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Abstract

We consider a model in which consumers live in isolated villages and need

to send money to each other. Each village has (at most) one digital payment

provider, which acts as a bridge to other villages. With fully rational consumers

interoperability is beneficial: it raises financial inclusion, which in turn increases

consumer surplus. With behavioural consumers who have imperfect information

or incorrect beliefs about off-net fees, interoperability can reduce consumer wel-

fare. Policies that cap transaction fees have an ambiguous effect on consumers,

depending on how the cap is implemented, whether consumers are rational, and

on how asymmetric providers are in terms of coverage.
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1 Introduction

Access to digital financial services is generally seen as a fundamental tool for financial

inclusion (Demirguc-Kunt et al. (2018)). For many consumers, the first step is to move

away from cash-based transactions and adopt digital payments, which are increasingly

available even absent formal banking services, through payment platforms or mobile

operators (Hoernig & Bourreau (2016)).

As markets for digital payments develop, a key question is how to expand access and

usage, while at the same time promoting competition among service providers. Allow-

ing consumers of a given network to transact with consumers in another network—i.e.,

inducing interoperability across payment platforms—is commonly seen as an impor-

tant way to promote these goals (Arabehety et al. (2016), Beck & De La Torre (2007),

Scott-Morton et al. (2023)).1

A second key issue relates to consumer protection. As mentioned, digital payments

are often the entry port into financial services and some consumers may lack financial

literacy or experience to fully assess their costs and benefits (see, e.g., Garz et al.

(2021)). A series of empirical observations motivates this view. First, fee structures

for digital payments can be complex. They include many dimensions (for sending and

receiving money, for on-net and off-net transactions), they can take different forms (e.g.

a percentage of the transaction amount, a fixed amount within a given interval), and

each provider can freely choose how to frame its pricing structure.2 Second, consumers

are often unaware of the fees they face and report incurring unexpected fees.3 This

opens the possibility that consumers’ unawareness is exploited by service providers

through complex and unfavourable pricing schemes (Annan (2022)).

In this paper, we investigate firms’ pricing strategies and their impact on transaction

volumes and consumers’ welfare under different market scenarios. We analyze the effect

of introducing interoperability across platforms, showing how it may vary depending

1We focus on platform-level interoperability in this paper; other forms of interoperability are dis-
cussed in Bianchi et al. (2023).

2For example, in Kenya, Safaricom and Airtel use slab pricing but with different transaction bands;
in Ghana, MTN uses slab pricing for low and high transaction amounts and a fixed percentage fee
for intermediate amounts while G-Money uses slab pricing for on-net transactions and a mix of slab
pricing and percentage fees for off-net transactions; in Uganda, instead, MTN and Airtel use slab
pricing and essentially the same transaction bands. See, e.g., Bianchi et al. (2023).

3For example, according to Annan (2022), only 48% of mobile money customers in Ghana know the
official fees they should pay to transfer money; in Uganda, according to IPA (2021), 83% of customers
don’t know the fees charged by their provider or estimate them with errors exceeding 10% and in
Kenya 72% of customers report learning the actual fees only after carrying out a transaction.
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on consumers’ sophistication. We also highlight how standard regulatory interventions,

such as fee caps, need not improve consumers’ welfare.

We develop a model in which two digital payment providers serve consumers lo-

cated in different villages. Each provider sets fees for sending and receiving money.

Consumers are heterogeneous in their valuation of digital transactions, as driven for

example by taste, access to alternative ways to transfer money, or distance from the

service provider.4 When deciding to make a transaction, consumers take into account

the fees incurred both by the sender and by the receiver and complete the transaction

only if their net valuation is positive. Since transactions may occur among family mem-

bers or friends, it is natural to assume that senders (at least, partly) take into account

also the fees incurred by the receiver; empirical evidence suggests this is indeed the

case (Economides & Jeziorski (2017)).

Absent interoperability, each consumer can only send and receive money from those

in the same network. In our baseline analysis, we assume that each village only accom-

modates one network, which makes each provider a local monopolist. Standard results

in terms of monopoly pricing and consumer surplus follow immediately.

We first analyse the effects of interoperability in a market with fully rational con-

sumers. Interoperability expands the set of feasible transactions by allowing consumers

to also transfer money off-net. We show that interoperability does not induce any

change in on-net fees or the surplus that consumers derive from such transactions. At

the same time, providers charge larger fees for off-net transactions. The reason is that,

relative to on-net transactions, the demand for off-net transactions of a given provider

is less sensitive to its own fees, as it is partly determined by the other provider’s (re-

ceiving) fee. In other words, high (receiving) fees for off-net transactions negatively

affects the demand of the other provider, but providers do not internalize this effect.

The fact that off-net fees tend to exceed on-net fees is well documented. Brunnermeier

et al. (2023) for example, show that across African countries on-net fees are on average

4% of the transaction value, while off-net fees are 11%.

Despite high off-net fees, interoperability generally increases consumer surplus in a

market with fully rational agents, and more so when the market is less concentrated.5

The benefits from off-net transactions are larger when there is no dominant player in

the market, and they are maximized when providers have equal market shares as in

this case the proportion of off-net transactions is maximal.

4Even for digital payments, consumers may have to travel to meet a local agent providing cash-in
and cash-out services, which may entail substantial transportation costs (Grzybowski et al. (2023)).

5In our model, both firms operate and jointly cover the market. The effects of interoperability may
be different in a market in which new firms may enter and increase market coverage.
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We contrast these effects to those arising when consumers are not fully rational in

the sense of not being able to perfectly observe and understand firms’ pricing schedules.

In particular, consumers may be poorly informed about the exact pricing of off-net

transactions, with which they may be less familiar.

We start with a rather minimal departure from full information, assuming that

consumers do not know the fee set by the other network provider for receiving money

off-net, and they consider that this fee is the same as the one set by their own network

provider. At the same time, consumers are assumed to perfectly observe the off-net

fees incurred when sending money.

We show that in this setting we have two asymmetric pure strategy equilibria, in

which fees for receiving money off-net are equal to zero for one provider (say, provider A)

and they equal the maximal consumers’ valuation for the other provider (say, provider

B). This generates many off-net transactions from A to B, since A’s consumers mistak-

enly underestimate the fees incurred to receive money on network B and, symmetrically,

few transactions from B to A, since B’s consumers mistakenly overestimate the fees to

receive money on network A. As a result, it can be shown that introducing interoper-

ability makes consumers worse off. The reason is that consumers tend to avoid off-net

transactions that would generate a large surplus (those from B to A) while at the same

time performing lots of transactions that generate a negative surplus (those from A to

B).

We then investigate the robustness of these insights in a setting where consumers

simply use the on-net fees charged by their own network to assess off-net fees. If

consumers in network i incur charges ns,i to send and nr,i to receive money on-net, they

believe that it will also cost them ns,i to send money off-net and will cost consumers

in the other network nr,i to receive off-net.

In line with the literature on shrouded attributes (Gabaix & Laibson (2006)), we

show that firms set low on-net fees to attract consumers and large off-net fees to extract

consumers’ surplus. The level of on-net fees typically depends on a firm’s market share:

the lower the market share, the more important are off-net transactions, and the lower

are the on-net fees set by the firm. Relative to the case with no interoperability, on-net

transactions are cheaper, which tends to increase consumers’ surplus. However, off-net

transactions are typically priced above consumers’ valuations, which tends to decrease

their surplus. We show in a simple example that the latter effect may dominate:

consumers would be better off in a market without interoperability.

Interoperability is often advocated as a way to promote competition and decrease

fees; Brunnermeier et al. (2023) document that indeed this tends to be the case. Inter-
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estingly, our model is consistent with this view only when consumers have biased beliefs

both on senders and on receivers fees, in which case a reduction in on-net fees is not

welfare improving but rather a way to attract consumers and exploit them with larger

off-net fees (which as documented in Brunnermeier et al. (2023) tend to significantly

exceed on-net fees).

Motivated by the previous results that providers tend to overcharge consumers for

off-net transactions, we consider the effects of various regulatory interventions. We

start by considering absolute caps on off-net fees. We show that, even if in some

instances providers may respond by increasing on-net fees, the net effect on consumers’

welfare is generally positive. We then consider a regulation which mandates that fees

for off-net transactions should be the same as for on-net transactions. We show that,

as expected, this tends to lower off-net fees. At the same time, however, providers

respond by increasing on-net fees. The resulting effects on consumers’ surplus depend

crucially on the type of biases consumer exhibit. When consumers are fully rational,

the regulation generally increases their surplus. We show in a simple example that the

gain in surplus is however minimal relative to the gain experienced when introducing

interoperability. When consumers have biased beliefs only about receiving fees (the

first behavioral setting considered above), the regulation has an ambiguous effect on

their welfare. In our example, when firms have sufficiently different market shares,

and so on-net transactions are more frequent than off-net transactions, the effect on

increased on-net fees dominates, thereby making consumers worse off relative to the

case of unregulated interoperability. Conversely, when consumers have biased beliefs

both about sending and receiving fees (the second behavioral setting considered above),

the regulation always improves their surplus in our example, and its effect can be

substantial, largely compensating the loss in surplus induced by interoperability.

Finally, we consider a regulation which imposes that either the senders or the re-

ceivers should incur no fees to transact. This also corresponds to the common case in

digital payments where only one of the parties pay the fee. We show that this regula-

tion has no impact on consumers’ welfare when consumers have biased beliefs, and so

introducing interoperability may be harmful to consumers even when this regulation is

in place.

Our paper relates to the literature on optimal pricing of communications (e.g.,

Laffont et al. (1998)) and specifically to models in which receivers can be charged

(e.g., Hermalin & Katz (2004)) and in which operators can discriminate between on-

net and off-net fees (e.g., Jeon et al. (2004)).6 Our model differs as it incorporates

6Similar issues have also been analyzed in the literature on ATM charges (e.g., Donze & Dubec
(2006), Massoud & Bernhardt (2002)).
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some specificities of digital payments (e.g., that senders may internalize the utility

of receivers) and especially as it focuses on the effects of interoperability in markets

with behavioral consumers, which to our knowledge have not been considered in this

literature.

We also connect with the behavioural IO literature on shrouded pricing (e.g. Ellison

(2005) and Gabaix & Laibson (2006)) in which some product dimensions—in our case,

off-net fees—are less salient to consumers due for example to limited attention or to

limited experience with those fees. In line with this literature, we find that less salient

off-net fees are highly priced and low on-net fees may be used to attract consumers. The

mechanisms in our case are however quite different. In the shrouded pricing literature,

interoperability can be viewed as allowing consumers to buy add-on and base goods

from different providers, which may increase competition and decrease prices in the add-

on markets. In our case, interoperability instead increases the number of dimensions

that consumers should pay attention to, and it opens the possibility of consumers’

mistakes and so may have detrimental effects on their welfare.

In this sense, our insights are also related to the literature on consumers’ confusion

(e.g., Chioveanu & Zhou (2013), Piccione & Spiegler (2012)) and in particular to a

recent literature in finance which models the pricing and complexity of (innovative) fi-

nancial products when consumers may not fully understand their value (Carlin (2009),

Carlin & Manso (2011), Thakor & Merton (2023)).7 While firms in our model cannot

choose the way in which fees are framed, they can exploit consumers’ confusion by

overcharging off-net transactions. Our distinctive focus is on how the effects of inter-

operability and of regulatory interventions vary as consumers’ confusion takes different

forms.8

2 Model

There are two digital payment networks A and B, and a unit mass of isolated “villages”.

Network A is present in α ∈ (0, 1) of the villages, and network B is present in the

remaining 1−α villages. In each village, consumers wish to transfer money to consumers

in one other randomly chosen village. Doing the transfer via digital money rather than

cash generates a total benefit v to the sender and receiver. For example, v may capture

gains from using digital money such as added security, and also non-monetary costs

such as time taken to travel to cash-in and cash-out agents. We assume that v is

7See Beshears et al. (2018) and Garz et al. (2021) for recent reviews.
8We refer to Bianchi et al. (2023) for further discussion of how the insights developed in the

behavioral IO literature can be applied to the market for digital payments.
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distributed on [v, v̄] according to a CDF G(v), with associated log-concave density

g(v). To simplify the exposition we assume that v ≤ 0.9

The marginal cost to the networks of transferring money between villages is zero.

We denote by ns,i and nr,i the fees charged by network i = A,B to respectively send

and receive money “on-net”, i.e., transfer money between two villages in which it is

present. We similarly let fs,i and fr,i denote the fees charged by network i = A,B to

respectively send and receive money “off-net”, i.e., send money to or receive money

from a village where the other network is present. All fees are assumed to be non-

negative and are set simultaneously by the two networks. The sender chooses between

cash and digital money to maximize the joint benefit of the transaction net of any fees

that need to be paid.

Using this framework, we consider a shift from no interoperability, such that only

on-net transactions are feasible, to interoperability, such that off-net transactions are

also feasible. We will do this both for the case where consumers are rational, and where

they exhibit behavioral biases concerning off-net transaction fees (which we define more

precisely later on).

Remark: An alternative interpretation for villages is that α consumers are loyal to A

and 1−α are loyal to B—and consumers want to transact on their preferred network.

3 Rational Consumers

We begin by considering the benchmark case in which senders are rational and fully

informed about all fees.

No interoperability First, suppose that only on-net transactions are possible. Net-

work A is able to carry out a mass α2 of transactions, and each of these transactions

occurs if and only if v−ns,A−nr,A ≥ 0, i.e., when the net benefit offered by A relative

to cash is positive. Similarly network B is able to carry out a mass (1−α)2 of transac-

tions, each of which occurs if and only if v−ns,B −nr,B ≥ 0. Hence, the two networks’

optimization problems are completely separable and are given by respectively

max
ns,A,nr,A

(ns,A+nr,A)[1−G(ns,A+nr,A)] and max
ns,B ,nr,B

(ns,B+nr,B)[1−G(ns,B+nr,B)].

The following result is then immediate. (All omitted proofs are in the appendix.)

9This assumption rules out corner solutions where all transactions occur via digital money.
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Proposition 1. When there is no interoperability, both networks set their total on-net

fees equal to t∗, where t∗ is the unique solution to

t∗ =
1−G(t∗)

g(t∗)
, (1)

i.e., n∗
s,A + n∗

r,A = n∗
s,B + n∗

r,B = t∗.

Notice that only a network’s total on-net fee can be determined. This is because

only the total fee (rather than its split between sender and receiver fees) matters for

the network’s per-transaction revenue and for the sender’s decision. We can then write

total consumer surplus from mobile money (relative to cash) as

CSNI = [α2 + (1− α)2]

∫ v̄

t∗
(v − t∗)dG(v),

where the superscript NI denotes no interoperability.

Example. Throughout the paper, we will illustrate some of our results using a running

uniform distribution example in which G(v) = v. In this example, it is easy to calculate

that t∗ = 1/2, such that each network realizes half of its feasible transactions, and

that relative to cash, digital payments generate additional consumer surplus of [α2 +

(1− α)2]/8.

Interoperability Now suppose that both on-net and off-net transactions are possi-

ble. In this case network A’s optimization problem can be written as

max
ns,A,nr,A,fs,A,fr,A

α2(ns,A + nr,A)[1−G(ns,A + nr,A)]

+α(1− α)fs,A[1−G(fs,A + fr,B)] + α(1− α)fr,A[1−G(fs,B + fr,A)].

The first line is profit from on-net transactions, and is unaffected by interoperability.

The second line is profit from off-net transactions. Specifically, a mass α(1 − α) of

transactions from network A to network B are now possible, and each of these transac-

tions occurs if and only if v−fs,A−fr,B ≥ 0, i.e., if the benefit net of A’s sender fee and

B’s receiver fee is positive. Similarly, a mass α(1− α) of transactions from network B

to network A are also now possible, and each occurs if and only if v − fs,B − fr,A ≥ 0.

Proceeding similarly, we can write network B’s optimization problem as

max
ns,B ,nr,B ,fs,B ,fr,B

(1− α)2(ns,B + nr,B)[1−G(ns,B + nr,B)]

+α(1− α)fs,B[1−G(fs,B + fr,A)] + α(1− α)fr,B[1−G(fs,A + fr,B)].
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Jointly solving these optimization problems, we obtain the following result.

Proposition 2. When there is interoperability:

i) Both firms set their total on-net fees equal to t∗, as defined in equation (1).

ii) Both firms set their off-net sender and receiver fees to t∗∗/2, where t∗∗ ∈ (t∗, 2t∗) is

the unique solution to
t∗∗

2
=

1−G(t∗∗)

g(t∗∗)
. (2)

According to Proposition 2, all fees are independent of α, i.e., independent of the

degree of network asymmetry. The reason is that each network has four fees that it

can vary, but only three different transaction types—on-net transactions, transactions

from A to B, and transactions from B to A. This relative abundance of fee instruments

means that each network can price the different transactions independently; hence

the fees charged for a given transaction type are independent of the number of those

transactions, and thus also independent of α. Since on- and off-net transactions are

entirely separable, the former are priced in the same way as without interoperability,

and so incur a total fee of t∗ as defined in equation (1). Meanwhile off-net transactions

incur a total fee of t∗∗, as defined in equation (2), because both the sender and receiver

each have to pay t∗∗/2. Proposition also 2 shows that t∗∗ > t∗. Intuitively, each

network ignores the negative impact of an increase in its off-net fees on demand (and

hence profits) of the rival network; this leads networks to charge more overall than they

do for on-net transactions.

Note that since interoperability has no effect on the pricing of on-net transactions,

but allows new off-net transactions to occur, it unambiguously raises transaction vol-

umes as well as consumer surplus (relative to using cash), which is given by the following

expression:

CSI = [α2 + (1− α)2]

∫ v̄

t∗
(v − t∗)dG(v) + 2α(1− α)

∫ v̄

t∗∗
(v − t∗∗)dG(v)︸ ︷︷ ︸

Additional consumer surplus

,

where the superscript I denotes interoperability.

Example. In our running uniform distribution example, on-net transactions incur a

total fee of t∗ = 1/2, while off-net transactions incur a total fee of t∗∗ = 2/3. Interop-

erability increases consumer surplus (relative to using cash) by α(1− α)/9.

Although interoperability expands the total number of transactions, off-net trans-

actions are relatively low due to their high fees. We later study the effects of policy

interventions that could be used to put downward pressure on off-net transaction fees.
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4 Behavioral Consumers

We now suppose consumers are behavioral in the sense that they exhibit biases when

computing off-net transaction fees. We consider two cases, depending on whether this

bias applies only to receiver fees, or to both sender and receiver fees. Throughout

this section we assume that consumers are perfectly informed about on-net transac-

tion sender and receiver fees, e.g., because they are more accustomed to making and

receiving such transactions. We will also make the following assumption:

Assumption 1. Networks may not set any fee above v̄.

A standard assumption in behavioral models is that fees are capped (e.g., by policy,

or because if fees are too high consumers may complain ex post); in our model, a natural

cap would be v̄, which we henceforth impose.10

4.1 Bias only on Receiver Fees

We start with a rather minimal departure from the rational benchmark and assume

that consumers only exhibit a behavioral bias on the fee to receive money off-net. In

particular, we assume that senders of both on- and off-net transactions perfectly observe

and understand the fee they pay. But we also assume that consumers in network i’s

village believe that if they send money to network j ̸= i’s village, consumers there will

incur fr,i to receive the money, i.e., network i’s off-net receiver fee is “projected” onto

the other network.

We start by considering network A’s optimization problem. Since consumers face no

bias with respect to on-net transactions, network A’s profit from these transactions is

the same as in the case without interoperability. On the other hand, transactions from

A to B now occur with probability 1 − G(fs,A + fr,A) because senders from network

A correctly understand it will cost them fs,A to send the money, but (in general,

incorrectly) believe that consumers in the other village will incur fr,A to receive the

money. Meanwhile, using a similar reasoning, transactions from B to A now occur with

probability 1−G(fs,B + fr,B). Hence we can write network A’s optimization problem

10An alternative interpretation for our model is the following. Suppose that v̄ is the maximum value
of transacting via digital money, and that v̄ − v reflects the time and effort taken to travel to the
mobile money agent. In that case, it is natural that at least receiver fees are capped at v̄, because once
a consumer has traveled to an agent, she is willing to pay up to v̄ rather than abandon the transaction
and use cash.
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as

max
ns,A,nr,A,fs,A,fr,A

α2(ns,A + nr,A)[1−G(ns,A + nr,A)]

+α(1− α)fs,A[1−G(fs,A + fr,A)] + α(1− α)fr,A[1−G(fs,B + fr,B)],

Using a similar logic, we can also write network B’s optimization problem as

max
ns,B ,nr,B ,fs,B ,fr,B

(1− α)2(ns,B + nr,B)[1−G(ns,B + nr,B)]

+α(1− α)fs,B[1−G(fs,B + fr,B)] + α(1− α)fr,B[1−G(fs,A + fr,A)].

We first notice that each network’s revenues from on- and off-net fees are completely

separable, and hence on-net transactions are priced (in total) at t∗, as they would be

absent interoperability. Focusing on network A and its choice of off-net fees, notice

that for fixed FA ≡ fs,A + fr,A and fixed FB ≡ fs,B + fr,B, network A’s choice over

fs,A and fr,A is generically “bang-bang”. Specifically, if FA < FB, such that network

A sends more off-net transactions than it receives, it is optimal to set fs,A = FA and

fr,A = 0; if, on the other hand, FA > FB, such that network A receives more off-net

transactions than it sends, it is optimal to fs,A = 0 and fr,A = FA. Using that insight,

we can then rewrite network A’s profit from off-net transactions as

πA(FA, FB) =

{
α(1− α)FA[1−G(FA)] if FA < FB

α(1− α)FA[1−G(FB)] if FA ≥ FB

.

This profit function has a particularly simple form. In particular, suppose we fix FB. As

we vary FA over the interval [0, FB] network A’s profit is proportional to FA[1−G(FA)]

and hence is quasiconcave; therefore if FB ≤ t∗ profit here is strictly increasing, and

otherwise it is hump-shaped and decreasing in FA as FA → FB. Note that network A’s

profit kinks up at FA = FB, and is then strictly increasing in FA up until the point

where FA = v̄. Using this logic, it is then straightforward to prove the following result:

Lemma 1. Fixing F−i for i = A,B, network i’s best response is to set Fi = t∗ if

G(F−i) > 1 − t∗[1 − G(t∗)]/v̄, and to set Fi = v̄ if this inequality is reversed (and

otherwise network i is indifferent between charging t∗ and v̄).

Notice that even if α ̸= 1/2, such that the networks have asymmetric coverage

levels, their best responses are symmetric. Intuitively, if say network B’s total off-net

fee is relatively high, such that network A’s customers receive relatively little money

off-net, network A concentrates on sender fees, and given consumers’ behavioral bias,

acts like a monopolist absent interoperability, thereby charging FA = t∗. However,
11



if instead network B’s off-net fee is relatively low, such that network A’s customers

receive relatively a lot of money off-net, network A exploits this by setting as high

an off-net receiver fee as it can (given our assumption earlier that individual fees are

capped at v̄). Using the above lemma, we can then characterize the equilibrium fees.

(We focus exclusively on equilibria in pure strategies.)

Proposition 3. Suppose consumers have biased beliefs about off-net receiver fees.

Then:

i) On-net fees are the same as without interoperability: ns,A + nr,A = ns,B + nr,B = t∗.

ii) There are two pure strategy equilibria for off-net fees. In each equilibrium, one

network i = A,B sets fs,i = t∗ and fr,i = 0, while the other network sets fs,−i = 0 and

fr,−i = v̄.

Notice that there is no symmetric pure strategy equilibrium. The reason is simply

that, as seen in Lemma 1, networks’ optimal fees are binary, either low at t∗ or high

at v̄, and when one network has a low fee the other prefers a high fee (and vice versa).

This substitutability in fees is what drives the existence of asymmetric equilibrium.

For example, suppose that network A decides to set FA = t∗, which from earlier

arguments implies that fs,A = t∗ and fr,A = 0. This fee profile leads to a relatively

large volume of off-net transactions from A to B. To exploit this, network B therefore

optimally sets fs,B = 0 and fr,B = FB = v̄. Given this fee profile, there are zero off-net

transactions from B to A, so network A focuses on off-net sender transactions, and

so has an incentive to set a low fee in order to stimulate such transactions (and given

the structure of consumers’ beliefs about off-net receiver fees, it turns out it is indeed

optimal to set the sender fee equal to t∗).

Turning to consumer surplus, notice that interoperability is unambiguously bad

for consumers. The reason is that on-net transactions are priced the same as without

interoperability, and hence generate the same consumer surplus. However, now there is

a mass α(1−α)[1−G(t∗)] of off-net transactions from the network which sets Ni = t∗

to the other network that sets N−i = v̄, and these transactions incur a total fee of

v̄ + t∗ which is more than the value (relative to cash) of any transaction. We also

notice that there are no transactions from the network charging N−i = v̄ to the one

charging Ni = t∗, since consumers in network −i observe a fee fr,−i = v̄ and wrongly

believe that it also therefore costs v̄ to receive money off-net in village i, and hence

send no money off-net. Thus consumer surplus equals

α2 + (1− α)2

8
+ α(1− α)

∫ v̄

t∗
(v − t∗ − v̄)dG(v).
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Example Return to the running example with G(v) = v. On-net fees equal ns,A+nr,A =

ns,B+nr,B = 1/2, while for off-net fees one network charges 1/2 to send and 0 to receive

money, while the other network charges 0 to send and v̄ to receive money. Consumer

surplus equals
α2 + (1− α)2 − 3α (1− α)

8
.

4.2 Biases on both Sender and Receiver Fees

We now consider the case where senders exhibit biases when computing how much off-

net transactions will cost to send and receive. In particular, we assume that consumers

use the on-net fees charged by the network provider in their village to form beliefs

about off-net fees: if their village’s network charges ns,i to send and nr,i to receive

money on-net, they believe that it will also cost them ns,i to send money off-net and

will cost consumers in the other village nr,i to receive off-net.

Start by considering network A’s optimization problem. As we have seen previously,

since consumers face no bias with respect to on-net transactions, these transactions

generate the same profit as in the case without interoperability. On the other hand,

transactions from A to B now occur with probability 1−G(ns,A+nr,A) because senders

from network A (in general, incorrectly) believe that they will pay ns,A to send money

and that the consumer in the other village will pay nr,A to receive it. Meanwhile

transactions from B to A now occur with probability 1 − G(ns,B + nr,B), because

senders in the B village similarly use network B’s on-net fees to form their belief about

off-net fees. Hence we can write network A’s optimization problem as

max
ns,A,nr,A,fs,A,fr,A

α2(ns,A + nr,A)[1−G(ns,A + nr,A)]

+α(1− α)fs,A[1−G(ns,A + nr,A)] + α(1− α)fr,A[1−G(ns,B + nr,B)],

Using a similar logic, we can also write network B’s optimization problem as

max
ns,B ,nr,B ,fs,B ,fr,B

(1− α)2(ns,B + nr,B)[1−G(ns,B + nr,B)]

+α(1− α)fs,B[1−G(ns,B + nr,B)] + α(1− α)fr,B[1−G(ns,A + nr,A)].

Given consumers’ behavioral bias, off-net transaction fees have no impact on off-net

transaction volumes. Hence the two networks set their off-net fees as high as possible,

i.e., they set them equal to v̄ given Assumption 1. On the other hand, on-net fees

now play a dual role: aside from affecting profit from on-net transactions, they also

influence the volume and hence profitability of off-net transactions. Notice that, as
13



we have seen before, only total on-net transactions fees ns,A + nr,A and ns,B + nr,B

rather than their composition can be pinned down. It is straightforward to prove the

following:

Proposition 4. Suppose consumers have biased beliefs about off-net sender and re-

ceiver fees. Then:

i) All off-net fees are set as high as possible: fs,A = fr,A = fs,B = fr,B = v̄.

ii) If α/(1− α) ≤ v̄g(0) then network A sets ns,A + nr,A = 0, and otherwise it sets the

unique ns,A + nr,A ∈ (0, t∗) that solves

α

[
1−G(ns,A + nr,A)

g(ns,A + nr,A)

]
− α(ns,A + nr,A)− (1− α)v̄ = 0.

iii) If α/(1− α) ≥ 1/[g(0)v̄] then network B sets ns,B + nr,B = 0, and otherwise it sets

the unique ns,B + nr,B ∈ (0, t∗) that solves

(1− α)

[
1−G(ns,B + nr,B)

g(ns,B + nr,B)

]
− (1− α)(ns,B + nr,B)− αv̄ = 0.

Recall that, absent interoperability, networks charge a total fee of t∗ for on-net

transactions. When consumers have biased beliefs, interoperability causes the networks

to price below t∗ for on-net transactions. The reason is that by doing this, they increase

demand for off-net transactions, which they then exploit by pricing such transactions

at v̄. Indeed, when off-net transactions are sufficiently important in relative terms for

a network—which means α/(1 − α) is sufficiently low for network A, or sufficiently

high for network B—that network will set its on-net fees to zero to encourage as many

off-net transaction as possible. Otherwise on-net transactions will be priced between

0 and t∗, and become more expensive as on-net transactions become more important

relative to off-net transactions.

Relative to the case with no interoperability, interoperability now introduces a

trade-off. On the one hand, on-net transactions are cheaper, which is of course good

for consumers. On the other hand, however, consumers overpay for off-net transactions,

because the total fee incurred by the sender and receiver is 2v̄, whereas the highest

willingness-to-pay to transact off-net is v̄. Total consumer surplus is given by:

CSI = α2

∫ v̄

ns,A+nr,A

(v − ns,A − nr,A)dG(v) + (1− α)2
∫ v̄

ns,B+nr,B

(v − ns,B − nr,B)dG(v)

+α(1− α)

∫ v̄

ns,A+nr,A

(v − 2v̄)dG(v) + α(1− α)

∫ v̄

ns,B+nr,B

(v − 2v̄)dG(v).

14



In order to further highlight fees and consumer surplus in this setting, we return to

our running uniform distribution example.

Example. Suppose that G(v) = v. Clearly, fs,A = fr,A = fs,B = fr,B = 1. On-net fees

can be calculated as follows:

ns,A + nr,A =

{
0 if α ≤ 1/2

2α−1
2α

if α > 1/2
and ns,B + nr,B =

{
1−2α
2(1−α)

if α ≤ 1/2

0 if α > 1/2
.

Notice that network A’s on-net fee increases in α, because for higher α it faces rela-

tively fewer off-net transactions, and so as explained above, has less incentive to bait

consumers with a low on-net fee; network B’s fees have the opposite comparative static.

Moreover, as, say, α → 1, network A prices as if there were no interoperability, and sets

ns,A + nr,A = t∗ = 1/2, while network B sets ns,B + nr,B = 0. One can also compute

that consumer surplus equals

CSI =

{
1−2α
8(1−α)

− 2α(1− α) if α ≤ 1/2
2α−1
8α

− 2α(1− α) if α > 1/2
.

It is then easy to check that in this example, interoperability reduces consumer surplus.

In other words, the high fees for off-net transfers dominate the reduction in on-net fees

that networks use to bait consumers into thinking that off-net transactions are cheaper

than they actually are.

5 Capping Fees

The previous analysis has shown that overpricing is especially severe for off-net fees

when consumers have biased beliefs about them. A natural regulation in this setting

is to impose fee caps, and different countries have adopted caps of different forms (see,

e.g., CGAP (2021)). In this section, we explore the effect of several types of regulation,

mandating that certain fees cannot exceed some cap, showing how the ultimate impact

of these regulations on consumers depends crucially on whether consumers are rational

or have biased beliefs, and on which type of biased beliefs. We also highlight how these

measures may have unintended effects.

5.1 Absolute caps on off-net fees

We have so far assumed (Assumption 1) that networks cannot set any fee above v̄

and, as seen, this constraint is often binding when consumers have wrong beliefs about
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off-net fees. A first natural policy is to reduce the maximal fee below v̄. If consumers

have biased beliefs only about off-net receiver fees, there is no interaction between

the equilibrium off-net and on-net fees (see Proposition 3); hence, a marginal decrease

in the maximal fee would decrease off-net fees, leaving on-net fees unaffected, and

thus increase consumers’ welfare. If consumers have biased beliefs both about off-net

sender and receiver fees, equilibrium on-net fees depend negatively on off-net fees (see

Proposition 4); hence, a marginal decrease in the maximal fee would decrease off-net

fees and at the same time increase on-net fees. Although this “rebalancing” of fees

makes it hard to assess the impact of a cap for a general distribution, in our running

uniform example it is easy to see that consumers benefit whenever the cap is sufficiently

aggressive.

5.2 Off-net fees bounded by on-net fees

Suppose that under interoperability, each network i = A,B is required by regulation

to i) charge the same fee to send money on- and off-net (i.e., ns,i = fs,i) and ii) also

charge the same fee to receive money on- and off-net (i.e., nr,i = fr,i).
11

5.2.1 Rational Consumers

Suppose that consumers are fully rational. Given this “equal fee regulation”, we can

rewrite the networks’ optimization problems from earlier purely as a function of on-net

fees, i.e, as

max
ns,A,nr,A

α2(ns,A + nr,A)[1−G(ns,A + nr,A)]

+α(1− α)ns,A[1−G(ns,A + nr,B)] + α(1− α)nr,A[1−G(ns,B + nr,A)]

for network A, and as

max
ns,B ,nr,B

(1− α)2(ns,B + nr,B)[1−G(ns,B + nr,B)]

+α(1− α)ns,B[1−G(ns,B + nr,A)] + α(1− α)nr,B[1−G(ns,A + nr,B)].

11We note that it is important that this regulation applies to both sender and receiver fees. To
illustrate, consider the case of rational consumers, and consider a regulation which forces networks to
charge the same sender fee on- and off-net, but places no restriction on receiver fees. In this case, the
two networks will end up playing the same equilibrium as in Proposition 2. In particular, they will
charge t∗∗/2 to send money on- and off-net, charge t∗− t∗∗/2 > 0 to receive money on-net, and charge
t∗∗/2 to receive money off-net. This is possible because even with the regulation, the number of fee
instruments is equal to the number of transaction types.
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for network B. For this (and some later) analysis we need to impose the following

stronger assumption on the the distribution G, to ensure that the networks’ optimiza-

tion problems are well behaved:

Assumption 2. For all n−i ∈ [0, v̄), ni [1−G (ni + n−i)] is concave in ni ∈ [0, v̄−n−i].

Notice that this assumption is satisfied provided the density g is either increasing, or

not decreasing too fast; it is therefore satisfied by our running example where G(v) = v.

Using this assumption, we are then able to prove the following result:

Lemma 2. Suppose Assumption 2 holds. With equal fee regulation, there is a unique

equilibrium in which network i = A,B sets the same fee for sending and receiving

money (i.e., ns,i = nr,i = ni). These fees solve the following equations:

α[1−G(2nA)− 2nAg(2nA)] + (1− α)[1−G(nA + nB)− nAg(nA + nB)] = 0 (3)

(1− α)[1−G(2nB)− 2nBg(2nB)] + α[1−G(nA + nB)− nBg(nA + nB)] = 0.(4)

Although networks are not obliged to price sender and receiver fees in the same

way, it turns out that under our additional regularity condition it is optimal for them

to do this. Interestingly, this implies that the total fee required to make an off-net

transaction is the same regardless of whether the sender is in an A or a B village. Note

that equilibrium fees now depend on α, because networks have three distinct types of

transaction but only two fee instruments, so the relative importance of different types

of transaction (which depends on α) affects fees. The following result explores how the

two networks’ fees compare, and how this depends on α:

Proposition 5. The equilibrium fees characterized in Lemma 2 have the following

properties:

i) Fees are higher than their “average” level absent interoperability, i.e., nA, nB > t∗/2.

ii) The regulation reduces total fees paid for off-net transactions, i.e., nA + nB < t∗∗.

iii) Network A’s fee is larger, i.e., nA > nB, if and only if α ∈ (0, 1/2).

The equal fee regulation brings on- and off-net fees closer together. The regulation

is successful at reducing the total fees paid for off-net transactions, since nA+nB < t∗∗,

and thus increases the volume of off-net transactions. However, this comes at the cost of

raising the total fees paid for on-net transactions, since 2nA, 2nB > t∗. The legislation

therefore generates a trade-off, by raising consumer surplus from off-net transactions
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Figure 1: Market outcomes with rational consumers
(The dashed curves are outcomes without interoperability, the dotted curves are outcomes with
“unregulated” interoperability, and the thick curves are outcomes with equal fee regulation)

but reducing it from on-net transactions. Total consumer surplus can be written as

CSR = α2

∫ v̄

2nA

(v − 2nA)dG(v) + (1− α)2
∫ v̄

2nB

(v − 2nB)dG(v)︸ ︷︷ ︸
Lower on-net surplus with regulation

+2α(1− α)

∫ v̄

nA+nB

(v − nA − nB)dG(v)︸ ︷︷ ︸
Higher off-net surplus with regulation

,

where the superscript R denotes interoperability with equal fee regulation. The propo-

sition also shows that relative fees across the two networks vary with respect to α in

a natural way. Specifically, when α = 1/2, such that the networks have symmetric

coverage, all fees are identical, and hence on- and off-net transactions cost the same

for consumers. However when, for example, α ∈ (0, 1/2), such that network A has

lower coverage, it charges higher fees compared to network B. The intuition is that

in this case network A has relatively more off-net transactions, and so does not inter-

nalize the effect of higher nA on reduced transactions (and hence profits) for network

B. Network B, on the other hand, has relatively more on-net transactions, and so has

more incentive to moderate its fees. The fact that in this case nA > nB implies that

transactions on network A are the most expensive, transactions on network B are least

expensive, and the cost of off-net transactions (in either direction) is now intermediate.

More structure is required in order to assess the impact of the regulation on consumer

surplus. We therefore return to our running uniform distribution example.
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Example. In the case where G(v) = v, the equilibrium fees are

nA =
3− α

8 + 3α− 3α2
and nB =

2 + α

8 + 3α− 3α2
.

Figure 1(a) plots these fees, along with the average fees t∗/2 = 1/4 for on-net trans-

actions and t∗∗/2 = 1/3 for off-net transactions that we computed earlier. Notice that

nA is decreasing in α while nB is increasing in α. When α = 1/2 both networks set

their sender and receiver fees equal to 2/7. When, for example, α → 0 then network

B charges nB = 1/4 while network A charges nA = 3/8; fees are symmetric and so

the opposite of these as α → 1. (Intuitively, as α → 0 almost all transactions take

place on B’s network, and so network B sets each fee to be exactly one half of the

t∗ = 1/2 that it would charge absent interoperability. Meanwhile as α → 0, network A

performs almost no transactions, but in relative terms almost all of them are off-net;

since network B charges nB = 1/4 < t∗∗/2, network A’s off-net demand is larger than

it was in Proposition 2, so it responds by increasing its fees above the t∗∗/2 = 1/3 that

it would charge for off-net transactions absent the legislation.) Continuing with this

uniform distribution example, one can also compute that consumer surplus is

(2− α) (1 + α) (8− 7α + 7α2)

2 (8 + 3α− 3α2)2
.

Figure 1(b) plots this consumer surplus, along with consumer surplus without inter-

operability and with “unregulated” interoperability. Consumers are always worst off

when there is no interoperability. Although it is hard to see from the figure, condi-

tional on having interoperability, the equal fee regulation benefits consumers unless α

is less than around 0.06 or above around 0.94. In other words, for most values of α,

the reduction in off-net fees induced by the regulation outweighs the increase in on-net

fees. We notice however that the gain in consumer surplus tends to be small relative

to the case of unregulated interoperability.

5.2.2 Behavioral Consumers

Consider now the effects of the same “equal fee regulation”in a market in which con-

sumers hold biased beliefs both on sender and on receiver fees, as in Section 4.2.12

Given consumers’ endogenous beliefs, we can again rewrite the networks’ optimization

12This is made for simplicity of exposition; as we show later, assuming that consumers are only
biased about receiver fees does not affect our analysis.
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problems as a function of on-net fees only. Network A’s problem then becomes

max
ns,A,nr,A

α2(ns,A + nr,A)[1−G(ns,A + nr,A)]

+α(1− α)ns,A[1−G(ns,A + nr,A)] + α(1− α)nr,A[1−G(ns,B + nr,B)],

while network B’s problem becomes

max
ns,B ,nr,B

(1− α)2(ns,B + nr,B)[1−G(ns,B + nr,B)]

+α(1− α)ns,B[1−G(ns,B + nr,B)] + α(1− α)nr,B[1−G(ns,A + nr,A)].

In order to solve for equilibrium fees, it is useful to let NA ≡ ns,A + nr,A and NB ≡
ns,B + nr,B denote the two networks’ total on-net fees. As a first step, we can then

fix these total fees, and solve for how they should be optimally distributed across the

sender and receiver sides. To ease the exposition, in the text we focus on network A,

whose optimization problem can be re-expressed using this new notation as follows:

max
NA,ns,A

α2NA[1−G(NA)] + α(1− α) {ns,A[1−G(NA)] + (NA − ns,A)[1−G(NB)]} .

Observe that, fixing NA, generically network A’s optimal solution is “bang-bang”:

Lemma 3. Fixing NA ∈ (0, v̄), network A optimally sets ns,A = 0 if NA > NB, and

optimally sets ns,A = NA if NA < NB. (In the special case where NA = NB network A

is indifferent over all ns,A.)

The lemma is very intuitive. Consider, for example, the case where NA > NB, or

equivalently 1 − G(NA) < 1 − G(NB), such that there are more off-net transactions

from B to A than in the other direction. The lemma says that network A should

optimally set ns,A = 0 and nr,A = NA, i.e., it rips off consumers who receive off-net on

its network because they are more numerous than the consumers who send off-net from

its network. Using Lemma 3 we can then write network A’s profit solely as a function

of total on-net fees:

πA(NA, NB) =

{
αNA[1−G(NA)] if NA < NB

α2NA[1−G(NA)] + α(1− α)NA[1−G(NB)] if NA ≥ NB

.

Using this profit function, we can now solve for network A’s best response NA given any

conjectured NB that it expects network B to charge. Specifically, suppose we fix some

NB ∈ (0, v̄). As we varyNA over the interval [0, NB], network A’s profit αNA[1−G(NA)]

is quasiconcave; hence if NB ≤ t∗ then network A’s profit is monotonically increasing
20



in NA over this interval, and otherwise it first increases and then decreases in NA. At

the point where NA = NB network A’s profit can be seen to kink upwards. Then, if

we impose our earlier Assumption 2, network A’s profit is concave as we vary NA over

the interval [NB, v̄]. Using these observations, we can then prove the following:

Lemma 4. Suppose Assumption 2 holds. There exists a critical threshold NB ∈ (t∗, v̄)

such that if NB > NB then network A optimally sets NA = t∗, and if NB < NB then

network A optimally sets the unique NA > max{NB, t
∗} that solves

α[1−G(NA)−NAg(NA)] + (1− α)[1−G(NB)] = 0.

(If NB = NB then network A is indifferent between t∗ or the NA > max{NB, t
∗} that

solves the last equation.)

The lemma shows that when NB is relatively large—such that customers on network

A will receive relatively few off-net transactions—network A prefers to frontload all fees

on the sender side, and set its sender fee to the same level as absent interoperability.

On the other hand, when NB is relatively small—such that customers on network A

will receive relatively many off-net transactions—network A prefers to load all fees on

the receiver side, and set its receiver fee above t∗ (and also above NB) to take advantage

of these off-net transactions. Notice that network A’s best response is never equal to

NB; intuitively, this is caused by the kink in network A’s profit function around the

point NA = NB that we described earlier.

We can also fix NA and perform the same exercise for network B. We again find

that for a given NA network B’s allocation of its total fee NB between the sender and

receiver sides is “bang-bang”. Similarly, we can also derive a cutoff value on NA that

determines whether network B sets NB to t∗ or to a value above NA. And, importantly,

we also find that network B never finds it optimal to set NB = NA due to a kink in its

profit function.

Using the above results, we can now solve for equilibrium fees. We focus throughout

on pure strategy equilibrium. As a first step, notice that there is no symmetric pure

strategy Nash equilibrium—because this would require the two networks to charge

the same total fee, but we have argued above that neither network best responds by

matching the other network’s total fee. Instead the game has at least one (but no more

than two) asymmetric equilibrium, as the following proposition shows:

Proposition 6. Suppose consumers have biased beliefs about off-net sender and re-

ceiver fees, and that Assumption 2 holds. Under equal fee regulation, there are two
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candidate asymmetric pure strategy Nash equilibria, at least one of which exists for

any α ∈ (0, 1):

i) One candidate equilibrium has network A charge ns,A = NA = t∗ and nr,A = 0, and

network B charge ns,B = 0 and nr,B = NB ∈ (t∗, v̄) which is the unique solution to

(1− α)[1−G(NB)−NBg(NB)] + α[1−G(t∗)] = 0.

A sufficient condition for this equilibrium to exist is α ≥ 1/2.

ii) Another candidate equilibrium has network B charge ns,B = NB = t∗ and nr,B = 0,

and network A charge ns,A = 0 and nr,A = NA ∈ (t∗, v̄) which is the unique solution to

α[1−G(NA)−NAg(NA)] + (1− α)[1−G(t∗)] = 0.

A sufficient condition for this equilibrium to exist is α ≤ 1/2.

Unfortunately it is not possible, without imposing more structure on G, to deter-

mine necessary and sufficient conditions for the two equilibria to exist.13 (We provide

such conditions shortly, in our running uniform distribution example.) However the

sufficient conditions provided in the proposition are quite intuitive. For instance, con-

sider part i) of the proposition, which characterizes a putative equilibrium in which

network A sets a low fee while network B sets a high fee, and shows that such an

equilibrium is guaranteed to exist if α ≥ 1/2. Intuitively, when α ≥ 1/2, (in relative

terms) network A is less dependent and network B is more dependent on off-net trans-

actions. It is therefore natural that network A should set NA = ns,A = t∗ and focus

more on on-net transactions. Given consumers’ behavioral bias, this in turn stimulates

a relatively high volume of off-net transactions from A to B. It is then natural that

network B should set NB = nr,B > t∗ and focus on exploiting consumers who receive

off-net on its network.

Now consider the impact of the equal fee regulation on consumer surplus, which is

equal to

CSR = α2

∫ v̄

ns,A+nr,A

(v − ns,A − nr,A)dG(v) + (1− α)2
∫ v̄

ns,B+nr,B

(v − ns,B − nr,B)dG(v)

+α(1− α)

∫ v̄

ns,A+nr,A

(v − ns,A − nr,B)dG(v) + α(1− α)

∫ v̄

ns,B+nr,B

(v − ns,B − nr,A)dG(v).

The regulation again creates a trade-off. On the one hand, as with rational consumers,

13Nevertheless it is easy to see that for α in a neighborhood of 0 or 1 only one equilibrium exists.
For example, note that as α → 0, the putative equilibrium NB in Proposition 6i) tends to t∗, but then
it follows from Lemma 4 that network A would prefer to deviate and set NA strictly above t∗.
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Figure 2: Consumer surplus under a behavioral bias on off-net fees
(The dashed curve is surplus without interoperability, the dotted curve is surplus with
“unregulated” interoperability, and the thick curve is surplus with equal fee regulation)

the regulation (weakly) raises the fees paid by on-net consumers, and strictly increases

them on one of the two networks. On the other hand, off-net transactions are now

cheaper: instead of incurring a total fee of v̄, transfers in one direction incur zero

sender and receiver fees, while transfers in the other direction incur a sender fee of t∗

and a receiver fee between t∗ and v̄. As usual, it is difficult to make further progress

for a general G, and so we now switch to the example.

Example. Return to our running example with G(v) = v. Consider the first possible

equilibrium described in Proposition 6. One can check that this equilibrium exists if

and only if α ≥ 6− 4
√
2, and that the total fees charged by the two networks are

NR1
A =

1

2
and NR1

B =

{
2−α

4(1−α)
if 6− 4

√
2 < α < 2/3

1 if α ≥ 2/3
,

leading to consumer surplus

CSR1 =

{
4−8α+α2+2α3

32(1−α)
if 6− 4

√
2 < α < 2/3

α(4α−3)
8

if α ≥ 2/3
,

where R1 denotes that this is the first possible equilibrium with regulation. Next,

consider the second possible equilibrium described in Proposition 6. One can check

that this equilibrium exists if and only if α ≤ −5 + 4
√
2, and that the total fees

charged by the two networks are

NR2
A =

{
1 if α < 1/3

1+α
4α

if 1/3 ≤ α ≤ −5 + 4
√
2

and NR2
B =

1

2
,
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Figure 3: Consumer surplus under a behavioral bias on off-net receiver fees
(The dashed curve is surplus without interoperability, the dotted curve is surplus with
“unregulated” interoperability, and the thick curve is surplus with equal fee regulation)

leading to consumer surplus

CSR2 =

{
− (1−α)(4α−1)

8
if α < 1/3

−1+(7−2α)α2

32α
if 1/3 ≤ α ≤ −5 + 4

√
2

,

where R2 denotes that this is the second possible equilibrium with regulation. Fig-

ure 2 plots consumer surplus in these two equilibria, as well as for the case without

interoperability and with “unregulated” interoperability. Conditional on having inter-

operability, the regulation always improves consumer surplus. However, except for a

very thin range of parameters, consumers are actually better off without interoperabil-

ity.

Remark: Bias only on Receiver fees

Suppose that consumers have biased beliefs only on receiver fees. Notice that the

networks have exactly the same optimization problems as when they faced regulation

and the behavioral bias was on both sender and receiver off-net fees. Hence equilibrium

fees are exactly the same as in Proposition 6, and consumer surplus is the same as the

expression given in that section. We can therefore turn straight to our running example.

Example Again consider the case G(v) = v. Figure 3 plots consumer surplus. For

almost all values of α consumers are better off without interoperability, due to the

high off-net fees that networks charge. Moreover, conditional on interoperability, the

equal fee regulation introduces a trade-off, since it raises on-net transaction fees but

reduces off-net transaction fees. For intermediate values of α the regulation benefits

consumers, but otherwise it harms them.
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5.3 Caps on Senders and Receivers Fees

As an alternative policy, suppose that regulation only imposes a cap either on sender

or receiver fees, and let us set this cap to zero. This also allows us to study settings in

which only one party pays the fee, not necessarily because of regulation.

Assume as before that the sender cares about the total fee incurred for the trans-

action, irrespective of who formally pays it. It is immediate to observe that, absent

interoperability, each network charges n∗ = t∗ as in the previous analysis, regardless

of who pays the fee. A transaction occurs if and only if v ≥ t, so a network’s (on-net)

transaction profit is proportional to t[1−G(t)] which is maximized at t∗ by definition.

We now consider the effect of the policy in a market with interoperability, distin-

guishing again the case with rational or behavioral consumers.

5.3.1 Rational consumers

Under interoperability, networks charge one fee for on-net transactions and another fee

for off-net transactions. The two transaction types are separable. On-net transactions

are again priced at t∗, irrespective of whether it is the sender or receiver that pays.

Differently from the previous analysis, notice that now off-net transactions are also

priced at t∗, again regardless of whether the sender or receiver pays. The reason is that

whichever network collects the fee for a given off-net transaction charges t and gets

profits proportional to t[1−G(t)], which is again maximized at t∗. Intuitively, there is

no double marginalisation problem now since only one side is choosing the total fee and

is collecting all of it. Hence the cap unambiguously benefits consumers, and further

increases the benefits of interoperability.

5.3.2 Behavioural consumers when senders pay

Suppose that only senders pay the fee. Suppose that when sending money off-net,

senders believe that the fee will be the same as the on-net one. Clearly it is then

optimal to set f = v̄, and then network A will set nA in order to

max α2nA [1−G (nA)] + α (1− α) v̄ [1−G (nA)] ,

while network B will set nB in order to

max (1− α)2 nB [1−G(nB)] + α (1− α) [1−G (nB)] .
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Notice that these are the same payoff functions as in Section 4.2; hence, equilibrium

fees here will the same as in Proposition 4. That is, the regulation has no impact on

fees in this setting.

5.3.3 Behavioural consumers when receivers pay

Suppose instead that only receivers pay the fee. Suppose that senders believe that

whatever they pay to receive off-net, is what consumers on the other network will also

pay to receive off-net. Network A say does not care about the volume of A → B

transactions, and hence sets fA to maximize its revenue from B → A transactions,

which are independent of fA. Meanwhile, on-net transactions can be treated separately

and are again therefore priced at t∗. It then follows that equilibrium fees are n∗ = t∗

and f ∗ = v̄.14 Interoperability is unambiguously bad: it has no effect on on-net fees,

but causes consumers to over-pay for off-net transactions.

6 Conclusion

We have developed a simple model of digital payments across networks. We have shown

that introducing interoperability may reduce consumers’ welfare in a setting in which

consumers are poorly informed about the fees for off-net transactions. While off-net

transactions tend to be overpriced, regulations that impose caps on fees need not make

consumers better off.

Our model is deliberately stylized and it can be enriched along many important di-

mensions. One could introduce the possibility that new firms enter the market and/or

that existing firms may invest to expand their coverage. Moreover, rather than as-

suming that each provider acts as a local monopolist, one may consider the possibility

that (some) villages are served by different providers, thereby allowing providers to

compete with each other to attract consumers. We expect that interoperabilty may

have interesting, and possibly different, effects on consumers’ welfare in these settings.

14The fees would be exactly the same if senders believed that whatever they pay to receive on their
own network, is what receivers on the other network will pay to receive their money.

26



References

Annan, F. (2022), ‘Misconduct and reputation under imperfect information’, Available
at SSRN 3691376 .

Arabehety, P. G., Chen, G., Cook, W. & McKay, C. (2016), ‘Digital finance interoper-
ability & financial inclusion’, CGAP report .

Beck, T. & De La Torre, A. (2007), ‘The basic analytics of access to financial services’,
Financial markets, institutions & instruments 16(2), 79–117.

Beshears, J., Choi, J. J., Laibson, D. & Madrian, B. C. (2018), Behavioral household
finance, in ‘Handbook of Behavioral Economics: Applications and Foundations 1’,
Vol. 1, Elsevier, pp. 177–276.

Bianchi, M., Bouvard, M., Gomes, R., Rhodes, A. & Shreeti, V. (2023), ‘Mobile pay-
ments and interoperability: Insights from the academic literature’, Information Eco-
nomics and Policy 65, 101068.

Brunnermeier, M. K., Limodio, N. & Spadavecchia, L. (2023), ‘Mobile money, interop-
erability, and financial inclusion’, NBER Working Paper (w31696).

Carlin, B. I. (2009), ‘Strategic price complexity in retail financial markets’, Journal of
Financial Economics 91(3), 278–287.

Carlin, B. I. & Manso, G. (2011), ‘Obfuscation, learning, and the evolution of investor
sophistication’, The Review of Financial Studies 24(3), 754–785.

CGAP (2021), Building faster better: A guide to inclusive instant payment systems,
Technical report.

Chioveanu, I. & Zhou, J. (2013), ‘Price competition with consumer confusion’, Man-
agement Science 59(11), 2450–2469.

Demirguc-Kunt, A., Klapper, L., Singer, D. & Ansar, S. (2018), The Global Findex
Database 2017: Measuring financial inclusion and the fintech revolution, World Bank
Publications.

Donze, J. & Dubec, I. (2006), ‘The role of interchange fees in atm networks’, Interna-
tional Journal of Industrial Organization 24(1), 29–43.

Economides, N. & Jeziorski, P. (2017), ‘Mobile money in tanzania’, Marketing Science
36(6), 815–837.

Ellison, G. (2005), ‘A model of add-on pricing’, Quarterly Journal of Economics
120(2), 585–637.

Gabaix, X. & Laibson, D. (2006), ‘Shrouded attributes, consumer myopia, and in-
formation suppression in competitive markets’, Quarterly Journal of Economics
121(2), 505–540.

27
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Appendix

Proof of Proposition 1. Letting t denote its total on-net fee, a network wishes to maxt t[1−
G(t)]. Note that log-concavity of g implies log-concavity of 1−G, which in turn implies
that the network’s profit is log-concave and hence also quasiconcave. Taking the first
order condition and rearranging gives equation (1). Note that log-concavity of 1 − G
implies that the right-hand side of (1) is decreasing in t∗ and hence it has a unique
solution.

Proof of Proposition 2. First, consider on-net transaction fees. It is immediate that
network A’s profit is maximized by setting ns,A + nr,A = t∗, and network B’s profit is
maximized by setting ns,B + nr,B = t∗. Second, consider off-net fees associated with
transfers from network A to network B. Log-concavity of 1 − G ensures that both
networks’ profits from these transactions are quasiconcave in fs,A and fr,B respectively.
Taking first order conditions, we obtain

fs,A =
1−G(fs,A + fr,B)

g(fs,A + fr,B)
and fr,B =

1−G(fs,A + fr,B)

g(fs,A + fr,B)
.

Hence fs,A = fr,B. Setting the two fees equal to t∗∗/2, and substituting this in to one
of these equations and simplifying, we find that

t∗∗

2
=

1−G(t∗∗)

g(t∗∗)
. (5)

This equation has a unique solution because log-concavity of 1 − G implies that the
right-hand side is decreasing in t∗∗. Third, the same steps can be used to establish
that fs,B = fr,A = t∗∗. Finally, we prove that t∗∗ ∈ (t∗, 2t∗). On the way to a
contradiction, suppose that t∗∗ ≤ t∗: the left-hand side of (5) would be strictly less
than t∗, while using log-concavity of 1−G the right-hand side of (5) would be weakly
greater than [1 − G(t∗)]/g(t∗) ≡ t∗, which is impossible. Similarly, on the way to a
contradiction, suppose that t∗∗ ≥ 2t∗: the left-hand side of (5) would weakly exceed t∗,
while using log-concavity of 1 − G the right-hand side would be strictly smaller than
[1−G(t∗)]/g(t∗) ≡ t∗, which is again impossible. Hence t∗∗ ∈ (t∗, 2t∗) as claimed.

Proof of Lemma 1. We prove this for network A. (The steps for network B are exactly
the same and hence omitted.) First, suppose FB ≤ t∗. Clearly network A’s profit
is globally increasing in FA and hence maximized at FA = v̄. Second, then, suppose
FB > t∗. Following arguments in the text, network A’s profit is maximized at either
FA = t∗, whereupon it earns α(1 − α)t∗[1 − G(t∗)], or at FA = v̄, whereupon it earns
α(1−α)v̄[1−G(FB)]. The former exceeds the latter if and only if the inequality in the
lemma is satisfied. Note that this inequality is not satisfied if FB = t∗, but is satisfied
if FB = v̄.
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Proof of Proposition 3. Part i) was already explained in the text, so here we focus on
off-net fees in part ii). Using Lemma 1, we must have FA ∈ {t∗, v̄} and FB ∈ {t∗, v̄}.
Moreover, again using Lemma 1, if network A sets FA = t∗ then network B best
responds with FB = v̄, and if FB = v̄ then network A best responds with FA = t∗—
and hence this constitutes an equilibrium. Similarly, if network A sets FA = v̄ then
network B best responds with FB = t∗, and if FB = t∗ then network A best responds
with FA = v̄—hence this also constitutes an equilibrium. Moreover, it is clear there
are no other pure strategy equilibria.

Proof of Proposition 4. Part i) of the proposition (concerning off-net fees) follows from
arguments in the text. Now consider on-net fees. Note that only the total fees ns,A+nr,A

and ns,B + nr,B can be determined. Consider network A. The derivative of its profit
with respect to ns,A + nr,A is proportional to

α

[
1−G(ns,A + nr,A)

g(ns,A + nr,A)

]
− α(ns,A + nr,A)− (1− α)v̄.

Note that this is strictly decreasing in ns,A+nr,A given that 1−G is log-concave, and is
strictly negative as ns,A+nr,A → v̄. Therefore if it is weakly negative as ns,A+nr,A → 0,
the optimum has ns,A + nr,A = 0, and otherwise the optimum is the unique ns,A + nr,A

which sets the above equation to zero. This explains part ii) of the proposition. Part
iii) is proved in exactly the same way.

Proof of Lemma 2. We proceed using the following steps.
Step 1. Differentiating network A’s profit with respect to ns,A and nr,A gives re-

spectively the following two expressions:

α2[1−G(ns,A + nr,A)− (ns,A + nr,A)g(ns,A + nr,A)] (6)

+α(1− α)[1−G(ns,A + nr,B)− ns,Ag(ns,A + nr,B)], and

α2[1−G(ns,A + nr,A)− (ns,A + nr,A)g(ns,A + nr,A)] (7)

+α(1− α)[1−G(ns,B + nr,A)− nr,Ag(ns,B + nr,A)].

Similarly, differentiating B’s profit respect to ns,B and nr,B gives us

(1− α)2[1−G(ns,B + nr,B)− (ns,B + nr,B)g(ns,B + nr,B)] (8)

+α(1− α)[1−G(ns,B + nr,A)− ns,Bg(ns,B + nr,A)], and

(1− α)2[1−G(ns,B + nr,B)− (ns,B + nr,B)g(ns,B + nr,B)] (9)

+α(1− α)[1−G(ns,A + nr,B)− nr,Bg(ns,A + nr,B)].

Step 2. Next, we prove that ns,A, nr,A, ns,B, nr,B < v̄. We do this for ns,A and nr,A

(the proof for ns,B and nr,B is identical and therefore omitted). It cannot be optimal for
network A to choose ns,A, nr,A ≥ v̄; it would make zero transactions and so earn zero
profit, whereas if it deviated to ns,A+nr,A ∈ (0, v̄) it would earn strictly positive profit
from on-net transactions, which is a contradiction. Similarly it cannot be optimal for
network A to choose 0 ≤ ns,A < v̄ ≤ nr,A; it would earn α(1−α)ns,A[1−G(ns,A+nr,B)],
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whereas if it deviated to nr,A ∈ (0, v̄ − ns,A) it would earn at least an additional
α2(ns,A + nr,A)[1−G(ns,A + nr,A)] > 0. Using the same logic it also cannot be optimal
for network A to choose 0 ≤ nr,A < v̄ ≤ ns,A.

Step 3. Next, we prove that ns,A, nr,A, ns,B, nr,B > 0. We again do this for ns,A and
nr,A. It cannot be optimal for network A to choose ns,A, nr,A = 0; it would earn zero
profit, whereas if it deviated to ns,A+nr,A ∈ (0, v̄) it would earn strictly positive profit,
a contradiction. Similarly it cannot be optimal for network A to choose ns,A = 0 < nr,A.
On the way to a contradiction, suppose this is optimal. Then the derivative of network
A’s profit with respect to ns,A should be weakly negative around ns,A = 0, i.e., using
equation (6), it should be that

α2[1−G(nr,A)− nr,Ag(nr,A)] + α(1− α)[1−G(nr,B)] ≤ 0.

However, since nr,B < v̄ (from the previous step) this inequality can only hold if
1−G(nr,A)−nr,Ag(nr,A) < 0. Hence the first term in (7) must also be strictly negative.
Moreover, note that 1 − G(nr,A) − nr,Ag(nr,A) < 0 if and only if nr,A > t∗; this,
combined with log-concavity of G implies that the second term in (7) is either zero (if
ns,B + nr,A > v̄) or strictly negative (otherwise). Hence we conclude that nr,A ∈ (0, v̄)
(by assumption) and (7) is strictly negative, such that network A’s profit is locally
strictly decreasing in nr,A. But this is impossible, and hence a contradiction. Using a
similar argument it also cannot be optimal for network A to choose nr,A = 0 < ns,A.

Step 4. The previous two steps imply that we have an interior solution, and hence
equations (6)-(9) should bind with equality. Setting (6) and (7) to zero and combining
them, we obtain

1−G(ns,A + nr,B)− ns,Ag(ns,A + nr,B) = 1−G(ns,B + nr,A)− nr,Ag(ns,B + nr,A). (10)

Similarly, setting (8) and (9) to zero and combining them, we obtain

1−G(ns,A +nr,B)−nr,Bg(ns,A +nr,B) = 1−G(ns,B +nr,A)−ns,Bg(ns,B +nr,A). (11)

Adding these last two equations together, we have that

2[1−G(ns,A + nr,B)]− (ns,A + nr,B)g(ns,A + nr,B) (12)

= 2[1−G(ns,B + nr,A)]− (ns,B + nr,A)g(ns,B + nr,A).

We will use this equation to argue that ns,A + nr,B = ns,B + nr,A < v̄. As a first step,
notie that we must have ns,A + nr,B, ns,B + nr,A < v̄. On the way to a contradiction,
suppose that ns,A+nr,B, ns,B+nr,A ≥ v̄, which means that each network makes zero off-
net transactions. Consider network A. It must be that ns,A + nr,A ∈ (0, v̄), otherwise
network A would be earning zero profit, which by earlier arguments is impossible.
However we also know from Step 2 that nr,B < v̄, and so network A could keep its total
on-net fee ns,A+nr,A unchanged but rebalance the fees in such a way that ns,A+nr,B < v̄.
This would leave its profit from on-net transactions unchanged, but allow it to earn
strictly positive profit from off-net transactions from its own network to network B, a
contradiction.

Next, note that Assumption 2 implies that the left-hand side of (12) is strictly
decreasing in ns,A+nr,B < v̄, and that the right-hand side of (12) is strictly decreasing
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in ns,B + nr,A < v̄. Hence it must be that ns,A + nr,B = ns,B + nr,A < v̄.
Step 5. The previous step has established that ns,A + nr,B = ns,B + nr,A < v̄.

Substituting this into (10) and (11), we obtain that ns,A = nr,A and ns,B = nr,B.
Writing ns,A = nr,A = nA and ns,B = nr,B = nB and substituting this back into, say,
equations (6) and (8) and setting them equal to zero gives us (3) and (4).

Step 6. Finally, we need to show that profits are maximized at the solution we
have just derived. Consider network A. Letting πA denote its profit, the elements in
its Hessian matrix are:

∂2π

∂ (ns,A)
2 = −α2[2g(ns,A + nr,A) + (ns,A + nr,A)g

′(ns,A + nr,A)]

−α(1− α)[2g(ns,A + nr,B) + ns,Ag
′(ns,A + nr,B)],

∂2π

∂ (nr,A)
2 = −α2[2g(ns,A + nr,A) + (ns,A + nr,A)g

′(ns,A + nr,A)]

−α(1− α)[2g(ns,B + nr,A) + nr,Ag
′(ns,B + nr,A)],

∂2π

∂ns,A∂nr,A

= −α2[2g(ns,A + nr,A) + (ns,A + nr,A)g
′(ns,A + nr,A)].

Given Assumption 2 it is easy to check that the Hessian is negative definite at the
equilibrium fees (because, as established above, ns,A + nr,B = ns,B + nr,A < v̄ at the
equilibrium), and otherwise the Hessian is either negative definite or negative semi-
definite.

Proof of Proposition 5. The proof proceeds using three steps.
Step 1. We prove that in equilibrium nA + nB ∈ (t∗, t∗∗). On the way to a contra-

diction, suppose that nA + nB ≤ t∗. At least one of nA and nB must then be weakly
less than t∗/2. Suppose without loss of generality that nA ≤ t∗/2, in which case the
first term in (3) is weakly positive. In the preceding proof we argued that nA+nB < v̄,
and hence g(nA + nB) > 0. Therefore the second term in (3) is strictly larger than
1 − α multiplied by 1 − G(nA + nB) − (nA + nB)g(nA + nB), which is itself weakly
positive given the supposition that nA + nB ≤ t∗. But then the left-hand side of (3)
is strictly positive, which is impossible. On the way to another contradiction, suppose
that nA + nB ≥ t∗∗. At least one of nA and nB must then be weakly greater than
t∗∗/2. Suppose without loss of generality that nA ≥ t∗∗/2. Then, since t∗∗ > t∗, we
have nA > t∗/2 and thus the first term in (3) is strictly negative. Again, we also
know that g(nA + nB) > 0. Therefore the second term in (3) is weakly smaller than
1−G(nA+nB)− t∗∗g(nA+nB)/2, which itself is weakly negative given the supposition
that nA + nB ≥ t∗∗. But then the left-hand side of (3) is strictly negative, which is
impossible.

Step 2. We prove how the ranking of nA and nB depends on α. To do this, multiply
(3) by α, multiply (4) by 1− α, then subtract one from the other to get

α2[1−G(2nA)− 2nAg(2nA)]− (1− α)2[1−G(2nB)− 2nBg(2nB)]

= α(1− α)(nA − nB)g(nA + nB). (13)

Suppose α ∈ (0, 1/2). We prove that nA > nB. On the way to a contradiction,
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suppose that nA ≤ nB. The right-hand side of (13) is then weakly negative. In
addition, the supposition that nA ≤ nB implies that 1 − G(2nA) − 2nAg(2nA) ≥
1−G(2nB)−2nBg(2nB); moreover, at least the right-hand side of this inequality must
be negative, given that nA ≤ nB and nA + nB > t∗ jointly imply that nB > t∗. But
then the left-hand side of (13) is strictly positive, which is a contradiction.

Using the same steps, one can prove that if α ∈ (1/2, 1) then nA < nB, and that if
α = 1/2 then nA = nB.

Step 3. Finally, we prove that nA, nB > t∗/2. Consider first the case α ∈ (0, 1/2),
which from the previous step implies that nA > nB. On the way to a contradiction,
suppose that nB ≤ t∗/2. The first term in (4) must be weakly positive, and hence the
second term in (4) must be weakly negative. The latter in turn implies that the second
term in (3) is strictly negative, given that we have shown earlier that nA + nB < v̄
and hence g(nA + nB) > 0. But this implies that the first term in (3) must be strictly
positive, which can only be true if nA ≤ t∗/2. However then we have nA+nB ≤ t∗, which
contradicts what we showed in Step 1 of this proof. Hence nA, nB > t∗/2. The case
α ∈ (1/2, 1) can be proved in the same way. Consider finally the case α = 1/2, which
from the previous step implies nA = nB. In Step 1 we concluded that nA +nB > t∗, so
it follows immediately that nA = nB > t∗/2.

Proof of Lemma 3. The derivative of network A’s profit function (in the equation di-
rectly before the lemma) with respect to ns,A is G(NB)−G (NA), which is independent
of ns,A. The claimed “bang-bang” result then follows immediately.

Proof of Lemma 4. First, note that if NB ≤ t∗ then it is strictly dominated for network
A to set NA < NB given that its profit αNA[1−G(NA)] is strictly increasing over this
range. Hence network A will optimally set

NA = arg max
NA≥NB

α2NA[1−G(NA)] + α(1− α)NA[1−G(NB)]. (14)

Taking a first-order condition, and canceling an α term, we obtain

α[1−G(NA)−NAg(NA)] + (1− α)[1−G(NB)] = 0. (15)

(Second-order conditions are satisfied, and this equation also has a unique solution
NA > t∗(> NB), given Assumption 2.) Second, consider NB ∈ (t∗, v̄]. Conditional on
setting NA < NB, network A should optimally set NA = t∗ and earn profit αt∗[1 −
G(t∗)] which is independent of NB. Conditional on setting NA ≥ NB, network A’s
optimized profit is strictly decreasing in NB by a simple revealed preference argument.
(In particular, consider N ′

B and N ′′
B > N ′

B, and let N ′
A and N ′′

A be the associated
optimal total fees set by network A. Consider a decrease in NB from N ′′

B to N ′
B:

fixing NA = N ′′
A, network A’s profit strictly increases, and then since it can reoptimize,

network A’s profit further weakly increases.) Moreover, as NB → v̄, network A’s profit
from setting NA ≥ NB is zero, which is strictly less than αt∗[1−G(t∗)]. On the other
hand, at NB = t∗, it is clear that limNA↓NB

∂πA (NA, NB) /∂NA > 0 and so network
A is strictly better off setting NA > NB. These arguments together are sufficient to
establish the existence of the cutoff NB, and to conclude that NB ∈ (t∗, v̄).
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Finally, consider properties of NA when NB ∈ (t∗, NB). Network A’s optimal fee
satisfies (14) and thus also (15). Clearly, given that for NB ∈ (t∗, NB) we have estab-
lished that NA ≥ NB, it follows that NA > t∗. The lemma also claims that NA > NB.
On the way to a contradiction, suppose not, in which case NA = NB. But then network
A’s profit is

αNA[1−G(NA)] < αt∗[1−G(t∗)],

where the inequality uses the fact that NA = NB > t∗, as well as the fact that t[1−G(t)]
is by definition maximized at t∗. But this implies that network A would prefer to set
NA = t∗ < NB, which is a contradiction.

Proof of Proposition 6. We first sketch the proof of the equivalent of Lemma 4 for
network B. Network B’s problem can be written as

max
NB ,ns,B

(1−α)2NB[1−G(NB)]+α(1−α) {ns,B[1−G(NB)] + (NB − ns,B)[1−G(NA)]} ,

whereupon it is clear that for a fixed NB the optimal ns,B is generically “bang-bang”,
and so network B’s profit can be written as

πB(NA, NB) =

 (1− α)NB[1−G(NB)] if NB < NA

(1− α)2NB[1−G(NB)] + α(1− α)NB[1−G(NA)] if NB ≥ NA

.

Following the same steps as in the proof of Lemma 4, we can then show that there exists
a cutoff NA ∈ (t∗, v̄) such that if NA > NA then network B optimally sets NB = t∗,
while if NA < NA then network B optimally sets

NB = argmax
NB

(1− α)2NB[1−G(NB)] + α(1− α)NB[1−G(NA)], (16)

or equivalently, the unique solution to the following equation

(1− α)[1−G(NB)−NBg(NB)] + α[1−G(NA)] = 0. (17)

We now derive the pure strategy equilibria of the game. We have already argued
in the text that there is no such equilibrium with NA = NB.

Consider equilibria with NA < NB. We know from Lemma 4 that we must have
NA = t∗ and NB > NB. Following arguments in the first part of this proof, it is
immediate that network B is behaving optimally given that NA = t∗, and that network
B optimally chooses the unique NB that solves (17), i.e.,

(1− α)[1−G(NB)−NBg(NB)] + α[1−G(t∗)] = 0. (18)

It remains to check, however, that this NB satisfies NB > NB, such that network A is
optimizing as well. A sufficient condition for this is

∂πA(NA, NB)

∂NA

∣∣∣∣
NA=NB

≤ 0 ⇐⇒ α[1−G(NB)−NBg(NB)] + (1− α)[1−G(NB)] ≤ 0.

34



Using (18), this simplifies down to

(1− α)2[1−G(NB)] ≤ α2[1−G(t∗)].

Given that t∗ < NB and hence 1 − G(t∗) > 1 − G(NB), a sufficient condition for this
to hold is that α ≥ 1/2.

Now consider equilibria with NA > NB. We know from earlier in this proof that
we must have NB = t∗ and NA > NA. Using Lemma 4 it is immediate that network A
is pricing optimally given that NB = t∗, and that NA solves (15), i.e.,

α[1−G(NA)−NAg(NA)] + (1− α)[1−G(t∗)] = 0. (19)

It remains to check, then, that this NA satisfies NA > NA. Again, a sufficient condition
for this is that

∂πB(NA, NB)

∂NB

∣∣∣∣
NB=NA

≤ 0 ⇐⇒ (1− α)[1−G(NA)−NAg(NA)] + α[1−G(NA)] ≤ 0.

Using (19) this simplifies to

α2[1−G(NA)] ≤ (1− α)2[1−G(t∗)],

for which a sufficient condition is α ≤ 1/2.
We have therefore established that there are at most two asymmetric pure strategy

Nash equilibria. We have derived a sufficient condition α ≥ 1/2 for one of them, and a
sufficient condition α ≤ 1/2 for the other of them, to exist. We are therefore guaranteed
that there exists at least one such equilibrium. (And for α in a neighborhood of 1/2
both equilibria must exist.)
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