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Abstract

In order to identify the Average Treatment Effect (ATE) of a binary treatment

on an outcome of interest, we need to impose, often implicitly, the so called Sta-

ble Unit Treatment Value Assumption (SUTVA). In fact only under SUTVA we

can observe at least one potential outcome for each individual. If SUTVA is vi-

olated, the ATE is not point identified even if the treatment has been randomly

assigned. This paper derives sharp bounds on the ATE of an exogenous binary

treatment on a binary outcome as a function of the share of the units α for which

SUTVA is potentially violated. We also show how to derive the maximum value

of α such that 0 (or any other value) is an extreme point of the bounds (i.e., the

sign of the ATE is identified). Furthermore, after decomposing SUTVA in two

separate assumptions, following the epidemiology literature, we provide weaker

assumptions which might help sharpening our bounds. Furthermore, we show

how some of our results can be extended to continuous outcomes. Finally we

apply our bounds to two well known experiments, the US Job Corps training

program and randomly assigned voucher for private schools in Colombia.
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1 Introduction and Literature review

The name Stable Unit Treatment Value Assumption was originally proposed in Ru-

bin (1980), but has been discussed way earlier. For example Cox (1958) assumes no

interference between units. SUTVA plays a central role in the identification of causal

effects. It has two implications i) it ensures that there exists as many potential out-

comes as the number of value the treatment can take on (two for the binary case

considered in this paper), ii) only under SUTVA we can observe at least one of the

potential outcomes for each unit.

In most applications in economics SUTVA is often only implicitly assumed, al-

though it is not always plausibly satisfied. For example SUTVA is violated in the

presence of general equilibrium effects (see, Heckman et al. (1999)) which are likely to

affect the evaluation of the effects of job training programs. SUTVA is likely violated

in the presence of peer-effects in evaluating experiment designed to increase educa-

tion (e.g., randomly assigned vouchers) or in the presence externalities and spillover

effects.

Most of the literature has focused on either modeling General equilibrium ef-

fects (see, Heckman et al. (1999)) or dealt with other types of interaction effects (see

Horowitz and Manski (1995), Sobel (1996)). However, SUTVA is also violated if some

unit has access to different version of the treatment which may lead to a different

value of the potential outcome. For this reason the recent literature in epidemiology

decomposes SUTVA in two components which are somehow equivalent to the two

main reasons why SUTVA can be violated.

This paper contribute to the literature in several ways. First we consider the simple

binary outcome case. After fixing the share of units for which SUTVA is violated (i. e.

the observed outcome differs from the potential outcome) we provide sharp bounds

on the ATE which are function of this share. This allows to perform a sensitivity

analysis of the point identified ATE (under SUTVA). In fact we show how to estimate

the maximum share of units for which SUTVA can be violated without changing the

conclusion about the sign of the ATE. We also show how the bounds can be sharpened

and the sensitivity analysis can be improved by using observable covariates. Second

we apply this sensitivity analysis to two well known experiment the US Job Corps

already analyzed in Lee (2009) and the Colombia vouchers for private school already
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analyzed in Angrist et al. (2006). We find that the effect of the random assignment

on both experiment is very sensitive to SUTVA violations and the shares of units for

which SUTVA can be violated are very small but statistically different from 0. Third

we decompose SUTVA in two separate assumptions, following the epidemiology lit-

erature, and we provide weaker alternative assumptions which can help narrowing

the bounds. Finally we generalize some of our results for continuous outcomes. The

paper is organized as follows, in Section 2 we introduce some necessary notation;

in Section 3 we derive our bounds and provide the sensitivity analysis, in Section

4 we show the results of the empirical application, in Section 5 we look at the two

components of SUTVA separately, Section 6 concludes. Proofs are provided in the

appendix.

2 Setup and Notation

For each individual i in the population I , we define:

• the observed binary outcome as Yi ∈ Y = {0, 1} ,

• the observed binary treatment as Di ∈ D = {0, 1}, and

• the two potential outcomes as (Y0
i , Y1

i ) ∈ Y × Y .

We can observe the probability distribution of (Y, D) while the joint distribution

of the potential outcomes outcomes (Y(0), Y(1)) is not observable, as we can only

observe at most one potential outcome for each individual. We are interested in the

average treatment effect, ATE = E[Y(1) − Y(0)], which is a functional of the joint

distribution of (Y(0), Y(1), Y, D).

In Order to identify the ATE the first assumption that is (often implicitly) made is

SUTVA:

Assumption 1: (SUTVA)

∀d ∈ D, ∀i ∈ I : If Di = d then Yi(d) = Yi.

Under SUTVA we can immediately relate observed and potential outcomes through

the observational rule:

Yi = DiY(1)i + (1− Di)Y(0)i.

As already discussed in the introduction, SUTVA requires that:
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(i) There are no interaction effects.

(ii) The treatment is exhaustive, so that there are no hidden version of the treatment

which can affect the potential outcomes.

We will denote the joint probability distribution of (Y(0), Y(1), Y, D) by π, as in

Figure 1:

πij = Pr ((Y(0), Y(1)) = m(j), (Y, D) = m(i)) , ∀i, j ∈ {1, 2, 3, 4},

m(1) = (0, 0), m(2) = (0, 1), m(3) = (1, 0), m(4) = (1, 1).

and by Si = I{Di = d =⇒ Yi(d) = Yi} an indicator function equal to 1 if for

individual i Assumption 1 holds.

SUTVA implies that

π13 = π14 = π22 = π24 = π31 = π32 = π41 = π43 = 0. (1)

3 Results

3.1 Illustration: SUTVA is satisfied

Under SUTVA, the observed probabilities can be rewritten in terms of the unobserved

joint probability distribution π in the following way:

p00 ≡ Pr(Y = 0, D = 0) = π11 + π12, E[Y(0)|D = 0] =
π33 + π34

Pr(D = 0)
,

p01 ≡ Pr(Y = 0, D = 1) = π21 + π23, E[Y(0)|D = 1] =
π23 + π44

Pr(D = 1)

p10 ≡ Pr(Y = 1, D = 0) = π33 + π34, E[Y(1)|D = 0] =
π12 + π34

Pr(D = 0)

p11 ≡ Pr(Y = 1, D = 1) = π42 + π44, E[Y(1)|D = 1] =
π42 + π44

Pr(D = 1)
.

Also the observed mean outcome conditional on the treatment is equal to the mean

potential outcome conditional on the treatment.

E[Y|D = 0] =
π33 + π34

Pr(D = 0)
= E[Y(0)|D = 0],

E[Y|D = 1] =
π42 + π44

Pr(D = 1)
= E[Y(1)|D = 0].
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The mean potential outcomes can be rewritten as

E[Y(0)] = E[Y(0)|D = 1] · Pr(D = 1) + E[Y(0)|D = 0] · Pr(D = 0)

= π23 + π44 + π33 + π34,

E[Y(1)] = E[Y(1)|D = 1] · Pr(D = 1) + E[Y(1)|D = 0] · Pr(D = 0)

= π42 + π44 + π12 + π34,

(2)

This implies that the ATE can be written as:

E[Y(1)−Y(0)] = π42 + π12 − π23 − π33. (3)

If we assume that the treatment is exogenous it is well known that the ATE is a

function of only observable quantities and is therefore identified. We summarize this

results in Lemma 1 after having formally defined exogeneity.

Assumption 2: (Exogenous Treatment Selection)

∀d ∈ D : E[Y(d)|D = 1] = E[Y(d)|D = 0].

Lemma 1. Under Assumptions 1 and 2, the ATE is identified.

Proof of Lemma 1. Under Assumption 1, E[Y(d)|D = d] = E[Y|D = d], and under

Assumption 2, E[Y(d)|D = 1] = E[Y(d)|D = 0] and hence ATE = E[Y(1)− Y(0)] =

E[Y|D = 1]− E[Y|D = 0] is identified from the data.

3.2 SUTVA does not hold

When SUTVA does not hold the observed probabilities become

p00 = π11 + π12+π13 + π14, E[Y(0)|D = 0] =
π33 + π34+π13 + π14

Pr(D = 0)
,

p01 = π21 + π23+π22 + π24, E[Y(0)|D = 1] =
π23 + π44+π24 + π43

Pr(D = 1)
,

p10 = π33 + π34+π31 + π32, E[Y(1)|D = 0] =
π12 + π34+π14 + π32

Pr(D = 0)
,

p11 = π42 + π44+π41 + π43, E[Y(1)|D = 1] =
π42 + π44+π22 + π24

Pr(D = 1)
.

(4)
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The fundamental difference is that without SUTVA the potential outcomes for

a given observed treatment value are not identified from the data, so the observed

E[Y|D = d] need not be equal to E[Y(d)|D = d] anymore, i.e.:

E[Y|D = 0] =
π33 + π34+π31 + π32

Pr(D = 0)
6= π33 + π34+π13 + π14

Pr(D = 0)
= E[Y(0)|D = 0]

E[Y|D = 1] =
π42 + π44+π41 + π43

Pr(D = 1)
6= π42 + π44+π22 + π24

Pr(D = 1)
= E[Y(1)|D = 1].

The mean potential outcomes now become

E[Y(0)] = E[Y(0)|D = 1] · Pr(D = 1) + E[Y(0)|D = 0] · Pr(D = 0)

= π23 + π44+π24 + π43 + π33 + π34+π13 + π14,

E[Y(1)] = E[Y(1)|D = 1] · Pr(D = 1) + E[Y(1)|D = 0] · Pr(D = 0)

= π42 + π44+π22 + π24 + π12 + π34+π14 + π32,

and therefore

E[Y(1)−Y(0)] = π42 + π12+π22 + π32 − π23 − π33−π13 − π43.

The ATE can still be identified, but only at the price of strong additional assump-

tions. We propose an example of a sufficient condition that guarantees identification.

Assumption 3: (Balanced effect of the violation)

Pr(Y = 1, S = 0|D = 1)− Pr(Y = 0, S = 0|D = 1)

= Pr(Y = 1, S = 0|D = 0)− Pr(Y = 0, S = 0|D = 0)
(5)

The Assumption 3 states that the difference between the probability of positive and

negative outcome together with the violation of SUTVA is the same for treated and

non-treated population. The following lemma shows that this assumption guarantees

that the difference between the naive ATE estimated, E[Y|D = 1]− E[Y|D = 0], and

the ATE under Assumption 2, E[Y(1)|D = 1]− E[Y(0)|D = 0] vanishes.

Lemma 2. Under Assumptions 2 and 3, the ATE is identified.

Proof of this lemma and all the other proofs are given in the Appendix.
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3.3 Relaxing SUTVA

In this section we show propose a sensitivity analysis of the ATE to SUTVA violations.

Assumption 1α: (SUTVA violation share)

Pr(∀d ∈ D : Di = d =⇒ Yi(d) = Yi) ≥ 1− α.

The sensitivity parameter α ranges between 0 and 1 and can be directly interpreted as

a probability that SUTVA does not hold. This assumption implies that

π13 + π14 + π22 + π24 + π31 + π32 + π41 + π43 ≤ α.

Under the Assumption 1α, the ATE is no longer identified, but the following

lemma provides its sharp bounds.

Lemma 3. Under the Assumption 1α, the sharp bounds on the ATE are the following:1

ATE ∈ [ATELB, ATEUB]

ATELB = max{−p10 − p01 − α,−1},

ATEUB = min{p00 + p11 + α, 1}.

(6)

The width of these bounds is 1 + 2α and they are therefore not useful in practice.

We extend these results to the case with continuous outcome Y in Appendix C. In

order to obtain meaningful bounds we also need to assume that the treatment is

exogenous (Assumption 2).

1The dependence of ATELB and ATEUB on α is suppressed for brevity.
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Lemma 4. Under the Assumptions 1α and 2, the sharp bounds on the ATE are the following:

ATE ∈ [ATELB, ATEUB]

if p11 + p01 > p00 + p10 :

ATELB =
p11 −min{max{α− p00, 0}, p11}

p11 + p01
− p10 + min{p00, α}

p00 + p10
,

ATEUB =
p11 + min{max{α− p10, 0}, p01}

p11 + p01
− p10 −min{p10, α}

p00 + p10
,

if p11 + p01 < p00 + p10 :

ATELB =
p11 −min{p11, α}

p11 + p01
− p10 + min{max{α− p11, 0}, p00}

p00 + p10
,

ATEUB =
p11 + min{p01, α}

p11 + p01
− p10 −min{max{α− p01, 0}, p01}

p00 + p10
.

(7)

The dependence of the bounds on the relaxation parameter α is visualized in Fig-

ure 3.

Lemma 4 allows us to detect the maximal possible violation of SUTVA, so that the

sign of ATE is still identified.

Lemma 5. Under Assumptions 1α and 2, ATELB ≥ 0 if and only if

0 ≤ α ≤ α+ ≡ min{Pr(D = 1), Pr(D = 0)} · [E(Y|D = 1)− E(Y|D = 0)]

and ATEUB ≤ 0 if and only if

0 ≤ α ≤ α− ≡ −min{Pr(D = 1), Pr(D = 0)} · [E(Y|D = 1)− E(Y|D = 0)] .

It is interesting test the hypothesis H0 : α+ = 0, so that the maximum possible

violation of SUTVA assumption to guarantee positive ATE is zero. It is a question

whether we can reject the hypothesis that positive ATE is robust to mild deviations of

SUTVA assumption. Under the Assumptions 1α and 2 for α = 0, the ATE = E[Y|D =

1] − E[Y|D = 0] > α+. This means that we may be in a situation where ATE is

significantly different from 0, whereas α+ is not.
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3.4 Narrowing the Bounds using Covariates

Suppose that a set covariates Xi ∈ X is also available and that all our assumptions

hold also conditioned on X, such that ATE =
∫
X ATEx Pr(X = x)dx, where ATEx =

E[Y(1)−Y(0)|X = x].

Assumption 2X: (Exogenous Treatment Selection with Covariates)

∀d ∈ D :, ∀x ∈ X : E[Y(d)|D = 1, X = x] = E[Y(d)|D = 0, X = x].

Lemma 6. Under the Assumptions 1α and 2X, the sharp bounds on the ATE are the following:

ATE ∈
[

ATELB
, ATEUB

]
ATELB

=
∫

X
ATELB

x Pr(X = x)dx

ATEUB
=

∫
X

ATEUB
x Pr(X = x)dx

if p11|x + p01|x > p00|x + p10|x :

ATELB
x =

p11|x −min{max{α− p00|x, 0}, p11|x}
p11|x + p01|x

−
p10|x + min{p00|x, α}

p00|x + p10|x
,

ATEUB
x =

p11|x + min{max{α− p10|x, 0}, p01|x}
p11|x + p01|x

−
p10 −min{p10|x, α}

p00|x + p10|x
,

if p11|x + p01|x < p00|x + p10|x :

ATELB
x =

p11|x −min{p11|x, α}
p11|x + p01|x

−
p10|x + min{max{α− p11|x, 0}, p00|x}

p00 + p10
,

ATEUB
x =

p11|x + min{p01|x, α}
p11|x + p01|x

−
p10|x −min{max{α− p10|x, 0}, p01|x}

p00|x + p10|x
.

(8)

Furthermore, ATELB ≥ ATELB and ATEUB ≤ ATEUB.

In practice we may divide the sample into finite number of groups depending on

how on the predicted value of the outcome variable.2 The choice of the number of

groups depends on the problem at hand. The larger the number the sharper are the

bounds, but at the same time, the statistical uncertainty within the group increases.

When information about X is available, the maximum possible violation of SUTVA,

α+(α−) that guarantees positive (negative) ATE changes.

2Lee (2009) used all available covariates to construct a single variable that was discretized into five
groups depending on the size of the value of the outcome it predicted.
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Lemma 7. Under the Assumptions 1α and 2X, ATELB ≥ 0 if and only if

0 ≤ α ≤ α+ ≡
∫

X
min{α+x , 0}Pr(X = x)dx

and ATEUB ≤ 0 if and only if

0 ≤ α ≤ α− ≡
∫

X
min{α−x , 0}Pr(X = x)dx,

where

α+x ≡ min{Pr(D = 1, X = x), Pr(D = 0, X = x)} · [E(Y|D = 1, X = x)− E(Y|D = 0, X = x)]

α−x ≡ −α+x .

We note that α+ ≤ α+ (similarly α− ≥ α+), because for some x the quantity

E(Y|D = 1, X = x) − E(Y|D = 0, X = x) may be negative even though E(Y|D =

1)− E(Y|D = 0) ≥ 0.

3.5 Estimation and Inference

The fact that the expressions for bounds, α+ and α− involve minimum and maxi-

mum operators gives rise to a non-standard inferential procedure as no regular
√

n-

consistent estimator exists (Hirano and Porter, 2012) and analog estimators may be

severely biased in small samples. For this reason we use Intersection Bounds ap-

proach of Chernozhukov et al. (2013) that creates half-median-unbiased point esti-

mates and confidence intervals.3 This method corrects for the small sample bias before

the max/min operator is applied.

4 Empirical Illustrations

This paper considers two empirical applications to illustrate the scope of usefulness

of the presented results. The first one is the effect of job training assignment to U.S

Job Corps program on the probability of employment four years after the assignment,

3Half-median-unbiased means that the estimate of the upper(lower) bound exceeds (lies below) its
true value with probability at least one half asymptotically.
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an intention-to-treat effect. Evaluations of this program aroused considerable interest

among policy makers and researchers throughout the last decades, which is hardly

surprising given the high cost of this program. We used data from National Job Corps

Study also studied in Lee (2009). We refer the reader to Lee (2009) for extensive data

description.

The second application looks at a school voucher experiment of Colombia’s "Pro-

grama de Ampliacion de Cobertura de la Educacion Secundaria" (PACES) and ana-

lyze the impact of randomly assigned high school voucher to low income pupils that

covered approximately a half of the cost of private secondary schooling on the prob-

ability that grades had to be repeated. This section uses the data previously studied

in Angrist et al. (2006).

4.1 The Effect of Job Training Programme on Employment

Table 1 provides the summary statistics.

Y \ D offered training not offered training
(D = 1) (D = 0)

working (Y = 1) p11 = 49.26% p10 = 31.63%
not working (Y = 0) p01 = 11.16% p00 = 7.94%

n = 11146 Pr(D = 1) = 60.43% Pr(D = 0) = 39.57%

Table 1: Probability distribution of the working after 202 weeks indicator (Y) and of the ran-
domized treatment (Job training programme JobCorps) offered status (D). Based on a dataset
from Lee (2009). Missing values were removed.

Under SUTVA assumption and under the Exogenous Treatment Selection assump-

tion the impact of the assignment on probability of employment is 1.6% with the lower

95% confidence bound positive at 0.1%. The minimal value of SUTVA relaxation that

still yields positive ATE, α+, is 0.954% and is statistically different from zero. The

impact of different relaxations of SUTVA on ATE bounds are presented in Table 2 and

visualised in Figure 3.

This analysis suggests that should we have some doubts about the mismeasure-

ment or interaction effects within the tested subpopulation, the data cannot rule out

a negative effect of the program assignment on the employment.
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α [ATELB, ATEUB]
(CBLB, CBUB)

0 [0.016, 0.016]
(0.001, 0.031)

0.01 [-0.009, 0.041]
(-0.023, 0.055)

0.05 [-0.111, 0.142]
(-0.124, 0.155)

0.1 [-0.219, 0.269]
(-0.230, 0.282)

0.2 [-0.384, 0.521]
(-0.394, 0.537)

0.5 [-0.881, 1]
(-0.893, 1)

α+ 0.954%
(CBl, CBu) (0.076%, 1.213%)

Table 2: Bounds on ATE under different relaxations of SUTVA assumption. The left table
presents estimates of bounds on ATE together with 95% confidence bounds. On the right had
side, α+ is the estimated maximum possible violation of SUTVA that still guarantees positive
ATE. All estimates are half-median unbiased and based on Chernozhukov et al. (2013) using
9999 bootstrap samples and 200000 replications.
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4.2 The Effect of School Vouchers on Never Repeating a Grade

See Angrist et al. (2006) for extensive data description.

Y \ D offered voucher not offered voucher
(D = 1) (D = 0)

never repeated a grade (Y = 1) p11 = 43.71% p10 = 37.30%
repeated a grade (Y = 0) p01 = 8.41% p00 = 10.57%

n = 1201 Pr(D = 1) = 52.12% Pr(D = 0) = 47.88%

Table 3: Probability distribution of never repeating a grade (Y) and of the randomized treat-
ment (school vouchers offered) . Based on a dataset from Angrist et al. (2006). Missing values
were removed.

Without SUTVA relaxation, the point identified ATE of voucher offered on the

probability of never repeating a grade is 6% and it is statistically significant on the

95% confidence level. In order to maintain a positive effect, we may have no more

3.03% of the population that do not satisfy SUTVA, so the positive effect is more

robust to the relaxation of SUTVA assumption that the previous example. Should the

proportion of individuals that violate SUTVA assumption becomes larger than 10%,

the data is uninformative about the direction of the effect with 95% confidence bound

between -19.2% and 31.8%.

The results are summarized in Table 4 and depicted in Figure 4.
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α [ATELB, ATEUB]
(CBLB, CBUB)
[0.060, 0.060]
(0.009, 0.110)

0.01 [0.033, 0.092]
(-0.014, 0.136)

0.05 [-0.050, 0.174]
(-0.094, 0.215)

0.1 [-0.154, 0.278]
(-0.192, 0.318)

0.2 [-0.348, 0.485]
(-0.384, 0.528)

0.5 [-0.932, 1]
(-0.969, 1)

α+ 3.03%
(CBl, CBu) (0.69%, 5.08%)

Table 4: Bounds on ATE under different relaxations of SUTVA assumption. The left table
presents estimates of bounds on ATE together with 95% confidence bounds. On the right had
side, α+ is the estimated maximum possible violation of SUTVA that still guarantees positive
ATE. All estimates are half-median unbiased and based on Chernozhukov et al. (2013) using
9999 bootstrap samples and 200000 replications.
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5 Extension: Decomposing SUTVA assumption

In the relaxed SUTVA assumption, we are completely agnostic about the mechanism

that drives the violation. This may be an advantage or a disadvantage. In certain

situations it may be desirable to distinguish between the different reasons why SUTVA

may be violated.

In the epidemiology literature, Assumption 1 in this paper (which we call SUTVA

assumption) was coined as a Consistency assumption (Cole and Frangakis, 2009). This

assumption was further decomposed by VanderWeele (2009) into two components:

Treatment-variation irrelevance assumption and Consistency assumption.

In order to make the distinction possible we introduce a new variable Hi ∈ H, that

denotes a hidden treatment of individual i. This may capture different conditions

under which the treatment D is taken (e.g. different dose or length of exposure to

treatment). Now, the potential outcome is a function of both observed and hidden

treatment Y(d, h). In this case the average treatment effect depends on the value

of H and the quantity of interest may be the mean of average treatment effects for

different values of the hidden treatment: ATE =
∫
H ATE(h)Pr(H = h)dh, where

ATE(h) = E[Y(1, h)−Y(0, h)] .

Assumption 1A: (Treatment-variation irrelevance assumption)

∀d ∈ D, ∀h, h′ ∈ H, ∀i ∈ I : Di = d =⇒ Yi(d, h) = Yi(d, h′). (9)

This means that there are no multiple versions of the treatment and the notation

Yi(d) is justified and the quantity ATE = E(Y(1)−Y(0)) is well defined. It also means

that there is no interference: Yi(di, d−i) = Yi(di, d′−i), ∀d−i, d′−i, where d−i stands for

the vector of treatments of individuals other than i.

Assumption 1B: (Consistency Assumption)

∀d ∈ D, ∀h ∈ H, ∀i ∈ I : Di = d, Hi = h =⇒ Yi(d, h) = Yi. (10)

This assumption states that the observed value of outcome Yi is consistent with the

potential outcome model formulation. A possible violation of this assumption is

mismeasurement of the outcome or treatment.

15



We note that Assumptions 1A and 1B imply the following condition

∀d ∈ D, ∀h, h′ ∈ H, ∀i ∈ I : Di = d, Hi = h =⇒ Yi(d, h) = Yi(d, h′) = Yi,

which reduces to Assumption 1 if there are no hidden treatments H.

Figure 5 depicts the Individual Average Treatment Effect on and the support of

the joint probability distribution of (Y00, Y01, Y10, Y11, Y, D, H) for binary hidden treat-

ment H, where Ydh = Y(d, h).

Both Assumptions 1A and 1B are support restrictions and so we can relax these

assumptions separately.

Assumption 1Aβ: (Relaxed Treatment-variation Irrelevance Assumption)

Pr(∀d ∈ D, ∀h, h′ ∈ H : Yi(d, h) = Yi(d, h′)) ≥ 1− β. (11)

Assumption 1Bγ: (Relaxed Consistency Assumption)

Pr(∀d ∈ D, ∀h ∈ H : Di = d, Hi = h =⇒ Yi(d, h) = Yi) ≥ 1− γ. (12)

Assumption 2H: (Exogenous Treatment Selection with Hidden Treatment)

∀d ∈ D, ∀h ∈ H : E[Y(d, h)|D = 1] = E[Y(d, h)|D = 0].

We note that without Assumption 2H, Assumption 1Aβ has no identifying power

once Assumption 1Bγ is assumed. This result, however, does change once Assump-

tion 2H is assumed and Assumptions 1A and 1B therefore provide distinctive sources

of identifying power. The effects on ATE under different relaxations are visualized

in Figure 6 and Figures 7 and 8 show joint probability distributions that maximize

ATE under different relaxations of SUTVA. These observations are based on a simula-

tion, where the bounds on ATE are calculated using a linear programming procedure

described in Lafférs (2015).

We note that there are recent advances in the literature of statistical inference of

partially identified parameters that deal with random linear program of such form

(Kaido et al., 2016). Further research is warranted.
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6 Conclusion

This paper discussed the Stable Unit Treatment Value Assumption (SUTVA) assump-

tions and the implications of the violations of this assumption for the identification

on the average treatment effect. SUTVA assumption is relaxed in a way that a certain

fraction of the population may violate this assumption. We found analytic bounds on

the ATE under the relaxed SUTVA and the Exogenous Treatment Selection assump-

tion and demonstrated it on two empirical examples. Furthermore these results allow

us to identify the maximum amount of SUTVA violation that would still result in a

positive (negative) ATE. Following the epidemiology literature, this paper sketched

the possible decomposition of SUTVA assumption that allows to distinguish between

the different sources of SUTVA violation.

A Appendix

Proof of Lemma 2. The Assumption 2 together with (4) implies

ATE = E[Y(1)]− E[Y(0)] = E[Y(1)|D = 1]− E[Y(0)|D = 0]

=
π42 + π44+π22 + π24,

Pr(D = 1)
− π33 + π34+π13 + π14,

Pr(D = 0)
.

(A.1)

From (5) we can see that

E[Y|D = 1]− E[Y|D = 0] =
π42 + π44+π41 + π43,

Pr(D = 1)
− π33 + π34+π31 + π32

Pr(D = 0)
. (A.2)

We note that under Assumption 3,

π41 + π43

Pr(D = 1)
− π22 + π24

Pr(D = 1)
=

π31 + π32

Pr(D = 0)
− π13 + π14

Pr(D = 0)
,

so that the equations (A.1) and (A.2) are equal.

Proof of Lemma 3. We show the proof for the upper bound as the proof for the lower bound follows in

an analogous way.

Let us further denote ATEs
yd = E[Y(1)−Y(0)|Y = y, D = d, S = s].
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(i) Validity

ATE =
[

ATE1
00 · Pr(S = 1|Y = 0, D = 0) + ATE0

00 · Pr(S = 0|Y = 0, D = 0)
]
· p00

+
[

ATE1
01 · Pr(S = 1|Y = 0, D = 1) + ATE0

01 · Pr(S = 0|Y = 0, D = 1)
]
· p01

+
[

ATE1
10 · Pr(S = 1|Y = 1, D = 0) + ATE0

10 · Pr(S = 0|Y = 1, D = 0)
]
· p10

+
[

ATE1
11 · Pr(S = 1|Y = 1, D = 1) + ATE0

11 · Pr(S = 0|Y = 1, D = 1)
]
· p11

≤[1 · Pr(S = 1|Y = 0, D = 0)] + 0 · Pr(S = 0|Y = 0, D = 0)] · p00

+ [0 · Pr(S = 1|Y = 0, D = 1)] + 1 · Pr(S = 0|Y = 0, D = 1)] · p01

+ [0 · Pr(S = 1|Y = 1, D = 0)] + 1 · Pr(S = 0|Y = 1, D = 0)] · p10

+ [1 · Pr(S = 1|Y = 1, D = 1)] + 0 · Pr(S = 0|Y = 1, D = 1)] · p11

=Pr(S = 1|Y = 0, D = 0) · p00 + Pr(S = 1|Y = 1, D = 1) · p11

+ Pr(S = 0|Y = 0, D = 1) · p01 + Pr(S = 0|Y = 1, D = 0) · p10

≤p00 + p11 + min{p01 + p10, α} = min{p00 + p11 + α, 1},

Where the last inequality follows from the fact that Pr(S = 0) ≤ α.

(ii) Sharpness

Suppose that α < p01 + p10. Then there must exist constants 0 ≤ α01 ≤ p01 and 0 ≤ α10 ≤ p10, so

that α = α01 + α10. The following specification for Pr(Y(0), Y(1), Y, D) is compatible with Assumption

1α and and with the distribution of (Y, D).

π12 = p00, π22 = α01, π32 = α10, π42 = p11, π21 = p01 − α01, π34 = p10 − α10,

π11 = π13 = π14 = π23 = π24 = π31 = π33 = π41 = π43 = π44 = 0.

Suppose now that α ≥ p01 + p10.

π12 = p00, π22 = p01, π32 = p10, π42 = p11,

π11 = π13 = π14 = π21 = π23 = π24 = π31 = π33 = π34 = π41 = π43 = π44 = 0.

Figure 2 illustrates the sharpness part of the proof of Lemma 3.

Proof of Lemma 4. We show the proof for the upper bound and for π11 + π01 > π00 + π10 as the proof

for the lower bound and for π11 + π01 < π00 + π10 follows in an analogous way.

(i) Validity
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ATE = E[Y(1)−Y(0)] = E[Y(1)|D = 1]− E[Y(0)|D = 0]

=
π42 + π44+π22 + π24

Pr(D = 1)
− π33 + π34+π13 + π14

Pr(D = 0)

=
p11−π41 − π43 + π22 + π24

p11 + p01
− p10−π31 − π32 + π13 + π14

p00 + p10

≤ p11+π22 + π24

p11 + p01
− π10−π31 − π32

p00 + p10

≤ p11 + min{max{α− p10, 0}, p01}
p11 + p01

− p10 −min{p10, α}
p00 + p10

= ATEUB.

where the last inequality follows from inequalities π31 + π32 ≤ p10, π22 + π24 ≤ p01 and π11 + π01 >

π00 + π10.

(ii) Sharpness

Given that π11 + π01 > π00 + π10, the following specification for Pr(Y(0), Y(1), Y, D) is compatible

with Assumptions 1α, 2, with the distribution of (Y, D) and achieves the ATEUB.

c1 = min{p10, α},

c2 = min{max{α− p10, 0}, p01},

π11 = p00 − p00
p11 + c2

p11 + p01
, π21 = p01 − c2 − p01

p10 − c1

p00 + p10
,

π12 = p00
p11 + c2

p11 + p01
, π22 = c2,

π13 = 0, π23 = p01
p10 − c1

p00 + p10
,

π14 = 0, π24 = 0,

π31 = c1 − c1
p11 + c2

p11 + p01
, π41 = 0,

π32 = c1
p11 + c2

p11 + p01
, π42 = p11 − p11

p10 − c1

p00 + p10
,

π33 = p10 − c1 − (p10 − c1)
p11 + c2

p11 + p01
, π43 = 0,

π34 = (p10 − c1)
p11 + c2

p11 + p01
, π44 = p11

p10 − c1

p00 + p10
.

Straightforward manipulations show that the proposed specification is a proper probability distribution

function.

Proof of Lemma 5. We only present the proof for ATELB ≥ 0, as the the proof for ATEUB ≤ 0 is similar.

Consider the case π11 + π01 > π00 + π10. If p00 + p11 ≥ α ≥ p00, then

ATELB =
p11 − (α− p00)

p11 + p01
− 1,
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so that ATELB ≥ 0 would imply p00 − p01 ≥ α which contradicts α ≥ p00, so we have to have α ≤ p00

and thus

ATELB =
p11

p11 + p01
− p10 + α

p00 + p10
≥ 0 ⇐⇒ α ≤ p11

p00 + p10

p11 + p01
− p10 = Pr(D = 0) [E(Y|D = 1)− E(Y|D = 0)] .

Similarly, for π11 + π01 > π00 + π10 we get that for ATEUB ≤ 0 we have to have α ≤ p11 and

therefore

ATEUB =
p11 − α

p11 + p01
− p10

p00 + p10
≤ 0 ⇐⇒ α ≤ p11− p10

p11 + p01

p00 + p10
= Pr(D = 1) [E(Y|D = 1)− E(Y|D = 0)] ,

which leads to the desired result.

Proof of Lemma 6. The proof is similar to the one or Proposition 1b in Lee (2009). The validity and

sharpness of the bounds results from the application of Lemma 4 conditional on X = x. The second

part follows from the fact that any ATE that is consistent with (Y, D, X) has to be consistent with

(Y, D), that is ignoring the information about X cannot lead to a more informative result (sharpen the

bounds).

Proof of Lemma 7. Analoguous to the proof of Lemma 5 and hence ommited.
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Figure 1: Joint probability distribution of (Y(0), Y(1), Y, D). Under SUTVA, the red points
must have zero probability mass.
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Figure 2: Visualisation of the sharpness part of the Lemma 3.
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Figure 3: Sensitivity analysis to SUTVA assumption of the bounds on ATE of the assignment
to job training on the probability of employment (Intention-to-Treat). All estimates are half-
median unbiased and based on Chernozhukov et al. (2013).

22



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

α

A
T
E

α = p 1 0

α = p 1 0+ p 0 1

α = p 0 0

α = p 0 0+ p 1 1

α = p 0 0

α = p 0 0+ p 1 1

B ounds on ATE unde r re lax ed SUTVA

 

 

ATELB

Lower Conf Bound
ATEUB

Upper Conf Bound
α+

E[Y|D=1]−E[Y|D=0]

Figure 4: Sensitivity analysis to SUTVA assumption of the bounds on ATE of the school
vouchers on the probability of never repeating a grade (Intention-to-Treat). All estimates are
half-median unbiased and based on Chernozhukov et al. (2013).
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Figure 6: Lower and Upper Bounds on ATE (viewed from different angles) under different
relaxations of Assumptions 1A and 1B.
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Figure 8: Joint probability distributions of (Y00, Y01, Y10, Y11, Y, D, H) that maximize ATE
under different relaxations of SUTVA.
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C Continuous Outcome
Notation: ∀d ∈ D : πd = πd(y0, y1, y) = f (y0, y1, y|d), pd = Pr(D = d)

∀y ∈ Y :
∫∫

π1(y0, y1, y) dy0 dy1 = fY(y|D = 1)∫∫
π0(y0, y1, y) dy0 dy1 = fY(y|D = 0)

(C.1)

∀y0, y1, y ∈ Y : π1(y0, y1, y)I{y1 6= y} = 0

∀y0, y1, y ∈ Y : π0(y0, y1, y)I{y0 6= y} = 0
(C.2)

∫∫∫
y1π1 dy0 dy1 dy =

∫∫∫
y1π0 dy0 dy1 dy∫∫∫

y0π1 dy0 dy1 dy =
∫∫∫

y0π0 dy0 dy1 dy
(C.3)

These restrictions state that πd is compatible with the data (C.1), satisfy SUTVA assumption (C.2)
and the Exogenous Treatment Selection assumption (C.3).

Given that πd ≥ 0 and t, conditions (C.2) can be rewritten as:

∫∫∫
π1(y0, y1, y)I{y1 6= y}+ π0(y0, y1, y)I{y0 6= y} dy0 dy1 dy = 0

and we can rewrite relaxed SUTVA (Assumption 1α) as∫∫∫
π1(y0, y1, y)I{y1 6= y}+ π0(y0, y1, y)I{y0 6= y} dy0 dy1 dy ≤ α. (C.4)

The ATE = E[Y1 −Y0] can be rewritten in terms of πd in the following way:

ATE =
∫∫∫

(y1 − y0)(π
1 p1 + π0 p0) dy0 dy1 dy. (C.5)

In order to to find meaningful bounds without the ETS assumption, we will need bounded support
of the outcome, suppose now that y ∈ Y ⊂ [ymin, ymax].

Lemma 8. Under the Assumption 1α, the sharp bounds on the ATE are the following:

ATE ∈ [ATELB, ATEUB]

ATELB = max
{

p1 (E[Y|D = 1]− ymax) + p0 (ymin − E[Y|D = 0])− α(ymax − ymin), −(ymax − ymin)
}

ATEUB = min
{

p1 (E[Y|D = 1]− ymin) + p0 (ymax − E[Y|D = 0]) + α(ymax − ymin), ymax − ymin

}
.

(C.6)

Proof of Lemma 8. We show the proof for the upper bound as the proof for the lower bound follows in
an analogous way.
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(i) Validity

ATE =
∫∫∫

(y1 − y0)(π
1 p1 + π0 p0) dy0 dy1 dy

= p1
∫∫∫

(y1 − y0)π
1 dy0 dy1 dy

+ p0
∫∫∫

(y1 − y0)π
0 dy0 dy1 dy

= p1
∫∫∫

y1π1 dy0 dy1 dy− p1
∫∫∫

y0π1 dy0 dy1 dy

+ p0
∫∫∫

y1π0 dy0 dy1 dy− p0
∫∫∫

y0π0 dy0 dy1 dy

= p1
∫∫∫

(y1 − y0)
[
π1 I{y1 = y}+ π1 I{y1 6= y}

]
dy0 dy1 dy

+ p0
∫∫∫

(y1 − y0)
[
π0 I{y0 = y}+ π0 I{y0 6= y}

]
dy0 dy1 dy

≤ p1 (E[Y|D = 1]− ymin)

+ p1(ymax − ymin)
∫∫∫

π1(y0, y1, y)I{y1 6= y} dy0 dy1 dy

+ p0 (ymax − E[Y|D = 0])

+ p0(ymax − ymin)
∫∫∫

π0(y0, y1, y)I{y0 6= y} dy0 dy1 dy

= p1 (E[Y|D = 1]− ymin) + p0 (ymax − E[Y|D = 0]) + α(ymax − ymin)

(C.7)

(ii) Sharpness
The following specification for πd is compatible with Assumptions 1α, with the distribution of

(Y, D) and achieves the ATEUB. Note that for α ≤ p1E[Y|D = 1] + p0E[Y|D = 0] there exists α0, α1 such
that α0 ≤ p0E[Y|D = 0], α1 ≤ p1E[Y|D = 1] and α = α0 + α1. For α ≤ p1E[Y|D = 1] + p0E[Y|D = 0] :

π0(y0, y1, y) = ((1− α0)I{y0 = y}+ α0 I{y0 = ymin}) · I{y1 = ymax} · fY(y|D = 0),

π1(y0, y1, y) = I{y0 = ymin} · ((1− α1)I{y1 = y}+ α1 I{y1 = ymax}) · fY(y|D = 1),
(C.8)

and for α > p1E[Y|D = 1] + p0E[Y|D = 0] we set α0 = p0E[Y|D = 0] and α1 = p1E[Y|D = 1].
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