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Abstract

We analyze the optimal investment in a common infrastructure in a

market with network externalities. Taking a dynamic mechanism design

perspective, we contrast the level of investment and the associated payments

across firms that a budget-constrained welfare-maximizing principal would

set to those emerging in an unregulated market. We consider two market

scenarios: first, a nascent market in which only one firm operates and an

entrant may arrive at a later stage; second, a more mature market in which

two firms already operate. In these settings, the principal needs to set access

fees so as to provide enough incentives to invest in the infrastructure, while

also avoiding wasteful investment. At the same time, the principal needs

to coordinate investment and usage of the shared network given the various

externalities that each firm exerts. We highlight the relative importance of

these two aspects and how regulation can be designed so as to improve social

welfare. We also highlight how the optimal timing of investment depends

crucially on the regulator’s coordination power.
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1 Introduction

In many industries such as telecom and payments, service providers need to operate

on network infrastructures, whose development requires significant investments.

These infrastructures are non-rival, the access to a given network may be shared

with other providers. By investing in a possibly common infrastructure, each

provider creates a positive externality on current and future users. Moreover, the

benefits from using the network typically depend on the number of users using

the same network; that is, we have (positive) network externalities. This raises

coordination issues, on the timing of the investment and on the selection of the

infrastructure on which to operate. Both dimensions are further complicated by

the fact that new firms may arrive at a later stage and may benefit from existing

infrastructures, which introduces a non-trivial dynamic component in determining

how to manage the investment and the access to the infrastructure.

In this paper, we take a mechanism design approach to investigate the optimal

investment in a network infrastructure, which we view as a problem of dynamic

public-good provision. We consider as a running application the market for digital

payments; our logic, however, can be extended to other industries in which both

network externalities and investment in non-rival infrastructures are important.

The main ingredients of our model are the following. First, investment in

infrastructures has a public good component. Second, all else equal, the payoff

that each firm enjoys from using a given infrastructure increases in the number

of other firms using the infrastructure. Third, firms’ value from operating in

the common infrastructure depends both on an idiosyncratic and on a common

shock. The former captures the firm-specific valuation attached to the common

infrastructure, which is private information. The latter describes some aggregate

demand uncertainty, which can be resolved only if one firm invests and operates on

the infrastructure. This creates an additional externality: the investment of one

firm reveals some payoff relevant information to the other firms. Lastly, investment
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in the common infrastructure may occur over time, either because firms arrive

sequentially in the market or because one firm may be induced to invest early so

as to resolve the aggregate demand uncertainty.

We incorporate these ingredients in a simple two-periods model in which two

firms can operate on two independent small-scale infrastructures or invest in a

large-scale common infrastructure. While operating in the large-scale infrastruc-

ture is costlier, each firm may potentially derive extra benefits from it. These

benefits depend on the firm’s private valuation, on whether the other firm also

joins the common infrastructure, and on the state of the aggregate demand. We

are interested in comparing two different settings. In the first case, which can

be viewed as a market at an early stage of development, a monopolist operates

at small-scale in the first period and should decide whether to invest in the large

infrastructure, knowing that a second firm would arrive in the second period and

possibly join the common infrastructure (if it has been built). In the second setting,

which can describe instead a more developed market, the two firms are already

operating at small scale in the first period, and simultaneously decide whether to

invest in a common infrastructure. In both cases, upon investment in the common

infrastructure, firms can set access fees, possibly based on the reported private

valuations.

Our main objective is to analyze how, in these two settings, unregulated con-

tracting between the two service providers can lead to inefficient outcomes in terms

of investment and usage of the common infrastructure. We then consider how a

public authority may intervene and alleviate these inefficiencies. Specifically, we

consider a principal who designs a mechanism to maximize social surplus subject

to the budgetary constraints. We focus on two key roles that the principal may

play. First, the principal can regulate access fees so as to provide enough incentives

to invest in the infrastructure, while at the same time avoiding wasteful invest-

ment. As we show, this puts a limit on how much of the total surplus each firm

can extract. Second, given the various externalities that each firm exerts on the

other firm, the principal needs to coordinate investment and usage of the shared

network. We highlight how one aspect or the other (or both) can be important
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and how regulation can be designed so as to improve social welfare.

Indirectly, our analysis also speaks to the optimal timing of common invest-

ment. We show how depending on our parameters, and specifically the cost of

the investment and the uncertainties related to it, the public authority may push

towards an early investment, when only one firm is on the market, or a late in-

vestment, when both the incumbent and the entrant operate. We also highlight

how the optimal timing of investment depends crucially on the capacity (or lack

thereof) of the regulator to induce both firms to operate on the common infras-

tructure; that is, on its coordination power.

More specifically, our first setting features sequential entry: firm 1 operates in

period 1, while firm 2 arrives in period 2. In this case, the mechanism determines

the probability of investment in period 1 only based on firm 1’s type. In order to

set a simple benchmark, we define our parameter values such that, in the first-best

scenario with no budget balance constraints, it is optimal to invest in period 1

irrespective of firm 1’s type, and to grant usage to both firms if and only if the

aggregate demand turns out to be high and at least one firm has a high valuation.

Suppose that the market is not regulated and firm 1 designs a mechanism

so as to maximize its expected revenues, with no private information and full

commitment. We show that when the opportunity cost of operating in the large

infrastructure is sufficiently large, firm 1 may invest but at the same time commit

to exclude firm 2 if it reports low valuation. While socially wasteful, this threat

increases the incentive for firm 2 to truthfully report its valuation and so the

required payment to firm 1 in case of high valuation. In this way, firm 1 can

extract all the surplus from firm 2. This mechanism leads to an inefficiently low

usage of the infrastructure and it is reminiscent of monopoly pricing, in which a

monopolist prefers to increase prices at the expenses of cutting quantity. In our

case, moreover, wasteful investment in the large infrastructure is more likely to

arise precisely when the cost of investment is large.

It is also immediate to notice that the inefficiency would not be resolved by

simply giving all the bargaining power to firm 2. As we show, in this case, a classic

hold-up problem arises: knowing that firm 2 is less likely to contribute in period
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2, firm 1 has lower incentives to invest in the first place, leading to an inefficiently

low level of investment. Under this perspective, the key role of the principal is

to regulate access fees, providing sufficient incentives to invest, which limits the

payments that firm 2 can expect, while at the same time avoiding wasteful invest-

ments, which instead puts a cap on the payments that firm 1 can expect. These

trade-offs determine the optimal mechanism that a budget-constrained principal

would design in order to maximize social welfare.

In the second part of our analysis, we consider a setting in which both firms

are available in period 1, and so the mechanism can be designed based on the

joint distribution of firms’ valuations. Relative to the sequential entry case, this

improved information may allow for more efficient outcomes. At the same time,

however, the fact that both firms could invest in their own infrastructure opens

the possibility of a game in which firms and consumers need to coordinate (or to

bargain) on which infrastructure they operate on, which may be socially wasteful.

The main role of a regulator here is to coordinate firms’ decisions so as to induce

an efficient equilibrium at the investment and usage stages.

We start by considering an unregulated market. In this case, the main source

of inefficiency is again due to the fact that, in order to maximize its expected

revenues, a firm with high valuation may commit not to invest in the common

infrastructure if the other firm reports a low valuation. As in the previous analysis

with sequential entry, this is socially wasteful but allows extracting further surplus

from the other firm.

Suppose instead we introduce a principal who can elicit both firms’ valuations

and coordinate their joint investments. The mechanism can now induce more effi-

cient outcomes than in the setting with sequential entry considered above. When

both firms are available in period 1, the probability of inefficient investment is

strictly lower, as the principal can condition on both firms’ type and so avoid in-

vesting if both firms report low valuations. At the same time, the probability of

efficient investment is strictly larger, as the risk that the investment cost cannot

be recovered in period 2 is lower and so the budget constraint is less likely to bind.

This highlights the potential efficiency gains of investing in a more mature market.
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The efficiency gains of late investment come from the combination of two effects.

First, the principal can elicit both firms’ valuations and design the investment

probabilities based on them. Second, the principal can coordinate the investment

between the two firms and choose which firm needs to make the investment. In

order to highlight the value of information, we consider a setting in which, as in

the case of sequential entry, only one firm is able to incur the investment (for

example for technological reasons), but at the same time the principal can still

condition his recommendations based on both firms’ reports. In this case, the

outcome is equivalent in terms efficiency to the one in which both firms can invest.

That is, the key efficiency gains induced by the principal arise from the possibility

to communicate with both firms, rather than from the technological aspect as to

which firm can invest.

In order to highlight the value of coordination, we consider a setting in which

the market is regulated by a weaker principal, which we call “mediator.” While

having the same objective function as the principal, the mediator does not have

the power to license firms’ ability to operate on a given network. As the mediator

cannot prevent deviating firms from using their own infrastructure, firms’ outside

option is now potentially more attractive. In case of deviation, the firm can not

only operate on its own small-scale infrastructure, but also invest in a large infras-

tructure and try to induce the other firm to operate on it by optimally setting an

access fee. This implies that the mediator can induce lower payments when firms

participate in the common infrastructure, which makes the budget constraint more

likely to bind. In turn, this reduces the probability of investment even when this

would be socially efficient.

The resulting efficiency losses can be substantial. As we show, absent coordina-

tion power, the principal may derive little benefits from having more information.

In fact, the welfare gains obtained in a setting with a mediator can be lower than

those with sequential entry. That is, if the principal lacks coordination power, it

may be more efficient to opt for an early investment, when only one firm is on

the market, rather than waiting that both firms operate, since the efficiency gains

from having more information would be more than outweighed from the efficiency
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losses from the severe coordination problems.

These results highlight that ”regulatory capacity” is a key dimension to con-

sider when assessing the optimal timing of investment in the common infrastruc-

ture. Interventions in more developed markets require enough regulatory capacity

to mandate that all firms operate on the infrastructure; the benefits of late inter-

ventions are much lower, and can even turn negative, when the regulator cannot

prevent firms from building and operating on their own separate network. These

arguments resonate well with recent developments of digital payment infrastruc-

tures, in Brazil and Bangladesh for example. One of the key determinants of

the massive expansion of the instant payment platform PIX in Brazil has been

the central bank’s ability to mandate that all the largest institutions participate

in the scheme from its launch. Conversely, in Bangladesh, a public digital pay-

ment scheme has been introduced without securing the participation of all major

providers, which has severely limited its success.

Broadly, our paper belongs to the mechanism design literature on public-goods,

in which a principal (e.g., a government) typically plans to provide a non-rival

and/or non-excludable good in case agents (e.g., residents) attach enough val-

ues to it. However, the agents’ valuations are their private information and the

principal is budget-concerned, so that the celebrated VCG mechanism (Vickrey

(1961), Clarke (1971), and Groves (1973)) or its dynamic counterpart (Bergemann

& Välimäki (2002)) are not available.1 The novelty of our paper relative the exist-

ing work is in the combination of two key elements. First, we consider a network

good, where each agent’s payoff depends on how many other agents are available;

second, we consider a dynamic environment where some agents may arrive late and

1For example, Myerson (1982) study a bilateral-trading model, which can be reinterpreted as
a two-agent public-good problem. Their result shows a fundamental impossibility of the first-
best welfare under fairly general conditions. They also characterize the second-best mechanism,
which our dynamic analysis builds on. Mailath & Postlewaite (1990) and Hellwig (2003) study the
public-good problem with many agents. With more agents, free-riding would become severer, and
Mailath & Postlewaite (1990) show that, under certain conditions, little surplus can be enjoyed
in such a setting. Hellwig (2003) shows that, under different conditions, some non-negligible
surplus can still be enjoyed in the optimal mechanism with many agents. Moulin & Shenker
(1992) and Moulin (1994) study different variations of the public-good problems (corresponding
to different types of goods) and derive the properties of desirable mechanisms.
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aggregate uncertainty can be resolved only if one agent invests. This combination

makes the social decision of public goods provision unique and non-trivial.

In static environments, the most related work is Shichijo & Fukuda (2021)

who study public goods with network externality. Even in a static setting, net-

work externality introduces a coordination-game aspect to the problem, because

each agent’s incentive to participate in a mechanism and reporting truthfully may

depend on her expectation about other agents’ participation. In our dynamic en-

vironment, the problem is further complicated by the fact that some agents may

only be available in later periods. This creates uncertainty on whether the current

investment would create any value for the existing and future-arriving agents.

In a dynamic setting, Athey & Segal (2013) propose a version of an AGV

mechanism (d’Aspremont & Gérard-Varet (1979)) which satisfy desirable incen-

tive and budget properties. In our setting, the aggregate demand uncertainty

and the potential unavailability of some agents are important, especially with the

network externality of the public good: It is socially better to invest in a public

good if aggregate demand is high enough and late-coming agents have high-enough

valuations, but that can only be known later. Those elements make the possibil-

ity result of Athey & Segal (2013) inapplicable, and our second-best mechanism

accommodates some inefficiency as a consequence of those frictions.

A second stream of related literature is the one studying public-good provision

problems as a dynamic game among voluntary contributors (see, for example,

Admati & Perry (1991), Marx & Matthews (2000), and Battaglini et al. (2014)).

In these papers, the main frictions come from the specificity of the considered game

forms.2 Under these “frictional” game forms, they obtain inefficiency in the public

good provision even under complete information and no late arrivals. In our case,

without incomplete information and no late arrivals, the first-best efficiency would

trivially be possible, because the principal can design the game form optimally.

Rather, our focus is on the role of incomplete information and dynamic arrival

of the agents in shaping the optimal mechanism and implying possible sources of

2Specifically, Admati & Perry (1991) consider an alternate-move game, Marx & Matthews
(2000) consider a multi-stage simultaneous-move game, Battaglini et al. (2014) study the differ-
ence between irreversible and reversible investment environments.
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inefficiency.

Finally, a substantial literature in IO and competition policy has investigated

the effects of various regulatory interventions on firms’ incentives to invest in net-

work infrastructures (see e.g. Vogelsang (2003); Cambini & Jiang (2009); Briglauer

et al. (2014) for comprehensive reviews). While this literature typically focuses on

firms’ strategic interactions and on how specific policies can reduce inefficiencies,

we take a complementary view and consider a mechanism design problem. Our

main focus is on the role of a budget-constrained principal (e.g. the government)

which designs welfare-maximizing policies in a rather general space.

2 Basic ingredients

Let us first introduce the set of players and explain their payoffs. The timing

and information structure of the game are explained later, as we consider different

possibilities.

There exist two ex ante symmetric firms i = 1, 2 (also called, agents) interpreted

as a potential service providers. Time is discrete, t = 1, 2, and no one discounts

the future. Each firm may enter the market either at t = 1 or t = 2 (different

timing structures are considered in the following sections).

Each firm can operate on its own network, which is incompatible across firms,

and the payoff of this small-scale service provision is normalized to 0 throughout.

Alternatively, firms can operate on a common and fully interoperable infrastructure

(henceforth, just referred to as the infrastructure) and enjoy a possibly larger

payoff by exploiting the network externalities. The degree of this additional payoff

is heterogeneous across firms, and there is some common uncertainty regarding

say the demand side of the service.

More formally, let vi denote the benefit of operating on the common infras-

tructure (recall that we normalize the value of operating in small-scale to 0). This

additional revenue is privately known by the firm and it also depends on the

demand state Θ ∈ {H,L}, and on the number of firms operating on the infras-

tructure. We assume that vi ∈ [0, 1] if Θ = H and both firms are operating on the
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infrastructure (network externality), while it is 0 otherwise (i.e., either if Θ = L

or if only one firm operates on the infrastructure).3

Let θ denote the probability that Θ = H. This demand state Θ is initially

uncertain, although it is revealed publicly at the end of t = 1 if at least one firm

operates on the infrastructure in t = 1. This can create a social benefit of investing

early so as to learn the demand state.

At the same time, it is more costly for each firm to operate on the common

infrastructure. We denote with γ > 0 the (exogenously given) additional cost each

firm must bear in each period when operating on the infrastructure, relative to the

small-scale one. We assume no fixed investment cost in the infrastructure (this is

mainly for notational simplicity).

From these assumptions, it is not clear if it is socially desirable to invest in the

common infrastructure. If vi < γ for both i, or if the demand state is known to be

Θ = L, then it is socially wasteful to operate on the infrastructure. If vi > γ for

both i and Θ = H, then it is socially valuable to do so. In the intermediate case

where one has vi > γ but the other has vj < γ (and Θ = H), then it depends on

v1 + v2.

Finally, depending on the specifications, we assume that the market can be

regulated by a public authority (also called, principal), that wishes to maximize

social welfare. The authority can commit to a mechanism, comprising a decision

rule of investment and a monetary transfer rule, as a function of the agents’ re-

ported values vi (hence, appreciating their incentive compatibility constraints).

We will contrast this situation with an unregulated market in which firms operate

in a decentralized way. We will analyze the inefficiencies arising in the latter case,

hence highlighting the possible scope for a regulatory authority.

3The fact that the state is revealed at the end of period 1 can be interpreted as requiring
some time for consumers to learn about the service and so for their demand to be realized. This
assumption will simplify some of our next analysis.
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3 Emerging Markets: Regulating Prices

In this section, we assume that only firm 1 is available at t = 1; firm 2 is available

only at t = 2. This can thought as a situation in which the market is at an early

stage, with just one firm operating. We first solve the principal’s problem of total

surplus maximization; we then consider an unregulated market.

3.1 Timing and information structure

The timing and information structure of the game is as follows.

At t = 1, firm 1 reports its value type v1 to the mechanism (recall that v1 is the

additional revenue of firm 1 if both firms operate on the common infrastructure and

Θ = H). Firm 2 is unavailable at this point, so the mechanism recommends firm

1’s investment in the infrastructure with probability q(v1), only as the function of

v1 but not of v2.

If firm 1 does not invest, then we proceed to the next period, t = 2. If it does,

then firm 1 may operate on it already at t = 1, which would require paying the

cost γ > 0 and it would bring no additional revenue. However, it would allow the

society to learn the state Θ.

Now consider t = 2, where both firm 1 and 2 are available. If no investment has

been made at t = 1, it is not optimal to invest in the infrastructure since Θ would

be revealed at the end of t = 2, that is too late to enjoy network externalities.

Also, even if firm 1 invested in and operated on the infrastructure, if that revealed

that Θ = L, then it would be socially optimal that no firm operates on it at t = 2.

Thus, only if firm 1 invested in and operated on the infrastructure, and if that

revealed that Θ = H, it may be socially valuable that both firms operate on it at

t = 2 (and obviously, the network externality implies that it should be either both

firms operating on it or neither).

In that last case, having observed what has happened, firm 2 reports its value

type v2 to the mechanism. Assume that firm 2 does not observe firm 1’s report of

v1 at this point.4 Given the report of v1 (made at t = 1) and v2, the mechanism

4Although different assumptions are possible, in light of the revelation principle, it is optimal
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specifies the probability that both firms operate on the infrastructure, r̃(v) ∈ [0, 1];

and it also specifies the monetary transfer from each i to the principal, p̃i(v). To

be clear, r̃(v) is the probability conditional on the investment at t = 1 and Θ = H.

Let r(v) = θq(v)r̃(v) ∈ [0, θq(v)] be the probability unconditional on those events.

Similarly, let pi(v) = θq(v)p̃i(v) ∈ R denote i’s expected payment unconditional

on those events.

If the principal is not budget-constrained, then the first-best outcome is possible

based on the idea of Vickrey–Clarke–Groves mechanisms. In that mechanism,

each firm’s payment function is designed so that, with that payment function,

each firm’s objective is essentially fully aligned with the social surplus. However,

in the context of public goods, it is known that the principal always makes a

loss in expectation. Therefore, in the realistic case where the principal is budget-

constrained, it is far less trivial what the desirable mechanism is.

3.2 Optimal Mechanism

Assume that vi ∈ {0, 1} and it is i.i.d. across agents, with Pr(vi = 1) = π. By

focusing on a simple binary-type case, we can better highlight the properties of

the optimal mechanism.

The optimal mechanism is given by:

max Ev[q(v1)(−γ) + θq(v1)r̃(v)(v1 + v2 − 2γ)]

sub. to r(v) = θq(v1)r̃(v) ≤ θq(v1), Ev[p1(v) + p2(v)] ≥ 0,

Ev2 [q(v1)(−γ) + θq(v1){r̃(v)(v1 − γ)− p̃1(v)}]

≥ max{0,Ev2 [q(v
′
1)(−γ) + θq(v′1){r̃(v′1, v2)(v1 − γ)− p̃1(v

′
1, v2)}]}

Ev1|Invest at t = 1[θ{r̃(v)(v2 − γ)− p̃2(v)}]

≥ max{0,Ev1|Invest at t = 1[θ{r̃(v1, v′2)(v2 − γ)− p̃2(v1, v
′
2)}]},

where the second constraint is the budget-balance constraint, and the last two con-

for the principal not to reveal the report of v1 to firm 2. On the other hand, the assumption
that firm 2 observes the investment at t = 1, is innocuous: even if firm 2 does not observe it, the
result would not change at all.
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ditions are about the agents’ participation and incentive-compatibility constraints.

For firm 1’s constraint, firm 1 computes its expected payoff without knowing v2,

nor Θ. Firm 2 instead knows whether firm 1 has invested at t = 1 or not, and

the constraints above are when firm 1 has invested. Obviously, if no investment

has been made at t = 1, firm 2’s continuation payoff is 0. Observe that this last

constraint can be rewritten as follows:

Ev1 [r(v)(v2 − γ)− p2(v)] ≥ max{0,Ev1 [r(v1, v
′
2)(v2 − γ)− p2(v1, v

′
2)]},

because its left-hand side is Ev1 [q(v1)] times the left-hand side of the original

constraint (i.e., Ev1|Invest at t = 1[θ{r̃(v)(v2 − γ)− p̃2(v)}]) + (1−Ev1 [q(v1)]) · 0, and
similarly for the right-hand side.

Therefore, the optimal mechanism is given by:

max Ev[q(v1)(−γ) + r(v)(v1 + v2 − 2γ)]

sub. to r(v) ≤ θq(v1), Ev[p1(v) + p2(v)] ≥ 0,

Ev2 [q(v1)(−γ) + r(v)(v1 − γ)− p1(v)]

≥ max{0, q(v′1)(−γ) + r(v′1, v2)(v1 − γ)− p1(v
′
1, v2)}

Ev1 [r(v)(v2 − γ)− p2(v)]

≥ max{0,Ev1 [r(v1, v
′
2)(v2 − γ)− p2(v1, v

′
2)]}.

By the standard argument, the participation constraint is binding for the low

type vi = 0, while the incentive-compatibility constraint is binding for the high

type vi = 1. Let Ui(vi) be agent i’s expected payoff under truth-telling given its

type vi:

U1(v1) = q(v1)(−γ) + Ev2 [r(v1, v2)](v1 − γ)− P1(v1)

U2(v2) = Ev1 [r(v1, v2)](v2 − γ)− P2(v2),
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where Pi(vi) = Ev−i
[pi(vi, v−i)]. The binding constraints imply:

−P1(0)− γq(0)− γEv2 [r(0, v2)] = 0

−P2(0)− γEv2 [r(v1, 0)] = 0

−P1(1)− γq(1) + Ev2 [r(1, v2)](1− γ) = −P1(0)− γq(0) + Ev2 [r(0, v2)](1− γ)

= Ev2 [r(0, v2)]

−P2(1) + Ev1 [r(v1, 1)](1− γ) = −P2(0) + Ev1 [r(v1, 0)](1− γ)

= Ev1 [r(v1, 0)],

and thus:

P1(0) = −γq(0)− γ[πr(01) + (1− π)r(00)]

P2(0) = −γ[πr(10) + (1− π)r(00)]

P1(1) = −γq(1) + (1− γ)[πr(11) + (1− π)r(10)]− [πr(01) + (1− π)r(00)]

P2(1) = (1− γ)[πr(11) + (1− π)r(01)]− [πr(10) + (1− π)r(00)].

In what follows, it is clearly optimal to set r(00) = 0, and hence we omit this

term from here on.

The budget-balance constraint becomes:

0 ≤ BB ≡ (1− π)(P1(0) + P2(0)) + π(P1(1) + P2(1))

= (1− π){−γq(0)− γπ(r(10) + r(01))}

+π{−γq(1) + (1− γ)[2πr(11) + (1− π)(r(10) + r(01))]− π(r(10) + r(01))}

= −γ(πq(1) + (1− π)q(0))

+π2r(11)(2− 2γ) + π(1− π)(1− 2γ)(r(10) + r(01))− π2(r(10) + r(01)).

We remark that, whenBB = 0, maximizing the social surplus (that is, −γ(πq(1)+

(1− π)q(0)) + π2r(11)(2− 2γ) + π(1− π)(1− 2γ)(r(10) + r(01))) is equivalent to

maximizing π2(r(10) + r(01)). Indeed,we will find that the optimal mechanism

sets r(10) + r(01) as large as possible, which as we will show gives r(10) = θ and
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r(01) = θq(0), where q(0) is maximized conditional on the budget constraints.

The Lagrangian is:

L = −πγq(1)− (1− π)γq(0)

+π2r(11)(2− 2γ) + π(1− π)(r(10) + r(01))(1− 2γ)

+λ ·BB

= (1 + λ){−γ(πq(1) + (1− π)q(0)) + π2r(11)(2− 2γ) + π(1− π)(1− 2γ)(r(10) + r(01))}

−λπ2(r(10) + r(01))

with the remaining constraint q(v1) ≥ r(v) for all v.

From the Lagrangian, it is clear that, fixing q(1), it is optimal to set r(11) as

large as possible; that is, r(11) = θq(1). Similarly, fixing r(01), it is optimal to set

q(0) as small as possible: that is, q(0) = r(01)
θ

.

Thus, the Lagrangian becomes:

L = (1 + λ){−γ(πq(1) + (1− π)q(0)) + π2θq(1)(2− 2γ) + π(1− π)(1− 2γ)(r(10) + θq(0))}

−λπ2(r(10) + θq(0)).

To reduce the number of cases and focus on interesting parameter regions, let

us assume:

Assumption 1. θπ(1− 2γ) > γ.

The assumption implies that it is optimal to set q(0) = 1 if budget-unconstrained

(i.e., λ = 0). It also implies that q(1) = 1 is optimal, as the coefficient for q(1) in

the Lagrangian is proportional to πθ(2− 2γ)− γ > 0. Thus:

L = (1 + λ){−γ(π + (1− π)q(0)) + π2θ(2− 2γ) + π(1− π)(1− 2γ)(r(10) + θq(0))}

−λπ2(r(10) + θq(0)).

It further implies that q(0) > 0 in the optimal mechanism. To see this, suppose

contrarily that q(0) = 0 in the optimal mechanism. It must be that λ > 0 by the

above assumption, i.e., the budget constraint must be binding. However, with
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q(0) = 0, we have:

BB = −γπ + π2θ(2− 2γ) + π(1− π)(1− 2γ)r(10)− π2r(10),

which is strictly positive, because (a) with r(10) = 0 we have:

BB = π(−γ + πθ(2− 2γ)) > 0,

and (b) with r(10) = θ we have:

BB = π(−γ + θ(1− 2γ)) > 0,

and (c) by linearity, BB > 0 with any in-between r(10).

The coefficient for r(10) in the Lagrangian is proportional to:

(1 + λ)(1− π)(1− 2γ)− λπ,

while that for q(0) is proportional to:

(1 + λ){−γ
1− π

πθ
+ (1− π)(1− 2γ)} − λπ,

and thus, in the optimal mechanism, q(0) > 0 necessarily implies r(10) = θ.

For q(0), either q(0) = 1 (if it is budget-feasible), or q(0) ∈ (0, 1) satisfies

the budget constraint with equality. First, q(0) = 1 (together with q(1) = 1,

r(11) = r(10) = r(01) = θ) is optimal if:

BB = π{−γ + θ((2− π)(1− 2γ)− π)} − (1− π)γ ≥ 0, (1)

that is,

γ ≤ γ1 ≡
2πθ(1− π)

2πθ(2− π) + 1
. (2)

If γ > γ1, then the optimal mechanism sets an interior q(0) in order to satisfy
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the budget constraint with equality:

q(0) =
π(−γ + θ(1− 2γ))

(1− π)(γ − πθ(1− 2γ)) + π2θ
∈ (0, 1), (3)

together with q(1) = 1, r(11) = r(10) = θ and r(01) = θq(0).5

Regarding the payments, we have:

P2(0) = −γπθ < 0 (4)

and

P2(1) = (1− γ)πθ + {(1− γ)(1− π)− π}θq(0) > 0, (5)

and thus, agent 2 is subsidized if v2 = 0 (in expectation with respect to v1), while

it pays if v2 = 1. The first case (with v2 = 0) is because agent 2 brings a positive

externality through the network externality in this economy: Recall that, given

v2 = 0, the infrastructure is used if and only if v1 = 1. That is, agent 2 enjoys

no value from it, while agent 1 can enjoy it only if agent 2 uses it too. Therefore,

agent 2 must be incentivized to use the infrastructure. The second case (with

v2 = 1) is different: Now with v2 = 1, agent 2 enjoys a positive value from the

infrastructure. Moreover, agent 1 with v1 = 0 must be subsidized in order for him

to invest at t = 1 (recall q(0) > 0). By the budget-balance requirement, its source

must be agent 2 with v2 = 1.

For agent 1, we have:

P1(0) = −γq(0)− γπθq(0) < 0, (6)

that is, it is paid if v1 = 0, otherwise it would not invest at t = 1. If agent 1 has

5That q(0) ∈ (0, 1) is because:

(1− π)(γ − πθ(1− 2γ)) + π2θ = π{−γ + θ(1− 2γ)}
+(1− π)γ − π{−γ + θ((2− π)(1− 2γ)− π)},

and the last term is positive when BB < 0.
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v1 = 1, then:

P1(1) = −γ + (1− γ)θ − πθq(0), (7)

which is positive or negative, depending on the parameters. More specifically,

suppose that γ is large and so q(0) is close to 0 (that is, given the expression of

q(0), γ is close to θ/(1 + 2θ)). Then using Assumption 1 one can conclude that

P1(1) is negative. That is intuitive: when the opportunity cost of undertaking

the investment is large, firm 1 needs to be subsidized. Suppose instead that γ is

small and so q(0) is close to 1 (that is, given the expression of q(0), γ is close to

2θ(1 − π)/(1 + 2θ)(2 − π)). In this case, it is immediate to show that P1(1) is

positive if and only if π < 2θ/(1+2θ); that is, when π is sufficiently small relative

to θ. Again this is intuitive: when θ is small, so is the probability that firm 1 is

compensated in period 2 (which only occurs when the state turns out to be H)

and so firm 1 needs to be subsidized in order to invest in period 1. When π is

small, so is the probability that firm 2 will be of high type. Since firm 2 is likely

to need a subsidy to operate, and since the budget constraint needs to balance,

firm 1 needs to contribute a positive amount.

We summarize our findings in the next proposition.

Proposition 1. Under Assumption 1, the optimal mechanism for the principal

is such that: q(1) = 1, r(11) = r(10) = θ, r(00) = 0 and r(01) = θq(0), where

q(0) = 1 if γ ≤ γ1, and q(0) is given by Equation 3 if γ > γ1. The corresponding

transfers are given in Equations 4-7.

3.2.1 First-Best Outcomes

In the first-best allocation, the principal does not have to worry about the budget-

balance requirement, because she can set each firm’s payment exactly in the way

that each firm breaks even; as long as the investment and usage occur only if it

is socially valuable (which is indeed the case), the principal can always make a

non-negative revenue. Thus, the first-best allocation would set r(11) = r(10) = θ

with q(1) = 1; r(01) = θq(0) and r(00) = 0 where q(0) maximizes the expected
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welfare:

−γ(π + (1− π)q(0)) + π2θ(2− 2γ) + π(1− π)(1− 2γ)(r(10) + θq(0));

equivalently, q(0) = 1 if −γ + π(1 − 2γ)θ > 0, which is indeed the case given

Assumption 1. Accordingly, the probability of investment is always weakly higher

in the first-best outcome.

3.3 Unregulated Market

Now, consider the case without the principal. Although there can be several ways

to formulate that case, we wish to remain as close as possible to the previous

setting. Let us imagine a situation where one of the agents, say firm 1, writes a

mechanism on its own at the “ex ante” stage where no one has private information

yet. This may be interpreted as the case where firm 1 has a full bargaining power

and can commit to the proposed mechanism. For comparison, let us continue to

assume Assumption 1.

As in the previous analysis, we consider mechanisms which induce firms to

truthfully reveal their types. For firm 1, as we will see, the associated IC constraint

would not bind. Inducing truthful revelation of firm 2’s type is a way for firm 1

to maximize its expected revenues. A potential concern is that, by designing a

given mechanism, firm 1 may reveal some private information. The literature

on mechanism design by an informed principal has shown that i) firm 1 should

(without loss of generality) choose the same mechanism irrespective of its type (so

that it does not convey any information to firm 2), while at the same time eliciting

firm 1’s own report and make the allocation contingent on firm 1’s type (the

inscrutability principle), and that (ii) firm 1’s incentive compatibility is typically

not binding so irrespective of its type firm 1 may maximize its own expected payoff

subject only to firm 2’s incentive compatibility (and other kinds of feasibility)

constraints.6

6Myerson (1982) provides a classic treatment; Maskin & Tirole (1990) and Mylovanov &
Tröger (2014) consider private values, most closely to our setting.
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As we will show, even if the setting is close to the one with the principal, having

firm 1 designing the mechanism introduces some distortion in the decisions and

payments. For example, r(01) could be lower than socially optimal (recall that,

under Assumption 1, the principal-optimal mechanism sets r(01) = θ).

The optimal mechanism in view of firm 1 is given as follows:

max Ev[q(v1)(−γ) + r(v)(v1 − γ)− p1(v)]

sub. to r(v) ≤ θq(v1), p1(v) + p2(v) ≥ 0, ∀v;

Ev2 [q(v1)(−γ) + r(v)(v1 − γ)− p1(v)]

≥ max{0, q(v′1)(−γ) + r(v′1, v2)(v1 − γ)− p1(v
′
1, v2)}, ∀v1

Ev1 [r(v)(v2 − γ)− p2(v)]

≥ max{0,Ev1 [r(v1, v
′
2)(v2 − γ)− p2(v1, v

′
2)]},∀v2.

Regarding firm 2, again, IR for type 0 and IC for type 1 must bind in the

optimal mechanism. Thus:

P2(0) = −γ[πr(10) + (1− π)r(00)]

P2(1) = (1− γ)[πr(11) + (1− π)r(01)]− [πr(10) + (1− π)r(00)].

For firm 1, for now, let us ignore its IR and IC constraints. They can be shown

to be satisfied in the optimal mechanism. Moreover, the budget constraint must

be binding (otherwise, firm 1 can reduce p1(·) and get better off). Also, let us set

r(00) = 0 as it is never optimal to set r(00) > 0.

Therefore, the problem becomes:

max Ev[q(v1)(−γ) + r(v)(v1 − γ) + p2(v)]

sub. to r(v) ≤ θq(v1) ∀v,
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where:

Ev[q(v1)(−γ) + r(v)(v1 − γ) + p2(v)]

= −γ(πq(1) + (1− π)q(0)) + π(1− γ)(πr(11) + (1− π)r(10)) + (1− π)πr(01)

+(1− π)(−γπr(10)) + π{(1− γ)[πr(11) + (1− π)r(01)]− πr(10)},

where the second line on the right hand side corresponds to the payment from firm

2.

As before, it is optimal to set q(1) = 1, r(11) = θ, and r(01) = θq(0) (the logic

is the same and hence omitted). Thus, the objective becomes

−γ(π + (1− π)q(0)) + π(1− γ)(πθ + (1− π)r(10)) + (1− π)πθq(0)

+(1− π)(−γπr(10)) + π{(1− γ)θ[π + (1− π)q(0)]− πr(10)}

= −γπ + π2θ(2− 2γ) + q(0)(1− π){−γ + πθ(2− γ)}+ r(10)π{(1− π)(1− 2γ)− π}

As opposed to the case with the principal, now, the coefficient for r(10) is

not necessarily greater than that of q(0). Indeed, although Assumption 1 implies

−γ + πθ(2 − γ) > 0 and hence q(0) = 1 in the optimal mechanism for firm 1, it

is possible that (1− π)(1− 2γ)− π is non-positive (for example, imagine the case

with γ ≃ 0 and 1− 2π < 0).

Intuitively, the reason is that firm 1 is more revenue-oriented than the principal.

Notice that r(10) is the probability that both firms operate on the infrastructure

introduced at t = 1 (recall q(1) = 1 in the optimal mechanism). Given that the

facility is there, the principal would let the firms use it for sure, in order to yield

the positive social surplus. However, given that v2 = 0, firm 1 cannot expect much

payment from firm 2: indeed, P2(0) is negative, that is firm 2 with v2 = 0 is rather

subsidized. Due to incentive compatibility for type v2 = 1, this also means that

the revenue from firm 2 with v2 = 1 cannot be so high (as otherwise firm 2 would

have an incentive to mimic the low-value type). By setting r(10) = 0 and hence

wasting the infrastructure in case of v2 = 0, firm 1 can expect a higher fee revenue.

Notice also that, in the case with the principal, the mechanism always sets
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q(1) = 1 while potentially reducing q(0) in order to satisfy the budget constraint.

This is because q(1) affects both r(11) and r(10) (recall that r(11) = r(10) = θq(1))

while q(0) only affects r(01); hence, increasing q(1) is socially more valuable than

increasing q(0). On the other hand, firm 1 would set q(0) = 1, because it can

expect revenue from firm 2 with v2 = 1.

Let us compute the payment in case r(10) = 0, that is, when

γ > γ2 ≡
1− 2π

2− 2π
. (8)

We have:

P2(0) = 0 (9)

P2(1) = (1− γ)θ. (10)

Regarding type v2 = 0, as explained above, it is supposed to be subsidized in the

principal-optimal mechanism, but here, it receives 0, as type v2 = 0 never uses the

infrastructure. As a consequence, P2(1) is such that type v2 = 1 receives no rent,

that is, firm 2 is fully extracted.

Conversely, if γ ≤ γ2, we have r(10) = θ and payments are given by:

P2(0) = −γπθ (11)

P2(1) = (1− γ)θ − πθ. (12)

In this case, firm 1 can extract less surplus from firm 2 as it is not optimal to

commit to deny the usage of the infrastructure in case firm 2 reports v2 = 0, which

increases the (minimal) subsidy required by firm 2 for using the infrastructure if

v2 = 0 and decreases the (maximal) payment required to firm 2 for using the

infrastructure if v2 = 1.

Proposition 2. The optimal mechanism for firm 1 is such that: q(1) = q(0) =

1, r(11) = r(01) = θ, and r(00) = 0. If γ > γ2, r(10) = 0 and payments are given in

Equations (9) and (10). If γ ≤ γ2, r(10) = θ and payments are given in Equations

(11) and (12).
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Relatively to the case with the principal, we now have a larger probability of

investment (since the firm always sets q(0) = 1), which brings the outcome closer

to the first best (which given Assumption 1 is to have q(0) = 1). At the same time,

we have a lower probability of usage conditional on investment (since we may have

r(10) = 0). This is reminiscent of monopoly pricing in which the monopolist

prefers to cut quantity (here, usage) and increase prices (here, transfers). This is

clearly inefficient since it involves paying the investment cost γ and at the same

time not using the infrastructure. Moreover, this is more likely to happen precisely

when the cost of such inefficiency is large (that is, when γ ≥ γ2).

3.3.1 Hold Up Problems

The assumption that firm 1 has full bargaining power can be seen as extreme.

On the other hand, leaving full bargaining power to firm 2 may also generate

inefficiencies. Knowing that it will be fully extracted, firm 1 may refrain from

investing in period 1, thereby resulting in too little investment relative to the case

with the principal.

To illustrate this most simply in our setting, suppose that the mechanism is

instead designed by firm 2; that is, maximizing firm 2’s expected payoffs, subject

to firm 1’s participation and incentive compatibility constraints. Firm 1 would

choose its investment in period 1 anticipating the mechanism proposed by firm 2

in period 2. Following the same logic as above, let us define

γ3 ≡
πθ(1− 2π)

(1− π)(2πθ − π + 1)
, (13)

and show the following proposition.7

Proposition 3. The optimal mechanism for firm 2 is such that: q(1) = 1, r(11) =

r(10) = θ, and r(00) = 0. If γ > γ3, q(0) = r(01) = 0; if γ ≤ γ3, q(0) = 1 and

r(01) = θ.

Relative to the case in which firm 1 designs the mechanism, we observe as

intuitive a lower probability of investment in period 1 due to a classic hold-up

7The proof repeats the one in the previous section and it is hence omitted.
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problem. In terms of efficiency, however, the overall effect is not clear since firm 2

would never prevent usage after the investment has been made (while firm 1 may

set r(10)=0).

Remark. Our modeling of the bargaining equilibrium outcome as maximizing

the weighted sum of each firm’s payoffs is in the same spirit as Loertscher & Marx

(2022), who formalize this idea in a static bargaining problem. As in Loertscher

& Marx (2022), the outcome tends to be more inefficient when the Pareto weights

are more biased toward one agent, and especially at the extreme case where all the

bargaining power is given to one of the agents. Interestingly, in our setting with

sequential arrival, different kinds of inefficiencies arise depending on which firm

has the bargaining power. If the incumbent firm has the full bargaining power, it

behaves like in the usual monopoly problem, investing in the public goods in some

unnecessary states; while if the newly arriving firm has it, it is more like a hold-up

problem, resulting in too little investment by the incumbent firm.

4 Mature Markets: Coordinating Firms

While in the previous section we have considered an emerging market in which

firms enter sequentially, we here consider a setting corresponding, say, to a more

mature market in which both firm 1 and 2 are available at t = 1. In principle,

the investment can be made at either t = 1 or t = 2 (or never), but given our

assumption on the resolution of the uncertainty about Θ, it is better to never

invest than to invest at t = 2.

That both agents are available at t = 1 creates a possibility of both investing in

their own infrastructures at the same time, which is also socially wasteful. In case

both invest at t = 1, then at t = 2, one of them is to be used. More specifically,

we can imagine a coordination game where each firm (and maybe consumers too)

decide which one to use. There are typically many equilibria of this game, some

of which would be socially inefficient, and the role of the principal is to coordinate

firms’ decisions so as to induce an efficient equilibrium at the investment and usage

stages. We will contrast this situation with a setting in which the principal has a
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more limited power, and in particular it cannot prevent firms from using their own

infrastructure if they decide to deviate from the principal’s recommendation. This

allows us to highlight in the simplest way the role of the principle as a coordinator.

4.1 Timing and information structure

The timing and information structure of the game is modified as follows.

At t = 1, both firm 1 and 2 (simultaneously) report their value types v1 and v2

to the mechanism. The mechanism recommends each firm to invest in a infrastruc-

ture with probability, q1(v) and q2(v), respectively. In principle, it is possible that

both firms invest at the same time; however, let us focus on the case where, on the

equilibrium path, they do not invest at the same time. That is, qi(v) denotes the

probability that only i invests in a infrastructure, which implies q1(v)+ q2(v) ≤ 1.

This assumption can be shown without loss: any mechanism with overlapping

investment can be dominated by another mechanism without it.8

If no investment happens at t = 1, then nor at t = 2, and hence, the end of

the game. Similarly, even if an investment is made at t = 1, if that reveals Θ = L,

then no firm operates on the infrastructure, and hence, the end of the game. Only

if an investment has been made at t = 1 revealing Θ = H, firms may operate on

the infrastructure at t = 2: in this case, given that both types are reported at

t = 1, it is without loss to assume that both firms operate on the infrastructure

for sure.9

A complication arises in case a firm invests in a infrastructure even if it is not

recommended to do so. For now, we assume that the principal can coordinate on

the pure equilibrium where no firm operates on it at t = 2. We examine the role

of the principal as a coordinator in this sort of situation, by later considering an

alternative story where such a coordination is not possible. The other ingredients

8Notice also that having both firms operating in a common infrastructure already at t = 1 is
not optimal given that this would require that both firms incur the cost γ already at t = 1 while
network externalities can only be enjoyed at t = 2.

9More precisely, any mechanism such that an investment is made at t = 1 with some v while
it is not used at t = 2 with the same v is dominated by another mechanism where no investment
is made with this v.
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of the game are the same as in Section 3.

4.2 Unregulated Market

We first consider the case where, as in Section 3.3, one of the firms (say, firm 1)

designs a contract instead of the principal, corresponding to the case where this

firm has the full bargaining power over the other firm.

Let qi(v) denote the probability that firm i invests in the infrastructure at

t = 1.10 The problem of maximizing firm 1’s ex ante expected payoff is as follows:

max Ev[q1(v)(−γ) + q(v)θ(v1 − γ) + p2(v)]

sub. to Ev1 [q2(v1, 0)(−γ) + q(v1, 0)θ(−γ)− p2(v1, 0)] ≥ 0

Ev1 [q2(v1, 1)(−γ) + q(v1, 1)θ(1− γ)− p2(v1, 1)]

≥ Ev1 [q2(v1, 0)(−γ) + q(v1, 0)θ(1− γ)− p2(v1, 0)],

where q(v) = q1(v) + q2(v), the first constraint is firm 2’s IR if v2 = 0, and

the second constraint is its IC if v2 = 1; as in the previous cases, all the other

constraints do not bind.

Making the two constraints binding, we obtain:

P2(0) = Ev1 [q2(v1, 0)(−γ) + q(v1, 0)θ(−γ)]

= −γ[π(q2(10) + q(10)θ]

P2(1) = Ev1 [q2(v1, 1)(−γ) + q(v1, 1)θ(1− γ)]− θEv1 [q(v1, 0)]

= π[q2(11)(−γ) + q(11)θ(1− γ)− q(10)θ]

+(1− π)[q2(01)(−γ) + q(01)θ(1− γ)− q(00)θ].

10From the argument expressed in Section 4.1, there is no gain in both firms’ simultaneously
investing in the infrastructure, as only one of them is to be used at t = 2. Here, qi(v) should be
interpreted as the probability of i’s investment without −i’s.
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Plugging them in the objective and rearranging it, the problem reduces to:

max π2q(11)(−γ + θ(2− 2γ)) + (1− π)πq(01)(−γ + θ(1− 2γ))

+π(1− π)q(10)(−γ + θ(1− 2γ))− π2θq(10)

+(1− π)2q(00)(−γ + θ(−2γ))− π(1− π)θq(00).

Clearly, it is optimal to set q(11) = q(01) = 1 and q(00) = 0. Thus, the

objective becomes:

π2(−γ + θ(2− 2γ)) + (1− π)π(−γ + θ(1− 2γ))

+πq(10)[(1− π)(−γ + θ(1− 2γ))− πθ].

Recall that, in Section 3.3, if (1 − π)(1 − 2γ) − π < 0, then firm 1 would set

r(10) = 0, thereby investing in the infrastructure at t = 1 while at the same time

setting a very high fee, which prevents firm 2 to use the infrastructure when v2 = 0.

Here, in a similar way, firm 1 may also set q(10) = 0 and the same phenomenon

occurs when (1− π)(−γ + θ(1− 2γ))− πθ < 0, that is when

γ > γ4 ≡
θ(1− 2π)

(1 + π)(1 + 2θ)
. (14)

Notice that γ4 < γ2, that is the condition is a weaker than in Section 3.3. The

difference comes from the fact that, here, firm 1’s decision at t = 1 can depend on

firm 2’s type. In Section 3.3, firm 1 with v1 = 1 invests at t = 1 hoping that firm

2 has v2 = 1, while it may turn out to be a waste; here, firm 1 with v1 = 1 invests

at t = 1 if and only if v2 = 1. In both cases, firm 1 sets a high fee so that firm

2 with v2 = 1 is fully extracted. In both cases, the outcome is inefficient. Here,

the probability of inefficiency is larger (since the condition for having q(10) = 0 is

weaker than the one for having r(10) = 0 in Section 3.3). At the same time, in

Section 3.3, the inefficiency is costlier as it involves paying the investment cost γ,

and moreover as mentioned, the inefficiency is more likely to arise when γ is large.

We can summarize as follows:
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Proposition 4. The optimal mechanism for firm 1 is such that: q(11) = q(01) = 1

and q(00) = 0. If γ ≤ γ4, q(10) = 1; if γ > γ4, q(10) = 0.

4.3 Optimal Mechanism

Consider now the optimal mechanism with a principal. As described above, in

case two firms invest in an infrastructure, the principal can choose which one to

coordinate on. This means that, even though a firm can always invest at t = 1, the

principal can negate it at t = 2 by selecting an equilibrium where no one operates

on that infrastructure. Therefore, the firm’s outside option, that is, the right-hand

side of its participation constraint, is given by operating on its small-scale network,

whose payoff is normalized to 0.

The principal’s optimal mechanism is given by:

max Ev[q(v)(−γ + θ(v1 + v2 − 2γ))]

sub. to Ev[p1(v) + p2(v)] ≥ 0,

Ev2 [q1(v)(−γ) + θq(v)(v1 − γ)− p1(v)]

≥ max{0,Ev2 [q1(v
′
1, v2)(−γ) + θq(v′1, v2)(v1 − γ)− p1(v

′
1, v2)]}

Ev1 [q2(v)(−γ) + θq(v)(v2 − γ)− p2(v)]

≥ max{0,Ev1 [q2(v1, v
′
2)(−γ) + θq(v1, v

′
2)(v2 − γ)− p2(v1, v

′
2)]},

where q(v) = q1(v) + q2(v).

Let Pi(vi) = Ev−i
[pi(vi, v−i)]. By the standard argument, the low type’s IR and

the high type’s IC constraints are binding, and thus:

Pi(0) = Ev−i
[qi(0, v−i)](−γ) + θEv−i

[q(0, v−i)](−γ),

Pi(1) = Ev−i
[qi(1, v−i)](−γ) + θEv−i

[q(1, v−i)](1− γ)− θEv−i
[q(0, v−i)].
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Therefore, the budget-balance constraint becomes:

0 ≤ BB = πP1(1) + πP2(1) + (1− π)P1(0) + (1− π)P2(0)

= Ev[q(v)(−γ + θ(v1 + v2 − 2γ))]

−πθ((1− π)2q(00) + π(q(01) + q(10))),

and therefore, the corresponding Lagrangian is:

L = (1 + λ)Ev[q(v)(−γ + θ(v1 + v2 − 2γ))]

−λθ[2π(1− π)q(00) + π2(q(01) + q(10))].

It is easy to see that the solution must satisfy q(11) = 1 and q(00) = 0.

Regarding q(01), q(10), we have (i) q(10) = q(01) = 1 if it is budget-feasible:

0 ≤ π2[−γ + θ(2− 2γ))] + 2π(1− π)[−γ + θ(1− 2γ)]− 2π2θ; (15)

while (ii) otherwise, any pair of (q(10), q(01)) with q(10) + q(01) = Q(< 2) is

optimal, where:

0 = π2[−γ + θ(2− 2γ)] + π(1− π)[−γ + θ(1− 2γ)]Q− π2θQ. (16)

We can summarize in the following proposition.

Proposition 5. Under Assumption 1, the optimal mechanism for the principal is

such that: q(11) = 1, q(00) = 0 and q(01) + q(10) = Q. If Equation 15 holds, we

have Q = 2; otherwise, Q is given by Equation 16.

In order to understand the role of the principal in this setting, it is useful to

compare the optimal mechanism relative to the one in which only firm 1 is available

in period 1, as described in Section 3.2. First, we notice that the principal’s budget

constraint is more likely to bind in Section 3.2. Comparing the condition for

having q(0) = q(1) = 1 in Section 3.2 (that is, Equation 1) to the one for having

q(10) = q(01) = 1 here (that is, Equation 15), we notice that the latter is more

likely to be satisifed, the difference being equal to γ(1 − π)2. This is intuitive as
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it corresponds to the probability that, in Section 3.2, both firms turn out to be of

low type and in that case the investment cost cannot be recovered.

We then observe that outcomes are more efficient when both firms are available

in period 1. Given our Assumption 1, it is optimal to invest if at least one firm

has high valuation. When both firms are available, we have a lower probability of

inefficient investment (occurring when both firms turn out to have low type); this

probability being zero relative to (1−π)2q(0) in Section 3.2. At the same time, the

probability of efficient investment is larger, being equal to π2+π(1−π)Q, relative

to π2+π(1−π)(1+q(0)) in Section 3.2, where it can be shown with simple algebra

that Q > 1 + q(0) unless Q = 2 and q(0) = 1 (i.e., the case of corner solutions).11

The difference in the total surplus is a weighted sum of these two components:

letting W3 denote the surplus in the optimal mechanism in Section 3.2, and W4

denote the one in this section, we have:

W4 −W3 = γ(1− π)2q(0) + π(1− π){θ(1− 2γ)− γ}(Q− 1− q(0)). (17)

The first term in the r.h.s. of the equation represents the expected cost of in-

efficient investment; the second term represents the expected benefit of efficient

investment. One may question how these terms depend on our underlying pa-

rameters. Indirectly, this would shed light on how the effects of investing in the

common infrastructure would differ between emerging and mature markets and

so under which conditions the benefits of waiting that the market develops (as in

Section 4) would be large relative to the case of an early investment (as in Section

3).12

11Observe that Q− 1− q(0) equals:

π(−γ + θ(2− 2γ)){(1− π)(γ − π(θ)(1− 2γ)) + π2θ} − [(1− 2π)γ + π2θ(2− 2γ)]{(1− π)(γ − θ(1− 2γ)) + πθ}
{(1− π)(γ − π(θ)(1− 2γ)) + π2θ}{(1− π)(γ − θ(1− 2γ)) + πθ}

which simplifies to

(1− π)2γ{θ(1− 2γ)− γ}
{(1− π)(γ − π(θ)(1− 2γ)) + π2θ}{(1− π)(γ − θ(1− 2γ)) + πθ}

> 0.

12These comparisons are only suggestive of the possible dynamic trade-offs. As we mention
in the conclusion, we view a full treatment of these trade-offs as an important avenue for future
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At this level of generality, comparative statics are difficult, because a change

in a parameter affects many terms at the same time (recall that Q and q(0) are

complicated functions of the parameters). Hence, let us focus on some sub-cases

where we have clearer comparative statics. Suppose that γ is sufficiently small or π

is sufficiently large, implyingQ = 2 and q(0) = 1. In this case,W4−W3 = γ(1−π)2,

and thus, only the part of the investment cost matters. When γ is sufficiently small

or π is sufficiently large, however, this part is small, implying a small difference in

surplus between the two cases.

Next, consider the case of interior solutions: Q < 2 and q(0) < 1. A change

in a parameter affects the surplus difference in a complex manner (as it affects

W4 −W3 directly and also indirectly through Q and q(0)). In order to gain some

insights, focus on the case where x ≡ θ(1−2γ)−γ ≃ 0, that is, in case one firm has

a high valuation while the other has a low valuation, there is almost no expected

gain from investment. Because both q(0) and Q − 1 − q(0) are proportional to

x, they are close to 0.13 Therefore, W4 −W3 is close to 0 too. Intuitively, this is

the case where any parameter affects W4 − W3 only indirectly through q(0) and

Q− 1− q(0) (more precisely, through x), as its direct effect is 0: indeed, denoting

W4 − W3 = xf , where f(> 0) is a (complicated) function of the parameters, we

have:

∂

∂x
(W4 −W3) = f + x

∂f

∂x
≃ f > 0,

that is, W4 − W3 increases in x. Intuitively, when x ≃ 0 (and hence q(0) and

Q − 1 − q(0) are close to 0), there is not much gain in waiting for the principal,

because the efficiency gain of it is limited (that is, W4 − W3 is close to 0). An

increase in x means that the efficiency increases more when both firms are present

analysis.
13Recall that:

q(0) =
π(θ(1− 2γ)− γ)

(1− π)(γ − πθ(1− 2γ)) + π2θ

Q− 1− q(0) =
(1− π)2γ{θ(1− 2γ)− γ}

{(1− π)(γ − π(θ)(1− 2γ)) + π2θ}{(1− π)(γ − θ(1− 2γ)) + πθ}
.
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(W4) than when only one firm exists (W3).

Finally, in order to further analyze the differences between the market scenarios

in Sections 3 and 4, notice that the efficiency gains that the principal can induce

when both firms are available can be driven by two effects. First, the principal can

coordinate the investment between the two firms. Second, the principal can elicit

both firms’ valuations and design the investment probabilities based on them. In

the next analysis (Sections 4.4 and 4.5), we highlight the contribution of these

two dimensions, assessing the value of information and of coordination in our

framework.

4.4 The Value of Information

The analyses in Section 3.2 and 4.3 uncover the advantage of having both firms

available at the initial stage. Indeed, the principal can achieve at least weakly

higher expected welfare if both are available. The fact that both firms are available

implies two differences from the case where only one is available: first, the principal

can communicate with both firms, and hence the investment decision can be a

function of both v1 and v2 instead of just v1; and second, the principal can choose

which firm to invest in the infrastructure. A natural question is which aspect

contributes more to the welfare improvement. To see this, in this section, we

consider a hypothetical situation where, as in Section 3.2, only firm 1 can invest

while at the same time allowing the principal to communicate with both firms at

t = 1. This can be considered as an intermediate case between Section 3.2 and 4.3.

Comparing the outcomes in this case with those in Section 3.2 allows to highlight

the value of information in our setting.

Recall that, in the analysis in Section 4.3, the only variable that matters is

q(v) = q1(v) + q2(v) for each v, rather than individual qi(v). In other words,

two allocations (q1(·), q2(·)) and (q′1(·), q′2(·)) attain the same surplus (where the

corresponding P and P ′ are determined by the binding IR and IC constraints) as

long as they satisfy q1(v) + q2(v) = q′1(v) + q′2(v) for all v. In particular, letting

q∗(·) denote the investment probabilities (summed across two firms) in the optimal

mechanism, we can achieve the same welfare by simply setting q1(v) = q∗(v) and
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q2(v) = 0 for all v. In other words, from an ex-ante perspective, what is crucial is

the fact that the principal can communicate with both (and hence the investment

decision can be contingent on v), rather than the technological aspect as to which

firm can invest.

4.5 The Value of Coordination

Suppose there is no principal who can coordinate on the equilibrium selection at

t = 2 in case multiple infrastructures are invested at t = 1. To highlight this

coordination value, in the “no-principal” scenario, we assume that the mechanism

itself is still designed by a surplus-maximizing entity, call him a mediator to avoid

confusion. That is, this mediator, much like the principal in the previous analysis,

designs the probability of each firm’s investment and the corresponding transfers to

maximize the total surplus subject to the budget constraint, each firm’s participa-

tion and incentive compatibility constraint. The key difference with the principal

is that while the principal could license firms’ ability to operate on a given network

and so coordinate on the network’s usage, the mediator does not have such power.

Each firm can decide whether or not to participate to the mechanism; that is, to

report its type to the mediator and comply with the ensuing recommendations. If

at least one of the firm decides not to participate, the mediator has no further role.

Differently from the principal, the mediator cannot control firms’ behaviors if they

decide not to comply. Each firm i can decide to invest in its own infrastructure at

t = 1 and optimally set an access fee, in case the other firm −i wishes to operate

on firm i’s infrastructure at t = 2. This implies that, relative to the case with the

principal, each firm’s participation constraint is not relative to zero payoff, but

relative to the payoff of investing in an infrastructure on its own and of setting the

fee optimally.
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Formally, the mediator’s problem is as follows:

max Ev[q(v)(−γ + θ(v1 + v2 − 2γ))]

sub. to Ev[p1(v) + p2(v)] ≥ 0,

Ev2 [q1(v)(−γ) + θq(v)(v1 − γ)− p1(v)]

≥ max{x1(v1),Ev2 [q1(v
′
1, v2)(−γ) + θq(v′1, v2)(v1 − γ)− p1(v

′
1, v2)]}

Ev1 [q2(v)(−γ) + θq(v)(v2 − γ)− p2(v)]

≥ max{x2(v2),Ev1 [q2(v1, v
′
2)(−γ) + θq(v1, v

′
2)(v2 − γ)− p2(v1, v

′
2)]},

where q(v) = q1(v) + q2(v), and xi(vi) represents firm i’s non-participation payoff

given its type vi.

Let us discuss xi(vi) more in detail. There are potentially multiple ways to

define the non-participation payoff and, in principle, xi(vi) can be derived from

a game in which firms simultaneously decide their investment and transfers, and

possibly bargain in order to select on which infrastructure to operate. Here, in

order to focus our analysis, we take a reduced form and simply assume that in

case both firms decide to invest, one infrastructure is selected at random, and

both firms (and consumers) operate on the selected infrastructure. We further

exploit the symmetry of our setting and set this probability equal to 1/2.

If firm i does not participate, because it is an off-path event, we can freely

select −i’s belief about i’s type. Let −i believe that firm i has the high type for

sure, so that −i finds it optimal to invest in its own infrastructure, and set the

fee of 1 − γ in case his infrastructure is selected at t = 2. Hence, in this case, i’s

payoff is 0.

In case firm i’s infrastructure is selected, then i can optimally set its access fee.

If vi = 0, it is optimal for firm i to charge the fee 1− γ so that only the high type

of firm j would accept it. Therefore:

xi(0) = −γ +
1

2
θπ(1− 2γ). (18)

If vi = 1, then firm i’s optimal fee can be either (i) 1 − γ so that only the high
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type of firm j accepts it (as above), or (ii) −γ so that both types of firm j accept

it. That is:

xi(1) = −γ +
1

2
θπ(2− 2γ), (19)

which is assumed to exceed −γ + 1
2
θ(1− 2γ) (that is, π > (1− π)(1− 2γ)). This

assumption is basically just for notational simplicity.

In the rest of this section, let us assume that xi(0) ≥ 0 (and hence xi(1) ≥ 0)

in order to focus on the interesting parameter region:

Assumption 2. −γ + 1
2
θπ(1− 2γ) ≥ 0.

This assumption is slightly stronger than Assumption 1. By the same logic as

in the previous cases, it can be shown that the optimal mechanism sets q1(1, 1) +

q2(1, 1) = 1 and q1(0, 0) = q2(0, 0) = 0, which we assume from here on.

As before, the participation constraint of the low-value type holds with equality:

Pi(0) = Ev−i
[−γqi(0, v−i) + θq(0, v−i)(−γ)]− xi(0). (20)

The constraints for the high-value type becomes:

Ev−i
[−γqi(1, v−i)] + θEv−i

[q(1, v−i)(1− γ)]− Pi(1) = max{xi(1), θEv−i
[q(0, v−i) + xi(0)]};

In order to define which term in r.h.s. of the previous equation binds, let i = 1

and observe that:

x1(1) = −γ + θπ(1− γ)

θEv2 [q(0, v2)] + x1(0) = −γ + θπ(q(01) +
1

2
− γ),

and thus, x1(1) ≤ θEv2 [q(0, v2)] + x1(0) iff
1
2
≤ q(01). The next lemma shows that

indeed this inequality holds.

Lemma 1. q(01), q(10) ≥ 1
2
in the optimal mechanism.

Proof. If q(01) < 1
2
in some optimal mechanism, then IR binds for v1 = 1 and

IC does not. Then, increasing q(01) is always beneficial for the principal: It
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strictly increases the objective (because q(01) has a positive coefficient there), and

it increases the left-hand side of each binding constraint (note that IC for v1 = 1 is

not binding). Therefore, it contradicts that the mechanism is optimal. The same

logic also shows q(10) ≥ 1
2
.

From Lemma 1, we have that x1(1) ≤ θEv2 [q(0, v2)] + x1(0) and so the IC

constraint when v1 = 1 writes as:

Pi(1) = Ev−i
[−γqi(1, v−i)] + θEv−i

[q(1, v−i)(1− γ)− q(0, v−i)]− xi(0). (21)

The budget constraint becomes:

π2(−2γ + θ(2− 2γ)) + π(1− π)(−2γ + θ(1− 2γ))(q(10) + q(01))

−π2θ(q(10) + q(01))− 2(−γ + θπ(
1

2
− γ)) ≥ 0.

We obtain that either q(10) = q(01) = 1 if that does not violate the budget

constraint, or they solve the above budget balance constraint with equality. That

is, recalling that Q = q(01) + q(10), we have q(10) = q(01) = 1 if it is budget-

feasible:

π2(−2γ − 2θγ) + 2π(1− π)(−2γ + θ(1− 2γ))− 2(−γ + θπ(
1

2
− γ)) ≥ 0. (22)

while otherwise, we have

Q =
π2(−2γ + θ(2− 2γ))− 2(−γ + θπ(1

2
− γ))

θπ(2π − 1) + γπ(1− π)(2 + 2θ)
. (23)

Proposition 6. Under Assumption 2, the optimal mechanism for the mediator is

such that: q(11) = 1, q(00) = 0 and q(01) + q(10) = Q. If Equation 22 holds, we

have Q = 2; otherwise, Q is given by Equation 23.

Comparing with the solution in Section 4.3, here we obtain a smaller proba-

bility of the efficient investment. While, as the principal, the mediator is able to

condition on both firms’ valuation and so avoid inefficient investment (when both
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firms report low type), it also faces a tighter budget constraint than the princi-

pal, thereby reducing the investment probability. Specifically, the difference in the

budget constraint from the case with the principal is given by the last term in

the previous equation, which corresponds to 2xi(0), as expressed in Equations 20

and 21. Since xi(0) > 0, the participation constraints are harder to satisfy and so

expected payments must be lower.

Interestingly, however, these effects are weaker when γ is larger: as shown in

Equation 18, firms’ outside option xi(0) decreases in the investment cost γ. As

a result, the l.h.s. of Equation 22 may increase in γ, implying that the budget

constraint may be less likely to bind, and so the probability of investment may be

larger when the investment cost is larger. In particular, the subsidy received by

a low type firm is lower (i.e., the payment in Equation 20 is closer to zero) as γ

increases, which allows relaxing the budget constraint.

The comparison with the unregulated case is however more subtle. Conditional

on being away from the first best, inefficiencies are smaller in the setting with the

mediator. The reason is that, as seen in Section 4.2, firm 1 may set q(01) =

1 and q(10) = 0 if γ is large enough. Instead, the mediator would always set

q(01) + q(10) > 1. This can be easily seen by noticing that, when q(01) = 1

and q(10) = 0, the above budget constraint is slack, implying that the mediator

would set larger investment probabilities. At the same time, the probability of

being away from full efficiency (i.e., from q(01)=1 and q(10)=1) is not necessarily

smaller in a setting with a mediator relative to an unregulated case. The reason

is that, while in terms of objective function the mediator is fully aligned with the

principal, in terms of commitment (or coordination) power it is not. In fact, the

commitment power is larger (hence, closer to the case with the principal) in an

unregulated setting, and it is a priori not clear which effect dominates.

Finally, it is useful to compare the case with the mediator to the one in Section

3.2 in which firms sequentially enter the market. On the one hand, the mediator

has more information than the principal in Section 3.2 (whose investment deci-

sion are based only on firm 1’s type), and this potentially leads to more efficient

outcomes. On the other hand, the mediator faces coordination issues, as it can-

37



not prevent firms from building their own infrastructure, which may be lead to

efficiency losses. We show that the latter effect may dominate; that is, absent

coordination power, the mediator cannot take advantage of the increased informa-

tion and in fact outcomes can be less efficient than in Section 3.2 with sequential

entry. To see this, notice that the welfare in the mediator case writes as

π2(−γ + θ(2− 2γ)) +Qπ(1− π)(−γ + θ(1− 2γ)),

while the welfare with sequential entry in Section 3.2 writes as

−γ(π + (1− π)q(0)) + π2θ(2− 2γ) + π(1− π)(1− 2γ)θ(1 + q(0)).

Taking the difference between the latter and the former, we have:

(1−Q)π(θ(1− 2γ)− γ) + q(0)(πθ(1− 2γ)− γ),

which can be positive when q(0) is large relative to Q (recall that πθ(1−2γ)−γ > 0

from Assumption 1). For example, suppose that π → 1, we have from Equation

(23) that Q → 1 and from Equation (3) that q(0) > 0. Hence, in this case, welfare

gains are larger with sequential entry than with the mediator.

5 Conclusion

We have analyzed the optimal investment in a common infrastructure in a market

characterized by network externalities. We have compared the level of investment

and the associated payments in a setting in which a principal can design a mech-

anism specifying investment probabilities and prices to an unregulated case, both

in a nascent market in which only one firm operates and another firm may arrive

at a later stage, and in a more mature market in which two firms already operate.

Our analysis has highlighted the value of regulation both in terms of price setting

and in terms of coordination.

Our model is deliberately very simple; other important elements are worth
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considering. While our analysis indirectly speaks about the optimal timing of

investment (showing under which conditions regulatory interventions are more ef-

ficient in more mature markets), we have not modeled explicitly the option value of

waiting (say, to have a better sense of the aggregate demand) against its potential

costs (say, as firms discount the future). In addition, one may introduce further

uncertainty, not only on whether a potential entrant will show up in a later period

but also on the number of potential entrants. In a market with several firms, the

optimal mechanism may not only exploit network externalities, but also induce

competition among firms so as to possibly reduce information rents. We view

these as interesting avenues for future research.
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