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Abstract

In the standard continuous-time choice-taking gradient dynamics in smooth two-
player games, each player implicitly assumes that their opponent momentarily main-
tains their last choice. Contrastingly, in the utility-taking gradient dynamics each player
implicitly assumes that their opponent momentarily maintains their utility level, by
marginally adjusting their choice to that effect. Somewhat surprisingly, employing a
transversality argument we find that, in an open and dense set of smooth games, this
dynamics is undefined at Nash equilibria. This occurs because, at a Nash equilibrium,
the opponent’s indifference curve is not locally a function of one’s own strategy, mak-
ing it impossible to specify an opponent’s adjustment that would maintain their utility
in response to one’s own marginal deviation from Nash behavior. Furthermore, when
approaching a Nash equilibrium of such a generic game, the utility-taking gradient dy-
namics either accelerates without bound towards the equilibrium or diverges away from
it with unbounded speed.

Keywords: gradient dynamics

1 Introduction

In interactive systems—whether inert or living—stability holds little value without robustness.
This is particularly true in social systems, where Nash equilibrium, the hallmark of stability,
is meaningful only if behavior naturally tends back to equilibrium after small perturbations.
This motivates the long-standing interest in game theory in understanding adaptive behavior
away from equilibrium (Weibull, 1997; Fudenberg and Levine, 1998; Hofbauer and Sigmund,
1998; Sandholm, 2010).

The assumptions underlying adaptive behavior vary along a broad spectrum. At one ex-
treme, sophisticated Bayesian learning (Kalai and Lehrer, 1993) assumes full rationality: each
player begins with a belief about the opponent’s infinite-horizon, history-dependent strategy,
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and continuously updates this belief while optimizing their own actions. The computational
burden of such reasoning is huge. At the other extreme, simple adaptive heuristics (Young,
2004; Hart and Mas-Colell, 2013) rely on bounded memory and limited knowledge, yet still
ensure that Nash equilibria arise as rest points of the underlying dynamical system. The
most relaxed assumption in terms of memory is that individuals recall only their most recent
interaction. In terms of knowledge, players are often assumed to be aware of the set of choices
available to them but, in uncoupled dynamics, they neither know their opponent’s utility
function nor condition their behavior on it.

A natural heuristic that adheres to these minimal assumptions regarding recall and knowl-
edge is best-response dynamics (see e.g. Fudenberg and Levine, 1998). In the continuous-time
version of the best-response dynamics (Elkind et al., 2024), each player implicitly assumes
that her opponent will momentarily continue to follow their last observed action, and adjusts
her own choice in the direction of the best response to the opponent’s action, at a speed that
equals the utility gain from switching to that best response. Away from Nash equilibrium,
this assumption is repeatedly refuted, as the opponent does adjust their choice over time.
Similarly, with the gradient-ascent dynamics (Mazumdar et al., 2020) each player marginally
adjusts their choice in the direction that maximizes their rate of utility increase, at a speed
that equals that marginal increase. Here too, the implicit assumption remains that the op-
ponent keeps their last observed choice fixed. This assumption is, in practice, continuously
violated except at the rest points—which include the Nash equilibria.

A key advantage of gradient-ascent is its continuity, while best-response dynamics, by
contrast, may be discontinuous at certain choice profiles. Another advantage of gradient-
ascent dynamics is its local nature: it requires players to evaluate only the relative merit of
nearby choices rather than the full range of available actions, as is the case in the best-response
dynamics. This makes gradient ascent particularly relevant for real-time decision-making in
multi-agent systems, such as autonomous vehicles. However, both best-response and gradient-
ascent remain uncoupled dynamics, making them subject to the impossibility result of Hart and
Mas-Colell (2003): namely, that there exist games in which no uncoupled dynamics converges
to a Nash equilibrium.

This limitation is one motivation for exploring a coupled alternative to gradient ascent,
where instead of assuming that her opponent maintains his last observed choice, a player
assumes the opponent maintains his most recent payoff level. Under this “utility-taking”
gradient dynamics, each player still locally optimizes their own choice at a speed equal to the
rate of their optimal marginal improvement. However, the underlying assumption is different:
rather than expecting their opponent’s strategy to remain fixed, players expect their opponents
to adjust their strategy in a way that preserves their current payoff.

The idea of adhering to current utility aligns with observed human behavior. For example,
New York taxi drivers were found to decrease their working hours on rainy days, when demand
is higher, because they reach their daily income target more quickly (Camerer et al., 1997;
Crawford and Meng, 2011). While a more rational approach would be to seize the opportunity
for exceptional profits by working even more hours, the drivers instead use their standard
income level as a reference point and stop working once they reach it. Similarly, in games,
players might naturally assume that opponents respond to external changes—such as one’s own
strategic deviation—by instinctively adjusting their choices to maintain their payoff, treating
such deviations as exogenous shocks beyond their control.

To formalize this idea, we consider a two-player game with choice sets xi ∈ Xi ⊆ R , i = 1, 2.
The combinations of i’s choice xi ∈ Xi, together with the opponent’s choice x−i ∈ X−i, and
their corresponding utility level u−i ∈ R define the set:
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Γi = {(xi;x−i, u−i) ∈ Xi × (X−i × R) : U−i(xi, x−i) = u−i} .

Under the standard uncoupled continuous-time gradient-ascent (and best-response) dy-
namics, player i implicitly assumes that a deviation from xi affects u−i but keeps x−i fixed,
resulting in a vertical move along Γi. In contrast, under the utility-taking dynamics, player i
assumes that their deviation leads to a horizontal move, where x−i changes but u−i remains
constant.

A natural question arises: If the standard assumption of choice hysteresis (where the
opponent’s choice remains fixed) is naive but remains unrefuted at Nash equilibrium, is the
alternative assumption of utility hysteresis (where the opponent maintains their payoff level)
similarly valid at equilibrium? Somewhat surprisingly, as we show in Section 2, this question
cannot even be meaningfully posed in generic smooth games, because the utility-taking gradient
dynamics is undefined at Nash equilibria. This occurs because, in such games, the opponent’s
indifference curve is not a well-defined function of one’s own strategy near equilibrium, making
it impossible to determine their response. In Section 3, we examine what happens away from
Nash equilibrium under the utility-taking gradient dynamics. We prove that, in generic smooth
games, this dynamics exhibits extreme instability: near Nash equilibria, the speeds of players’
strategy adjustments tend to infinity, either accelerating without bound towards equilibrium
or diverging away from it with unbounded speed. Section 4 summarizes our findings and
briefly discusses broader implications.

2 The utility-taking gradient dynamics is undefined at

the Nash equilibria of generic games

We consider a game where each player i ∈ {1, 2} selects a strategy from an open set Xi ⊆ R,
and the players’ utility functions Ui : X = X1×X2 → R are twice continuously differentiable.
Throughout, as it is standard in economics, we denote by −i player i’s opponent, i.e., −i = 2
if i = 1 and −i = 1 if i = 2. We also write x for (x1, x2) ∈ X. With this notation, the
standard gradient-ascent dynamics in continuous time (Mazumdar et al., 2020) is defined by
the system of differential equations:

ẋi =
dxi

dt
=

∂Ui(x)

∂xi

, i = 1, 2, (1)

where each player adjusts their choice in the direction that maximizes their marginal utility
increase at a speed equal to the rate of this increase, under the naive “choice-taking” assump-
tion that the opponent’s choice remains momentarily fixed. Notably, this assumption is valid
at Nash equilibria, which are rest points of the dynamics.

As an alternative, we consider the utility-taking gradient dynamics. In this dynamics, each
player still updates their choice in the direction that maximizes their marginal utility increase
at a speed equal to this rate, but under the assumption that the opponent adjusts their choice
to maintain their current utility level. Given this assumption, the marginal change in player
i’s utility is given by:

dUi(x)

dxi

=
∂Ui(x)

∂xi

+
∂Ui(x)

∂x−i

(
−

∂U−i(x)
∂xi

∂U−i(x)
∂x−i

)
, i = 1, 2. (2)
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The term −∂U−i(x)
∂xi

/∂U−i(x)
∂x−i

is the slope of player −i’s indifference curve χ−i with respect to xi,

as attained by taking the derivative with respect to xi on both sides of U−i(xi, χ−i(xi)) = c
(where c is a constant), and solving for ∂χ−i(xi)/∂xi. The resulting system of differential
equations describing the utility-taking dynamics is:

x̊i =
dxi

dt
=

dUi(x)

dxi

=
∂Ui(x)

∂xi

−
∂Ui(x)
∂x−i

∂U−i(x)
∂xi

∂U−i(x)
∂x−i

, i = 1, 2. (3)

A natural question is whether Nash equilibria are rest points of utility-taking gradient
dynamics. Surprisingly, this question cannot even be meaningfully posed in generic games,
that is, in an open and dense set of games under the Whitney (strong) topology (see e.g.,
Golubitsky and Guillemin, 1973, p. 42-43), which is generated by neighborhoods of games
U ∈ G of the form {

V ∈ G :
∥∥j2xV − j2xU

∥∥ < δ (x) ∀x ∈ X
}

where δ : X → R is continuous, and where the 2-jet extensions j2xV ∈ J2 (X,R2) are defined
by

j2xV =

(
x, Vi (x) ,

(
∂Vi (x)

∂xi

,
∂Vi (x)

∂x−i

)
,

(
∂V 2

i (x)

∂x2
i

,
∂V 2

i (x)

∂xi∂x−i

,
∂V 2

i (x)

∂x2
−i

))
i=1,2

∈ R14.

Specifically, for Nash equilibria (x∗, u∗) in this open and dense set of smooth games, there do
not exist open neighborhoods Ni(x

∗
i ) ⊆ Xi where the opponent’s indifference curves χ−i(xi)

can be implicitly defined by
u∗
−i = U−i(xi, χ−i(xi)) (4)

such that
χ−i(x

∗
i ) = x∗

−i. (5)

Consequently, in such a typical game, one cannot even formulate the question: “At a Nash
equilibrium, how would player −i react to maintain their utility in response to a marginal
change in player i’s choice?” As a result, the utility-taking gradient dynamics (3) is undefined
at Nash equilibria. This is formalized in the following theorem.

Theorem 1. (i) In a game with twice continuously differentiable utility functions Ui : X →
R, i = 1, 2, if indifference curves are well-defined in a neighborhood around a Nash equi-
librium (x∗, u∗), then each Ui must be locally flat at x∗. Consequently, a naive assumption
that the other player’s utility level remains unchanged in response to marginal changes
in one’s own choice is valid at that Nash equilibrium.

(ii) However, in the space G of games characterized by tuples U = (Ui)i=1,2 of twice continu-
ously differentiable utility functions endowed with the Whitney topology, for games in an
open and dense subset U ⊆ G, indifference curves cannot be defined in any neighborhood
around Nash equilibria. As a result, the utility-taking assumption is ill-posed at the
Nash equilibria of the generic games U ∈ U , and the utility-taking gradient dynamics is
therefore undefined at their Nash equilibria.

Proof. Let (x∗, u∗) be a Nash equilibrium of a game with twice continuously differentiable
utility functions Ui : X → R, i = 1, 2, and assume there exist neighborhoods Ni (x

∗
i ) ⊆ Xi of

x∗
i with an indifference curve

χ−i : Ni (x
∗
i ) → X−i
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satisfying (4) and (5). Fully differentiating (4) at x∗ with respect to xi yields

0 =
dU−i (x

∗
i , χ−i (x

∗
i ))

dxi

=
∂U−i (x

∗
i , χ−i (x

∗
i ))

∂xi

+
∂U−i (x

∗
i , χ−i (x

∗
i ))

∂x−i

∂χ−i (x
∗
i )

∂xi

(6)

Since by (5)
U−i (x

∗
i , χ−i (x

∗
i )) = U−i (x

∗)

and since x∗ is a Nash equilibrium, we have

∂U−i (x
∗
i , χ−i (x

∗
i ))

∂x−i

=
∂U−i (x

∗)

∂x−i

= 0 (7)

Substituting (7) into (6) yields

∂U−i (x
∗
i , χ−i (x

∗
i ))

∂xi

= 0

i.e. U−i is locally flat at the Nash equilibrium (x∗, u∗) . Therefore, a naive assumption by any
individual i that the other player’s utility level is marginally unchanged following marginal
changes in i’s own choice is confirmed at that Nash equilibrium. This proves (i).

However, the utility functions U = (Ui)i=1,2 of a game that are locally flat at a Nash
equilibrium satisfy there the four equations in two variables

∂Ui

∂xk

= 0, i, k = 1, 2. (8)

Consider the map F defined on the 1-jet extensions

J1
(
X,R2

)
=

{
j1xU =

(
x, Ui (x) ,

∂Ui (x)

∂xk

)
i,k=1,2

: U ∈ G

}
by

F
(
j1xU

)
=

(
∂Ui (x)

∂xk

)
i,k=1,2

.

The map F is the projection of J1 (X,R2) on its last 4 coordinates, and F−1 (0) is the closed
submanifold of J1 (X,R2) defined by (8).

Now, for every perturbation direction π = (πik)i,k=1,2 ∈ R4 of the right-hand side of (8)
there exist perturbed games, namely

Uπ,ε
i (x1, x2) = Ui (x1, x2) + ε

2∑
k=1

πikxk, i = 1, 2

satisfying at that Nash equilibrium

∂

∂ε

(
∂Uπ,ε

i

∂xk

)∣∣∣∣
ε=0,x=x∗

= πik, i, k = 1, 2.

This shows that F is transversal to the closed submanifold F−1 (0) of J1 (X,R2) . Therefore,
by the jet transversality theorem (see e.g. Hirsch, 1976, theorem 2.8) there exists an open
and dense subset U ⊆ G of games whose 1-jet extensions j1U are transversal to F−1 (0). But
since dim (R4) > dim (R2), this means that for every such generic game U ∈ U , the system (8)
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holds for no x ∈ X. In other words, if x∗ is a Nash equilibrium of the game U , and therefore
satisfies

∂Ui (x
∗)

∂xi

= 0, i = 1, 2,

then for some i ̸= k we have ∂Ui(x
∗)

∂xk
̸= 0, so Ui is not flat at that Nash equilibrium x∗. By

(i) it therefore follows that for games in the open and dense subset U ⊆ G, indifference curves
cannot be defined for all individuals around Nash equilibria. This proves (ii).

Example 1. Consider the two-player game with strategic complements (which is also a po-
tential game, see Monderer and Shapley, 1996) in which the players’ utilities are given by:

Ui (xi, x−i) = xi

(
1 +

x−i

4

)
− x2

i

2
, i, j = 1, 2. (9)

The players’ reaction curves are the graphs of their best-response functions, which are given
by ρ∗i (x−i) = 1+x−i/4, for i = 1, 2. The unique Nash equilibrium is located at the intersection
of the reaction curves, i.e., at (x∗

1, x
∗
2) = (4/3, 4/3). Fig. 1 illustrates the reaction curves, along

with several indifference curves of this game. A key observation is that along player 1’s reaction
curve (and particularly at the Nash equilibrium) her indifference curves are locally flat. This
implies that for no point (ρ∗1 (x2) , x2) on the reaction curve does there exists a neighborhood
N2(x2) around x2 where player 1’s indifference curve remains a well-defined function of player
2’s choice. Specifically: (i) if player 2 increases his choice above x2, player 1’s indifference curve
bifurcates, meaning that, to maintain her utility level, player 1 has multiple responses—she
may either increase or decrease her choice from ρ∗1(x2); and (ii) if player 2 decreases his choice
below x2, then player 1’s indifference curve ceases to exist because player 1’s utility necessarily
decreases regardless of her action. This demonstrates that the question “How would player 1
adjust at (ρ∗1 (x2) , x2) to maintain her utility level in response to a marginal change in player
2’s choice?” is ill-posed, and the utility-taking gradient dynamics is undefined at the Nash
equilibrium.

Example 2. Consider the game with utility functions

Ui (xi, x−i) = −
(
xi − x3

−i

)2
, i, j = 1, 2

and strategy sets X1 = X2 = (−1, 1). The players’ reaction curves are given by ρ∗i (x−i) = x3
−i,

for i = 1, 2, and the unique Nash equilibrium is given by (x∗
1, x

∗
2) = (0, 0). Fig. 2 illustrates.

Each individual’s reaction curve coincides with her highest indifference curve, which is a well-
defined function of the other’s strategy, in particular at the Nash equilibrium. Both utility
functions are flat at the Nash equilibrium, as implied by Theorem 1 (i). The utility-taking
gradient dynamics is therefore defined at the Nash equilibrium. However, by part (ii) of
Theorem 1, there are arbitrarily small perturbations of the utility functions of this game,
such that the utility-taking gradient dynamics is undefined at the Nash equilibrium (or Nash
equilibria) of the perturbed game.

3 The utility-taking gradient dynamics around Nash

equilibria of generic games

In Theorem 1, we established that at the Nash equilibria of typical games, the utility-taking
gradient dynamics is undefined. This arises because players cannot meaningfully assess their
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Figure 1: Diagram for the game presented in Example 1. The diagram depicts the reac-
tion curves (thick, dashed) together with some indifference curves (thin, solid) for player 1
(blue) and player 2 (red), and tangency points among the player’s indifference curves (dot-
ted, green). The north-eastern curve of these tangency points consists of the efficient choice
profiles, whereas choice profiles on the south-western curve of these tangency points are not
efficient. The Nash equilibrium is represented by a black circle. The indifference curves are
shown for utility values equal to 7/10, 8/9, and 1 for player 1, and 2/3, 8/9, and 1 for player
2.
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Figure 2: Diagram for the game presented in Example 2. The diagram depicts the reaction
curves (thick, dashed) together with some indifference curves (thin, solid) for player 1 (blue)
and player 2 (red). The Nash equilibrium is represented by a black circle. The indifference
curves are shown for utility values equal to −0.15, and −0.05 for both players. The reaction
curve of each player coincides with their indifference curve for the utility value 0.
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opponents’ responses to marginal changes in their choices when assuming that their opponents
momentarily maintain their utility levels. However, such an assessment is possible at choice
profiles that lie away from the opponent’s reaction curve. In these cases, the response is
characterized by (2), and the utility-taking gradient dynamics is defined by (3). This leads
us to the question: How does this dynamics behave in the vicinity of Nash equilibria? The
following theorem addresses this question.

Theorem 2. Consider the space of games where each player’s utility function Ui : X →
R, i = 1, 2, is twice continuously differentiable. When endowed with the Whitney topology,
this space contains an open and dense set of games in which the speed of the utility-taking
gradient dynamics (3) tends to infinity as choice profiles approach Nash equilibria.

Proof. Let Ui : X = X1 × X2 → R, i = 1, 2 be twice continuously differentiable utility
functions in a game with open strategy sets Xi ⊆ R. As ∂U−i (x) /∂x−i = 0 holds along −i’s
reaction curve for all i ∈ {1, 2}, for a Nash equilibrium x∗ we have

lim
x→x∗

∂U−i (x)

∂x−i

= 0.

Therefore, if

lim
x→x∗

|̊xi| = lim
x→x∗

∣∣∣∣∣∂Ui (x)

∂xi

−
∂Ui(x)
∂x−i

∂U−i(x)
∂xi

∂U−i(x)
∂x−i

∣∣∣∣∣ ̸= ∞

holds, and hence

lim
x→x∗

∣∣∣∣∣
∂Ui(x)
∂x−i

∂U−i(x)
∂xi

∂U−i(x)
∂x−i

∣∣∣∣∣ ̸= ∞,

then necessarily the numerator of this expression satisfies

lim
x→x∗

∂U1 (x)

∂x2

∂U2 (x)

∂x1

= 0.

It then follows that either

∂U1 (x
∗)

∂x2

= 0 or
∂U2 (x

∗)

∂x1

= 0 (10)

must hold. Either of these conditions, together with the first-order conditions satisfied at a
Nash equilibrium, constitute, for a given i ∈ {1, 2}, a system of equations ∂Ui

∂x−i
∂U1

∂x1
∂U2

∂x2

 =

 0
0
0

 (11)

with 3 equations in 2 variables. Now, for any perturbation direction

π =

 πi,−i

π1

π2

 (12)

of the right hand side of (11), there exist perturbed utility functions, namely

Uπ,ε
i = Ui + ε (πi,−ix−i + πixi)

Uπ,ε
−i = U−i + επ−ixk i = 1, 2
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of which the ε-derivative of (11) at ε = 0 indeed equals (12). By the jet transversality theorem,
and using an argument analogous to that in the proof of Theorem 1(ii), there exists an open
and dense set of games Oi,−i in which (11) holds at no x ∈ X, so for the games in the open
and dense set O12 ∪ O21 the condition (10) holds at no Nash equilibrium. Thus, at every
Nash equilibrium x∗ of a game in the open and dense set of games O12∪O21 it is the case that

lim
x→x∗

∣∣∣∣∣
∂Ui(x)
∂x−i

∂U−i(x)
∂xi

∂U−i(x)
∂x−i

∣∣∣∣∣ = ∞, i = 1, 2,

implying that
lim
x→x∗

|̊xi| = ∞.

This proves the result.

Theorem 2 implies that in sufficiently small neighborhoods of a Nash equilibrium in generic
games, the trajectories of the utility-taking gradient dynamics exhibit one of two behaviors.
Either they tend towards the Nash equilibrium with unbounded acceleration, effectively ‘crash-
ing’ onto it, or they diverge away from it, ‘exploding’ with unbounded speed as the starting
choice profile is closer to the equilibrium. Both of these phenomena occur in the game con-
sidered by Example 1, which we revisit in the following.

Example 3 (Dynamics for the game of Example 1). The utility-taking gradient dynamics (3)
for the game defined by Eq. (9) is given by

(̊x1, x̊2) =

(
x2

4
− x1 −

1

16

x1x2

1
4
x1 − x2 + 1

+ 1,
x1

4
− x2 −

1

16

x1x2

1
4
x2 − x1 + 1

+ 1

)
. (13)

Fig. 3 illustrates the vector field (see http://bit.ly/3EF4EjY for an animation of this
dynamical system using the vector field explorer fieldplay). The Pareto efficient frontier con-
sists of rest points of the dynamical system. When initial conditions are located northeast
of the Pareto frontier, the trajectories gradually converge towards it, slowing down as they
approach, until ultimately coming to rest on the frontier itself. In contrast, another set of rest
points forms a curve of tangency points between the two players’ indifference curves, located
southwest of the Nash equilibrium. These points are not Pareto efficient. When initial condi-
tions are located southwest of this curve, the trajectories move towards it, decelerating until
they settle on the curve. The behavior of the trajectories changes fundamentally for other
initial choice profiles. When starting from the northwest or southeast of the Nash equilibrium,
trajectories accelerate towards the equilibrium, eventually crashing into one of the best-reply
lines at an infinite speed. Conversely, when starting from the northeast or southwest of the
Nash equilibrium, trajectories diverge away from the equilibrium while slowing down. Those
of these trajectories on or close to the diagonal x2 = x1 converge towards the nearest rest-
point curve, while those further from the diagonal are eventually drawn towards the nearest
best-reply line, and accelerate towards it with unbounded speed.

This example highlights a typical case where the Nash equilibrium is highly unstable under
the utility-taking gradient dynamics. At the equilibrium itself, the dynamics is undefined. In
contrast, the standard (choice-taking) gradient dynamics (1) for this game is given by

(ẋ1, ẋ2) =

(
1

4
x2 − x1 + 1,

1

4
x1 − x2 + 1

)
. (14)
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Figure 3: Phase portrait for the utility-taking dynamics (13) of Example 3. Reaction curves
(dashed black lines), rest points (dotted orange lines) together with some trajectories (solid,
white lines) are shown. The Nash equilibrium is represented by a black circle. The heatmap
represents the transformed values of the speed of the dynamics, i.e., z =

√
x̊2
1 + x̊2

2, where
non-finite values are ignored. The function output is log-scaled as log10(z + 1) to enhance
visibility. Additionally, to improve contrast, the color range is clipped at the 99.5th percentile
of the valid data points.
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Figure 4: Phase portrait for the choice-taking dynamics (14) of Example 3. Reaction curves
(dashed black lines), rest points (dotted orange lines) together with some trajectories (solid,
white lines) are shown. The Nash equilibrium is represented by a black circle. The heatmap
is proportional to the speed of the dynamics using the same transformation as in Fig. 3.
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Fig. 4 depicts the vector field of the choice-taking dynamics (see https://bit.ly/4k1PTrB
for an animation). It highlights how the two dynamics exhibit significantly different velocities,
with trajectories moving in opposite directions north-east and south-west of the Nash equi-
librium. Unlike the utility-gradient dynamics, the choice-taking gradient dynamics converges
globally to the Nash equilibrium, which is a rest point of the dynamical system.

In contrast, we recall that in the atypical game of Example 2, the utility-taking gradient
dynamics was well-defined at the Nash equilibrium. As it will be seen below, in this atypical
game the Nash equilibrium is an asymptotically stable rest-point of the dynamics.

Example 4 (Dynamics for the game of Example 2). The vector field of the utility-taking
gradient dynamics (3) is given by

(̊x1, x̊2) =
(
−2
(
1− 9x2

1x
2
2

) (
x1 − x3

2

)
,−2

(
1− 9x2

1x
2
2

) (
x2 − x3

1

))
. (15)

Fig. 5 illustrates the dynamics (see https://bit.ly/3WVwhvh for an animation). In this
example, the utility-taking gradient dynamics converges towards the Nash equilibrium (0, 0)
from all directions, progressively slowing down until coming to a complete stop at (0, 0). The
dynamics remain well-defined at the Nash equilibrium, which serves as a rest point of the
dynamics.

For this game, the standard choice-taking gradient dynamics (1) is given by

(ẋ1, ẋ2) =
(
−2
(
x1 − x3

2

)
,−2

(
x2 − x3

1

))
. (16)

Fig. 6 depicts the vector field of the choice-taking dynamics (see https://bit.ly/40V9OzX

for an animation). The ratio between the two dynamics

x̊1

ẋ1

=
x̊2

ẋ2

= 1− 9x2
1x

2
2

is positive in a neighborhood of the Nash equilibrium (0, 0), and tends to 1 as (x1, x2) tends to
(0, 0). Therefore, in such a neighborhood both dynamics share the same paths, and move in
the same direction along each path, with relative speeds tending to 1 (and both tending to 0).
However, beyond this neighborhood of the Nash equilibrium (0, 0), i.e., where 1 − 9x2

1x
2
2 < 0

holds (in the neighborhoods of X’s corners (1, 1) , (1,−1) , (−1, 1), (−1,−1)) the trajectories
of the two dynamics proceed in opposite directions, and thus the two dynamics have a very
different global behavior.

4 Concluding remarks

Roger Myerson, in his game theory textbook, Myerson, 1991, p. 106 poses the question:
“When asked why players in a game should behave as in some Nash equilibrium, my favorite
response is to ask, ‘Why not?’ and to let the challenger specify what he thinks the players
should do.” In this work, we have provided one such specification. We introduced the utility-
taking gradient dynamics, for which Myerson’s question ‘Why not play a Nash equilibrium?’
is ill-posed in generic games. The implicit assumption about the opponent in this dynamics is
congruent with the natural human instinct to hold on to one’s lot by adjusting one’s choice to
that effect. This human tendency has documented empirical support (Camerer et al., 1997;
Crawford and Meng, 2011).

Our challenge to Nash behavior differs from that proposed by Milionis et al. (2023).
Their work presents an example of a non-generic game in which no continuous-time game
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Figure 5: Phase portrait for the utility-taking dynamics (15) of Example 4. Reaction curves
(dashed black lines), rest points (dotted orange lines and orange circle together with some
trajectories (solid, white lines) are shown. The Nash equilibrium is the rest point (0, 0)
located at the intersection of the reaction curves. The heatmap represents the transformed
values of the speed of the dynamics, i.e., z =

√
x̊2
1 + x̊2

2, where non-finite values are ignored.
The function output is log-scaled as log10(z+1) to enhance visibility. Additionally, to improve
contrast, the color range is clipped at the 99.5th percentile of the valid data points.
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Figure 6: Phase portrait for the choice-taking dynamics (16) of Example 4. Reaction curves
(dashed black lines), rest point (orange circle) together with some trajectories (solid, white
lines) are shown. The Nash equilibrium is the rest point (0, 0) located at the intersection of
the reaction curves. The heatmap is proportional to the speed of the dynamics using the same
transformation as in Fig. 5.
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dynamics—defined as a dynamic system whose rest points include the set of Nash equilib-
ria—converges to the Nash equilibrium, even when starting from an arbitrarily small neigh-
borhood of it. This critique led Hakim et al. (2024) to favor the limit points of certain
well-established game dynamics, such as noisy replicator dynamics, over Nash equilibria.

In contrast, we do not restrict our analysis to dynamics in which Nash equilibria are
a priori designated as rest points. Instead, we broaden our scope to encompass natural
dynamics more generally, where what constitutes ‘natural’ may depend on the context. The
utility-taking assumption explored here may be particularly relevant in settings where payoff
levels serve as benchmarks—such as in the anonymous free-market example of taxi drivers’
work supply discussed in Camerer et al. (1997). It may also apply in highly personalized, non-
anonymous interactions, such as within families, where individuals might primarily respond
to one another’s well-being rather than to specific strategic choices.

Ratliff et al. (2014) established the converse of Theorem 2 for the standard choice-taking
gradient dynamics (1), demonstrating the stability of Nash equilibria in an open and dense
family of smooth games. From this perspective, Theorem 2 underscores how the stability of
equilibria is highly sensitive to the assumptions individuals make about others when employing
adaptive heuristics.

We examined two possible naive assumptions a player might make—either assuming that
the other player keeps their choice fixed or that they maintain their utility level in response
to marginal changes in one’s choice. But what if, instead of being naive, individuals could
correctly anticipate how others would marginally adjust their choices at any given moment
and respond optimally to these correct anticipations at every possible choice profile? This
leads to the concept of subgame-perfect feedback equilibria in differential games. However,
even in relatively simple differential games with smooth utility functions—such as those with
linear-quadratic utility functions—there may exist a continuum of subgame-perfect feedback
equilibria (see, e.g., Lambertini, 2018, p. 16 and Proposition 7.4). In other words, assuming full
sophistication and perfect foresight for individuals who can continuously adjust their behavior
does not necessarily determine how they will or should behave.
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