π

—specifically, to 1.15 and 3.15, respectively, for our parametrization. While this adjust-
ment is accompanied by a decrease in ρ-max, the concurrent weakening of the PI and
RIR channels leaves the impact multiplier unaffected.

Cyclical inequality, idiosyncratic income risk, and redistribution policies have only
minimal effects on regime thresholds, the ρ-max, and the output impact multiplier.
From the perspective of the analytical model in Section 3.3.1, each of these mechanisms
alters the ratio between the discounting component of the DIS equation (ζf in the ana-
lytical model) and the DIS elasticity with respect to the real interest rate (ζr in the ana-
lytical model). However, each parameter contributes, quantitatively, very little to these
elasticities and, more critically, to their ratio. As demonstrated in Proposition 9, this ra-
tio plays a pivotal role in determining the regime thresholds, the ρ-max, and the output
impact multiplier. The result then follows.

Last, we examine the role of nominal rigidities for our results. We start by investigat-
ing the role of price and wage indexation, which act as an endogenous source of per-
sistence in inflation and wage dynamics. Results reported in the lower panel of Table
2 clearly show that indexation, be it in wages and/or prices, does not play an impor-
tant quantitative role for the monetary regime threshold, the ρ-max and the multiplier.
The main reason for this result lies in the fact that, while indexation may create some
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propagation of nominal rigidities, it does not fundamentally affect the transmission of
monetary policy on impact.

In contrast, the combined presence of nominal price and wage rigidity plays a sig-
nificant role. When nominal wages are flexible and prices are sticky, real wages—and
consequently, firms’ marginal costs—become more sensitive to changes in demand. In
this context, monetary policy gains greater effectiveness. As a result, the upper regime
threshold decreases sharply, dropping from ϕ

q
π = 3.40 to ϕ

q
π = 1.80. This reduction is ac-

companied by a lower ρ-max (ρ∗ = 0.31).
In the case of flexible prices and sticky wages, the inflation rate becomes signifi-

cantly more responsive compared to the previous scenario. Since the central bank tar-
gets price inflation —and not wage inflation— the RIR channel is much stronger than
in an economy characterized by flexible wages and sticky prices. As a result, both the
upper and lower monetary policy thresholds drop sharply. Specifically, the lower thresh-
old decreases from ϕq

π
= 1.30 to 0.70, while the upper threshold drops from ϕ

q
π = 3.40 to

0.95. This sharp reduction is accompanied by a collapse of ρ-max to ρ∗ = 0.00, as the RIR
channel overwhelmingly dominates the PI channel in the DIS equation. This dominance
leads to a pronounced recessionary response in output.

4.5 The Role of Monetary Policy

The preceding discussions have highlighted the importance of monetary policy in shap-
ing how persistence affects the output impact multiplier. In this section, we exam-
ine how adopting a forward-looking monetary policy rule or introducing interest rate
smoothing can modify these results. Figure 5 illustrates the emergence of the regimes
and the determination of the ρ-max as a function of the aggressiveness of various mon-
etary policies towards inflation.

FIGURE 5. ρ-max and the Monetary Policy
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We begin by examining the case in which the central bank adopts a forward-looking
Taylor rule, expressed as:

Rt =R

(
Et[πt+1]

π

)ϕπ (Et[Yt+1]

Y

)ϕy

,

where the central banker is assumed to have rational expectations regarding future out-
put and inflation. In the absence of the monetary policy cost channel, Proposition 7
established that expected output stabilization counteracts the PI channel, causing both
monetary policy regime thresholds to recede. However, in this version of the model, the
inclusion of working capital introduces a monetary policy cost channel in the NKPC.
This channel amplifies the inflation response, necessitating a more aggressive Taylor
rule to achieve the same degree of inflation stabilization. Consequently, under our cali-
bration, the upper threshold rises from ϕπ = 3.40 to 3.87.30 This effect is less pronounced
for the lower threshold, which declines from 1.25 to 1.05.

Next, we analyze the case where the central bank aims to smooth nominal interest
rate fluctuations by adopting a rule of the form:

Rt =RρR
t−1

[
R
(πt
π

)ϕπ (Yt
Y

)ϕy
]1−ρR

,

where ρR ∈ [0,1] represents the degree of interest rate inertia or smoothing. At one ex-
treme, this rule simplifies to the baseline contemporaneous Taylor rule when ρR = 0,
while ρR → 1 implies complete interest rate smoothing. For this analysis, we select an
intermediate value, ρR = 0.50, while maintaining ϕy = 0.125. Under these assumptions,
for a DIS demand shock, the regime thresholds increase to ϕg

π
= 1.89 and ϕ

g
π = 6.15. In-

terest rate smoothing prevents the RIR channel from being fully operative at the time
the shock hits the economy. As a result, the RIR channel affects the economy only under
a more aggressive Taylor rule with respect to inflation. Consequently, both monetary
regime thresholds shift upward. Under our benchmark calibration with ϕπ = 1.5, the
economy operates in the upper regime, where the PI channel dominates entirely. In this
case, ρ-max reaches its upper limit, i.e., ρ∗ = 1. Note however that estimated values of ϕπ
greater than 2 often obtain in various models (see e.g. Clarida et al., 2000), which would
reignite the hump-shaped mechanism.

5. Concluding Remarks

This paper attempts to shed light on how the persistence of DIS demand shocks inter-
acts with monetary policy to shape short-term macroeconomic outcomes within the
New Keynesian framework. We start by studying a simplified RANK model to derive
closed-form solutions. We identify two key propagation mechanisms: a permanent in-
come channel, which amplifies the effects of persistent shocks, and a real interest rate

30The discontinuity in ρ-max arises because, in the presence of the monetary policy cost channel, the
output multiplier becomes negative when ϕπ > 3.87, reaching its maximum at ρ∗ = 0.
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channel, which works in the opposite direction and encapsulates all general equilib-
rium effects pertaining to monetary policy and nominal rigidities. The interaction be-
tween these two forces depends on the central bank’s monetary policy stance. Under an
accommodative policy, persistent demand shocks amplify the output response due to
the dominance of the permanent income channel. In contrast, aggressive policies sup-
press output responses as the real interest rate channel becomes predominant. In an
intermediate policy regime, towards which most empirically estimated degrees of mon-
etary policy aggressiveness to inflation point to, the relationship between persistence
and output exhibits a hump-shaped pattern.

We extend the analysis to medium-scale DSGE models incorporating household
heterogeneity, behavioral frictions, nominal price and wage rigidities, working capital
and capital accumulation. Our results confirmed the robustness of the hump-shaped
persistence-output relationship across richer and more compelling settings. The nu-
anced interplay between propagation channels underscores the importance of tailoring
policy responses to the nature and persistence of demand shocks.
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ONLINE APPENDIX (NOT FOR PUBLICATION)

The Power of Persistence

How Demand Shocks and Monetary Policy Shape Macroeconomic Outcomes

The Online Appendix consist of two main parts: first, the Analytical Appendix A that
contains proofs and derivations of the analytical insights; second, the Quantitative Ap-
pendix B that provides additional results to the quantitative model.

Specifically, Appendix A.1 contains the RANK model, Appendix A.2 the general New
Keynesian model, Appendix A.3 the extension with a cost channel of monetary policy,
Appendix A.4 provides formal results towards a structural interpretation of the general
NK model, Appendix A.5 contains further analytical characterizations, and Appendix A.6
some numerical results derived from the analytical model. Regarding the Quantitative
Appendix, Appendix B.1 provides determinacy regions of various model variants, Ap-
pendix B.2 provides all impulse response function to our baseline calibration, and Ap-
pendix B.3 contains a complete overview over the various monetary regimes.

APPENDIX A: Analytical Appendix

A.1 Representative Agent New Keynesian Model

Subsequently, we provide derivations with a contemporaneous Taylor rule that reacts to
inflation and output, i.e., it = r̄ + ϕππt + ϕyyt. The expressions in the main body of the
text are obtained by setting ϕy = 0.

A.1.1 Proof Proposition 1

PROOF. Substituting the Taylor rule into the DIS equation (1) results in

(1 + ϕy)yt = Et [yt+1] +Et [πt+1]− ϕππt + ξt .

We guess and verify that the solution takes the form yt =Myξt and πt =Mπξt, such that
the previous equation together with the NKPC can be rewritten as

(1 + ϕy − ρ)My =− (ϕπ − ρ)Mπ + 1 ,

(1− βρ)Mπ = κyMy .

Substituting the latter into the former equation gives us

(1 + ϕy − ρ)My =− (ϕπ − ρ)
κy

1− βρ
My + 1 ,

which finally yields

My =
1− βρ

(1 + ϕy − ρ) (1− βρ) + (ϕπ − ρ)κy
> 0 .
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The impact multipliers for inflation, the nominal interest rate, and the real interest rate
then follow by

Mπ =
κy

(1 + ϕy − ρ) (1− βρ) + (ϕπ − ρ)κy
> 0 ,

Mi =
ϕπκy + ϕy (1− βρ)

(1 + ϕy − ρ) (1− βρ) + (ϕπ − ρ)κy
> 0 ,

Mr =
(ϕπ − ρ)κy + ϕy (1− βρ)

(1 + ϕy − ρ) (1− βρ) + (ϕπ − ρ)κy
> 0 ,

where the sign of Mr follows from the Taylor principle (ϕπ − 1)κy + ϕy(1− β)> 0, i.e.,

sgn (Mr) = (ϕπ − ρ)κy + ϕy (1− βρ) = (ϕπ − 1)κy + ϕy(1− β) + (κy + βϕy)(1− ρ)> 0 .

A.1.2 Proof Proposition 2

PROOF. Taking the derivative of My with respect to ρ yields

∂My

∂ρ
=
−β [(1 + ϕy − ρ) (1− βρ) + (ϕπ − ρ)κy] + (1− βρ) [(1− βρ) + β(1 + ϕy − ρ) + κy]

[(1 + ϕy − ρ) (1− βρ) + (ϕπ − ρ)κy]
2 .

Defining x≡ (1 + ϕy − ρ) (1− βρ) + (ϕπ − ρ)κy , the previous expression simplifies to

x2
∂My

∂ρ
=(1− βρ)2 + (1− βϕπ)κy .

As a result, the sign of the previous expression is determined by a second order polyno-
mial in ρξ , i.e.,

sgn
(
∂My

∂ρ

)
= aρ2 + bρ+ c ,

where the auxiliary parameters are given by

a≡ β2 , b≡−2β , c≡ 1 + (1− βϕπ)κy .

The corresponding roots are

ρ+,− =
−b±

√
∆

2a
,

where the discriminant ∆≡ b2 − 4ac is given by

∆= 4β2 − 4β2 [1 + (1− βϕπ)κy] = 4β2(βϕπ − 1)κy .

Consequently, the following case distinction applies. First, ϕπ < β−1 implies ∆< 0 and
the second order polynomial has two distinct complex roots. Second, ϕπ = β−1 implies
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∆ = 0 and the second order polynomial has a unique real root that is given by − b
2a =

β−1 > 1. Third, ϕπ > β−1 implies that the second order polynomial has two real-valued
roots that are given by

ρ+,− =
2β ±

√
4β2(βϕπ − 1)κy

2β2
= β−1

(
1±

√
(βϕπ − 1)κy

)
.

Evidently, ρ+ > 1 as β ∈ (0,1) and ϕπ > β−1 such that the only feasible candidate on
ρ ∈ (0,1) is

ρ∗ ≡ ρ− = β−1

(
1−

√
(βϕπ − 1)κy

)
.

Notice that ρ∗ ∈ (0,1) if ϕ
π
< ϕπ < ϕπ , where we have

ϕ
π
≡ β−1

(
1 + (1− β)2κ−1

y

)
, and ϕπ ≡ β−1

(
1 + κ−1

y

)
.

As f(ρ) ≡ aρ2 + bρ + c is a strictly convex function in ρ, statement (b) of Proposition 2
follows.

To show statement (a) of Proposition 2, notice that sgn
(
∂My

∂ρ

)
is strictly decreasing

in ϕπ . Hence, substituting in the lower bound ϕ
π

, we obtain

sgn
(
∂My

∂ρ

)
|ϕπ=ϕ

π
= β2ρ2 − 2βρ+ 1+ (1− βϕ

π
)κy = (1− βρ)2 − (1− β)2 > 0 ,

where the last inequality applies as ρ ∈ [0,1). As a result, we have ∂My

∂ρ > 0 for all ϕπ ≤ ϕ
π

.

Finally, to show statement (c) we analogously substitute in for the upper bound ϕπ
to obtain

sgn
(
∂My

∂ρ

)
|ϕπ=ϕπ

= β2ρ2 − 2βρ+ 1+ (1− βϕπ)κy = βρ [βρ− 2]< 0

where the last inequality applies as ρ ∈ [0,1). Notice that the previous inequality is strict
for ρ > 0. As a result, we have ∂My

∂ρ < 0 for all ϕπ ≥ ϕ
π

.

A.1.3 Proof Proposition 3

PROOF. Recall that the impact multiplier of the real interest rate is given by

Mr =
(ϕπ − ρ)κy + ϕy (1− βρ)

(1 + ϕy − ρ) (1− βρ) + (ϕπ − ρ)κy
.

As before, defining x≡ (1 + ϕy − ρ) (1− βρ) + (ϕπ − ρ)κy , we obtain

x2
∂Mr

∂ρ
=− (κy + βϕy) [(1 + ϕy − ρ) (1− βρ) + (ϕπ − ρ)κy]

+

(
(1− βρ) + β(1 + ϕy − ρ) + κy

)
[(ϕπ − ρ)κy + ϕy (1− βρ)] .
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The previous expression can be further simplified to

x2 ∂Mr
∂ρ = κy (ϕπ − ρ) [1 + β − 2βρ]− κy(1 + ϕy − ρ) (1− βρ) + ϕy (1− βρ) [(1− βρ) + κy] .

Collecting terms in ϕy yields

x2
∂Mr

∂ρ
=ϕy (1− βρ)2 + κy

(
[1 + β − 2βρ] (ϕπ − ρ)− (1− ρ) (1− βρ)

)
=ϕy (1− βρ)2 + κy

(
[1 + β − 2βρ]ϕπ − [1 + β − 2βρ]ρ−

[
1− βρ− ρ+ βρ2

])
=ϕy (1− βρ)2 + κy

(
[1 + β − 2βρ]ϕπ − 1 + βρ2

)
.

As a result, we obtain

∂Mr

∂ρ
=

ϕy (1− βρ)2 + κy

(
[1 + β − 2βρ]ϕπ − 1 + βρ2

)
x2

.

Let us denote the numerator of the previous expression by f(ρ). Note that f(ρ) is a sec-
ond order polynomial in ρ, i.e., f(ρ) = aρ2 + bρ+ c, where

a= β (βϕy + κy) ,

b=−2β (ϕy + ϕπκy) ,

c= (βϕπ − 1)κy + ϕy + ϕπκy .

Notice that we obtain

lim
ρ→0

f(ρ) = ϕy + (ϕπ − 1)κy + βϕπκy = ϕy(1− β) + (ϕπ − 1)κy + β (ϕy + ϕπκy)> 0 ,

lim
ρ→1

f(ρ) = (1− β) [ϕy(1− β) + (ϕπ − 1)κy]> 0 ,

where the signs are ensured by the Taylor principle and the restriction that ϕπ and ϕy are
non-negative parameters. Consider now the following case distinction and let ∆ denote
the discriminant of f(ρ). First, if ∆ < 0, then f(ρ) does not change its sign on ρ ∈ [0,1),
i.e., ∂Mr

∂ρ > 0 applies throughout. Second, if ∆ = 0, the unique root of f(ρ) is given by
ϕy+ϕπκy
βϕy+κy

> 1, where the strict inequality follows in turn from the Taylor principle. As

such, ∂Mr
∂ρ > 0 applies throughout. Third, if ∆ > 0, both distinct real roots of f(ρ) are

characterized by

ρ+,− =
2β (ϕy + ϕπκy)±

√
4β2 (ϕy + ϕπκy)

2 − 4β (βϕy + κy) [(βϕπ − 1)κy + (ϕy + ϕπκy)]

2β (βϕy + κy)

=
ϕy + ϕπκy
βϕy + κy

± 1

βϕy + κy

√
(ϕy + ϕπκy)

2 − β−1 (βϕy + κy) [ϕy + ϕπκy − (1− βϕπ)κy] .
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Notice that ρ+ > 1 by the Taylor principle and ∆> 0. Moreover, we have ρ− > 1 as well if

[(1− β)ϕy + (ϕπ − 1)κy]
2 > (ϕy + ϕπκy)

2 − β−1 (βϕy + κy) [ϕy + ϕπκy − (1− βϕπ)κy]

⇔ [ϕy + ϕπκy − (βϕy + κy)]
2 > (ϕy + ϕπκy)

2 − β−1 (βϕy + κy) [ϕy + ϕπκy − (1− βϕπ)κy]

⇔− 2(ϕy + ϕπκy)(βϕy + κy) + (βϕy + κy)
2 >−β−1 (βϕy + κy) [ϕy + ϕπκy − (1− βϕπ)κy]

⇔(βϕy + κy)
[
βϕy + κy − 2(ϕy + ϕπκy) + β−1 [ϕy + ϕπκy − (1− βϕπ)κy]

]
> 0

⇔(βϕy + κy)(β
−1 − 1) [ϕy(1− β) + (ϕπ − 1)κy]> 0 ,

which is satisfied throughout as β ∈ [0,1) and the Taylor principle holds. As a result, we
have that that both roots are strictly larger than unity. Also, recognize that f(ρ) is strictly
decreasing in ρ on ρ ∈ [0,1) as 2β [ϕy(βρ− 1) + κy(ρ− ϕπ)]< 0. As a result, ∂Mr

∂ρ > 0 ap-
plies throughout. Combined with the previous result, the real interest rate thus strictly
increases in the persistence of a DIS-demand shock.

A.1.4 Proof Corollary 1

PROOF. To begin with, it follows from the regime thresholds of Proposition 2 that

∆π ≡ ϕπ − ϕ
π
= β−1

(
1 + κ−1

y

)
− β−1

(
1 + (1− β)2κ−1

y

)
=

2− β

κy
.

As a result, we obtain

∂∆π

∂κy
=−2− β

κ2y
, and

∂∆π

∂β
=−

κy + (2− β)
∂κy
∂β

κ2y
.

In the case of Rotemberg pricing, we have ∂κy
∂β = 0. Contrary, in the case of Calvo pricing,

we obtain ∂κy
∂β =−κy θ

1−βθ such that

∂∆π
∂β =−

κy+(2−β)
∂κy
∂β

κ2
y

=−
1−(2−β) θ

1−βθ
κy

=− (1−βθ)−(2−β)θ
κy(1−βθ) =− 1−2θ

κy(1−βθ) .

As a result,

sign
(
∂∆π

∂β

)
⪌ 0 ⇔ θ ⪌ 1

2
.

A.1.5 Proof Proposition 4

PROOF. Proposition 4 follows by comparing

lim
ρ→0

My =
1

1+ ϕy + ϕπκy
and lim

ρ→1
My =

1− β

ϕy(1− β) + (ϕπ − 1)κy
,
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where lim
ρ→0

My > lim
ρ→1

My applies if ϕπ > β−1
(
1 + (1− β)κ−1

y

)
, where the right hand side

is strictly larger than ϕ
π

and strictly smaller than ϕπ . This concludes the proof.

A.1.6 Proof Proposition 5

PROOF. The proof follows the same steps as the ones of Propositions 1 and 2. Specifi-
cally, using the MOUC we obtain the impact multipliers for output (My(ρν)) and infla-
tion (Mπ(ρν)) as indicated in the main text. Statement (a) follows then from

∂My

∂ρν
=− (1− βρν)(ϕπ − 1) + (ϕπ − ρν)β(1− ρν)

[(1− ρν)(1− βρν) + (ϕπ − ρν)κy]
2 < 0 ,

where the sign is determined by the Taylor principle. To show statement (b), note that

∂Mπ

∂ρν
=
β(1− ρν)

2 + κy [1− ρν − (ϕπ − ρν)]

[(1− ρν)(1− βρν) + (ϕπ − ρν)κy]
2 .

As a result, the sign of the previous expression is determined by a second order polyno-
mial in ρν , i.e.,

sgn
(
∂Mπ

∂ρν

)
= aρ2ν + bρν + c ,

where the auxiliary parameters are given by

a≡ β , b≡−2β , c≡ β + (1− ϕπ)κy .

The corresponding roots are

ρ+,−
ν =

−b±
√
∆

2a
,

where the discriminant ∆≡ b2 − 4ac is given by

∆= 4β2 − 4β [β + (1− ϕπ)κy] = 4β(ϕπ − 1)κy .

Consequently, the following case distinction applies. First, ϕπ < 1 implies ∆< 0 and the
second order polynomial has two distinct complex roots. Second, ϕπ = 1 implies ∆= 0

and the second order polynomial has a unique real root that is given by − b
2a = 1. Third,

ϕπ > 1 implies that the second order polynomial has two real-valued roots:

ρ+,−
ν =

2β ±
√
4β(ϕπ − 1)κy

2β
= 1±

√
(ϕπ − 1)κy

β
.

Evidently, ρ+ν > 1 as ϕπ > 1 such that the only feasible candidate on ρν ∈ (0,1) is

ρ∗ν ≡ ρ−ν = 1−

√
(ϕπ − 1)κy

β
.
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Note that ρ∗ν ∈ (0,1) if ϕ
π
< ϕπ < ϕπ , where we have

ϕ
π
≡ 1 , and ϕπ ≡ 1 +

β

κy
.

As f(ρν)≡ aρ2ν + bρν + c is strictly convex in ρν , statement (b.1) of Proposition 5 follows.

Finally, to show statement (b.2) note that sgn
(
∂Mπ
∂ρν

)
strictly decreases in ϕπ . We

then substitute in for the upper bound ϕπ to obtain

sgn
(
∂Mπ

∂ρν

)
|ϕπ=ϕπ

= βρ2ν − 2βρν + β + (1− ϕπ)κy = βρν [ρν − 2]< 0

where the last inequality applies as ρν ∈ [0,1). Notice that the previous inequality is strict
for ρν > 0. As a result, we have ∂Mπ

∂ρν
< 0 for all ϕπ ≥ ϕπ .

A.1.7 Proof of Proposition 6

PROOF. Subsequently, we provide derivations with a contemporaneous Taylor rule that
reacts to inflation and output, i.e., it = r̄+ϕππt+ϕy ŷt. The expressions in the main body
of the text are obtained by setting ϕy = 0. Under logarithmic preferences, the impact
multiplier for output and inflation are derived in Galí (2015) and given by

My = 1− (1− ρa)(1− βρa)

[1− ρa + ϕy] (1− βρa) + κy(ϕπ − ρa)
=

(1− βρa)ϕy + κy(ϕπ − ρa)

[1− ρa + ϕy] (1− βρa) + κy(ϕπ − ρa)
,

Mπ =−κy
1− ρa

[1− ρa + ϕy] (1− βρa) + κy(ϕπ − ρa)
.

To begin with, we show Statement (a). Defining the auxiliary variable x≡ [1− ρa + ϕy] (1−
βρa) + κy(ϕπ − ρa) and taking the comparative static with respect to the persistence ρa
yields

x2
∂My

∂ρa
=− (βϕy + κy) [(1− ρa + ϕy)(1− βρa) + κy(ϕπ − ρa)]

+

(
β(1− ρa + ϕy) + (1− βρa) + κy

)
[(1− βρa)ϕy + κy(ϕπ − ρa)] .

Collecting terms simplifies the previous expression to

x2
∂My

∂ρa
= (1− βρa)

{
(1− βρa)ϕy + κy(ϕπ − ρa)− (βϕy + κy)(1− ρa + ϕy)

}
+ (βϕy + κy)

{
(1− βρa)ϕy + κy(ϕπ − ρa)− κy(ϕπ − ρa)

}
+ β(1− ρa)

{
(1− βρa)ϕy + κy(ϕπ − ρa)

}
,
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which can be further simplified to

x2
∂My

∂ρa
= (1− βρa)ϕy

{
1− βρa + βϕy + κy + β(1− ρa)− β(1− ρa + ϕy)− κy

}
+ κy

{
β(1− ρa)(ϕπ − ρa) + (1− βρa)(ϕπ − ρa)− (1− ρa)(1− βρa)

}
.

The previous equation can be rewritten to

x2
∂My

∂ρa
= (1− βρa)

2ϕy + κy(ϕπ − 1)

{
1− βρa + β(1− ρa)

}
+ κyβ(1− ρa)

2 .

Recall that the equilibrium is locally determinate under (1− β)ϕy + κy(ϕπ − 1)> 0 such
that we have

sgn
(
∂My

∂ρa

)
= (1− βρa)

2ϕy + κy(ϕπ − 1)

{
1− βρa + β(1− ρa)

}
+ κyβ(1− ρa)

2

> (1− βρa)
2ϕy − (1− β)ϕy

{
1− βρa + β(1− ρa)

}
+ κyβ(1− ρa)

2

= ϕy

{
(1− βρa)

2 −
(
1− βρa − β(1− ρa)

)(
1− βρa + β(1− ρa)

)}
+ κyβ(1− ρa)

2

= (ϕyβ + κy)β(1− ρa)
2

> 0 ,

which shows that the impact output multiplier monotonously increases in ρa.
To prove Statement (b), the derivative of Mπ with respect to ρa yields

x2
∂Mπ

∂ρa
= κy

{(
[1− ρa + ϕy] (1− βρa) + κy(ϕπ − ρa)

)
− (1− ρa)

(
β(1− ρa + ϕy) + (1− βρa) + κy

)}
= κy

{
(1− βρa)ϕy + κy(ϕπ − ρa)− (1− ρa)

(
β(1− ρa + ϕy) + κy

)}
= κy

{
−β(1− ρa)

2 + (1− β)ϕy + κy(ϕπ − 1)

}
.

As a result, the sign of the previous expression is determined by a second order polyno-
mial in ρa, i.e.,

sgn
(
∂Mπ

∂ρa

)
= aρ2a + bρa + c ,

where the auxiliary parameters are given by

a≡−β , b≡ 2β , c≡−β + (1− β)ϕy + κy(ϕπ − 1) .

The corresponding roots are

ρ+,−
a =

−b±
√
∆

2a
,
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where the discriminant ∆≡ b2 − 4ac is given by

∆= 4β2 − 4(−β) [−β + (1− β)ϕy + κy(ϕπ − 1)] = 4β [(1− β)ϕy + κy(ϕπ − 1)] .

Consequently, ∆> 0 holds by the determinacy condition and the second order polyno-
mial has two real-valued roots that are given by

ρ+,−
a =

−2β ±
√
4β [(1− β)ϕy + κy(ϕπ − 1)]

−2β
= 1±

√
(1− β)ϕy + κy(ϕπ − 1)

β
.

Evidently, ρ+a > 1 holds by the determinacy condition, i.e., the only feasible candidate
on ρa ∈ (0,1) is

ρ∗a ≡ ρ−a = 1−

√
(1− β)ϕy + κy(ϕπ − 1)

β
.

Note that ρ∗a ∈ (0,1) if 0 < (1 − β)ϕy + κy(ϕπ − 1) < β, which is equivalent to ϕπ < ϕπ ,
where

ϕπ ≡ 1 +
β − (1− β)ϕy

κy
.

As f(ρa)≡ aρ2a+bρa+c is a strictly concave function in ρa, statement (b.1) of Proposition
6 follows. To show statement (b.2), notice that (1− β)ϕy + κy(ϕπ − 1)≥ β implies

sgn
(
∂Mπ

∂ρa

)
= f(ρa) =−β(1− ρa)

2 + (1− β)ϕy + κy(ϕπ − 1)

≥ β
[
1− (1− ρa)

2
]

≥ 0 ,

where the last inequality applies as ρa ∈ [0,1) and is strict for ρa > 0. As a result, we have
∂Mπ
∂ρa

> 0 for all parameter combinations characterized by (1−β)ϕy+κy(ϕπ−1)≥ β.

A.1.8 Proof Proposition 7 To begin with, we offer a full statement of the Proposition 7.
Specifically, under a forward-looking Taylor rule, three sub-cases arise depending on the
aggressiveness of inflation and output feedback, i.e., the following proposition comple-
ments statement (b) in the main text by two sub-cases, (b.2) ϕπ = 1 and (b.3) 0≤ ϕπ < 1.
Overall, a forward-looking Taylor behaves similar to a contemporaneous rule if inflation
feedback is sufficiently strong and output feedback sufficiently moderate.

PROPOSITION 10. The following results apply.

(a) Assume the monetary authorities react to both the current inflation rate and the
current output gap, i.e. it = r̄+ ϕππt + ϕyyt, Proposition 2 continues to hold identi-
cally.
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(b) Assume the monetary authorities react to the one-step ahead expected inflation and
output gap, i.e. it = r̄ + ϕπEt [πt+1] + ϕyEt [yt+1]. The subsequent case distinction
applies.

(b.1) Consider the case ϕπ > 1:

• If 0 ≤ ϕy < min{1,2 − ϕπ−1
1+β κy}, there exist two regime thresholds given by

ϕ
π
≡ 1+(1−ϕy)(1−β)2κ−1

y and ϕπ ≡ 1+(1−ϕy)κ−1
y such that the relation-

ship between the output impact multiplier and the degree of persistence (i) is
increasing if ϕπ ≤ ϕ

π
, (ii) is decreasing if ϕπ ≥ ϕπ , and (iii) displays a hump-

shaped pattern if ϕ
π
< ϕπ < ϕπ . In this latter case, the degree of persistence

that maximizes the output multiplier is given by ρ∗ = β−1
(
1−

√
ϕπ−1
1−ϕy

κy

)
.

• If 1 ≤ ϕy < min{1 + β−1,2 − ϕπ−1
1+β κy}, only the upper regime survives and

the output multiplier decreases monotonically with ρ.

(b.2) Consider the case ϕπ = 1:

• If 0< ϕy < 1, the output multiplier increases monotonously in ρ.

• If ϕy = 1, the output multiplier is constant as ρ is varied.

• If 1< ϕy < 2, the output multiplier decreases monotonously in ρ.

(b.3) Consider the case 0≤ ϕπ < 1:

• If 1−ϕπ
1−β κy < ϕy ≤min{1,1+β−1,2− ϕπ−1

1+β κy} applies, the output multiplier
increases monotonously in ρ.

• If max{1, 1−ϕπ
1−β κy}< ϕy <min{1+ β−1,2− ϕπ−1

1+β κy}, there exist two regime

thresholds given by ϕ
π
≡ 1 + (1− ϕy)κ

−1
y and ϕπ ≡ 1 + (1− ϕy)(1− β)2κ−1

y

such that the relationship between the output impact multiplier and the de-
gree of persistence (i) is increasing if ϕπ ≤ ϕ

π
, (ii) is decreasing if ϕπ ≥ ϕπ ,

and (iii) displays a u-shaped pattern if ϕ
π
< ϕπ < ϕπ . In this latter case,

the degree of persistence that minimizes the output multiplier is given by

ρ∗ = β−1
(
1−

√
ϕπ−1
1−ϕy

κy

)
.

(c) Assume the monetary authorities follow a real interest rate rule, i.e. it = rt +

Et [πt+1], where rt = r̄. Then, only the lower monetary policy regime survives and
the output impact multiplier increases monotonically with ρ.

To begin with, consider the case ϕπ = 1. There are three sub-cases. First, if 0< ϕy < 1,
the output multiplier monotonously increases in persistence. This is the case as the
income expectation channel is positive and dominates the real interest rate channel.
Second, if ϕy = 1 applies, the partial equilibrium income expectation channel and the
output feedback in the monetary policy rule offset each other, implying that output is
constant in persistence. Third, if 1 < ϕy < 2, the output multiplier monotonously de-
creases in persistence. This is the case as the income expectation channel is negative
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and enforces the real interest rate channel. Notice that fixing the output feedback ϕy = 1

is highly pedagogical as it allows us to isolate and link output as well as the real interest
rate response to the magnitude of inflation feedback ϕπ in a more transparent man-
ner. Specifically, if ϕπ < 1 holds, output increases monotonously in ρ as either the real
interest rate falls in ρ or the general equilibrium income expectation effect dominates
the rise in real interest rates. Moreover, if additionally ϕπ = 1 holds, the overall income
expectation and the real interest channel eliminate each other such that output is con-
stant. Finally, if ϕπ > 1 applies, output falls in ρ as either the real interest rate increases
in ρ or the general equilibrium income expectation effect overcompensates for the fall
in the real interest rate.

Second, consider the case (b.3), in which inflation feedback is moderate, i.e., 0 ≤
ϕπ < 1. If additionally output feedback is moderate, i.e., 1−ϕπ

1−β κy < ϕy < min{1,1 +

β−1,2 − ϕπ−1
1−β κy}, output increases monotonously in ρ. This is the case, as the in-

come expectation channel and the real interest rate channel move in the same direc-
tion. In contrast, if output feedback is sufficiently strong, i.e., max{1, 1−ϕπ

1−β κy} < ϕy <

min{1 + β−1,2 − ϕπ−1
1−β κy}, the income expectation channel flips sign and we obtain

three regimes: output increases monotonously in ρ for ϕπ < ϕ
π

, is u-shaped in ρ for

ϕ
π
< ϕπ < ϕπ , and decreases monotonously in ρ for ϕπ > ϕπ . The u-shaped regime arises

from two opposing channels: the income expectation channel now decreases output
for higher persistence values, while the real interest rate channel increases output for
higher persistence values. As such, the real interest rate channel dominates the income
expectation channel for ϕπ < ϕ

π
, whereas the income expectation channel dominates

the real interest channel for ϕπ > ϕπ . We illustrate local determinacy properties and the
monetary policy regimes for statement (b) of Proposition 7 in Figure A.1.

PROOF. Subsequently, we proceed by case distinction.

Statement (a): The proof of statement (a) is contained in the proof of Proposition 2.

Statement (b): To prove statement (b) we proceed in three steps. First, we derive the out-
put impact multiplier. Second, we provide determinacy conditions. Third, we conduct a
case distinction.

Impact Multiplier. Substituting the forward-looking Taylor rule into the DIS equation (1)
results in

yt = (1− ϕy)Et [yt+1]− (ϕπ − 1)Et [πt+1] + ξt .

As before, we guess and verify that the solution takes the form yt =Myξt and πt =Mπξt,
such that the previous equation together with the NKPC can be rewritten as

[1− (1− ϕy)ρ]My =− (ϕπ − 1)ρMπ + 1 ,

(1− βρ)Mπ = κyMy .
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FIGURE A.1. Determinacy and Monetary Policy Regimes under a Forward-Looking Taylor Rule

ϕy

ϕπϕπ = 1

ϕy = 1

ϕy = 1+ β−1

increasing

decreasing
hump-shape

decreasing

u-shape

increasing

Legend: not determinate decreasing regime increasing regime intermediate regime

ϕ
π

ϕ′
π

ϕπ

ϕ
′
π

Substituting the latter into the former equation gives us

[1− (1− ϕy)ρ]My =− (ϕπ − 1)
κyρ

1− βρ
My + 1 ,

which finally yields

My =
1− βρ

[1− (1− ϕy)ρ] (1− βρ) + κy(ϕπ − 1)ρ
> 0 .

The impact output multiplier is strictly positive as the denominator Md
y can be rewritten

as follows

Md
y = (1− ρ)(1− βρ) + ρ [ϕy(1− βρ) + κy(ϕπ − 1)]

= (1− ρ)(1− βρ) + ρ [ϕy(1− β) + κy(ϕπ − 1) + ϕyβ(1− ρ)]> 0 ,

where the strictly inequality is due to the determinacy condition ϕy(1−β)+κy(ϕπ−1)>

0. The impact multipliers for inflation, the nominal interest rate, and the real interest
rate then follow by

Mπ =
κy

[1− (1− ϕy)ρ] (1− βρ) + κy(ϕπ − 1)ρ
> 0 ,

Mi =
ρ [ϕπκy + ϕy (1− βρ)]

[1− (1− ϕy)ρ] (1− βρ) + κy(ϕπ − 1)ρ
≥ 0 ,

Mr =
ρ [(ϕπ − 1)κy + ϕy (1− βρ)]

[1− (1− ϕy)ρ] (1− βρ) + κy(ϕπ − 1)ρ
≥ 0 ,
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where the sign of Mr , in turn, follows from a similar reasoning as above, i.e., (1−β)ϕy +

(ϕπ − 1)κy > 0, with strict inequality for ρ > 0.

Determinacy. Following Proposition 4 on page 1121 in Bullard and Mitra (2002), we sum-
marize local equilibrium determinacy conditions for a model with a forward-looking
monetary policy rule in Lemma 1.

LEMMA 1 (BULLARD AND MITRA (2002)). Under interest rate rules with forward expecta-
tions, the necessary and sufficient conditions for a rational expectations equilibrium to be
unique are

ϕy < 1 + β−1 , (D1)

κy(ϕπ − 1) + (1 + β)ϕy < 2(1 + β) , (D2)

κy(ϕπ − 1) + (1− β)ϕy > 0 . (D3)

Comparative Statics. Defining x ≡ [1− (1− ϕy)ρ] (1 − βρ) + κy(ϕπ − 1)ρ and taking the
derivative of My with respect to ρ yields

x2
∂My

∂ρ
=− β

(
[1− (1− ϕy)ρ] (1− βρ) + κy(ϕπ − 1)ρ

)
− (1− βρ)

(
−(1− ϕy)(1− βρ)− β [1− (1− ϕy)ρ] + κy(ϕπ − 1)

)
,

which can be simplified to

x2
∂My

∂ρ
= (1− ϕy)(1− βρ)2 − κy(ϕπ − 1) .

As a result, the sign of the previous expression is determined by a second order polyno-
mial in ρ, i.e.,

sgn
(
∂My

∂ρ

)
= aρ2 + bρ+ c ,

where the auxiliary parameters are given by

a≡ (1− ϕy)β
2 , b≡−2(1− ϕy)β , and c≡ 1− ϕy − κy(ϕπ − 1) .

The corresponding roots are

ρ+,− =
−b±

√
∆

2a
,

where the discriminant ∆≡ b2 − 4ac is given by

∆= 4(1− ϕy)
2β2 − 4(1− ϕy)β

2 [1− ϕy − κy(ϕπ − 1)] = 4β2κy(ϕπ − 1)(1− ϕy) .

From here we proceed by case distinction:
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1. First, consider the case ϕπ > 1. In this case (D1)-(D3) imply that the model is locally
determinate iff 0≤ ϕy <min{1+β−1,2− ϕπ−1

1+β κy}. To begin with, consider the sub-

case in which 0≤ ϕy <min{1,2− ϕπ−1
1+β κy} such that ∆> 0, a > 0, and b < 0. As such,

the second order polynomial has two real-valued roots that are given by

ρ+,− =
2(1− ϕy)β ±

√
4β2κy(ϕπ − 1)(1− ϕy)

2(1− ϕy)β
2 = β−1

(
1±

√
ϕπ − 1

1− ϕy
κy

)
.

Evidently, ρ+ > 1 as β ∈ (0,1) and ϕπ > 1 such that the only feasible candidate on
ρ ∈ (0,1) is

ρ∗ ≡ ρ−ξ = β−1

(
1−

√
ϕπ − 1

1− ϕy
κy

)
.

Notice that ρ∗ ∈ (0,1) if ϕ
π
< ϕπ < ϕπ , where we have

ϕ
π
≡ 1 + (1− ϕy)(1− β)2κ−1

y , and ϕπ ≡ 1 + (1− ϕy)κ
−1
y .

As f(ρ) ≡ aρ2 + bρ + c is a strictly convex function in ρ, the first part of statement

(b.1) follows. As before, note that sgn
(
∂My

∂ρ

)
is strictly decreasing in ϕπ . Hence,

substituting in the lower bound ϕ
π

, we obtain

sgn
(
∂My

∂ρ

)
|ϕπ=ϕ

π
= (1− ϕy)

[
(1− βρ)2 − (1− β)2

]
> 0 ,

where the last inequality applies as ρ ∈ [0,1). As a result, we have ∂My

∂ρ > 0 for all

ϕπ ≤ ϕ
π

. Similarly, we substitute in for the upper bound ϕπ to obtain

sgn
(
∂My

∂ρ

)
|ϕπ=ϕπ

= (1− ϕy)
[
β2ρ2 − 2βρ

]
= (1− ϕy)βρ [βρ− 2]< 0

where the last inequality applies as ρ ∈ [0,1). Notice that the previous inequality is
strict for ρ > 0. As a result, ∂My

∂ρ < 0 ∀ϕπ ≥ ϕ
π

. This completes the derivation of the
first part of statement (b.1).

To show the second part of statement (b.1), consider the sub-case in which 1 ≤
ϕy <min{1+ β−1,2− ϕπ−1

1+β κy} such that ∆≤ 0, a≤ 0, b≥ 0, and c < 0. As such, the
second order polynomial is strictly negative on ρ ∈ [0,1).

2. Second, consider the case ϕπ = 1. In this case (D1)-(D3) imply that the model is
locally determinate iff 0< ϕy < 2. Three sub-cases arise: first, if 0< ϕy < 1, we have
∂My

∂ρ > 0; second, if ϕy = 1, we have ∂My

∂ρ = 0; and third, if 1 < ϕy < 2, we have
∂My

∂ρ < 0.

3. Finally, consider the case 0 ≤ ϕπ < 1. In this case (D1)-(D3) imply that the model
is locally determinate iff 1−ϕπ

1−β κ
−1
y < ϕy < min{1 + β−1,2 + 1−ϕπ

1+β κy}. There arise,

in turn, two sub-cases. First, if additionally 1−ϕπ
1−β κ

−1
y < ϕy ≤ min{1,1 + β−1,2 +
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1−ϕπ
1+β κy} applies, we have ∂My

∂ρ > 0. Second, if additionally max{1, 1−ϕπ
1−β κ

−1
y } <

ϕy ≤ min{1 + β−1,2 + 1−ϕπ
1+β κy} applies, we have ∆ > 0, a < 0, b > 0, and f(ρ) ≡

sgn
(
∂My

∂ρ

)
= aρ2 + bρ+ c is strictly concave and has two real-valued roots that are

given by

ρ+,− = β−1

(
1±

√
ϕπ − 1

1− ϕy
κy

)
.

Evidently, ρ+ > 1 as β ∈ (0,1), 0 ≤ ϕπ < 1, and ϕy > 1 such that the only feasible
candidate on ρξ ∈ (0,1) is

ρ∗ ≡ ρ−ξ = β−1

(
1−

√
ϕπ − 1

1− ϕy
κy

)
.

Note that ρ∗ ∈ (0,1) if ϕ
π
< ϕπ < ϕπ , where we have

ϕ
π
≡ 1 + (1− ϕy)κ

−1
y , and ϕπ ≡ 1 + (1− ϕy)(1− β)2κ−1

y .

As f(ρ) is a strictly concave function in ρ, the second part of statement (b.3) follows.

As before, note that sgn
(
∂My

∂ρ

)
is strictly decreasing in ϕπ . Substituting in the lower

bound ϕ
π

, we thus get

sgn
(
∂My

∂ρ

)
|ϕπ=ϕ

π
= (1− ϕy)βρ [βρ− 2]> 0

where the last inequality applies as ρ ∈ [0,1). Note that the previous inequality is
strict for ρ > 0. As a result, we have ∂My

∂ρ > 0 for all ϕπ ≤ ϕ
π

. Similarly, we substitute

in for the upper bound ϕπ and finally obtain

sgn
(
∂My

∂ρ

)
|ϕπ=ϕπ

= (1− ϕy)
[
(1− βρ)2 − (1− β)2

]
< 0 ,

where the last inequality applies as ρ ∈ [0,1). As a result, we have ∂My

∂ρ < 0 for all
ϕπ ≥ ϕ

π
. This completes the derivation of statement (b.3).

Statement (c): Under a real interest rate rule, the impact output multiplier is given by
My = (1− ρ)−1, which is monotonously increasing in ρ.

A.2 General New Keynesian Model

A.2.1 Proof Proposition 8

PROOF. We proceed in three steps.

Determinacy. For a derivation of the determinacy condition, see, for instance, Proposi-
tion 3 in Gabaix (2020), respectively Proposition 1 in Bilbiie (Forthcoming).
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Multipliers. Substituting the Taylor rule (16) into the DIS equation (14) results in

(1 + ϕyζr)yt = ζfEt [yt+1] + ζrEt [πt+1]− ζrϕππt + ξt .

As before, we guess and verify that the solution takes the form yt =Myξt and πt =Mπξt,
such that the previous equation together with the NKPC can be rewritten as(

1 + ϕyζr − ρζf
)
My =−ζr (ϕπ − ρ)Mπ + 1 ,(

1− βfρ
)
Mπ = κyMy .

Substituting the latter into the former equation gives us(
1 + ϕyζr − ρζf

)
My =−ζr (ϕπ − ρ)

κy
1− βfρ

My + 1 ,

which finally yields

My =
1− βfρ(

1− βfρ
) (

1 + ϕyζr − ρζf
)
+ (ϕπ − ρ) ζrκy

.

From the previous equation the impact multipliers for inflation, the nominal as well as
the real interest rate follow recursively, as provided in the main text.

Sign. To determine the sign of the multipliers, we derive a reduced form system of output
and inflation dynamics of the following form(

yt
πt

)
=AT

(
Et [yt+1]

Et [πt+1]

)
+BT ξt ,

where

AT ≡ 1

1 + ϕyζr + ϕπζrκy

(
ζf ζr(1− ϕπβf )

ζfκy βf (1 + ϕyζr) + ζrκy

)
,

BT ≡ 1

1 + ϕyζr + ϕπζrκy

(
1

κy

)
.

Using the fact that Et [yt+1] = ρyt and Et [πt+1] = ρπt hold on the equilibrium path, we
can write(

yt
πt

)
= (I2 − ρAT )

−1BT ξt

=
1

(1− ρA11)(1− ρA22)− ρ2A12A21

(
1− ρA22 ρA12

ρA21 1− ρA11

)
BT ξt

=
1

(1− ρA11)(1− ρA22)− ρ2A12A21

(
(1− ρA22)B11 + ρA12B21

ρA21B11 + (1− ρA11)B21

)
ξt .
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Notice that we have

(1− ρA22)B11 + ρA12B21 =

(
1− ρ

βf (1 + ϕyζr) + ζrκy

1 + ϕyζr + ϕπζrκy

)
1

1 + ϕyζr + ϕπζrκy

+ ρ
ζr(1− ϕπβf )

1 + ϕyζr + ϕπζrκy

κy
1 + ϕyζr + ϕπζrκy

=
1− ρβf

1 + ϕyζr + ϕπζrκy
> 0 ,

where the strict inequality follows under Assumption 2 combined with 1 > ρβf and
(ϕπ, ϕy) ∈ R2

+. As a result, this implies that sgn(My) = sgn(det(I2 − ρξAT )). One can
show that

A11A22 −A12A21 =
ζfβf

1 + ϕyζr + ϕπζrκy
> 0 ,

A11 +A22 =
ζf + βf (1 + ϕyζr) + ζrκy

1 + ϕyζr + ϕπζrκy
> 0 .

Moreover, we can rewrite

det(I2 − ρAT ) = (1− ρA11)(1− ρA22)− ρ2A12A21

= 1− ρ (A11 +A22) + ρ2 (A11A22 −A12A21) .

As A11 +A22 > 0 applies, we can write

det(I2 − ρAT ) = 1− ρ (A11 +A22) + ρ2 (A11A22 −A12A21)

> 1− ρ (1 +A11A22 −A12A21) + ρ2 (A11A22 −A12A21)

= (1− ρ) [1− ρ (A11A22 −A12A21)]

> 0 ,

where the first strict inequality is due to the determinacy condition A11 + A22 < 1 +

A11A22 −A12A21 and the second strictly inequality is due to the determinacy condition
A11A22 −A12A21 < 1. As a result, this implies

My =
1− ρβf(

1− βfρ
) (

1 + ϕyζr − ρζf
)
+ (ϕπ − ρ) ζrκy

> 0 .

From here, the sign of the inflation and nominal interest rate multipliers follow. More-
over, the sign of the real interest rate multiplier depends on the sign of its numerator,
which is positive if ϕπ ≥ ρ− (1− βfρ)ϕy/κy .

A.2.2 Proof Proposition 9
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PROOF. The proof follows the same steps as the one for Proposition 2. Taking the deriva-
tive of My with respect to ρ yields

∂My

∂ρ
=
−βf

[(
1− βfρ

) (
1 + ϕyζr − ζfρ

)
+ (ϕπ − ρ) ζrκy

][(
1− βfρ

) (
1 + ϕyζr − ζfρ

)
+ (ϕπ − ρ) ζrκy

]2
+

(1− βfρ)
[
ζf
(
1− βfρ

)
+
(
1 + ϕyζr − ζfρ

)
βf + ζrκy

][(
1− βfρ

) (
1 + ϕyζr − ζfρ

)
+ (ϕπ − ρ) ζrκy

]2 .

Defining x≡
(
1− βfρ

) (
1 + ϕyζr − ζfρ

)
+ (ϕπ − ρ) ζrκy , we can write

x2
∂My

∂ρ
=− βf

(
1 + ϕyζr − ζfρ

) (
1− βfρ

)
− βf (ϕπ − ρ) ζrκy

+ (1− βfρ)ζf
(
1− βfρ

)
+ (1− βfρ)

(
1 + ϕyζr − ζfρ

)
βf

+ (1− βfρ)ζrκy ,

which can be rewritten to

x2
∂My

∂ρ
=
[
1− βfϕπ

]
ζrκy + ζf (1− βfρ)

(
1− βfρ

)
−
(
1 + ϕyζr − ζfρ

) [
βf
(
1− βfρ

)
− (1− βfρ)βf

]
=
[
1− βfϕπ

]
ζrκy + ζf

[
1− 2βfρ+ β2fρ

2
]
.

As a result, the sign of the previous expression is determined by a second order polyno-
mial in ρ, i.e.,

sgn
(
∂My

∂ρ

)
= aρ2 + bρ+ c ,

where the auxiliary parameters are given by

a≡ ζfβ
2
f , b≡−2ζfβf , c≡ ζf +

[
1− βfϕπ

]
ζrκy .

The corresponding roots are

ρ+,− =
−b±

√
∆

2a
,

where the discriminant ∆≡ b2 − 4ac is given by

∆= 4ζ2fβ
2
f − 4ζfβ

2
f

[
ζf +

(
1− βfϕπ

)
ζrκy

]
= 4ζf ζrβ

2
f (βfϕπ − 1)κy .

Consequently, the following case distinction applies. First, ϕπ < β−1
f implies ∆< 0 and

the second order polynomial has two distinct complex roots. Second, ϕπ = β−1
f implies

∆ = 0 and the second order polynomial has a unique real root that is given by − b
2a =

β−1
f > 1. Third, ϕπ > β−1

f implies that the second order polynomial has two real-valued
roots that are given by

ρ+,− =
2ζfβf ±

√
4ζf ζrβ

2
f (βfϕπ − 1)κy

2ζfβ
2
f

= β−1
f

(
1±

√
(βfϕπ − 1)

ζr
ζf
κy

)
.
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Evidently, ρ+ > 1 as βf ∈ (0,1) and ϕπ > β−1
f such that the only feasible candidate on

ρ ∈ (0,1) is

ρg∗ ≡ ρ− = β−1
f

(
1±

√
(βfϕπ − 1)

ζr
ζf
κy

)
.

Note that ρg∗ ∈ (0,1) if ϕg
π
< ϕπ < ϕ

g
π , where we have

ϕg
π
≡ β−1

f

(
1 + (1− βf )

2 ζf
ζr
κ−1
y

)
, and ϕ

g
π ≡ β−1

f

(
1 +

ζf
ζr
κ−1
y

)
.

As f(ρ)≡ aρ2 + bρ+ c is strictly convex in ρ, statement (b) of Proposition 9 follows.

To show statement (a) of Proposition 9, note that sgn
(
∂My

∂ρ

)
is strictly decreasing in

ϕπ . Hence, substituting in the lower bound ϕg
π

, we obtain

sgn
(
∂My

∂ρ

)
|ϕπ=ϕg

π
=ζfβ

2
fρ

2 − 2ζfβfρ+ ζf +
(
1− βfϕ

g
π

)
ζrκy

=ζfβ
2
fρ

2 − 2ζfβfρ+ ζf − (1− βf )
2ζf

=ζf
[
(1− βfρ)

2 − (1− βf )
2
]

>0 ,

where the last inequality applies as ρ ∈ [0,1). As a result, we have ∂My

∂ρ > 0 for all ϕπ ≤ ϕg
π

.

Finally, to show statement (c) we analogously substitute in for the upper bound ϕ
g
π

to obtain

sgn
(
∂My

∂ρ

)
|ϕπ=ϕ

g
π
=ζfβ

2
fρ

2 − 2ζfβfρ+ ζf +
(
1− βfϕ

g
π

)
ζrκy

=ζfβ
2
fρ

2 − 2ζfβfρ

=ζfβfρ
[
βfρ− 2

]
≤0 ,

where the last inequality applies as ρ ∈ [0,1). Notice that the previous inequality is strict
for ρ > 0. As a result, we have ∂My

∂ρ < 0 for all ϕπ ≥ ϕ
g
π .

A.3 Extension: New Keynesian Model with Cost Channel of Monetary Policy

A.3.1 Environment Subsequently, we further extend the general New Keynesian model
of Section 3.3.1 by a cost channel of monetary policy. Specifically, equilibrium dynamics
are now described by the following four log-linear equations

yt = ζfEt [yt+1]− ζr (it −Et [πt+1]− r̄) + ζrξt , (25)

πt = βfEt [πt+1] + κyyt + κr(it −Et [πt+1]− r̄)− κrξt , (26)
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it = r̄+ ϕππt + ϕyyt , (27)

ξt = ρξt−1 + εξ,t . (28)

This representation introduces a cost channel of monetary policy into the NKPC equa-
tion (26) that contemporaneously links inflation to the real interest rate, with corre-
sponding elasticity κr > 0. Moreover, relative to the main text, we scale up the demand
shock in the DIS and NKPC equations by ζr , respectively by κr , to ensure that output
and inflation dynamics coincide under a bond premium shock with the ones under a
standard monetary policy shock. This particular assumption is innocuous for our sub-
sequent results.

Parameter Restrictions Throughout this subsection, we impose the following parame-
ter restrictions.

ASSUMPTION 2 (PATMAN CONDITION). Assume βf > κr and κy > ζ−1
r κr > ζ−1

r κr(1− ζf ).

Assumption 2 restricts the strength of the cost channel of monetary policy. The con-
straint βf > κr ensures that the NKPC is forward looking in a positive sense, i.e., current
inflation reacts increases with next period inflation expectations. In addition, the con-
straint κy > ζ−1

r κr is referred to as reverse temporary equilibrium Patman condition,
whereas κy > ζ−1

r κr(1− ζf ) is referred to as general equilibrium Patman condition if the
persistence of the real interest rate tightening approaches unity. If the former constraint
applies, the latter does so as well, and a persistent positive surprise in the real interest
rate decreases inflation, i.e., the economy behaves in an upward sloping NKPC environ-
ment. We refer the interested reader to Beaudry et al. (2024) who provide an in-depth
discussion of Assumption 2.

A.3.2 Main Results We now state our main results. To begin with, we provide determi-
nacy conditions. Next, we derive impact multipliers. Finally, we provide a characteriza-
tion of the three monetary policy regimes. Note that all the results in the main text are
obtained after eliminating the cost channel of monetary policy, i.e., by specifying κr = 0

Local Determinacy We summarize the necessary and sufficient conditions that ensure
locally stable model dynamics in Proposition 11.

PROPOSITION 11. Let us define auxiliary parameters ϕd
π
, ϕd

π
, and ϕ

d
π , where

ϕd
π
≡max

{
1 +

(1− βf )(ζf − 1− ϕyζr)

ζrκy + (ζf − 1)κr
,
ζf (βf − κr)− 1− ϕyζr

ζrκy − κr

}
,

ϕd
π
≡max

{
ζf + βf (1 + ϕyζr) + ζrκy − κr

ζfκr
,
ζf (βf − κr)− 1− ϕyζr

ζrκy − κr

}
,

ϕ
d
π ≡−1 +

(1 + βf )(1 + ζf + ϕyζr)

(1 + ζf )κr − ζrκy
.

Under Assumption 2, local determinacy properties are summarized by the following case
distinction:
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(a) If ζrκy ≥ (1 + ζf )κr , the model has a determinate equilibrium iff ϕπ > ϕd
π

.

(b) If ζrκy < (1 + ζf )κr , the model has a determinate equilibrium iff ϕd
π
< ϕπ < ϕ

d
π .

Proposition 11 extends the Taylor principle to environments that combine a com-
pounded or discounted DIS equation with a cost channel of monetary policy. Thus, it
shares common elements with similar conditions derived in pure tractable heteroge-
neous agent New Keynesian models (Acharya and Dogra, 2020, Bilbiie, Forthcoming),
in models that feature bounded rationality (Gabaix, 2020), or models with a cost chan-
nel of monetary policy (Surico, 2008, Beaudry et al., 2024). Specifically, Proposition 11
generalizes the results of Surico (2008) to environments that feature a compounded or
discounted DIS equation. Moreover, relative to Beaudry et al. (2024) who provide deter-
minacy conditions with a discounted DIS equation and a cost channel of monetary pol-
icy in a continuous-time environment, Proposition 11 highlights the emergence of two
particular cases characterized by the sign of ζr/(1 + ζf ) − κr/κy . The latter expression
reflects the relative strength of a standard demand channel of monetary policy relative
to the cost channel.

According to Proposition 11, determinacy depends on the relative strength of the de-
mand and the cost channel. Specifically, if the demand channel is sufficiently strong, i.e.,
ζrκy ≥ (1+ζf )κr , determinacy requires a sufficiently strong reaction of systematic mon-
etary policy to contemporaneous inflation, that is ϕπ > ϕd

π
. Regarding the lower bound,

the first condition dominates the second one for reasonable calibrations, such that we
discuss it subsequently in more detail. For simplicity, we first consider the case ϕy = 0,
i.e., central banks react endogenously to inflation only. In this case, a compounded DIS
equation (ζf > 1), respectively a discounted DIS equation (ζf < 1), requires a stronger
(respectively weaker) reaction to fight inflation as compared to the standard Taylor prin-
ciple. This effect, however, decreases in the strength of the marginal cost channel κr . The
underlying rationale is as follows. A compounded DIS equation amplifies ceteris paribus
output and inflation, and requires a stronger central bank reaction. On the other hand,
inflation is stabilized through the marginal cost channel, which requires a weaker re-
action. In contrast, if the cost channel is sufficiently strong, i.e., ζrκy < (1 + ζf )κr , de-
terminacy requires a sufficiently strong - but not too aggressive - reaction of systematic

monetary policy to contemporaneous inflation, that is ϕd
π
< ϕπ < ϕ

d
π . Intuitively, a strong

cost channel raises inflation in response to a rise in the real interest rate. If the Taylor
rule-feedback with respect to inflation is too aggressive, inflation and output dynam-
ics will therefore further diverge and not stabilize. Overall, lower and upper thresholds
are relaxed in ϕy , while the comparative statics regarding ζr , κy , and κr are ambigu-
ous an depend, among others, on whether the DIS equation features compounding or
discounting.

Impact Multipliers The following Proposition follows.

PROPOSITION 12. If determinacy conditions from Proposition 11 are met, the model solu-
tion takes the form

yt =My(ρ)ξt, πt =Mπ(ρ)ξt, it = r̄+Mi(ρ)ξt, and rt = r̄+Mr(ρ)ξt ,
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where My , Mπ , Mi and Mr are recursively given by

My =
1− ρβf

(1 + ϕyζr − ρζf )
[
1− ρβf − κr(ϕπ − ρ)

]
ζ−1
r + (κy + ϕyκr)(ϕπ − ρ)

, (M1’)

Mπ =
κy + ϕyκr

1− ρβf − κr(ϕπ − ρ)
My −

κr
1− ρβf − κr(ϕπ − ρ)

, (M2’)

Mi = ϕπMπ + ϕyMy , (M3’)

Mr = (ϕπ − ρξ)Mπ + ϕyMy . (M4’)

Under Assumption 2, impact multipliers for output, inflation, and the nominal interest
rate are strictly positive. Moreover, the impact multiplier of the real interest rate is strictly
positive if ϕπ > ϕ

r+
π and negative if ϕπ ≤ ϕ

r+
π , where

ϕ
r+
π ≡ ρ−

ϕyζr(1− βf )

ζrκy − κr(1− ρζf )
.

As stated above, Assumption 2 restricts the strength of the cost channel of mone-
tary policy. As such, deflationary forces due to falling real interest rates in response to
an expansionary DIS-demand shock are limited and inflation rises at impact. Moreover,
the sign of the impact real interest rate multiplier depends on the strength of inflation
feedback within the Taylor rule. The real interest rate rises only if monetary policy reacts
sufficiently aggressive to inflation, and falls otherwise. The former condition is always
met within the second determinacy regime characterized by ζrκy < (1 + ζf )κr . In con-
trast, in the first determinacy regime characterized by ζrκy ≥ (1 + ζf )κr the real interest
rate always rises under a compounded DIS equation, and may fall under a discounted
DIS equation. This is the case as the latter allows for a sufficiently low inflation sensitivity
to ensure local determinacy.

Monetary Policy Regimes We provide a characterization of monetary policy regimes in
Proposition 13.

PROPOSITION 13. Consider a forward-looking and upward-sloping NKPC, i.e., βf > 0

and κy > 0. Moreover, let Assumption 2 hold, i.e., min{βf , ζrκy}> κr . There exist two cut-
off values, ϕg

π
and ϕ

g
π , of the Central Bank’s degree of reaction to the inflation gap

ϕg
π
≡ β−1

f

(
1 + (1− βf )

2 (βf−κr)ζf
βf ζrκy+(ζf−βf )κr

)
and ϕ

g
π ≡ β−1

f

(
1 +

(βf−κr)ζf
βf ζrκy+(ζf−βf )κr

)
,

with ϕ
g
π > ϕg

π
> 1 such that the impact multiplier of output to a DIS-demand shock satis-

fies:

(a) If ϕπ ≤ ϕg
π

, My increases monotonously in ρ.

(b) If ϕg
π
< ϕπ < ϕ

g
π , My is hump-shaped in ρ, i.e.,

∃ρg∗ ≡ β−1
f

(
1−

√(
ϕπβf − 1

) βf ζrκy + (ζf − βf )κr

(βf − κr)ζf

)
such that M′

y(ρ)⋛ 0 if ρ⋚ ρg∗.
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(c) If ϕπ ≥ ϕg
π

, My decreases monotonously in ρ.

Proposition 13 generalizes Proposition 2 regarding monetary policy regime thresh-
olds ϕg

π
and ϕ

g
π as well as the output-maximizing persistence ρg∗. In particular, their

formal expressions follow an identical analytical structure and are isomorphic when re-

placing κy in Proposition 2 with κgy =
βf ζrκy+(ζf−βf )κr

(βf−κr)ζf
. Notice that the latter term is

strictly positive under Assumption 2, i.e., min{βf , ζrκy}> κr .
Corollary 2 provides comparative statics of regime thresholds and the output maxi-

mizing persistence.

COROLLARY 2. Consider the hump-shaped regime of Proposition 13 characterized by ϕg
π
<

ϕπ < ϕ
g
π . The following comparative statics apply under Assumption 2.

(a) If κr = 0 applies, both regime thresholds (ϕg
π
, ϕ

g
π) as well as the output maximizing

persistence (ρg∗) strictly decrease in βf , κy , ζr , and strictly increase in ζf .

(b) If κr > 0 applies, both regime thresholds (ϕg
π
, ϕ

g
π) as well as the output maximizing

persistence (ρg∗) strictly decrease in κy , ζr , and strictly increase in ζf . Moreover, they
strictly decrease (respectively, strictly increase) in κr if ζf + ζrκy > βf (respectively,
ζf + ζrκy < βf ).

In the case of a positive marginal cost channel, i.e., κr > 0, comparative statics with
respect to ζr and ζf are unaffected under Assumption 2, i.e., if min{βf , ζrκy} > κr ap-
plies, and reversed otherwise. Moreover, regime thresholds and output-maximizing per-
sistence both fall in κr if ζf + ζrκy > βf , which always holds under a compounded DIS
equation. Intuitively, the marginal cost channel flattens the NKPC and hence reinforces
the future income channel relative to the real interest rate channel.

For completeness, we compare the limits of the impact output multiplier in Propo-
sition 14 and provide an extended condition for its asymmetric shape around the per-
sistence threshold ρg∗.

PROPOSITION 14. If ϕπ > 1 + (1− βf )
κyζr+ζf−κr

βf ζrκy+(ζf−βf )κr
> ϕg

π
applies, the impact output

multiplier to a DIS shock is asymmetric in its persistence, i.e., lim
ρ→0

My > lim
ρ→1

My .

A.3.3 Proofs

Proof Proposition 11

PROOF. We closely follow the steps in Bullard and Mitra (2002) to analyze determinacy
properties of the model. For convenience, we drop the DIS-demand shock ξt when de-
riving the reduced dynamic system. To begin with, substituting the Taylor rule (27) into
the DIS equation (25) and the NKPC (26) yields

yt = ζfEt [yt+1]− ζr (ϕππt + ϕyyt −Et [πt+1]) , (29)

πt = βfEt [πt+1] + κyyt + κr (ϕππt + ϕyyt −Et [πt+1]) , (30)
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where the latter equation can be rearranged to

πt =
βf − κr

1− ϕπκr
Et [πt+1] +

κy + ϕyκr
1− ϕπκr

yt .

Substituting, in turn, the latter equation into (29) results in

(1 + ϕyζr)yt = ζfEt [yt+1] + ζrEt [πt+1]− ϕπζr

[
βf − κr

1− ϕπκr
Et [πt+1] +

κy + ϕyκr
1− ϕπκr

yt

]
,

⇔ [(1 + ϕyζr) (1− ϕπκr) + ϕπζr (κy + ϕyκr)]yt = ζf (1− ϕπκr)Et [yt+1] + ζr(1− ϕπβf )Et [πt+1] ,

which finally yields

yt =
ζf (1− ϕπκr)

1 + ϕyζr + ϕπ (ζrκy − κr)
Et [yt+1] +

ζr(1− ϕπβf )

1 + ϕyζr + ϕπ (ζrκy − κr)
Et [πt+1] . (E.1)

We now substitute the latter equation into (30) to obtain

(1− ϕπκr)πt =
κy + ϕyκr

1 + ϕyζr + ϕπ (ζrκy − κr)

(
ζf (1− ϕπκr)Et [yt+1] + ζr(1− ϕπβf )Et [πt+1]

)
+ (βf − κr)Et [πt+1]

=

(
βf − κr

)
(1 + ϕyζr + ϕπ (ζrκy − κr)) + (κy + ϕyκr) ζr(1− ϕπβf )

1 + ϕyζr + ϕπ (ζrκy − κr)
Et [πt+1]

+
(κy + ϕyκr) ζf (1− ϕπκr)

1 + ϕyζr + ϕπ (ζrκy − κr)
Et [yt+1]

=

[
βf (1 + ϕyζr) + ζrκy − κr

]
(1− ϕπκr)

1 + ϕyζr + ϕπ (ζrκy − κr)
Et [πt+1] +

(κy + ϕyκr) ζf (1− ϕπκr)

1 + ϕyζr + ϕπ (ζrκy − κr)
Et [yt+1] ,

which finally provides us with

πt =
βf (1 + ϕyζr) + ζrκy − κr

1 + ϕyζr + ϕπ (ζrκy − κr)
Et [πt+1] +

(κy + ϕyκr) ζf
1 + ϕyζr + ϕπ (ζrκy − κr)

Et [yt+1] . (E.2)

We can thus write the system of equations (E.1)-(E.2) as(
yt
πt

)
=AT

(
Et [yt+1]

Et [πt+1]

)
,

where

AT ≡ 1

1 + ϕyζr + ϕπ(ζrκy − κr)

(
ζf (1− ϕπκr) ζr(1− ϕπβf )

ζf (κy + ϕyκr) βf (1 + ϕyζr) + ζrκy − κr

)
.

The solution is locally determinate if both eigenvalues of AT are inside the unit circle.
The characteristic polynomial of AT is defined by p(λ)≡ det(λI−AT ) = λ2 + a1λ+ a0,
where

a0 ≡
ζf (1− ϕπκr)

[
βf (1 + ϕyζr) + ζrκy − κr

]
− ζrζf (1− ϕπβf )(κy + ϕyκr)

[1 + ϕyζr + ϕπ(ζrκy − κr)]
2 =

ζf (βf − κr)

1 + ϕyζr + ϕπ(ζrκy − κr)
,

a1 ≡−
ζf (1− ϕπκr) + βf (1 + ϕyζr) + ζrκy − κr

1 + ϕyζr + ϕπ(ζrκy − κr)
.
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Both eigenvalues are inside the unit circle if and only if |a0| < 1 and |a1| < 1 + a0
(see page 28 in LaSalle (1986)). Under Assumption 2 we have the parameter constraint
min{βf , ζrκy}> κr such that the first condition is satisfied if

ϕπ >
ζf (βf − κr)− 1− ϕyζr

ζrκy − κr
.

From here, we proceed by case distinction:
Case 1. First, consider the case in which the numerator of a1 is weakly positive, i.e., ζf (1−
ϕπκr) + βf (1 + ϕyζr) + ζrκy − κr ≥ 0, which is equivalent to

ϕπ ≤
ζf + βf (1 + ϕyζr) + ζrκy − κr

ζfκr
.

In this case, the second determinacy condition, i.e., |a1|< 1 + a0, is satisfied if

1 +
ζf (βf − κr)

1 + ϕyζr + ϕπ(ζrκy − κr)
>
ζf (1− ϕπκr) + βf (1 + ϕyζr) + ζrκy − κr

1 + ϕyζr + ϕπ(ζrκy − κr)

⇔ 1 + ϕyζr + ϕπ(ζrκy − κr) + ζf (βf − κr)> ζf (1− ϕπκr) + βf (1 + ϕyζr) + ζrκy − κr

⇔ (ϕπ − 1)
[
ζrκy + κr(ζf − 1)

]
>
(
1− βf

) (
ζf − 1− ϕyζr

)
⇔ ϕπ > 1 +

(
1− βf

) (
ζf − 1− ϕyζr

)
ζrκy + κr(ζf − 1)

.

As a result, the equilibrium is locally determinate if ϕd
π
< ϕπ < ϕ

d

π , where

ϕd
π
≡max

{
1 +

(
1− βf

) (
ζf − 1− ϕyζr

)
ζrκy + κr(ζf − 1)

,
ζf (βf − κr)− 1− ϕyζr

ζrκy − κr

}

ϕ
d

π ≡
ζf + βf (1 + ϕyζr) + ζrκy − κr

ζfκr
.

Case 2. Second, consider the case in which the numerator of a1 is strictly negative, i.e.,
ζf (1− ϕπκr) + βf (1 + ϕyζr) + ζrκy − κr < 0, which is equivalent to

ϕπ > ϕ
d

π ≡
ζf + βf (1 + ϕyζr) + ζrκy − κr

ζfκr
.

In this case, the second determinacy condition, i.e., |a1|< 1 + a0, is satisfied if

1 +
ζf (βf − κr)

1 + ϕyζr + ϕπ(ζrκy − κr)
>−

ζf (1− ϕπκr) + βf (1 + ϕyζr) + ζrκy − κr

1 + ϕyζr + ϕπ(ζrκy − κr)

⇔ 1 + ϕyζr + ϕπ(ζrκy − κr) + ζf (βf − κr)>−
[
ζf (1− ϕπκr) + βf (1 + ϕyζr) + ζrκy − κr

]
⇔ (ϕπ + 1)

[
ζrκy − κr(1 + ζf )

]
>−(1 + βf )

[
ζf + 1+ ϕyζr

]
.

Depending on the sign of ζrκy − κr(1 + ζf ), two sub-cases emerge:
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(a) If min{βf , ζrκy, ζrκy(1 + ζf )
−1}> κr , the previous condition can be rewritten as

ϕπ >−1−
(1 + βf )

(
ζf + 1+ ϕyζr

)
ζrκy − κr(1 + ζf )

,

and the model has a determinate solution if

ϕπ >max

{
−1−

(1 + βf )
(
ζf + 1+ ϕyζr

)
ζrκy − κr(1 + ζf )

,
ζf + βf (1 + ϕyζr) + ζrκy − κr

ζfκr
,
ζf (βf − κr)− 1− ϕyζr

ζrκy − κr

}

=max

{
ζf + βf (1 + ϕyζr) + ζrκy − κr

ζfκr
,
ζf (βf − κr)− 1− ϕyζr

ζrκy − κr

}
.

(b) If min{βf , ζrκy}> κr > ζrκy(1+ ζf )
−1, the previous condition can be rewritten as

ϕπ <−1 +
(1 + βf )

(
ζf + 1+ ϕyζr

)
κr(1 + ζf )− ζrκy

,

and the model has a determinate equilibrium if

max

{
ζf + βf (1 + ϕyζr) + ζrκy − κr

ζfκr
,
ζf (βf − κr)− 1− ϕyζr

ζrκy − κr

}
< ϕπ <−1 +

(1 + βf )
(
ζf + 1+ ϕyζr

)
κr(1 + ζf )− ζrκy

.

As a result, combining both cases, we obtain the following determinacy regions:

1. If min{βf , ζrκy}> κr and ζrκy ≥ κr(1 + ζf ), the model is locally determinate if

ϕd
π
< ϕπ ≤ ϕ

d

π and ϕπ >max

{
ϕ
d

π,
ζf (βf − κr)− 1− ϕyζr

ζrκy − κr

}
.

It is straightforward to show that ϕ
d

π > ϕd
π

under Assumption 2 and ζrκy ≥ κr(1+ζf )

such that both conditions can be combined to ϕπ > ϕd
π

.

2. If min{βf , ζrκy}> κr and ζrκy < κr(1 + ζf ), the model is locally determinate if

max

{
ϕ
d

π,
ζf (βf − κr)− 1− ϕyζr

ζrκy − κr

}
≡ ϕd

π
< ϕπ < ϕ

d
π ≡−1 +

(1 + βf )
(
ζf + 1+ ϕyζr

)
κr(1 + ζf )− ζrκy

.

This concludes the proof of Proposition 11.

Proof Proposition 12

PROOF. To begin with, we derive the impact multipliers. Substituting the Taylor rule (27)
into the DIS equation (25) results in

yt = ζfEt [yt+1]− ζr (ϕππt + ϕyyt −Et [πt+1]) + ζrξt ,

⇔ (1 + ϕyζr)yt = ζfEt [yt+1] + ζrEt [πt+1]− ζrϕππt + ζrξt .
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Similarly, substituting the Taylor rule (27) into the NKPC equation (26) yields

πt = βfEt [πt+1] + κyyt + κr (ϕππt + ϕyyt −Et [πt+1])− κrξt ,

(1− ϕπκr)πt =
(
βf − κr

)
Et [πt+1] + (κy + ϕyκr)yt − κrξt .

As before, we guess and verify that the solution takes the form yt =Myξt and πt =Mπξt,
such that the previous two equations can be rewritten as(

1 + ϕyζr − ρζf
)
My =−ζr (ϕπ − ρ)Mπ + ζr ,(

1− ϕπκr − ρ
(
βf − κr

))
Mπ = (κy + ϕyκr)My − κr .

The latter equation can be rewritten as

Mπ =
κy + ϕyκr

1− ϕπκr − ρ
(
βf − κr

)My −
κr

1− ϕπκr − ρ
(
βf − κr

) .
Substituting this equation in turn into the one for the impact output multiplier results
in

(
1 + ϕyζr − ρζf

)
My =−ζr (ϕπ − ρ)

[
κy + ϕyκr

1− ϕπκr − ρ
(
βf − κr

)My −
κr

1− ϕπκr − ρ
(
βf − κr

)]+ ζr ,

which can be restated as[(
1 + ϕyζr − ρζf

) (
1− ϕπκr − ρ

(
βf − κr

))
+ ζr (ϕπ − ρ) (κy + ϕyκr)

]
My =

(
1− ρβf

)
ζr ,

which ultimately yields

My =
1− ρβf(

1 + ϕyζr − ρζf
) [

1− ρβf − κr (ϕπ − ρ)
]
ζ−1
r + (ϕπ − ρ) (κy + ϕyκr)

.

From the previous equation the impact multipliers for inflation, the nominal as well as
the real interest rate follow recursively, as provided in the main text.

We then study the sign of the impact multipliers. First, we derive, as in the Proof of
Proposition 11, a reduced form system of output and inflation dynamics, i.e.,(

yt
πt

)
=AT

(
Et [yt+1]

Et [πt+1]

)
+BT ξt ,

where

AT ≡ 1

1 + ϕyζr + ϕπ(ζrκy − κr)

(
ζf (1− ϕπκr) ζr(1− ϕπβf )

ζf (κy + ϕyκr) βf (1 + ϕyζr) + ζrκy − κr

)
,

BT ≡ 1

1 + ϕyζr + ϕπ(ζrκy − κr)

(
ζr

ζrκy − κr

)
.
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As Et [yt+1] = ρyt and Et [πt+1] = ρπt holds in a rational expectations equilibrium, we
can write(

yt
πt

)
= (I2 − ρAT )

−1BT ξt

=
1

(1− ρA11)(1− ρA22)− ρ2A12A21

(
1− ρA22 ρA12

ρA21 1− ρA11

)
BT ξt

=
1

(1− ρA11)(1− ρA22)− ρ2A12A21

(
(1− ρA22)B11 + ρA12B21

ρA21B11 + (1− ρA11)B21

)
ξt .

Notice that we have

(1− ρA22)B11 + ρA12B21 =

(
1− ρ

βf (1 + ϕyζr) + ζrκy − κr

1 + ϕyζr + ϕπ(ζrκy − κr)

)
ζr

1 + ϕyζr + ϕπ(ζrκy − κr)

+ ρ
ζr(1− ϕπβf )

1 + ϕyζr + ϕπ(ζrκy − κr)

ζrκy − κr
1 + ϕyζr + ϕπ(ζrκy − κr)

=
ζr(1− ρβf )

1 + ϕyζr + ϕπ(ζrκy − κr)
> 0 ,

where the strict inequality follows under Assumption 2 combined with 1 > ρβf and
(ϕπ, ϕy) ∈ R2

+. As a result, this implies that sgn(My) = sgn(det(I2 − ρAT )). Recall from
the proof of Proposition 11 that

A11A22 −A12A21 =
ζf (βf − κr)

1 + ϕyζr + ϕπ(ζrκy − κr)
,

A11 +A22 =
ζf (1− ϕπκr) + βf (1 + ϕyζr) + ζrκy − κr

1 + ϕyζr + ϕπ(ζrκy − κr)
.

Moreover, we can rewrite

det(I2 − ρAT ) = (1− ρA11)(1− ρA22)− ρ2A12A21

= 1− ρ (A11 +A22) + ρ2 (A11A22 −A12A21) .

There arise now two cases. First, consider the case where A11 + A22 ≤ 0, i.e., ϕπ ≥ ϕ
d

π .
In this case, we have det(I2 − ρAT )> 0 and consequently My > 0. Second, consider the

case where A11 +A22 > 0, i.e., ϕπ < ϕ
d

π . In this case, we can write

det(I2 − ρAT ) = 1− ρ (A11 +A22) + ρ2 (A11A22 −A12A21)

> 1− ρ (1 +A11A22 −A12A21) + ρ2 (A11A22 −A12A21)

= (1− ρ) [1− ρ (A11A22 −A12A21)]

> 0 ,
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where the first strict inequality is due to the determinacy condition A11 + A22 < 1 +

A11A22 −A12A21 and the second strictly inequality is due to the determinacy condition
A11A22 −A12A21 < 1. As a result, this implies

My =
1− ρβf(

1 + ϕyζr − ρζf
) [

1− ρβf − κr (ϕπ − ρ)
]
ζ−1
r + (ϕπ − ρ) (κy + ϕyκr)

> 0 .

Let us denote the denominator of My by Md
y . To determine the sign of the impact infla-

tion multiplier, we can rearrange terms to obtain

Mπ =
κy + ϕyκr

1− ϕπκr − ρ
(
βf − κr

)My −
κr

1− ϕπκr − ρ
(
βf − κr

)
=

1[
1− ρβf − κr(ϕπ − ρ)

]
Md

y

[
(κy + ϕyκr)(1− ρβf )− κrMd

y

]
.

As a result, the sign of Mπ is determined by the sign of ∆π ≡ (κy + ϕyκr)(1 − ρβf ) −
κrMd

y , i.e.,

∆π = (κy + ϕyκr)(1− ρβf )− κr

{(
1 + ϕyζr − ρζf

) [
1− ρβf − κr (ϕπ − ρ)

]
ζ−1
r + (ϕπ − ρ) (κy + ϕyκr)

}
= (κy + ϕyκr)

[
1− ρβf − κr(ϕπ − ρ)

]
−
(
κrζ

−1
r

(
1 + ϕyζr − ρζf

)) [
1− ρβf − κr(ϕπ − ρ)

]
=
(
κy + ϕyκr − κrζ

−1
r

(
1 + ϕyζr − ρζf

)) [
1− ρβf − κr(ϕπ − ρ)

]
=
(
κy − κrζ

−1
r

(
1− ρζf

)) [
1− ρβf − κr(ϕπ − ρ)

]
.

Consequently, we have

Mπ =
κy − κrζ

−1
r

(
1− ρζf

)(
1 + ϕyζr − ρζf

) [
1− ρβf − κr (ϕπ − ρ)

]
ζ−1
r + (ϕπ − ρ) (κy + ϕyκr)

,

which is strictly positive if ζrκy > κr
(
1− ρζf

)
. The latter condition is referred to as gen-

eral equilibrium Patman condition (see Beaudry et al. (2024)) and is always satisfied un-
der Assumption 2. Finally, the sign of the impact real interest multiplier can be deter-
mined by

Mr = (ϕπ − ρ)Mπ + ϕyMy

=
(ϕπ − ρ)

[
κy − κrζ

−1
r

(
1− ρζf

)]
+ ϕy(1− ρβf )(

1 + ϕyζr − ρζf
) [

1− ρβf − κr (ϕπ − ρ)
]
ζ−1
r + (ϕπ − ρ) (κy + ϕyκr)

,

which is strictly positive if

ϕπ > ϕ
r+
π ≡ ρ−

ϕyζr(1− ρβf )

ζrκy + κr
(
ρζf − 1

) .
Notice that ϕr+π is strictly increasing in ρ with corresponding limit

lim
ρ→1

ϕ
r+
π ≡ ϕ

r+
π = 1−

ϕyζr(1− βf )

ζrκy + κr
(
ζf − 1

) .
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Recall from Proposition 11 that the model’s determinacy regions are as followed: if
ζrκy ≥ κr(1 + ζf ) applies, the model is determinate for ϕπ > ϕd

π
; in contrast, if ζrκy <

κr(1 + ζf ) applies, the model is determinate for max

{
ϕ
d

π,
ζf (βf−κr)−1−ϕyζr

ζrκy−κr

}
< ϕπ <

−1 +
(1+βf )(ζf+1+ϕyζr)

κr(1+ζf )−ζrκy
. Note that Assumption 2 together with βf ∈ [0,1) implies that

ϕ
d

π > 1 > ϕ
r+
π . As such, sgn(Mr) > 0 in the case of ζrκy < κr(1 + ζf ). In contrast, it is

straightforward to show that ϕ
r+
π > ϕd

π
if ζf < 1 and ϕ

r+
π ≤ ϕd

π
if ζf > 1, i.e., sgn(Mr)

is always positive under a compounded DIS equation, and maybe be negative under a
discounted DIS equation depending on the persistence.

Proof Proposition 13

PROOF. Taking the derivative of My with respect to ρ yields

∂My

∂ρ
=
−βf

[(
1 + ϕyζr − ρζf

) [
1− ρβf − κr (ϕπ − ρ)

]
ζ−1
r + (ϕπ − ρ) (κy + ϕyκr)

][(
1 + ϕyζr − ρζf

) [
1− ρβf − κr (ϕπ − ρ)

]
ζ−1
r + (ϕπ − ρ) (κy + ϕyκr)

]2
+

(1− ρβf )
[
ζf ζ

−1
r

(
1− ρβf − κr (ϕπ − ρ)

)
+ ζ−1

r

(
1 + ϕyζr − ρζf

) (
βf − κr

)
+ κy + ϕyκr

][(
1 + ϕyζr − ρζf

) [
1− ρβf − κr (ϕπ − ρ)

]
ζ−1
r + (ϕπ − ρ) (κy + ϕyκr)

]2 .

Defining x≡
(
1 + ϕyζr − ρζf

) [
1− ρβf − κr (ϕπ − ρ)

]
ζ−1
r + (ϕπ − ρ) (κy + ϕyκr), we can

write

x2
∂My

∂ρ
=− βf ζ

−1
r

(
1 + ϕyζr − ρζf

) (
1− ρβf − κr (ϕπ − ρ)

)
− βf (ϕπ − ρ) (κy + ϕyκr)

+ (1− ρβf )ζf ζ
−1
r

(
1− ρβf − κr (ϕπ − ρ)

)
+ (1− ρβf )ζ

−1
r

(
1 + ϕyζr − ρζf

) (
βf − κr

)
+ (1− ρβf ) (κy + ϕyκr) ,

which can be rewritten to

x2
∂My

∂ρ
=
[
1− βfϕπ

]
(κy + ϕyκr) + ζf ζ

−1
r (1− ρβf )

(
1− ρβf − κr (ϕπ − ρ)

)
−
(
1 + ϕyζr − ρζf

)
ζ−1
r

[
βf
(
1− ρβf − κr (ϕπ − ρ)

)
− (1− ρβf )(βf − κr)

]
=
[
1− βfϕπ

]
(κy + ϕyκr) + ζf ζ

−1
r (1− ρβf )

(
1− ρβf − κr (ϕπ − ρ)

)
−
(
1 + ϕyζr − ρζf

)
ζ−1
r κr

[
1− βfϕπ

]
=
[
1− βfϕπ

] (
κy − κrζ

−1
r

)
+ ζf ζ

−1
r

[(
1− βfϕπ

)
ρκr + (1− ρβf )

(
1− ρβf − κr (ϕπ − ρ)

)]
=
[
1− βfϕπ

] (
κy − κrζ

−1
r

)
+ ζf ζ

−1
r

[
1− ϕπκr − 2(βf − κr)ρ+ βf (βf − κr)ρ

2
]
.

As a result, the sign of the previous expression is determined by a second order polyno-
mial in ρ, i.e.,

sgn
(
∂My

∂ρ

)
= aρ2 + bρ+ c ,
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where the auxiliary parameters are given by

a≡ ζf ζ
−1
r βf (βf − κr) ,

b≡−2ζf ζ
−1
r (βf − κr) ,

c≡ ζf ζ
−1
r (1− ϕπκr) +

[
1− βfϕπ

]
ζ−1
r (ζrκy − κr) .

The corresponding roots are

ρ+,− =
−b±

√
∆

2a
,

where the discriminant ∆≡ b2 − 4ac is given by

∆= 4

(
ζf
ζr

)2 (
βf − κr

)2 − 4

(
ζf
ζr

)
βf (βf − κr)

[(
ζf
ζr

)
(1− ϕπκr) +

(
1− βfϕπ

)
ζ−1
r (ζrκy − κr)

]

=−4

(
ζf
ζr

)2 (
βf − κr

)
κr + 4

(
ζf
ζr

)
βf (βf − κr)

[(
ζf
ζr

)
ϕπκr +

(
βfϕπ − 1

)
ζ−1
r (ζrκy − κr)

]

= 4

(
ζf
ζr

)2

(βf − κr)(βfϕπ − 1)κr + 4

(
ζf
ζr

)
βf (βf − κr)

(
βfϕπ − 1

)
ζ−1
r (ζrκy − κr)

= 4

(
ζf
ζr

)2

(βf − κr)
2(βfϕπ − 1)

[
κr

βf − κr
+

βf
βf − κr

1

ζf
(ζrκy − κr)

]

= 4

(
ζf
ζr

)2

(βf − κr)
2(βfϕπ − 1)

βf ζrκy + (ζf − βf )κr

(βf − κr)ζf
.

As min{βf , ζrκy} > κr under Assumption 2, the last ratio is strictly positive. Conse-
quently, the following case distinction applies. First, ϕπ < β−1

f implies ∆< 0 and the sec-

ond order polynomial has two distinct complex roots. Second, ϕπ = β−1
f implies ∆= 0

and the second order polynomial has a unique real root that is given by − b
2a = β−1

f > 1.

Third, ϕπ > β−1
f implies that the second order polynomial has two real-valued roots that

are given by

ρ+,− =

2ζf ζ
−1
r (βf − κr)±

√
4

(
ζf
ζr

)2

(βf − κr)2(βfϕπ − 1)
βf ζrκy + (ζf − βf )κr

(βf − κr)ζf

2ζf ζ
−1
r βf (βf − κr)

= β−1
f

(
1±

√
(βfϕπ − 1)

βf ζrκy + (ζf − βf )κr

(βf − κr)ζf

)
.

Evidently, ρ+ > 1 as βf ∈ (0,1) and ϕπ > β−1
f such that the only feasible candidate on

ρ ∈ (0,1) is

ρg∗ ≡ ρ− = β−1
f

(
1−

√
(βfϕπ − 1)

βf ζrκy + (ζf − βf )κr

(βf − κr)ζf

)
.
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Note that ρg∗ ∈ (0,1) if ϕg
π
< ϕπ < ϕ

g
π , where we have

ϕg
π
≡ β−1

f

(
1 + (1− βf )

2 (βf−κr)ζf
βf ζrκy+(ζf−βf )κr

)
, and ϕ

g
π ≡ β−1

f

(
1 +

(βf−κr)ζf
βf ζrκy+(ζf−βf )κr

)
.

As f(ρ)≡ aρ2 + bρ+ c is strictly convex in ρ, statement (b) of Proposition 13 follows.

To show statement (a) of Proposition 13, notice that sgn
(
∂My

∂ρ

)
is strictly decreasing

in ϕπ . Hence, substituting in the lower bound ϕg
π

, we obtain

sgn
(
∂My

∂ρ

)
|ϕπ=ϕg

π
=
ζf
ζr
βf (βf − κr)ρ

2 − 2
ζf
ζr

(βf − κr)ρ+
ζf
ζr

(
1− ϕg

π
κr

)
+
(
1− βfϕ

g
π

)(
κy −

κr
ζr

)
=
ζf
ζr
βf (βf − κr)ρ

2 − 2
ζf
ζr

(βf − κr)ρ

+
ζf
ζr

(
1− κr

βf

[
1 + (1− βf )

2 (βf − κr)ζf
βf ζrκy + (ζf − βf )κr

])
− (1− βf )

2 (βf − κr)ζf
βf ζrκy + (ζf − βf )κr

(
κy −

κr
ζr

)

=
ζf
ζr

(βf − κr)

βfρ2 − 2ρ+ β−1
f − (1− βf )

2

ζrκy − κr + ζf
κr
βf

βf ζrκy + (ζf − βf )κr


=
ζf
ζr

βf − κr

βf

[(
ρβf

)2 − 2ρβf + 1− (1− βf )
2βf ζrκy +

(
ζf − βf

)
κr

βf ζrκy + (ζf − βf )κr

]

=
ζf
ζr

βf − κr

βf

[
(1− ρβf )

2 − (1− βf )
2
]
> 0 ,

where the last inequality applies as min{βf , ζrκy} > κr under Assumption 2 and ρ ∈
[0,1). As a result, we have ∂My

∂ρ > 0 for all ϕπ ≤ ϕg
π

.

Finally, to show statement (c) we analogously substitute in for the upper bound ϕ
g
π

to obtain

sgn
(
∂My

∂ρ

)
|ϕπ=ϕ

g
π
=
ζf
ζr
βf (βf − κr)ρ

2 − 2
ζf
ζr

(βf − κr)ρ+
ζf
ζr

(
1− ϕ

g
πκr

)
+
(
1− βfϕ

g
π

)(
κy −

κr
ζr

)
=
ζf
ζr
βf (βf − κr)ρ

2 − 2
ζf
ζr

(βf − κr)ρ

+
ζf
ζr

(
1− κr

βf

[
1 +

(βf − κr)ζf
βf ζrκy + (ζf − βf )κr

])
−

(βf − κr)ζf
βf ζrκy + (ζf − βf )κr

(
κy −

κr
ζr

)

=
ζf
ζr

(βf − κr)

βfρ2 − 2ρ+ β−1
f −

ζrκy − κr + ζf
κr
βf

βf ζrκy + (ζf − βf )κr


=
ζf
ζr

(
βf − κr

)
ρ
[
ρβf − 2

]
≤ 0
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where the last inequality applies as min{βf , ζrκy} > κr under Assumption 2 and ρ ∈
[0,1). Note that the previous inequality is strict for ρ > 0. As a result, we have ∂My

∂ρ < 0

for all ϕπ ≥ ϕ
g
π .

Proof Corollary 2

PROOF. The proof proceeds by case distinction. We first show Statement (a) and after-
wards Statement (b):

Statement (a). In the case of κr = 0, the regime thresholds and ρ−max reduce to

ϕg
π
= β−1

f

(
1 + (1− βf )

2 ζf
ζr
κ−1
y

)
,

ϕ
g
π = β−1

f

(
1 +

ζf
ζr
κ−1
y

)
,

ρg∗ = β−1
f

(
1−

√
(βfϕπ − 1)

ζr
ζf
κy

)
.

As a result, we obtain for the lower regime threshold:

∂ϕg
π

∂βf
=−β−2

f

(
1 + (1− βf )

2 ζf
ζr
κ−1
y

)
− 2β−1

f (1− βf )
ζf
ζr
κ−1
y < 0 ,

∂ϕg
π

∂ζr
=−β−1

f (1− βf )
2 ζf

ζ2r
κ−1
y < 0 ,

∂ϕg
π

∂κy
=−β−1

f (1− βf )
2 ζf
ζr
κ−2
y < 0 ,

∂ϕg
π

∂ζf
= β−1

f (1− βf )
2 1

ζr
κ−1
y > 0 .

Similarly, we obtain for the upper regime threshold:

∂ϕ
g
π

∂βf
=−β−2

f

(
1 +

ζf
ζr
κ−1
y

)
< 0 ,

∂ϕ
g
π

∂ζr
=−β−1

f

ζf

ζ2r
κ−1
y < 0 ,

∂ϕ
g
π

∂κy
=−β−1

f

ζf
ζr
κ−2
y < 0 ,

∂ϕ
g
π

∂ζf
= β−1

f

1

ζr
κ−1
y > 0 ,

and for the output-maximizing persistence:

∂ρg∗

∂βf
=−β−2

f

(
1−

√
(βfϕπ − 1)

ζr
ζf
κy

)
− 1

2
β−1
f

(
(βfϕπ − 1)

ζr
ζf
κy

)− 1
2

ϕπ
ζr
ζf
κy < 0 ,

∂ρg∗

∂ζr
=−1

2
β−1
f

(
(βfϕπ − 1)

ζr
ζf
κy

)− 1
2

(βfϕπ − 1)
1

ζf
κy < 0 ,

∂ρg∗

∂κy
=−1

2
β−1
f

(
(βfϕπ − 1)

ζr
ζf
κy

)− 1
2

(βfϕπ − 1)
ζr
ζf

< 0 ,

∂ρg∗

∂ζf
=

1

2
β−1
f

(
(βfϕπ − 1)

ζr
ζf
κy

)− 1
2

(βfϕπ − 1)
ζr

ζ2f
κy > 0 .
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Statement (b). In the case of κr > 0, the regime thresholds and ρ−max are

ϕg
π
= β−1

f

(
1 + (1− βf )

2 (βf − κr)ζf
βf ζrκy + (ζf − βf )κr

)
,

ϕ
g
π = β−1

f

(
1 +

(βf − κr)ζf
βf ζrκy + (ζf − βf )κr

)
,

ρg∗ = β−1
f

(
1−

√
(βfϕπ − 1)

βf ζrκy + (ζf − βf )κr

(βf − κr)ζf

)
.

As a result, we obtain for the lower regime threshold:

∂ϕg
π

∂ζr
=−β−1

f (1− βf )
2 (βf − κr)ζf[
βf ζrκy + (ζf − βf )κr

]2βfκy < 0 ,

∂ϕg
π

∂κy
=−β−1

f (1− βf )
2 (βf − κr)ζf[
βf ζrκy + (ζf − βf )κr

]2βf ζr < 0 ,

∂ϕg
π

∂ζf
= β−1

f (1− βf )
2 (βf − κr)

[
βf ζrκy + (ζf − βf )κr

]
− κr(βf − κr)ζf[

βf ζrκy + (ζf − βf )κr
]2

= β−1
f (1− βf )

2βf (βf − κr)
ζrκy − κr[

βf ζrκy + (ζf − βf )κr
]2 > 0

∂ϕg
π

∂κr
= β−1

f (1− βf )
2−ζf

[
βf ζrκy + (ζf − βf )κr

]
− ζf (ζf − βf )(βf − κr)[

βf ζrκy + (ζf − βf )κr
]2

= β−1
f (1− βf )

2βf ζf
−ζrκy − ζf + βf[

βf ζrκy + (ζf − βf )κr
]2 .

Similarly, we obtain for the upper regime threshold:

∂ϕ
g
π

∂ζr
=−β−1

f

(βf − κr)ζf[
βf ζrκy + (ζf − βf )κr

]2βfκy < 0 ,

∂ϕ
g
π

∂κy
=−β−1

f

(βf − κr)ζf[
βf ζrκy + (ζf − βf )κr

]2βf ζr < 0 ,

∂ϕ
g
π

∂ζf
= β−1

f

(βf − κr)
[
βf ζrκy + (ζf − βf )κr

]
− κr(βf − κr)ζf[

βf ζrκy + (ζf − βf )κr
]2

= (βf − κr)
ζrκy − κr[

βf ζrκy + (ζf − βf )κr
]2 > 0

∂ϕ
g
π

∂κr
= β−1

f

−ζf
[
βf ζrκy + (ζf − βf )κr

]
− ζf (ζf − βf )(βf − κr)[

βf ζrκy + (ζf − βf )κr
]2

= ζf
−ζrκy − ζf + βf[

βf ζrκy + (ζf − βf )κr
]2 .
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Finally, we obtain for the output maximizing persistence:

∂ρg∗

∂ζr
=−1

2
β−1
f

(
(βfϕπ − 1)

βf ζrκy + (ζf − βf )κr

(βf − κr)ζf

)− 1
2 βfκy

(βf − κr)ζf
< 0 ,

∂ρg∗

∂κy
=−1

2
β−1
f

(
(βfϕπ − 1)

βf ζrκy + (ζf − βf )κr

(βf − κr)ζf

)− 1
2 βf ζr

(βf − κr)ζf
< 0 ,

∂ρg∗

∂ζf
=−1

2
β−1
f

(
(βfϕπ − 1)

βf ζrκy + (ζf − βf )κr

(βf − κr)ζf

)− 1
2 κr(βf − κr)ζf − (βf − κr)

[
βf ζrκy + (ζf − βf )κr

][
(βf − κr)ζf

]2
=

1

2
(βf − κr)

(
(βfϕπ − 1)

βf ζrκy + (ζf − βf )κr

(βf − κr)ζf

)− 1
2 ζrκy − κr[

(βf − κr)ζf
]2 > 0 ,

∂ρg∗

∂κr
=−1

2
β−1
f

(
(βfϕπ − 1)

βf ζrκy + (ζf − βf )κr

(βf − κr)ζf

)− 1
2 (ζf − βf )(βf − κr)ζf + ζf

[
βf ζrκy + (ζf − βf )κr

][
(βf − κr)ζf

]2
=−1

2

(
(βfϕπ − 1)

βf ζrκy + (ζf − βf )κr

(βf − κr)ζf

)− 1
2 ζf

[
ζf + ζrκy − βf

][
(βf − κr)ζf

]2 ,

which completes the proof of Corollary 2.

Proof Proposition 14

PROOF. In the limit, we obtain the following two expressions

lim
ρ→0

My =
1

(1 + ϕyζr) (1− ϕπκr) ζ
−1
r + ϕπ (κy + ϕyκr)

,

lim
ρ→1

My =
1− βf(

1 + ϕyζr − ζf
) [

1− βf − κr (ϕπ − 1)
]
ζ−1
r + (ϕπ − 1) (κy + ϕyκr)

.

The proof of Proposition 12 states that lim
ρ→0

My > 0 and lim
ρ→1

My > 0. As a result, a purely

transitory DIS-demand shock is more expansionary than a completely permanent one,
i.e., lim

ρ→0
My > lim

ρ→1
My , if

(
1 + ϕyζr − ζf

) [
1− βf − κr (ϕπ − 1)

]
ζ−1
r + (ϕπ − 1) (κy + ϕyκr)>

(1− βf )
[
(1 + ϕyζr) (1− ϕπκr) ζ

−1
r + ϕπ (κy + ϕyκr)

]
,

which can be rearranged to(
1− ζf

) [
1− βf − κr (ϕπ − 1)

]
ζ−1
r + (ϕπ − 1)κy > (1− βf )

[
(1− ϕπκr) ζ

−1
r + ϕπκy

]
⇔
(
1− ζf

) [
1− βf − κr (ϕπ − 1)

]
+ (ϕπ − 1) ζrκy > (1− βf ) [1 + ϕπ (ζrκy − κr)]

⇔ ϕπ
[
−(1− ζf )κr + ζrκy − (1− βf )(ζrκy − κr)

]
> (1− βf ) + ζrκy − (1− ζf )(1− βf + κr)

⇔ ϕπ
[
βf ζrκy + (ζf − βf )κr

]
> ζrκy + ζf (1− βf )− (1− ζf )κr

⇔ ϕπ
[
βf ζrκy + (ζf − βf )κr

]
> βf ζrκy + (ζf − βf )κr + (1− βf )

[
ζrκy + ζf − κr

]
⇔ ϕπ > 1 + (1− βf )

ζrκy + ζf − κr

βf ζrκy + (ζf − βf )κr
,
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which can be shown to be larger than ϕg
π

and smaller than ϕ
g
π if βf > 0.

A.4 Towards a Structural Interpretation

In this section, we provide formal statements and proofs for the sensitivity of monetary
regime thresholds and ρ-max in case specific micro-foundations act on multiple suffi-
cient statistics at the same time. We summarize our findings in Proposition 15 and refer
to the main text for a discussion of the driving forces at play in generating these result.

PROPOSITION 15. The following statements apply.

(a) Household Preferences: a higher elasticity of inter-temporal substitution or wealth
in the utility decrease ϕg

π
, ϕ

g
π , and ρg∗.

(b) Household Heterogeneity: counter-cyclical (respectively, pro-cyclical) income risk
increases (respectively, decreases) ϕg

π
, ϕ

g
π , and ρg∗. Moreover, in a THANK economy,

counter-cyclical (respectively, pro-cyclical) income inequality decreases (respectively,
increases) ϕg

π
, ϕ

g
π , and ρg∗ if λHtM + s > 1, where λHtM is the share of hand-to-

mouth households and s the probability to stay a saver household.

(c) Behavioral Frictions: a departure from the full information rational expectation
assumption via cognitive discounting increases ϕg

π
, ϕ

g
π , and ρg∗.

(d) Life-Cycle: life-cycle dynamics with stochastic death increase ϕg
π

unambiguously,

while it increases ϕ
g
π and ρg∗ if 1≥ θβf

1−θβf

ζf
κy

, i.e., prices are sufficiently flexible.

(e) Household Debt and Default: information asymmetries leading to interest rate
spreads between borrowers and lenders leave ϕg

π
, ϕ

g
π , and ρg∗ unaffected if κr = 0

and increases all of them if κr > 0.

(f) Long-Run Interest Rate: a higher steady state real interest rate decreases (respec-
tively, increases) ϕg

π
, ϕ

g
π , and ρg∗ if ζf + ζrκy − βf ≥ (βf − κr)ζr (respectively,

ζf + ζrκy − βf < (βf − κr)ζr).

Proof Proposition 15

PROOF. Subsequently, we prove all statements in the corresponding order.

Statement (a). Following Chapter 3 in Galí (2015) the RANK model with an arbitrary elas-
ticity of inter-temporal substitution is characterized by

ζf = 1 , ζr = σ−1 , βf = β , κy = λ

(
σ+

φ+ α

1− α

)
, and κr = 0 .

In this case, we can define Ξ≡ 1
ζrκy

such that we have

ϕg
π
= β−1

(
1 + (1− β)2Ξ

)
, ϕ

g
π = β−1 (1 + Ξ) , and ρg∗ = β−1

(
1−

√
(ϕπβ − 1)Ξ−1

)
.
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The first part of Statement (a) follows immediately from ∂Ξ
∂σ = 1

(ζrκy)2
λ
σ2

φ+α
1−α > 0. Fol-

lowing Online Appendix C in Michaillat and Saez (2021), the WUNK model with loga-
rithmic utility over consumption is, in turn, characterized by

ζf =
β

β + u′(0)yn
, ζr = 1 , βf = β , κy = λ

(
1 +

φ+ α

1− α

)
, and κr = 0 ,

where we work with Calvo price setting rather than Rotemberg adjustment costs. In this

case, we can define Ξ≡ ζf
κy

such that we have

ϕg
π
= β−1

(
1 + (1− β)2Ξ

)
, ϕ

g
π = β−1 (1 + Ξ) , and ρg∗ = β−1

(
1−

√
(ϕπβ − 1)Ξ−1

)
.

The second part of Statement (a) follows from ∂Ξ
∂u′(0) =− 1

κy
β

(β+u′(0)yn)2
yn < 0.

Statement (b). Following Section 2 in Bilbiie (Forthcoming) the tractable HANK econ-
omy based on a spender-saver dichotomy with cyclical income inequality is character-
ized by

ζf = 1+ (χ− 1) 1−s
1−λHtMχ

, ζr =
1
σ

1−λHtM

1−λHtMχ
, βf = β , κy = λ

(
σ+ φ+α

1−α

)
, and κr = 0 ,

where the measure of cyclical inequality, χ, is given by χ= 1+φ(1− τD

λHtM
). In this case,

we can define Ξ≡ ζf
ζrκy

such that we have

ϕg
π
= β−1

(
1 + (1− β)2Ξ

)
, ϕ

g
π = β−1 (1 + Ξ) , and ρg∗ = β−1

(
1−

√
(ϕπβ − 1)Ξ−1

)
.

The following comparative statics apply

∂Ξ

∂χ
=

σ

κy

1− s− λHtM

1− λHtM
,

∂Ξ

∂s
=

σ

κy

1− χ

1− λHtM
,

∂Ξ

∂λHtM
=

σ

κy

(1− χ)s+ (1− λHtM )(1− λHtM − s)
∂χ

∂λHtM

(1− λHtM )2
,

As a result, ϕg
π
, ϕ

g
π , and ρg∗ decrease in χ if s + λHtM > 1, and decrease in s if χ > 1.

Moreover, they decrease in λHtM if (1 − χ)s + (1 − λHtM )(1 − λHtM − s) ∂χ
∂λHtM

< 0,
which is satisfied if cyclical inequality if sufficiently countercyclical, i.e., χ large enough.
Regarding cyclical income risk, we follow Bilbiie (Forthcoming) in making the following
case distinction. First, we consider the case where the probability to stay in the saver
state depends on the current aggregate state of the economy, i.e., s(Yt). In this case, one
arrives at the following representation

ζ̃f = 1
1−η

[
1 + (χ− 1) 1−s̃

1−λHtMχ

]
, ζ̃r =

1
1−η

1
σ

1−λHtM

1−λHtMχ
, s̃= s

s+(1−s)Γσ , η =
syY
1−s (1− Γ−σ)(1− s̃) 1σ

1−λHtM

1−λHtMχ
.
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where Γ = cS

cH
is a measure of steady state consumption inequality. Notice that βf , κy ,

and κr take the same values as before. It is straightforward to see that pro- or counter-

cyclical risk, i.e., η ̸= 0 leaves
ζ̃f
ζ̃r

unchanged, i.e.,
ζ̃f
ζ̃r

=
ζf
ζr

. As a result, the comparative

statics of ϕg
π
, ϕ

g
π , and ρg∗ do not depend on the cyclicality of income risk and are unaf-

fected otherwise up to replacing s by s̃. Second, we consider the case where the proba-
bility to stay in the saver state depends on the future aggregate state of the economy, i.e.,
s(Yt+1). In this case, one arrives at the following representation

ζ̃f = 1+ (χ− 1) 1−s̃
1−λHtMχ

+ η , ζ̃r =
1
σ

1−λHtM

1−λHtMχ
, s̃= s

s+(1−s)Γσ , η =
syY
1−s (1− Γ−σ)(1− s̃) 1σ

1−λHtM

1−λHtMχ
.

Finally, defining Ξ≡ ζ̃f
ζ̃rκy

we arrive at the following comparative statics

∂Ξ

∂χ
=

σ

κy

1− s̃− λHtM

1− λHtM
,

∂Ξ

∂s
=

1

κy

1

(s+ (1− s)Γσ)2

[
syY (Γσ − 1)2 + σ

1− χ

1− λHtM
Γσ

]
,

∂Ξ

∂sy
=

1

κy

Y

1− s
(1− Γ−σ)(1− s̃) ,

∂Ξ

∂λHtM
=

σ

κy

(1− χ)s̃+ (1− λHtM )(1− λHtM − s̃)
∂χ

∂λHtM

(1− λHtM )2
,

from where the results in the main text follow. Notice that the PRANK economy of

Acharya and Dogra (2020) leads to ζf = 1− σ
2 (

R−1
R )2

∂σ2(y∗)
∂y such that the comparative

statics are qualitatively similar to the ones with respect to sy when s depends on the
future aggregate state, i.e., procyclical risk reduces ζ̃f and Ξ.

Statement (c). Following Proposition 2 in Gabaix (2020) the behavioral RANK model is
characterized by

ζf =m and βf =m

(
θ+

1− βθ

1− βθm
(1− θ)

)
.

Notice that we have

∂βf
∂m

> 0 , and
∂βf
∂m

m

βf
= 1+

βθm

1− βθm

(1− βθ)(1− θ)

θ(1− βθm) + (1− βθ)(1− θ)
≥ 1 .

In this case, we can define Ξ≡ ζf
ζrκy

, with ∂Ξ
∂m = 1

ζrκy
such that we have

ϕg
π
= β−1

f

(
1 + (1− βf )

2Ξ
)
, ϕ

g
π = β−1

f (1 + Ξ) , and ρg∗ = β−1
f

(
1−

√
(ϕπβf − 1)Ξ−1

)
.

From there, we obtain

∂ϕg
π

∂m
=
[
−β−2

f

(
1 + (1− βf )

2Ξ
)
− 2β−1

f (1− βf )Ξ
] ∂βf
∂m

+ β−1
f (1− βf )

2 Ξ

m
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=
[
−β−2

f − 2β−1
f (1− βf )Ξ

] ∂βf
∂m

+ β−1
f (1− βf )

2 Ξ

m

[
1−

∂βf
∂m

m

βf

]
< 0 .

Moreover, we have

∂ϕ
g
π

∂m
=−β−2

f (1 + Ξ)
∂βf
∂m

+ β−1
f

Ξ

m
=−β−2

f

∂βf
∂m

+ β−1
f

Ξ

m

[
1−

∂βf
∂m

m

βf

]
< 0 .

Finally, we show that

∂ρg∗

∂m
=

[
−β−2

f

(
1−

[
(ϕπβf − 1)Ξ−1

] 1
2

)
−
β−1
f

2

[
(ϕπβf − 1)Ξ−1

]− 1
2 ϕπΞ

−1

]
∂βf
∂m

+
β−1
f

2

[
(ϕπβf − 1)Ξ−1

]− 1
2 (ϕπβf − 1)

Ξ−1

m

=−β−2
f

(
1−

[
(ϕπβf − 1)Ξ−1

] 1
2

)
∂βf
∂m

−
β−1
f

2

[
(ϕπβf − 1)Ξ−1

]− 1
2 Ξ−1

[
ϕπ
∂βf
∂m

−
ϕπβf − 1

m

]
< 0 ,

where the last inequality follows by the observation that

ϕπ
∂βf
∂m

−
ϕπβf − 1

m
=

1

m
+
ϕπβf
m

[
∂βf
∂m

m

βf
− 1

]
> 0 .

This completes the proof of Statement (c).

Statement (d). Following Del Negro et al. (2023) the NK model with a perpetual youth
structure and no habit persistence admits the following representation

ζf =
(
1 + p

1−p
1−β(1−p)

1+φ
s
c

)−1
, ζr = 1 , βf = βζf , κy = λβf

(
1 + φ+α

1−α

)
, and κr = 0 ,

where p ∈ [0,1) denotes the probability to die and s/c is the wealth to consumption

steady state ratio. In this case, we can define Ξ≡ ζf
κy

such that we have

ϕg
π
= β−1

f

(
1 + (1− βf )

2Ξ
)
, ϕ

g
π = β−1

f (1 + Ξ) , and ρg∗ = β−1
f

(
1−

√
(ϕπβf − 1)Ξ−1

)
.

Notice that the following auxiliary results apply:

∂ζf
∂p

=−ζ2f
s

c

1

1 +φ

1− β(1− p)2

(1− p)2
,

∂βf
∂p

= β
∂ζf
∂p

,

∂κy
∂p

=−κy
βθ

1− βθζf

∂ζf
∂p

,

∂Ξ

∂p
=

1

κy(1− βθζf )

∂ζf
∂p

.
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Using the previous auxiliary results, we obtain

∂ϕg
π

∂p
=
[
−β−2

f

(
1 + (1− βf )

2Ξ
)
− 2β−1

f (1− βf )Ξ
]
β
∂ζf
∂p

+ β−1
f (1− βf )

2 1

κy(1− βθζf )

∂ζf
∂p

=
[
−β−2

f − 2β−1
f (1− βf )Ξ

]
β
∂ζf
∂p

+ β−1
f (1− βf )

2 θβf
1− θβf

1

κy

∂ζf
∂p

=−β−2
f β

∂ζf
∂p

+

[
1− βf
βf

θβf
1− θβf

− 2

]
1− βf
κy

∂ζf
∂p

> 0 ,

where the terminal strict inequality holds as θ(1 + βf ) ≤ 2 due to θ ≤ 1 and βf < β < 1.
In a similar vein, we obtain for the upper regime threshold

∂ϕ
g
π

∂p
=−β−2

f (1 + Ξ)β
∂ζf
∂p

+ β−1
f

1

κy(1− βθζf )

∂ζf
∂p

.

The previous expression can be rewritten by substituting in for Ξ as

∂ϕ
g
π

∂p
=−β−2

f β
∂ζf
∂p

+
β−1
f

κy

[
1

1− βθζf
−
βζf
βf

]
∂ζf
∂p

=−β−2
f β

∂ζf
∂p

+
β−1
f

κy

θβf
1− βθζf

∂ζf
∂p

.

Finally, the former expression can be simplified to

∂ϕ
g
π

∂p
=−β−1

f

∂ζf
∂p

[
β

βf
− 1

κy

θβf
1− βθζf

]
=− 1

βf ζf

∂ζf
∂p

[
1−

ζf
κy

θβf
1− θβf

]
.

As a result, we obtain that ∂ϕ
g
π

∂p ⪌ 0 if 1 ⪌ ζf
κy

θβf
1−θβf

. To conclude the proof of statement

(d), we finally study the comparative statics of the output-maximizing persistence

∂ρg∗

∂p
=−β−1

f ρg∗β
∂ζf
∂p

−
β−1
f

2

[
(ϕπβf − 1)

κy
ζf

]− 1
2

ϕπβ
κy
ζf

∂ζf
∂p

+ (ϕπβf − 1)

∂κy
∂p

ζf −
∂ζf
∂p

κy

ζ2f


=−β−1

f ρg∗β
∂ζf
∂p

−
β−1
f

2

[
(ϕπβf − 1)

κy
ζf

]− 1
2

{
ϕπβ

κy
ζf

∂ζf
∂p

− (ϕπβf − 1)
κy

1− θβf

∂ζf
∂p

1

ζ2f

}

=−β−1
f ρg∗β

∂ζf
∂p

−
β−1
f

2

[
(ϕπβf − 1)

κy
ζf

]− 1
2
{
ϕπβ − (ϕπβf − 1)

1

1− θβf

1

ζf

}
κy
ζf

∂ζf
∂p

=−β−1
f ρg∗β

∂ζf
∂p

−
β−1
f

2

[
(ϕπβf − 1)

κy
ζf

]− 1
2
{
ϕπβf − (ϕπβf − 1)

1

1− θβf

}
κy

ζ2f

∂ζf
∂p

=−β−1
f ρg∗β

∂ζf
∂p

−
β−1
f

2

[
(ϕπβf − 1)

κy
ζf

]− 1
2
{
1− (ϕπβf − 1)

θβf
1− θβf

}
κy

ζ2f

∂ζf
∂p

.
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Notice that the sign of the previous expression is positive if 1 ≥ (ϕπβf − 1)
θβf

1−θβf
. Sub-

stituting in for the upper bound ϕ
g
π = β−1

f

(
1 +

ζf
κy

)
yields the sufficient condition 1 ≥

θβf
1−θβf

ζf
κy

.

Statement (e). Following Beaudry and Portier (2018) the NK model with an upward slop-
ing interest rate schedule admits the following representation

ζf =
σ

σ+ ϵp
, ζr =

1

σ+ ϵp
, βf = β , κy = λ

(
1 +

φ+ α

1− α

)
, and κr ≥ 0 ,

where ϵp ∈ [0,∞) captures the increase in borrowing costs depending on the level
of debt. Notice that κr does not depend on ϵp. In this case, we can define Ξ ≡

(βf−κr)ζf
βf ζrκy+(ζf−βf )κr

such that we have

ϕg
π
= β−1

f

(
1 + (1− βf )

2Ξ
)
, ϕ

g
π = β−1

f (1 + Ξ) , and ρg∗ = β−1
f

(
1−

√
(ϕπβf − 1)Ξ−1

)
.

Notice that we have

∂ζf
∂ϵp

=− 1

σ+ ϵp
ζf , and

∂ζr
∂ϵp

=− 1

σ+ ϵp
ζr .

As such, we obtain

∂Ξ

∂ϵp
=

(βf − κr)
∂ζf
∂ϵp

[
βf ζrκy + (ζf − βf )κr

]
− (βf − κr)ζf

[
βfκy

∂ζr
∂ϵp

+
∂ζf
∂ϵp

κr

]
[
βf ζrκy + (ζf − βf )κr

]2
= (βf − κr)βf

∂ζf
∂ϵp

[ζrκy − κr]−
∂ζr
∂ϵp

ζfκy[
βf ζrκy + (ζf − βf )κr

]2 .

Substituting in the expression for
∂ζf
∂ϵp

and ∂ζr
∂ϵp

, we finally obtain

∂Ξ

∂ϵp
=

(βf − κr)βf
σ+ ϵp

ζfκr[
βf ζrκy + (ζf − βf )κr

]2 ≥ 0 ,

from which the results stated in the main text directly follow.

Statement (f). Following Beaudry et al. (2024) the NK model with a cost channel of mon-
etary policy admits the following representation

ζf = σ
σ+ϵp

, ζr =
1

σ+ϵp
, βf = β , κy = κ

(
1
a
W
P

1
a
W
P +β

b
1+i
1+π

)
, and κr = κ

(
β
b

1+i
1+π

1
a
W
P +β

b
1+i
1+π

)
,

where ϵp ∈ [0,∞) captures the increase in borrowing costs depending on the level of
debt, W/P is the real wage, a and b capture the degree of substitutability between input
goods within the Leontief technology, 1 + i is the gross nominal rate, and 1 + π gross
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price inflation. Notice that κ= (1−θ)(1−βθ)
θ > 0 does not depend on the nominal interest

rate. In this case, we can define Ξ≡ (βf−κr)ζf
βf ζrκy+(ζf−βf )κr

such that we have

ϕg
π
= β−1

f

(
1 + (1− βf )

2Ξ
)
, ϕ

g
π = β−1

f (1 + Ξ) , and ρg∗ = β−1
f

(
1−

√
(ϕπβf − 1)Ξ−1

)
.

Subsequently, we define r ≡ 1+i
1+π . Moreover, notice that the following relations hold

∂κy
∂r

=−κ

β

ab

W

P[
1

a

W

P
+
β

b
r

]2 , and
∂κr
∂r

= κ

β

ab

W

P[
1

a

W

P
+
β

b
r

]2 .
As a result, we obtain

∂Ξ

∂r
=

−ζf
∂κr
∂r

[
βf ζrκy + (ζf − βf )κr

]
− (βf − κr)ζf

[
βf ζr

∂κy
∂r

+ (ζf − βf )
∂κr
∂r

]
[
βf ζrκy + (ζf − βf )κr

]2
=

−ζf
∂κr
∂r

[
βf ζrκy + (ζf − βf )κr + (βf − κr)(ζf − βf )

]
− (βf − κr)ζfβf ζr

∂κy
∂r[

βf ζrκy + (ζf − βf )κr
]2

=
−ζf

∂κr
∂r

[
βf ζrκy + βf (ζf − βf )

]
− (βf − κr)ζfβf ζr

∂κy
∂r[

βf ζrκy + (ζf − βf )κr
]2

=−ζfβf

∂κr
∂r

[
ζrκy + (ζf − βf )

]
+ (βf − κr)ζr

∂κy
∂r[

βf ζrκy + (ζf − βf )κr
]2

=−
ζfβf[

βf ζrκy + (ζf − βf )κr
]2 κ

β

ab

W

P[
1

a

W

P
+
β

b
r

]2 {ζrκy + ζf − βf − (βf − κr)ζr
}
.

As a result, we obtain that ∂Ξ
∂r ⪋ 0 if ζrκy + ζf − βf ⪌ (βf − κr)ζr . This completes the

proof of the statement in the main text.

A.5 Additional Results

A.5.1 Comparative Statics in RANK We summarize comparative static results of the
regime thresholds of systematic monetary policy as well as the impact output maximiz-
ing persistence in Corollary 3. Relative to Corollary 1 from the main text, which focused
on the size of the intermediate regime (∆π), we consider subsequently levels.

COROLLARY 3. Consider the hump-shaped regime of Proposition 2 characterized by ϕ
π
<

ϕπ < ϕπ . The following comparative statics apply.
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(a) The lower and upper thresholds (ϕ
π
, ϕπ) strictly decreases in κy . Moreover, ϕ

π

strictly decreases in β, whereas ϕπ strictly decreases (respectively, increases) in β if

κy >
2βθ−1
1−βθ (respectively, κy ≤ 2βθ−1

1−βθ ).

(b) The persistence threshold ρ∗ strictly decreases in κy and ϕπ . Moreover, ρ∗ strictly

decreases in β if κy >
2βθ−1
1−βθ , whereas ∃ ϕ∗π ∈

(
ϕ
π
, ϕπ

)
such that ∂ρ∗

∂β < 0 ∀ϕπ ∈(
ϕ
π
, ϕ∗π

)
and ∂ρ∗

∂β ≥ 0 ∀ϕπ ∈
[
ϕ∗π, ϕπ

)
if κy ≤ 2βθ−1

1−βθ .

Proof Corollary 3

PROOF. To show Statement (a) note that the comparative statics of ϕ
π

and ϕπ with re-

spect to κy follow in a straightforward manner. To compute the comparative statics with

respect to β, we make use of the following relation: ∂κy
∂β =− θ

1−βθκy . We then obtain

∂ϕ
π

∂β
=−β−2

(
1 + (1− β)2κ−1

y

)
− 2β−1(1− β)κ−1

y − β−1(1− β)2κ−2
y
∂κy
∂β

=−β−2
(
1 + (1− β)2κ−1

y

)
− 2β−2(1− β)2

β

1− β
κ−1
y + β−2(1− β)2κ−1

y
βθ

1− βθ

=−β−2

[
1 + (1− β)2κ−1

y

(
1 + 2

β

1− β
− βθ

1− βθ

)]
< 0 ,

where the terminal inequality is due to

1 + 2 β
1−β − βθ

1−βθ = 1+β
1−β − βθ

1−βθ = (1+β)(1−βθ)−βθ(1−β)
(1−β)(1−βθ) = 1−βθ+β(1−θ)

(1−β)(1−βθ) > 0 .

Following similar steps, we obtain

∂ϕπ
∂β

=−β−2
(
1 + κ−1

y

)
− β−1κ−2

y
∂κy
∂β

=−β−2
(
1 + κ−1

y

)
+ β−2κ−1

y
βθ

1− βθ

=−β2
[
1 + κ−1

y

(
1− βθ

1− βθ

)]
,

which is strictly negative (respectively, positive) if κy >
2βθ−1
1−βθ (respectively, κy ≤ 2βθ−1

1−βθ ).

To show Statement (b) notice that the comparative statics of ρ∗ with respect to κy

and ϕπ follow in a straightforward manner. Moreover, regarding the comparative statics

with respect to β we have

∂ρ∗

∂β
=−β−2

[
1−

(
(ϕπβ − 1)κy

) 1
2

]
− β−1

2

(
(ϕπβ−1)κy

)− 1
2

[
ϕπκy − (βϕπ − 1)

θ

1− βθ
κy

]
.
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To begin with, taking the limit yields

lim
ϕπ↓ϕπ

sgn
(
∂ρ∗

∂β

)
=−β−2

[
1−

(
(ϕ

π
β − 1)κy

) 1
2

]
− β−1

2

(
(ϕ

π
β − 1)κy

)− 1
2

[
ϕ
π
κy − (βϕ

π
− 1)

θ

1− βθ
κy

]

=−β−1 − 1

2

β−1

1− β

[
β−1κy + β−1(1− β)2 − θ

1− βθ
(1− β)2

]
=−β−1

[
1

2

β−1

1− β
κy + 1+

1

2

1− β

β

(
1− βθ

1− βθ

)]
=−β−1

[
1

2

β−1

1− β
κy + 1+

1

2

1− β

β

1− 2βθ

1− βθ

]
< 0 ,

where the strict inequality is due to

1 +
1

2

1− β

β

1− 2βθ

1− βθ
=

2β(1− βθ) + (1− β)(1− 2βθ)

2β(1− βθ)
=

1− βθ+ β(1− θ)

2β(1− βθ)
> 0 .

Similarly, we obtain

lim
ϕπ↑ϕπ

sgn
(
∂ρ∗

∂β

)
=−β

−1

2

[
β−1κy + β−1 − θ

1− βθ

]
=−β

−2

2

[
1 + κy −

βθ

1− βθ

]
,

which is strictly negative (respectively, positive) if κy >
2βθ−1
1−βθ (respectively, κy ≤ 2βθ−1

1−βθ ).
Moreover, notice that we have

∂

(
∂ρ∗

∂β

)
∂ϕπ

=
β−2

2

(
(ϕπβ − 1)κy

)− 1
2βκy +

1

4

(
(ϕπβ − 1)κy

)− 3
2κy

[
ϕπκy − (βϕπ − 1)

θ

1− βθ
κy

]
− β−1

2

(
(ϕπβ − 1)κy

)− 1
2κy

[
1− βθ

1− βθ

]
=
1

2

(
(ϕπβ − 1)κy

)− 1
2κy

θ

1− βθ
+

1

4

(
(ϕπβ − 1)κy

)− 3
2κy

[
ϕπκy − (βϕπ − 1)

θ

1− βθ
κy

]
=
1

2

(
(ϕπβ − 1)κy

)− 1
2κy

{
1

2

ϕπ
ϕπβ − 1

+
θ

1− βθ
− 1

2

θ

1− βθ
κy

}
.

To determine the sign of the previous expression, notice that ϕπ
ϕπβ−1 is strictly decreasing

in ϕπ . Therefore, the derivative can switch signs at most once on ϕπ ∈
(
ϕ
π
, ϕπ

)
. As a

result, we arrive at the following case distinction:

1. If κy >
2βθ−1
1−βθ , i.e., lim

ϕπ↑ϕπ
sgn

(
∂ρ∗

∂β

)
< 0, then ∂ρ∗

∂β < 0 ∀ϕπ ∈
(
ϕ
π
, ϕπ

)
.

2. If κy ≤ 2βθ−1
1−βθ , i.e., lim

ϕπ↑ϕπ
sgn

(
∂ρ∗

∂β

)
≥ 0, then ∃ ϕ∗π ∈

(
ϕ
π
, ϕπ

)
such that ∂ρ∗

∂β <

0 ∀ϕπ ∈
(
ϕ
π
, ϕ∗π

)
and ∂ρ∗

∂β ≥ 0 ∀ϕπ ∈
(
ϕ∗π, ϕπ,

)
.
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A.5.2 Cumulative Output Gains In this section, we examine how the degree of persis-
tence shapes cumulative output gains in the context of a RANK economy. Proposition
16 summarizes our findings.

PROPOSITION 16. The cumulative output multiplier monotonously increases in the per-

sistence of a DIS-demand shock, i.e., ∂Cy(1)
∂ρ > 0.

Propositions 2 and 16 together imply that the persistence of the DIS-demand shock
possibly engenders a short-versus long-run stabilization trade-off. First, a more persis-
tent DIS-demand shock drives short-run and cumulative output in the same direction
if ϕπ < ϕ

π
. Second, a more persistent DIS-demand shock drives short-run and cumu-

lative output in the same direction for ρ < ρ∗ and in opposite directions for ρ > ρ∗ if
ϕ
π
< ϕπ < ϕπ . Finally, a more persistent DIS-demand shock unambiguously reduces

short-run output gains at the expense of higher cumulative output gains if ϕπ > ϕπ .

Proof Proposition 16

PROOF. The cumulative output multiplier is given by

Cy(1) =
My

1− ρ
=

1− βρ

(1− ρ)(1 + ϕy − ρ)(1− βρ) + κy(ϕπ − ρ)(1− ρ)
.

Defining x≡ (1− ρ) (1 + ϕy − ρ) (1− ρβ) + κy (ϕπ − ρ) (1− ρ) we obtain its comparative
static

x2
∂Cy(1)

∂ρ
=− β [(1− ρ) (1 + ϕy − ρ) (1− ρβ) + κy (ϕπ − ρ) (1− ρ)]

− (1− βρ)

{
−(1− ρ) (1− ρβ)− (1 + ϕy − ρ) [1− βρ+ β(1− ρ)]

}
− (1− βρ)

{
−κy [1− ρ+ ϕπ − ρ]

}
,

which can be further simplified to

x2
∂Cy(1)

∂ρ
=− βκy(ϕπ − ρ)(1− ρ) + 2(1− ρ)(1− βρ)2 + ϕy(1− β)2

+ κy(1− βρ) [1− ρ+ ϕπ − ρ] .

The previous expression can be rewritten as

x2
∂Cy(1)

∂ρ
= κy [(ϕπ − ρ)(1− β) + (1− ρ)(1− βρ)] + 2(1− ρ)(1− βρ)2 + ϕy(1− βρ)2

= κy
[
ϕπ(1− β) + 1− 2ρ+ βρ2

]
+
(
2− 2ρ+ ϕy

) [
1− 2βρ+ (βρ)2

]
=−2β2ρ3 + [4 + κy + β(2 + ϕy)]βρ

2 − 2 [1 + κy + β(2 + ϕy)]ρ+ κy [ϕπ(1− β) + 1] + 2+ ϕy .

As a result, we have

∂Cy(1)

∂ρ
=

−2β2ρ3 + [4 + κy + β(2 + ϕy)]βρ
2 − 2 [1 + κy + β(2 + ϕy)]ρ+ κy [ϕπ(1− β) + 1] + 2+ ϕy

[(1− ρ) (1 + ϕy − ρ) (1− ρβ) + κy (ϕπ − ρ) (1− ρ)]2
.

86



The sign of the previous expression is determined by the numerator, which constitutes
a third order polynomial in ρ. Thus, it can have at most three roots and change its sign
thrice on ρ ∈ [0,1). To begin with, let us define the numerator by Cn

y (1)≡ ψaρ
3 + ψbρ

2 +

ψcρ+ψd, where

ψa =−2β2 ,

ψb = β [4 + κy + β(2 + ϕy)] ,

ψc =−2 [1 + κy + β(2 + ϕy)] ,

ψd = κy [ϕπ(1− β) + 1] + 2+ ϕy .

It follows that lim
ρ→−∞

Cn
y (1)> 0 and lim

ρ→∞
Cn
y (1)< 0. In particular, we have

lim
ρ→0

Cn
y (1) = κy [ϕπ(1− β) + 1] + 2+ ϕy > 0 ,

lim
ρ→1

Cn
y (1) = (1− β) [(1− β)ϕy + κy(ϕπ − 1)]> 0 ,

where the sign of the last term is determined by the Taylor principle. To complete the
proof, we proceed by case distinction. First, consider the case where Cn

y (1) has a unique
triple root and, thus, flips sign only once. This implies that Cn

y (1) > 0 on ρ ∈ [0,1). Sec-
ond, consider the case where Cn

y (1) has two distinct roots, one of them double. Again,
this implies that it flips sign only once and, thus, Cn

y (1) > 0 on ρ ∈ [0,1). Last, consider
the case where Cn

y (1) has three distinct roots. We show that both local extrema are lo-
cated on (1,∞) such that Cn

y (1) is strictly decreasing but positive on ρξ ∈ [0,1). They are
characterized by

3ψaρ
2 + 2ψbρ+ψc = 0 ,

with corresponding roots

ρ̂+,− =
−2ψb ±

√
4ψ2

b − 12ψaψc

6ψa
=

−ψb ±
√
ψ2
b − 3ψaψc

3ψa
.

To begin with, we show that both roots are real, i.e.,

ψ2
b − 3ψaψc = β2 [4 + κy + β(2 + ϕy)]

2 − 12β2 [1 + κy + β(2 + ϕy)]

= β2
{
[4 + κy + β(2 + ϕy)]

2 − 12 [1 + κy + β(2 + ϕy)]

}
= β2

{
16 + 8 [κy + β(2 + ϕy)] + [κy + β(2 + ϕy)]

2 − 12 [1 + κy + β(2 + ϕy)]

}
= β2

{
4− 4 [κy + β(2 + ϕy)] + [κy + β(2 + ϕy)]

2
}

= β2
{
2− [κy + β(2 + ϕy)]

}2

> 0 .
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As ψa < 0, the smaller root is given by

ρ̂− =
−ψb +

√
ψ2
b − 3ψaψc

3ψa
.

We then show that the latter is strictly larger than unity, i.e., ρ̂− > 1, which is equivalent
to

3ψa +ψb >
√
ψ2
b − 3ψaψc .

Notice that 3ψa + ψb = β [κy + βϕy + 4(1− β)]> 0 such that the previous inequality can
be rewritten as

(3ψa +ψb)
2 >ψ2

b − 3ψaψc ⇔ 3ψ2
a + 2ψaψb +ψaψc > 0 ⇔ ψa (3ψa + 2ψb +ψc)> 0 .

As ψa < 0, the terminal inequality holds true because

3ψa + 2ψb +ψc =−6β2 + 2β [4 + κy + β(2 + ϕy)]− 2 [1 + κy + β(2 + ϕy)]

= 2β [4 + κy + β(ϕy − 1)]− 2 [1 + κy + β(2 + ϕy)]

= 8β + 2βκy + 2β2(ϕy − 1)− 2− 2κy − 4β − 2βϕy

= 4β − 2κy(1− β)− 2βϕy(1− β)− 2− 2β2

=−2(1− β) [κy + βϕy + 1− β]< 0 ,

which concludes the proof.

A.6 Numerical Example

We conclude this section with a brief numerical example based on the general analytical
model. Specifically, we determine the respective monetary policy regime thresholds as
well as the output-maximizing persistence ρ-max of Proposition 13. Three key take-away
results stand out: first, the hump-shaped impact output response occurs for the bulk of
reasonable calibrations; second, ρ-max lies in a plausible range for 0.65− 0.75 for most
models; third, only models that act on the forward-looking NKPC channel (i.e., βf ) are
close to have a monotonic impact output multiplier response in the persistence of the
DIS demand shock. We gather our results in Table A.1.

Specifically, we choose the following parameter values. We specify throughout all
model variants κy = 0.15. Moreover, the elasticity of current aggregate demand with re-
spect to future income takes two values, i.e., ζf ∈ {0.85,1.00}, where the former corre-
sponds to a discounted DIS equation (as obtained under a WUNK or a behavioral NK
model) and the latter to a RANK economy. Additionally, we specify the real interest rate
elasticity as ζr ∈ {1.00,1.50}, where the former realization reflects, for instance, logarith-
mic preferences and the latter additional amplification from a T(H)ANK model. We set
the sensitivity of current inflation with respect to future inflation to βf ∈ {0.99,0.80}. No-
tice that the first value is the standard discount factor, whereas the latter is the effective
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TABLE A.1. Determinacy, monetary policy regimes, and ρ-max.

MODEL PARAMETERS DETERMINACY REGIME PERSISTENCE

ζf ζr βf κr κy ϕπ ∈
(
ϕd, ϕ

d
)

ϕπ ∈
(
ϕg
π
, ϕ
g
π

)
ρg∗

A. RANK Models

RANK 1.00 1.00 0.99 0.00 0.15 (1.00,∞) (1.01,7.74) 0.74

WUNK 0.85 1.00 0.99 0.00 0.15 (0.99,∞) (1.01,6.73) 0.71

Behavioral RANK 1 1.00 1.00 0.80 0.00 0.15 (1.00,∞) (1.58,9.58) 0.99

Behavioral RANK 2 0.85 1.00 0.80 0.00 0.15 (0.80,∞) (1.53,8.33) 0.99

B. HANK Models

TANK 1.00 1.50 0.99 0.00 0.15 (1.00,∞) (1.01,5.50) 0.68

WU-TANK 0.85 1.50 0.99 0.00 0.15 (0.99,∞) (1.01,4.83) 0.65

Behavioral TANK 1 1.00 1.50 0.80 0.00 0.15 (1.00,∞) (1.47,6.81) 0.98

Behavioral TANK 2 0.85 1.50 0.80 0.00 0.15 (0.87,∞) (1.44,5.97) 0.96

C. RANK Cost Models

RANK 1.00 1.00 0.99 0.05 0.15 (1.00,∞) (1.01,7.38) 0.73

WUNK 0.85 1.00 0.99 0.05 0.15 (0.99,∞) (1.01,6.71) 0.71

Behavioral RANK 1 1.00 1.00 0.80 0.05 0.15 (1.00,∞) (1.54,8.46) 0.99

Behavioral RANK 2 0.85 1.00 0.80 0.05 0.15 (0.79,∞) (1.51,7.76) 0.99

D. HANK Cost Models

TANK 1.00 1.50 0.99 0.05 0.15 (1.00,∞) (1.01,5.26) 0.67

WU-TANK 0.85 1.50 0.99 0.05 0.15 (0.99,∞) (1.01,4.75) 0.65

Behavioral TANK 1 1.00 1.50 0.80 0.05 0.15 (1.00,∞) (1.45,6.18) 0.97

Behavioral TANK 2 0.85 1.50 0.80 0.05 0.15 (0.86,∞) (1.42,5.61) 0.95

discount factor under cognitive discounting. In the presence of a marginal cost channel
of monetary policy we set, consistent with Assumption 2, κr = 0.05. As a result, the con-
dition ζrκy ≥ (1 + ζf )κr is satisfied throughout such that determinacy is guaranteed if
the inflation feedback in the Taylor rule is sufficiently aggressive, i.e., ϕπ > ϕd

π
. Finally, we

specify monetary policy in terms of a contemporaneous interest rate rule with ϕπ = 1.50

and ϕy = 0.00.
To begin with, consider the RANK model as our benchmark economy. Under this

calibration, the model locates in the hump-shaped regime of Proposition 13 as ϕg
π
<

ϕπ < ϕ
g
π , where ϕ

π
= 1.01 and ϕπ = 7.74. The output-maximizing persistence is given

by ρg∗ = 0.74 > 0.50, which corresponds to the baseline value used by Galí (2015) for
monetary shocks. As such, the persistence can be further increased to maximize the im-
pact output stimulus. When considering deviations from the RANK benchmark, it can
be seen that a discounted DIS equation, i.e., ζf = 0.85, decreases ϕg

π
, ϕ

g
π , and ρg∗ only

sightly. In contrast, βf = 0.80< 0.99 increases ϕg
π

, ϕ
g
π , and ρg∗ substantially such that the

impact output multiplier becomes monotonously increasing in the persistence of the
DIS demand shock. These insights carry over to a class of heterogeneous agent models
that admit a higher real interest rate sensitivity, i.e., ζr = 1.50. In this model class ϕg

π
, ϕ

g
π ,
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and ρg∗ decrease slightly relative to their RANK counterparts. Note that similar results
would be obtained in the class of models that jointly increase ζr, ζf , e.g., HANK mod-
els with idiosyncratic counter-cyclical income risk, whenever the rise in ζr outweighs
the one in ζf . Finally, adding a marginal cost channel of monetary policy only slightly
reduces ϕg

π
, ϕ

g
π , and ρg∗.

APPENDIX B: Quantitative Appendix

B.1 Local Determinacy

Our model features a locally determinate equilibrium under the benchmark calibration.
Recall that the systematic monetary policy parameters (ϕπ, ϕy) have a dual role in our
analysis. On the one hand, they ensure a determinate equilibrium. On the other hand,
they are crucial in determining the monetary policy regimes. Out of this reason, we show
the determinacy region for the benchmark economy and various model variants in Fig-
ure B.1. Most of the quantitative findings are guided by our analytical determinacy dis-
cussion from Proposition 11.31

To begin with, let us consider the determinacy properties of the benchmark econ-
omy in Sub-Figure B.1a. Due to behavioral expectation formation in form of cognitive
discounting, the benchmark model features a discounted bond DIS equation such that
its dynamics are locally determinate even under an interest rate peg, i.e., ϕπ = ϕy = 0

(see Gabaix (2020)). Importantly, the model is indeterminate if ϕπ is sufficiently high
and, simultaneously, ϕy too low in the presence of a cost channel of monetary policy
(see Beaudry et al. (2024)). This interaction is well-illustrated in Sub-Figure B.1b, i.e.,
the model is locally determinate in the absence of a cost channel of monetary policy
(ψ = 0.00) on the entire parameter space.

Moreover, in Sub-Figure B.1c we show that the departure from rational expectations
crucially alters the (in)determinacy regions. Under rational expectations (i.e., µb = µp =

µw = 1.0) idiosyncratic income risk leads to a compounded bond DIS equation and
hence requires a more aggressive Taylor feedback to inflation for determinacy (Acharya
and Dogra, 2020, Bilbiie et al., 2022, Bilbiie, Forthcoming), i.e., ϕπ needs to be strictly
positive. What is more, under rational expectations the indeterminacy from the cost
channel of monetary policy arises under much lower values of the inflation feedback,
i.e., ϕπ ≈ 4, provided that the output feedback ϕy takes a value near zero.

In Sub-Figure B.1c we plot the determinacy region under a larger elasticity of in-
tertemporal substitution (σ = 0.33). Two observations stand out: on the one hand, the
indeterminacy region due to the cost channel of monetary policy disappears (or occurs
at a much higher value for ϕπ); on the other hand, the behavioral expectation formation
is not sufficient anymore to ensure determinacy under an interest rate peg.

Finally, we study the impact of two modelling choices related to price and wage set-
ting mechanisms. First, we simultaneously shut off partial price and wage indexation
(χp = χw = 0). As such, the determinacy region becomes much smaller. This is the case

31As the regimes in the analytical section were only determined by the Taylor feedback with respect to
inflation, we choose a much larger grid for ϕπ as for ϕy in Figure B.1.
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FIGURE B.1. Regions of local determinacy and indeterminacy for several model variants.

(a) baseline calibration: Table 1 (b) no cost channel: ψ = 0.00

(c) rational expectations: µb = µp = µw = 1.00 (d) higher EIS: σ = 0.33

(e) no price & wage indexation: χp = χw = 0.00 (f) flexible wages: θw = χw = 0.00

Note: The grey shaded area denotes the model implied indeterminacy region, whereas the white region
denotes the determinacy region. Each model variant is obtained by changing only the parameter value
denoted inside the sub-caption, while keeping the baseline values of Table 1 otherwise unchanged.

as the contemporaneous and forward-looking drivers of inflation gain in weight in the
NKPC, which increases the nominal interest rate response and, hence, the active forces
of the cost channel. Second, we study a model variant with flexible wages (θw = χw = 0).
In this case, behavioral expectations are no longer sufficient to restore determinacy un-
der an interest rate peg. The reasoning is as follows: the real wage response and the ag-
gregate demand complementarity between saver and hand-to-mouth households are
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much more pronounced under flexible wages such that the monetary authority must
fight inflation in a sufficiently aggressive manner (see Colciago (2011)). As a byproduct,
indeterminacy from the cost channel disappears as well (or occurs at a much higher
value for ϕπ).

B.2 Impulse Response Functions

FIGURE B.2. Impulse Response Functions of DIS Demand Shocks
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Legend: The IRFs are denoted in terms of percentage deviation from steady state. IRFs of the nominal in-
terest rate, inflation, and the real interest rate are expressed in annual terms.

B.3 Monetary Regimes

FIGURE B.3. Monetary Policy Regimes Bond Premium and Monetary Policy Shocks
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