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Abstract

This paper provides a framework in which a multiproduct ecosystem competes

with many single-product firms in both price and innovation. The ecosystem is

able to use data collected on one product to improve the quality of its other

products. We study the impact of data regulation which either restricts the

ecosystem’s cross-product data usage, or which requires it to share data with small

firms. Each policy induces small firms to innovate more and set higher prices;

it also dampens data spillovers within the ecosystem, reduces the ecosystem’s

incentive to collect data and innovate, and potentially increases its prices. As a

result, data regulation has an ambiguous impact on consumers, and is more likely

to benefit consumers when small firms are relatively more efficient in innovation.

A data cooperative among small firms, which helps them to share data with each

other, does not necessarily benefit small firms and can even harm consumers.
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1 Introduction

There are widespread concerns that big tech companies like Google, Apple, Meta, Ama-

zon, and Microsoft have become too big and too powerful.1 These companies operate as

“digital ecosystems” that offer a very large range of products and services. They gener-

ate vast amounts of data, and can use data gleaned in one product market to improve

their offering in other markets.2 Moreover, these ecosystems typically compete not just

with each other, but also with smaller firms that specialize in particular products, and

which lack access to the same volume or scope of data.

Figure 1: Google’s ecosystem and some of its competitors

(specialized competitors in boxes; competing products from other ecosystems in ovals)

To illustrate, Figure 1 depicts some of the diverse businesses operated by Google,

as well as some of its competitors. There are many ways in which Google can leverage

data across these different businesses. For example, it can use spending data from

Google Pay, location data from Google Maps, as well as data on consumer trends from

Google Shopping, to enhance the relevance of its search and advertising results, in a

1According to a 2023 survey, 60% of U.S. respondents felt that big tech companies “have too much

power in the market, which puts competitors at a disadvantage and hurts both smaller businesses and

consumers.” (See https://shorturl.at/PQVs2.) Similar concerns have been raised about big tech

companies like Tencent, Alibaba, and ByteDance in China. (See, e.g., https://shorturl.at/Z7WRu.)
2For example, Google’s privacy policy says “We use automated systems that analyze your content

to provide you with things like customized search results, personalized ads, or other features tailored

to how you use our services. ... We may use the information we collect across our services and across

your devices for the purposes described above.” (See https://shorturl.at/3uIb8.)
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way that a specialized competitor like DuckDuckGo cannot. Similarly, it can use data

from sources like Google search and YouTube to train its AI chatbot, Gemini, enabling

it to catch up with—and potentially surpass—its specialized competitor, OpenAI.3

Meanwhile, ecosystems like Tencent and Alibaba that provide fintech lending services,

can use data from social apps (e.g., WeChat) or e-commerce sites (e.g., Taobao) to

improve the accuracy of default-risk predictions and make faster lending decisions.

The ability of ecosystems to leverage data across their different business units has

sparked fears that specialized firms may be placed at a competitive disadvantage, damp-

ening their incentives to innovate and expand, and ultimately harming final consumers.4

At the same time, some recent legislation may affect ecosystems’ data advantage. For

instance, privacy policies like the General Data Protection Regulation (GDPR) and

the California Consumer Privacy Act (CCPA) could weaken ecosystems’ data advan-

tage if they induce consumers to share less data with big tech companies. Meanwhile,

the Digital Markets Act (DMA) prohibits large ecosystems from combining data across

markets without explicit user consent—reducing the extent of cross-market data usage

within ecosystems.5 The DMA also facilitates data sharing with smaller competitors by

enabling data interoperability, further reducing ecosystems’ relative data advantage.6

More broadly, initiatives like Gaia-X, which aim to enable data sharing among individ-

ual firms in Europe, may also empower small firms to compete more effectively with

large digital ecosystems.

3See, for example, https://shorturl.at/lDuSH and https://shorturl.at/psQLq on the impor-

tance of data for AI and how Google’s data advantage helps Gemini compete with ChatGPT.
4For instance, according to ACCC (2023), “competitors who do not have access to the same volume

or scope of consumer data may find themselves at a competitive disadvantage relative to the digital

platform ecosystem.” Our paper focuses on ecosystems’ data advantage, but we acknowledge that

other factors—such as financial resources, brand recognition, and superior infrastructure—also give

them a competitive advantage over smaller firms.
5Firm-specific regulation can also affect cross-market data usage by ecosystems. For example,

due to regulatory pressure, Ant Group—formerly Alibaba’s financial services division—became a more

independent entity and terminated its data-sharing agreement with Alibaba in 2022. (See https:

//shorturl.at/Wd8im.) Also, in 2024 the Indian Competition Commission banned WhatsApp from

sharing user data with other entities owned by its parent company Meta. (The ban was suspended in

January 2025. See https://shorturl.at/3EIBd.)
6Article 5(2) of the DMA concerns combining data from different businesses, while Article 6(9)

concerns data portability.
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However, it is unclear how these data policies will affect competition between ecosys-

tems and specialized firms. For example, will specialized firms innovate more and benefit

from these policies? How will market prices and the ecosystem’s incentive to innovate

change? Will these policies eventually help consumers? In this paper we develop a

framework to address these questions.

In Section 2 we lay out a model in which a digital ecosystem operates in a large num-

ber of product markets, and in each market competes with a different single-product

firm. Firms compete in both price and innovation/quality investment; this enables us

to study how regulation affects innovation incentives—a central concern for policymak-

ers.7 A key feature of our model is that the ecosystem can leverage data collected

in one market to enhance the quality of its product in another market. This “data

spillover” effect generates demand complementarity across products. We analyze the

model in Section 3. Given the data-driven demand complementarities, we face similar

technical issues concerning equilibrium existence and multiplicity as does the literature

on competition with network effects.8 Our problem is even more challenging, though,

due to the additional innovation choice, rich product heterogeneity, and the asymmet-

ric competition between a multiproduct firm and single-product firms. Despite these

challenges, we establish conditions for the existence and uniqueness of an interior equi-

librium in which both firms in each market make positive sales. As one might expect,

the ecosystem has an incentive to set relatively low prices in order to accumulate more

data. However, surprisingly, the ecosystem does not necessarily set lower prices on those

products which generate more data. Intuitively, if the ecosystem is efficient enough at

innovating, it prefers to expand sales of those products by investing in higher product

quality, which then allows it to also charge higher prices for them.

In Section 4 we use our framework to examine the impact of data regulation. We

consider two policies designed to level the playing field between the ecosystem and small

firms: firstly, restricting cross-market data usage, which limits the ecosystem’s ability

to use data collected from one business to gain a competitive advantage in another, and

7For instance, the DMA aims “to ensure a contestable and fair digital sector ... with a view to

promoting innovation ... as well as a high quality and choice for end users...”
8See, e.g., Katz and Shapiro (1985) and Chapter 7.8 of Anderson, de Palma, and Thisse (1992).

Our setup is closer to the latter which studies price competition with both horizontal product differ-

entiation and network effects. However, we are not aware of any theory papers in this literature where

asymmetric firms compete in both price and quality investment.
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secondly, requiring the ecosystem to share data with smaller rivals.9,10 Each policy helps

small firms by inducing them to innovate more and sell more. However, these policies do

not necessarily benefit consumers, and can sometimes even benefit the ecosystem. The

perverse effect on consumers can occur for three reasons: first, while small firms innovate

more under regulation, they also set higher prices; second, the ecosystem innovates less

under regulation, but its prices do not necessarily decrease to compensate its quality

decline, as the regulation dampens its incentive to acquire data by offering low prices;

third, the regulation hampers the ecosystem’s ability to use data to improve its product

quality. Data regulation is more likely to benefit consumers when small firms are more

efficient in innovation, since in this case their investment responds more strongly to

the data policies. (If firms compete only in price, the regulation induces no innovation

response and so is unambiguously bad for consumers.) Finally, we show that at the

margin a policy that encourages data sharing Pareto dominates a policy that restricts

the ecosystem’s cross-product data usage.

In Section 5 we consider the possibility that single-product firms share data with

each other via a “data cooperative”. Small firms face a trade-off when establishing

such a cooperative. On the one hand, they can use each other’s data to improve their

product quality and hence reduce the ecosystem’s data advantage. On the other hand,

they induce the ecosystem to price more aggressively, because as the ecosystem sells to

more consumers it not only generates more data for itself, but now it also deprives the

small firms of data. When products are symmetric, small firms benefit from forming a

data cooperative (i.e., the first effect dominates the second) if and only if they already

hold a larger market share than the ecosystem. Consumers always benefit from a data

cooperative when products are sufficiently symmetric to each other, but otherwise can

suffer due to the reduced innovation by the ecosystem.

Finally, we note that the demand complementarity across products caused by data

spillovers in our model can also be interpreted in more traditional ways. For instance, a

multiproduct firm might benefit from cross-product network effects, where having more

9In practice, data sharing requires either compensation (if firms own the data) or consumer consent

(if the data belongs to consumers). For example, the latter approach is adopted in the recent open

banking policy in Europe, which mandates that traditional banks share their data with new entrants,

such as fintech lenders, if consumers consent. (See, e.g., He, Huang, and Zhou, 2023.)
10In our framework policies that restrict how much data firms can collect, such as GDPR, have

qualitatively the same impact as these two data regulation policies.
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consumers for one product enhances the utility of its other products. Alternatively,

it might benefit from learning-by-doing across products, where selling or producing in

one market helps it learn to perform better in other markets. However, under these

alternative interpretations, our analysis of data regulation and data cooperatives—the

key policy implications of the model—lack practically relevant counterparts.11

1.1 Related Literature

Data-driven product improvement/innovation. Several recent empirical papers have

documented evidence that customer data can help improve product quality. For ex-

ample, access to more data improves answers to queries on search engines (Yoga-

narasimhan, 2020; Schaefer and Sapi, 2023), and improves recommendations for on-

line news (Peukert, Sen, and Claussen, 2024). There is also evidence on data-driven

innovation. For instance, access to government data increases commercial software

development in China’s facial recognition AI industry (Beraja, Yang, and Yuchtman,

2023), and data sharing among app developers in China boosts innovation (Zhou, 2025).

There are also theoretical papers that explore the implications of data-driven prod-

uct improvement.12 For instance, Prüfer and Schottmüller (2021) and Hagiu and Wright

(2023) study dynamic duopoly models where customer data from previous transactions

can be used to improve product quality. In Prüfer and Schottmüller (2021), two firms

compete in quality choice at each period, and their costs of producing quality decrease

in the number of customers served in the previous period. They show that there is a

strong tendency for the market to tip, but that regulation which forces firms to share

data with each other can prevent this tipping from occurring (and induce both firms

to choose higher qualities). In Hagiu and Wright (2023), two firms compete in price,

instead of quality, à la Bertrand, and in each period the value of a firm’s product is

increasing in the number of its past users. They also find that the market tips in favor

11Note also that our paper does not consider the possibility that the ecosystem’s cross-market data

usage directly harms consumers (e.g., via price discrimination). Instead, we focus on how the ecosys-

tem’s data advantage might indirectly harm consumers by weakening smaller specialized competitors.
12A related idea has also recently been explored in the macro literature. For example, Farboodi,

Mihet, Philippon, and Veldkamp (2019) assume that data improves firms’ forecast accuracy and so

their production decisions; Jones and Tonetti (2020) assume that data improves the quality of firms’

ideas and so their production efficiency.
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of one firm, and firms may price below cost to generate data in order to induce this

market tipping. A policy that forces an incumbent to share data with an entrant can

then harm consumers, since it dampens firms’ incentives to compete for data.

Compared to these papers, we focus on cross-market data usage by a multiproduct

firm competing with single-product rivals. While we do not address dynamic data

accumulation, we allow firms to compete in both price and quality. Similar to Hagiu

and Wright (2023), data sharing in our model can soften price competition, but it also

affects innovation. We also examine additional policies, such as data cooperatives.

Digital ecosystems. There is an emerging economics literature on digital ecosys-

tems.13 Condorelli and Padilla (2024) propose an entry deterrence theory of digital

ecosystems. In their model, initially firm A operates in a primary market which uses

data, and firm B operates in a secondary market which generates data. If firm A enters

the secondary market (i.e., becomes an ecosystem), it can use the data generated there

to deter firm B from entering the primary market. The paper discusses several policies

which can mitigate entry deterrence, such as a ban on privacy-policy tying (to prevent

cross-market data usage), and data portability between competing firms.

Heidhues, Köster, and Kőszegi (2024) offer a conglomerate-merger theory for the

formation of digital ecosystems (or multiproduct firms in general). They introduce a

default effect in consumer choice: after purchasing a product from a multiproduct firm

in the primary market, a consumer regards its product in the secondary market as the

default option and tends to choose it over competing products. Then a single-product

firm that sells more in the primary market has a stronger incentive to leverage this

default effect by acquiring firms in the secondary market (and so become an ecosystem).

Unlike these two papers, we do not consider the formation of an ecosystem. We

focus instead on how an existing ecosystem influences innovation and expansion by its

small rivals, and how this is affected by data policies. We do this using a fully-fledged

model of competition (in both price and innovation), which is absent in these papers.

Kraemer and Shekhar (2024) study closely related questions using a different setup,

13Platforms like e-commerce websites or app stores are also sometimes considered digital ecosystems.

For instance, Bisceglia and Tirole (2024) take this perspective and examine issues such as excessive

platform fees and self-preferencing by gatekeeper platforms that also sell their own products or services.

Anderson and Bedre Defolie (2025) examine the interplay between platform commissions, device fees,

and entry decisions of app providers, including when some apps belong to the platform.
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in which an ecosystem monopolizes a primary market, and uses data from it to improve

its product in a secondary market, where it competes à la Cournot with another firm.

Firms choose innovation in each market and are equally efficient at it. Like us, the

authors study policies that restrict cross-market data usage or force the ecosystem to

share data, but find different welfare impacts.14 This is mainly because we study a richer

model with price competition where an ecosystem competes in many markets, each of

which can generate and use data, and firms can differ in their innovation efficiency.

Jeon, Lefouili, Li, and Simcoe (2024) study a multiproduct upstream supplier (in-

terpreted as an ecosystem) that sells a number of inputs. The price of each downstream

product equals the total input price, while demands for these products are linear and

exhibit cross-product externalities. The authors show how an input’s optimal monopoly

price depends on its centrality in the externality network. Our competition model is

quite different, as is our focus on the impact of data regulation.

Multiproduct vs single-product firms. Asymmetric competition between a multiprod-

uct firm and several single-product firms is rarely studied theoretically in the literature.

One exception is some recent work on conglomerate mergers, such as Rhodes and Zhou

(2019) and Chen and Rey (2023).15 In both papers, two firms initially operating in sep-

arate markets can merge into a multiproduct firm and then compete with the remaining

single-product firms in each market. Such a merger can be profitable either due to one-

stop shopping convenience when consumers face search frictions (in Rhodes and Zhou,

2019) or because of consumption synergies (in Chen and Rey, 2023). These papers,

however, focus only on price competition, and do not have data-driven cross-product

externalities, and hence address very different research questions to us.

Multi-sided platforms. Due to data spillovers across products, the ecosystem in

our model can also be regarded as a multi-sided platform with cross-market network

effects. The existing (theoretical) works in that literature, however, usually focus on

symmetric competitive platforms for tractability. See, e.g., Armstrong (2006), Rochet

14In their model the first policy harms consumers while the second one benefits them, and both poli-

cies hurt the ecosystem. However, in our model data regulation can either benefit or harm consumers

and the ecosystem, depending on firms’ relative innovation efficiency and product heterogeneity.
15A related but different asymmetric market structure is considered in the literature on the leverage

theory of bundling (e.g., Whinston, 1990, and Nalebuff, 2004). In those models a multiproduct firm

that faces a single-product entrant in one market has an incentive to use a bundling strategy so as to

leverage its monopoly power and hence foreclose the potentially competitive market.
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and Tirole (2006), Tan and Zhou (2021), and the survey paper by Jullien, Pavan, and

Rysman (2021). One exception is Peitz and Sato (2023), who study price competition

among two-sided platforms that can differ in their within- and cross-group network

effects, costs, and exogenously given qualities; they show that the model is tractable

when taste shocks are logistic, and network effects have a logarithmic specification.16

We also allow for rich heterogeneity across firms and products, but study a different

type of asymmetric competition between a large ecosystem and many single-product

firms. Our focus is also more on the welfare effects of various data policies. Finally, we

note that innovation/quality choice plays an important role in our analysis, but is not

usually studied in the literature on multi-sided platforms (including the above papers).

2 The Model

A digital ecosystem competes with single-product firms in a continuum of product mar-

kets. (As we will explain later, this continuum assumption simplifies the subsequent

analysis.) To focus on the role of data, we assume that these products are intrinsically

independent of each other. Without loss of generality, denote by I = [0, 1] the set of

all products, and endow it with the standard Lebesgue measure di. Each product i ∈ I
is supplied by the ecosystem and a different single-product firm; they compete for con-

sumers in that market by simultaneously choosing both price and quality/innovation.

Let pe,i and ve,i denote the ecosystem’s price and quality investment on product i, and

let ps,i and vs,i denote the single-product firm i’s price and quality investment.17 We

assume that the fixed costs of investment for product i are given by respectively

Ce,i(ve,i) =
v2e,i
2ηe,i

and Cs,i(vs,i) =
v2s,i
2ηs,i

.

We allow for asymmetries in firms’ innovation costs. For example, if small firms are

more efficient at innovating than the ecosystem in market i due to their specialization,

16See also Belleflamme, Peitz, and Toulemonde (2022) for a model of asymmetric platforms with

linear Hotelling differentiation and linear network effects. Empirical research on competitive multi-

sided platforms (e.g., Rysman, 2004), however, allows for firm asymmetry, since analytical tractability

is not a concern. Sometimes they also consider endogenous quality choices (see, e.g., Fan, 2013).
17In some markets firms do not charge consumers for using their services, and instead make profit

from advertising. In that case we can interpret a firm’s price as a proxy for the amount of ads it

displays; displaying more ads causes more disutility to consumers but yields more revenue for the firm.
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we would have ηs,i > ηe,i; if instead the ecosystem is more efficient, we would have

ηe,i > ηs,i. However, we assume that both the ecosystem and single-product firms

have a constant marginal production cost, which is independent of product quality, and

which for convenience we normalize to zero. (We note that for many digital services, the

marginal cost is negligible, and most costs are from developing or improving services.)

The ecosystem generates data from its customers. We assume that each market has

a unit mass of consumers and is fully covered (i.e., each consumer buys from one of the

two firms). (It does not matter for our analysis if the same consumers are present in

each market, or if different markets have different consumers.18) The total amount of

data generated by the ecosystem is

Q =

∫
I
αizidi, (1)

where αi ≥ 0 measures how good product i is at generating data, and zi ∈ [0, 1] denotes

the fraction of consumers who buy product i from the ecosystem. We assume that all

the integrals in this paper are well defined. (From now on we omit I in the integral

when no confusion arises.)

Data is used to improve products: if a consumer buys product i from the ecosystem,

her surplus is

ve,i − pe,i + βiQ+ ϵe,i;

whereas if she buys from single-product firm i, her surplus is

vs,i − ps,i + ϵs,i.

The parameter βi ≥ 0 measures how much the ecosystem can use data to improve a

consumer’s utility for its product i, beyond the quality improvement from its innovation

investment.19 Note that in this setup with a continuum of products, the amount of data

each single-product firm has is negligible compared to what the ecosystem has, and so

18We can also allow markets to differ in their size. If market i has a measure mi of consumers, our

later analysis applies provided we replace the product space measure di by midi, and replace (ηe,i, ηs,i)

by (miηe,i,miηs,i). (The latter is because firms invest more in a larger market, other things equal.)
19For simplicity, we assume linear data spillovers and quadratic cost functions. Considering more

general spillovers and cost functions does not change the basic logic of our analysis, but establishing

equilibrium existence and uniqueness is more challenging, and comparative statics are less tractable.
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we assume that it has no impact on their product quality. We allow products to differ

arbitrarily in how much data they generate αi, and how well they use data βi.

The taste shocks ϵe,i and ϵs,i capture idiosyncratic preferences for product i. Given

the assumption of full market coverage, only the difference in taste shocks ϵs,i − ϵe,i

matters for consumer choices. We assume that for a given product market i, the

difference in taste shocks ϵs,i − ϵe,i is i.i.d. across consumers according to a distribution

Fi. Therefore, in each market consumer choice is represented by a Hotelling model with

a general preference distribution.20 We further assume that Fi has a differentiable pdf

fi which is log-concave and symmetric around 0 on support [−li, li] (where li can be

infinity). That is, for each product there is symmetric product differentiation between

the ecosystem and the single-product firm.21

Finally, the timing is as follows. Firms simultaneously choose prices and quality

investments in each market, consumers in each market observe those choices and form

a rational expectation about Q, and then decide which product to buy.

Modeling discussions. Before proceeding with the analysis, we discuss some of our

modeling choices:

(i) A continuum of products. Considering a continuum of products/markets is an

approximation of the fact that ecosystems usually operate in a large number of markets.

It also makes our model significantly more tractable, because it implies that a single-

product firm does not affect how much data the ecosystem generates. If instead we had

a finite number of markets, each single-product firm would affectQ and hence the profits

of other single-product firms; this would create non-trivial strategic interactions among

these small firms. In the Online Appendix, we illustrate this additional complexity in

the two-product case.

(ii) Two channels of quality improvement. In our model, product quality can be

improved via two channels: innovation investment and data-driven enhancements. The

20Note that if the same consumer is present in multiple markets, it does not matter for our analysis

whether her ϵs,i − ϵe,i are independent across markets or not provided Fi is the marginal distribution.
21We obtain qualitatively the same results if we allow for asymmetric product differentiation, such

that fi is symmetric around some x̂i ̸= 0. If the same set of consumers is present in multiple markets,

this more general setup can also help capture one-stop-shopping convenience offered by the ecosystem.

Specifically, suppose that if a consumer buys from a single-product firm, she needs to pay some extra

cost; this is the same as shifting the product-differentiation distribution towards the left in each market.
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former reflects efforts such as developing new service features or recommendation al-

gorithms, while the latter captures how data can be used to improve existing services

or algorithms. Note that we can shut down the innovation channel by setting all inno-

vation efficiency parameters (i.e., the η’s) to zero. However, including the innovation

channel allows us to examine how the ecosystem’s data advantage and related data poli-

cies influence firms’ innovation incentives—–a key concern for policymakers. Moreover,

having this innovation channel can qualitatively affect the impact of data regulation.

(iii) Data and innovation cost. Access to more data could make innovation less

costly, rather than improving product quality directly as in our model. As we demon-

strate in the Online Appendix, this alternative model can be solved using a similar

approach as the one we employ below, and our main insights are robust.

(iv) More general cross-product data spillovers. We could consider a more general

model in which the ecosystem’s product i offers surplus ve,i− pe,i+
∫
βjiFj(∆j)dj+ ϵe,i,

where βji denotes how much the data from a unit of sales of product j helps improve

product i. (Our current setup is the case with βji = αjβi.) This general setup allows

for, e.g., the possibility that βji > βji′ but βki < βki′ , i.e., product j’s data is more

useful for product i than for product i′ but the opposite is true for product k’s data.

As shown in the Online Appendix, our analysis can be generalized to this more general

case. However, one advantage of our current simpler approach is that we can talk about

data generation and data usage separately for each product.

3 Equilibrium Analysis

We now solve the model, starting with the consumer problem, before moving to firms’

choices of price and investment. We then provide conditions for existence and unique-

ness of equilibrium.

3.1 Consumer Problem

Let the basic surplus difference between the two products in market i be

∆i ≡ ve,i − pe,i + βiQ− (vs,i − ps,i). (2)

12



Since by assumption each market is fully covered, a consumer in market i buys the

ecosystem’s product i if

∆i ≥ ϵs,i − ϵe,i

and otherwise buys from the single-product firm i. Demand for the ecosystem’s product

i is therefore zi ≡ Fi(∆i), and demand for the single-product firm i is 1− Fi(∆i). For

given prices and qualities, the equilibrium of the consumer choice game with rational

expectations is then characterized by Q which solves

Q =

∫
αiFi(∆i)di, (3)

where we have used the earlier equation (1). Using the observation that fi is symmetric

and single-peaked, and hence fi(0) ≥ fi(∆i), we obtain the following result:

Lemma 1. Define E[α] ≡
∫
αidi. Then, for any given prices and qualities, the con-

sumer choice game has a unique (stable) equilibrium Q ∈ [0,E[α]] if

E[αβ] ≡
∫

αiβidi <
1

maxi fi(0)
. (4)

This is simply because (4) ensures that the right-hand side of (3) increases in Q less

quickly than does the left-hand side. We note that the condition in (4) is implied by our

later Assumption 1. In some special cases (e.g., when each Fi is a uniform distribution),

one can explicitly solve Q as a function of all prices and qualities; in general, however,

(3) does not have an analytical solution.

It is easy to see that, due to data spillovers, there is demand complementarity across

the ecosystem’s products. In particular, if the ecosystem lowers price or invests more

in a subset of markets where αi > 0, then under condition (4) this leads to a higher Q,

which then leads to higher ecosystem demand in all markets for which βi > 0.

3.2 Firm Problem

We now turn to the firms’ optimization problems. To avoid trivial cases, from now on

we assume that there is a strictly positive measure of products that generate strictly

positive data (i.e., have αi > 0), and a strictly positive measure of products where the

ecosystem uses data to improve their quality (i.e., have βi > 0).

The advantage of considering a continuum of products is that a single-product firm’s

choice of price and quality has no effect on the ecosystem’s total data Q, and hence
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also no effect on other single-product firms. This implies that there is no strategic

interaction among single-product firms, which significantly simplifies the analysis.

Single-product firm i’s problem is to

max
ps,i,vs,i

ps,i[1− Fi(∆i)]− Cs,i(vs,i) (5)

by taking Q in ∆i as fixed. On the other hand, the ecosystem’s problem is to

max
{pe,i,ve,i}i∈I

∫
[pe,iFi(∆i)− Ce,i(ve,i)]di (6)

where Q in ∆i solves (3).

In the following, we focus on an interior equilibrium where both firms in each market

have some demand. We first report the first-order conditions for an interior equilibrium,

and then provide conditions for the existence and uniqueness of such an equilibrium.

We can solve each firm’s optimization problem using two different approaches. One is

to work with the system of price and quality, which is more convenient in characterizing

the equilibrium; the other is to work with the system of demand quantity and quality,

which turns out to be more convenient in investigating existence of equilibrium.

Start with single-product firm i’s problem in (5). The first-order conditions with

respect to ps,i and vs,i yield respectively

1− Fi (∆i)︸ ︷︷ ︸
MC of price cut

= ps,ifi(∆i)︸ ︷︷ ︸
MB of price cut

and vs,i/ηs,i︸ ︷︷ ︸
MC of investment

= ps,ifi(∆i)︸ ︷︷ ︸
MB of investment

.

Intuitively, in order to sell to more consumers, single-product firm i can either reduce

its price or increase its investment. In both cases the marginal benefit is the same—

the resulting increase in sales fi(∆i) multiplied by the price ps,i. The marginal “cost”

of cutting price is the demand 1 − Fi (∆i) on which the price cut accrues, while the

marginal cost of raising investment is vs,i/ηs,i. At the optimum these costs must be

equal. Jointly solving the two first-order conditions gives:

ps,i =
1− Fi(∆i)

fi(∆i)
and vs,i = ηs,i[1− Fi(∆i)]. (7)

Price takes the standard form, and is equal to demand divided by demand sensitivity.

Meanwhile investment is proportional to demand because, as explained above, at the

optimum the marginal “costs” of cutting price or raising investment are the same.
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Now consider the ecosystem’s problem in (6). This is more complicated because it

is an infinite-dimensional optimization problem, and because the ecosystem can affect

the amount of data Q that it generates. Since Q cannot usually be solved analytically

from equation (3), we use the Lagrangian method and treat Q as a choice variable:

L =

∫ [
pe,iFi(∆i)−

v2e,i
2ηe,i

]
di+ λ

[∫
αiFi(∆i)di−Q

]
,

where the Lagrange multiplier λ captures the marginal value to the ecosystem of gener-

ating extra data. The first-order conditions with respect to pe,i and ve,i yield respectively

Fi (∆i)︸ ︷︷ ︸
MC of price cut

= [pe,i + λαi]fi(∆i)︸ ︷︷ ︸
MB of price cut

and ve,i/ηe,i︸ ︷︷ ︸
MC of investment

= [pe,i + λαi]fi(∆i)︸ ︷︷ ︸
MB of investment

.

The explanation is the same as for the single-product firms’ first-order conditions, except

that the marginal benefit terms are different. In particular, due to cross-product data

usage, each additional unit of sales on product i now not only generates a direct revenue

pe,i, but also raises the amount of data by αi, which the ecosystem values at λ. Jointly

solving the first-order conditions gives:

pe,i =
Fi(∆i)

fi(∆i)
− λαi and ve,i = ηe,iFi(∆i). (8)

The ecosystem’s price is qualitatively different to that of a single-product firm: it has

an extra term −λαi, reflecting the ecosystem’s additional incentive to cut prices so as to

accumulate more data. This incentive is stronger on products that generate more data

(i.e., have larger αi) and when data is more valuable (i.e., λ is larger). However, the

ecosystem’s investment is still proportional to its demand, and so is qualitatively the

same as that of a single-product firm. Intuitively, even though the ecosystem has more

incentive to expand demand due to cross-product spillovers, it faces the same trade-off

at the margin between doing this by cutting price or raising investment.

In order to pin down the ecosystem’s price we still need to determine its value of

data λ. To do this, we can take the first-order condition with respect to Q:∫
(pe,i + λαi) βifi(∆i)di− λ = 0,

and then use the ecosystem’s pricing expression to derive

λ =

∫
βiFi(∆i)di. (9)
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To understand this expression, notice that if the ecosystem generates an extra unit of

data, the first-order benefit is that it can raise price by βi in market i and keep the

same demand as before, thus earning an extra βiFi(∆i) on that product.

Since all the prices and quality investments characterized above depend on {∆i},
we still need to determine {∆i} in order to fully solve the equilibrium. Using the above

expressions for prices and qualities, we can rewrite the definition of ∆i in (2) as

∆i = 2η̄iFi(∆i) +
1− 2Fi(∆i)

fi(∆i)
− ηs,i + αiλ+ βiQ, (10)

where η̄i = (ηe,i + ηs,i)/2 is the average innovation efficiency in market i. Since both λ

and Q are functions of {∆i}, this yields a system of equations for {∆i}. To solve this

system, we solve the two aggregators λ and Q first. Under the conditions that we will

specify below, the right-hand side of (10) has a slope of less than one in ∆i, and so

(10) uniquely determines ∆i as a continuous function of λ and Q, which we denote by

∆i(λ,Q). Substituting it into the expression for λ in (9) and the definition of Q in (3),

we derive a system of equations in λ and Q:

λ =

∫
βiFi(∆i(λ,Q))di,

Q =

∫
αiFi(∆i(λ,Q))di.

(11)

Brouwer’s fixed point theorem implies that this system has a solution with λ ∈ [0,E[β]]
and Q ∈ [0,E[α]], where E[β] ≡

∫
βidi and E[α] ≡

∫
αidi (as earlier). Once we solve λ

and Q, we can determine ∆i from (10) and then all the prices and qualities.

3.3 Equilibrium Existence and Uniqueness

Existence of the interior equilibrium characterized so far requires that (i) equation (10)

has a solution ∆i ∈ (−li, li) for each i ∈ I, and (ii) no firms have profitable unilateral

global deviations. In addition, it is helpful for the subsequent comparative statics

analysis if there is a unique interior equilibrium. We now derive conditions for the

existence and uniqueness of such an interior equilibrium.

For convenience, define

σi(x) ≡ 1 +
d

dx

(
1− Fi(x)

fi(x)

)
= − [1− Fi(x)]f

′
i(x)

fi(x)2
, (12)
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and

χ ≡ E[αβ] +
√

E[α2]E[β2]. (13)

Note that σi(x) measures the curvature of 1 − Fi(x) and σi(x) ≤ 1 under our log-

concavity assumption, while χ captures the strength of the ecosystem’s data spillovers.

In the subsequent analysis, we make the following assumption on primitives:

Assumption 1. For any i ∈ I,

η̄i +
χ

2
<

3

2fi(0)
, (A1)

and

max{ηs,i, ηe,i + αiE[β] + βiE[α]} <
3

2fi(0)
, (A2)

and

max{ηs,i, ηe,i + χ} < min
−li≤x≤li

2− σi(x)

fi(x)
. (A3)

Assumption 1 holds provided innovation efficiencies and data spillovers are small relative

to the amount of product differentiation, as captured by fi(0) being sufficiently low on

each product.22 We then find that:

Proposition 1. Under Assumption 1, there exists a unique interior equilibrium, and

it is characterized by (7), (8), (10), and (11).

(All omitted proofs can be found in the Appendix.) In the proof, we first use the

Gale-Nikaido Theorem to show that (A1) implies that the mapping in (11) is injective

(i.e., one-to-one) and therefore has a unique solution. We also show that (A1) implies

that the right-hand side of (10) has a slope of less than one in ∆i, so the solution ∆i

is unique (and stable). Second, we show that (A2) ensures that this unique solution is

interior, that is, ∆i ∈ (−li, li) in each market i. Finally, we prove that (A3) implies that

no firm has a unilateral global deviation, and so the first-order conditions are sufficient

in defining the equilibrium. This part is the most challenging given the ecosystem’s

optimization problem is of infinite dimension. As mentioned before, we deal with this

issue by working with the system of demand quantity and quality.23

22To see that (A3) holds when fi(0) is sufficiently small, notice that log-concavity of fi implies

σi(x) ≤ 1 and its symmetry implies fi(0) ≥ fi(x), and hence 1
fi(0)

≤ 2−σi(x)
fi(x)

for any x ∈ [−li, li].
23Condition (A3) also implies the condition in Lemma 1 for the consumer participation game. To see

this, note that (A3) implies χ < 2/fi(0) because σi(0) = 0; meanwhile, the Cauchy-Schwarz inequality

implies
√

E[α2]E[β2] ≥ E[αβ], and so χ ≥ 2E[αβ]. Therefore, E[αβ] < 1/fi(0) for each i ∈ I.
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We now provide some intuition for the role of conditions (A1)-(A3). Suppose, con-

trary to these conditions, that innovation efficiencies ηe,i, ηs,i and/or data spillovers are

large relative to product differentiation. First, multiple equilibria might exist: if the

ecosystem, say, is expected to have higher sales, it invests much more and offers a much

better product due to data spillovers, while small firms invest much less and so offer a

much worse product. With low product differentiation, the ecosystem is able to gener-

ate enough extra sales to rationalize the initial expectations of these sales being higher.

Second, these self-fulfilling expectations could even lead to corner equilibria where, in

some markets, only one firm makes strictly positive sales. Thirdly, global deviations

may be profitable: if the ecosystem, say, offers much lower prices on some products,

due to strong data spillovers the demand for all its products could go up by so much

that its profit increases.

A solvable example: the linear Hotelling case. Suppose that in each market i

the distribution function is Fi(x) = 1
2
+ x

2li
, where li captures the degree of product

differentiation in that market.24 Then prices and investments in market i are

pe,i = 2lizi − αiλ, ve,i = ηe,izi and ps,i = 2li(1− zi), vs,i = ηs,i(1− zi),

and the ecosystem’s output in market i is

zi = ri +
αiλ+ βiQ

gi
,

where gi = 2(3li− η̄i), and where ri = (3li−ηs,i)/gi denotes the ecosystem’s sales in the

case where there are no data spillovers. Since each zi ≡ Fi(∆i) is a linear function of λ

and Q, the system in (11) is also linear, and hence can be solved explicitly as follows:[
1− E [αβ/g] −E[β2/g]

−E[α2/g] 1− E[αβ/g]

][
λ

Q

]
=

[
E[rβ]
E[rα]

]
.

We then obtain closed form solutions for equilibrium outputs, prices, and investments.

24In this example Assumption 1 simplifies to: η̄i +
χ
2 < 3li, max{ηs,i, ηe,i + αiE[β] + βiE[α]} < 3li,

and max{ηs,i, ηe,i + χ} < 4li.
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3.4 Cross-Market Comparison

We now investigate how prices and investments vary across markets with different data

spillovers. All else equal, one might expect the ecosystem to charge less in markets that

are better at generating data—but it turns out this is not always true.

Consider two markets j and k. Suppose they differ in data spillovers but are other-

wise identical, that is, Fj = Fk = F , ηe,j = ηe,k = ηe and ηs,j = ηs,k = ηs.

Proposition 2. Suppose that two markets j and k differ only in data spillovers.

(i) The ecosystem sells and invests more in market j than market k, while single-product

firm j sells, invests and charges less than single-product firm k, if and only if

αjλ+ βjQ > αkλ+ βkQ. (14)

(ii) The ecosystem can charge more in market j than in market k even if αj > αk.

Start with part (i) of the proposition. When comparing markets j and k we should

treat (λ,Q) as fixed because there is a continuum of markets. Therefore equation (10)

implies that if markets j and k differ only in their data spillovers, the ecosystem sells

more in market j than in market k (i.e., ∆j > ∆k) if and only if (14) holds. (To interpret

this condition, note that αiλ + βiQ represents product i’s data-driven contribution to

the ecosystem.) Since investment is proportional to demand, the investment results

follow as well. Intuitively, in markets with high α, the ecosystem invests and sells more

to exploit their greater ability to generate data; in markets with high β, the ecosystem

sells more due to its quality advantage from data spillovers, which also makes investment

more worthwhile.

Now consider the pricing results in the proposition. Using equations (7) and (8),

the prices charged in market i by the single-product firm and the ecosystem are

ps,i =
1− F (∆i)

f(∆i)
and pe,i =

F (∆i)

f(∆i)
− λαi.

Given our log-concavity condition, single-product firm j charges strictly less than single-

product firm k if and only if ∆j > ∆k. The comparison of ecosystem prices, however,

is more subtle. On the one hand, if the ecosystem sells more in a market, this is a

force towards a higher price via the F (∆i)/f(∆i) term in the pe,i expression. On the

other hand, though, if that same market is also better at generating data, this is a force
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towards a lower price via the subsidy term −λαi. If markets j and k differ only in how

well they use data (i.e., if αj = αk, but βj ̸= βk), only the first effect is present, and

the ecosystem charges more in whichever market uses data the best. Otherwise it is a

priori ambiguous whether the ecosystem charges more in market j or market k.

We prove part (ii) of the proposition by constructing examples. In the linear

Hotelling example solved before, one can check that

pe,j > pe,k ⇐⇒ (αj − αk)λ(η̄ − 2l) + (βj − βk)Ql > 0. (15)

Now consider two interesting special cases. First, suppose the products are equally good

at using data, but product j is better at generating data (i.e., αj > αk but βj = βk).

Then the ecosystem sells more of product j, and from (15) it also charges more on

product j provided η̄ > 2l. Second, suppose product j only generates data while

product k only uses data (i.e., αj > βj = 0 and βk > αk = 0). Then, from (15), the

ecosystem can charge more on product j if η̄ > 2l, and also if αjλ > βkQ (i.e., if it sells

more of product j than product k).25 To understand these seemingly counterintuitive

results, note that in both cases the ecosystem sells more of product j. As a result, the

marginal “cost” of raising j’s sales by cutting its price is higher. Hence, if ηe is large, it

is relatively cheap to raise demand for j through investment, allowing the ecosystem to

also raise its price for j. This is compounded when ηs is large—because single-product

firm j reduces its investment strongly in anticipation of having lower demand. This

in turn makes it even cheaper for the ecosystem to boost demand solely by raising

investment, again allowing it to charge more in market j.

4 Data Regulation

In this section we use our framework to evaluate the effect of two regulatory policies:

one that restricts the ecosystem’s use of data, and another that forces the ecosystem to

share data with small firms. We show that although each policy benefits small firms,

they do not always benefit consumers, and indeed can sometimes help the ecosystem.

25To see the last point, note from Assumption 1 that η̄ < 3l is required in this case, so αjλ > βkQ

is a necessary condition (along with η̄ > 2l) for the condition in (15) to hold.
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4.1 Restricting Data Usage

Consider a data policy that restricts data usage across at least part of the ecosystem’s

businesses: precisely, consider a policy which strictly reduces βi in a positive measure

of markets. (We note that privacy policies, which reduce αi in a positive measure of

markets, have qualitatively the same effect.) We find that:

Proposition 3. (i) Restricting the ecosystem’s data usage in a subset of markets in-

duces it to sell less and innovate less in all markets, and induces all single-product firms

to sell more, innovate more, set higher prices, and earn more profit.

(ii) It benefits consumers if small firms are sufficiently efficient in innovation, i.e., if

ηs,i >
1− σi(∆i) + Fi(∆i)

fi(∆i)
(16)

in each market i ∈ I, and harms consumers if the opposite is true in each market i ∈ I.

Intuitively, restricting data usage (even only in a subset of markets) makes data less

valuable for the ecosystem (i.e., λ decreases). In equilibrium this induces the ecosystem

to sell less (i.e., ∆i decreases) and innovate less in all markets, including those not

directly affected by the regulation, and collect less data (i.e., Q decreases). Since the

regulation shifts demand towards the single-product firms, they optimally raise their

prices and invest more. (This is easy to see from (7) given fi is log-concave.) Despite

their higher innovation expenditure, the fact they sell more at a higher price means that

the regulation increases their profit. To see this last point formally, note that using

our earlier expressions for prices and qualities, the profit of single-product firm i can

be written as

Πs,i = [1− Fi(∆i)]
2

[
1

fi(∆i)
− ηs,i

2

]
, (17)

which given Assumption 1 is decreasing in ∆i (and hence is increasing in single-product

firm i’s output).26

The effect of data regulation on the ecosystem’s price and profit is more subtle.

Specifically, recall from earlier that on product i the ecosystem charges

pe,i = Fi(∆i)/fi(∆i)︸ ︷︷ ︸
(−)

− λαi︸︷︷︸
(−)

.

26Using the definition of σi(x) in (12) one can check that Πs,i is decreasing in ∆i provided ηs,i <
2−σi(∆i)
fi(∆i)

, which is implied by (A3) in Assumption 1.
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Data regulation reduces the quality of the ecosystem’s product, which leads to a lower

price (first term) given fi is log-concave, but it also reduces the value of data λ and so

reduces the ecosystem’s incentive to subsidize data collection, which leads to a higher

price (second term). In general either effect can dominate. Meanwhile, using our earlier

expressions for prices and qualities, the ecosystem’s profit can be written as

Πe =

∫
Fi(∆i)

2

[
1

fi(∆i)
− ηe,i

2

]
︸ ︷︷ ︸

(−)

di− λQ︸︷︷︸
(−)

. (18)

Data regulation causes the ecosystem to sell less of each product, which is a force

towards lower profit (first term). Formally, given Assumption 1, the integrand is in-

creasing in ∆i.
27 However data regulation also reduces the value and volume of data

collected by the ecosystem, and so reduces the total subsidy λQ
(
=
∫
λαiFi(∆i)di

)
of-

fered by the ecosystem, which is a force towards higher profit (second term). In general

either effect can dominate as we will show in examples below.28

Regulation also has an ambiguous impact on consumers. To see this, first note that

consumer surplus in market i is Vi = E[max{ve,i − pe,i + βiQ + ϵe,i, vs,i − ps,i + ϵs,i}].
Using ∆i = ve,i − pe,i + βiQ− (vs,i − ps,i), we can rewrite it as

Vi − E[max{ϵe,i, ϵs,i}] = vs,i − ps,i +

∫ ∆i

0

Fi(x)dx. (19)

(This expression is valid regardless of the sign of ∆i.) Hence, up to a constant, consumer

surplus aggregated across all markets V can be expressed as

V =

∫ [
vs,i︸︷︷︸
(+)

− ps,i︸︷︷︸
(+)

+

∫ ∆i

0

Fi(x)dx︸ ︷︷ ︸
(−)

]
di. (20)

Data regulation benefits consumers by boosting small firms’ investment (first term), but

harms consumers by inducing small firms to raise their prices (second term). Since data

regulation causes a shift in demand away from the ecosystem, it also reduces the relative

27As in the last footnote, using the definition of σi(x) and the symmetry of fi(x) one can check that

this term is increasing in ∆i provided ηe,i <
2−σi(−∆i)
fi(−∆i)

, which is again implied by (A3) in Assumption 1.
28One may wonder why the ecosystem does not voluntarily reduce data usage if, say, it benefits

from regulation that reduces some βi. One reason may be a lack of commitment power: even though

ex ante the ecosystem would like to use less data, once all prices and investments have been chosen, it

should exploit data as much as it can so as to maximize consumer demand for its products.
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quality of the ecosystem’s products, which again harms consumers (third term). Notice

that if ηs,i = 0 in each i ∈ I, then small firms’ innovation is completely unresponsive to

the regulation—the first term is therefore irrelevant, and so regulation is unambiguously

bad for consumers. (The same observation applies if ηe,i = ηs,i = 0 in each market, in

which case our model reduces to one of pure price competition.) Therefore, for data

regulation to benefit consumers, it must induce enough additional quality investment

from small firms; this can only happen when small firms are sufficiently efficient in

innovation, as indicated by condition (16).29

In the remainder of this section, we use two special cases to further explore the

impact on data regulation on ecosystem profit and consumer welfare. We start with

the case of symmetric products, and then consider the case of small data spillovers.

4.1.1 Symmetric products

Suppose that for each i ∈ I: Fi = F (so that li = l), ηe,i = ηe, ηs,i = ηs, αi = 1,

and βi = β. (In this symmetric case, α and β play the same role, so we normalize the

former to 1.) Then Assumption 1 simplifies to

max{ηs, ηe + 2β} < min
−l≤x≤l

{
3

2f(0)
,
2− σ(x)

f(x)

}
. (21)

Under this condition, the equilibrium prices and investments in each market are

pe =
F (∆)

f(∆)
− βF (∆), ve = ηeF (∆) and ps =

1− F (∆)

f(∆)
, vs = ηs[1− F (∆)]

where ∆ ∈ (−l, l) uniquely solves

∆ = 2AF (∆) +

(
1

f(∆)
− ηs

)
(1− 2F (∆)) (22)

with

A ≡ β + η − ηs

where η = (ηe+ηs)/2.
30 Here A indicates the ecosystem’s overall “advantage,” including

the strength of its data advantage β and its relative efficiency in investment η − ηs =

29Note that (16) is not a primitive condition, but later we report examples where it is satisfied.
30Equation (22) is derived from (10) by using λ = βF (∆) and Q = F (∆). To see it has a unique

solution, notice that condition (21) implies max{ηs, ηe + 2β} < 3
2f(0) and so η̄ + β < 3

2f(0) . One can

check that this ensures the right-hand side of (22) has a slope of less than one in ∆.
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(ηe−ηs)/2. It is easy to see that when A = 0, we have ∆ = 0, so the two firms split each

market equally; one can also show that the ecosystem sells more and earns a higher

profit in each market than the small firm if and only if A > 0.

Proposition 4. Suppose all the products are symmetric.

(i) Starting from the “symmetric” situation where A = 0, data regulation that restricts

cross-market data usage (i.e., reduces β) harms both the ecosystem and consumers.

(ii) In general, data regulation can benefit consumers or the ecosystem, but it cannot

benefit both of them (i.e., it cannot lead to a Pareto improvement).

Result (i) shows that when markets are split equally, regulation harms both the

ecosystem—by reducing its market share, and consumers—by worsening the ecosys-

tem’s surplus offer. Result (ii) shows that outside this symmetric case, regulation can

potentially benefit consumers or the ecosystem, but not both at the same time. For

instance, in order for consumers to benefit, the regulation must induce a sufficiently

large increase in single-product firms’ investment, but in that case the fall in ecosystem

demand is so large that the ecosystem is made worse off.

The linear Hotelling example. When F is a uniform distribution on [−l, l], we

can further show that data regulation harms the ecosystem if and only if A < l and

harms consumers if A ≥ 0.31 Therefore, if A > l (i.e., if the ecosystem initially has a

sufficiently large advantage), interestingly data regulation benefits the ecosystem and at

the same time harms consumers, which might be contrary to the original intention of the

regulation. This is demonstrated in Figure 2 where the ecosystem is much more efficient

at innovation: data regulation induces only a relatively small increase in single-product

firms’ innovation but sufficiently softens price competition, so that consumers are made

worse off. In contrast, if A < 0 (i.e., if the small firms initially have an advantage), data

regulation can benefit consumers. This is demonstrated in Figure 3 where small firms

are much more efficient at innovation. Regulation that lowers β induces a relatively

large increase in single-product firms’ innovation; as a result regulation unambiguously

harms the ecosystem, and benefits consumers provided β is not too large. Intuitively,

consumers gain due to higher single-product firm innovation, but lose because the data-

31In this example, σ(∆) = 0 and so condition (21) simplifies further to max{ηs, ηe +2β} < 3l. One

can also derive ∆ = Al/(3l−A−ηs) from (22). A detailed proof of the claim is available upon request.
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augmented part βQ of ecosystem surplus falls; provided β is not too large, the former

effect dominates.
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Figure 2: The impact of restricing cross-market data usage

(products are symmetric, F is uniform on [−1, 1], and α = 1, ηe = 2.25, ηs = 0.25)
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Figure 3: The impact of restricting cross-market data usage

(products are symmetric, F is uniform on [−1, 1], and α = 1, ηe = 0.5, ηs = 2.75)

Breaking up the ecosystem. Our setup can also be used to discuss the impact of

breaking up the ecosystem. Suppose the measure of all products is N =
∫
I′ di instead of

1. In the general setup with heterogeneous products, our analysis remains unchanged

provided we replace expressions of the form E[xi] with
∫
I′ xidi. In the setup of this

section with symmetric products, our analysis also remains unchanged as long as we

replace β by Nβ.32 Then if, for example, we break up the ecosystem into two units

32More specifically, the ecosystem’s price becomes pe = F (∆)
f(∆) [1 − Nβf(∆)], and the ecosystem’s

advantage in equation (22) becomes A = Nβ + η̄ − ηs.
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of equal size, the equilibrium outcome in each market will be the same as when the

ecosystem has a measure N/2 of products. This effect, however, is the same as halving

β. In other words, in our model data regulation can achieve the same effect as breaking

up the ecosystem. In particular, breaking up the ecosystem dampens its incentive to

invest, but induces small firms to invest more. Whether consumers benefit from the

ecosystem being broken up depends on how responsive is small firms’ investment.

4.1.2 Small data spillovers

Another case where we can make further analytical progress is when data spillovers are

small. Suppose that the data spillover parameters are {εβi} with ε ≈ 0. Let ri denote

the ecosystem’s demand in market i when there are zero data spillovers: ri = Fi(∆i)

where ∆i solves (10) with λ = 0 and βi = 0. Notice that ri > 1/2 if and only if

ηe,i > ηs,i (i.e., if the ecosystem is more efficient in innovation in market i). As detailed

in the appendix, we can derive the first-order Taylor approximation of the equilibrium

variables and then show the following results:

Proposition 5. Suppose the data spillovers are small (i.e., {εβi} with ε ≈ 0).

(i) Data regulation that restricts cross-market data usage harms the ecosystem if

ηe,i − ηs,i <
1

fi
− f ′

i

f 3
i

(23)

for each i, where fi = fi(F
−1
i (ri)) and f ′

i = f ′
i(F

−1
i (ri)), and benefits the ecosystems if

the opposite holds for each i.

(ii) It benefits consumers if

ηs,i >
1− σi(ri) + ri

fi
(24)

for each i, where σi(ri) = −(1 − ri)f
′
i/f

2
i , and harms consumers if the opposite holds

for each i.

(iii) It cannot benefit both the ecosystem and consumers (i.e., it cannot lead to a Pareto

improvement) if Fi = F , ηe,i = ηe, and ηs,i = ηs for each i. With product heterogeneity,

however, data regulation can benefit all firms and consumers.

If ηe,i = ηs,i, then ri = 1/2 and f ′
i = 0, so (23) must hold. In other words, if

the ecosystem and small firms are equally efficient in innovation in every market, data

regulation harms the ecosystem when data spillovers are small. In the linear Hotelling
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example, (23) simplifies to ηe,i − ηs,i < 2li. Given ηe,i < 3li under Assumption 1, this

condition must hold if ηs,i > min{li, ηe,i}, i.e., if each small firm is sufficiently efficient in

innovation. Condition (24) is the counterpart of (16) when data spillovers are small. In

the linear Hotelling example with σi(ri) = 0, this condition simplifies to ηs,i > 2li(1+ri)

where ri =
3li−ηs,i
2(3li−η̄i)

. This condition holds if and only if ηs,i exceeds a threshold less than

3li since ri decreases in ηs,i and ri → 0 as ηs,i → 3li.

In Section 4.1.1 we have shown that if all products are symmetric (including their

data effects), it is impossible for data regulation to lead to a Pareto improvement

(i.e., either the ecosystem or consumers will get harmed). With small data spillovers,

the same result holds without requiring symmetry of data effects. More interestingly,

when products are heterogeneous, there exist examples where data regulation leads to

a Pareto improvement, i.e., where for the ecosystem the reduction of data subsidies

caused by data regulation dominates while for consumers the increased innovation by

small firms dominates.

4.2 Data Sharing

Let us now consider an alternative policy that mandates the ecosystem to share its

data with single-product firms. If a consumer buys single-product firm i’s product, we

assume that she now obtains surplus

vs,i − ps,i + γiQ+ ϵs,i,

where γi ≥ 0 measures how effectively single-product firm i can use the shared data

to improve its product quality. The basic surplus difference between the two firms in

market i then becomes

∆i = ve,i − pe,i + (βi − γi)Q− (vs,i − ps,i).

Compared to the baseline model, the difference is that now the ecosystem’s net data

advantage βi − γi matters.

Suppose βi > γi in each market, reflecting the fact that either the ecosystem is better

at using data due to, say, its technology advantage, or it only shares part of its data

with single-product firms. Once we replace βi in the baseline model by the net data

advantage βi − γi, the equilibrium analysis remains unchanged. Then the equilibrium

existence and uniqueness result in Proposition 1 carries over, and we also have:
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Proposition 6. (i) Data sharing that increases γi in a positive measure of markets has

the same impact on prices, investments, sales and profits as restricting data usage that

decreases βi in the same set of markets.

(ii) Data sharing is more beneficial/less harmful to consumers than restricting data

usage in the ecosystem.

To understand part (i), notice that decreasing βi or increasing γi has the same effect on

the ecosystem’s net data advantage βi − γi, and hence has the same effect on outputs,

prices, investments, and profits. However, as shown by part (ii), the two policies do not

have the same effect on consumer surplus. To see this, notice that under data sharing

consumer surplus in market i is Vi = E[max{ve,i−pe,i+βiQ+ϵe,i, vs,i−ps,i+γiQ+ϵs,i}],
which can be written as

Vi − E[max{ϵe,i, ϵs,i}] = vs,i − ps,i + γiQ+

∫ ∆i

0

Fi(x)dx. (25)

Compared to the baseline model, this has an extra term γiQ due to single-product firms’

quality improvement from shared data. Data sharing has the same effect on vs,i − ps,i,

Q and ∆i as restricting data usage, but it has an extra positive effect via the γiQ term.

In general, however, data sharing also has an ambiguous impact on consumer surplus

since it reduces the ecosystem’s product quality and can raise all market prices.

A joint policy. Finally, it is easy to see from the above analysis that if we raise βi

and γi by the same amount in a positive measure of markets, the utility offered by the

ecosystem relative to the small firms remains unchanged—and hence it has no effect

on ∆i in any market. Therefore, this joint policy has no impact on equilibrium prices,

investments, and firm profits. However consumer surplus must increase, because the

data part of utility is higher at both the ecosystem (βiQ) and the small firms (γiQ).

Therefore, allowing the ecosystem to use more data (e.g., when it obtains more data or

its data technology improves), but also forcing it to share more data with smaller firms—

in such a way that βi − γi remains unchanged—is unambiguously good for consumers.

5 Data cooperative

In this section we consider the possibility that single-product firms form a data coopera-

tive to share their data with each other (but their price and innovation decisions remain
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independent). We show that such a data cooperative does not necessarily benefit single-

product firms, and it benefits consumers when products are sufficiently symmetric to

each other, but can otherwise harm consumers.

We first extend the baseline model by introducing a data cooperative. If a consumer

buys the ecosystem’s product i, she obtains the same surplus

ve,i − pe,i + βe,iQe + ϵe,i

as before, where we now use βe,i to indicate the product specific data-spillover effects

within the ecosystem, and where

Qe =

∫
αiFi(∆i)di

is the amount of data the ecosystem possesses; if the consumer buys from single-product

firm i, she now obtains a surplus

vs,i − ps,i + βs,iQs + ϵs,i,

where

Qs =

∫
αi[1− Fi(∆i)]di

is the amount of data the cooperative possesses, and the new quality improvement term

βs,iQs is from data sharing among single-product firms themselves. We allow for differ-

ent extents of data spillover effects between the ecosystem and the data cooperative.

Since Qe +Qs = E[α],33 in the following we let Qe = Q and Qs = E[α]−Q. Then

∆i = ve,i − pe,i + (βe,i + βs,i)Q− (vs,i − ps,i + βs,iE[α]). (26)

Compared to the baseline model, each firm’s demand is now more sensitive to how

much data the ecosystem has.

Notice that, with a continuum of products, no single-product firm’s price and qual-

ity choices can affect the amount of data the cooperative possesses. Therefore, this

extended model can be solved by following the same logic as in the baseline model. To

ensure the existence and uniqueness of an (interior) equilibrium, Assumption 1 needs

to be strengthened to the following:

33This identity relies on the implicit assumption that how much data a product generates does not

depend on who sells it.
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Assumption 2. For any i ∈ I,

η̄i +
χ

2
<

3

2fi(0)
, (B1)

and

max{ηs,i, ηe,i + αiE[(βe + βs)] + (βe,i + βs,i)E[α]}+ βs,iE[α] <
3

2fi(0)
, (B2)

and

max{ηs,i, ηe,i + χ} < min
−li≤x≤li

2− σi(x)

fi(x)
, (B3)

where

χ = E[α(βe + βs)] +
√

E[α2]E[(βe + βs)2].

When βs,i = 0 for every i ∈ I, this assumption degenerates to Assumption 1. With

βs,i > 0 for a positive measure of i, χ is greater than in the baseline case, so all the

conditions are more stringent than in Assumption 1. Intuitively, this is because the

overall data-spillover effect is now stronger: when the ecosystem has more data, single-

product firms will have less, and so the ecosystem’s relative data advantage is more

sensitive to Q as we have seen from (26). As before, this new assumption must hold if

fi(0) is sufficiently small in each market.

The equilibrium characterization of price and quality investment is the same as in

the baseline model, except that now we have

pe,i =
Fi(∆i)

fi(∆i)
− αiλ with λ =

∫
(βe,i + βs,i)Fi(∆i)dj.

That is, for fixed {∆i}, the ecosystem now offers larger data subsidies than before. This

is because when the ecosystem lowers its prices, this also reduces each single-product

firm’s “quality” (through the term βs,iQs = βs,i(E[α]−Q)) and is hence more profitable

than in the baseline case. This suggests, as we will show below, that single-product

firms do not necessarily benefit from forming a data cooperative, as doing so will trigger

more aggressive pricing by the ecosystem.

The equation for ∆i becomes

∆i = 2η̄iFi(∆i) +
1− 2Fi(∆i)

fi(∆i)
− ηs,i + αiλ+ (βe,i + βs,i)Q− βs,iE[α]. (27)
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Since the right-hand side has a slope of less than one in ∆i under Assumption 2, we

can solve ∆i as a function of (λ,Q) and then derive a system of equations:

λ =

∫
(βe,i + βs,i)Fi(∆i(λ,Q))di and Q =

∫
αiFi(∆i(λ,Q))di. (28)

This system has a unique solution with λ ∈ [0,E[βe + βs]] and Q ∈ [0,E[α]] under
condition (B1).

Since Πs,i takes the same form as in the baseline model, it must decrease in ∆i.

From the ∆i equation, we can see that if βs,i alone increases while other βs,j ̸=i’s remain

unchanged, then the right-hand side of (27) will be smaller, as the change of one firm’s

data effect does not affect (λ,Q). Therefore, ∆i will decrease and so single-product

firm i will earn a higher profit.

When a positive measure of βs,i’s increase, however, the impact on single-product

firms is subtler as (λ,Q) will change as well. For example, if both λ and Q increase,

there is a counter force for ∆i to increase. As we will see below, strengthening the data

cooperative can indeed boost the ecosystem’s sales and harm single-product firms.

5.1 Symmetric products

To make more progress, let us first consider the case with symmetric products, and as

before we normalize α = 1. Then the subsidy term in the ecosystem’s price becomes

λ = (βe + βs)F (∆), and the ∆ equation simplifies to

∆ = 2AF (∆) +

(
1

f(∆)
− ηs − βs

)
(1− 2F (∆)), (29)

where A = βe + η − ηs is the ecosystem’s overall (dis)advantage, the same as defined

in the baseline model and independent of βs. Note that ∆ = 0 if A = 0. Hence, given

the right-hand side of (29) has a slope of less than one in ∆ under Assumption 2, we

have ∆ > 0 if and only if A > 0, the same as in the baseline case. Compared to (22),

the only difference here is the extra −βs(1− 2F (∆)) term on the right-hand side. It is

positive if and only if ∆ > 0. This immediately implies the following result:

Lemma 2. If A > 0, (29) has a unique solution ∆ > 0 and it increases in βs; if A < 0,

(29) has a unique solution ∆ < 0 and it decreases in βs. Therefore, introducing the data

cooperative will boost single-product firms’ sales and lower the ecosystem’s sales if and

only if A < 0 (i.e., if single-product firms already have an advantage in the market).
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Having the data cooperative improves each single-product firm’s quality by βs[1−F (∆)],

but it also induces the ecosystem to lower its price by βsF (∆), i.e, the extra term in

its data subsidy. The former effect dominates if and only if ∆ < 0 or A < 0.

Aggregate consumer surplus is (up to a constant)

V = vs − ps + βs[1− F (∆)] +

∫ ∆

0

F (x)dx. (30)

If ∆ were the same as in the baseline case (in which case vs − ps would be the same

as well), having a data cooperative would improve consumer welfare by increasing the

overall quality of single-product firms. With an endogenous ∆, the impact is less

obvious; however, with symmetric products we can show that consumers always benefit

from introducing the data cooperative.

Proposition 7. Suppose all products are symmetric. A data cooperative among single-

product firms benefits its members if and only if A < 0 in the baseline model (i.e., if they

initially have an overall advantage), harms the ecosystem if A < Â for some Â > 0,

and always benefits consumers.

The result concerning single-product firms follows immediately from Lemma 2, as

their profit decreases in ∆. The result concerning the ecosystem implies that whenever

single-product firms have an incentive to form a data cooperative, this must harm the

ecosystem by inducing it to sell less. (It also implies that at least for some small A > 0,

the data cooperative harms both small firms and the ecosystem.) When the ecosystem

sells less, it also innovates less and this can harm consumers. However, the consumer

result indicates that this potential negative effect on consumers is outweighed by the

positive effects: small firms’ quality improves due to the data-spillover effect, and the

ecosystem prices more aggressively. (As we will see below, however, this result relies on

the assumption of symmetric products.) The consumer result also opens the door for

another policy that would subsidize small firms to establish a data cooperative when

they are in a disadvantageous position in the market.

5.2 Small data spillovers

Now consider the case with potentially asymmetric products but small data spillovers

{εβe,i, εβs,i} where ε ≈ 0. We can obtain the following additional observations:
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Proposition 8. Suppose the data spillovers are small (i.e., {εβe,i, εβs,i} where ε ≈ 0).

(i) If introducing the data cooperative induces the same extent of data spillovers across

two single-product firms, the one that is better at generating data (i.e., has a higher αi)

is more likely to suffer.

(ii) With asymmetric products, introducing the data cooperative can harm consumers.

Intuitively, in responding to the data cooperative, the ecosystem will price more

aggressively in those data-rich markets, and so the small firms there are more likely

to suffer. This explains result (i). This result also suggests that small firms in those

data-rich markets have less incentive to form a data cooperative, while other small firms

may have incentive to subsidize them. Introducing the data cooperative can induce the

ecosystem to innovate less, and this negative quality effect can dominate under product

heterogeneity. In the proof, we construct such an example where in a small set of

data-rich markets small firms are sufficiently efficient in innovation, whereas in other

markets with limited data generation the ecosystem is sufficiently efficient.
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(a) Symmetric markets
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Figure 4: The impact of a data cooperative on consumer surplus

(F is uniform on [−1, 1]. In the left panel markets are symmetric, with α = 1, βe = 0.05, ηe = 0, and

ηs = 2.75. In the right panel 10% of markets are as in the left panel, while the remaining 90% of

markets have α = 0, βe = 0.05, ηe = 2.75, and ηs = 0, and βs is the same in all markets.)

Figure 4 depicts the effect of increasing βs, and hence strengthening a data cooper-

ative, on consumers. (Note that βs = 0 corresponds to the case with no cooperative.)

In the left panel all products are symmetric, and consumer surplus monotonically in-

creases in βs as predicted in Proposition 7. In the right panel markets are asymmetric

and, consistent with the above results on small spillovers, consumer surplus decreases

in βs (which is assumed to be common across markets).
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6 Conclusion

This paper makes two contributions. First, it provides a framework to study compe-

tition between a multiproduct digital ecosystem and many single-product rivals. The

framework features data spillovers across markets, allows for both price and innovation

competition, and accommodates rich product heterogeneity. To the best of our knowl-

edge, such a framework is new to the literature. Second, the paper uses this framework

to evaluate various data policies, such as restricting cross-market data usage, mandating

data sharing from the ecosystem to small competitors, and facilitating exchange of data

among small firms via a data cooperative. The first two policies always benefit small

firms and encourage them to innovate more, but do not necessarily benefit consumers

because they reduce ecosystem investment and may cause all prices in the market to

increase. The third policy of creating a data cooperative can actually harm the small

firms, because it induces more aggressive pricing from the ecosystem; it benefits con-

sumers when markets are sufficiently symmetric to each other but otherwise can harm

consumers due to a reduction in the ecosystem’s innovation.

The framework presented in this paper could be further developed and used to

address many other interesting questions related to digital ecosystems. For instance,

instead of focusing on policies that regulate the use of data, we could examine policies

that affect market structure, such as allowing small firms to merge and become larger

competitors. Moreover, in this paper we have exogenously fixed the ecosystem’s product

range, but it would be interesting to endogenize its choice of which products to supply.

We have also focused on the case with one large ecosystem; further research could

explore a more general case with multiple ecosystems, which may have only partially

overlapping businesses, competing both with each other and with single-product firms.

Finally, to focus on cross-product data usage, we have adopted a static model, though

in practice data is accumulated and updated over time. Developing a fully dynamic

model in our context can be challenging; however, our equilibrium could represent the

steady state when the ecosystem’s data decays over time while new consumers enter

and contribute fresh data. We plan to investigate some of these issues in future work.
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A Appendix: Omitted Proofs

A.1 Proof of Proposition 1

First, we show that condition (A1) implies that (11) has a unique solution (λ,Q). To

have an explicit expression for ∆i(λ,Q), let us define

Gi(x) ≡ F−1
i (x)− 2η̄ix− 1− 2x

fi(F
−1
i (x))

. (31)

Then the ∆i equation (10) can be rewritten as Gi(Fi(∆i)) = −ηs,i + αiλ + βiQ. As

shown below, condition (A1) implies that Gi is an increasing function. We can then

derive

Fi(∆i) = G−1
i (−ηs,i + αiλ+ βiQ), (32)

and rewrite (11) as

λ−
∫

βiG
−1
i (−ηs,i + αiλ+ βiQ)di = 0,

Q−
∫

αiG
−1
i (−ηs,i + αiλ+ βiQ)di = 0.

(33)

Brouwer’s fixed point theorem implies that this system must have a solution. We now

use the Gale-Nikaido Theorem to show that the solution is unique.

The mapping defined in the left-hand side of (33) has a rectangular domain [0,E[β]]×
[0,E[α]]. Its Jacobian matrix is[

1−
∫

αiβi

gi
di −

∫ β2
i

gi
di

−
∫ α2

i

gi
di 1−

∫
αiβi

gi
di

]
=

[
1− C −B

−A 1− C

]
where gi = gi(G

−1
i (·)) and gi(·) = G′

i(·). Note that from Gi(x) defined in (31), we have

gi(x) =
3

fi(F
−1
i (x))

− 2η̄i +
(1− 2x)f ′

i(F
−1
i (x))

fi(F
−1
i (x))3

(34)

≥ 3

fi(F
−1
i (x))

− 2η̄i ≥
3

fi(0)
− 2η̄i > χ,

where the first inequality is because the symmetry and log-concavity of fi imply that

f ′
i(F

−1
i (x)) > 0 for x < 1/2 and f ′

i(F
−1
i (x)) < 0 for x > 1/2, the second inequality is

because fi(0) ≥ fi(F
−1
i (x)), and the last one is from condition (A1). (Given χ > 0,

Gi(x) is indeed monotonic as claimed before.) Using this observation, we have

0 < C < C +
√
AB <

E[αβ] +
√
E[α2]E[β2]

χ
= 1. (35)
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Therefore, at any point, all the principal minors of the Jacobian have a strictly positive

determinant:

1− C > 0, (1− C)2 − AB > 0.

That is, the Jacobian is a P-matrix and so the mapping is injective (i.e., one-to-one).

This implies uniqueness of the solution (λ,Q).

Second, we show that (10) has an interior solution ∆i ∈ (−li, li) under condition

(A2). To have an interior solution, it is sufficient to establish that

−li <
1

fi(−li)
− ηs,i and li > ηe,i −

1

fi(li)
+ αiE[β] + βiE[α]

given 0 ≤ λ ≤ E[β] and 0 ≤ Q ≤ E[α]. Using fi(−li) = fi(li), we can rewrite these two

conditions as

max{ηs,i, ηe,i + αiE[β] + βiE[α]} < li +
1

fi(li)
.

Given the log-concavity and symmetry of fi, we have fi(li) ≤ fi(0) and 1 =
∫ li
−li

fi(x)dx ≤∫ li
−li

fi(0)dx = 2lifi(0), and so li +
1

fi(li)
≥ 1

2fi(0)
+ 1

fi(0)
= 3

2fi(0)
. Therefore a sufficient

condition for the above inequality is condition (A2).34

Third, we show that (10) has a unique (stable) solution under condition (A1). It

suffices to prove that the right-hand side of (10) has a slope of less than one in ∆i,

which has already been shown to be true under condition (A1).

Finally, we show that given other firms adopt their equilibrium strategies, no firm

has a profitable unilateral (global) deviation. This issue is easier to deal with when

we reformulate each firm’s optimization problem as a system of quality and demand

quantity (instead of price). Recall that zi = Fi(∆i) denotes the ecosystem’s demand in

market i, where

∆i = ve,i − pe,i + βiQ− vs,i + ps,i.

For single-product firm i, from zi = Fi(κi − vs,i + ps,i) where κi = ve,i − pe,i + βiQ,

we have ps,i = F−1
i (zi)−κi+vs,i. Then its optimization problem, given the ecosystem’s

{ve,i, pe,i}i∈I , can be rewritten as

max
zi,vs,i

[F−1
i (zi)− κi + vs,i](1− zi)−

v2s,i
2ηs,i

. (36)

34Note that (A2) is tight in the uniform-distribution case, but otherwise there is some slack. In

particular, if li = ∞ no conditions are needed for an interior solution. However we use (A2) in some

later results.
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(Note that there is a one-to-one mapping between (ps,i, vs,i) and (zi, vs,i).) The objective

function is clearly concave in vs,i, so the optimal vs,i must be equal to ηs,i(1− zi). Then

single-product firm i’s problem simplifies to

max
zi

Πs,i(zi) ≡ [F−1
i (zi)− κi](1− zi) +

ηs,i
2
(1− zi)

2. (37)

It is straightforward to verify that the first-order condition here yields the same charac-

terization as in the price-quality approach. The first-order condition is also sufficient if

Πs,i(zi) is strictly concave, or equivalently if ηs,i < −[F−1
i (zi)(1−zi)]

′′ for any zi ∈ [0, 1].

Note that

−[F−1
i (zi)(1− zi)]

′′ =
2fi(x)

2 + [1− Fi(x)]f
′
i(x)

fi(x)3
=

2− σi(x)

fi(x)
, where x = F−1

i (zi).

(Recall that under the log-concavity condition, σi(x) ≤ 1, so this expression must be

positive.) Therefore, single-product firm i has no profitable unilateral deviation if

ηs,i < min
x∈[−li,li]

2− σi(x)

fi(x)
.

Now consider the ecosystem’s problem. From zi = Fi(ve,i − pe,i + ζi) where ζi =

βiQ− vs,i+ ps,i, we have pe,i = ve,i−F−1
i (zi)+ ζi. Then the ecosystem’s problem, given

single-product firms’ {vs,i, ps,i}i∈I , can be rewritten as

max
z,ve

∫ (
[ve,i − F−1

i (zi) + ζi]zi −
v2e,i
2ηe,i

)
di s.t. Q =

∫
αizidi.

(There is also a one-to-one mapping between (pe,i, ve,i) and (zi, ve,i).) The integrand is

clearly concave in ve,i, so the optimal ve,i must be equal to ηe,izi. Then the problem

simplifies to

max
z

Πe(z) =

∫ (ηe,i
2
zi − F−1

i (zi) + ζi

)
zidi s.t. Q =

∫
αizidi.

Substituting ζi = βiQ − vs,i + ps,i and the constraint into the objective function, the

problem becomes

max
z

Πe(z) =

∫ (ηe,i
2
zi − F−1

i (zi)− vs,i + ps,i

)
zidi+

∫
αizidi

∫
βizidi.

We claim that Πe(z) is concave in z if

ηe,i + χ < min
zi∈[0,1]

[ziF
−1
i (zi)]

′′ = min
x∈[−li,li]

2− σi(x)

fi(x)
(38)
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for any i, where χ = E[αβ] +
√

E[α2]E[β2]. The equality is because

[ziF
−1
i (zi)]

′′ =
2fi(x)

2 − Fi(x)f
′
i(x)

fi(x)3
=

2fi(−x)2 + [1− Fi(−x)]f ′
i(−x)

fi(−x)3
=

2− σi(−x)

fi(−x)
,

where x = F−1
i (zi) and the second equality uses the symmetry of fi, and

min
−li≤−x≤li

2− σi(−x)

fi(−x)
= min

−li≤x≤li

2− σi(x)

fi(x)
.

To prove the above claim, notice that under (38), we can always find ξi satisfying

χ < ξi < min[ziF
−1
i (zi)]

′′ − ηe,i. (39)

Rewrite Πe(z) as the sum of two terms:

Πe(z) =

∫ (
ηe,i + ξi

2
zi − F−1

i (zi)− vs,i + ps,i

)
zidi+

(∫
αizidi

∫
βizidi−

1

2

∫
ξiz

2
i di

)
The first term is concave in z because, for each i, the integrand is strictly concave in zi

by observing that[(
ηe,i + ξi

2
zi − F−1

i (zi)− vs,i + ps,i

)
zi

]′′
= ηe,i + ξi − [ziF

−1
i (zi)]

′′ < 0,

where the inequality uses (39).

The second term in Πe(z) is a quadratic form of z. It is also concave if it is negative

semidefinite in the sense that it is negative for any z (even if some zi’s are negative).
35

To show that, we first prove the following inequality:∫
αizidi

∫
βizidi ≤

χ

2

∫
z2i di. (40)

Notice that by the Cauchy-Schwarz inequality we have(∫ (
αi

√
E[β2] + βi

√
E[α2]

)2
di

)(∫
z2i di

)
≥
(∫ (

αi

√
E[β2] + βi

√
E[α2]

)
zidi

)2

.

35Formally, suppose H(z) is a quadratic form of z. Then, for any λ ∈ (0, 1), ∀z′, z′′,

λH(z′) + (1− λ)H(z′′)−H(λz′ + (1− λ)z′′) = λ(1− λ)H(z′ − z′′).

If the quadratic form is negative semidefinite in the sense that H(z) ≤ 0 for any z, then λH(z′)+ (1−
λ)H(z′′)−H(λz′ + (1− λ)z′′) ≤ 0, which implies concavity of H.
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The left-hand side is equal to

2
(
E[α2]E[β2] + E[αβ]

√
E[α2]E[β2]

)∫
z2i di.

The right-hand side is equal to(√
E[β2]

∫
αizidi+

√
E[α2]

∫
βizidi

)2

≥ 4
√

E[α2]E[β2]

∫ 1

0

αizidi

∫ 1

0

βizidi

where the inequality uses the arithmetic mean-geometric mean (AM-GM) inequality,

i.e., (A+B)2 ≥ 4AB. Combining these observations proves (40). Then it immediately

follows that ∫
αizidi

∫
βizidi−

1

2

∫
ξiz

2
i di ≤

∫
χ− ξi

2
z2i di ≤ 0

for any z, where the first inequality uses (40) and the second uses (39). Therefore, the

second term in Πe(z) is concave as well.

In sum, all firms’ profit functions are concave in their own quantity choices if

max{ηs,i, ηe,i + χ} < min
x∈[−li,li]

2− σi(x)

fi(x)

for any i, which is condition (A3). This completes the whole proof.

A.2 Proof of Proposition 3

(i) In this proof, for each variable x, we denote by ẋ its corresponding marginal change

due to the data regulation policy. Consider a policy that marginally changes data

parameters (αi, βi) by (α̇i, β̇i) for each i ∈ I. (We allow for zero marginal change in

a subset of parameters or markets. For completeness, our proof here also allows for a

data policy which affects the αi’s as well.) Recall that zi = Fi(∆i), λ =
∫
βizidi, and

Q =
∫
αizidi. Differentiating λ and Q yields:

λ̇ =

∫
β̇izidi+

∫
βiżidi and Q̇ =

∫
α̇izidi+

∫
αiżidi.

Recall from (32) that zi = G−1
i (−ηs,i + αiλ+ βiQ), so we have

żi =
α̇iλ+ αiλ̇+ β̇iQ+ βiQ̇

gi
,
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where gi = gi(G
−1
i (·)) is defined in (34). Substituting this into λ̇ and Q̇ yields[

λ̇

Q̇

]
= G

[
λ̇

Q̇

]
+ d,

where

G ≡

[∫
αiβi

gi
di

∫ β2
i

gi
di∫ α2

i

gi
di

∫
αiβi

gi
di

]
and

d =

∫ {β̇izi +
βi

gi
(α̇iλ+ β̇iQ)

}
di∫ {

α̇izi +
αi

gi
(α̇iλ+ β̇iQ)

}
di


We then have [

λ̇

Q̇

]
= [I−G]−1d = (I+G+G2 + · · · )d,

where I is the identity matrix of size 2. The infinite sum I+G+G2+ · · · converges as
both eigenvalues of G are in the interval (−1, 1) by condition (A1) in Assumption 1.36

This also shows every entry of [I−G]−1 is positive.

Suppose α̇i ≤ 0 and β̇i ≤ 0 for every i. Then we have d ≤ 0, which further implies

that λ̇ ≤ 0 and Q̇ ≤ 0. (If for a positive measure of products α̇i < 0 or β̇i < 0, then, at

least one entry of d is negative, which implies that λ̇ < 0 and Q̇ < 0.) Then, for each

market i, we have

żi =
α̇iλ+ αiλ̇+ β̇iQ+ βiQ̇

gi
≤ 0,

which implies that ∆̇i ≤ 0. It then follows immediately that v̇s,i = −ηs,ifi(∆i)∆̇i ≥ 0

and v̇e,i = ηe,ifi(∆i)∆̇i ≤ 0, and also

ṗs,i =

[
1− Fi(∆i)

fi(∆i)

]′
∆̇i ≥ 0 and Π̇s,i = −[1−Fi(∆i)][2− σi(∆i)− ηs,ifi(∆i)]∆̇i ≥ 0,

where the first inequality uses log-concavity of 1 − Fi and the second inequality uses

condition (A3) for the small firm’s second-order condition.

36The eigenvalues are C +
√
AB and C −

√
AB where

A =

∫
α2
i

gi
di > 0, B =

∫
β2
i

gi
di > 0, C =

∫
αiβi

gi
di ≥ 0.

As shown in equation (35) in the proof of Proposition 1, 0 < C +
√
AB < 1. Meanwhile, −1 <

−(C +
√
AB) < C −

√
AB < C +

√
AB < 1.
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(ii) Let Vi(∆i) ≡ vs,i − ps,i +
∫ ∆i

0
Fi(x)dx. If

V ′
i (∆i) = −ηs,ifi(∆i) + 1− σi(∆i) + Fi(∆i) < 0,

or equivalently if (16) holds in each market, data regulation benefits consumers. When

the opposite is true in each market, data regulation harms consumers.

A.3 Proof of Proposition 4

(i) With symmetric products and the normalization α = 1, the ecosystem’s profit is

Πe = F 2

(
1

f
− ηe

2

)
− βF 2,

where the second term is the data-induced subsidies offered by the ecosystem and is

derived by using λ = βF (∆) and Q = F (∆). As explained in the general case, both

terms increase in ∆ so that the overall impact of data regulation on Πe is ambiguous.

One can check that37

dΠe

dβ
=

F

2

(
1− 2Af − f ′

f 2

)
d∆

dβ
, (41)

where A = β + η̄ − ηs is the ecosystem’s advantage. Given ∆ increases in β, this must

be positive at the symmetric situation with ∆ = 0 (in which case A = 0 and f ′ = 0).

That is, starting from the symmetric situation, data regulation that reduces β harms

the ecosystem.

For consumer surplus, using the symmetric-product version of (19), one can check

that
dV

dβ
= (−ηsf + 1− σ + F )

d∆

dβ
. (42)

At the symmetric situation with ∆ = 0, it has the sign of 3
2
− ηsf(0) given σ(0) = 0.

This must be positive as condition (21) requires ηsf(0) <
3
2
. That is, starting from the

symmetric situation, data regulation that reduces β harms consumers.

37We use
d∆

dβ
=

2F

3− 2(β + η)f + (1− 2F )f ′/f2
> 0,

which is derived from (22). Condition (21) ensures that the right-hand side of (22) has a slope of less

than one in ∆, which is equivalent to the denominator above being positive.
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(ii) We now show that it is impossible to have both dΠe

dβ
≤ 0 and dV

dβ
≤ 0. From (41)

and (42), we see that dΠe

dβ
≤ 0 if and only if

f ′

f 2
≥ 1− 2Af,

and dV
dβ

≤ 0 if and only if

f ′

f 2
≤ −1 + F − ηsf

1− F
.

In order for both of them to hold, we must have

1− 2Af ≤ −1 + F − ηsf

1− F
⇐⇒ 2

f
≤ 2A(1− F ) + ηs.

When A ≤ 0, this is impossible since condition (21) requires ηs ≤ 3/(2f). When A > 0,

this is also impossible since

2A(1− F ) + ηs ≤ 2A+ ηs = 2β + ηe <
3

2f
,

where the equality used the definition of A and the last inequality used condition (21).

A.4 Proof of Proposition 5

Let us first approximate the equilibrium prices and investments. Recall that ri denotes

the ecosystem’s sales in market i when there are zero data spillovers. Define α̂ =
∫
αiridi

and β̂ =
∫
βiridi.

Using the Gi function defined in (31), we can write the system of (λ,Q) as

λ =

∫
εβiG

−1
i (−ηs,i + αiλ+ εβiQ)di and Q =

∫
αiG

−1
i (−ηs,i + αiλ+ εβiQ)di.

Note that G−1
i (−ηs,i) = ri. When ε = 0, we have λ = 0 and Q =

∫
αiridi = α̂.

When ε > 0 is small, the first-order Taylor approximation of (λ,Q), after discarding

higher-order terms, is

λ ≈ ε

∫
βiridi︸ ︷︷ ︸
β̂

and Q ≈ α̂ + ε

∫
αi

αiβ̂ + βiα̂

gi︸ ︷︷ ︸
θi

di (43)

45



where

gi = G′
i(ri) =

3

fi
− 2η̄i +

(1− 2ri)f
′
i

f 3
i

=
3− σi(ri)− σi(1− ri)

fi
− 2η̄i > 0 (44)

with fi = fi(F
−1
i (ri)) and f ′

i = f ′
i(F

−1
i (ri)), and the second equality used

σi(ri) = −(1− ri)f
′
i

f 2
i

and σi(1− ri) =
rif

′
i

f 2
i

where the second expression will be proved below. Using these approximations, we

derive

zi = Fi(∆i) = G−1
i (−ηs,i + αiλ+ εβiQ) ≈ ri + θiε. (45)

Then we immediately have

ve,i ≈ ηe,i(ri + θiε) and vs,i ≈ ηs,i(1− ri − θiε).

We can also approximate the ecosystem’s prices as

pe,i =
zi

fi(F
−1
i (zi))

− αiλ ≈ ri
fi

+

(
1

fi
− rif

′
i

f 3
i

)
θiε− αiβ̂ε.

Using the definition of σi(ri) = − (1−ri)f
′
i

f2
i

, we can verify that

σi(1− ri) =
rif

′
i(F

−1
i (ri))

f 2
i (F

−1
i (ri))

by using the symmetry of fi and F−1
i (1− ri) = −F−1

i (ri). Therefore, we have

pe,i ≈
ri
fi

+
1− σi(1− ri)

fi
θiε− αiβ̂ε.

Similarly, we can approximate small firm’s price as

ps,i =
1− zi

fi(F
−1
i (zi))

≈ 1− ri
fi

− 1− σi(ri)

fi
θiε.

The presence of data spillovers has an ambiguous effect on the ecosystem’s price (as

usual): it raises the ecosystem’s quality, which leads to a higher price (second term in

pe,i), but also gives the ecosystem an incentive to collect data, which leads to a lower

price (third term in pe,i). Data spillovers unambiguously cause small firms to reduce

prices due to reduction in their relative quality vis-à-vis the ecosystem (second term in

ps,i).
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(i) The ecosystem’s profit is

Πe =

∫
z2i

[
1

fi(F
−1
i (zi))

− ηe,i
2

]
︸ ︷︷ ︸

ϕi(zi)

di− λQ ≈ Πe,0 +

(∫
Piθidi− α̂β̂

)
ε,

where Πe,0 =
∫
ϕi(ri)di is the ecosystem profit when there are no data spillovers, and

Pi = ϕ′
i(ri) = ri

(
2− σi(1− ri)

fi
− ηe,i

)
.

(We have used λQ ≈ α̂β̂ε in the approximation.) Assumption 1 implies Pi > 0. Notice

that we can rewrite the bracket term in the approximation as

α̂

∫ (
Pi

gi
− ri

2

)
βidi+ β̂

∫ (
Pi

gi
− ri

2

)
αidi. (46)

Therefore, reducing βi in a positive measure of markets harms the ecosystem if Pi/gi >

ri/2 for each i but benefits the ecosystem if Pi/gi < ri/2 for each i. One can check that

Pi

gi
>

ri
2

⇐⇒ [2− σi(1− ri)]/fi − ηe,i
[3− σi(ri)− σi(1− ri)]/fi − 2η̄i

>
1

2
⇐⇒ ηe,i − ηs,i <

1

fi
− f ′

i

f 3
i

.

(ii) Consumer surplus is (up to a constant)

V =

∫ [
vs,i − ps,i +

∫ F−1
i (zi)

0

Fi(x)dx

]
︸ ︷︷ ︸

φi(zi)

di ≈ V0 +

∫
Siθidi× ε,

where V0 =
∫
φi(ri)di is consumer surplus when there are no data spillovers, and

Si = φ′
i(ri) =

1 + ri − σi(ri)

fi
− ηs,i.

It immediately follows that reducing βi in a positive measure of markets harms con-

sumers if Si > 0 for each i and benefits consumers if Si < 0 for each i. Note that

Si > 0 ⇐⇒ ηs,i <
1 + ri − σi(ri)

fi
.

(iii) Suppose we reduce each βi by τi (where τi can be zero in some markets). The

approximation in (46) implies that this benefits the ecosystem if and only if

−α̂

∫ (
Pi

gi
− ri

2

)
τidi−

∫
τiridi

∫ (
Pi

gi
− ri

2

)
αidi > 0.
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Using the definition of α̂, we can simplify it to

α̂

∫ (
ri −

Pi

gi

)
τidi >

∫
riτidi

∫
Pi

gi
αidi. (47)

Similarly, data regulation benefits consumers if and only if

− α̂

∫
Si

gi
τidi >

∫
riτidi

∫
Si

gi
αidi. (48)

When the product (but not necessarily the data) primitives are symmetric across prod-

ucts, (47) and (48) simplify to P/g < r/2 and S < 0, respectively, given gi > 0.

However, they cannot hold simultaneously because in the general case we have

Pi

ri
+ Si > gi. (49)

To see that, the left-hand side is equal to

2− σi(1− ri)

fi
− ηe,i +

1 + ri − σi(ri)

fi
− ηs,i = gi +

ri
fi

> gi,

where the equality used (44).

On the other hand, when product primitives are asymmetric across products, it

is possible that both (47) and (48) hold, and so data regulation leads to a Pareto

improvement. To see that, suppose data primitives are symmetric across products and

data regulation reduces spillover by τ in each market. Then (47) and (48) respectively

simplify to

2

∫
Pi

gi
di <

∫
ridi;

∫
Si

gi
< 0.

(Note that it is impossible to have both 2Pi/gi < ri and Si < 0 for each i given

Pi > 0 and the inequality (49).) We now provide a linear Hotelling example where

both conditions are satisfied. Suppose that half of the products are characterized by

(l1, ηe,1, ηs,1) and the other half characterized by (l2, ηe,2, ηs,2). Suppose ηs,2 = 3l2 > ηe,2.

(Our argument below holds when ηs,2 is sufficiently close to 3l2.) Then

r2 =
3l2 − ηs,2
2(3l2 − η̄2)

= 0;
P2

g2
=

r2(4l2 − ηe,2)

2(3l2 − η̄2)
= 0;

S2

g2
=

2l2(1 + r2)− ηs,2
2(3l2 − η̄2)

=
−l2

2(3l2 − η̄2)
.

The two conditions above simplify to

2
P1

g1
< r1 ⇐⇒ 2l1 < ηe,1−ηs,1;

S1

g1
− l2
2(3l2 − η̄2)

< 0 ⇐⇒ 2l1(1 + r1)− ηs,1
3l1 − η̄1

<
l2

3l2 − η̄2
.
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Now suppose ηs,1 = 0. Then the first condition is 2l1 < ηe,1, and a sufficient condition

for the second one is
4l1

6l1 − ηe,1
<

l2
3l2 − ηe,2

.

Given ηe,1 < 3l1, the left-hand side is no greater than 4/3, so we can always pick an ηe,2

sufficiently close to 3l2 to make the above inequality hold.

A.5 Proof of Proposition 7

A single-product firm’s profit takes the same form as in the baseline model, so it de-

creases in ∆. Then Lemma 2 immediately implies the result concerning the profit of

single-product firms.

Now consider the impact of data cooperative on the ecosystem’s profit. Notice that

Πe = F (∆)2
(

1

f(∆)
− ηe

2
− βe − βs

)
= F (∆)2

(
1

f(∆)
− ηs

2
− A− βs

)
.

(This differs from the baseline case by the βs term.) Then

dΠe

dβs

= −F 2 + F

[
2− Ff ′

f 2
− 2

(
A+ βs +

ηs
2

)
f

]
d∆

dβs

.

Using
d∆

dβs

=
2F − 1

3− 2(A+ βs + ηs)f + (1− 2F )f ′/f 2

(which is derived from (29) and where the denominator must be positive under condition

(B1) in Assumption 2), one can check that

dΠe

dβs

∝ F − 2 + 2(A+ βs)(1− F )f + ηsf

< F − 2 +

(
3

2f(0)
− ηs

)
(1− F )f + ηsf

< F − 2 +
3f

2f(0)

≤ F − 1

2
,

where the first inequality used 2(A + βs) = 2(βe + βs) + ηe − ηs <
3

2f(0)
− ηs (which is

implied by condition (B2) in Assumption 2), and the second inequality used 1−F < 1.

Therefore, when ∆ ≤ 0 and so F ≤ 1/2, we must have dΠe

dβs
< 0. Given ∆ decreases in
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βs when it is negative, we can then claim that introducing a data cooperative among

single-product firms will strictly harm the ecosystem if ∆ ≤ 0 (or A ≤ 0) in the baseline

case. By continuity, the same result also holds at least when ∆ > 0 (or A > 0) is small.

Now consider consumer surplus. We have

dV

dβs

=

[
1 + F +

(1− F )f ′

f 2
− (βs + ηs)f

]
d∆

dβs

+ 1− F.

Substituting the above expression for d∆
dβs

, one can verify that

dV

dβs

∝ 2(1− F + F 2)− (βs + ηs)f − 2A(1− F )f.

When ∆ < 0, we have A < 0, and so the above expression must be greater than

2(1− F + F 2)− (βs + ηs)f > 0,

where the inequality used 2(1−F +F 2) = 2(F − 1
2
)2+ 3

2
≥ 3

2
and βs+ηs <

3
2f(0)

(which

is implied by Assumption 2). When ∆ ≥ 0, we have A ≥ 0 and 1 − F < 1
2
. Then the

above expression must be greater than

2(1− F + F 2)− (βs + ηs)f − Af = 2(1− F + F 2)− (A+ βs + ηs)f > 0,

where the inequality used 2(1 − F + F 2) ≥ 3
2
and A + βs + ηs = η̄ + βe + βs < 3

2f(0)

(which is also implied by Assumption 2). Therefore, dV
dβs

> 0 for all ∆, so consumers

benefit from introducing the data cooperative.

A.6 Proof of Proposition 8

Consider the case with asymmetric products but small data spillovers {εβe,i, εβs,i} where
ε ≈ 0. Using the Gi(·) function defined in the baseline case, we can write the system

of equations in (λ,Q) as

λ =

∫
(βe,i + βs,i)Fi(∆i)di and Q =

∫
αiFi(∆i)di,

with Fi(∆i) = G−1
i (−ηs,i + αiλ + (βe,i + βs,i)Q − βs,iE[α]). As before, let ri be the

ecosystem’s sales in market i when there are no data spillovers. Following the same

approximation procedure in Section 4.1.2, we can derive

λ ≈ ε(β̂e + β̂s) and Q ≈ α̂ + ε

∫
αi

αi(β̂e + β̂s) + (βe,i + βs,i)α̂− βs,iE[α]
gi︸ ︷︷ ︸
θi

di
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where we used the notation x̂ =
∫
rixidi. Then

zi = G−1
i (−ηs,i + αiλ+ (βe,i + βs,i)Q− βs,iE[α]) ≈ ri + θiε. (50)

Single-product firm i’s profit Πs,i takes the same form as in the baseline case, so it

decreases in zi. Therefore, data cooperative improves Πs,i if and only if it decreases θi.

Note that increasing {βs,i} only affects the numerator of θi which can be written as

αi

∫
rj(βe,j + βs,j)dj + βe,iα̂ + βs,i(α̂− E[α]). (51)

(In the case with symmetric products, this simplifies to 2αrβe+αβs(2r−1), so as we have

known, increasing βs benefits small firms if and only if r < 1/2.) When {βs,i} increase,

the first term increases while the third one decreases as α̂ =
∫
riαidi < E[α] =

∫
αidi.

Consider two products i and k for which βs,i and βs,k increase by the same extent and

αi > αk. Then it is clear that (51) is more likely to increase for product i. That is, the

small firm that is better at generating data is more likely to suffer.

Consumer surplus is (up to a constant)

V =

∫
[φi(zi) + εβs,i(E[α]−Q)] di ≈ V0 +

[∫
Siθidi+ E[βs](E[α]− α̂)

]
ε,

where φi(zi) is the surplus defined in the baseline case when there is no data cooperative,

V0 =
∫
φi(ri)di is consumer surplus when there are no data spillovers, and

Si = φ′
i(ri) =

1 + ri − σi(ri)

fi
− ηs,i.

When {βs,i} increase in each market, the second term in the bracket must increase given

E[α] > α̂, while the first term can decrease given Si can be negative. This observation

is also true when all products are symmetric, but there we have shown that the overall

effect must be positive. However, with heterogeneous products, the opposite can be

true. To see that, let us rewrite (V − V0)/ε as∫
Si

gi

(
αi(β̂e + β̂s) + (βe,i + βs,i)α̂− βs,iE[α]

)
di+ E[βs](E[α]− α̂)

= (β̂e + β̂s)

∫
Si

gi
αidi+ α̂

∫
Si

gi
βe,idi+ (E[α]− α̂)

∫
βs,i

(
1− Si

gi

)
di.

Suppose that βs,i increases by τ in each market. Then the impact on consumer surplus

is τ times

E[r]
∫

Si

gi
αidi+ (E[α]− α̂)

∫ (
1− Si

gi

)
di.
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This is negative if ∫
Si

gi
αidi < 0 and

∫
Si

gi
di > 1.

This is possible, for example, when Si

gi
< 0 and αi > 0 for i ∈ [0,m], Si

gi
> 1 and αi = 0

for i ∈ (m, 1], and at the same time m is sufficiently small. This is the case when there

are a small set of data-generating products with Si < 0, and all the other are data-using

products with Si

gi
> 1.

Finally, we show that it is posible to have Si < 0 and Si

gi
> 1. Note that

Si < 0 ⇐⇒ 1 + ri − σi(ri)

fi
< ηs,i.

In the linear Hotelling example, this condition holds if

ηs,i
li

> 2 +
3li − ηs,i
3li − η̄i

,

which is true if ηs,i is sufficiently close to the upper bound 3li and is greater than ηe,i.

On the other hand,

Si

gi
> 1 ⇐⇒ ηe,ifi > 2− ri

(
1 +

f ′
i

f 2
i

)
.

In the linear Hotelling example, this requires

ηe,i ≥ 2li(2− ri) ⇐⇒ 3li − ηs,i
3li − η̄i

≥ 4− ηe,i
li

.

This must hold when ηe,i is above a threshold less than 3li. To see that, notice that the

left-hand side increases while the right-hand side decreases in ηe,i, and meanwhile, for

any ηs,i < 3li, the above inequality holds at ηe,i = 3li.

B Online Appendix

In this Online Appendix, we first generalize our baseline model to the case with a

general form of cross-market data spillovers. We then report the case with two products

to illustrate the additional complexity if we consider a discrete number of products

instead of a continuum of them. Finally, we develop an alternative model where data

helps reduce innovation cost rather than improve product quality directly.
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B.1 A General Form of Cross-Market Data Spillovers

In this extension, we consider a more general form of cross-market data spillovers

as suggested in modeling discussion (iv). When a consumer buys product i from the

ecosystem, her surplus is

ve,i − pe,i +

∫
βjiFj(∆j)dj + ϵe,i,

where βji measures how much the ecosystem’s sales of product j can help improve its

product i via the generated data, whereas if she buys from single-product firm i, her

surplus is

vs,i − ps,i + ϵs,i.

As before, here we define

∆i = ve,i − pe,i +

∫
βjiFj(∆j)dj − (vs,i − ps,i). (52)

Our baseline setup is the special case with βji = αjβi. To avoid trivial cases, we assume

βij > 0 on a strictly positive measure of product pairs.

Let ω ≥ 0 denote the largest eigenvalue of the self-adjoint operator (β + βT )/2,

where β = (βji).
38 A useful observation is that, for any t = {ti}i∈I ,∫ ∫

βijtitjdjdi =

∫ ∫
βjititjdjdi =

∫ ∫
βij + βji

2
titjdjdi ≤ ω

∫
t2i di, (53)

where the first equality follows from exchanging the integral order.39

Consumer Problem Given firms’ prices and investments, the equilibrium of the

consumer choice game with rational expectations is characterized by {∆i}i∈I which

solve (52) for each i ∈ I.

Lemma 3. For any given prices and quality investments, the consumer choice game

has a unique equilibrium if

ω <
1

maxi fi(0)
. (54)

38The operator (β+βT )/2 is self-adjoint, and therefore all of its eigenvalues are real numbers. Also,

ω ≥ 0 as each βji ≥ 0. In addition, from (53), we have ω ≤ supj,i βji, though this upper bound is

often not tight.
39In the discrete case with n products, the inequality in (53) follows by observing that the n by n

symmetric matrix (β + βT )/2 − ωIn is negative semidefinte as its largest eigenvalue is zero. In the

baseline setup with βji = αjβi, we have shown in (40) that 2ω = χ = E[αβ] +
√
E[α2]E[β2].
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Proof. Note that {∆i}i∈I is a fixed point of a monotone mapping defined in (52) (recall

that βij ≥ 0). By Tarski’s fixed-point theorem, an equilibrium of the consumer choice

game must exist. We now prove uniqueness. Suppose in contrast that both {∆i}i∈I
and {∆′

i}i∈I are solutions to (52) and they differ in a strictly positive measure of i.

Taking difference yields

∆i −∆′
i =

∫
βji(Fj(∆j)− Fj(∆

′
j))dj.

Multiplying both sides by (Fi(∆i)− Fi(∆
′
i)) and integrating over i yields∫

(∆i −∆′
i)(Fi(∆i)− Fi(∆

′
i))di =

∫ ∫
βji(Fj(∆j)− Fj(∆

′
j))(Fi(∆i)− Fi(∆

′
i))djdi.

The right-hand side is at most ω
∫
(Fi(∆i)−Fi(∆

′
i))

2di by (53), while the left-hand side,

by the mean-value theorem, is∫
(Fi(∆i)− Fi(∆

′
i))

fi(ζi)
(Fi(∆i)− Fi(∆

′
i))di ≥

1

maxi fi(0)

∫
(Fi(∆i)− Fi(∆

′
i))

2di

where ζi is a number between ∆i and ∆′
i. Therefore,(

1

maxi fi(0)
− ω

)∫
(Fi(∆i)− Fi(∆

′
i))

2di ≤ 0.

Then condition (54) implies that
∫
(Fi(∆i)− Fi(∆

′
i))

2di = 0, or ∆i = ∆′
i almost every-

where. This is a contradiction.

Firm Problem We now turn to the firms’ optimization problems. For the small

firm i, its problem remains the same as in the baseline model, so its equilibrium price

and quality choice take the same form as before: ps,i = (1− Fi(∆i))/fi(∆i) and vs,i =

ηs,i(1− Fi(∆i)).

The ecosystem’s problem is more complicated. It aims to

max
{pe,i,ve,i}i∈I

∫
[pe,iFi(∆i)− Ce,i(ve,i)]di

subject to a continuum of constraints in (52). We introduce a continuum of Lagrangian

multipliers {λi} and write

L =

∫ [
pe,iFi(∆i)−

v2e,i
2ηe,i

]
di+

∫
λi

(
ve,i − pe,i +

∫
βjiFj(∆j)dj − (vs,i − ps,i)−∆i

)
di.
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Notice that∫
λi

∫
βjiFj(∆j)djdi =

∫ ∫
λiβjidiFj(∆j)dj =

∫ (∫
λjβijdj

)
︸ ︷︷ ︸

≡µi

Fi(∆i)di

where the second equality is from exchanging the integral order, and µi =
∫
λjβijdj will

be shown to be the subsidy to product i offered by the ecosystem. We can then rewrite

L as

L =

∫ [
(pe,i + µi)Fi(∆i)−

v2e,i
2ηe,i

+ λi(ve,i − pe,i − (vs,i − ps,i)−∆i)

]
di.

From the first-order conditions with respect to (pe,i, ve,i,∆i), we can derive

pe,i =
Fi(∆i)

fi(∆i)
− µi, ve,i = ηe,iFi(∆i), λi = Fi(∆i).

Using the definition of µi, we then have

pe,i =
Fi(∆i)

fi(∆i)
−
∫

βijFj(∆j)dj.

When βij = αiβj, this formula degenerates to what we had in the baseline model.

Define Gi(·) as (31) in the baseline model. Then the definition of ∆i in (52), after

substituting firms’ prices and investments, can be written as

Gi(Fi(∆i)) = −ηs,i +

∫
(βij + βji)Fj(∆j)dj. (55)

Now we need to directly deal with this system of a continuum of equations in {∆i}.
This is different from what we did in the baseline model where the problem boils down

to a system of two equations in λ and Q. As before, once {∆i} is solved, we can pin

down firms’ equilibrium prices and quality investments.

Equilibrium Existence and Uniqueness We now extend Proposition 1 to this

more general case.

Assumption 3. For any i ∈ I,

η̄i + ω <
3

2fi(0)
, (C1)
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and

max{ηs,i, ηe,i +
∫
(βij + βji)dj} <

3

2fi(0)
, (C2)

and

max{ηs,i, ηe,i + 2ω} < min
−li≤x≤li

2− σi(x)

fi(x)
. (C3)

Remark. If we set βij = αiβj as in the baseline, this assumption reduces to Assumption

1. In particular, in (C1) and (C3), we just replace χ/2 in (A1) and (A3) of Assumption

1 by ω. Also, one can check that condition (C3) implies (54) (which is required by

equilibrium uniqueness of the consumer choice game).

Proposition 9. Under Assumption 3, there exists a unique interior equilibrium.

Proof. We first show that the system of equations in (55) has a unique solution under

condition (C1). Given the continuum of equations, we cannot apply the Gale-Nikaido

Theorem any more. Here we take a different approach. We rewrite the system (55)

using ecosystem demands z = (zi, i ∈ I): for each i ∈ I,

Gi(zi) = −ηs,i +

∫
(βij + βji)zjdj. (56)

Construct a function

Γ(z) ≡
∫ {∫ zi

0

(−Gi(ti)− ηs,i + 2ωti)dti

}
di+

[∫ ∫
βjizizjdjdi− ω

∫
z2i di

]
. (57)

This is strictly concave under the condition (C1). To see that, note that for each i,∫ zi
0
(−Gi(ti)− ηs,i+2ωti)dti is strictly concave in zi as its second derivative is −gi(zi)+

2ω ≤ −( 3
fi(0)

− 2η̄i) + 2ω < 0, where the first inequality used (34) and the second used

(C1). Therefore, the first term of Γ(·) in (57) is strictly concave in z. Meanwhile, the

second term in (57) is a quadratic form of z, and it is concave by the inequality (53).

Hence, Γ(·), as the sum of these two terms, is strictly concave in z.

Also, observe that

∂Γ(z)

∂zi
= {−Gi(zi)− ηs,i + 2ωzi}+

[∫
(βij + βji)zjdj − 2ωzi

]
= −Gi(zi)− ηs,i +

∫
(βij + βji)zjdj.

When z solves system (56), it must be a critical point of Γ(z): for any i ∈ I, ∂Γ(z)
∂zi

= 0,

which, by concavity of Γ, implies that z is in fact a global maximizer of Γ(·). However,
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a strictly concave function cannot have two distinct global maximizers, which implies

the uniqueness of the solution to the system (56).40

Second, the proof that (C2) implies the solution {∆i} to (55) is interior is the same

as in the baseline case, and is hence omitted.

Finally, we deal with the second-order conditions. The single-product firm’s problem

is exactly the same as before. For the ecosystem’s problem, following a similar procedure

as in the baseline, we work with quantities and rewrite its problem as

max
z

Πe(z) =

∫ (ηe,i
2
zi − F−1

i (zi)− vs,i + ps,i

)
zidi+

∫ ∫
βjizizjdjdi,

where we have substituted in the optimal investment decision ve,i = ηe,izi. The proof

for concavity under (C3) is the same as in the baseline analysis as long as we replace

the inequality (40) there by the new inequality (53).

Effect of Data Regulation We can also extend Proposition 3 to this general setup.

Consider a data policy that restricts the ecosystem’s cross-product data usage (i.e,

reducing βij in a positive measure of product pairs).

Proposition 10. With general spillovers, data regulation that restricts cross-market

data usage induces weakly lower ∆i in all the markets and strictly lower ∆i in a positive

measure of markets.

We can then immediately deduce that small firms weakly innovate more, set higher

prices, sell more and earn more in all the markets and strictly so in a positive measure

of markets. The opposite is true for the ecosystem’s innovation and sales.

Proof. The proof exploits the monotonicity of the underlying system (55) and follows

the lattice approach. Given β, we can define an operator F(·; β) of z ∈ [0, 1]I :

F(z; β) = (G−1
i (−ηs,i +

∫
(βij + βji)zjdj))i∈I

and rewrite system (56) as a fixed point equation of z:

F(z; β) = z. (58)

For a given β, the operator is monotone:

y′ ≤ y′′ =⇒ F(y′; β) ≤ F(y′′; β)

40This “potential function” approach can be also used to prove the uniqueness in the baseline model.
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as βij ≥ 0 for all i, j. As shown in the proof of Proposition 9, under (C1), the solution

to (56) is unique, hence, this operator has a unique fixed point.

Now consider β′ = (β′
ij) and β = (βij). Assume β′

ij ≤ βij for each i, j ∈ I. Let z′

and z denote the unique solution to system (58) under β′ and β, respectively. We claim

that

z′ ≤ z, i.e., z′i ≤ zi for all i (59)

By definition, z = F(z; β) and z′ = F(z′; β′). Since β′
ij ≤ βij and zi ≥ 0, we have,

for any y ∈ [0, 1]I , F(y; β) ≥ F(y; β′). Setting y = z yields z = F(z; β) ≥ F(z; β′).

Applying the operator F(·; β′) to both sides and exploiting its monotonicity, we obtain

F(z; β′) ≥ F2(z; β′). Keeping iterating yields

z ≥ F(z; β′) ≥ F2(z; β′) ≥ · · · ≥ Fn(z; β′) ≥ · · ·

The monotone sequence {Fn(z; β′)} converges to a limit z∗ ∈ [0, 1]I , and z∗ must be z′

as the operator F(·; β′) has a unique fixed point. Consequently, z ≥ z∗ = z′.

Next we provide a strict version of the above result. Suppose, in addition to imposing

0 ≤ β′
ij ≤ βij for any i, j, we further assume strict inequalities, i.e, 0 ≤ β′

ij < βij, for

a positive measure of product pairs. We claim that z′i < zi for a positive measure of

products. Using (56), we obtain, for each i,

Gi(z
′
i) = −ηs,i +

∫
(β′

ij + β′
ji)z

′
jdj and Gi(zi) = −ηs,i +

∫
(βij + βji)zjdj.

We have already shown that z′i ≤ zi for each i, which implies that∫
(β′

ij + β′
ji)z

′
jdj ≤

∫
(β′

ij + β′
ji)zjdj.

Therefore,

Gi(zi)−Gi(z
′
i) ≥

∫
(βij + βji)zjdj −

∫
(β′

ij + β′
ji)zjdj (60)

Multiplying by zi on both sides and integrating over i yield∫
(Gi(zi)−Gi(z

′
i))zidi ≥

∫ ∫ (
(βij + βji)− (β′

ij + β′
ji)
)︸ ︷︷ ︸

≥0

zizjdidj > 0

The last strict inequality is because βij−β′
ij > 0 on a positive measure of product pairs,

and zi > 0 for each i in an interior equilibrium. From
∫
(Gi(zi) − Gi(z

′
i))zidi > 0, we

obtain that, on a positive measure of products i, Gi(zi) − Gi(z
′
i)) > 0, or equivalently

zi > z′i.
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B.2 The Two-Product Case

This section aims to demonstrate that the case of a finite number of products is more

complicated to deal with than our continuum case. Suppose that the ecosystem sup-

plies only two products i = 1, 2, and in each product market there is also a different

single-product competitor. Let Fi be the preference distribution and (ηe,i, ηs,i) be the

innovation cost parameters in market i.

Let Qi denote the ecosystem’s sales in market i. Define

∆i = ve,i − pe,i + βiiQi + βjiQj − (vs,i − ps,i + β̂ii(1−Qi)),

where βii and β̂ii capture respectively the within-market data effects for the ecosystem

and the small firm, and βji captures the cross-market data effect for the ecosystem. (In

our continuum framework, the amount of within-market data was negligible compared

to the amount of cross-market data, so the within-market data effects were ignored.) If

we separate data generation from data usage as in the baseline model, we have βii =

αiβe,i, βji = αjβe,i, and β̂ii = αiβs,i. Assuming rational expectations, the consumer

choice game solves

Q1 = F1(∆1) and Q2 = F2(∆2).

The ecosystem’s Lagrange problem is

max
2∑

i=1

[
pe,iFi(∆i)−

v2e,i
2ηe,i

+ λi(Fi(∆i)−Qi)

]
.

From the first-order conditions with respect to pe,i and ve,i, we derive

Fi − pe,ifi − λifi = 0 =⇒ pe,i =
Fi

fi
− λi,

and

pe,ifi −
ve,i
ηe,i

+ λifi = 0 =⇒ ve,i = ηe,iFi.

(We have suppressed the dependent variable ∆i in both fi and Fi.) The first-order

condition with respect to Qi is

pe,ifi(βii + β̂ii) + pe,jfjβij + λi(fi(βii + β̂ii)− 1) + λjfjβij = 0,

from which we derive

λi = (βii + β̂ii)Fi + βijFj
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by using the first-order conditions of price. Therefore, the ecosystem’s equilibrium price

and investment choices take a qualitatively similar form as in the continuum framework.

The only difference is that now the within-market data effect is an additional force for

the ecosystem to subsidize data collection.

Each single-product firm’s problem, however, is more complicated since their price

and quality affect both Q1 and Q2 and so they face a constrained optimization problem

similar as the ecosystem. Let us consider single-product firm 1. Its Lagrange problem

is

max ps,1[1− F1(∆1)]−
v2s,1
2ηs,1

+
2∑

i=1

µi(Qi − Fi(∆i)),

where (µ1, µ2) are the Lagrangian multipliers of firm 1. From the first-order conditions

with respect to ps,i and vs,i, we derive

ps,1 =
1− F1

f1
− µ1 and vs,1 = ηs,1(1− F1).

Due to the within-market data effect, now a single-product firm will also subsidize its

data collection, which is captured by µ1. From the first-order conditions with respect

to Q1 and Q2, we can derive

µ1 = (1− F1)

(
β12β21f2

1− (β22 + β̂22)f2
+ β11 + β̂11

)
,

µ2 =
1− F1

1− (β22 + β̂22)f2
β21.

(We first derived µ2 from the first-order condition with respect to Q2 by using the

pricing first-order conditions; using µ2 we then derive µ1 from the first-order condition

with respect to Q2.) Notice that the small firms’ pricing formula is significantly more

complicated than in the continuum case. The last two terms β11 + β̂11 in µ1 are due to

the within-market data effect: lowering ps,1 helps small firm 1 acquire data in market

1, which not only improves small firm 1’s own quality but also reduces the ecosystem’s

quality. The first term in µ1 captures the cross-market data effect: lowering ps,1 reduces

the ecosystem’s data from market 1, which weakens its position in market 2 and also

reduces its data there as well, which in turns helps small firm 1 in market 1.
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The ∆i equation now becomes

∆i = (ηe,i + 2βii + β̂ii)Fi +
1− 2Fi

fi
+ (βij + βji)Fj

− (1− Fi)

(
ηs,i + βii + 2β̂ii +

βijβjifj

1− (βjj + β̂jj)fj

)
,

which is also much more involved than in the continuum case.

By using the quantity approach, we can derive a qualitatively similar sufficient

condition as in the continuum case for the ecosystem’s problem to be concave. Never-

theless, it becomes much more challenging in finding a clean sufficient condition for a

single-product firm’s problem to be concave.

B.3 Data and Innovation Costs

In our baseline analysis, data can be used to directly improve product quality. Here

we consider a different scenario where data reduces a firm’s innovation cost, and so can

indirectly improve product quality. For simplicity we focus on the baseline model (i.e.,

the case without data sharing or a data cooperative).

Consider the following set-up. In each market i ∈ I the ecosystem and relevant

single-product firm again compete in price and quality/innovation. However now the

fixed costs of investment for product i are respectively

Ce,i(ve,i) =
v2e,i

2(ηe,i + βiQ)
and Cs,i(vs,i) =

v2s,i
2ηs,i

where Q again denotes the total amount of data and is given by

Q =

∫
αizidi,

with zi again denoting ecosystem sales in market i. If a consumer buys from the

ecosystem in market i her surplus is ve,i − pe,i + ϵe,i, while if she buys from the single-

product firm i her surplus is the same as before, that is, vs,i − ps,i + ϵs,i. All other

aspects of the model remain the same as in the baseline.

Equilibrium Analysis We again start by solving a consumer’s problem. Define

∆i = (ve,i − pe,i)− (vs,i − ps,i), (61)
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and note that in market i the ecosystem sells to Fi(∆i) consumers. Unlike in the main

analysis, now ∆i does not (directly) depend on Q, and so the consumer choice game

has a unique equilibrium without the need for any conditions on model parameters.

Now turn to the firms’ optimization problems. Single-product firm i’s problem takes

the same form as in the baseline analysis:

max
ps,i,vs,i

ps,i[1− Fi(∆i)]−
v2s,i
2ηs,i

.

Hence single-product firm i’s optimal price and quality investment also take the same

form as in the baseline analysis:

ps,i =
1− Fi(∆i)

fi(∆i)
and vs,i = ηs,i[1− Fi(∆i)]. (62)

The ecosystem’s problem is different, however, sinceQ affects its investment costs rather

than the surpluses it offers consumers. Following the same procedure as in the baseline

analysis, the ecosystem’s Lagrangian is:

L =

∫ [
pe,iFi(∆i)−

v2e,i
2(ηe,i + βiQ)

]
di+ λ

[∫
αiFi(∆i)di−Q

]
.

Taking first-order conditions with respect to (pe,i, ve,i) and solving them, we obtain that

on product i:

pe,i =
Fi(∆i)

fi(∆i)
− λαi and ve,i = (ηe,i + βiQ)Fi(∆i), (63)

which are qualitatively the same as in the benchmark analysis. Taking a first-order

condition with respect to Q and using the above expression for ve,i to simplify it gives

λ =

∫
βiFi(∆i)

2

2
di.

To understand this expression, notice that starting from the optimal {pe,i, ve,i}i∈I , the
above captures how much the ecosystem saves on investment costs if given a bit more

data. As in the baseline model, we have now solved for all prices and investments as a

function of the {∆i}i∈I . This allows us to rewrite equation (61) as

∆i = 2η̄iFi(∆i) +
1− 2Fi(∆i)

fi(∆i)
− ηs,i + αiλ+ βiQFi(∆i), (64)
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where recall that

Q =

∫
αiFi(∆i)di and λ =

∫
βiFi(∆i)

2

2
di. (65)

There are two differences with the baseline analysis. First, the value of data λ takes

a different form, which is now quadratic rather than linear in Fi(∆i). Second, the ∆i

equation is different than the corresponding expression in the baseline analysis (i.e.,

equation (10)) because the final term on the righthand side is now βiQFi(∆i) whereas

in the baseline model it is βiQ. Both differences arise because in this extension data

improves product quality only indirectly (and also non-linearly) by reducing the inno-

vation cost, and because ecosystem investment on a given product is proportional to

its sales of that product.

We now turn to existence and uniqueness of equilibrium. For convenience, define

ξ ≡ E[αβ] +
√
E[α2]E[β2]︸ ︷︷ ︸

≡χ

+max
i∈I

βiE[α].

In the subsequent analysis, we make the following assumption on primitives:

Assumption 4. For any i ∈ I,

ξ + 2η̄i <
3

fi(0)
(D1)

and

max

{
ηs,i, ηe,i + αi

E[β]
2

+ βiE[α]
}

<
3

2fi(0)
(D2)

and

max{ηs,i, ηe,i + ξ} < min
−li≤x≤li

2− σi(x)

fi(x)
. (D3)

This is qualitatively like Assumption 1 in the baseline model, and thus also holds

provided product differentiation is sufficiently large, i.e., provided in each market i we

have fi(0) sufficiently small. We can then state the following result:

Proposition 11. Under Assumption 4, there exists a unique interior equilibrium, and

it is characterized by (62), (63), (64) and (65).

Proof. We first prove that the putative equilibrium is interior. Notice that, using equa-

tion (64), ∆i > −li requires that −li <
1

fi(−li)
− ηs,i + αiλ, while ∆i < li requires that
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li > ηe,i − 1
fi(li)

+αiλ+ βiQ. Using the same steps as in the proof of Proposition 1 from

the baseline analysis, as well as the fact that 0 ≤ λ ≤ E[β]
2

and 0 ≤ Q ≤ E[α], these
conditions are satisfied provided (D2) holds.

Next, consider the second-order conditions. Since single-product firm i’s problem

has the same form as in the baseline analysis, exactly the same steps can be used to

show that it does not have a profitable unilateral deviation provided

ηs,i < min
−li≤x≤li

2− σi(x)

fi(x)
.

Note that this holds given condition (D3). For the ecosystem, we begin by following

the same approach as in the baseline analysis and rewrite its profit as a function of

sales and qualities:

Πe({zi, ve,i}i∈I) ≡
∫ [

(ve,i − F−1
i (zi)− vs,i + ps,i)zi −

v2e,i
2[ηe,i + βi(

∫
αizidi)]

]
di,

where we have used the definition of Q. Substituting ve,i = zi[ηe,i + βi(
∫
αizidi)] into

the objective function, the problem becomes

max
z

Πe(z) =

∫ [
1

2

[
ηe,i + βi

(∫
αizidi

)]
zi − F−1

i (zi)− vs,i + ps,i

]
zidi.

We claim that Πe(z) is concave in z ∈ [0, 1]I if the following holds for each i ∈ I:

ηe,i + ξ < min
zi∈[0,1]

[ziF
−1
i (zi)]

′′ = min
x∈[−li,li]

2− σi(x)

fi(x)
. (66)

Note that this holds given condition (D3). In the baseline model Πe(z) contains

quadratic terms in zi, whereas here it contains cubic terms in zi, so the proof now

takes a different approach compared to the proof of second-order conditions in the

baseline model. In particular, to prove the above claim, we decompose Πe(z) into the

sum of two terms:

Πe(z) =

∫ [
ηe,i + ξ

2
zi − F−1

i (zi)− vs,i + ps,i

]
zidi+ θ(z),

where the first term, as in the baseline model, is additive across markets and is concave

under the condition in (66), and the second term

θ(z) ≡

=Q︷ ︸︸ ︷∫
αizidi×

=λ︷ ︸︸ ︷∫
1

2
βiz

2
i di−ξ

∫
1

2
z2i di. (67)
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is concave. To show the latter, we prove that its Hessian matrix, ∇2θ(z) is negative

definite at any z ∈ [0, 1]I , in the sense that, for any x, the quadratic form

x′∇2θ(z)x =

∫ ∫
∂2θ(z)

∂zi∂zj
xixjdidj ≤ 0.

Direct computation yields

∂θ(z)

∂zi
= αiλ+ βiziQ− ξzi

and
∂2θ(z)

∂zi∂zj
= αi(βjzj) + (βizi)αj + βiQδi,j − ξδi,j

where λ = E[1
2
βz2] =

∫
1
2
βiz

2
i di and Q = E[αz] =

∫
αizidi, and δi,j is the Kronecker

delta function. Therefore,

x′∇2θ(z)x =

∫ ∫
∂2θ(z)

∂zi∂zj
xixjdidj

=

∫ ∫
(αi(βjzj) + (βizi)αj)xixjdidj +Q

∫
βix

2
i di− ξ

∫
x2
i di

≤
∫ ∫

(αiβj + αjβi)|xi||xj|didj +
(
max
i∈I

βi

)
E[α]

∫
x2
i di− ξ

∫
x2
i di

= 2

∫ ∫
αiβj|xi||xj|didj +

(
max
i∈I

βi

)
E[α]

∫
x2
i di− ξ

∫
x2
i di

≤ 2×
E[αβ] +

√
E[α2]E[β2]

2

∫
|xi|2di+

(
max
i∈I

βi

)
E[α]

∫
x2
i di− ξ

∫
x2
i di

=

[
E[αβ] +

√
E[α2]E[β2] +

(
max
i∈I

βi

)
E[α]− ξ

] ∫
x2
i di = 0,

where the first inequality uses zi ≤ 1, αi ≥ 0, βi ≥ 0, and Q ≤ E[α], the second

inequality uses the χ-inequality (40) from the existence proof in the baseline analysis,

and the last equality follows from the definition of ξ.

Finally, we establish uniqueness of equilibrium. Notice that, using the function

Gi(x) defined in equation (31), as well as the fact that zi = Fi(zi), we can rewrite

equation (64) as

Gi(zi) = −ηs,i + αiλ+ βiQzi, ∀i ∈ I (68)

and rewrite equation (65) as

Q =

∫
αizidi and λ =

∫
βi

2
z2i di.
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Notice that for given (λ,Q) equation (68) has a unique (stable) solution zi if G
′
i(zi) >

βiQ, which is implied by condition (D1) because G′
i ≥ 3

fi(0)
− 2η̄i and because βiQ ≤

(maxi∈I βi)E[α]. We now prove that the solution z is unique. Since it is no longer

convenient to use the Gale-Nikaido Theorem here, we develop a different approach. A

key observation is that system (68) can be viewed as a critical point of a function, which

can be verified to be strictly concave. In particular, define the following function:

Γ(z) ≡ −
∫ {∫ zi

0

(Gi(ti)− ξti)dti

}
di−

[∫
ηs,izidi

]
+ θ(z),

where the third term θ is defined in (67). For each i, the term
∫ zi
0
(Gi(ti) − ξti)dti is

strictly convex in zi as its second derivative is G′
i(zi) − ξ ≥ 3

fi(0)
− 2η̄i − ξ > 0 by

condition (D1). Therefore, the first term in Γ(z) is strictly concave in z. Meanwhile,

the second term is linear in z and the third term θ(z), as we have shown before, is

concave. Hence Γ(z) is strictly concave in z ∈ [0, 1]I . Next, observe that

αiλ+ βiziQ =
∂Q

∂zi
λ+

∂λ

∂zi
Q =

∂(Qλ)

∂zi
.

Hence we have

∂Γ(z)

∂zi
= −(Gi(zi)− ξzi)− ηs,i +

∂θ(z)

∂zi
= −(Gi(zi) + ηs,i) + (αiλ+ βiziQ).

When z solves system (68), it must be a critical point of Γ(·): for any i ∈ I, ∂Γ(z)
∂zi

= 0,

which, by concavity of Γ, implies that z is in fact a global maximizer of Γ(·). However,
a strictly concave function cannot have two distinct global maximizers, which implies

the uniqueness of the solution to the system (68).

Cross-Market Comparison As in the baseline analysis, consider two markets which

are identical except for their data parameters αi, βi. Then, from equation (64), in

market i we have

∆i = 2η̄F (∆i) +
1− 2F (∆i)

f(∆i)
− ηs + αiλ+ βiQF (∆i).

Assumption 4 ensures that the left-hand side of this equation increases faster in ∆i

than does the right-hand side. Since λ > 0 and Q > 0, this implies that, as in the

baseline model, the ecosystem sells more (other things equal) in markets with higher

αi and βi. It then follows from equations (62) and (63) that in markets with higher αi
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and βi, the corresponding small firm charges less and invests less, while the ecosystem

invests more. Turning to the ecosystem’s price, it is clear from (63) that, other things

equal, the ecosystem charges more in markets with higher βi, but that it is ambiguous

whether it charges more or less in markets with higher αi. To explore this further, one

can check that in the linear Hotelling case

pe,i =
2l(3l − ηs + αiλ)

6l − ηe − ηs − βiQ
− αiλ.

Notice that 6l − ηe − ηs − βiQ > 6l − ηe − ηs − βiEα > 0 where the first inequality

uses (65) and the second inequality uses (D2). One can then check that pe,i increases

in αi if and only if 2η̄ > 4l − βiQ, which is compatible with Assumption 4, and which

has a similar flavor to the corresponding condition from the benchmark analysis.

Data Regulation Consider again regulation that reduces αi or βi in a positive mea-

sure of markets. Consistent with Proposition 3 from the main analysis, we find that:

Proposition 12. (i) Data regulation induces the ecosystem to (weakly) sell less and

innovate less in all markets, and induces all single-product firms to (weakly) innovate

more, set higher prices, sell more, and earn more profit.

(ii) It benefits consumers if

ηs,i > (1 + Fi(∆i)− σi(∆i))/fi(∆i)

in each market i ∈ I, and harms consumers if the opposite is true in each market i ∈ I.

Proof. First, we rewrite (68) equivalently as a fixed-point of an operator that maps any

z = {zj, j ∈ I)} in [0, 1]I to{
G−1

j

(
−ηs,j + αj

(∫
βi

2
z2i di

)
+ βjzj

(∫
αizidi

))
, j ∈ I

}
(69)

in [0, 1]I . Given αi ≥ 0, βi ≥ 0, zi ≥ 0 and monotonicity of Gi(·), this operator is mono-

tone in z. Furthermore, for a fixed z, the operator is monotone in the data parameters

{αi, βi, i ∈ I}. By following the same argument as in the proof of Proposition 10 we

can show that data regulation in this extension always reduces zi (at least weakly) for

each i.41 It then follows that λ and Q also decrease with the regulation.

41In fact, ecosystem sales in market i strictly decrease if either αi + βi > 0, or if αi + βi strictly

goes down after the regulation.
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The ecosystem’s innovation (from equation (63)) is ve,i = (ηe,i + βiQ)Fi(∆i). Since

data regulation weakly reduces βi ≥ 0, Q ≥ 0 and ∆i in each market, it also reduces

ecosystem innovation in each market.

Now consider the impact on single-product firms. Note that ps,i and vs,i in equa-

tion (62) both decrease in ∆i, and hence increase (weakly) due to the regulation. Mean-

while, it is easy to see that a single-product firm’s profit takes the same form as in the

baseline model (i.e., is the same as in equation (17)). Following the same logic as in

the baseline model, condition (D3) therefore implies that single-product firm i’s profit

decreases in ∆i, and thus (weakly) increases due to the regulation.

Finally, consider consumer surplus. Notice that, up to a constant, consumer surplus

in market i takes the usual form:

Vi = [1− Fi(∆i)]

[
ηs,i −

1

fi(∆i)

]
+

∫ ∆i

0

Fi(x)dx

which decreases in ∆i if and only if the condition in the proposition holds.

As in the benchmark analysis, data regulation reduces the value λ and volume Q of

data collected by the ecosystem. Regulation also induces the ecosystem to sell (weakly)

less in each market, which in turn explains the impacts on ecosystem investment and on

small firms’ investments, prices, and profits described in Proposition 12. Moreover, as in

the benchmark analysis, data regulation has an ambiguous impact on ecosystem profit

and consumer surplus;42 as before, regulation is more likely to benefit consumers when

the ηs,i are relatively large, i.e., when small firms are relatively efficient at investing.

To explore the last point in more detail, Figures 5 and 6 depict ecosystem profit

and consumer surplus in the linear Hotelling case with symmetric products.43 The

42The ecosystem’s profit in market i can be written as

Πe,i = Fi(∆i)

[
Fi(∆i)

fi(∆i)
− αiλ

]
− ηe,i + βiQ

2
Fi(∆i)

2

Aggregating over all markets in I and using the expressions for λ and Q in (65) this simplifies to

Πe =

∫
Fi(∆i)

2

[
1

fi(∆i)
− ηe,i

2

]
− 2λQ.

which looks similar to profit in the baseline model (in equation (18)) except for the 2 in front of the

subsidy term and the fact that λ takes a different form. As in the baseline model, regulation has an

ambiguous effect on ecosystem profit due to this subsidy term.
43Note that in the linear Hotelling model with symmetric products σ(x) = 0 and ξ = 3β. Hence (D1)
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effect of regulation is qualitatively the same as in the corresponding Figures 2 and 3

from the baseline analysis. (Indeed, each pair of figures uses the same underlying

model parameters.) Specifically, in the first plot, small firms are relatively inefficient at

investing: regulation that reduces β only induces a relatively small increase in small-

firm innovation, and so it benefits the ecosystem but harms consumers. In the second

plot, however, small firms are relatively efficient at investing: regulation that reduces β

induces a relatively large increase in small-firm innovation, and so it benefits consumers

but harms the ecosystem.
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Figure 5: The impact of β when data affects the ecosystem’s innovation cost

(products are symmetric, F is uniform on [−1, 1], and α = 1, ηe = 2.25, ηs = 0.25)
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Figure 6: The impact of β when data affects the ecosystem’s innovation cost

(products are symmetric, F is uniform on [−1, 1], and α = 1, ηe = 0.5, ηs = 2.75)

becomes 2η̄ + 3β < 3/f(0), (D2) becomes max{ηs, ηe + 3β/2} < 3/[2f(0)], and (D3) becomes

max{ηs, ηe + 3β} < 2/f(0).
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