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Abstract

We model the impact of rising temperatures on labor productivity, labor
market dynamics, and income inequality. Using a heterogeneous agent continuous-
time (HACT) model with directed search, we analyze how temperature-induced
productivity fluctuations influence the labor market, income and wealth in-
equality, and wealth accumulation. The model features workers differentiated
by wealth, productivity, and location, where temperature affects transitions be-
tween high and low productivity states. Firms post fixed-wage contracts, and
workers direct their job search across segmented labor markets. We calibrate
the model using Vietnamese Labor Force data (2009-2018) matched with me-
teorological records, capturing regional temperature variations. With increased
temperatures, in low wage markets the ratio of vacancies to unemployed workers
searching in those market falls, as labor productivity declines and falling wealth
leads workers to direct their search to these markets when vacancies are also
falling. The wage distribution shifts to the left, and average incomes and wealth
fall. Climate-induced productivity shocks amplify income and wealth dispar-
ities as wealthier individuals are able to self-insure better against the income
risk. The results underscore the role of climate change in shaping labor market
inequality and provide insights into policy interventions that may mitigate its
adverse effects.
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I. Introduction

Global warming, driven by rising greenhouse gas emissions, has led to a steady

increase in global temperatures over the past century. According to the IPCC, global

average surface temperature has risen by approximately 1.1°C since the late 19th

century, with projections indicating further warming of 1.5–4.5°C by 2100 depending

on emission scenarios. The developing economies are especially vulnerable to climate

change.The effects of this temperature increase on economic systems are receiving

increasing attention. A growing body of research has highlighted its effects on

economic productivity. These effects vary across sectors, income groups, and regions.

How this impacts economic inequality within an economy is not well understood as

yet. This paper develops a heterogeneous agent continuous time (HACT) model with

labor market frictions to study the effects of increases in temperature on worker

productivity, labor market dynamics, and income inequality. We use Vietnamese

Labor Force and matched meteorological data to calibrate the data.

Rising temperatures can affect labor productivity via two channels: First, absen-

teeism due to physiological exhaustion or sickness can decrease the extensive margin

of the labor force (Zander et al. (2015)). Besides health impacts, the marginal cost

of supplying labor increases under high temperatures that can shift time allocation

preferences of workers towards valuing leisure time more than paid working hours

(Graff Zivin and Neidell, 2014). Second, poor cognitive performance and physiolog-

ical stress at work - for instance, due to the lack of climate control - can decrease

the intensive margin of labor productivity by reducing individual efficiency (Garg,

Jagnani and Taraz (2020), Zhang, Chen and Zhang (2024), Zivin et al. (2020)).

At the macroeconomic level, Dell, Jones and Olken (2012) show that higher tem-

peratures reduce GDP growth in low-income countries by 1.3% per 1 °C increase,

while having negligible effects on wealthier economies. This disparity underscores

the vulnerability of developing nations, which rely heavily on temperature-sensitive

sectors such as agriculture and low-skill manufacturing. Burke, Hsiang and Miguel

(2015) further refine this relationship, showing that economic productivity follows a

non-linear inverted U-shape response to temperature. The peaks vary across regions

and type of activity and declining sharply beyond this threshold. At the sectoral

level, studies provide micro-level evidence on the mechanisms driving these produc-

tivity losses. Somanathan et al. (2021) analyze Indian manufacturing firms and find

that a 1°C increase in temperature reduces annual factory output by 2%, primar-

ily due to lower worker efficiency and increased absenteeism. Similar patterns are

observed in Graff Zivin and Neidell (2014), who show that on hot days above 29.5

°C, outdoor workers in the U.S. reduce their work hours by up to one hour per day,

with limited evidence of short-run adaptation. Zhang et al. (2018) find that both
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labor- and capital-intensive Chinese manufacturing firms suffer productivity losses

during extreme heat, suggesting that temperature effects extend beyond human la-

bor to machine efficiency and industrial workflows. In addition to labor-intensive

sectors, cognitive performance is also affected, as studies show that students and

professionals perform worse on tasks requiring analytical reasoning in high-heat

conditions (Carleton and Hsiang (2016)) Despite some evidence that abatement (air

conditioning and technological improvements) can mitigate productivity losses, these

adaptations come at significant economic and environmental costs, particularly in

developing countries where access to cooling infrastructure remains limited. These

studies highlight that rising temperatures can reduce economic productivity.

The differential impairment of productivity can lead to widening of inequalities

across countries. Dell, Jones and Olken (2012) similarly find that higher temper-

atures reduce GDP growth in low-income countries while having little to no effect

on wealthier economies, suggesting that climate change exacerbates global economic

divergence. Diffenbaugh and Burke (2019) ) estimate that climate change has al-

ready widened the income gap between the richest and poorest countries due to

differential growth effects.

However, there can also be effects on inequalities within countries. The mecha-

nisms and estimates of how inequality changes due to temperature within a country

are not fully explored and understood (see Dang, Nguyen and Trinh (2023), and

Dang, Hallegatte and Trinh (2024)) even though low-income workers, particularly

those in outdoor and labor-intensive jobs, face greater productivity losses and in-

come volatility due to heat exposure (Graff Zivin and Neidell (2014), Somanathan

et al. (2021)).

In this paper we develop a HACT model (Achdou et al. (2022), Huggett (1993))

with labor market frictions similar to the competitive directed search model (Chau-

mont and Shi (2022), Krusell, Luo and Rios-Rull (2023)). Krusell and Smith Jr

(2022) use a neoclassical representative agent model but here as we want to model

inequalities we use a HACT framework. In the model, workers are heterogenous

indexed by their productivity, wealth, and the location they work in. Productivity

can either by high or low and is private knowledge to the worker and is revealed to

the employer only after a successful match. Based on their location they are affected

by temperature changes which can cause a change in productivity, with higher tem-

peratures increasing the probability of transiting from a high to low productivity.

Individuals can save in an asset with a no-borrowing constraint. As the evidence

suggests that temperature abatement plays a small role for worker productivity we

do not model it. Workers can either be employed or unemployed. An employed

worker is separated from the job exogenously. Firms post vacancies which is a non-

negotiable wage and unemployed workers direct their search to a sub-market. They
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become employed depending on the market tightness which is the ratio of vacancies

to workers looking for jobs in that sub-market. Firms enter the sub-market until

profits are zero. In Chaumont and Shi (2022) the firms can observe the wealth of

the worker and make wage offers contingent on the wealth levels. We assume that

wealth is not observable as in Krusell, Luo and Rios-Rull (2023), though in equi-

librium individual wealth will influence which sub-market the worker will search

in. The take-home pay of the worker depends on the contracted wage times the

productivity. An unemployed worker in addition to the consumption-savings choice

has to choose which sub-market to search in. The wealth level acts as partial in-

surance mechanism as there are no contingent claims markets to insure against all

risk. Where we differ from these papers (Chaumont and Shi (2022)), Krusell, Luo

and Rios-Rull (2023), Eeckhout and Sepahsalari (2024)) is in making the changes in

productivity depend on changes in temperature thus, making the labor market in-

teract with climate change.1 To quantify these effects, we estimate the productivity

transition probabilities using empirical data and map them into a continuous-time

Poisson framework. We characterize the policy functions of the workers, calculate

the stationary equilibrium, and conduct comparative dynamic analysis to see how

changes in temperature will affect the labor market and the inequality in income

and wealth.

The relationship between temperature and productivity is based on the Vietnam

Labor Force data (2009-2018) and meteorological data from the Vietnam Institute

of Meteorology, Hydrology, and Climate Change, covering temperature and precipi-

tation records from 172 weather stations nationwide.2. The Vietnamese Labor Force

data has indicators for a worker including location. Thus, we can match the two

data sets to study how changes in temperature affects a given worker’s productivity.

This matched data is used to calibrate the transition probabilities between the high

and low productivty as dependent on temperatures. The data on productivity is

consistent with the Burke, Hsiang and Miguel (2015) finding that the relationship

between productivity and temperature is an inverted U-shape.

We find that temperature fluctuations have pronounced non-linear effects on la-

bor market behavior, altering both firms’ hiring decisions and workers’ job search

strategies. In particular, equilibrium market tightness, defined as ratio of vacan-

cies to unemployed workers searching in that market, exhibits an inverse U-shaped

relationship with temperature. Starting from cooler conditions, a rise in tempera-

ture initially increases market tightness - reflecting more vacancies per job seeker

– but beyond a threshold this trend reverses: Extreme heat induces firms to antic-

1In the model, we make a small-open economy assumption as in Chaumont and Shi (2022) and
keep the interest rate fixed so that there is no capital income risk as in Benhabib, Bisin and Zhu
(2015).

2See discussion of these data sets in Section 2

4



ipate productivity losses and cut back on vacancy postings, resulting in a tighter

job market (fewer openings relative to unemployed workers) at high temperatures.

As a result, unemployment risk rises once temperatures exceed the productivity-

optimum range. Importantly, this impact is heterogeneous across job types: high-

wage jobs are less sensitive to temperature variation, showing smaller declines in

vacancy rates than low-wage jobs. On the worker side, rising temperatures initially

encourage unemployed individuals to search for higher-paying jobs (as long as labor

market conditions remain favorable), but beyond a certain heat threshold their op-

timal search wage begins to decline. In other words, when faced with heat-driven

job scarcity, job seekers become more risk-averse and target lower-wage positions

to improve their chances of employment. This adjustment is especially pronounced

for asset-constrained workers: poorer individuals are less selective and tend to seek

low-wage jobs under high-temperature stress, whereas wealthier job seekers can af-

ford to hold out for better-paying opportunities. These findings underscore a critical

employment dynamic – moderate warming can temporarily loosen the labor market,

but severe heat ultimately tightens market conditions, shifts job searches downward

along the wage ladder, and raises the likelihood of unemployment. In the model

there are two kinds of risks that workers face: the risk that productivity will change

and the risk of not finding a job when unemployed. The first is partially insured

by accumulating savings, and the second by searching for a lower paying job where

they are relatively more vacancies per job.

At the aggregate level, the model predicts that sustained increases in temperature

will depress overall economic outcomes while amplifying disparities. The equilibrium

wage distribution shifts to the left and broadens under warmer climates, indicating a

greater prevalence of low-wage work and increased wage dispersion as temperatures

rise. Accordingly, the unemployment rate climbs with warming. Our simulations

show a clear upward trend in unemployment as average temperature increases, with

especially sharp upticks once average temperatures exceed roughly 28°C. These la-

bor market effects translate into lower aggregate income and wealth and a more

unequal economy. For example, in a scenario where the average temperature rises

from about 25°C to 30.5°C (consistent with end-of-century climate projections for

Vietnam), mean income falls by roughly 1.4% and mean wealth by about 1.0%,

even as the income Gini index increases by about 0.7% and the wealth Gini by

about 0.3%. In general, income inequality worsens monotonically with temperature:

higher average heat exposure leads to a higher income Gini coefficient, a pattern that

is even more pronounced when the distribution of temperatures skews toward ex-

treme heat (e.g. under a right-tailed temperature distribution). Wealth inequality

exhibits a somewhat U-shaped response – it initially narrows at mild warming (as

households deploy precautionary savings to buffer income shocks) but widens once

5



temperature rises become extreme. The slower change in wealth inequality is due

to workers partially self-insuring against productivity risk by accumulating savings

and against unemployment risk by searching in lower wage markets. Richer work-

ers are more choosy in which jobs they will accept - higher paying jobs - as well

as they decrease their marginal propensity to consumer by more than less well off

workers to better insure against the productivity risk. Climate scenarios with more

frequent extreme-temperature days exacerbate all of these trends: a greater share of

the population exposed to severe heat further tightens the labor market and mag-

nifies the increases in unemployment and inequality. Overall, both the empirical

estimation and calibrated simulations indicates that rising temperatures can erode

employment opportunities and wage gains while intensifying economic inequality,

with the adverse effects accelerating as the climate grows hotter.

The structure of the paper is organized as follows: section II. introduces the

main dataset used in this study and motivates our structural model by presenting

key empirical findings. section III. then outlines the theoretical model, including

its setup and equilibrium conditions. In section IV., we describe how the model is

calibrated using our empirical data. Next, section V. and section VI. present the

main results and predictions derived from the model. Finally, section VII. provides

concluding remarks.

II. Empirical Motivation

This paper studies the effect of climate change on productivity in Vietnam. Viet-

nam is considered a country that is extremely vulnerable to climate change. It has a

population of about 100 million making it the 15th largest country in the world. It

is located in the South-East Asia on the eastern margin of the Indochinese peninsula

with an area of is about 331,211.6 square kilometres (127,881.5 sq mi). It has an

elongated roughly S shape with a north-to-south distance of 1,650 km (1,030 mi)

and is about 50 km (31 mi) wide at the narrowest point. The country is a mix of

subtropical and tropical lowlands, hills, and densely forested highlands, with level

land covering less than 20% of the area. The coastline of the country is 3,260 km

(2,030 mi) and 70% of the population resides in the coastal region.

Vietnam is located in the tropics and it has a monsoon influenced climate as

other South-East Asian countries. The country spans 15°of the latitude and this

is reflected in the climate. The north has a humid sub-tropical and monsoonal

climate (four seasons) while the central and southern regions of the country is typical

tropical monsoonal climate (two seasons – wet and dry). The highlands have a

more temperate and continental climate. The national average daily temperature

is approximately 25 °C, with the mean annual temperature ranging from 12.8 to
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27.7 °C (55 to 82 °F) across the country. The mountainous areas, as altitude is

higher, and the northern regions, as latitude is higher, have the lowest mean annual

temperatures . The warmest parts of the year are March-May in the south and

May-July in the north. Temperatures in summer are relatively similar between

the northern and southern parts of the country, and the differences largely due to

altitude.

The annual temperature nationwide have increased by 0.89°C between 1958-2018

(about 0.15 °C per decade). The largest increase was in 2008-2018. Annual rainfall

has also increased by 5.5% on average. There are spatial variations in the change

in temperature and rainfall, with temperature expected to rise faster in the north

than in the south of the country. The projections for the increase in temperature

range by the end of the 21st century range from 1.13 ± 0.87°C to 4.18 ± 1.57°C
depending on the different global scenarios for greenhouse gas emissions. Rainfall

is also expected to increase in Vietnam but with a different seasonal pattern (See

Espagne et al. (2021) for details on climate change projections.)

A. The Data

We analyze data from Vietnam’s Labor Force Survey (LFS), conducted annually

by the General Statistics Office (GSO) from 2009 to 2018. The LFS is the primary

source of official labor statistics in Vietnam, employing a two-stage stratified cluster

sampling approach that ensures national representativeness at the provincial and

urban/rural levels. Each year, the sample is evenly distributed, with approximately

one-twelfth of selected households surveyed monthly. The surveys collect compre-

hensive labor market data, including hourly earnings, employment status, industry,

education, and demographic characteristics for individuals aged 15 and older.

To ensure our results are unaffected by pandemic-related disruptions, we use only

pre-COVID-19 data. In 2018, Vietnam’s labor force participation rate was 76.7%,

with 82.1% for males and 71.6% for females. Despite ongoing urbanization, 67.8%

of the labor force remained in rural areas, where participation was higher (81.6%)

compared to urban areas (68.2%). Sectoral employment shares in 2018 were 38.6%

in agriculture, forestry, and fishery, 26.5% in industry and construction, and 34.8%

in services. The unemployment rate was relatively low at 2.2%, while an additional

1.6% were underemployed, working fewer than 35 hours per week but available for

additional work.3 Our analysis is based on more than 1.5 million observations from

the 2009-2018 period.

The second dataset comprises climate data from the Vietnam Institute of Me-

teorology, Hydrology, and Climate Change, covering temperature and precipitation

3These statistics are from 2018 LFS, Office (2018).
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records from 172 weather stations nationwide. To integrate these datasets, each

district is matched with the nearest weather station based on the shortest centroid-

to-station distance. The meteorological stations collect daily temperature readings,

and we calculate the average daily temperature for each year to derive the yearly

temperature. Each district is assigned a temperature value based on calculations

that consider the distances from four nearby weather stations, with weights applied

according to the shortest centroid-to-station distance. As a result, all individuals

within the same district share the same temperature value. There are approximately

700 districts in the country, and the temperature varies across districts and years

(See Nguyen, Nguyen and Nguyen (2023) for further details). Given the available

meteorological data, all districts in a given province are assigned the same temper-

ature, which we account for using fixed effects. These climate data are then merged

with the LFS data for analysis.

B. Empirical Specification and Results

For each individual i in district ω during year t, the temperature is denoted as Tωt.

To analyze the determinants of wages, we estimate the following fixed effects regres-

sion model which studies the effect of temperature on log hourly wages. The models

incorporate individual, location, and time-fixed effects to ensure robust estimation

and mitigate potential omitted variable bias. Previous literature has documented

the adverse effects of extreme temperatures on labor productivity. However, the

relationship between temperature and wages is not necessarily linear.

ln(Wagei,ω,t) = α1Agei,ω,t + α2Edui,ω,t + α3Malei,ω,t + α4Occupationi,ω,t

+ α5Tω,t + α6T
2
ω,t + γi + γω + γt + εi,ω,t

(1)

where ln(Wagei,ω,t) represents the logarithm of the hourly wage for individual i in

district ω at year t, Agei,ω,t denotes the age of individual i, Edui,ω,t is a dummy

variable indicating whether the individual has vocational education (1 if yes, 0 oth-

erwise), Malei,ω,t is a gender dummy variable (1 if male, 0 if female), Occupationi,ω,t
represents the occupation category of individual i, Industryi,ω,t denotes the industry

category in which the individual is employed, γi captures individual fixed effects to

control for time-invariant unobserved individual characteristics, γω represents fixed

location effects to account for geographic differences, γt includes fixed effects in time
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Table I. Regression Results: Impact of Temperature on Wages

Variable Estimate Std. Error

Avg. Temperature 0.04292∗∗∗ 0.009432
Avg. Temp Squared -0.000627∗∗ 0.000194
Age 0.0000343∗∗∗ 0.0000083
Education (Vocational) 0.111426∗∗∗ 0.002066
Gender (Male) 0.153299∗∗∗ 0.001772
Occupation -4.86e-18∗∗ 1.72e-18
Industry 0.130058∗∗∗ 0.001447

Observations 1,507,718
RMSE 0.5801
Adjusted R2 0.2524
Within R2 0.0586

Notes: This table presents the regression results examining the rela-
tionship between temperature and wages. Standard errors are clus-
tered at the individual level. Statistical significance: ∗p < 0.10,
∗∗p < 0.05, ∗∗∗p < 0.01.

to control for macroeconomic trends and time-specific shocks, εi,ω,t is the error term.4

Our regression results provide insight into how temperature fluctuations affect

wages. Table I presents the estimated coefficients for temperature-related variables.

The coefficient on average temperature is positive and statistically significant, indi-

cating that within a certain range higher temperatures are associated with increased

wages. This suggests that economic activity in warmer regions might benefit from

industrial and service-sector expansion.

However, the quadratic term for temperature is negative and statistically signifi-

cant, confirming a concave inverted U-shaped relationship. This implies that while

wages initially rise with temperature, they begin to decline at very high tempera-

tures, likely due to adverse productivity effects, health risks, and work environment

challenges. Other control variables, including education, gender, occupation, and

industry effects, exhibit expected patterns. Education remains a strong predictor of

wage increases, with vocational training contributing to higher earnings. Males earn

significantly more than females, highlighting persistent gender wage disparities.

The regional differences in temperature and income also highlight the complex

relationship between climate and economic activity. In Vietnam, for example, the

South experiences hotter temperatures yet has higher average incomes compared to

the North. This disparity suggests that factors beyond temperature alone—such as

4Following the literature, we also construct several bins for temperature. The value for each bin
is the number of days in a year that daily temperature falls into the category. We then regress log
wage on the value of bins for all categories in addition to all other controls and fixed effects. We
find similar results, that is, individuals experiencing more days with high temperature have lower
wage.
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industrial composition, labor market structures, and economic policies—contribute

to income levels. In hotter regions, workers may transit to more heat-adapted indus-

tries such as manufacturing and services, where wages tend to be higher. Moreover,

urbanization and investment in climate resilience can mitigate some of the adverse

productivity effects of high temperatures.

To further illustrate the distribution of temperatures across Vietnam, we provide

a heatmap in Figure 1. The figure demonstrates clear differences in temperature

across regions, with the North experiencing colder climates and the South exhibit-

ing significantly higher temperatures. These climatic variations correspond to dif-

ferences in income levels and economic structures, further supporting the argument

that temperature influences wage levels and productivity transitions.

Figure 1. Annual Temperature Distribution in Vietnam for 2009 and 2018.
Source: 172 Weather Stations.

(a) Temperature Distribu-
tion in 2009

(b) Temperature Distri-
bution in 2018

Notes: (a) This figure depicts the annual temperature distribution in Vietnam for the
years 2009 (Panel a) and 2018 (Panel b), based on data from 172 weather stations. (b)
The color gradient represents temperature variations, with blue shades indicating lower
temperatures and red shades indicating higher temperatures.

Figure 2 illustrates the distribution of average temperatures across Vietnam. The

distribution exhibits two distinct peaks, corresponding to the country’s two major

climatic regions. The northern region experiences a wider temperature range, in-

cluding lower temperatures, while the southern region, which is generally hotter,

contributes to the higher-temperature peak. The overall shape suggests a right-

skewed distribution, characteristic of a Log-normal distribution. The presence of

two main peaks indicates bimodality, likely driven by seasonal and geographical vari-

ations between the cooler North and the hotter South. The empirical distribution

can be approximated using a bimodal distribution with either normal components
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Figure 2. Temperature distribution

Notes: (a) This figure compares the empirical temperature distribution (gray bars) with
two fitted bimodal distributions. (b) The black solid line represents the Bimodal fit
using Normal distributions, while the red dashed line represents the Bimodal fit using
Lognormal distributions.

(Bimodal-Normal) or log-normal components (Bimodal-Log-normal). We will intro-

duce this bimodal approximation in more detail in section IV.. As a preview, we

plot the Bimodal fits using solid and dashed lines. It can be observed that both

Bimodal distributions fit the empirical data well, with only a small difference in

their goodness of fit.

III. The Model

This paper develops a searching and matching model in a heterogeneous-agent,

continuous-time framework (Achdou et al., 2022). Specifically, we extend the Huggett-

Bewley model by incorporating direct search à la Chaumont and Shi (2022) and the

increase in temperature due climate change affecting labor productivity. Time, in-

dexed by t, is continuous. The economy consists of infinitely lived, individuals with

heterogeneity along multiple dimensions. The labor market includes jobs that are

either filled or vacant. A representative firm hires workers, while unemployed indi-

viduals search for jobs. Individuals can save in an asset that pays a rate of return,

r. We make the small-open economy assumption so that the determination of r is

not modelled.
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A. Labor Market and Climate

In the labor market, unemployed workers search for jobs, and firms divide the

market into multiple sub-markets where they post vacancies. In a given sub-market,

let u and v denote the number of unemployed workers and vacancies, respectively.

Market tightness is defined as θ =
v

u
, where lower values indicate a tighter market.

Assuming that the matching functionM(u, v) is homogeneous of degree 1, the job-

finding rate j and the vacancy-filling rate f are given by

j(θ) =
M(u, v)

u
=
v

u
M
(u
v
, 1
)

= θM
(

1

θ
, 1

)
, (2)

f(θ) =
M(u, v)

v
=M

(u
v
, 1
)

=M
(

1

θ
, 1

)
, (3)

where in equilibrium, market tightness θ is endogenous and varies across submarkets.

We will later introduce how firms segment the job market.

To model climate change, we focus on temperature, denoted by T . We assume

that T is heterogeneous that individuals work in the workplace with different tem-

peratures consistent with the spatial variation in Vietnam. As detailed later, we

assume T directly affects workers’ productivity. The temperature in the workplace

is potentially affected by exogenous variations in temperature, global warming, and

workplace conditions. For simplicity we abstract from temperature abatement mea-

sures, treating T as exogenous meaning individuals and firms take it as given when

optimizing their behavior.

B. Individual Workers

Productivity: We assume that workers can have two productivity levels, z ∈
{z1, z2}, where z2 > z1. Productivity evolves stochastically according to a two-

state Poisson process. The transition probabilities depend on the temperature an

individual is exposed to. Specifically, for workers working under temperature T , the

transition intensities are given by

λT (z) =

π1(T ), z = z1,

π2(T ), z = z2,
(4)

where π1 denotes the transition intensity from low to high productivity, and π2 de-

notes the transition intensity from high to low productivity. In the following section

on estimation and calibration, we estimate the functional form of the transition

intensity using the Labor Force Survey in Vietnam. We assume that the produc-

tivity is match-specific, unobservable during the job search process, and realized
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ex-post after employment. Consequently, firms’ hiring strategies do not depend on

productivity z.

Employment Status: The economy consists of a pool of heterogeneous jobs, in-

dexed by the contracted real wage rate w ∈ W . Individuals are either employed

(q = 1) or unemployed (q = 0). Employed workers earn labor income equal to their

contracted wage rate multiplied by productivity, i.e., wz. Jobs have a fixed term

and are subject to an exogenous destruction rate ξ. Unemployed workers do not

earn labor income and search for jobs. They aim to find the best available job by

selecting which job, characterized by wage w, to target in their search. If a worker

searches in a specific submarket, the probability of a successful match is j(θ(w)),

where θ(w) represents the market tightness for that submarket. For simplicity, we

assume no search costs or unemployment benefits, as is the case in Vietnam.

Wealth Accumulation: Both employed and unemployed workers hold assets a ∈
[a, ā], which evolve according to

ȧ = ra+ wz1(q = 1)− c, (5)

where r is the real interest rate and c is consumption. Under the small open economy

assumption, r is exogenously given.

Optimization Problem: Individuals maximize their expected lifetime utility,

given by

E
∫ ∞

0

e−ρtu(c)dt, (6)

where ρ is the discount factor and u(c) is the twice continuously differentiable strictly

concave utility function. There is a no-borrowing constraint so that a ≥ a.

The model incorporates heterogeneity in three dimensions: (match-specific) pro-

ductivity z, employment status q, and wealth a. Among employed workers, het-

erogeneity extends to the contracted wage rate w. The temperature, T is a state-

variable and it affects the decision problem of individuals in several ways: it affects

the possible transition of their current match-specific productivity when employed,

and for the unemployed affects their choice of which sub-market to search as the

firms decide how many vacancies to post in each sub-market, thus, affecting the mar-

ket tightness condition. The value functions for employed and unemployed workers

for a given temperature, T are denoted as ET (a, z, w) and UT (a, z), respectively.

Their corresponding Hamilton-Jacobi-Bellman (HJB) equations are:
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ρET (a, z, w) = max
c

u(c) +
∂ET
∂a

(ra+ wz − c)

+ λT (z)[ET (z′, a, w)− ET (a, z, w)]

+ ξ[UT (a, z)− ET (a, z, w)] +
∂ET
∂t

,

(7)

ρUT (a, z) = max
c,w

u(c) +
∂UT
∂a

(ra− c)

+ λT (z)[UT (z′, a)− UT (a, z)]

+ j(θ(w))[ET (a, z, w)− UT (a, z)] +
∂UT
∂t

.

(8)

We can derive the optimal conditions for individuals as:

c∗ =

u′−1
(
∂ET

∂a

)
, q = 1,

u′−1
(
∂UT

∂a

)
, q = 0,

w∗ = arg max
w

j(θ(w))[ET (a, z, w)− UT (a, z)].

(9)

Note, that the problem is a concave problem and the sufficient first order condi-

tions for the consumption-savings choice which depend only on wealth level which

is the asset holdings, a, can be inverted to yield the policy functions as in Equa-

tion 9. The choice of which wage to target by an unemployed worker will depend on

their current productivity level and their wealth level. Furthermore, let gET (a, z, w)

and gUT (a, z) denote the joint distributions of employed and unemployed workers,

respectively. The evolution of these distributions follows the Kolmogorov Forward

Equations:

ġET (a, z, w) =− ∂

∂a
[ȧgET (a, z, w)]− λT (z)gET (a, z, w) + λT (z′)gET (z′, a, w)

− ξgET (a, z, w) + 1(w∗ = w)j(θ(w))gUT (a, z),
(10)

ġUT (a, z) =− ∂

∂a
[ȧgUT (a, z)]− λT (z)gUT (a, z) + λT (z′)gUT (z′, a)

−
∑
w

j(θ(w))gUT (a, z, w) +
∑
w

ξgET (a, z, w).
(11)

The Kolmogorov Forward Equations represent the change in the joint distribution

of the state variables. The first, Equation 10 shows that it changes due to the change

in asset holdings, flow out of the given productivity due to temperature, flow into

that productivity due to the temperature, loss of jobs due to exogenous separations

and the new matches created. The second, Equation 11 has the same first three

terms and the last two terms are the exit due to new matches and entry due of
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exogenous separations.

C. Production Landscape

The production landscape consists of multiple jobs that differ in wage rates. Jobs

can be either filled or vacant. If a job with wage w is filled by a worker of productivity

z, its instantaneous profit is given by Π(z, w) = y(z)−wz. Since productivity evolves

stochastically and employment contracts are subject to destruction, the Hamilton-

Jacobi-Bellman (HJB) equations for jobs, denoted by JT (z, w) is given by

ρfJT (z, w) =Π(z, w) + ξ[V − JT (z, w)]

+ λT (z)[JT (z′, w)− JT (z, w)] +
∂JT
∂t

,
(12)

where ρf is the firm’s discount rate, equal to the real interest rate plus capital depre-

ciation, r+ δ. The value of a filled job is affected by the job destruction probability,

ξ[V −JT (z, w)], and by workers’ productivity transitions, λT (z)[JT (z′, w)−JT (z, w)].

Similarly, the value of a vacancy satisfies the following HJB equation:

ρfV =− κ+ f(θ(w))[JT (z, w)− V ] +
∂V

∂t
, (13)

where κ is the cost of posting a vacancy, f(θ(w)) is the vacancy-filling rate, and the

term f(θ(w))[JT (z, w)− V ] captures the expected change in value when a vacancy

is filled by a worker of productivity z, and wage w. Note that the productivity of

a worker becomes observable to the firm only after a vacancy is filled. Thus, the

firm in evaluating the value of a vacancy conditions on the temperature, T , as this

influences the distribution of productivity of workers.

D. Equilibrium Conditions

Firms hire workers by posting vacancies to target market tightness θ(w). In

equilibrium, tightness satisfies the free-entry condition, ensuring that the value of a

vacancy V in Equation 13 is always zero. This implies κ = f(θ(w))JT (z, w).

However, we assume that the labor market features incomplete information:

match-specific productivity z is unobservable during the job search process. Firms

must investigate the job market and infer the expected productivity for the un-

employed individuals. We further assume that firm could obtain the conditional

distribution of productivity given temperature in the job market, i.e. P(z|T, q = 0).

Consequently, the free-entry condition is specified using the conditional expectation:

κ = f(θ(w))E[JT (z, w)|T, q = 0]. (14)
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This implies that equilibrium market tightness is a function temperature and

wage rate, as given by Equation 15:

θT (w) = f−1

(
κ

E[JT (z, w)|T, q = 0]

)
. (15)

This paper focuses on the stationary equilibrium of the model, defined as follows:

Definition 1. Given the real interest rate r, for each under temperature T , an equi-

librium consists of individual value functions (ET , UT ), firm value functions JT (z, w),

individual distributions (gET , g
U
T ), and equilibrium market tightness θT (w) such that:

1. {(ET , UT )}t solve the individuals’ HJB equations (Equation 7, Equation 8),

taking market tightness θT (w) as given.

2. JT (z, w) solves the jobs’ HJB equation (Equation 12).

3. The joint distribution (gET , g
U
T ) evolves according to the Kolmogorov Forward

Equations (Equation 10, Equation 11).

4. The value functions and distributions are stationary, meaning they do not

change over time:

∂ET
∂t

=
∂UT
∂t

=
∂JT
∂t

=
∂gET
∂t

=
∂gUT
∂t

= 0.

5. The equilibrium market tightness θi,T (w) satisfies the free-entry condition (Equa-

tion 15).

Thus, as in Chaumont and Shi (2022) an small open-economy assumption is made

so that the interest rate determination is not modelled.

We solve this model using the Finite Differencing Method (FDM), following the

approach in Achdou et al. (2022). A detailed description of the solution method

and algorithm is provided in Appendix C.

IV. Estimation and Calibration

A. Estimating the Productivity Transition

In our model, a key functional component is the transition intensity between

the high-productivity and low-productivity states. In this section, we estimate this

transition using the Vietnamese data introduced in section II. We follow a standard

two-stage approach as outlined below:

(Step 1) Estimating Productivity: In the first step, we estimate Equa-

tion 16.5 This specification is similar to Equation 1, except that we exclude the

5The notation for variables in this section follows the conventions introduced in section II.
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temperature variables Twt. In this setup, temperature-related effects are absorbed

into the error term εi,ω,t. This approach aligns with our structural model’s assump-

tion that temperature does not directly influence workers’ wages but instead affects

them indirectly through unobservable productivity channels.

ln(Wagei,ω,t) = β1Agei,ω,t + β2Edui,ω,t + β3Malei,ω,t + β4Occupationi,ω,t

+ γi + γω + γt + εi,ω,t.
(16)

The regression is estimated using a fixed-effects OLS approach. The estimated

residual term εi,ω,t captures unobserved productivity factors that are not accounted

for by the included explanatory variables. These unobservable components may in-

clude individual-specific abilities, motivation, work ethic, or other external environ-

mental factors influencing productivity. Since individual and location fixed effects

control for systematic differences across people and places, the residual variation

primarily reflects productivity fluctuations due to unobserved short-term shocks,

firm-level dynamics, and measurement errors.

To ensure consistency with our structural model, which assumes a binary produc-

tivity state, we classify continuous productivity estimates into either a high or low

level. We define Pi,ω,t ∈ {H,L} to represent the empirical productivity state. As

a classification threshold, we use the statistical mean of the estimated residuals, ε̄,

which is approximately zero in practice. Individuals with residuals above the mean

(εi,ω,t > ε̄) are assigned to the high-productivity group (Pi,ω,t = H), while those

with residuals below the mean (εi,ω,t < ε̄) are assigned to the low-productivity group

(Pi,ω,t = L). This classification approach enables us to proxy unobserved hetero-

geneity in productivity levels and analyze how external factors, such as temperature

and precipitation, influence transitions between these two productivity states.

(Step 2) Estimating the Transition Probabilities: To estimate the transi-

tion probabilities, we first calculate two transitional indicators. We define a binary

variable DL→H
i,ω,t , which equals 1 if Pi,ω,t = L and Pi,ω,t+1 = H, indicating individuals

who transition from a low-productivity state at time t to a high-productivity state

at time t+1. Individuals with DL→H
i,ω,t = 0 remain in the low-productivity state. Con-

versely, we define another binary variable, DH→L
i,ω,t = 1, to indicate individuals whose

productivity declines from a high state to a low state, i.e., those with Pi,ω,t = H and

Pi,ω,t+1 = L.

Finally, we use Equation 17 to evaluate the effect of temperature on productivity

transitions, where the explained variable Di,ω,t includes both the indicator for low-

to-high transition (DL→H
i,ω,t ) and high-to-low transition (DH→L

i,ω,t ). In this specification,

we focus on the marginal effects of average temperature by including a second-order

polynomial term, Tω,t and T 2
ω,t, in the explanatory variables. We also control for
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precipitation (Preω,t) as a standard approach for empirical research on climate.

Di,ω,t = β0 + β1Tω,t + β2T
2
ω,t + β3Preω,t + vi,ω,t. (17)

Given the binary explanatory variables, we estimate Equation 17 using a Gener-

alized Linear Model (GLM) with a binomial Logit specification. Table II presents

the results of the logit regression estimates showing the transition probabilities for

productivity low to high and productivity high to low, respectively.

Table II. Logistic Regression Results

High to Low Low to High

Variable Estimate Std. Error Estimate Std. Error

Intercept -1.0668*** 0.2226 -2.2037*** 0.2256
Avg. Temperature -0.0208 0.0182 0.0669*** 0.0184
Precipitation 1.6e-5*** 3.3e-6 2.5e-5*** 3.3e-6
Avg. Temp Squared 0.0005 0.0004 -0.0012** 0.0004

Observations 1,507,718 1,507,718
Log-Likelihood -799,737.3 -799,429.1
Adjusted Pseudo R2 1.89e-5 7.47e-5
BIC 1,599,531.6 1,598,915.0
Squared Correlation 2.41e-5 8.31e-5

Notes: This table presents the results of logistic regressions estimating the probability of
transitioning between productivity states. Standard errors are reported in parentheses.
Statistical significance: *p < 0.10, **p < 0.05, ***p < 0.01.

We now describe how we map the regression results to the transition matrix.

Since we use the Logit function as the link function in the GLM, the coefficients in

Equation 17 measure the marginal effects of the explanatory variables on the log-

odds ratio of transition. We transform the log-odds ratio into transition probabilities

as follows:

P(Pi,ω,t+1 = L|Pi,ω,t = H) = Logit(D̂L→H
ω,t ) ≡ F1(T,Pre),

P(Pi,ω,t+1 = H|Pi,ω,t = L) = Logit(D̂H→L
ω,t ) ≡ F2(T,Pre),

(18)

where Logit(x) = ex

1+ex
is the link function, and D̂L→H

ω,t and D̂H→L
ω,t are the fitted val-

ues from the regressions under given temperature and precipitation conditions. By

defining F1(T,Pre) as the probability of transitioning from low to high productivity

and F2(T,Pre) as the probability of transitioning from high to low productivity,

given temperature and precipitation, we express the Markov transition matrix as:

T (T,Pre) =

[
1−F1(T,Pre) F1(T,Pre)

F2(T,Pre) 1−F2(T,Pre)

]
. (19)
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Linking the Estimation to the Structural Model: In this paper, our empiri-

cal data from Vietnam is of annual frequency, while our model follows a continuous-

time setup. To reconcile this difference, we transform the discrete-time Markov

transition matrix into a continuous-time Poisson process by solving for the genera-

tor matrix Q, which satisfies:

T (T,Pre) = eQ(T,Pre)∆t, (20)

where ∆t represents the time step in the continuous-time model. In linking this

to our model in section III., we abstract from the effect of precipitation and fix

precipitation, Pre, at its mean level from the dataset, i.e., 1973 mm per year. Con-

sequently, the transition intensities, π1(T ) and π2(T ) in Equation 4, correspond to

the off-diagonal elements of the generator matrix.

To illustrate how productivity changes with temperature in our estimation, we

solve for stationary productivity given T ∈ [10, 50] and plot the corresponding results

as a solid line in Panel (a) of Figure 3. As a reference, we also include a red

dashed line, obtained by following the same procedure but modifying the first-stage

regression in Equation 16 to control only for time fixed effects γt and district fixed

effects γw. The difference in stationary productivity between these two specifications

is minimal. Therefore, in our subsequent analysis, we focus only on results where

individual fixed effects are controlled for.

Examining the pattern in Figure 3, we observe a clear inverse U-shaped relation-

ship between stationary productivity and temperature. This finding is consistent

with the results presented earlier in section II.. When temperature is below a certain

threshold, higher temperatures are associated with increased productivity. However,

as the average temperature continues to rise, average productivity declines corre-

spondingly.

B. Other Calibrations

Distribution for Average Temperature: In our model, the distribution for

temperature state, i.e. P(T ) is also requiring. In the shown in Figure 2, the em-

pirical distribution in our data shows characteristic of bimodality. Therefore, we fit

the empirical temperature distribution using a bimodal distribution with different

specifications, as defined in Equation 21 and Equation 22, where we use a Normal

distribution (N (µ, σ2)) and a Log-normal distribution (LogN(µ, s)) as the respective

components. For simplicity, we refer to these as the Bimodal-Normal distribution

and Bimodal-Log-normal distribution in our subsequent analysis. We present the

corresponding parameter estimation results in Table A1 and plot the fitted values in

blue solid and red dashed lines in Figure 2. Both the Bimodal-Normal and Bimodal-
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Figure 3. Stationary Productivity and Marginal Effects

Notes: (a) Panel (a) shows stationary productivity as a function of temperature. It is
obtained by computing the stationary distribution given the transition intensities {π1(T ),
π2(T )}, which are estimated from empirical data. (b) The solid and dashed lines represent
results from estimations using individual fixed effects (ID FE) and district fixed effects
(Dist FE), respectively. (c) Panel (b) illustrates the marginal effect of temperature on
output change (%). The black line represents the estimates from Somanathan et al.
(2021), with the shaded region indicating the 90% confidence interval.

Log-normal distributions fit the empirical data well, with only a small difference in

their goodness of fit.

P(T ) = p1N (µ1, σ
2
1) + p2N (µ2, σ

2
2), (21)

P(T ) = p1LogN(µ1, σ
2
1) + p2LogN(µ2, σ

2
2). (22)

Parameterization: The remaining parameters in the model are calibrated in

a standard way. We calibrate the model to a seasonal frequency. For the lifetime

utility function, we calibrate the CES utility function as u(c) = c1−%

1−% with % = 2 and

set the subjective discount rate to ρ = 0.0138.

Regarding the parameters for the labor market, we first specify the matching

function M(u, v). Various functional forms have been suggested in the literature;

in this paper, we assume a Cobb-Douglas form, M(u, v) = u$v1−$. We set the

parameter $ = 0.68 so that the elasticity of the job-finding rate with respect to

market tightness θ is 0.32, consistent with the values in Chaumont and Shi (2022);

Eeckhout and Sepahsalari (2024). Second, we calibrate the job destruction rate to

ξ = 0.085, implying a 3-year average contract duration. Third, for the firm’s search

cost κ, we calibrate this parameter to target the unemployment rate. We set κ = 0.1,

which results in a generated unemployment rate of approximately 4.5% to 5%,6 as

6This is consistent with the unemployment + underemployment rate of about 4% in Vietnam.
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we will demonstrate in subsequent sections.

For the production function y(z) and the real interest rate r, since they are

directly correlated with individuals’ labor and capital income, we calibrate them to

match the average capital income share. We first set r = 0.012, which corresponds

to an annual percentage rate (APR) of 4.8%. Then, we assume a functional form

y(z) = zα and calibrate α = 2 so that the capital income share in total income is

approximately 25%.

We summarize the calibration in Table III. To further validate our parameteriza-

tion, we compute the average output E[y(z)] under various temperature levels. Next,

we calculate the marginal change in average output when temperature increases by

1°C. The results are depicted in Panel (b) of Figure 3. It can be observed that the

marginal effect on output is negative and decreases when the average temperature

exceeds a certain threshold. The predicted marginal effect closely aligns with the

estimate by Somanathan et al. (2021) when T > 30◦C, which is approximately -2.1,

with a 90% confidence interval of [−0.75, 3.45].

Table III. Parameterization

Parameter Interpretation Target Value

π1(T ), π2(T )
Transition intensity functions for

productivity
Estimated from empirical data –

$

Elasticity parameter in the

Cobb-Douglas matching function

M(u, v) = u$v1−$

Job-finding rate elasticity of mar-

ket tightness ≈ 0.32
0.68

ξ Job destruction rate
Average contract duration of 3

years
0.085

κ Search cost
Unemployment rate between 4%

and 6%
0.1

α
Output elasticity in the produc-

tion function y(z) = zα
75% of the labor income share 2

r Real interest rate 4.8% APR 0.012

Notes: This table presents the functions and parameters used in this paper. The function of tran-

sition intensities are estimated from the empirical data. The rest of the parameters are calibrated.

V. The Effects of Temperature on Labor Market

Behaviors

We now present the main empirical results of our paper. We begin with evaluating

how firms’ optimal hiring strategies change with temperature. In Figure 4, we plot

the equilibrium market tightness as a function of temperature and wage, where the

surface represents θT (w). We also present cross-sections at different wage levels in
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Figure 4. Market Tightness

Notes: (a) This figure illustrates the equilibrium market tightness
θ as a function of wage rate (w) and temperature (T ). (b) On the
surface plot, lower values indicate a tighter labor market, while higher
values reflect more vacancies relative to unemployed workers.

Panel (a) of Figure 5. It can be observed that θ decreases with the wage rate,

indicating a tighter market for high-paying jobs. This result is consistent with

standard findings in direct search models. Regarding the effect of temperature,

we find an inverse U-shaped relationship in market tightness. Starting from 10°C,

θ increases with temperature, suggesting a rising vacancy-to-unemployment ratio.

However, beyond a certain threshold, this ratio declines, indicating a tighter job

market at higher temperatures. This occurs because firms anticipate a decline in

workers’ productivity under high temperatures. Consequently, the expected value

of a job when hiring, i.e., E(JT (z, w)|T, q = 0) in Equation 15, decreases, leading

to a reduction in market tightness θ. Furthermore, we find that the curvature for

high-wage jobs (e.g., the dash-dot line in Panel (a) of Figure 5) is smaller than that

for low-wage jobs (e.g., the solid line). This suggests that in our model, high-wage

jobs are less sensitive to temperature variations.

Panel (b) of Figure 5 shows the optimal search behaviors of unemployed workers in

the job market. The figure plots the optimal wage against temperature and wealth.

Similar to market tightness, the optimal wage choice also exhibits an inverse U-

shaped relationship with temperature, where w∗ initially increases with temperature,

peaks around moderate temperatures (approximately 25°C), and then declines at

higher temperatures. This suggests that when the temperature exceeds a certain
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threshold, workers direct their search toward lower-wage jobs. The underlying reason

for this pattern is that firms reduce vacancy postings at higher temperatures, leading

to a tighter labor market. In response, job seekers, facing a tighter labor market,

would exhibit more risk-averse behavior by targeting lower-wage positions to increase

their chances of employment.

Additionally, our model reveals the relationship between wealth and job search

behavior. Poor individuals, particularly those facing asset constraints (solid line),

tend to direct their search toward low-wage jobs. This finding is consistent with the

notion that financial security enables greater selectivity in job searching, whereas

individuals with limited assets exhibit more risk-averse behavior in the labor market.

Figure 5. Market Tightness and Optimal Wage

Notes: (a) Panel (a) illustrates the equilibrium market tightness θ = v/u as a function of

temperature for different wage levels (w). (b) Panel (b) shows the optimal search wage

w∗ across temperatures for different wealth levels (a). The solid, dashed, and dash-dotted

lines correspond to different levels of wealth.

VI. Aggregate Effects of Climate Change

A. Global Warming Scenario

We now evaluate the effect of temperature on inequality and other aggregate

variables. As specified in the model setup, T is the state variable representing the

population exposed to different temperature levels. In section II., we fitted the

empirical distribution in Vietnam using the Bimodal distributions. For clarity, the

term temperature distribution in our subsequent discussion specifically refers to the

distribution of the population across different temperature levels.

To model the effects of climate change, we consider several scenarios. In the

main text, we focus on the prominent phenomenon of global warming. As our

first experiment, we assume that temperature follows a bimodal distribution as a
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weighted sum of two normal distributions, i.e., the Bimodal-Normal distribution as

in Equation 21. We begin with the parameters fitting the empirical data. Then,

we vary the mean temperature from approximately 25°C to 30.5°C while holding

the variance of the distribution fixed at the baseline level. We select 30.5°C based

on the 60-year temperature projection from the HadGEM2 model under the RCP

8.5 scenario.7 We assume the current average temperature is 25°C and project

future temperatures over the next 60 years. Under the Lower Warming Projection

(0.3°C per decade), the temperature reaches 27.7°C by 2085, while under the Higher

Warming Projection (0.6°C per decade), it reaches 30.4°C by 2085. In Panel (a)

of Figure 6, we depict several sample distributions for this experiment in different

colors.

To analyze the impact under different assumptions about temperature distribu-

tion, we also simulate changes using a bimodal distribution composed of two log-

normal distributions, i.e., the Bimodal-Lognormal distribution as in Equation 22.

Similarly, we increase the average temperature from 25°C to 30.5°C, as in the pre-

vious experiment. The corresponding sample distribution is plotted in Panel (b) of

Figure 6. It can be observed that, under the second experiment with a log-normal

distribution, as the average temperature increases, the tail of the distribution thick-

ens, implying a higher likelihood of extreme temperatures compared to the first

experiment in Panel (a). In the following analysis, we will use Bimodal-Normal

distribution and Bimodal-Log-normal distribution to denote distributions used in

these two experiments.

As an alternative assumption for a sensitivity check, in Appendix B, we assume

that the average temperature follows either a normal or a log-normal distribution.

We plot the corresponding distribution paths in Figure B1.

7The RCP 8.5 scenario in the HadGEM2 climate model represents a high-emission Represen-
tative Concentration Pathway (RCP) used in climate projections.
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Figure 6. Temperature Distribution Scenario (Bimodal Distributions)

Notes: (a) This figure presents the sample distributions used for simulation in this

section. (b) Panel (a) assumes that temperature follows a bimodal distribution with

two normal distributions, p1N (µ1, σ
2
1) + p2N (µ2, σ

2
2), with a fixed standard deviation

of σ1 = 1.31, σ2 = 0.44 while varying the mean from 25 to 30.5. (c) Panel (b) as-

sumes that temperature follows a Bimodal distribution with two log-normal distribution,

P = p1LogN(eµ1 , s1) + p2LogN(eµ2 , s2), adjusting the scale parameter so that the mean

temperature aligns with the corresponding normal distribution experiment.

We first present the benchmark results for the scenario in which temperature fol-

lows a Bimodal-Normal distribution, with an average temperature of approximately

25°C. Figure 7 plots the distributions of income and wealth in the stationary equi-

librium. Panel (a) of the figure displays the distribution of instantaneous income,

given by ra + wz1(q = 1). It could be viewed that in our model, income clusters

in several groups. The disparity arises from multiple sources: unemployed workers

cluster in the low-income range, while employed workers’ incomes primarily vary

based on their productivity levels. High-productivity workers concentrate in the

high-income range, whereas low-productivity workers remain at lower income levels.

Furthermore, within each employment and productivity group, the income dis-

tribution exhibits positive skewness. This pattern arises due to capital income,

which follows the positively skewed wealth distribution depicted in Panel (b). Such

a wealth distribution is a common feature in heterogeneous-agent models. In our

model, wealth disparity is driven not only by standard consumption-savings de-

cisions but also by labor market frictions. The process of searching, hiring, and

unemployment introduces additional heterogeneity, influencing individuals’ wealth

accumulation process.

In our model, the income Gini index is approximately 0.262, while the wealth

Gini index is around 0.293. These measures provide a quantitative assessment of

inequality in the economy. In the subsequent analysis, we will examine how these
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disparities evolve under different temperature distributions, as plotted in Figure 6.

Figure 7. Benchmark Stationary Distribution

Notes: (a) This figure presents the stationary distribution under the benchmark tem-

perature distribution with mean equals to 25°C. (b) Panel (a) depicts the distribution

of instantaneous income. The black and blue bars represent the income distributions of

employed workers with high and low productivity, respectively, while the red bars repre-

sent the income distribution of unemployed workers. (c) Panel (b) shows the stationary

distribution of individual wealth a.

B. The Effects on Labor Market Outcomes

Table IV summarizes the labor market outcomes under different temperature

distributions and scenarios. We present two typical scenarios in this table: an

expected temperature of 25°C, which represents the average temperature in our data,

and 30.5°C, which corresponds to the projected 60-year average temperature based

on the HadGEM2 model. The first and second columns display the results under the

assumption that temperature follows a Bimodal-Normal distribution and a Bimodal-

Log-normal distribution, respectively. It can be observed that the labor market

becomes more constrained at higher temperatures, with θ declining from 5.055 to

4.974, representing a 1.625% decrease under the Bimodal-Normal distribution. In

the case of the Bimodal-Log-normal distribution, the effect is more pronounced,

tightening the labor market by 1.704%.

Correspondingly, unemployed workers adjust their job search behavior by tar-

geting lower-wage jobs. As shown in the second block of Table IV, the optimal

wage threshold for job search declines from 1.213 to 1.206 (a 0.57% decrease) under

the Bimodal-Normal distribution and from 1.213 to 1.205 (a 0.6% decrease) under

the Bimodal-Log-normal distribution. This implies that as the average temperature

rises, workers revise their expectations downward in response to increasing market

tightness. This trend suggests a potential wage stagnation effect due to climate
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change, where fewer job opportunities force workers to accept lower wages. Con-

sequently, the equilibrium wage rate distribution shifts as the average temperature

increases. We visualize the corresponding distribution in Figure 8. It can be ob-

served that the distribution shifts leftward and becomes more dispersed when the

average temperature rises to 30°C.

Figure 8. Wage Rate Distribution

Notes: (a) This figure illustrates the stationary distribution of wage rates under different

temperature scenarios. Panel (a) presents results for the Bimodal-Normal temperature

distribution, while Panel (b) shows results for the Bimodal-Log-normal distribution. In

both panels, the wage rate distributions are plotted for two expected temperature levels:

E(T ) = 25◦C (lighter bars) and E(T ) = 30.5◦C (darker bars).

The unemployment rate also increases correspondingly as the labor market tight-

ens due to higher average temperatures. In the third block of Table IV, our model

indicates a 0.54% and 0.561% increase in the unemployment rate under the Bimodal-

Normal and Bimodal-Log-normal distribution assumptions, respectively. To further

visualize the impact of temperature on unemployment, we plot the stationary un-

employment rate across different average temperature levels in Figure 9. It can be

observed that unemployment increases with rising average temperatures. Moreover,

the marginal increase in unemployment is more pronounced at higher temperatures,

particularly when the average temperature exceeds 28°C. This indicates that not only

does the overall unemployment rate rise due to global warming, but the marginal

effect of temperature on unemployment also intensifies as temperatures increase.

Additionally, when comparing the effects on labor market outcomes under dif-

ferent assumptions about temperature distribution, we find that the magnitude of

the impact is slightly greater when temperature follows a Bimodal-Log-normal dis-

tribution compared to a Bimodal-Normal distribution. This occurs because, in a

positively skewed temperature distribution, a larger share of the population is ex-

posed to higher-than-average temperatures, further tightening the labor market. In
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Table IV. Labor Market in Different Scenarios

(1) Bimodal-Normal (2) Bimodal-Log-normal
Market Tightness θ

E(T ) = 24.8◦C 5.055 5.055
E(T ) = 30.4◦C 4.974 4.97

Percentage Change (%) -1.625 -1.704
Wage to Search w∗

E(T ) = 24.8◦C 1.213 1.213
E(T ) = 30.4◦C 1.206 1.205

Percentage Change (%) -0.577 -0.608
Unemployment Rate

E(T ) = 24.8◦C 4.877 4.877
E(T ) = 30.4◦C 4.904 4.905

Percentage Change (%) 0.54 0.561

Notes: This table summarizes key labor market indicators under different temperature
distributions. Column (1) presents results under a normal temperature distribution,
while Column (2) corresponds to a log-normal distribution. For each scenario, we report
market tightness (θ), the optimal wage to search (w∗), and the unemployment rate,
evaluated at two different mean temperatures: E(T ) = 24.8◦C and E(T ) = 30.4◦C. The
percentage change reflects the relative difference between the two temperature levels.

contrast, under a Bimodal-normal temperature distribution, fewer individuals ex-

perience extreme heat, resulting in a relatively less pronounced effect on market

tightness, job search behavior, and the unemployment rate.

Figure 9. Unemployment Change

Notes: (a) This Figure shows the equilibrium unemployment rate as a function

of mean temperature under two different temperature distributions: Bimodal-

Normal (solid line) and Bimodal-Log-normal (dashed line). (b) The mean

temperature varies from 25°C to 30.5°C.

In Appendix Table A2 and Figure B2, we conduct a similar analysis under the

assumption that temperature follows a simple Normal or Log-normal distribution.

We observe similar changes in searching and matching behavior, as well as in the

aggregate unemployment rate. The labor market becomes tighter, and the unem-
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ployment rate increases as the average temperature rises. Unlike the experiment in

the main text, the difference between the Normal and Log-normal distributions is

more pronounced than in the Bimodal distribution case.

C. The Effects on Income, Wealth and Inequality

We now begin examining the effects of temperature on aggregate income, wealth,

and their respective distributions. Figure 10 illustrates the relationship between

temperature and inequality, as measured by the Gini index for both income (Panel

(a)) and wealth (Panel (b)).

In Panel (a), we observe that income disparity increases as the average temper-

ature rises from approximately 25°C to over 30.5°C. This suggests that higher tem-

peratures contribute to widening income inequality. Additionally, the effect is more

pronounced under the Bimodal-Log-normal temperature distribution, which results

in a slightly steeper increase in inequality. This reinforces the idea that a positively

skewed temperature distribution exposes a larger share of the population to extreme

heat, intensifying income disparities. Panel (b) presents a similar pattern for wealth

inequality. The wealth Gini index exhibits a U-shaped pattern, initially decreas-

ing with average temperature when temperatures are moderate and increasing once

the average temperature exceeds a certain threshold. Furthermore, we observe that

the change in the wealth Gini index is smaller than the change in the income Gini

index. This discrepancy may be attributed to individuals’ consumption-smoothing

behavior, where precautionary savings help insure part of the income losses resulting

from a tighter labor market and lower expected productivity. We will further our

discussion on wealth inequality later in the next section.
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Figure 10. Inequality Change

Notes: (a) This figure illustrates the changes in income inequality (Panel a) and wealth

inequality (Panel b) as measured by the Gini index under different temperature distri-

butions. (b) The solid and dashed lines represent results under the Bimodal-Normal and

Bimodal-Log-normal temperature distribution assumptions, respectively.

Similar to the dynamics of unemployment, the increase in income and wealth

inequality with rising temperatures also exhibits an increasing marginal effect. To

further illustrate this, Figure 11 presents the marginal proportional change in aggre-

gate income, wealth, and their respective Gini indices when the average temperature

increases by 1°C. On one hand, aggregate income and wealth decline as the average

temperature rises, with their marginal changes being negative and decreasing. On

the other hand, the Gini indices for both income and wealth increase, with their

marginal effects being positive and growing. This indicates that the negative effects

of temperature on economic output, as well as econoic equality, intensify at higher

temperatures. However, the difference in marginal effects between the Bimodal-

Normal and Bimodal-Log-normal distributions is negligible.

To quantify these effects, Table V presents the predicted changes in economic

outcomes under the assumption that temperature follows a Bimodal-Normal dis-

tribution. When the average temperature rises from 25°C to 30.5°C, mean income

declines by 1.41% (from 1.43 to 1.41), while mean wealth decreases by 0.99% (from

22.56 to 22.34). However, despite these aggregate declines, inequality worsens. The

income Gini index increases by 0.71%, and the wealth Gini index rises by around

0.33%. These findings highlight the main implication of climate change in our model:

rising temperatures reduce average productivity, income, and wealth accumulation.

However, the effects are not evenly distributed. Both income and wealth inequal-

ity worsen as a result. Furthermore, the impact exhibits an increasing marginal

effect, meaning that as temperatures continue to rise, inequality intensifies at an

accelerating rate.
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Figure 11. The Effects on Income and Wealth

Notes: (a) This figure illustrates the marginal effect of a 1◦C increase in average tem-

perature. (b) Panel (a) presents the marginal effects of mean temperature on income

and income inequality, measured by the Gini index. (c) Panel (b) shows the marginal

effects of mean temperature on wealth and wealth inequality. Solid and dashed lines rep-

resent results under Bimodal-Normal and Bimodal-Log-normal temperature distribution

assumptions, respectively.

Wealth Share: We further investigate wealth inequality by analyzing the distri-

bution of wealth across different quantiles. As shown in rows 2 to 4 of the first block

in Table V, the wealth share of the lowest 25% is approximately 10.2% under the

baseline temperature distribution. However, as the average temperature increases to

30.5°C, this share declines by 0.29%. Similarly, the wealth shares of the second and

third quantiles also decrease, though by a smaller margin of less than 0.1%. How-

ever, the wealthiest 25% experience a gain, with their share increasing by 0.17%,

from 43.15% to 43.22%.

Income Disparities by Groups: Regarding income and income inequality, we

present several statistics in the second block of Table V. As shown previously in

Figure 10, heterogeneity in wealth, productivity, and employment status contributes

to income disparity in our model. To identify the sources of rising income inequality,

we calculate the average income across these dimensions of heterogeneity.

First, in lines 2 and 3 of the second block of Table IV, we observe that as the

average temperature increases from 25°C to 30.5°C, the average income of both

unemployed and employed workers declines. The magnitude of this income drop

is larger for employed workers. This occurs because a decline in the average wage

rate and productivity reduces labor income (wz) for employed workers. However,

unemployed workers, who rely solely on capital income (ra), experience income

reductions primarily due to wealth shrinkage. Consequently, the share of capital

income in total income increases by approximately 0.41% during this transition,

31



as shown in the last row. As a result, the income gap between unemployed and

employed workers narrows with rising average temperatures.

In contrast, income disparity across wealth and productivity levels widens. As

shown in lines 4 to 8 of the second block of Table IV, the average income declines by

1.24% for individuals in the first quantile of the wealth distribution (poorest 25%),

compared to 1.21% in the second and third quantiles and 1.12% in the wealthi-

est quantile. Income for the low-productivity group decreases from 0.831 to 0.825

(a drop of approximately 0.688%), while income for the high-productivity group

declines from 2.019 to 2.007 (around 0.636%).

In Appendix Figure B3 and Table A3, we conduct the same analysis under the as-

sumption that temperature follows a normal distribution. Average income, wealth,

and their corresponding inequality measures change in the same direction as ob-

served in our baseline experiment.

In summary, rising income inequality in our model is driven by two opposing

effects. First, as the average temperature increases, the rising unemployment rate

and declining labor income reduce the income gap between employed and unem-

ployed workers. However, the widening income disparity across different wealth and

productivity levels outweighs this effect, leading to an overall increase in income

inequality.

D. Wealth Inequality and Consumption Saving Choice

In the previous section, we showed that our model predicts an increase in both in-

come and wealth inequality under a global warming scenario. We also demonstrated

that income inequality is primarily exacerbated by disparities across wealth levels

and productivity groups. How does rising income inequality contribute to greater

wealth inequality? To answer this question, we further analyze the mechanism driv-

ing the increase in the wealth Gini index.

First, income disparity across wealth levels could directly contribute to wealth

inequality. As mentioned earlier, rising average temperatures affect income dispro-

portionately across wealth levels, with wealthier individuals being less vulnerable.

This is because wealthier people have higher share of capital income, which remains

unaffected by temperature-induced declines in labor productivity and wage rates.

Poorer individuals, who rely more on labor income, are more adversely affected.

However, whether higher income translates into higher wealth also depends on

individuals’ net savings. Thus, we extend our analysis by examining individuals’

consumption-savings choices. We plot the policy function for consumption and sav-

ings in Appendix Figure B5. In the main text, we focus on the marginal propensity

to consume (MPC). Following Achdou et al. (2022); Kaplan and Violante (2022),

we compute the MPC in the HACT framework as follows.
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Table V. Stationary Outcomes in Different Scenarios (Normal Distribution)

(1) 25◦C (2) 30.5◦C (3) % Change
Wealth

Mean 22.558 22.336 -0.991
Wealth Share

0% - 25% 10.196 10.167 -0.285
25% - 75% 46.656 46.611 -0.095
75% - 100% 43.148 43.222 0.170

Gini 0.292 0.293 0.326
Income

Mean 1.425 1.405 -1.412
Average by Employment

Unemployed 0.264 0.262 -0.998
Employed 1.485 1.464 -1.393

Average by Wealth
0% - 25% 1.154 1.140 -1.241
25% - 75% 1.417 1.400 -1.208
75% - 100% 1.686 1.667 -1.118

Average by Productivity
Low Prod. 0.831 0.825 -0.688
High Prod. 2.019 2.007 -0.636

Gini 0.262 0.263 0.707
Capital Income Share 0.244 0.245 0.409

Notes: (a) This table presents stationary wealth and income outcomes under different
mean temperature scenarios, assuming a Normal temperature distribution. Column (1)
reports results for E(T ) = 25◦C, while Column (2) shows results for E(T ) = 30.5◦C. Col-
umn (3) reports the percentage change between the two scenarios. (b) Wealth outcomes
include mean wealth, wealth distribution across percentiles, and the Gini coefficient. In-
come outcomes include mean income, capital income share, average income by wealth
and productivity groups, and the income Gini coefficient.

First, we obtain expected total consumption over a given period τ as

C = E
∫ τ

0

c∗dt, (23)

where c∗ represents the optimal consumption function.8 Then, defining an income

realization of ∆, the MPC for wealth a and income ∆ is given by

MPC(a,∆) =
E[C(a+ ∆)]− E[C(a)]

∆
, (24)

where E[C(a)] denotes the expected consumption, aggregating all heterogeneities

except for wealth. In practice, we set τ to 1 year and compute the MPC for each

wealth percentile under ∆ ∈ [0, 3].

We plot the corresponding results in Figure 12, where Panels (a) to (c) represent

the MPC for individuals at the 10%, 50%, and 90% percentiles of the wealth distri-

8C can be obtained using the Feynman-Kac Formula.
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bution, respectively, under different temperature distributions. Similar Figure but

assuming normal distribution is plot in Figure B6. It can be observed that for poorer

individuals (10% of wealth distribution), the difference in MPC between an average

temperature of 25°C and 30.5°C is small. However, for individuals at the 50% per-

centiles of the wealth distribution, the MPC decreases slightly. Furthermore, at the

90% percentiles, the MPC declines with a larger proportional magnitude. We also

plot the MPC under a scenario with higher temperature variance (σ = 6.9, depicted

by the blue dotted line). The results indicate that wealthier individuals reduce their

MPC even further compared to the baseline case with lower variance σ = 4.2.

Figure 12. Marginal Propensity to Consume

Notes: (a) This figure presents the annualized marginal propensity to consume (MPC) across

different income realizations for individuals at different wealth percentiles. (b) Panels (a), (b),

and (c) correspond to the 10th, 50th, and 90th percentiles of the wealth distribution, respectively.

(c) The solid, dashed, and dotted lines represent different temperature distributions, with varying

mean (µ) and standard deviation (σ), as indicated in the legend. (d) We assume temperature

follows Binmodal-Normal distribution in this Figure.

How do the heterogeneous effects of rising average temperatures on income and

MPC impact gross savings? We follow a similar approach as in Equation 23 to

compute the expected savings over one year, given by

E
∫ τ

0

[ra+ wz − c∗1(q = 1)]dt, (25)

for each wealth percentile. The corresponding results are plotted in Figure 13. Simi-

lar Figure but assuming normal distribution is plot in Figure B7. We observe distinct

patterns between individuals in the lower wealth distribution (Panel (a)) and those

in the higher wealth distribution (Panel (b)). As the average temperature increases

from the baseline case to 30.5°C, savings for lower-wealth individuals remain nearly

unchanged. However, we observe an increase in savings for individuals in the 80%-

90% wealth percentile. This disparity is further amplified when we assume a higher

variance with σ = 6.9.
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Figure 13. Expected Savings in 1 Year

Notes: (a) This figure presents the annual savings rate across different wealth percentiles

under varying temperature distributions. (b) Panel (a) shows the savings behavior for

individuals in the lower wealth percentiles (10%–20%), while Panel (b) illustrates savings

for those in the higher wealth percentiles (80%–90%). (c) The solid, dashed, and dotted

lines correspond to different temperature distributions, characterized by varying mean

(µ) and standard deviation (σ), as indicated in the legend.

In summary, the results in this section imply that in our model, global warming

increase wealth disparities not only by disproportionately affecting instantaneous

income but also through its impact on individuals’ consumption-savings choices.

Wealthier individuals are more precautionary in response to labor market and pro-

ductivity risks induced by rising temperatures. As a result, they reduce their MPC

more significantly and substitute more consumption for savings. In contrast, the

MPC and net savings of lower-wealth individuals are less sensitive to temperature

changes. Consequently, wealth accumulation occurs at a relatively faster rate for

wealthier individuals, which worsen the wealth equality.

VII. Conclusions

This paper studies the impact of rising temperatures on labor market dynamics,

productivity, and economic inequality through the lens of a structural equilibrium

model. Motivated by empirical evidence from Vietnam, we develop a search-and-

matching framework with heterogeneous agents, where productivity evolves as a

two-state Markov process. The model endogenizes market tightness (θ) and equilib-

rium job search behavior, capturing how climate change affects labor markets and

economic outcomes.

To quantify these effects, we estimate productivity transition probabilities using

empirical data and map them into a continuous-time Poisson framework. We solve

35



the model using a combination of finite differencing methods for the Hamilton-

Jacobi-Bellman (HJB) and Kolmogorov Forward (KF) equations, along with a fixed-

point algorithm for computing equilibrium market tightness. This methodological

approach allows us to link temperature variations to labor market frictions and firm

hiring decisions.

Our results highlight an inverse U-shaped relationship between temperature and

productivity, where moderate warming initially boosts output, but excessive heat

leads to a sharp decline. Rising temperatures also tighten the labor market, as

firms reduce hiring and workers adjust their job search strategies by targeting lower

wages, contributing to wage stagnation. Moreover, temperature increases exacerbate

income and wealth inequality, disproportionately affecting unemployed individuals

who rely on capital income while high-productivity and wealthy workers remain

more insulated from the effects of climate change.

This paper contributes to the literature by integrating climate economics and

search-and-matching labor market theory, offering a novel equilibrium framework to

study climate-induced labor market distortions. Our numerical solution approach

- combining finite differencing for PDEs and fixed-point iteration for equilibrium

conditions - provides a computationally efficient way to analyze these complex in-

teractions. Future research could extend this framework to incorporate sectoral

heterogeneity, adaptive labor market policies, and endogenous firm entry to further

understand the long-term economic consequences of climate change.

References

Achdou, Yves, Jiequn Han, Jean-Michel Lasry, Pierre-Louis Lions, and

Benjamin Moll. 2022. “Income and wealth distribution in macroeconomics: A

continuous-time approach.” The Review of Economic Studies, 89(1): 45–86.

Benhabib, Jess, Alberto Bisin, and Shenghao Zhu. 2015. “The wealth dis-

tribution in Bewley economies with capital income risk.” Journal of Economic

Theory, 159: 489–515.

Burke, Marshall, Solomon M Hsiang, and Edward Miguel. 2015.

“Global non-linear effect of temperature on economic production.” Nature,

527(7577): 235–239.

Carleton, Tamma A, and Solomon M Hsiang. 2016. “Social and economic

impacts of climate.” Science, 353(6304): aad9837.

Chaumont, Gaston, and Shouyong Shi. 2022. “Wealth accumulation, on-the-

job search and inequality.” Journal of Monetary Economics, 128: 51–71.

36



Dang, Hai-Anh H, Minh Cong Nguyen, and Trong-Anh Trinh. 2023. “Does

hotter temperature increase poverty and inequality? Global evidence from sub-

national data analysis.” WP 104, International Inequalities Institute, LSE.

Dang, Hai-Anh H, Stephane Hallegatte, and Trong-Anh Trinh. 2024. “Does

global warming worsen poverty and inequality? An updated review.” Journal of

Economic Surveys, 38(5): 1873–1905.

Dell, Melissa, Benjamin F Jones, and Benjamin A Olken. 2012. “Tempera-

ture shocks and economic growth: Evidence from the last half century.” American

Economic Journal: Macroeconomics, 4(3): 66–95.

Diffenbaugh, Noah S, and Marshall Burke. 2019. “Global warming has in-

creased global economic inequality.” Proceedings of the National Academy of

Sciences, 116(20): 9808–9813.

Eeckhout, Jan, and Alireza Sepahsalari. 2024. “The effect of wealth on worker

productivity.” Review of Economic Studies, 91(3): 1584–1633.

Espagne, Etienne, Thanh Ngo-Duc, Manh Hung Nguyen, Emmanuel Pan-
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Appendices

A Tables

Table A1. Parameters to Fit the Empirical Temperature Distribution

Bimodal-Normal Bimodal-Log-normal

µ1 23.97 24.01

µ2 27.46 27.48

σ1 1.31 0.06

σ2 0.44 0.01

p1 0.7 0.72

p2 0.29 0.27

Notes: This table presents the estimated parameters for fitting the empirical temperature

distribution using two different bimodal distributions: a sum of two normal distributions

(Bimodal-Normal) and a sum of two log-normal distributions (Bimodal-Log-normal).

Table A2. Labour Market in Different Scenarios

(1) Normal Dist. (2) Log-normal Dist.

Market Tightness θ

E(T ) = 24.8◦C 5.006 4.984

E(T ) = 30.4◦C 4.949 4.898

Percentage Change (%) -1.152 -1.739

Wage to Search w∗

E(T ) = 24.8◦C 1.209 1.207

E(T ) = 30.4◦C 1.203 1.198

Percentage Change (%) -0.46 -0.713

Unemployment Rate

E(T ) = 24.8◦C 4.893 4.9

E(T ) = 30.4◦C 4.911 4.927

Percentage Change (%) 0.365 0.556

Notes: This table summarizes key labour market indicators under different temperature

distributions. Column (1) presents results under a normal temperature distribution,

while Column (2) corresponds to a log-normal distribution. For each scenario, we report

market tightness (θ), the optimal wage to search (w∗), and the unemployment rate,

evaluated at two different mean temperatures: E(T ) = 24.8◦C and E(T ) = 30.4◦C. The

percentage change reflects the relative difference between the two temperature levels.
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Table A3. Stationary Outcomes in Different Scenarios (Normal Distribution)

(1) 24.8◦C (2) 30.4◦C (3) % Change

Wealth

Mean 22.55 22.333 -0.969

Wealth Share

0% - 25% 10.164 10.146 -0.176

25% - 75% 46.627 46.595 -0.067

75% - 100% 43.209 43.259 0.114

Gini 0.293 0.294 0.216

Income

Mean 1.416 1.4 -1.13

Average by Employment

Unemployed 0.264 0.262 -0.978

Employed 1.476 1.459 -1.116

Average by Wealth

0% - 25% 1.146 1.135 -0.976

25% - 75% 1.408 1.395 -0.93

75% - 100% 1.677 1.662 -0.852

Average by Productivity

Low Prod. 0.829 0.824 -0.612

High Prod. 2.014 2.004 -0.51

Gini 0.263 0.264 0.605

Capital Income Share 0.245 0.246 0.199

Notes: (a) This table presents stationary wealth and income outcomes under different

mean temperature scenarios, assuming a normal temperature distribution. Column (1)

reports results for E(T ) = 24.8◦C, while Column (2) shows results for E(T ) = 30.4◦C.

Column (3) reports the percentage change between the two scenarios. (b) Wealth out-

comes include mean wealth, wealth distribution across percentiles, and the Gini coeffi-

cient. Income outcomes include mean income, capital income share, average income by

wealth and productivity groups, and the income Gini coefficient.
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B Figures

Figure B1. Temperature Distribution Scenario (Normal and Lognormal)

Notes: (a) This figure presents the sample distributions used for simulation in this section.

(b) Panel (a) assumes that temperature follows a normal distribution, N (µ, σ2), with

a fixed standard deviation of σ = 4.2 while varying the mean from 25 to 30.4. (c)

Panel (b) assumes that temperature follows a log-normal distribution, adjusting the

scale parameter so that the mean temperature aligns with the corresponding normal

distribution experiment.

Figure B2. Unemployment Change

Notes: (a) Panel (a) shows the equilibrium unemployment rate as a function of mean

temperature under two different temperature distributions: normal (solid line) and log-

normal (dashed line). (b) Panel (b) presents the marginal effect of temperature on the

unemployment rate, defined as the percentage change in unemployment when the average

temperature increases by 1◦C.
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Figure B3. Inequality Change

Notes: (a) This figure illustrates the changes in income inequality (Panel a) and wealth

inequality (Panel b) as measured by the Gini index under different temperature distribu-

tions. (b) The solid and dashed lines represent results under the normal and log-normal

temperature distribution assumptions, respectively.

Figure B4. The Effects on Income and Wealth

Notes: (a) This figure illustrates the marginal effect of a 1◦C increase in average temper-

ature. (b) Panel (a) presents the marginal effects of mean temperature on income and

income inequality, measured by the Gini index. (c) Panel (b) shows the marginal effects

of mean temperature on wealth and wealth inequality. Solid and dashed lines represent

results under normal and log-normal temperature distribution assumptions, respectively.
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Figure B5. Consumption Saving Policy Functions

(a) Consumption (b) Savings

Figure B6. Marginal Propensity to Consume

Notes: (a) This figure presents the annualized marginal propensity to consume (MPC) across

different income realizations for individuals at different wealth percentiles. (b) Panels (a), (b),

and (c) correspond to the 10th, 50th, and 90th percentiles of the wealth distribution, respectively.

(c) The solid, dashed, and dotted lines represent different temperature distributions, with varying

mean (µ) and standard deviation (σ), as indicated in the legend. (d) We assume temperature

follows normal distribution in this Figure.
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Figure B7. Expected Savings in 1 Year

Notes: (a) This figure presents the annual savings rate across different wealth percentiles

under varying temperature distributions. (b) Panel (a) shows the savings behaviour for

individuals in the lower wealth percentiles (10%–20%), while Panel (b) illustrates savings

for those in the higher wealth percentiles (80%–90%). (c) The solid, dashed, and dotted

lines correspond to different temperature distributions, characterized by varying mean

(µ) and standard deviation (σ), as indicated in the legend.
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C Solution Method for the Structural Model

A. Worker’s Problem

In this section, we rewrite the HJB equations in matrix form. Given a spe-

cific temperature T , the individual HJB includes four endogenous state variables:

(a, z, w, q). We first stack the first three endogenous states, (a, z, w), and discretize

the state space into finite grids, indexed by i, j, k.

At each time t and temperature T , we express the HJB equations using index

notation as follows. For clarity, we omit subscripts t and T :

ρEi,j,k = max
c

u(ci,j,k) +
∂Ei,j,k
∂a

[rai + wkzj − ci,j,k]

+λj[Ei,j′,k − Ei,j,k] + ξ[Ui,j − Ei,j,k] +
∂Ei,j,k
∂t

.

(C1)

ρUi,j = max
c,w

u(ci,j) +
∂Ui,j
∂a

[rai − ci,j]

+λj[Ui,j′ − Ui,j] + j(θk)[Ei,j,k − Ui,j]+ +
∂Ui,j
∂t

.

(C2)

We first stack the asset dimension. By applying the finite differencing principle,

we obtain

∂Ei,j,k
∂a

[rai + wkzj − ci,j,k] =
Ei+1,j,k − Ei,j,k

da
µ+
a +

Ei,j,k − Ei−1,j,k

da
µ−a

=
µ+
a

da
Ei+1,j,k +

−µ+
a + µ−a
da

Ei,j,k +
µ−a
da
Ei−1,j,k.

(C3)

Stacking the values as Ej,k = [E1,j,k, E2,j,k, . . . Ena,j,k]
′, we can express this in

matrix form:

∂Ei,j,k
∂a

[rai + wkzj − ci,j,k] = Aj,kEj,k, (C4)

where

Aj,k =



−µ+a +µ−a
da

µ−a
da

0 . . . 0
µ+a
da

−µ+a +µ−a
da

µ−a
da

. . . 0

0 µ+a
da

−µ+a +µ−a
da

. . . 0

. . . . . . . . . . . . . . .

0 0 0 . . . −µ+a +µ−a
da

 . (C5)

Next, we stack the productivity dimension j. Let Ek = [E1,k, E2,k]
′. Using the

transition dynamics,
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λj[Ei,j′,k − Ei,j,k] =

[
−λ1 λ1

λ2 −λ2

][
E1,k

E2,k

]
. (C6)

Thus, the first two drift components in Equation C1 can be written as[
A1,k − λ1 λ1

λ2 A2,k − λ2

][
E1,k

E2,k

]
≡ BkEk. (C7)

Similarly, stacking the wage and employment status dimensions, we can express

the full system in matrix form:
B1 0 0 . . . 0 0

0 B2 0 . . . 0 0

. . . . . . . . . . . . . . . . . .

0 0 0 . . . Bnw 0

0 0 0 . . . 0 BU




E1

E2

. . .

Enw

U

 ≡ CV. (C8)

The transition matrix for job status is given by

T =


−ξ 0 . . . 0 ξ

0 −ξ . . . 0 ξ

. . . . . . . . . . . . . . .

j(θ1)I1 j(θ2)I2 . . . j(θnw)Inw
∑

k[j(θk)Ik]

 , (C9)

where Ik = 1(w∗ = wk)1(Ei,j,k > Ui,j). The HJB equations can thus be expressed

as

ρV = uc + [C + T ]V +
∂

∂t
V

≡ uc + Ω(V)V +
∂

∂t
V,

(C10)

where we express the matrix Ω as a function of the value function V. This is

because Ω contains the optimal controls for consumption (c∗i,j,k) and the optimal

wage to search for (w∗i,j), both of which are functions of the value function, as shown

in ??.

The associated Kolmogorov Forward Equation is:

∂

∂t
G = Ω∗(V)G, (C11)

where Ω∗ is the adjoint matrix of Ω.
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B. Worker’s Problem

Similar to the individual HJB, given that the value of a vacancy is zero, we

discretize the job’s value function as:

ρfJj,k = Πj,k − ξJj,k + λj[Jj′,k − Jj,k] +
∂J
∂t

. (C12)

Following a similar derivation as in the individual HJB, we rewrite the system in

matrix form:

ρf

[
J1,k

J2,k

]
=

[
Π1,k

Π2,k

]
− ξ

[
J1,k

J2,k

]
+

[
−λ1 λ1

λ2 −λ2

][
J1,k

J2,k

]
. (C13)

Thus, we obtain:

(ρf + ξ)Jk = Πk + ΛJk. (C14)

Stacking over all wage levels k, we derive the final matrix representation:

(ρf + ξ)J = Π + ΛJ +
∂J

∂t
. (C15)

C. Solving the Model

Finite Differencing Method for PDEs. The system of PDEs (Equation C10,

Equation C11, and Equation C15) can be solved using the implicit update method,

as described in Achdou et al. (2022).

By further discretizing the time dimension t, Equation C10 can be rewritten as:

Vt+1 −Vt

∆
+ ρVt+1 = u + Ω(Vt)Vt+1,(

(ρ+
1

∆
)I − Ω(Vt)

)
Vt+1 = u +

Vt

∆
,

Vt+1 =

(
(ρ+

1

∆
)I − Ω(Vt)

)−1
Vt

∆
.

(C16)

In the stationary steady state, we have ∂tVt = 0, implying that Vt+1 = Vt. There-

fore, we solve the HJB equation in the stationary equilibrium using the following

approach: (1) Initialize V0 with an initial guess. (2) Iterate Vt+1 using Equa-

tion C16 until |Vt+1 −Vt| is sufficiently small. (3) The converged value function,

denoted as V∞, represents the stationary equilibrium.

Using the value function V∞ and the stationary equilibrium condition ∂tGt = 0,

we obtain:
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0 = Ω∗(V∞)G, (C17)

from which we solve for the stationary distribution G∞.

Applying the same iterative method, we also solve for the value function of jobs

in the stationary equilibrium, denoted as J∞.

Finding the Equilibrium Market Tightness θ. In our model, market tight-

ness θ is an equilibrium object that varies across different average temperatures and

wage levels. It is determined such that the market-clearing condition is satisfied.

Given a specific average temperature T , market tightness as a function of wage w is

expressed as:

θT (w) = f−1

(
κ

E[JT (z, w)|T, q = 0]

)
. (C18)

where the denominator represents the conditional expectation of job value, given

temperature and labor market conditions. Given the two-state process of produc-

tivity z, the expectation term can be written as:

E[JT (z, w)|T, q = 0] = P(z1|T, q = 0)JT (z1, w)

+ P(z2|T, q = 0)JT (z2, w),
(C19)

where P(z1|T, q = 0) and P(z2|T, q = 0) denote the probabilities of an unemployed

worker being in the high-productivity and low-productivity states, respectively,

given a specific temperature T . This term is an endogenous equilibrium object

since the unemployment rate P(q = 0) is determined by market tightness θ.

Given these structures, we adopt a fixed-point algorithm to solve for equilibrium

market tightness:

1. Initialize market tightness θ
(0)
T (w).

2. Given θ, solve the equilibrium HJB functions for individuals, V∞, and for jobs,

J∞, following the steps introduced in this section.

3. Compute the corresponding probability distributions given θ
(0)
T (w), i.e., P(z1|T, q =

0; θ
(0)
T (w)) and P(z2|T, q = 0; θ

(0)
T (w)).

4. Calculate the expected value of jobs, E[JT (z, w)|T, q = 0; θ
(0)
T (w)], and update

market tightness using Equation C18. The updated tightness θ̂T (w) is given

by:

θ̂T (w) = f−1

(
κ

E[JT (z, w)|T, q = 0; θ
(0)
T (w)]

)
. (C20)
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5. Define a relaxation parameter φ, and update the market tightness for the next

iteration:

θ
(1)
T (w) = φθ̂T (w) + (1− φ)θ

(0)
T (w). (C21)

6. Iterate until the change in market tightness is sufficiently small:

|θ(N)
T (w)− θ(N−1)

T (w)| < δ. (C22)
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